2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/nospec-branch.h>
50 #include <asm/virtext.h>
53 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
58 static const struct x86_cpu_id svm_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_SVM),
62 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #define IOPM_ALLOC_ORDER 2
65 #define MSRPM_ALLOC_ORDER 1
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
70 #define SVM_FEATURE_NPT (1 << 0)
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_NRIP (1 << 3)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
80 #define SVM_AVIC_DOORBELL 0xc001011b
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
117 static bool erratum_383_found __read_mostly;
119 static const u32 host_save_user_msrs[] = {
121 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
124 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
132 struct nested_state {
138 /* These are the merged vectors */
141 /* gpa pointers to the real vectors */
145 /* A VMEXIT is required but not yet emulated */
148 /* cache for intercepts of the guest */
151 u32 intercept_exceptions;
154 /* Nested Paging related state */
158 #define MSRPM_OFFSETS 16
159 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
162 * Set osvw_len to higher value when updated Revision Guides
163 * are published and we know what the new status bits are
165 static uint64_t osvw_len = 4, osvw_status;
168 struct kvm_vcpu vcpu;
170 unsigned long vmcb_pa;
171 struct svm_cpu_data *svm_data;
172 uint64_t asid_generation;
173 uint64_t sysenter_esp;
174 uint64_t sysenter_eip;
179 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
191 struct nested_state nested;
194 u64 nmi_singlestep_guest_rflags;
196 unsigned int3_injected;
197 unsigned long int3_rip;
199 /* cached guest cpuid flags for faster access */
200 bool nrips_enabled : 1;
203 struct page *avic_backing_page;
204 u64 *avic_physical_id_cache;
205 bool avic_is_running;
208 * Per-vcpu list of struct amd_svm_iommu_ir:
209 * This is used mainly to store interrupt remapping information used
210 * when update the vcpu affinity. This avoids the need to scan for
211 * IRTE and try to match ga_tag in the IOMMU driver.
213 struct list_head ir_list;
214 spinlock_t ir_list_lock;
218 * This is a wrapper of struct amd_iommu_ir_data.
220 struct amd_svm_iommu_ir {
221 struct list_head node; /* Used by SVM for per-vcpu ir_list */
222 void *data; /* Storing pointer to struct amd_ir_data */
225 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
226 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
228 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
229 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
230 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
231 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
233 static DEFINE_PER_CPU(u64, current_tsc_ratio);
234 #define TSC_RATIO_DEFAULT 0x0100000000ULL
236 #define MSR_INVALID 0xffffffffU
238 static const struct svm_direct_access_msrs {
239 u32 index; /* Index of the MSR */
240 bool always; /* True if intercept is always on */
241 } direct_access_msrs[] = {
242 { .index = MSR_STAR, .always = true },
243 { .index = MSR_IA32_SYSENTER_CS, .always = true },
245 { .index = MSR_GS_BASE, .always = true },
246 { .index = MSR_FS_BASE, .always = true },
247 { .index = MSR_KERNEL_GS_BASE, .always = true },
248 { .index = MSR_LSTAR, .always = true },
249 { .index = MSR_CSTAR, .always = true },
250 { .index = MSR_SYSCALL_MASK, .always = true },
252 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
253 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
254 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
255 { .index = MSR_IA32_LASTINTTOIP, .always = false },
256 { .index = MSR_INVALID, .always = false },
259 /* enable NPT for AMD64 and X86 with PAE */
260 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
261 static bool npt_enabled = true;
263 static bool npt_enabled;
266 /* allow nested paging (virtualized MMU) for all guests */
267 static int npt = true;
268 module_param(npt, int, S_IRUGO);
270 /* allow nested virtualization in KVM/SVM */
271 static int nested = true;
272 module_param(nested, int, S_IRUGO);
274 /* enable / disable AVIC */
276 #ifdef CONFIG_X86_LOCAL_APIC
277 module_param(avic, int, S_IRUGO);
280 /* enable/disable Virtual VMLOAD VMSAVE */
281 static int vls = true;
282 module_param(vls, int, 0444);
284 /* enable/disable Virtual GIF */
285 static int vgif = true;
286 module_param(vgif, int, 0444);
288 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
289 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
290 static void svm_complete_interrupts(struct vcpu_svm *svm);
292 static int nested_svm_exit_handled(struct vcpu_svm *svm);
293 static int nested_svm_intercept(struct vcpu_svm *svm);
294 static int nested_svm_vmexit(struct vcpu_svm *svm);
295 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
296 bool has_error_code, u32 error_code);
299 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
300 pause filter count */
301 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
302 VMCB_ASID, /* ASID */
303 VMCB_INTR, /* int_ctl, int_vector */
304 VMCB_NPT, /* npt_en, nCR3, gPAT */
305 VMCB_CR, /* CR0, CR3, CR4, EFER */
306 VMCB_DR, /* DR6, DR7 */
307 VMCB_DT, /* GDT, IDT */
308 VMCB_SEG, /* CS, DS, SS, ES, CPL */
309 VMCB_CR2, /* CR2 only */
310 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
311 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
312 * AVIC PHYSICAL_TABLE pointer,
313 * AVIC LOGICAL_TABLE pointer
318 /* TPR and CR2 are always written before VMRUN */
319 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
321 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
323 static inline void mark_all_dirty(struct vmcb *vmcb)
325 vmcb->control.clean = 0;
328 static inline void mark_all_clean(struct vmcb *vmcb)
330 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
331 & ~VMCB_ALWAYS_DIRTY_MASK;
334 static inline void mark_dirty(struct vmcb *vmcb, int bit)
336 vmcb->control.clean &= ~(1 << bit);
339 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
341 return container_of(vcpu, struct vcpu_svm, vcpu);
344 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
346 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
347 mark_dirty(svm->vmcb, VMCB_AVIC);
350 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
352 struct vcpu_svm *svm = to_svm(vcpu);
353 u64 *entry = svm->avic_physical_id_cache;
358 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
361 static void recalc_intercepts(struct vcpu_svm *svm)
363 struct vmcb_control_area *c, *h;
364 struct nested_state *g;
366 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
368 if (!is_guest_mode(&svm->vcpu))
371 c = &svm->vmcb->control;
372 h = &svm->nested.hsave->control;
375 c->intercept_cr = h->intercept_cr | g->intercept_cr;
376 c->intercept_dr = h->intercept_dr | g->intercept_dr;
377 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
378 c->intercept = h->intercept | g->intercept;
381 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
383 if (is_guest_mode(&svm->vcpu))
384 return svm->nested.hsave;
389 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
391 struct vmcb *vmcb = get_host_vmcb(svm);
393 vmcb->control.intercept_cr |= (1U << bit);
395 recalc_intercepts(svm);
398 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
400 struct vmcb *vmcb = get_host_vmcb(svm);
402 vmcb->control.intercept_cr &= ~(1U << bit);
404 recalc_intercepts(svm);
407 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
409 struct vmcb *vmcb = get_host_vmcb(svm);
411 return vmcb->control.intercept_cr & (1U << bit);
414 static inline void set_dr_intercepts(struct vcpu_svm *svm)
416 struct vmcb *vmcb = get_host_vmcb(svm);
418 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
419 | (1 << INTERCEPT_DR1_READ)
420 | (1 << INTERCEPT_DR2_READ)
421 | (1 << INTERCEPT_DR3_READ)
422 | (1 << INTERCEPT_DR4_READ)
423 | (1 << INTERCEPT_DR5_READ)
424 | (1 << INTERCEPT_DR6_READ)
425 | (1 << INTERCEPT_DR7_READ)
426 | (1 << INTERCEPT_DR0_WRITE)
427 | (1 << INTERCEPT_DR1_WRITE)
428 | (1 << INTERCEPT_DR2_WRITE)
429 | (1 << INTERCEPT_DR3_WRITE)
430 | (1 << INTERCEPT_DR4_WRITE)
431 | (1 << INTERCEPT_DR5_WRITE)
432 | (1 << INTERCEPT_DR6_WRITE)
433 | (1 << INTERCEPT_DR7_WRITE);
435 recalc_intercepts(svm);
438 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
440 struct vmcb *vmcb = get_host_vmcb(svm);
442 vmcb->control.intercept_dr = 0;
444 recalc_intercepts(svm);
447 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
449 struct vmcb *vmcb = get_host_vmcb(svm);
451 vmcb->control.intercept_exceptions |= (1U << bit);
453 recalc_intercepts(svm);
456 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
458 struct vmcb *vmcb = get_host_vmcb(svm);
460 vmcb->control.intercept_exceptions &= ~(1U << bit);
462 recalc_intercepts(svm);
465 static inline void set_intercept(struct vcpu_svm *svm, int bit)
467 struct vmcb *vmcb = get_host_vmcb(svm);
469 vmcb->control.intercept |= (1ULL << bit);
471 recalc_intercepts(svm);
474 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
476 struct vmcb *vmcb = get_host_vmcb(svm);
478 vmcb->control.intercept &= ~(1ULL << bit);
480 recalc_intercepts(svm);
483 static inline bool vgif_enabled(struct vcpu_svm *svm)
485 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
488 static inline void enable_gif(struct vcpu_svm *svm)
490 if (vgif_enabled(svm))
491 svm->vmcb->control.int_ctl |= V_GIF_MASK;
493 svm->vcpu.arch.hflags |= HF_GIF_MASK;
496 static inline void disable_gif(struct vcpu_svm *svm)
498 if (vgif_enabled(svm))
499 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
501 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
504 static inline bool gif_set(struct vcpu_svm *svm)
506 if (vgif_enabled(svm))
507 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
509 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
512 static unsigned long iopm_base;
514 struct kvm_ldttss_desc {
517 unsigned base1:8, type:5, dpl:2, p:1;
518 unsigned limit1:4, zero0:3, g:1, base2:8;
521 } __attribute__((packed));
523 struct svm_cpu_data {
529 struct kvm_ldttss_desc *tss_desc;
531 struct page *save_area;
534 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
536 struct svm_init_data {
541 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
543 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
544 #define MSRS_RANGE_SIZE 2048
545 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
547 static u32 svm_msrpm_offset(u32 msr)
552 for (i = 0; i < NUM_MSR_MAPS; i++) {
553 if (msr < msrpm_ranges[i] ||
554 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
557 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
558 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
560 /* Now we have the u8 offset - but need the u32 offset */
564 /* MSR not in any range */
568 #define MAX_INST_SIZE 15
570 static inline void clgi(void)
572 asm volatile (__ex(SVM_CLGI));
575 static inline void stgi(void)
577 asm volatile (__ex(SVM_STGI));
580 static inline void invlpga(unsigned long addr, u32 asid)
582 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
585 static int get_npt_level(struct kvm_vcpu *vcpu)
588 return PT64_ROOT_4LEVEL;
590 return PT32E_ROOT_LEVEL;
594 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
596 vcpu->arch.efer = efer;
597 if (!npt_enabled && !(efer & EFER_LMA))
600 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
601 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
604 static int is_external_interrupt(u32 info)
606 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
607 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
610 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
612 struct vcpu_svm *svm = to_svm(vcpu);
615 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
616 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
620 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
622 struct vcpu_svm *svm = to_svm(vcpu);
625 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
627 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
631 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
633 struct vcpu_svm *svm = to_svm(vcpu);
635 if (svm->vmcb->control.next_rip != 0) {
636 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
637 svm->next_rip = svm->vmcb->control.next_rip;
640 if (!svm->next_rip) {
641 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
643 printk(KERN_DEBUG "%s: NOP\n", __func__);
646 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
647 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
648 __func__, kvm_rip_read(vcpu), svm->next_rip);
650 kvm_rip_write(vcpu, svm->next_rip);
651 svm_set_interrupt_shadow(vcpu, 0);
654 static void svm_queue_exception(struct kvm_vcpu *vcpu)
656 struct vcpu_svm *svm = to_svm(vcpu);
657 unsigned nr = vcpu->arch.exception.nr;
658 bool has_error_code = vcpu->arch.exception.has_error_code;
659 bool reinject = vcpu->arch.exception.injected;
660 u32 error_code = vcpu->arch.exception.error_code;
663 * If we are within a nested VM we'd better #VMEXIT and let the guest
664 * handle the exception
667 nested_svm_check_exception(svm, nr, has_error_code, error_code))
670 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
671 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
674 * For guest debugging where we have to reinject #BP if some
675 * INT3 is guest-owned:
676 * Emulate nRIP by moving RIP forward. Will fail if injection
677 * raises a fault that is not intercepted. Still better than
678 * failing in all cases.
680 skip_emulated_instruction(&svm->vcpu);
681 rip = kvm_rip_read(&svm->vcpu);
682 svm->int3_rip = rip + svm->vmcb->save.cs.base;
683 svm->int3_injected = rip - old_rip;
686 svm->vmcb->control.event_inj = nr
688 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
689 | SVM_EVTINJ_TYPE_EXEPT;
690 svm->vmcb->control.event_inj_err = error_code;
693 static void svm_init_erratum_383(void)
699 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
702 /* Use _safe variants to not break nested virtualization */
703 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
709 low = lower_32_bits(val);
710 high = upper_32_bits(val);
712 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
714 erratum_383_found = true;
717 static void svm_init_osvw(struct kvm_vcpu *vcpu)
720 * Guests should see errata 400 and 415 as fixed (assuming that
721 * HLT and IO instructions are intercepted).
723 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
724 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
727 * By increasing VCPU's osvw.length to 3 we are telling the guest that
728 * all osvw.status bits inside that length, including bit 0 (which is
729 * reserved for erratum 298), are valid. However, if host processor's
730 * osvw_len is 0 then osvw_status[0] carries no information. We need to
731 * be conservative here and therefore we tell the guest that erratum 298
732 * is present (because we really don't know).
734 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
735 vcpu->arch.osvw.status |= 1;
738 static int has_svm(void)
742 if (!cpu_has_svm(&msg)) {
743 printk(KERN_INFO "has_svm: %s\n", msg);
750 static void svm_hardware_disable(void)
752 /* Make sure we clean up behind us */
753 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
754 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
758 amd_pmu_disable_virt();
761 static int svm_hardware_enable(void)
764 struct svm_cpu_data *sd;
766 struct desc_struct *gdt;
767 int me = raw_smp_processor_id();
769 rdmsrl(MSR_EFER, efer);
770 if (efer & EFER_SVME)
774 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
777 sd = per_cpu(svm_data, me);
779 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
783 sd->asid_generation = 1;
784 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
785 sd->next_asid = sd->max_asid + 1;
787 gdt = get_current_gdt_rw();
788 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
790 wrmsrl(MSR_EFER, efer | EFER_SVME);
792 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
794 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
795 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
796 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
803 * Note that it is possible to have a system with mixed processor
804 * revisions and therefore different OSVW bits. If bits are not the same
805 * on different processors then choose the worst case (i.e. if erratum
806 * is present on one processor and not on another then assume that the
807 * erratum is present everywhere).
809 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
810 uint64_t len, status = 0;
813 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
815 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
819 osvw_status = osvw_len = 0;
823 osvw_status |= status;
824 osvw_status &= (1ULL << osvw_len) - 1;
827 osvw_status = osvw_len = 0;
829 svm_init_erratum_383();
831 amd_pmu_enable_virt();
836 static void svm_cpu_uninit(int cpu)
838 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
843 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
844 __free_page(sd->save_area);
848 static int svm_cpu_init(int cpu)
850 struct svm_cpu_data *sd;
853 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
857 sd->save_area = alloc_page(GFP_KERNEL);
862 per_cpu(svm_data, cpu) = sd;
872 static bool valid_msr_intercept(u32 index)
876 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
877 if (direct_access_msrs[i].index == index)
883 static void set_msr_interception(u32 *msrpm, unsigned msr,
886 u8 bit_read, bit_write;
891 * If this warning triggers extend the direct_access_msrs list at the
892 * beginning of the file
894 WARN_ON(!valid_msr_intercept(msr));
896 offset = svm_msrpm_offset(msr);
897 bit_read = 2 * (msr & 0x0f);
898 bit_write = 2 * (msr & 0x0f) + 1;
901 BUG_ON(offset == MSR_INVALID);
903 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
904 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
909 static void svm_vcpu_init_msrpm(u32 *msrpm)
913 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
915 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
916 if (!direct_access_msrs[i].always)
919 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
923 static void add_msr_offset(u32 offset)
927 for (i = 0; i < MSRPM_OFFSETS; ++i) {
929 /* Offset already in list? */
930 if (msrpm_offsets[i] == offset)
933 /* Slot used by another offset? */
934 if (msrpm_offsets[i] != MSR_INVALID)
937 /* Add offset to list */
938 msrpm_offsets[i] = offset;
944 * If this BUG triggers the msrpm_offsets table has an overflow. Just
945 * increase MSRPM_OFFSETS in this case.
950 static void init_msrpm_offsets(void)
954 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
956 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
959 offset = svm_msrpm_offset(direct_access_msrs[i].index);
960 BUG_ON(offset == MSR_INVALID);
962 add_msr_offset(offset);
966 static void svm_enable_lbrv(struct vcpu_svm *svm)
968 u32 *msrpm = svm->msrpm;
970 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
971 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
972 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
973 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
974 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
977 static void svm_disable_lbrv(struct vcpu_svm *svm)
979 u32 *msrpm = svm->msrpm;
981 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
982 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
983 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
984 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
985 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
988 static void disable_nmi_singlestep(struct vcpu_svm *svm)
990 svm->nmi_singlestep = false;
992 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
993 /* Clear our flags if they were not set by the guest */
994 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
995 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
996 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
997 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1002 * This hash table is used to map VM_ID to a struct kvm_arch,
1003 * when handling AMD IOMMU GALOG notification to schedule in
1004 * a particular vCPU.
1006 #define SVM_VM_DATA_HASH_BITS 8
1007 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1008 static u32 next_vm_id = 0;
1009 static bool next_vm_id_wrapped = 0;
1010 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1013 * This function is called from IOMMU driver to notify
1014 * SVM to schedule in a particular vCPU of a particular VM.
1016 static int avic_ga_log_notifier(u32 ga_tag)
1018 unsigned long flags;
1019 struct kvm_arch *ka = NULL;
1020 struct kvm_vcpu *vcpu = NULL;
1021 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1022 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1024 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1026 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1027 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1028 struct kvm *kvm = container_of(ka, struct kvm, arch);
1029 struct kvm_arch *vm_data = &kvm->arch;
1031 if (vm_data->avic_vm_id != vm_id)
1033 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1036 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1039 * At this point, the IOMMU should have already set the pending
1040 * bit in the vAPIC backing page. So, we just need to schedule
1044 kvm_vcpu_wake_up(vcpu);
1049 static __init int svm_hardware_setup(void)
1052 struct page *iopm_pages;
1056 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1061 iopm_va = page_address(iopm_pages);
1062 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1063 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1065 init_msrpm_offsets();
1067 if (boot_cpu_has(X86_FEATURE_NX))
1068 kvm_enable_efer_bits(EFER_NX);
1070 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1071 kvm_enable_efer_bits(EFER_FFXSR);
1073 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1074 kvm_has_tsc_control = true;
1075 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1076 kvm_tsc_scaling_ratio_frac_bits = 32;
1080 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1081 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1084 for_each_possible_cpu(cpu) {
1085 r = svm_cpu_init(cpu);
1090 if (!boot_cpu_has(X86_FEATURE_NPT))
1091 npt_enabled = false;
1093 if (npt_enabled && !npt) {
1094 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1095 npt_enabled = false;
1099 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1106 !boot_cpu_has(X86_FEATURE_AVIC) ||
1107 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1110 pr_info("AVIC enabled\n");
1112 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1118 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1119 !IS_ENABLED(CONFIG_X86_64)) {
1122 pr_info("Virtual VMLOAD VMSAVE supported\n");
1127 if (!boot_cpu_has(X86_FEATURE_VGIF))
1130 pr_info("Virtual GIF supported\n");
1136 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1141 static __exit void svm_hardware_unsetup(void)
1145 for_each_possible_cpu(cpu)
1146 svm_cpu_uninit(cpu);
1148 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1152 static void init_seg(struct vmcb_seg *seg)
1155 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1156 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1157 seg->limit = 0xffff;
1161 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1164 seg->attrib = SVM_SELECTOR_P_MASK | type;
1165 seg->limit = 0xffff;
1169 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1171 struct vcpu_svm *svm = to_svm(vcpu);
1172 u64 g_tsc_offset = 0;
1174 if (is_guest_mode(vcpu)) {
1175 g_tsc_offset = svm->vmcb->control.tsc_offset -
1176 svm->nested.hsave->control.tsc_offset;
1177 svm->nested.hsave->control.tsc_offset = offset;
1179 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1180 svm->vmcb->control.tsc_offset,
1183 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1185 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1188 static void avic_init_vmcb(struct vcpu_svm *svm)
1190 struct vmcb *vmcb = svm->vmcb;
1191 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1192 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1193 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1194 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1196 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1197 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1198 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1199 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1200 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1203 static void init_vmcb(struct vcpu_svm *svm)
1205 struct vmcb_control_area *control = &svm->vmcb->control;
1206 struct vmcb_save_area *save = &svm->vmcb->save;
1208 svm->vcpu.arch.hflags = 0;
1210 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1211 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1212 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1213 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1214 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1215 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1216 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1217 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1219 set_dr_intercepts(svm);
1221 set_exception_intercept(svm, PF_VECTOR);
1222 set_exception_intercept(svm, UD_VECTOR);
1223 set_exception_intercept(svm, MC_VECTOR);
1224 set_exception_intercept(svm, AC_VECTOR);
1225 set_exception_intercept(svm, DB_VECTOR);
1227 set_intercept(svm, INTERCEPT_INTR);
1228 set_intercept(svm, INTERCEPT_NMI);
1229 set_intercept(svm, INTERCEPT_SMI);
1230 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1231 set_intercept(svm, INTERCEPT_RDPMC);
1232 set_intercept(svm, INTERCEPT_CPUID);
1233 set_intercept(svm, INTERCEPT_INVD);
1234 set_intercept(svm, INTERCEPT_HLT);
1235 set_intercept(svm, INTERCEPT_INVLPG);
1236 set_intercept(svm, INTERCEPT_INVLPGA);
1237 set_intercept(svm, INTERCEPT_IOIO_PROT);
1238 set_intercept(svm, INTERCEPT_MSR_PROT);
1239 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1240 set_intercept(svm, INTERCEPT_SHUTDOWN);
1241 set_intercept(svm, INTERCEPT_VMRUN);
1242 set_intercept(svm, INTERCEPT_VMMCALL);
1243 set_intercept(svm, INTERCEPT_VMLOAD);
1244 set_intercept(svm, INTERCEPT_VMSAVE);
1245 set_intercept(svm, INTERCEPT_STGI);
1246 set_intercept(svm, INTERCEPT_CLGI);
1247 set_intercept(svm, INTERCEPT_SKINIT);
1248 set_intercept(svm, INTERCEPT_WBINVD);
1249 set_intercept(svm, INTERCEPT_XSETBV);
1251 if (!kvm_mwait_in_guest()) {
1252 set_intercept(svm, INTERCEPT_MONITOR);
1253 set_intercept(svm, INTERCEPT_MWAIT);
1256 control->iopm_base_pa = __sme_set(iopm_base);
1257 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1258 control->int_ctl = V_INTR_MASKING_MASK;
1260 init_seg(&save->es);
1261 init_seg(&save->ss);
1262 init_seg(&save->ds);
1263 init_seg(&save->fs);
1264 init_seg(&save->gs);
1266 save->cs.selector = 0xf000;
1267 save->cs.base = 0xffff0000;
1268 /* Executable/Readable Code Segment */
1269 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1270 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1271 save->cs.limit = 0xffff;
1273 save->gdtr.limit = 0xffff;
1274 save->idtr.limit = 0xffff;
1276 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1277 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1279 svm_set_efer(&svm->vcpu, 0);
1280 save->dr6 = 0xffff0ff0;
1281 kvm_set_rflags(&svm->vcpu, 2);
1282 save->rip = 0x0000fff0;
1283 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1286 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1287 * It also updates the guest-visible cr0 value.
1289 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1290 kvm_mmu_reset_context(&svm->vcpu);
1292 save->cr4 = X86_CR4_PAE;
1296 /* Setup VMCB for Nested Paging */
1297 control->nested_ctl = 1;
1298 clr_intercept(svm, INTERCEPT_INVLPG);
1299 clr_exception_intercept(svm, PF_VECTOR);
1300 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1301 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1302 save->g_pat = svm->vcpu.arch.pat;
1306 svm->asid_generation = 0;
1308 svm->nested.vmcb = 0;
1309 svm->vcpu.arch.hflags = 0;
1311 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1312 control->pause_filter_count = 3000;
1313 set_intercept(svm, INTERCEPT_PAUSE);
1316 if (kvm_vcpu_apicv_active(&svm->vcpu))
1317 avic_init_vmcb(svm);
1320 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1321 * in VMCB and clear intercepts to avoid #VMEXIT.
1324 clr_intercept(svm, INTERCEPT_VMLOAD);
1325 clr_intercept(svm, INTERCEPT_VMSAVE);
1326 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1330 clr_intercept(svm, INTERCEPT_STGI);
1331 clr_intercept(svm, INTERCEPT_CLGI);
1332 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1335 mark_all_dirty(svm->vmcb);
1341 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1344 u64 *avic_physical_id_table;
1345 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1347 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1350 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1352 return &avic_physical_id_table[index];
1357 * AVIC hardware walks the nested page table to check permissions,
1358 * but does not use the SPA address specified in the leaf page
1359 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1360 * field of the VMCB. Therefore, we set up the
1361 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1363 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1365 struct kvm *kvm = vcpu->kvm;
1368 if (kvm->arch.apic_access_page_done)
1371 ret = x86_set_memory_region(kvm,
1372 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1373 APIC_DEFAULT_PHYS_BASE,
1378 kvm->arch.apic_access_page_done = true;
1382 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1385 u64 *entry, new_entry;
1386 int id = vcpu->vcpu_id;
1387 struct vcpu_svm *svm = to_svm(vcpu);
1389 ret = avic_init_access_page(vcpu);
1393 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1396 if (!svm->vcpu.arch.apic->regs)
1399 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1401 /* Setting AVIC backing page address in the phy APIC ID table */
1402 entry = avic_get_physical_id_entry(vcpu, id);
1406 new_entry = READ_ONCE(*entry);
1407 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1408 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1409 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1410 WRITE_ONCE(*entry, new_entry);
1412 svm->avic_physical_id_cache = entry;
1417 static void avic_vm_destroy(struct kvm *kvm)
1419 unsigned long flags;
1420 struct kvm_arch *vm_data = &kvm->arch;
1425 if (vm_data->avic_logical_id_table_page)
1426 __free_page(vm_data->avic_logical_id_table_page);
1427 if (vm_data->avic_physical_id_table_page)
1428 __free_page(vm_data->avic_physical_id_table_page);
1430 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1431 hash_del(&vm_data->hnode);
1432 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1435 static int avic_vm_init(struct kvm *kvm)
1437 unsigned long flags;
1439 struct kvm_arch *vm_data = &kvm->arch;
1440 struct page *p_page;
1441 struct page *l_page;
1442 struct kvm_arch *ka;
1448 /* Allocating physical APIC ID table (4KB) */
1449 p_page = alloc_page(GFP_KERNEL);
1453 vm_data->avic_physical_id_table_page = p_page;
1454 clear_page(page_address(p_page));
1456 /* Allocating logical APIC ID table (4KB) */
1457 l_page = alloc_page(GFP_KERNEL);
1461 vm_data->avic_logical_id_table_page = l_page;
1462 clear_page(page_address(l_page));
1464 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1466 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1467 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1468 next_vm_id_wrapped = 1;
1471 /* Is it still in use? Only possible if wrapped at least once */
1472 if (next_vm_id_wrapped) {
1473 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1474 struct kvm *k2 = container_of(ka, struct kvm, arch);
1475 struct kvm_arch *vd2 = &k2->arch;
1476 if (vd2->avic_vm_id == vm_id)
1480 vm_data->avic_vm_id = vm_id;
1481 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1482 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1487 avic_vm_destroy(kvm);
1492 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1495 unsigned long flags;
1496 struct amd_svm_iommu_ir *ir;
1497 struct vcpu_svm *svm = to_svm(vcpu);
1499 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1503 * Here, we go through the per-vcpu ir_list to update all existing
1504 * interrupt remapping table entry targeting this vcpu.
1506 spin_lock_irqsave(&svm->ir_list_lock, flags);
1508 if (list_empty(&svm->ir_list))
1511 list_for_each_entry(ir, &svm->ir_list, node) {
1512 ret = amd_iommu_update_ga(cpu, r, ir->data);
1517 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1521 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1524 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1525 int h_physical_id = kvm_cpu_get_apicid(cpu);
1526 struct vcpu_svm *svm = to_svm(vcpu);
1528 if (!kvm_vcpu_apicv_active(vcpu))
1531 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1534 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1535 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1537 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1538 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1540 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1541 if (svm->avic_is_running)
1542 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1544 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1545 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1546 svm->avic_is_running);
1549 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1552 struct vcpu_svm *svm = to_svm(vcpu);
1554 if (!kvm_vcpu_apicv_active(vcpu))
1557 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1558 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1559 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1561 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1562 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1566 * This function is called during VCPU halt/unhalt.
1568 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1570 struct vcpu_svm *svm = to_svm(vcpu);
1572 svm->avic_is_running = is_run;
1574 avic_vcpu_load(vcpu, vcpu->cpu);
1576 avic_vcpu_put(vcpu);
1579 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1581 struct vcpu_svm *svm = to_svm(vcpu);
1586 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1587 MSR_IA32_APICBASE_ENABLE;
1588 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1589 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1593 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1594 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1596 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1597 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1600 static int avic_init_vcpu(struct vcpu_svm *svm)
1604 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1607 ret = avic_init_backing_page(&svm->vcpu);
1611 INIT_LIST_HEAD(&svm->ir_list);
1612 spin_lock_init(&svm->ir_list_lock);
1617 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1619 struct vcpu_svm *svm;
1621 struct page *msrpm_pages;
1622 struct page *hsave_page;
1623 struct page *nested_msrpm_pages;
1626 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1632 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1637 page = alloc_page(GFP_KERNEL);
1641 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1645 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1646 if (!nested_msrpm_pages)
1649 hsave_page = alloc_page(GFP_KERNEL);
1653 err = avic_init_vcpu(svm);
1657 /* We initialize this flag to true to make sure that the is_running
1658 * bit would be set the first time the vcpu is loaded.
1660 svm->avic_is_running = true;
1662 svm->nested.hsave = page_address(hsave_page);
1664 svm->msrpm = page_address(msrpm_pages);
1665 svm_vcpu_init_msrpm(svm->msrpm);
1667 svm->nested.msrpm = page_address(nested_msrpm_pages);
1668 svm_vcpu_init_msrpm(svm->nested.msrpm);
1670 svm->vmcb = page_address(page);
1671 clear_page(svm->vmcb);
1672 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1673 svm->asid_generation = 0;
1676 svm_init_osvw(&svm->vcpu);
1681 __free_page(hsave_page);
1683 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1685 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1689 kvm_vcpu_uninit(&svm->vcpu);
1691 kmem_cache_free(kvm_vcpu_cache, svm);
1693 return ERR_PTR(err);
1696 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1698 struct vcpu_svm *svm = to_svm(vcpu);
1700 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1701 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1702 __free_page(virt_to_page(svm->nested.hsave));
1703 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1704 kvm_vcpu_uninit(vcpu);
1705 kmem_cache_free(kvm_vcpu_cache, svm);
1708 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1710 struct vcpu_svm *svm = to_svm(vcpu);
1713 if (unlikely(cpu != vcpu->cpu)) {
1714 svm->asid_generation = 0;
1715 mark_all_dirty(svm->vmcb);
1718 #ifdef CONFIG_X86_64
1719 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1721 savesegment(fs, svm->host.fs);
1722 savesegment(gs, svm->host.gs);
1723 svm->host.ldt = kvm_read_ldt();
1725 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1726 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1728 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1729 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1730 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1731 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1732 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1735 /* This assumes that the kernel never uses MSR_TSC_AUX */
1736 if (static_cpu_has(X86_FEATURE_RDTSCP))
1737 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1739 avic_vcpu_load(vcpu, cpu);
1742 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1744 struct vcpu_svm *svm = to_svm(vcpu);
1747 avic_vcpu_put(vcpu);
1749 ++vcpu->stat.host_state_reload;
1750 kvm_load_ldt(svm->host.ldt);
1751 #ifdef CONFIG_X86_64
1752 loadsegment(fs, svm->host.fs);
1753 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1754 load_gs_index(svm->host.gs);
1756 #ifdef CONFIG_X86_32_LAZY_GS
1757 loadsegment(gs, svm->host.gs);
1760 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1761 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1764 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1766 avic_set_running(vcpu, false);
1769 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1771 avic_set_running(vcpu, true);
1774 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1776 struct vcpu_svm *svm = to_svm(vcpu);
1777 unsigned long rflags = svm->vmcb->save.rflags;
1779 if (svm->nmi_singlestep) {
1780 /* Hide our flags if they were not set by the guest */
1781 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1782 rflags &= ~X86_EFLAGS_TF;
1783 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1784 rflags &= ~X86_EFLAGS_RF;
1789 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1791 if (to_svm(vcpu)->nmi_singlestep)
1792 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1795 * Any change of EFLAGS.VM is accompanied by a reload of SS
1796 * (caused by either a task switch or an inter-privilege IRET),
1797 * so we do not need to update the CPL here.
1799 to_svm(vcpu)->vmcb->save.rflags = rflags;
1802 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1805 case VCPU_EXREG_PDPTR:
1806 BUG_ON(!npt_enabled);
1807 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1814 static void svm_set_vintr(struct vcpu_svm *svm)
1816 set_intercept(svm, INTERCEPT_VINTR);
1819 static void svm_clear_vintr(struct vcpu_svm *svm)
1821 clr_intercept(svm, INTERCEPT_VINTR);
1824 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1826 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1829 case VCPU_SREG_CS: return &save->cs;
1830 case VCPU_SREG_DS: return &save->ds;
1831 case VCPU_SREG_ES: return &save->es;
1832 case VCPU_SREG_FS: return &save->fs;
1833 case VCPU_SREG_GS: return &save->gs;
1834 case VCPU_SREG_SS: return &save->ss;
1835 case VCPU_SREG_TR: return &save->tr;
1836 case VCPU_SREG_LDTR: return &save->ldtr;
1842 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1844 struct vmcb_seg *s = svm_seg(vcpu, seg);
1849 static void svm_get_segment(struct kvm_vcpu *vcpu,
1850 struct kvm_segment *var, int seg)
1852 struct vmcb_seg *s = svm_seg(vcpu, seg);
1854 var->base = s->base;
1855 var->limit = s->limit;
1856 var->selector = s->selector;
1857 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1858 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1859 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1860 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1861 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1862 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1863 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1866 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1867 * However, the SVM spec states that the G bit is not observed by the
1868 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1869 * So let's synthesize a legal G bit for all segments, this helps
1870 * running KVM nested. It also helps cross-vendor migration, because
1871 * Intel's vmentry has a check on the 'G' bit.
1873 var->g = s->limit > 0xfffff;
1876 * AMD's VMCB does not have an explicit unusable field, so emulate it
1877 * for cross vendor migration purposes by "not present"
1879 var->unusable = !var->present;
1884 * Work around a bug where the busy flag in the tr selector
1894 * The accessed bit must always be set in the segment
1895 * descriptor cache, although it can be cleared in the
1896 * descriptor, the cached bit always remains at 1. Since
1897 * Intel has a check on this, set it here to support
1898 * cross-vendor migration.
1905 * On AMD CPUs sometimes the DB bit in the segment
1906 * descriptor is left as 1, although the whole segment has
1907 * been made unusable. Clear it here to pass an Intel VMX
1908 * entry check when cross vendor migrating.
1912 /* This is symmetric with svm_set_segment() */
1913 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1918 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1920 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1925 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1927 struct vcpu_svm *svm = to_svm(vcpu);
1929 dt->size = svm->vmcb->save.idtr.limit;
1930 dt->address = svm->vmcb->save.idtr.base;
1933 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1935 struct vcpu_svm *svm = to_svm(vcpu);
1937 svm->vmcb->save.idtr.limit = dt->size;
1938 svm->vmcb->save.idtr.base = dt->address ;
1939 mark_dirty(svm->vmcb, VMCB_DT);
1942 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1944 struct vcpu_svm *svm = to_svm(vcpu);
1946 dt->size = svm->vmcb->save.gdtr.limit;
1947 dt->address = svm->vmcb->save.gdtr.base;
1950 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1952 struct vcpu_svm *svm = to_svm(vcpu);
1954 svm->vmcb->save.gdtr.limit = dt->size;
1955 svm->vmcb->save.gdtr.base = dt->address ;
1956 mark_dirty(svm->vmcb, VMCB_DT);
1959 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1963 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1967 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1971 static void update_cr0_intercept(struct vcpu_svm *svm)
1973 ulong gcr0 = svm->vcpu.arch.cr0;
1974 u64 *hcr0 = &svm->vmcb->save.cr0;
1976 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1977 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1979 mark_dirty(svm->vmcb, VMCB_CR);
1981 if (gcr0 == *hcr0) {
1982 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1983 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1985 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1986 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1990 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1992 struct vcpu_svm *svm = to_svm(vcpu);
1994 #ifdef CONFIG_X86_64
1995 if (vcpu->arch.efer & EFER_LME) {
1996 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1997 vcpu->arch.efer |= EFER_LMA;
1998 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2001 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2002 vcpu->arch.efer &= ~EFER_LMA;
2003 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2007 vcpu->arch.cr0 = cr0;
2010 cr0 |= X86_CR0_PG | X86_CR0_WP;
2013 * re-enable caching here because the QEMU bios
2014 * does not do it - this results in some delay at
2017 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2018 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2019 svm->vmcb->save.cr0 = cr0;
2020 mark_dirty(svm->vmcb, VMCB_CR);
2021 update_cr0_intercept(svm);
2024 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2026 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2027 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2029 if (cr4 & X86_CR4_VMXE)
2032 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2033 svm_flush_tlb(vcpu);
2035 vcpu->arch.cr4 = cr4;
2038 cr4 |= host_cr4_mce;
2039 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2040 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2044 static void svm_set_segment(struct kvm_vcpu *vcpu,
2045 struct kvm_segment *var, int seg)
2047 struct vcpu_svm *svm = to_svm(vcpu);
2048 struct vmcb_seg *s = svm_seg(vcpu, seg);
2050 s->base = var->base;
2051 s->limit = var->limit;
2052 s->selector = var->selector;
2053 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2054 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2055 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2056 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2057 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2058 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2059 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2060 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2063 * This is always accurate, except if SYSRET returned to a segment
2064 * with SS.DPL != 3. Intel does not have this quirk, and always
2065 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2066 * would entail passing the CPL to userspace and back.
2068 if (seg == VCPU_SREG_SS)
2069 /* This is symmetric with svm_get_segment() */
2070 svm->vmcb->save.cpl = (var->dpl & 3);
2072 mark_dirty(svm->vmcb, VMCB_SEG);
2075 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2077 struct vcpu_svm *svm = to_svm(vcpu);
2079 clr_exception_intercept(svm, BP_VECTOR);
2081 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2082 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2083 set_exception_intercept(svm, BP_VECTOR);
2085 vcpu->guest_debug = 0;
2088 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2090 if (sd->next_asid > sd->max_asid) {
2091 ++sd->asid_generation;
2093 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2096 svm->asid_generation = sd->asid_generation;
2097 svm->vmcb->control.asid = sd->next_asid++;
2099 mark_dirty(svm->vmcb, VMCB_ASID);
2102 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2104 return to_svm(vcpu)->vmcb->save.dr6;
2107 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2109 struct vcpu_svm *svm = to_svm(vcpu);
2111 svm->vmcb->save.dr6 = value;
2112 mark_dirty(svm->vmcb, VMCB_DR);
2115 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2117 struct vcpu_svm *svm = to_svm(vcpu);
2119 get_debugreg(vcpu->arch.db[0], 0);
2120 get_debugreg(vcpu->arch.db[1], 1);
2121 get_debugreg(vcpu->arch.db[2], 2);
2122 get_debugreg(vcpu->arch.db[3], 3);
2123 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2124 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2126 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2127 set_dr_intercepts(svm);
2130 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2132 struct vcpu_svm *svm = to_svm(vcpu);
2134 svm->vmcb->save.dr7 = value;
2135 mark_dirty(svm->vmcb, VMCB_DR);
2138 static int pf_interception(struct vcpu_svm *svm)
2140 u64 fault_address = svm->vmcb->control.exit_info_2;
2141 u64 error_code = svm->vmcb->control.exit_info_1;
2143 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2144 svm->vmcb->control.insn_bytes,
2145 svm->vmcb->control.insn_len);
2148 static int npf_interception(struct vcpu_svm *svm)
2150 u64 fault_address = svm->vmcb->control.exit_info_2;
2151 u64 error_code = svm->vmcb->control.exit_info_1;
2153 trace_kvm_page_fault(fault_address, error_code);
2154 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2155 svm->vmcb->control.insn_bytes,
2156 svm->vmcb->control.insn_len);
2159 static int db_interception(struct vcpu_svm *svm)
2161 struct kvm_run *kvm_run = svm->vcpu.run;
2163 if (!(svm->vcpu.guest_debug &
2164 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2165 !svm->nmi_singlestep) {
2166 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2170 if (svm->nmi_singlestep) {
2171 disable_nmi_singlestep(svm);
2174 if (svm->vcpu.guest_debug &
2175 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2176 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2177 kvm_run->debug.arch.pc =
2178 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2179 kvm_run->debug.arch.exception = DB_VECTOR;
2186 static int bp_interception(struct vcpu_svm *svm)
2188 struct kvm_run *kvm_run = svm->vcpu.run;
2190 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2191 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2192 kvm_run->debug.arch.exception = BP_VECTOR;
2196 static int ud_interception(struct vcpu_svm *svm)
2200 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2201 if (er == EMULATE_USER_EXIT)
2203 if (er != EMULATE_DONE)
2204 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2208 static int ac_interception(struct vcpu_svm *svm)
2210 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2214 static bool is_erratum_383(void)
2219 if (!erratum_383_found)
2222 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2226 /* Bit 62 may or may not be set for this mce */
2227 value &= ~(1ULL << 62);
2229 if (value != 0xb600000000010015ULL)
2232 /* Clear MCi_STATUS registers */
2233 for (i = 0; i < 6; ++i)
2234 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2236 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2240 value &= ~(1ULL << 2);
2241 low = lower_32_bits(value);
2242 high = upper_32_bits(value);
2244 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2247 /* Flush tlb to evict multi-match entries */
2253 static void svm_handle_mce(struct vcpu_svm *svm)
2255 if (is_erratum_383()) {
2257 * Erratum 383 triggered. Guest state is corrupt so kill the
2260 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2262 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2268 * On an #MC intercept the MCE handler is not called automatically in
2269 * the host. So do it by hand here.
2273 /* not sure if we ever come back to this point */
2278 static int mc_interception(struct vcpu_svm *svm)
2283 static int shutdown_interception(struct vcpu_svm *svm)
2285 struct kvm_run *kvm_run = svm->vcpu.run;
2288 * VMCB is undefined after a SHUTDOWN intercept
2289 * so reinitialize it.
2291 clear_page(svm->vmcb);
2294 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2298 static int io_interception(struct vcpu_svm *svm)
2300 struct kvm_vcpu *vcpu = &svm->vcpu;
2301 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2302 int size, in, string, ret;
2305 ++svm->vcpu.stat.io_exits;
2306 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2307 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2309 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2311 port = io_info >> 16;
2312 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2313 svm->next_rip = svm->vmcb->control.exit_info_2;
2314 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2317 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2318 * KVM_EXIT_DEBUG here.
2321 return kvm_fast_pio_in(vcpu, size, port) && ret;
2323 return kvm_fast_pio_out(vcpu, size, port) && ret;
2326 static int nmi_interception(struct vcpu_svm *svm)
2331 static int intr_interception(struct vcpu_svm *svm)
2333 ++svm->vcpu.stat.irq_exits;
2337 static int nop_on_interception(struct vcpu_svm *svm)
2342 static int halt_interception(struct vcpu_svm *svm)
2344 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2345 return kvm_emulate_halt(&svm->vcpu);
2348 static int vmmcall_interception(struct vcpu_svm *svm)
2350 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2351 return kvm_emulate_hypercall(&svm->vcpu);
2354 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2356 struct vcpu_svm *svm = to_svm(vcpu);
2358 return svm->nested.nested_cr3;
2361 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2363 struct vcpu_svm *svm = to_svm(vcpu);
2364 u64 cr3 = svm->nested.nested_cr3;
2368 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2369 offset_in_page(cr3) + index * 8, 8);
2375 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2378 struct vcpu_svm *svm = to_svm(vcpu);
2380 svm->vmcb->control.nested_cr3 = __sme_set(root);
2381 mark_dirty(svm->vmcb, VMCB_NPT);
2382 svm_flush_tlb(vcpu);
2385 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2386 struct x86_exception *fault)
2388 struct vcpu_svm *svm = to_svm(vcpu);
2390 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2392 * TODO: track the cause of the nested page fault, and
2393 * correctly fill in the high bits of exit_info_1.
2395 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2396 svm->vmcb->control.exit_code_hi = 0;
2397 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2398 svm->vmcb->control.exit_info_2 = fault->address;
2401 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2402 svm->vmcb->control.exit_info_1 |= fault->error_code;
2405 * The present bit is always zero for page structure faults on real
2408 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2409 svm->vmcb->control.exit_info_1 &= ~1;
2411 nested_svm_vmexit(svm);
2414 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2416 WARN_ON(mmu_is_nested(vcpu));
2417 kvm_init_shadow_mmu(vcpu);
2418 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2419 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2420 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2421 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2422 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2423 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2424 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2427 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2429 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2432 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2434 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2435 !is_paging(&svm->vcpu)) {
2436 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2440 if (svm->vmcb->save.cpl) {
2441 kvm_inject_gp(&svm->vcpu, 0);
2448 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2449 bool has_error_code, u32 error_code)
2453 if (!is_guest_mode(&svm->vcpu))
2456 vmexit = nested_svm_intercept(svm);
2457 if (vmexit != NESTED_EXIT_DONE)
2460 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2461 svm->vmcb->control.exit_code_hi = 0;
2462 svm->vmcb->control.exit_info_1 = error_code;
2465 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2466 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2467 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2468 * written only when inject_pending_event runs (DR6 would written here
2469 * too). This should be conditional on a new capability---if the
2470 * capability is disabled, kvm_multiple_exception would write the
2471 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2473 if (svm->vcpu.arch.exception.nested_apf)
2474 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2476 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2478 svm->nested.exit_required = true;
2482 /* This function returns true if it is save to enable the irq window */
2483 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2485 if (!is_guest_mode(&svm->vcpu))
2488 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2491 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2495 * if vmexit was already requested (by intercepted exception
2496 * for instance) do not overwrite it with "external interrupt"
2499 if (svm->nested.exit_required)
2502 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2503 svm->vmcb->control.exit_info_1 = 0;
2504 svm->vmcb->control.exit_info_2 = 0;
2506 if (svm->nested.intercept & 1ULL) {
2508 * The #vmexit can't be emulated here directly because this
2509 * code path runs with irqs and preemption disabled. A
2510 * #vmexit emulation might sleep. Only signal request for
2513 svm->nested.exit_required = true;
2514 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2521 /* This function returns true if it is save to enable the nmi window */
2522 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2524 if (!is_guest_mode(&svm->vcpu))
2527 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2530 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2531 svm->nested.exit_required = true;
2536 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2542 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2543 if (is_error_page(page))
2551 kvm_inject_gp(&svm->vcpu, 0);
2556 static void nested_svm_unmap(struct page *page)
2559 kvm_release_page_dirty(page);
2562 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2564 unsigned port, size, iopm_len;
2569 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2570 return NESTED_EXIT_HOST;
2572 port = svm->vmcb->control.exit_info_1 >> 16;
2573 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2574 SVM_IOIO_SIZE_SHIFT;
2575 gpa = svm->nested.vmcb_iopm + (port / 8);
2576 start_bit = port % 8;
2577 iopm_len = (start_bit + size > 8) ? 2 : 1;
2578 mask = (0xf >> (4 - size)) << start_bit;
2581 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2582 return NESTED_EXIT_DONE;
2584 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2587 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2589 u32 offset, msr, value;
2592 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2593 return NESTED_EXIT_HOST;
2595 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2596 offset = svm_msrpm_offset(msr);
2597 write = svm->vmcb->control.exit_info_1 & 1;
2598 mask = 1 << ((2 * (msr & 0xf)) + write);
2600 if (offset == MSR_INVALID)
2601 return NESTED_EXIT_DONE;
2603 /* Offset is in 32 bit units but need in 8 bit units */
2606 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2607 return NESTED_EXIT_DONE;
2609 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2612 /* DB exceptions for our internal use must not cause vmexit */
2613 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2617 /* if we're not singlestepping, it's not ours */
2618 if (!svm->nmi_singlestep)
2619 return NESTED_EXIT_DONE;
2621 /* if it's not a singlestep exception, it's not ours */
2622 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2623 return NESTED_EXIT_DONE;
2624 if (!(dr6 & DR6_BS))
2625 return NESTED_EXIT_DONE;
2627 /* if the guest is singlestepping, it should get the vmexit */
2628 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2629 disable_nmi_singlestep(svm);
2630 return NESTED_EXIT_DONE;
2633 /* it's ours, the nested hypervisor must not see this one */
2634 return NESTED_EXIT_HOST;
2637 static int nested_svm_exit_special(struct vcpu_svm *svm)
2639 u32 exit_code = svm->vmcb->control.exit_code;
2641 switch (exit_code) {
2644 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2645 return NESTED_EXIT_HOST;
2647 /* For now we are always handling NPFs when using them */
2649 return NESTED_EXIT_HOST;
2651 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2652 /* When we're shadowing, trap PFs, but not async PF */
2653 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2654 return NESTED_EXIT_HOST;
2660 return NESTED_EXIT_CONTINUE;
2664 * If this function returns true, this #vmexit was already handled
2666 static int nested_svm_intercept(struct vcpu_svm *svm)
2668 u32 exit_code = svm->vmcb->control.exit_code;
2669 int vmexit = NESTED_EXIT_HOST;
2671 switch (exit_code) {
2673 vmexit = nested_svm_exit_handled_msr(svm);
2676 vmexit = nested_svm_intercept_ioio(svm);
2678 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2679 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2680 if (svm->nested.intercept_cr & bit)
2681 vmexit = NESTED_EXIT_DONE;
2684 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2685 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2686 if (svm->nested.intercept_dr & bit)
2687 vmexit = NESTED_EXIT_DONE;
2690 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2691 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2692 if (svm->nested.intercept_exceptions & excp_bits) {
2693 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2694 vmexit = nested_svm_intercept_db(svm);
2696 vmexit = NESTED_EXIT_DONE;
2698 /* async page fault always cause vmexit */
2699 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2700 svm->vcpu.arch.exception.nested_apf != 0)
2701 vmexit = NESTED_EXIT_DONE;
2704 case SVM_EXIT_ERR: {
2705 vmexit = NESTED_EXIT_DONE;
2709 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2710 if (svm->nested.intercept & exit_bits)
2711 vmexit = NESTED_EXIT_DONE;
2718 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2722 vmexit = nested_svm_intercept(svm);
2724 if (vmexit == NESTED_EXIT_DONE)
2725 nested_svm_vmexit(svm);
2730 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2732 struct vmcb_control_area *dst = &dst_vmcb->control;
2733 struct vmcb_control_area *from = &from_vmcb->control;
2735 dst->intercept_cr = from->intercept_cr;
2736 dst->intercept_dr = from->intercept_dr;
2737 dst->intercept_exceptions = from->intercept_exceptions;
2738 dst->intercept = from->intercept;
2739 dst->iopm_base_pa = from->iopm_base_pa;
2740 dst->msrpm_base_pa = from->msrpm_base_pa;
2741 dst->tsc_offset = from->tsc_offset;
2742 dst->asid = from->asid;
2743 dst->tlb_ctl = from->tlb_ctl;
2744 dst->int_ctl = from->int_ctl;
2745 dst->int_vector = from->int_vector;
2746 dst->int_state = from->int_state;
2747 dst->exit_code = from->exit_code;
2748 dst->exit_code_hi = from->exit_code_hi;
2749 dst->exit_info_1 = from->exit_info_1;
2750 dst->exit_info_2 = from->exit_info_2;
2751 dst->exit_int_info = from->exit_int_info;
2752 dst->exit_int_info_err = from->exit_int_info_err;
2753 dst->nested_ctl = from->nested_ctl;
2754 dst->event_inj = from->event_inj;
2755 dst->event_inj_err = from->event_inj_err;
2756 dst->nested_cr3 = from->nested_cr3;
2757 dst->virt_ext = from->virt_ext;
2760 static int nested_svm_vmexit(struct vcpu_svm *svm)
2762 struct vmcb *nested_vmcb;
2763 struct vmcb *hsave = svm->nested.hsave;
2764 struct vmcb *vmcb = svm->vmcb;
2767 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2768 vmcb->control.exit_info_1,
2769 vmcb->control.exit_info_2,
2770 vmcb->control.exit_int_info,
2771 vmcb->control.exit_int_info_err,
2774 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2778 /* Exit Guest-Mode */
2779 leave_guest_mode(&svm->vcpu);
2780 svm->nested.vmcb = 0;
2782 /* Give the current vmcb to the guest */
2785 nested_vmcb->save.es = vmcb->save.es;
2786 nested_vmcb->save.cs = vmcb->save.cs;
2787 nested_vmcb->save.ss = vmcb->save.ss;
2788 nested_vmcb->save.ds = vmcb->save.ds;
2789 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2790 nested_vmcb->save.idtr = vmcb->save.idtr;
2791 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2792 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2793 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2794 nested_vmcb->save.cr2 = vmcb->save.cr2;
2795 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2796 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2797 nested_vmcb->save.rip = vmcb->save.rip;
2798 nested_vmcb->save.rsp = vmcb->save.rsp;
2799 nested_vmcb->save.rax = vmcb->save.rax;
2800 nested_vmcb->save.dr7 = vmcb->save.dr7;
2801 nested_vmcb->save.dr6 = vmcb->save.dr6;
2802 nested_vmcb->save.cpl = vmcb->save.cpl;
2804 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2805 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2806 nested_vmcb->control.int_state = vmcb->control.int_state;
2807 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2808 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2809 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2810 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2811 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2812 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2814 if (svm->nrips_enabled)
2815 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2818 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2819 * to make sure that we do not lose injected events. So check event_inj
2820 * here and copy it to exit_int_info if it is valid.
2821 * Exit_int_info and event_inj can't be both valid because the case
2822 * below only happens on a VMRUN instruction intercept which has
2823 * no valid exit_int_info set.
2825 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2826 struct vmcb_control_area *nc = &nested_vmcb->control;
2828 nc->exit_int_info = vmcb->control.event_inj;
2829 nc->exit_int_info_err = vmcb->control.event_inj_err;
2832 nested_vmcb->control.tlb_ctl = 0;
2833 nested_vmcb->control.event_inj = 0;
2834 nested_vmcb->control.event_inj_err = 0;
2836 /* We always set V_INTR_MASKING and remember the old value in hflags */
2837 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2838 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2840 /* Restore the original control entries */
2841 copy_vmcb_control_area(vmcb, hsave);
2843 kvm_clear_exception_queue(&svm->vcpu);
2844 kvm_clear_interrupt_queue(&svm->vcpu);
2846 svm->nested.nested_cr3 = 0;
2848 /* Restore selected save entries */
2849 svm->vmcb->save.es = hsave->save.es;
2850 svm->vmcb->save.cs = hsave->save.cs;
2851 svm->vmcb->save.ss = hsave->save.ss;
2852 svm->vmcb->save.ds = hsave->save.ds;
2853 svm->vmcb->save.gdtr = hsave->save.gdtr;
2854 svm->vmcb->save.idtr = hsave->save.idtr;
2855 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2856 svm_set_efer(&svm->vcpu, hsave->save.efer);
2857 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2858 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2860 svm->vmcb->save.cr3 = hsave->save.cr3;
2861 svm->vcpu.arch.cr3 = hsave->save.cr3;
2863 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2865 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2866 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2867 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2868 svm->vmcb->save.dr7 = 0;
2869 svm->vmcb->save.cpl = 0;
2870 svm->vmcb->control.exit_int_info = 0;
2872 mark_all_dirty(svm->vmcb);
2874 nested_svm_unmap(page);
2876 nested_svm_uninit_mmu_context(&svm->vcpu);
2877 kvm_mmu_reset_context(&svm->vcpu);
2878 kvm_mmu_load(&svm->vcpu);
2883 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2886 * This function merges the msr permission bitmaps of kvm and the
2887 * nested vmcb. It is optimized in that it only merges the parts where
2888 * the kvm msr permission bitmap may contain zero bits
2892 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2895 for (i = 0; i < MSRPM_OFFSETS; i++) {
2899 if (msrpm_offsets[i] == 0xffffffff)
2902 p = msrpm_offsets[i];
2903 offset = svm->nested.vmcb_msrpm + (p * 4);
2905 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2908 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2911 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
2916 static bool nested_vmcb_checks(struct vmcb *vmcb)
2918 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2921 if (vmcb->control.asid == 0)
2924 if (vmcb->control.nested_ctl && !npt_enabled)
2930 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
2931 struct vmcb *nested_vmcb, struct page *page)
2933 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2934 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2936 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2938 if (nested_vmcb->control.nested_ctl) {
2939 kvm_mmu_unload(&svm->vcpu);
2940 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2941 nested_svm_init_mmu_context(&svm->vcpu);
2944 /* Load the nested guest state */
2945 svm->vmcb->save.es = nested_vmcb->save.es;
2946 svm->vmcb->save.cs = nested_vmcb->save.cs;
2947 svm->vmcb->save.ss = nested_vmcb->save.ss;
2948 svm->vmcb->save.ds = nested_vmcb->save.ds;
2949 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2950 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2951 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2952 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2953 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2954 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2956 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2957 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2959 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2961 /* Guest paging mode is active - reset mmu */
2962 kvm_mmu_reset_context(&svm->vcpu);
2964 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2965 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2966 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2967 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2969 /* In case we don't even reach vcpu_run, the fields are not updated */
2970 svm->vmcb->save.rax = nested_vmcb->save.rax;
2971 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2972 svm->vmcb->save.rip = nested_vmcb->save.rip;
2973 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2974 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2975 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2977 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2978 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2980 /* cache intercepts */
2981 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2982 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2983 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2984 svm->nested.intercept = nested_vmcb->control.intercept;
2986 svm_flush_tlb(&svm->vcpu);
2987 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2988 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2989 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2991 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2993 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2994 /* We only want the cr8 intercept bits of the guest */
2995 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2996 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2999 /* We don't want to see VMMCALLs from a nested guest */
3000 clr_intercept(svm, INTERCEPT_VMMCALL);
3002 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3003 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3004 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3005 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3006 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3007 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3009 nested_svm_unmap(page);
3011 /* Enter Guest-Mode */
3012 enter_guest_mode(&svm->vcpu);
3015 * Merge guest and host intercepts - must be called with vcpu in
3016 * guest-mode to take affect here
3018 recalc_intercepts(svm);
3020 svm->nested.vmcb = vmcb_gpa;
3024 mark_all_dirty(svm->vmcb);
3027 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3029 struct vmcb *nested_vmcb;
3030 struct vmcb *hsave = svm->nested.hsave;
3031 struct vmcb *vmcb = svm->vmcb;
3035 vmcb_gpa = svm->vmcb->save.rax;
3037 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3041 if (!nested_vmcb_checks(nested_vmcb)) {
3042 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3043 nested_vmcb->control.exit_code_hi = 0;
3044 nested_vmcb->control.exit_info_1 = 0;
3045 nested_vmcb->control.exit_info_2 = 0;
3047 nested_svm_unmap(page);
3052 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3053 nested_vmcb->save.rip,
3054 nested_vmcb->control.int_ctl,
3055 nested_vmcb->control.event_inj,
3056 nested_vmcb->control.nested_ctl);
3058 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3059 nested_vmcb->control.intercept_cr >> 16,
3060 nested_vmcb->control.intercept_exceptions,
3061 nested_vmcb->control.intercept);
3063 /* Clear internal status */
3064 kvm_clear_exception_queue(&svm->vcpu);
3065 kvm_clear_interrupt_queue(&svm->vcpu);
3068 * Save the old vmcb, so we don't need to pick what we save, but can
3069 * restore everything when a VMEXIT occurs
3071 hsave->save.es = vmcb->save.es;
3072 hsave->save.cs = vmcb->save.cs;
3073 hsave->save.ss = vmcb->save.ss;
3074 hsave->save.ds = vmcb->save.ds;
3075 hsave->save.gdtr = vmcb->save.gdtr;
3076 hsave->save.idtr = vmcb->save.idtr;
3077 hsave->save.efer = svm->vcpu.arch.efer;
3078 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3079 hsave->save.cr4 = svm->vcpu.arch.cr4;
3080 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3081 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3082 hsave->save.rsp = vmcb->save.rsp;
3083 hsave->save.rax = vmcb->save.rax;
3085 hsave->save.cr3 = vmcb->save.cr3;
3087 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3089 copy_vmcb_control_area(hsave, vmcb);
3091 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3096 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3098 to_vmcb->save.fs = from_vmcb->save.fs;
3099 to_vmcb->save.gs = from_vmcb->save.gs;
3100 to_vmcb->save.tr = from_vmcb->save.tr;
3101 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3102 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3103 to_vmcb->save.star = from_vmcb->save.star;
3104 to_vmcb->save.lstar = from_vmcb->save.lstar;
3105 to_vmcb->save.cstar = from_vmcb->save.cstar;
3106 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3107 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3108 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3109 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3112 static int vmload_interception(struct vcpu_svm *svm)
3114 struct vmcb *nested_vmcb;
3118 if (nested_svm_check_permissions(svm))
3121 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3125 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3126 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3128 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3129 nested_svm_unmap(page);
3134 static int vmsave_interception(struct vcpu_svm *svm)
3136 struct vmcb *nested_vmcb;
3140 if (nested_svm_check_permissions(svm))
3143 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3147 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3148 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3150 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3151 nested_svm_unmap(page);
3156 static int vmrun_interception(struct vcpu_svm *svm)
3158 if (nested_svm_check_permissions(svm))
3161 /* Save rip after vmrun instruction */
3162 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3164 if (!nested_svm_vmrun(svm))
3167 if (!nested_svm_vmrun_msrpm(svm))
3174 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3175 svm->vmcb->control.exit_code_hi = 0;
3176 svm->vmcb->control.exit_info_1 = 0;
3177 svm->vmcb->control.exit_info_2 = 0;
3179 nested_svm_vmexit(svm);
3184 static int stgi_interception(struct vcpu_svm *svm)
3188 if (nested_svm_check_permissions(svm))
3192 * If VGIF is enabled, the STGI intercept is only added to
3193 * detect the opening of the SMI/NMI window; remove it now.
3195 if (vgif_enabled(svm))
3196 clr_intercept(svm, INTERCEPT_STGI);
3198 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3199 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3200 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3207 static int clgi_interception(struct vcpu_svm *svm)
3211 if (nested_svm_check_permissions(svm))
3214 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3215 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3219 /* After a CLGI no interrupts should come */
3220 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3221 svm_clear_vintr(svm);
3222 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3223 mark_dirty(svm->vmcb, VMCB_INTR);
3229 static int invlpga_interception(struct vcpu_svm *svm)
3231 struct kvm_vcpu *vcpu = &svm->vcpu;
3233 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3234 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3236 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3237 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3239 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3240 return kvm_skip_emulated_instruction(&svm->vcpu);
3243 static int skinit_interception(struct vcpu_svm *svm)
3245 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3247 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3251 static int wbinvd_interception(struct vcpu_svm *svm)
3253 return kvm_emulate_wbinvd(&svm->vcpu);
3256 static int xsetbv_interception(struct vcpu_svm *svm)
3258 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3259 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3261 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3262 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3263 return kvm_skip_emulated_instruction(&svm->vcpu);
3269 static int task_switch_interception(struct vcpu_svm *svm)
3273 int int_type = svm->vmcb->control.exit_int_info &
3274 SVM_EXITINTINFO_TYPE_MASK;
3275 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3277 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3279 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3280 bool has_error_code = false;
3283 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3285 if (svm->vmcb->control.exit_info_2 &
3286 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3287 reason = TASK_SWITCH_IRET;
3288 else if (svm->vmcb->control.exit_info_2 &
3289 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3290 reason = TASK_SWITCH_JMP;
3292 reason = TASK_SWITCH_GATE;
3294 reason = TASK_SWITCH_CALL;
3296 if (reason == TASK_SWITCH_GATE) {
3298 case SVM_EXITINTINFO_TYPE_NMI:
3299 svm->vcpu.arch.nmi_injected = false;
3301 case SVM_EXITINTINFO_TYPE_EXEPT:
3302 if (svm->vmcb->control.exit_info_2 &
3303 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3304 has_error_code = true;
3306 (u32)svm->vmcb->control.exit_info_2;
3308 kvm_clear_exception_queue(&svm->vcpu);
3310 case SVM_EXITINTINFO_TYPE_INTR:
3311 kvm_clear_interrupt_queue(&svm->vcpu);
3318 if (reason != TASK_SWITCH_GATE ||
3319 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3320 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3321 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3322 skip_emulated_instruction(&svm->vcpu);
3324 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3327 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3328 has_error_code, error_code) == EMULATE_FAIL) {
3329 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3330 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3331 svm->vcpu.run->internal.ndata = 0;
3337 static int cpuid_interception(struct vcpu_svm *svm)
3339 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3340 return kvm_emulate_cpuid(&svm->vcpu);
3343 static int iret_interception(struct vcpu_svm *svm)
3345 ++svm->vcpu.stat.nmi_window_exits;
3346 clr_intercept(svm, INTERCEPT_IRET);
3347 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3348 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3349 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3353 static int invlpg_interception(struct vcpu_svm *svm)
3355 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3356 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3358 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3359 return kvm_skip_emulated_instruction(&svm->vcpu);
3362 static int emulate_on_interception(struct vcpu_svm *svm)
3364 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3367 static int rdpmc_interception(struct vcpu_svm *svm)
3371 if (!static_cpu_has(X86_FEATURE_NRIPS))
3372 return emulate_on_interception(svm);
3374 err = kvm_rdpmc(&svm->vcpu);
3375 return kvm_complete_insn_gp(&svm->vcpu, err);
3378 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3381 unsigned long cr0 = svm->vcpu.arch.cr0;
3385 intercept = svm->nested.intercept;
3387 if (!is_guest_mode(&svm->vcpu) ||
3388 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3391 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3392 val &= ~SVM_CR0_SELECTIVE_MASK;
3395 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3396 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3402 #define CR_VALID (1ULL << 63)
3404 static int cr_interception(struct vcpu_svm *svm)
3410 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3411 return emulate_on_interception(svm);
3413 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3414 return emulate_on_interception(svm);
3416 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3417 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3418 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3420 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3423 if (cr >= 16) { /* mov to cr */
3425 val = kvm_register_read(&svm->vcpu, reg);
3428 if (!check_selective_cr0_intercepted(svm, val))
3429 err = kvm_set_cr0(&svm->vcpu, val);
3435 err = kvm_set_cr3(&svm->vcpu, val);
3438 err = kvm_set_cr4(&svm->vcpu, val);
3441 err = kvm_set_cr8(&svm->vcpu, val);
3444 WARN(1, "unhandled write to CR%d", cr);
3445 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3448 } else { /* mov from cr */
3451 val = kvm_read_cr0(&svm->vcpu);
3454 val = svm->vcpu.arch.cr2;
3457 val = kvm_read_cr3(&svm->vcpu);
3460 val = kvm_read_cr4(&svm->vcpu);
3463 val = kvm_get_cr8(&svm->vcpu);
3466 WARN(1, "unhandled read from CR%d", cr);
3467 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3470 kvm_register_write(&svm->vcpu, reg, val);
3472 return kvm_complete_insn_gp(&svm->vcpu, err);
3475 static int dr_interception(struct vcpu_svm *svm)
3480 if (svm->vcpu.guest_debug == 0) {
3482 * No more DR vmexits; force a reload of the debug registers
3483 * and reenter on this instruction. The next vmexit will
3484 * retrieve the full state of the debug registers.
3486 clr_dr_intercepts(svm);
3487 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3491 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3492 return emulate_on_interception(svm);
3494 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3495 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3497 if (dr >= 16) { /* mov to DRn */
3498 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3500 val = kvm_register_read(&svm->vcpu, reg);
3501 kvm_set_dr(&svm->vcpu, dr - 16, val);
3503 if (!kvm_require_dr(&svm->vcpu, dr))
3505 kvm_get_dr(&svm->vcpu, dr, &val);
3506 kvm_register_write(&svm->vcpu, reg, val);
3509 return kvm_skip_emulated_instruction(&svm->vcpu);
3512 static int cr8_write_interception(struct vcpu_svm *svm)
3514 struct kvm_run *kvm_run = svm->vcpu.run;
3517 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3518 /* instruction emulation calls kvm_set_cr8() */
3519 r = cr_interception(svm);
3520 if (lapic_in_kernel(&svm->vcpu))
3522 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3524 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3528 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3530 struct vcpu_svm *svm = to_svm(vcpu);
3532 switch (msr_info->index) {
3533 case MSR_IA32_TSC: {
3534 msr_info->data = svm->vmcb->control.tsc_offset +
3535 kvm_scale_tsc(vcpu, rdtsc());
3540 msr_info->data = svm->vmcb->save.star;
3542 #ifdef CONFIG_X86_64
3544 msr_info->data = svm->vmcb->save.lstar;
3547 msr_info->data = svm->vmcb->save.cstar;
3549 case MSR_KERNEL_GS_BASE:
3550 msr_info->data = svm->vmcb->save.kernel_gs_base;
3552 case MSR_SYSCALL_MASK:
3553 msr_info->data = svm->vmcb->save.sfmask;
3556 case MSR_IA32_SYSENTER_CS:
3557 msr_info->data = svm->vmcb->save.sysenter_cs;
3559 case MSR_IA32_SYSENTER_EIP:
3560 msr_info->data = svm->sysenter_eip;
3562 case MSR_IA32_SYSENTER_ESP:
3563 msr_info->data = svm->sysenter_esp;
3566 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3568 msr_info->data = svm->tsc_aux;
3571 * Nobody will change the following 5 values in the VMCB so we can
3572 * safely return them on rdmsr. They will always be 0 until LBRV is
3575 case MSR_IA32_DEBUGCTLMSR:
3576 msr_info->data = svm->vmcb->save.dbgctl;
3578 case MSR_IA32_LASTBRANCHFROMIP:
3579 msr_info->data = svm->vmcb->save.br_from;
3581 case MSR_IA32_LASTBRANCHTOIP:
3582 msr_info->data = svm->vmcb->save.br_to;
3584 case MSR_IA32_LASTINTFROMIP:
3585 msr_info->data = svm->vmcb->save.last_excp_from;
3587 case MSR_IA32_LASTINTTOIP:
3588 msr_info->data = svm->vmcb->save.last_excp_to;
3590 case MSR_VM_HSAVE_PA:
3591 msr_info->data = svm->nested.hsave_msr;
3594 msr_info->data = svm->nested.vm_cr_msr;
3596 case MSR_IA32_UCODE_REV:
3597 msr_info->data = 0x01000065;
3599 case MSR_F15H_IC_CFG: {
3603 family = guest_cpuid_family(vcpu);
3604 model = guest_cpuid_model(vcpu);
3606 if (family < 0 || model < 0)
3607 return kvm_get_msr_common(vcpu, msr_info);
3611 if (family == 0x15 &&
3612 (model >= 0x2 && model < 0x20))
3613 msr_info->data = 0x1E;
3617 return kvm_get_msr_common(vcpu, msr_info);
3622 static int rdmsr_interception(struct vcpu_svm *svm)
3624 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3625 struct msr_data msr_info;
3627 msr_info.index = ecx;
3628 msr_info.host_initiated = false;
3629 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3630 trace_kvm_msr_read_ex(ecx);
3631 kvm_inject_gp(&svm->vcpu, 0);
3634 trace_kvm_msr_read(ecx, msr_info.data);
3636 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3637 msr_info.data & 0xffffffff);
3638 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3639 msr_info.data >> 32);
3640 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3641 return kvm_skip_emulated_instruction(&svm->vcpu);
3645 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3647 struct vcpu_svm *svm = to_svm(vcpu);
3648 int svm_dis, chg_mask;
3650 if (data & ~SVM_VM_CR_VALID_MASK)
3653 chg_mask = SVM_VM_CR_VALID_MASK;
3655 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3656 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3658 svm->nested.vm_cr_msr &= ~chg_mask;
3659 svm->nested.vm_cr_msr |= (data & chg_mask);
3661 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3663 /* check for svm_disable while efer.svme is set */
3664 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3670 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3672 struct vcpu_svm *svm = to_svm(vcpu);
3674 u32 ecx = msr->index;
3675 u64 data = msr->data;
3677 case MSR_IA32_CR_PAT:
3678 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3680 vcpu->arch.pat = data;
3681 svm->vmcb->save.g_pat = data;
3682 mark_dirty(svm->vmcb, VMCB_NPT);
3685 kvm_write_tsc(vcpu, msr);
3688 svm->vmcb->save.star = data;
3690 #ifdef CONFIG_X86_64
3692 svm->vmcb->save.lstar = data;
3695 svm->vmcb->save.cstar = data;
3697 case MSR_KERNEL_GS_BASE:
3698 svm->vmcb->save.kernel_gs_base = data;
3700 case MSR_SYSCALL_MASK:
3701 svm->vmcb->save.sfmask = data;
3704 case MSR_IA32_SYSENTER_CS:
3705 svm->vmcb->save.sysenter_cs = data;
3707 case MSR_IA32_SYSENTER_EIP:
3708 svm->sysenter_eip = data;
3709 svm->vmcb->save.sysenter_eip = data;
3711 case MSR_IA32_SYSENTER_ESP:
3712 svm->sysenter_esp = data;
3713 svm->vmcb->save.sysenter_esp = data;
3716 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3720 * This is rare, so we update the MSR here instead of using
3721 * direct_access_msrs. Doing that would require a rdmsr in
3724 svm->tsc_aux = data;
3725 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3727 case MSR_IA32_DEBUGCTLMSR:
3728 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3729 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3733 if (data & DEBUGCTL_RESERVED_BITS)
3736 svm->vmcb->save.dbgctl = data;
3737 mark_dirty(svm->vmcb, VMCB_LBR);
3738 if (data & (1ULL<<0))
3739 svm_enable_lbrv(svm);
3741 svm_disable_lbrv(svm);
3743 case MSR_VM_HSAVE_PA:
3744 svm->nested.hsave_msr = data;
3747 return svm_set_vm_cr(vcpu, data);
3749 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3751 case MSR_IA32_APICBASE:
3752 if (kvm_vcpu_apicv_active(vcpu))
3753 avic_update_vapic_bar(to_svm(vcpu), data);
3754 /* Follow through */
3756 return kvm_set_msr_common(vcpu, msr);
3761 static int wrmsr_interception(struct vcpu_svm *svm)
3763 struct msr_data msr;
3764 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3765 u64 data = kvm_read_edx_eax(&svm->vcpu);
3769 msr.host_initiated = false;
3771 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3772 if (kvm_set_msr(&svm->vcpu, &msr)) {
3773 trace_kvm_msr_write_ex(ecx, data);
3774 kvm_inject_gp(&svm->vcpu, 0);
3777 trace_kvm_msr_write(ecx, data);
3778 return kvm_skip_emulated_instruction(&svm->vcpu);
3782 static int msr_interception(struct vcpu_svm *svm)
3784 if (svm->vmcb->control.exit_info_1)
3785 return wrmsr_interception(svm);
3787 return rdmsr_interception(svm);
3790 static int interrupt_window_interception(struct vcpu_svm *svm)
3792 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3793 svm_clear_vintr(svm);
3794 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3795 mark_dirty(svm->vmcb, VMCB_INTR);
3796 ++svm->vcpu.stat.irq_window_exits;
3800 static int pause_interception(struct vcpu_svm *svm)
3802 struct kvm_vcpu *vcpu = &svm->vcpu;
3803 bool in_kernel = (svm_get_cpl(vcpu) == 0);
3805 kvm_vcpu_on_spin(vcpu, in_kernel);
3809 static int nop_interception(struct vcpu_svm *svm)
3811 return kvm_skip_emulated_instruction(&(svm->vcpu));
3814 static int monitor_interception(struct vcpu_svm *svm)
3816 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3817 return nop_interception(svm);
3820 static int mwait_interception(struct vcpu_svm *svm)
3822 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3823 return nop_interception(svm);
3826 enum avic_ipi_failure_cause {
3827 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3828 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3829 AVIC_IPI_FAILURE_INVALID_TARGET,
3830 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3833 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3835 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3836 u32 icrl = svm->vmcb->control.exit_info_1;
3837 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3838 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3839 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3841 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3844 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3846 * AVIC hardware handles the generation of
3847 * IPIs when the specified Message Type is Fixed
3848 * (also known as fixed delivery mode) and
3849 * the Trigger Mode is edge-triggered. The hardware
3850 * also supports self and broadcast delivery modes
3851 * specified via the Destination Shorthand(DSH)
3852 * field of the ICRL. Logical and physical APIC ID
3853 * formats are supported. All other IPI types cause
3854 * a #VMEXIT, which needs to emulated.
3856 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3857 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3859 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3861 struct kvm_vcpu *vcpu;
3862 struct kvm *kvm = svm->vcpu.kvm;
3863 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3866 * At this point, we expect that the AVIC HW has already
3867 * set the appropriate IRR bits on the valid target
3868 * vcpus. So, we just need to kick the appropriate vcpu.
3870 kvm_for_each_vcpu(i, vcpu, kvm) {
3871 bool m = kvm_apic_match_dest(vcpu, apic,
3872 icrl & KVM_APIC_SHORT_MASK,
3873 GET_APIC_DEST_FIELD(icrh),
3874 icrl & KVM_APIC_DEST_MASK);
3876 if (m && !avic_vcpu_is_running(vcpu))
3877 kvm_vcpu_wake_up(vcpu);
3881 case AVIC_IPI_FAILURE_INVALID_TARGET:
3883 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3884 WARN_ONCE(1, "Invalid backing page\n");
3887 pr_err("Unknown IPI interception\n");
3893 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3895 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3897 u32 *logical_apic_id_table;
3898 int dlid = GET_APIC_LOGICAL_ID(ldr);
3903 if (flat) { /* flat */
3904 index = ffs(dlid) - 1;
3907 } else { /* cluster */
3908 int cluster = (dlid & 0xf0) >> 4;
3909 int apic = ffs(dlid & 0x0f) - 1;
3911 if ((apic < 0) || (apic > 7) ||
3914 index = (cluster << 2) + apic;
3917 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3919 return &logical_apic_id_table[index];
3922 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3926 u32 *entry, new_entry;
3928 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3929 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3933 new_entry = READ_ONCE(*entry);
3934 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3935 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3937 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3939 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3940 WRITE_ONCE(*entry, new_entry);
3945 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3948 struct vcpu_svm *svm = to_svm(vcpu);
3949 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3954 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3955 if (ret && svm->ldr_reg) {
3956 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3964 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3967 struct vcpu_svm *svm = to_svm(vcpu);
3968 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3969 u32 id = (apic_id_reg >> 24) & 0xff;
3971 if (vcpu->vcpu_id == id)
3974 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3975 new = avic_get_physical_id_entry(vcpu, id);
3979 /* We need to move physical_id_entry to new offset */
3982 to_svm(vcpu)->avic_physical_id_cache = new;
3985 * Also update the guest physical APIC ID in the logical
3986 * APIC ID table entry if already setup the LDR.
3989 avic_handle_ldr_update(vcpu);
3994 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3996 struct vcpu_svm *svm = to_svm(vcpu);
3997 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3998 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3999 u32 mod = (dfr >> 28) & 0xf;
4002 * We assume that all local APICs are using the same type.
4003 * If this changes, we need to flush the AVIC logical
4006 if (vm_data->ldr_mode == mod)
4009 clear_page(page_address(vm_data->avic_logical_id_table_page));
4010 vm_data->ldr_mode = mod;
4013 avic_handle_ldr_update(vcpu);
4017 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4019 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4020 u32 offset = svm->vmcb->control.exit_info_1 &
4021 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4025 if (avic_handle_apic_id_update(&svm->vcpu))
4029 if (avic_handle_ldr_update(&svm->vcpu))
4033 avic_handle_dfr_update(&svm->vcpu);
4039 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4044 static bool is_avic_unaccelerated_access_trap(u32 offset)
4073 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4076 u32 offset = svm->vmcb->control.exit_info_1 &
4077 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4078 u32 vector = svm->vmcb->control.exit_info_2 &
4079 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4080 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4081 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4082 bool trap = is_avic_unaccelerated_access_trap(offset);
4084 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4085 trap, write, vector);
4088 WARN_ONCE(!write, "svm: Handling trap read.\n");
4089 ret = avic_unaccel_trap_write(svm);
4091 /* Handling Fault */
4092 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4098 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4099 [SVM_EXIT_READ_CR0] = cr_interception,
4100 [SVM_EXIT_READ_CR3] = cr_interception,
4101 [SVM_EXIT_READ_CR4] = cr_interception,
4102 [SVM_EXIT_READ_CR8] = cr_interception,
4103 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4104 [SVM_EXIT_WRITE_CR0] = cr_interception,
4105 [SVM_EXIT_WRITE_CR3] = cr_interception,
4106 [SVM_EXIT_WRITE_CR4] = cr_interception,
4107 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4108 [SVM_EXIT_READ_DR0] = dr_interception,
4109 [SVM_EXIT_READ_DR1] = dr_interception,
4110 [SVM_EXIT_READ_DR2] = dr_interception,
4111 [SVM_EXIT_READ_DR3] = dr_interception,
4112 [SVM_EXIT_READ_DR4] = dr_interception,
4113 [SVM_EXIT_READ_DR5] = dr_interception,
4114 [SVM_EXIT_READ_DR6] = dr_interception,
4115 [SVM_EXIT_READ_DR7] = dr_interception,
4116 [SVM_EXIT_WRITE_DR0] = dr_interception,
4117 [SVM_EXIT_WRITE_DR1] = dr_interception,
4118 [SVM_EXIT_WRITE_DR2] = dr_interception,
4119 [SVM_EXIT_WRITE_DR3] = dr_interception,
4120 [SVM_EXIT_WRITE_DR4] = dr_interception,
4121 [SVM_EXIT_WRITE_DR5] = dr_interception,
4122 [SVM_EXIT_WRITE_DR6] = dr_interception,
4123 [SVM_EXIT_WRITE_DR7] = dr_interception,
4124 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4125 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4126 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4127 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4128 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4129 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4130 [SVM_EXIT_INTR] = intr_interception,
4131 [SVM_EXIT_NMI] = nmi_interception,
4132 [SVM_EXIT_SMI] = nop_on_interception,
4133 [SVM_EXIT_INIT] = nop_on_interception,
4134 [SVM_EXIT_VINTR] = interrupt_window_interception,
4135 [SVM_EXIT_RDPMC] = rdpmc_interception,
4136 [SVM_EXIT_CPUID] = cpuid_interception,
4137 [SVM_EXIT_IRET] = iret_interception,
4138 [SVM_EXIT_INVD] = emulate_on_interception,
4139 [SVM_EXIT_PAUSE] = pause_interception,
4140 [SVM_EXIT_HLT] = halt_interception,
4141 [SVM_EXIT_INVLPG] = invlpg_interception,
4142 [SVM_EXIT_INVLPGA] = invlpga_interception,
4143 [SVM_EXIT_IOIO] = io_interception,
4144 [SVM_EXIT_MSR] = msr_interception,
4145 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4146 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4147 [SVM_EXIT_VMRUN] = vmrun_interception,
4148 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4149 [SVM_EXIT_VMLOAD] = vmload_interception,
4150 [SVM_EXIT_VMSAVE] = vmsave_interception,
4151 [SVM_EXIT_STGI] = stgi_interception,
4152 [SVM_EXIT_CLGI] = clgi_interception,
4153 [SVM_EXIT_SKINIT] = skinit_interception,
4154 [SVM_EXIT_WBINVD] = wbinvd_interception,
4155 [SVM_EXIT_MONITOR] = monitor_interception,
4156 [SVM_EXIT_MWAIT] = mwait_interception,
4157 [SVM_EXIT_XSETBV] = xsetbv_interception,
4158 [SVM_EXIT_NPF] = npf_interception,
4159 [SVM_EXIT_RSM] = emulate_on_interception,
4160 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4161 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4164 static void dump_vmcb(struct kvm_vcpu *vcpu)
4166 struct vcpu_svm *svm = to_svm(vcpu);
4167 struct vmcb_control_area *control = &svm->vmcb->control;
4168 struct vmcb_save_area *save = &svm->vmcb->save;
4170 pr_err("VMCB Control Area:\n");
4171 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4172 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4173 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4174 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4175 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4176 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4177 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4178 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4179 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4180 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4181 pr_err("%-20s%d\n", "asid:", control->asid);
4182 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4183 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4184 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4185 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4186 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4187 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4188 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4189 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4190 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4191 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4192 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4193 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4194 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4195 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4196 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4197 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4198 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4199 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4200 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4201 pr_err("VMCB State Save Area:\n");
4202 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4204 save->es.selector, save->es.attrib,
4205 save->es.limit, save->es.base);
4206 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4208 save->cs.selector, save->cs.attrib,
4209 save->cs.limit, save->cs.base);
4210 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4212 save->ss.selector, save->ss.attrib,
4213 save->ss.limit, save->ss.base);
4214 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4216 save->ds.selector, save->ds.attrib,
4217 save->ds.limit, save->ds.base);
4218 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4220 save->fs.selector, save->fs.attrib,
4221 save->fs.limit, save->fs.base);
4222 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4224 save->gs.selector, save->gs.attrib,
4225 save->gs.limit, save->gs.base);
4226 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4228 save->gdtr.selector, save->gdtr.attrib,
4229 save->gdtr.limit, save->gdtr.base);
4230 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4232 save->ldtr.selector, save->ldtr.attrib,
4233 save->ldtr.limit, save->ldtr.base);
4234 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4236 save->idtr.selector, save->idtr.attrib,
4237 save->idtr.limit, save->idtr.base);
4238 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4240 save->tr.selector, save->tr.attrib,
4241 save->tr.limit, save->tr.base);
4242 pr_err("cpl: %d efer: %016llx\n",
4243 save->cpl, save->efer);
4244 pr_err("%-15s %016llx %-13s %016llx\n",
4245 "cr0:", save->cr0, "cr2:", save->cr2);
4246 pr_err("%-15s %016llx %-13s %016llx\n",
4247 "cr3:", save->cr3, "cr4:", save->cr4);
4248 pr_err("%-15s %016llx %-13s %016llx\n",
4249 "dr6:", save->dr6, "dr7:", save->dr7);
4250 pr_err("%-15s %016llx %-13s %016llx\n",
4251 "rip:", save->rip, "rflags:", save->rflags);
4252 pr_err("%-15s %016llx %-13s %016llx\n",
4253 "rsp:", save->rsp, "rax:", save->rax);
4254 pr_err("%-15s %016llx %-13s %016llx\n",
4255 "star:", save->star, "lstar:", save->lstar);
4256 pr_err("%-15s %016llx %-13s %016llx\n",
4257 "cstar:", save->cstar, "sfmask:", save->sfmask);
4258 pr_err("%-15s %016llx %-13s %016llx\n",
4259 "kernel_gs_base:", save->kernel_gs_base,
4260 "sysenter_cs:", save->sysenter_cs);
4261 pr_err("%-15s %016llx %-13s %016llx\n",
4262 "sysenter_esp:", save->sysenter_esp,
4263 "sysenter_eip:", save->sysenter_eip);
4264 pr_err("%-15s %016llx %-13s %016llx\n",
4265 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4266 pr_err("%-15s %016llx %-13s %016llx\n",
4267 "br_from:", save->br_from, "br_to:", save->br_to);
4268 pr_err("%-15s %016llx %-13s %016llx\n",
4269 "excp_from:", save->last_excp_from,
4270 "excp_to:", save->last_excp_to);
4273 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4275 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4277 *info1 = control->exit_info_1;
4278 *info2 = control->exit_info_2;
4281 static int handle_exit(struct kvm_vcpu *vcpu)
4283 struct vcpu_svm *svm = to_svm(vcpu);
4284 struct kvm_run *kvm_run = vcpu->run;
4285 u32 exit_code = svm->vmcb->control.exit_code;
4287 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4289 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4290 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4292 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4294 if (unlikely(svm->nested.exit_required)) {
4295 nested_svm_vmexit(svm);
4296 svm->nested.exit_required = false;
4301 if (is_guest_mode(vcpu)) {
4304 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4305 svm->vmcb->control.exit_info_1,
4306 svm->vmcb->control.exit_info_2,
4307 svm->vmcb->control.exit_int_info,
4308 svm->vmcb->control.exit_int_info_err,
4311 vmexit = nested_svm_exit_special(svm);
4313 if (vmexit == NESTED_EXIT_CONTINUE)
4314 vmexit = nested_svm_exit_handled(svm);
4316 if (vmexit == NESTED_EXIT_DONE)
4320 svm_complete_interrupts(svm);
4322 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4323 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4324 kvm_run->fail_entry.hardware_entry_failure_reason
4325 = svm->vmcb->control.exit_code;
4326 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4331 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4332 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4333 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4334 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4335 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4337 __func__, svm->vmcb->control.exit_int_info,
4340 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4341 || !svm_exit_handlers[exit_code]) {
4342 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4343 kvm_queue_exception(vcpu, UD_VECTOR);
4347 return svm_exit_handlers[exit_code](svm);
4350 static void reload_tss(struct kvm_vcpu *vcpu)
4352 int cpu = raw_smp_processor_id();
4354 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4355 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4359 static void pre_svm_run(struct vcpu_svm *svm)
4361 int cpu = raw_smp_processor_id();
4363 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4365 /* FIXME: handle wraparound of asid_generation */
4366 if (svm->asid_generation != sd->asid_generation)
4370 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4372 struct vcpu_svm *svm = to_svm(vcpu);
4374 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4375 vcpu->arch.hflags |= HF_NMI_MASK;
4376 set_intercept(svm, INTERCEPT_IRET);
4377 ++vcpu->stat.nmi_injections;
4380 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4382 struct vmcb_control_area *control;
4384 /* The following fields are ignored when AVIC is enabled */
4385 control = &svm->vmcb->control;
4386 control->int_vector = irq;
4387 control->int_ctl &= ~V_INTR_PRIO_MASK;
4388 control->int_ctl |= V_IRQ_MASK |
4389 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4390 mark_dirty(svm->vmcb, VMCB_INTR);
4393 static void svm_set_irq(struct kvm_vcpu *vcpu)
4395 struct vcpu_svm *svm = to_svm(vcpu);
4397 BUG_ON(!(gif_set(svm)));
4399 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4400 ++vcpu->stat.irq_injections;
4402 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4403 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4406 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4408 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4411 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4413 struct vcpu_svm *svm = to_svm(vcpu);
4415 if (svm_nested_virtualize_tpr(vcpu) ||
4416 kvm_vcpu_apicv_active(vcpu))
4419 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4425 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4428 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4433 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4435 return avic && irqchip_split(vcpu->kvm);
4438 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4442 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4446 /* Note: Currently only used by Hyper-V. */
4447 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4449 struct vcpu_svm *svm = to_svm(vcpu);
4450 struct vmcb *vmcb = svm->vmcb;
4452 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4455 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4456 mark_dirty(vmcb, VMCB_INTR);
4459 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4464 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4466 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4467 smp_mb__after_atomic();
4469 if (avic_vcpu_is_running(vcpu))
4470 wrmsrl(SVM_AVIC_DOORBELL,
4471 kvm_cpu_get_apicid(vcpu->cpu));
4473 kvm_vcpu_wake_up(vcpu);
4476 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4478 unsigned long flags;
4479 struct amd_svm_iommu_ir *cur;
4481 spin_lock_irqsave(&svm->ir_list_lock, flags);
4482 list_for_each_entry(cur, &svm->ir_list, node) {
4483 if (cur->data != pi->ir_data)
4485 list_del(&cur->node);
4489 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4492 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4495 unsigned long flags;
4496 struct amd_svm_iommu_ir *ir;
4499 * In some cases, the existing irte is updaed and re-set,
4500 * so we need to check here if it's already been * added
4503 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4504 struct kvm *kvm = svm->vcpu.kvm;
4505 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4506 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4507 struct vcpu_svm *prev_svm;
4514 prev_svm = to_svm(prev_vcpu);
4515 svm_ir_list_del(prev_svm, pi);
4519 * Allocating new amd_iommu_pi_data, which will get
4520 * add to the per-vcpu ir_list.
4522 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4527 ir->data = pi->ir_data;
4529 spin_lock_irqsave(&svm->ir_list_lock, flags);
4530 list_add(&ir->node, &svm->ir_list);
4531 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4538 * The HW cannot support posting multicast/broadcast
4539 * interrupts to a vCPU. So, we still use legacy interrupt
4540 * remapping for these kind of interrupts.
4542 * For lowest-priority interrupts, we only support
4543 * those with single CPU as the destination, e.g. user
4544 * configures the interrupts via /proc/irq or uses
4545 * irqbalance to make the interrupts single-CPU.
4548 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4549 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4551 struct kvm_lapic_irq irq;
4552 struct kvm_vcpu *vcpu = NULL;
4554 kvm_set_msi_irq(kvm, e, &irq);
4556 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4557 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4558 __func__, irq.vector);
4562 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4564 *svm = to_svm(vcpu);
4565 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4566 vcpu_info->vector = irq.vector;
4572 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4575 * @host_irq: host irq of the interrupt
4576 * @guest_irq: gsi of the interrupt
4577 * @set: set or unset PI
4578 * returns 0 on success, < 0 on failure
4580 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4581 uint32_t guest_irq, bool set)
4583 struct kvm_kernel_irq_routing_entry *e;
4584 struct kvm_irq_routing_table *irq_rt;
4585 int idx, ret = -EINVAL;
4587 if (!kvm_arch_has_assigned_device(kvm) ||
4588 !irq_remapping_cap(IRQ_POSTING_CAP))
4591 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4592 __func__, host_irq, guest_irq, set);
4594 idx = srcu_read_lock(&kvm->irq_srcu);
4595 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4596 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4598 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4599 struct vcpu_data vcpu_info;
4600 struct vcpu_svm *svm = NULL;
4602 if (e->type != KVM_IRQ_ROUTING_MSI)
4606 * Here, we setup with legacy mode in the following cases:
4607 * 1. When cannot target interrupt to a specific vcpu.
4608 * 2. Unsetting posted interrupt.
4609 * 3. APIC virtialization is disabled for the vcpu.
4611 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4612 kvm_vcpu_apicv_active(&svm->vcpu)) {
4613 struct amd_iommu_pi_data pi;
4615 /* Try to enable guest_mode in IRTE */
4616 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4618 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4620 pi.is_guest_mode = true;
4621 pi.vcpu_data = &vcpu_info;
4622 ret = irq_set_vcpu_affinity(host_irq, &pi);
4625 * Here, we successfully setting up vcpu affinity in
4626 * IOMMU guest mode. Now, we need to store the posted
4627 * interrupt information in a per-vcpu ir_list so that
4628 * we can reference to them directly when we update vcpu
4629 * scheduling information in IOMMU irte.
4631 if (!ret && pi.is_guest_mode)
4632 svm_ir_list_add(svm, &pi);
4634 /* Use legacy mode in IRTE */
4635 struct amd_iommu_pi_data pi;
4638 * Here, pi is used to:
4639 * - Tell IOMMU to use legacy mode for this interrupt.
4640 * - Retrieve ga_tag of prior interrupt remapping data.
4642 pi.is_guest_mode = false;
4643 ret = irq_set_vcpu_affinity(host_irq, &pi);
4646 * Check if the posted interrupt was previously
4647 * setup with the guest_mode by checking if the ga_tag
4648 * was cached. If so, we need to clean up the per-vcpu
4651 if (!ret && pi.prev_ga_tag) {
4652 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4653 struct kvm_vcpu *vcpu;
4655 vcpu = kvm_get_vcpu_by_id(kvm, id);
4657 svm_ir_list_del(to_svm(vcpu), &pi);
4662 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4665 vcpu_info.pi_desc_addr, set);
4669 pr_err("%s: failed to update PI IRTE\n", __func__);
4676 srcu_read_unlock(&kvm->irq_srcu, idx);
4680 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4682 struct vcpu_svm *svm = to_svm(vcpu);
4683 struct vmcb *vmcb = svm->vmcb;
4685 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4686 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4687 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4692 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4694 struct vcpu_svm *svm = to_svm(vcpu);
4696 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4699 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4701 struct vcpu_svm *svm = to_svm(vcpu);
4704 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4705 set_intercept(svm, INTERCEPT_IRET);
4707 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4708 clr_intercept(svm, INTERCEPT_IRET);
4712 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4714 struct vcpu_svm *svm = to_svm(vcpu);
4715 struct vmcb *vmcb = svm->vmcb;
4718 if (!gif_set(svm) ||
4719 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4722 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4724 if (is_guest_mode(vcpu))
4725 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4730 static void enable_irq_window(struct kvm_vcpu *vcpu)
4732 struct vcpu_svm *svm = to_svm(vcpu);
4734 if (kvm_vcpu_apicv_active(vcpu))
4738 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4739 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4740 * get that intercept, this function will be called again though and
4741 * we'll get the vintr intercept. However, if the vGIF feature is
4742 * enabled, the STGI interception will not occur. Enable the irq
4743 * window under the assumption that the hardware will set the GIF.
4745 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4747 svm_inject_irq(svm, 0x0);
4751 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4753 struct vcpu_svm *svm = to_svm(vcpu);
4755 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4757 return; /* IRET will cause a vm exit */
4759 if (!gif_set(svm)) {
4760 if (vgif_enabled(svm))
4761 set_intercept(svm, INTERCEPT_STGI);
4762 return; /* STGI will cause a vm exit */
4765 if (svm->nested.exit_required)
4766 return; /* we're not going to run the guest yet */
4769 * Something prevents NMI from been injected. Single step over possible
4770 * problem (IRET or exception injection or interrupt shadow)
4772 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4773 svm->nmi_singlestep = true;
4774 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4777 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4782 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4784 struct vcpu_svm *svm = to_svm(vcpu);
4786 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4787 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4789 svm->asid_generation--;
4792 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4796 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4798 struct vcpu_svm *svm = to_svm(vcpu);
4800 if (svm_nested_virtualize_tpr(vcpu))
4803 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4804 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4805 kvm_set_cr8(vcpu, cr8);
4809 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4811 struct vcpu_svm *svm = to_svm(vcpu);
4814 if (svm_nested_virtualize_tpr(vcpu) ||
4815 kvm_vcpu_apicv_active(vcpu))
4818 cr8 = kvm_get_cr8(vcpu);
4819 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4820 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4823 static void svm_complete_interrupts(struct vcpu_svm *svm)
4827 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4828 unsigned int3_injected = svm->int3_injected;
4830 svm->int3_injected = 0;
4833 * If we've made progress since setting HF_IRET_MASK, we've
4834 * executed an IRET and can allow NMI injection.
4836 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4837 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4838 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4839 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4842 svm->vcpu.arch.nmi_injected = false;
4843 kvm_clear_exception_queue(&svm->vcpu);
4844 kvm_clear_interrupt_queue(&svm->vcpu);
4846 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4849 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4851 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4852 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4855 case SVM_EXITINTINFO_TYPE_NMI:
4856 svm->vcpu.arch.nmi_injected = true;
4858 case SVM_EXITINTINFO_TYPE_EXEPT:
4860 * In case of software exceptions, do not reinject the vector,
4861 * but re-execute the instruction instead. Rewind RIP first
4862 * if we emulated INT3 before.
4864 if (kvm_exception_is_soft(vector)) {
4865 if (vector == BP_VECTOR && int3_injected &&
4866 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4867 kvm_rip_write(&svm->vcpu,
4868 kvm_rip_read(&svm->vcpu) -
4872 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4873 u32 err = svm->vmcb->control.exit_int_info_err;
4874 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4877 kvm_requeue_exception(&svm->vcpu, vector);
4879 case SVM_EXITINTINFO_TYPE_INTR:
4880 kvm_queue_interrupt(&svm->vcpu, vector, false);
4887 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4889 struct vcpu_svm *svm = to_svm(vcpu);
4890 struct vmcb_control_area *control = &svm->vmcb->control;
4892 control->exit_int_info = control->event_inj;
4893 control->exit_int_info_err = control->event_inj_err;
4894 control->event_inj = 0;
4895 svm_complete_interrupts(svm);
4898 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4900 struct vcpu_svm *svm = to_svm(vcpu);
4902 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4903 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4904 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4907 * A vmexit emulation is required before the vcpu can be executed
4910 if (unlikely(svm->nested.exit_required))
4914 * Disable singlestep if we're injecting an interrupt/exception.
4915 * We don't want our modified rflags to be pushed on the stack where
4916 * we might not be able to easily reset them if we disabled NMI
4919 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4921 * Event injection happens before external interrupts cause a
4922 * vmexit and interrupts are disabled here, so smp_send_reschedule
4923 * is enough to force an immediate vmexit.
4925 disable_nmi_singlestep(svm);
4926 smp_send_reschedule(vcpu->cpu);
4931 sync_lapic_to_cr8(vcpu);
4933 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4940 "push %%" _ASM_BP "; \n\t"
4941 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4942 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4943 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4944 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4945 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4946 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4947 #ifdef CONFIG_X86_64
4948 "mov %c[r8](%[svm]), %%r8 \n\t"
4949 "mov %c[r9](%[svm]), %%r9 \n\t"
4950 "mov %c[r10](%[svm]), %%r10 \n\t"
4951 "mov %c[r11](%[svm]), %%r11 \n\t"
4952 "mov %c[r12](%[svm]), %%r12 \n\t"
4953 "mov %c[r13](%[svm]), %%r13 \n\t"
4954 "mov %c[r14](%[svm]), %%r14 \n\t"
4955 "mov %c[r15](%[svm]), %%r15 \n\t"
4958 /* Enter guest mode */
4959 "push %%" _ASM_AX " \n\t"
4960 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4961 __ex(SVM_VMLOAD) "\n\t"
4962 __ex(SVM_VMRUN) "\n\t"
4963 __ex(SVM_VMSAVE) "\n\t"
4964 "pop %%" _ASM_AX " \n\t"
4966 /* Save guest registers, load host registers */
4967 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4968 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4969 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4970 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4971 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4972 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4973 #ifdef CONFIG_X86_64
4974 "mov %%r8, %c[r8](%[svm]) \n\t"
4975 "mov %%r9, %c[r9](%[svm]) \n\t"
4976 "mov %%r10, %c[r10](%[svm]) \n\t"
4977 "mov %%r11, %c[r11](%[svm]) \n\t"
4978 "mov %%r12, %c[r12](%[svm]) \n\t"
4979 "mov %%r13, %c[r13](%[svm]) \n\t"
4980 "mov %%r14, %c[r14](%[svm]) \n\t"
4981 "mov %%r15, %c[r15](%[svm]) \n\t"
4984 * Clear host registers marked as clobbered to prevent
4987 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
4988 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
4989 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
4990 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
4991 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
4992 #ifdef CONFIG_X86_64
4993 "xor %%r8, %%r8 \n\t"
4994 "xor %%r9, %%r9 \n\t"
4995 "xor %%r10, %%r10 \n\t"
4996 "xor %%r11, %%r11 \n\t"
4997 "xor %%r12, %%r12 \n\t"
4998 "xor %%r13, %%r13 \n\t"
4999 "xor %%r14, %%r14 \n\t"
5000 "xor %%r15, %%r15 \n\t"
5005 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5006 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5007 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5008 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5009 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5010 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5011 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5012 #ifdef CONFIG_X86_64
5013 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5014 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5015 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5016 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5017 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5018 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5019 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5020 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5023 #ifdef CONFIG_X86_64
5024 , "rbx", "rcx", "rdx", "rsi", "rdi"
5025 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5027 , "ebx", "ecx", "edx", "esi", "edi"
5031 /* Eliminate branch target predictions from guest mode */
5034 #ifdef CONFIG_X86_64
5035 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5037 loadsegment(fs, svm->host.fs);
5038 #ifndef CONFIG_X86_32_LAZY_GS
5039 loadsegment(gs, svm->host.gs);
5045 local_irq_disable();
5047 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5048 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5049 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5050 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5052 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5053 kvm_before_handle_nmi(&svm->vcpu);
5057 /* Any pending NMI will happen here */
5059 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5060 kvm_after_handle_nmi(&svm->vcpu);
5062 sync_cr8_to_lapic(vcpu);
5066 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5068 /* if exit due to PF check for async PF */
5069 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5070 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5073 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5074 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5078 * We need to handle MC intercepts here before the vcpu has a chance to
5079 * change the physical cpu
5081 if (unlikely(svm->vmcb->control.exit_code ==
5082 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5083 svm_handle_mce(svm);
5085 mark_all_clean(svm->vmcb);
5087 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5089 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5091 struct vcpu_svm *svm = to_svm(vcpu);
5093 svm->vmcb->save.cr3 = __sme_set(root);
5094 mark_dirty(svm->vmcb, VMCB_CR);
5095 svm_flush_tlb(vcpu);
5098 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5100 struct vcpu_svm *svm = to_svm(vcpu);
5102 svm->vmcb->control.nested_cr3 = __sme_set(root);
5103 mark_dirty(svm->vmcb, VMCB_NPT);
5105 /* Also sync guest cr3 here in case we live migrate */
5106 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5107 mark_dirty(svm->vmcb, VMCB_CR);
5109 svm_flush_tlb(vcpu);
5112 static int is_disabled(void)
5116 rdmsrl(MSR_VM_CR, vm_cr);
5117 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5124 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5127 * Patch in the VMMCALL instruction:
5129 hypercall[0] = 0x0f;
5130 hypercall[1] = 0x01;
5131 hypercall[2] = 0xd9;
5134 static void svm_check_processor_compat(void *rtn)
5139 static bool svm_cpu_has_accelerated_tpr(void)
5144 static bool svm_has_high_real_mode_segbase(void)
5149 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5154 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5156 struct vcpu_svm *svm = to_svm(vcpu);
5158 /* Update nrips enabled cache */
5159 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5161 if (!kvm_vcpu_apicv_active(vcpu))
5164 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5167 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5172 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5176 entry->ecx |= (1 << 2); /* Set SVM bit */
5179 entry->eax = 1; /* SVM revision 1 */
5180 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5181 ASID emulation to nested SVM */
5182 entry->ecx = 0; /* Reserved */
5183 entry->edx = 0; /* Per default do not support any
5184 additional features */
5186 /* Support next_rip if host supports it */
5187 if (boot_cpu_has(X86_FEATURE_NRIPS))
5188 entry->edx |= SVM_FEATURE_NRIP;
5190 /* Support NPT for the guest if enabled */
5192 entry->edx |= SVM_FEATURE_NPT;
5198 static int svm_get_lpage_level(void)
5200 return PT_PDPE_LEVEL;
5203 static bool svm_rdtscp_supported(void)
5205 return boot_cpu_has(X86_FEATURE_RDTSCP);
5208 static bool svm_invpcid_supported(void)
5213 static bool svm_mpx_supported(void)
5218 static bool svm_xsaves_supported(void)
5223 static bool svm_has_wbinvd_exit(void)
5228 #define PRE_EX(exit) { .exit_code = (exit), \
5229 .stage = X86_ICPT_PRE_EXCEPT, }
5230 #define POST_EX(exit) { .exit_code = (exit), \
5231 .stage = X86_ICPT_POST_EXCEPT, }
5232 #define POST_MEM(exit) { .exit_code = (exit), \
5233 .stage = X86_ICPT_POST_MEMACCESS, }
5235 static const struct __x86_intercept {
5237 enum x86_intercept_stage stage;
5238 } x86_intercept_map[] = {
5239 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5240 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5241 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5242 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5243 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5244 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5245 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5246 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5247 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5248 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5249 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5250 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5251 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5252 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5253 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5254 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5255 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5256 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5257 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5258 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5259 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5260 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5261 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5262 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5263 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5264 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5265 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5266 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5267 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5268 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5269 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5270 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5271 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5272 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5273 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5274 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5275 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5276 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5277 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5278 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5279 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5280 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5281 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5282 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5283 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5284 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5291 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5292 struct x86_instruction_info *info,
5293 enum x86_intercept_stage stage)
5295 struct vcpu_svm *svm = to_svm(vcpu);
5296 int vmexit, ret = X86EMUL_CONTINUE;
5297 struct __x86_intercept icpt_info;
5298 struct vmcb *vmcb = svm->vmcb;
5300 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5303 icpt_info = x86_intercept_map[info->intercept];
5305 if (stage != icpt_info.stage)
5308 switch (icpt_info.exit_code) {
5309 case SVM_EXIT_READ_CR0:
5310 if (info->intercept == x86_intercept_cr_read)
5311 icpt_info.exit_code += info->modrm_reg;
5313 case SVM_EXIT_WRITE_CR0: {
5314 unsigned long cr0, val;
5317 if (info->intercept == x86_intercept_cr_write)
5318 icpt_info.exit_code += info->modrm_reg;
5320 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5321 info->intercept == x86_intercept_clts)
5324 intercept = svm->nested.intercept;
5326 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5329 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5330 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5332 if (info->intercept == x86_intercept_lmsw) {
5335 /* lmsw can't clear PE - catch this here */
5336 if (cr0 & X86_CR0_PE)
5341 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5345 case SVM_EXIT_READ_DR0:
5346 case SVM_EXIT_WRITE_DR0:
5347 icpt_info.exit_code += info->modrm_reg;
5350 if (info->intercept == x86_intercept_wrmsr)
5351 vmcb->control.exit_info_1 = 1;
5353 vmcb->control.exit_info_1 = 0;
5355 case SVM_EXIT_PAUSE:
5357 * We get this for NOP only, but pause
5358 * is rep not, check this here
5360 if (info->rep_prefix != REPE_PREFIX)
5363 case SVM_EXIT_IOIO: {
5367 if (info->intercept == x86_intercept_in ||
5368 info->intercept == x86_intercept_ins) {
5369 exit_info = ((info->src_val & 0xffff) << 16) |
5371 bytes = info->dst_bytes;
5373 exit_info = (info->dst_val & 0xffff) << 16;
5374 bytes = info->src_bytes;
5377 if (info->intercept == x86_intercept_outs ||
5378 info->intercept == x86_intercept_ins)
5379 exit_info |= SVM_IOIO_STR_MASK;
5381 if (info->rep_prefix)
5382 exit_info |= SVM_IOIO_REP_MASK;
5384 bytes = min(bytes, 4u);
5386 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5388 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5390 vmcb->control.exit_info_1 = exit_info;
5391 vmcb->control.exit_info_2 = info->next_rip;
5399 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5400 if (static_cpu_has(X86_FEATURE_NRIPS))
5401 vmcb->control.next_rip = info->next_rip;
5402 vmcb->control.exit_code = icpt_info.exit_code;
5403 vmexit = nested_svm_exit_handled(svm);
5405 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5412 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5416 * We must have an instruction with interrupts enabled, so
5417 * the timer interrupt isn't delayed by the interrupt shadow.
5420 local_irq_disable();
5423 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5427 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5429 if (avic_handle_apic_id_update(vcpu) != 0)
5431 if (avic_handle_dfr_update(vcpu) != 0)
5433 avic_handle_ldr_update(vcpu);
5436 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5438 /* [63:9] are reserved. */
5439 vcpu->arch.mcg_cap &= 0x1ff;
5442 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
5444 struct vcpu_svm *svm = to_svm(vcpu);
5446 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5450 if (is_guest_mode(&svm->vcpu) &&
5451 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
5452 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5453 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
5454 svm->nested.exit_required = true;
5461 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
5463 struct vcpu_svm *svm = to_svm(vcpu);
5466 if (is_guest_mode(vcpu)) {
5467 /* FED8h - SVM Guest */
5468 put_smstate(u64, smstate, 0x7ed8, 1);
5469 /* FEE0h - SVM Guest VMCB Physical Address */
5470 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
5472 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5473 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5474 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5476 ret = nested_svm_vmexit(svm);
5483 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
5485 struct vcpu_svm *svm = to_svm(vcpu);
5486 struct vmcb *nested_vmcb;
5494 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
5495 sizeof(svm_state_save));
5499 if (svm_state_save.guest) {
5500 vcpu->arch.hflags &= ~HF_SMM_MASK;
5501 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
5503 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
5506 vcpu->arch.hflags |= HF_SMM_MASK;
5511 static int enable_smi_window(struct kvm_vcpu *vcpu)
5513 struct vcpu_svm *svm = to_svm(vcpu);
5515 if (!gif_set(svm)) {
5516 if (vgif_enabled(svm))
5517 set_intercept(svm, INTERCEPT_STGI);
5518 /* STGI will cause a vm exit */
5524 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5525 .cpu_has_kvm_support = has_svm,
5526 .disabled_by_bios = is_disabled,
5527 .hardware_setup = svm_hardware_setup,
5528 .hardware_unsetup = svm_hardware_unsetup,
5529 .check_processor_compatibility = svm_check_processor_compat,
5530 .hardware_enable = svm_hardware_enable,
5531 .hardware_disable = svm_hardware_disable,
5532 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5533 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5535 .vcpu_create = svm_create_vcpu,
5536 .vcpu_free = svm_free_vcpu,
5537 .vcpu_reset = svm_vcpu_reset,
5539 .vm_init = avic_vm_init,
5540 .vm_destroy = avic_vm_destroy,
5542 .prepare_guest_switch = svm_prepare_guest_switch,
5543 .vcpu_load = svm_vcpu_load,
5544 .vcpu_put = svm_vcpu_put,
5545 .vcpu_blocking = svm_vcpu_blocking,
5546 .vcpu_unblocking = svm_vcpu_unblocking,
5548 .update_bp_intercept = update_bp_intercept,
5549 .get_msr = svm_get_msr,
5550 .set_msr = svm_set_msr,
5551 .get_segment_base = svm_get_segment_base,
5552 .get_segment = svm_get_segment,
5553 .set_segment = svm_set_segment,
5554 .get_cpl = svm_get_cpl,
5555 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5556 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5557 .decache_cr3 = svm_decache_cr3,
5558 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5559 .set_cr0 = svm_set_cr0,
5560 .set_cr3 = svm_set_cr3,
5561 .set_cr4 = svm_set_cr4,
5562 .set_efer = svm_set_efer,
5563 .get_idt = svm_get_idt,
5564 .set_idt = svm_set_idt,
5565 .get_gdt = svm_get_gdt,
5566 .set_gdt = svm_set_gdt,
5567 .get_dr6 = svm_get_dr6,
5568 .set_dr6 = svm_set_dr6,
5569 .set_dr7 = svm_set_dr7,
5570 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5571 .cache_reg = svm_cache_reg,
5572 .get_rflags = svm_get_rflags,
5573 .set_rflags = svm_set_rflags,
5575 .tlb_flush = svm_flush_tlb,
5577 .run = svm_vcpu_run,
5578 .handle_exit = handle_exit,
5579 .skip_emulated_instruction = skip_emulated_instruction,
5580 .set_interrupt_shadow = svm_set_interrupt_shadow,
5581 .get_interrupt_shadow = svm_get_interrupt_shadow,
5582 .patch_hypercall = svm_patch_hypercall,
5583 .set_irq = svm_set_irq,
5584 .set_nmi = svm_inject_nmi,
5585 .queue_exception = svm_queue_exception,
5586 .cancel_injection = svm_cancel_injection,
5587 .interrupt_allowed = svm_interrupt_allowed,
5588 .nmi_allowed = svm_nmi_allowed,
5589 .get_nmi_mask = svm_get_nmi_mask,
5590 .set_nmi_mask = svm_set_nmi_mask,
5591 .enable_nmi_window = enable_nmi_window,
5592 .enable_irq_window = enable_irq_window,
5593 .update_cr8_intercept = update_cr8_intercept,
5594 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5595 .get_enable_apicv = svm_get_enable_apicv,
5596 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5597 .load_eoi_exitmap = svm_load_eoi_exitmap,
5598 .hwapic_irr_update = svm_hwapic_irr_update,
5599 .hwapic_isr_update = svm_hwapic_isr_update,
5600 .apicv_post_state_restore = avic_post_state_restore,
5602 .set_tss_addr = svm_set_tss_addr,
5603 .get_tdp_level = get_npt_level,
5604 .get_mt_mask = svm_get_mt_mask,
5606 .get_exit_info = svm_get_exit_info,
5608 .get_lpage_level = svm_get_lpage_level,
5610 .cpuid_update = svm_cpuid_update,
5612 .rdtscp_supported = svm_rdtscp_supported,
5613 .invpcid_supported = svm_invpcid_supported,
5614 .mpx_supported = svm_mpx_supported,
5615 .xsaves_supported = svm_xsaves_supported,
5617 .set_supported_cpuid = svm_set_supported_cpuid,
5619 .has_wbinvd_exit = svm_has_wbinvd_exit,
5621 .write_tsc_offset = svm_write_tsc_offset,
5623 .set_tdp_cr3 = set_tdp_cr3,
5625 .check_intercept = svm_check_intercept,
5626 .handle_external_intr = svm_handle_external_intr,
5628 .sched_in = svm_sched_in,
5630 .pmu_ops = &amd_pmu_ops,
5631 .deliver_posted_interrupt = svm_deliver_avic_intr,
5632 .update_pi_irte = svm_update_pi_irte,
5633 .setup_mce = svm_setup_mce,
5635 .smi_allowed = svm_smi_allowed,
5636 .pre_enter_smm = svm_pre_enter_smm,
5637 .pre_leave_smm = svm_pre_leave_smm,
5638 .enable_smi_window = enable_smi_window,
5641 static int __init svm_init(void)
5643 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5644 __alignof__(struct vcpu_svm), THIS_MODULE);
5647 static void __exit svm_exit(void)
5652 module_init(svm_init)
5653 module_exit(svm_exit)