1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
89 #include <uapi/linux/io_uring.h>
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq, cq;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
190 struct io_mapped_ubuf {
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
198 struct fixed_file_table {
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
223 struct list_head list;
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
246 struct task_struct *thread;
247 struct wait_queue_head wait;
249 unsigned sq_thread_idle;
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
275 * The kernel modifies neither the indices array nor the entries
279 unsigned cached_sq_head;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
294 struct io_rings *rings;
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
303 struct task_struct *sqo_task;
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
312 struct io_sq_data *sq_data; /* if using sq thread polling */
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
329 struct user_struct *user;
331 const struct cred *creds;
335 unsigned int sessionid;
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
348 struct idr io_buffer_idr;
350 struct idr personality_idr;
353 unsigned cached_cq_tail;
356 atomic_t cq_timeouts;
357 unsigned long cq_check_overflow;
358 struct wait_queue_head cq_wait;
359 struct fasync_struct *cq_fasync;
360 struct eventfd_ctx *cq_ev_fd;
361 } ____cacheline_aligned_in_smp;
364 struct mutex uring_lock;
365 wait_queue_head_t wait;
366 } ____cacheline_aligned_in_smp;
369 spinlock_t completion_lock;
372 * ->iopoll_list is protected by the ctx->uring_lock for
373 * io_uring instances that don't use IORING_SETUP_SQPOLL.
374 * For SQPOLL, only the single threaded io_sq_thread() will
375 * manipulate the list, hence no extra locking is needed there.
377 struct list_head iopoll_list;
378 struct hlist_head *cancel_hash;
379 unsigned cancel_hash_bits;
380 bool poll_multi_file;
382 spinlock_t inflight_lock;
383 struct list_head inflight_list;
384 } ____cacheline_aligned_in_smp;
386 struct delayed_work file_put_work;
387 struct llist_head file_put_llist;
389 struct work_struct exit_work;
390 struct io_restriction restrictions;
394 * First field must be the file pointer in all the
395 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 struct io_poll_iocb {
399 struct wait_queue_head *head;
403 struct wait_queue_entry wait;
406 struct io_poll_remove {
413 struct file *put_file;
417 struct io_timeout_data {
418 struct io_kiocb *req;
419 struct hrtimer timer;
420 struct timespec64 ts;
421 enum hrtimer_mode mode;
426 struct sockaddr __user *addr;
427 int __user *addr_len;
429 unsigned long nofile;
449 struct list_head list;
450 /* head of the link, used by linked timeouts only */
451 struct io_kiocb *head;
454 struct io_timeout_rem {
459 struct timespec64 ts;
464 /* NOTE: kiocb has the file as the first member, so don't do it here */
472 struct sockaddr __user *addr;
479 struct user_msghdr __user *umsg;
485 struct io_buffer *kbuf;
491 bool ignore_nonblock;
492 struct filename *filename;
494 unsigned long nofile;
497 struct io_files_update {
523 struct epoll_event event;
527 struct file *file_out;
528 struct file *file_in;
535 struct io_provide_buf {
549 const char __user *filename;
550 struct statx __user *buffer;
562 struct filename *oldpath;
563 struct filename *newpath;
571 struct filename *filename;
574 struct io_completion {
576 struct list_head list;
580 struct io_async_connect {
581 struct sockaddr_storage address;
584 struct io_async_msghdr {
585 struct iovec fast_iov[UIO_FASTIOV];
587 struct sockaddr __user *uaddr;
589 struct sockaddr_storage addr;
593 struct iovec fast_iov[UIO_FASTIOV];
594 const struct iovec *free_iovec;
595 struct iov_iter iter;
597 struct wait_page_queue wpq;
601 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
602 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
603 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
604 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
605 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
606 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
612 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_BUFFER_SELECTED_BIT,
617 REQ_F_NO_FILE_TABLE_BIT,
618 REQ_F_WORK_INITIALIZED_BIT,
619 REQ_F_LTIMEOUT_ACTIVE_BIT,
621 /* not a real bit, just to check we're not overflowing the space */
627 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
628 /* drain existing IO first */
629 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
632 /* doesn't sever on completion < 0 */
633 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
636 /* IOSQE_BUFFER_SELECT */
637 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639 /* fail rest of links */
640 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
641 /* on inflight list */
642 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
643 /* read/write uses file position */
644 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
645 /* must not punt to workers */
646 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
647 /* has or had linked timeout */
648 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
653 /* already went through poll handler */
654 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
655 /* buffer already selected */
656 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
657 /* doesn't need file table for this request */
658 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
659 /* io_wq_work is initialized */
660 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
661 /* linked timeout is active, i.e. prepared by link's head */
662 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
666 struct io_poll_iocb poll;
667 struct io_poll_iocb *double_poll;
671 * NOTE! Each of the iocb union members has the file pointer
672 * as the first entry in their struct definition. So you can
673 * access the file pointer through any of the sub-structs,
674 * or directly as just 'ki_filp' in this struct.
680 struct io_poll_iocb poll;
681 struct io_poll_remove poll_remove;
682 struct io_accept accept;
684 struct io_cancel cancel;
685 struct io_timeout timeout;
686 struct io_timeout_rem timeout_rem;
687 struct io_connect connect;
688 struct io_sr_msg sr_msg;
690 struct io_close close;
691 struct io_files_update files_update;
692 struct io_fadvise fadvise;
693 struct io_madvise madvise;
694 struct io_epoll epoll;
695 struct io_splice splice;
696 struct io_provide_buf pbuf;
697 struct io_statx statx;
698 struct io_shutdown shutdown;
699 struct io_rename rename;
700 struct io_unlink unlink;
701 /* use only after cleaning per-op data, see io_clean_op() */
702 struct io_completion compl;
705 /* opcode allocated if it needs to store data for async defer */
708 /* polled IO has completed */
714 struct io_ring_ctx *ctx;
717 struct task_struct *task;
720 struct io_kiocb *link;
721 struct percpu_ref *fixed_file_refs;
724 * 1. used with ctx->iopoll_list with reads/writes
725 * 2. to track reqs with ->files (see io_op_def::file_table)
727 struct list_head inflight_entry;
728 struct callback_head task_work;
729 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
730 struct hlist_node hash_node;
731 struct async_poll *apoll;
732 struct io_wq_work work;
735 struct io_defer_entry {
736 struct list_head list;
737 struct io_kiocb *req;
741 #define IO_IOPOLL_BATCH 8
743 struct io_comp_state {
745 struct list_head list;
746 struct io_ring_ctx *ctx;
749 struct io_submit_state {
750 struct blk_plug plug;
753 * io_kiocb alloc cache
755 void *reqs[IO_IOPOLL_BATCH];
756 unsigned int free_reqs;
761 * Batch completion logic
763 struct io_comp_state comp;
766 * File reference cache
770 unsigned int file_refs;
771 unsigned int ios_left;
775 /* needs req->file assigned */
776 unsigned needs_file : 1;
777 /* don't fail if file grab fails */
778 unsigned needs_file_no_error : 1;
779 /* hash wq insertion if file is a regular file */
780 unsigned hash_reg_file : 1;
781 /* unbound wq insertion if file is a non-regular file */
782 unsigned unbound_nonreg_file : 1;
783 /* opcode is not supported by this kernel */
784 unsigned not_supported : 1;
785 /* set if opcode supports polled "wait" */
787 unsigned pollout : 1;
788 /* op supports buffer selection */
789 unsigned buffer_select : 1;
790 /* must always have async data allocated */
791 unsigned needs_async_data : 1;
792 /* should block plug */
794 /* size of async data needed, if any */
795 unsigned short async_size;
799 static const struct io_op_def io_op_defs[] = {
800 [IORING_OP_NOP] = {},
801 [IORING_OP_READV] = {
803 .unbound_nonreg_file = 1,
806 .needs_async_data = 1,
808 .async_size = sizeof(struct io_async_rw),
809 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 [IORING_OP_WRITEV] = {
814 .unbound_nonreg_file = 1,
816 .needs_async_data = 1,
818 .async_size = sizeof(struct io_async_rw),
819 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
822 [IORING_OP_FSYNC] = {
824 .work_flags = IO_WQ_WORK_BLKCG,
826 [IORING_OP_READ_FIXED] = {
828 .unbound_nonreg_file = 1,
831 .async_size = sizeof(struct io_async_rw),
832 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 [IORING_OP_WRITE_FIXED] = {
837 .unbound_nonreg_file = 1,
840 .async_size = sizeof(struct io_async_rw),
841 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
844 [IORING_OP_POLL_ADD] = {
846 .unbound_nonreg_file = 1,
848 [IORING_OP_POLL_REMOVE] = {},
849 [IORING_OP_SYNC_FILE_RANGE] = {
851 .work_flags = IO_WQ_WORK_BLKCG,
853 [IORING_OP_SENDMSG] = {
855 .unbound_nonreg_file = 1,
857 .needs_async_data = 1,
858 .async_size = sizeof(struct io_async_msghdr),
859 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
861 [IORING_OP_RECVMSG] = {
863 .unbound_nonreg_file = 1,
866 .needs_async_data = 1,
867 .async_size = sizeof(struct io_async_msghdr),
868 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
870 [IORING_OP_TIMEOUT] = {
871 .needs_async_data = 1,
872 .async_size = sizeof(struct io_timeout_data),
873 .work_flags = IO_WQ_WORK_MM,
875 [IORING_OP_TIMEOUT_REMOVE] = {
876 /* used by timeout updates' prep() */
877 .work_flags = IO_WQ_WORK_MM,
879 [IORING_OP_ACCEPT] = {
881 .unbound_nonreg_file = 1,
883 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
885 [IORING_OP_ASYNC_CANCEL] = {},
886 [IORING_OP_LINK_TIMEOUT] = {
887 .needs_async_data = 1,
888 .async_size = sizeof(struct io_timeout_data),
889 .work_flags = IO_WQ_WORK_MM,
891 [IORING_OP_CONNECT] = {
893 .unbound_nonreg_file = 1,
895 .needs_async_data = 1,
896 .async_size = sizeof(struct io_async_connect),
897 .work_flags = IO_WQ_WORK_MM,
899 [IORING_OP_FALLOCATE] = {
901 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
903 [IORING_OP_OPENAT] = {
904 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
905 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
907 [IORING_OP_CLOSE] = {
909 .needs_file_no_error = 1,
910 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
912 [IORING_OP_FILES_UPDATE] = {
913 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
915 [IORING_OP_STATX] = {
916 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
917 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
921 .unbound_nonreg_file = 1,
925 .async_size = sizeof(struct io_async_rw),
926 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
928 [IORING_OP_WRITE] = {
930 .unbound_nonreg_file = 1,
933 .async_size = sizeof(struct io_async_rw),
934 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
937 [IORING_OP_FADVISE] = {
939 .work_flags = IO_WQ_WORK_BLKCG,
941 [IORING_OP_MADVISE] = {
942 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
946 .unbound_nonreg_file = 1,
948 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
952 .unbound_nonreg_file = 1,
955 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
957 [IORING_OP_OPENAT2] = {
958 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
959 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
961 [IORING_OP_EPOLL_CTL] = {
962 .unbound_nonreg_file = 1,
963 .work_flags = IO_WQ_WORK_FILES,
965 [IORING_OP_SPLICE] = {
968 .unbound_nonreg_file = 1,
969 .work_flags = IO_WQ_WORK_BLKCG,
971 [IORING_OP_PROVIDE_BUFFERS] = {},
972 [IORING_OP_REMOVE_BUFFERS] = {},
976 .unbound_nonreg_file = 1,
978 [IORING_OP_SHUTDOWN] = {
981 [IORING_OP_RENAMEAT] = {
982 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
983 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
985 [IORING_OP_UNLINKAT] = {
986 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
987 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
991 enum io_mem_account {
996 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
997 struct task_struct *task);
999 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1000 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1001 struct io_ring_ctx *ctx);
1003 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1004 struct io_comp_state *cs);
1005 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1006 static void io_put_req(struct io_kiocb *req);
1007 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1008 static void io_double_put_req(struct io_kiocb *req);
1009 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1010 static void __io_queue_linked_timeout(struct io_kiocb *req);
1011 static void io_queue_linked_timeout(struct io_kiocb *req);
1012 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1013 struct io_uring_files_update *ip,
1015 static void __io_clean_op(struct io_kiocb *req);
1016 static struct file *io_file_get(struct io_submit_state *state,
1017 struct io_kiocb *req, int fd, bool fixed);
1018 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1019 static void io_file_put_work(struct work_struct *work);
1021 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1022 struct iovec **iovec, struct iov_iter *iter,
1024 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1025 const struct iovec *fast_iov,
1026 struct iov_iter *iter, bool force);
1028 static struct kmem_cache *req_cachep;
1030 static const struct file_operations io_uring_fops;
1032 struct sock *io_uring_get_socket(struct file *file)
1034 #if defined(CONFIG_UNIX)
1035 if (file->f_op == &io_uring_fops) {
1036 struct io_ring_ctx *ctx = file->private_data;
1038 return ctx->ring_sock->sk;
1043 EXPORT_SYMBOL(io_uring_get_socket);
1045 #define io_for_each_link(pos, head) \
1046 for (pos = (head); pos; pos = pos->link)
1048 static inline void io_clean_op(struct io_kiocb *req)
1050 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1055 static inline void io_set_resource_node(struct io_kiocb *req)
1057 struct io_ring_ctx *ctx = req->ctx;
1059 if (!req->fixed_file_refs) {
1060 req->fixed_file_refs = &ctx->file_data->node->refs;
1061 percpu_ref_get(req->fixed_file_refs);
1065 static bool io_match_task(struct io_kiocb *head,
1066 struct task_struct *task,
1067 struct files_struct *files)
1069 struct io_kiocb *req;
1071 if (task && head->task != task)
1076 io_for_each_link(req, head) {
1077 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1078 (req->work.flags & IO_WQ_WORK_FILES) &&
1079 req->work.identity->files == files)
1085 static void io_sq_thread_drop_mm_files(void)
1087 struct files_struct *files = current->files;
1088 struct mm_struct *mm = current->mm;
1091 kthread_unuse_mm(mm);
1096 struct nsproxy *nsproxy = current->nsproxy;
1099 current->files = NULL;
1100 current->nsproxy = NULL;
1101 task_unlock(current);
1102 put_files_struct(files);
1103 put_nsproxy(nsproxy);
1107 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1109 if (current->flags & PF_EXITING)
1112 if (!current->files) {
1113 struct files_struct *files;
1114 struct nsproxy *nsproxy;
1116 task_lock(ctx->sqo_task);
1117 files = ctx->sqo_task->files;
1119 task_unlock(ctx->sqo_task);
1122 atomic_inc(&files->count);
1123 get_nsproxy(ctx->sqo_task->nsproxy);
1124 nsproxy = ctx->sqo_task->nsproxy;
1125 task_unlock(ctx->sqo_task);
1128 current->files = files;
1129 current->nsproxy = nsproxy;
1130 task_unlock(current);
1135 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1137 struct mm_struct *mm;
1139 if (current->flags & PF_EXITING)
1144 /* Should never happen */
1145 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1148 task_lock(ctx->sqo_task);
1149 mm = ctx->sqo_task->mm;
1150 if (unlikely(!mm || !mmget_not_zero(mm)))
1152 task_unlock(ctx->sqo_task);
1162 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1163 struct io_kiocb *req)
1165 const struct io_op_def *def = &io_op_defs[req->opcode];
1168 if (def->work_flags & IO_WQ_WORK_MM) {
1169 ret = __io_sq_thread_acquire_mm(ctx);
1174 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1175 ret = __io_sq_thread_acquire_files(ctx);
1183 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1184 struct cgroup_subsys_state **cur_css)
1187 #ifdef CONFIG_BLK_CGROUP
1188 /* puts the old one when swapping */
1189 if (*cur_css != ctx->sqo_blkcg_css) {
1190 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1191 *cur_css = ctx->sqo_blkcg_css;
1196 static void io_sq_thread_unassociate_blkcg(void)
1198 #ifdef CONFIG_BLK_CGROUP
1199 kthread_associate_blkcg(NULL);
1203 static inline void req_set_fail_links(struct io_kiocb *req)
1205 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1206 req->flags |= REQ_F_FAIL_LINK;
1210 * None of these are dereferenced, they are simply used to check if any of
1211 * them have changed. If we're under current and check they are still the
1212 * same, we're fine to grab references to them for actual out-of-line use.
1214 static void io_init_identity(struct io_identity *id)
1216 id->files = current->files;
1217 id->mm = current->mm;
1218 #ifdef CONFIG_BLK_CGROUP
1220 id->blkcg_css = blkcg_css();
1223 id->creds = current_cred();
1224 id->nsproxy = current->nsproxy;
1225 id->fs = current->fs;
1226 id->fsize = rlimit(RLIMIT_FSIZE);
1228 id->loginuid = current->loginuid;
1229 id->sessionid = current->sessionid;
1231 refcount_set(&id->count, 1);
1234 static inline void __io_req_init_async(struct io_kiocb *req)
1236 memset(&req->work, 0, sizeof(req->work));
1237 req->flags |= REQ_F_WORK_INITIALIZED;
1241 * Note: must call io_req_init_async() for the first time you
1242 * touch any members of io_wq_work.
1244 static inline void io_req_init_async(struct io_kiocb *req)
1246 struct io_uring_task *tctx = current->io_uring;
1248 if (req->flags & REQ_F_WORK_INITIALIZED)
1251 __io_req_init_async(req);
1253 /* Grab a ref if this isn't our static identity */
1254 req->work.identity = tctx->identity;
1255 if (tctx->identity != &tctx->__identity)
1256 refcount_inc(&req->work.identity->count);
1259 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1261 return ctx->flags & IORING_SETUP_SQPOLL;
1264 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1266 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1268 complete(&ctx->ref_comp);
1271 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1273 return !req->timeout.off;
1276 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1278 struct io_ring_ctx *ctx;
1281 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1285 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1286 if (!ctx->fallback_req)
1290 * Use 5 bits less than the max cq entries, that should give us around
1291 * 32 entries per hash list if totally full and uniformly spread.
1293 hash_bits = ilog2(p->cq_entries);
1297 ctx->cancel_hash_bits = hash_bits;
1298 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1300 if (!ctx->cancel_hash)
1302 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1305 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1308 ctx->flags = p->flags;
1309 init_waitqueue_head(&ctx->sqo_sq_wait);
1310 INIT_LIST_HEAD(&ctx->sqd_list);
1311 init_waitqueue_head(&ctx->cq_wait);
1312 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1313 init_completion(&ctx->ref_comp);
1314 init_completion(&ctx->sq_thread_comp);
1315 idr_init(&ctx->io_buffer_idr);
1316 idr_init(&ctx->personality_idr);
1317 mutex_init(&ctx->uring_lock);
1318 init_waitqueue_head(&ctx->wait);
1319 spin_lock_init(&ctx->completion_lock);
1320 INIT_LIST_HEAD(&ctx->iopoll_list);
1321 INIT_LIST_HEAD(&ctx->defer_list);
1322 INIT_LIST_HEAD(&ctx->timeout_list);
1323 spin_lock_init(&ctx->inflight_lock);
1324 INIT_LIST_HEAD(&ctx->inflight_list);
1325 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1326 init_llist_head(&ctx->file_put_llist);
1329 if (ctx->fallback_req)
1330 kmem_cache_free(req_cachep, ctx->fallback_req);
1331 kfree(ctx->cancel_hash);
1336 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1338 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1339 struct io_ring_ctx *ctx = req->ctx;
1341 return seq != ctx->cached_cq_tail
1342 + READ_ONCE(ctx->cached_cq_overflow);
1348 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1350 struct io_rings *rings = ctx->rings;
1352 /* order cqe stores with ring update */
1353 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1356 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1358 if (req->work.identity == &tctx->__identity)
1360 if (refcount_dec_and_test(&req->work.identity->count))
1361 kfree(req->work.identity);
1364 static void io_req_clean_work(struct io_kiocb *req)
1366 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1369 req->flags &= ~REQ_F_WORK_INITIALIZED;
1371 if (req->work.flags & IO_WQ_WORK_MM) {
1372 mmdrop(req->work.identity->mm);
1373 req->work.flags &= ~IO_WQ_WORK_MM;
1375 #ifdef CONFIG_BLK_CGROUP
1376 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1377 css_put(req->work.identity->blkcg_css);
1378 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1381 if (req->work.flags & IO_WQ_WORK_CREDS) {
1382 put_cred(req->work.identity->creds);
1383 req->work.flags &= ~IO_WQ_WORK_CREDS;
1385 if (req->work.flags & IO_WQ_WORK_FS) {
1386 struct fs_struct *fs = req->work.identity->fs;
1388 spin_lock(&req->work.identity->fs->lock);
1391 spin_unlock(&req->work.identity->fs->lock);
1394 req->work.flags &= ~IO_WQ_WORK_FS;
1397 io_put_identity(req->task->io_uring, req);
1401 * Create a private copy of io_identity, since some fields don't match
1402 * the current context.
1404 static bool io_identity_cow(struct io_kiocb *req)
1406 struct io_uring_task *tctx = current->io_uring;
1407 const struct cred *creds = NULL;
1408 struct io_identity *id;
1410 if (req->work.flags & IO_WQ_WORK_CREDS)
1411 creds = req->work.identity->creds;
1413 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1414 if (unlikely(!id)) {
1415 req->work.flags |= IO_WQ_WORK_CANCEL;
1420 * We can safely just re-init the creds we copied Either the field
1421 * matches the current one, or we haven't grabbed it yet. The only
1422 * exception is ->creds, through registered personalities, so handle
1423 * that one separately.
1425 io_init_identity(id);
1429 /* add one for this request */
1430 refcount_inc(&id->count);
1432 /* drop tctx and req identity references, if needed */
1433 if (tctx->identity != &tctx->__identity &&
1434 refcount_dec_and_test(&tctx->identity->count))
1435 kfree(tctx->identity);
1436 if (req->work.identity != &tctx->__identity &&
1437 refcount_dec_and_test(&req->work.identity->count))
1438 kfree(req->work.identity);
1440 req->work.identity = id;
1441 tctx->identity = id;
1445 static bool io_grab_identity(struct io_kiocb *req)
1447 const struct io_op_def *def = &io_op_defs[req->opcode];
1448 struct io_identity *id = req->work.identity;
1449 struct io_ring_ctx *ctx = req->ctx;
1451 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1452 if (id->fsize != rlimit(RLIMIT_FSIZE))
1454 req->work.flags |= IO_WQ_WORK_FSIZE;
1456 #ifdef CONFIG_BLK_CGROUP
1457 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1458 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1460 if (id->blkcg_css != blkcg_css()) {
1465 * This should be rare, either the cgroup is dying or the task
1466 * is moving cgroups. Just punt to root for the handful of ios.
1468 if (css_tryget_online(id->blkcg_css))
1469 req->work.flags |= IO_WQ_WORK_BLKCG;
1473 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1474 if (id->creds != current_cred())
1476 get_cred(id->creds);
1477 req->work.flags |= IO_WQ_WORK_CREDS;
1480 if (!uid_eq(current->loginuid, id->loginuid) ||
1481 current->sessionid != id->sessionid)
1484 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1485 (def->work_flags & IO_WQ_WORK_FS)) {
1486 if (current->fs != id->fs)
1488 spin_lock(&id->fs->lock);
1489 if (!id->fs->in_exec) {
1491 req->work.flags |= IO_WQ_WORK_FS;
1493 req->work.flags |= IO_WQ_WORK_CANCEL;
1495 spin_unlock(¤t->fs->lock);
1497 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1498 (def->work_flags & IO_WQ_WORK_FILES) &&
1499 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1500 if (id->files != current->files ||
1501 id->nsproxy != current->nsproxy)
1503 atomic_inc(&id->files->count);
1504 get_nsproxy(id->nsproxy);
1505 req->flags |= REQ_F_INFLIGHT;
1507 spin_lock_irq(&ctx->inflight_lock);
1508 list_add(&req->inflight_entry, &ctx->inflight_list);
1509 spin_unlock_irq(&ctx->inflight_lock);
1510 req->work.flags |= IO_WQ_WORK_FILES;
1512 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1513 (def->work_flags & IO_WQ_WORK_MM)) {
1514 if (id->mm != current->mm)
1517 req->work.flags |= IO_WQ_WORK_MM;
1523 static void io_prep_async_work(struct io_kiocb *req)
1525 const struct io_op_def *def = &io_op_defs[req->opcode];
1526 struct io_ring_ctx *ctx = req->ctx;
1528 io_req_init_async(req);
1530 if (req->flags & REQ_F_FORCE_ASYNC)
1531 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1533 if (req->flags & REQ_F_ISREG) {
1534 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1535 io_wq_hash_work(&req->work, file_inode(req->file));
1537 if (def->unbound_nonreg_file)
1538 req->work.flags |= IO_WQ_WORK_UNBOUND;
1541 /* if we fail grabbing identity, we must COW, regrab, and retry */
1542 if (io_grab_identity(req))
1545 if (!io_identity_cow(req))
1548 /* can't fail at this point */
1549 if (!io_grab_identity(req))
1553 static void io_prep_async_link(struct io_kiocb *req)
1555 struct io_kiocb *cur;
1557 io_for_each_link(cur, req)
1558 io_prep_async_work(cur);
1561 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1563 struct io_ring_ctx *ctx = req->ctx;
1564 struct io_kiocb *link = io_prep_linked_timeout(req);
1566 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1567 &req->work, req->flags);
1568 io_wq_enqueue(ctx->io_wq, &req->work);
1572 static void io_queue_async_work(struct io_kiocb *req)
1574 struct io_kiocb *link;
1576 /* init ->work of the whole link before punting */
1577 io_prep_async_link(req);
1578 link = __io_queue_async_work(req);
1581 io_queue_linked_timeout(link);
1584 static void io_kill_timeout(struct io_kiocb *req)
1586 struct io_timeout_data *io = req->async_data;
1589 ret = hrtimer_try_to_cancel(&io->timer);
1591 atomic_set(&req->ctx->cq_timeouts,
1592 atomic_read(&req->ctx->cq_timeouts) + 1);
1593 list_del_init(&req->timeout.list);
1594 io_cqring_fill_event(req, 0);
1595 io_put_req_deferred(req, 1);
1600 * Returns true if we found and killed one or more timeouts
1602 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1603 struct files_struct *files)
1605 struct io_kiocb *req, *tmp;
1608 spin_lock_irq(&ctx->completion_lock);
1609 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1610 if (io_match_task(req, tsk, files)) {
1611 io_kill_timeout(req);
1615 spin_unlock_irq(&ctx->completion_lock);
1616 return canceled != 0;
1619 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1622 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1623 struct io_defer_entry, list);
1624 struct io_kiocb *link;
1626 if (req_need_defer(de->req, de->seq))
1628 list_del_init(&de->list);
1629 /* punt-init is done before queueing for defer */
1630 link = __io_queue_async_work(de->req);
1632 __io_queue_linked_timeout(link);
1633 /* drop submission reference */
1634 io_put_req_deferred(link, 1);
1637 } while (!list_empty(&ctx->defer_list));
1640 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1642 while (!list_empty(&ctx->timeout_list)) {
1643 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1644 struct io_kiocb, timeout.list);
1646 if (io_is_timeout_noseq(req))
1648 if (req->timeout.target_seq != ctx->cached_cq_tail
1649 - atomic_read(&ctx->cq_timeouts))
1652 list_del_init(&req->timeout.list);
1653 io_kill_timeout(req);
1657 static void io_commit_cqring(struct io_ring_ctx *ctx)
1659 io_flush_timeouts(ctx);
1660 __io_commit_cqring(ctx);
1662 if (unlikely(!list_empty(&ctx->defer_list)))
1663 __io_queue_deferred(ctx);
1666 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1668 struct io_rings *r = ctx->rings;
1670 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1673 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1675 struct io_rings *rings = ctx->rings;
1678 tail = ctx->cached_cq_tail;
1680 * writes to the cq entry need to come after reading head; the
1681 * control dependency is enough as we're using WRITE_ONCE to
1684 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1687 ctx->cached_cq_tail++;
1688 return &rings->cqes[tail & ctx->cq_mask];
1691 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1695 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1697 if (!ctx->eventfd_async)
1699 return io_wq_current_is_worker();
1702 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1704 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1707 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1709 /* see waitqueue_active() comment */
1712 if (waitqueue_active(&ctx->wait))
1713 wake_up(&ctx->wait);
1714 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1715 wake_up(&ctx->sq_data->wait);
1716 if (io_should_trigger_evfd(ctx))
1717 eventfd_signal(ctx->cq_ev_fd, 1);
1718 if (waitqueue_active(&ctx->cq_wait)) {
1719 wake_up_interruptible(&ctx->cq_wait);
1720 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1724 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1726 /* see waitqueue_active() comment */
1729 if (ctx->flags & IORING_SETUP_SQPOLL) {
1730 if (waitqueue_active(&ctx->wait))
1731 wake_up(&ctx->wait);
1733 if (io_should_trigger_evfd(ctx))
1734 eventfd_signal(ctx->cq_ev_fd, 1);
1735 if (waitqueue_active(&ctx->cq_wait)) {
1736 wake_up_interruptible(&ctx->cq_wait);
1737 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1741 /* Returns true if there are no backlogged entries after the flush */
1742 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1743 struct task_struct *tsk,
1744 struct files_struct *files)
1746 struct io_rings *rings = ctx->rings;
1747 struct io_kiocb *req, *tmp;
1748 struct io_uring_cqe *cqe;
1749 unsigned long flags;
1753 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1756 spin_lock_irqsave(&ctx->completion_lock, flags);
1757 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1758 if (!io_match_task(req, tsk, files))
1761 cqe = io_get_cqring(ctx);
1765 list_move(&req->compl.list, &list);
1767 WRITE_ONCE(cqe->user_data, req->user_data);
1768 WRITE_ONCE(cqe->res, req->result);
1769 WRITE_ONCE(cqe->flags, req->compl.cflags);
1771 ctx->cached_cq_overflow++;
1772 WRITE_ONCE(ctx->rings->cq_overflow,
1773 ctx->cached_cq_overflow);
1777 all_flushed = list_empty(&ctx->cq_overflow_list);
1779 clear_bit(0, &ctx->sq_check_overflow);
1780 clear_bit(0, &ctx->cq_check_overflow);
1781 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1784 io_commit_cqring(ctx);
1785 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1786 io_cqring_ev_posted(ctx);
1788 while (!list_empty(&list)) {
1789 req = list_first_entry(&list, struct io_kiocb, compl.list);
1790 list_del(&req->compl.list);
1797 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1798 struct task_struct *tsk,
1799 struct files_struct *files)
1801 if (test_bit(0, &ctx->cq_check_overflow)) {
1802 /* iopoll syncs against uring_lock, not completion_lock */
1803 if (ctx->flags & IORING_SETUP_IOPOLL)
1804 mutex_lock(&ctx->uring_lock);
1805 __io_cqring_overflow_flush(ctx, force, tsk, files);
1806 if (ctx->flags & IORING_SETUP_IOPOLL)
1807 mutex_unlock(&ctx->uring_lock);
1811 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1813 struct io_ring_ctx *ctx = req->ctx;
1814 struct io_uring_cqe *cqe;
1816 trace_io_uring_complete(ctx, req->user_data, res);
1819 * If we can't get a cq entry, userspace overflowed the
1820 * submission (by quite a lot). Increment the overflow count in
1823 cqe = io_get_cqring(ctx);
1825 WRITE_ONCE(cqe->user_data, req->user_data);
1826 WRITE_ONCE(cqe->res, res);
1827 WRITE_ONCE(cqe->flags, cflags);
1828 } else if (ctx->cq_overflow_flushed ||
1829 atomic_read(&req->task->io_uring->in_idle)) {
1831 * If we're in ring overflow flush mode, or in task cancel mode,
1832 * then we cannot store the request for later flushing, we need
1833 * to drop it on the floor.
1835 ctx->cached_cq_overflow++;
1836 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1838 if (list_empty(&ctx->cq_overflow_list)) {
1839 set_bit(0, &ctx->sq_check_overflow);
1840 set_bit(0, &ctx->cq_check_overflow);
1841 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1845 req->compl.cflags = cflags;
1846 refcount_inc(&req->refs);
1847 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1851 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1853 __io_cqring_fill_event(req, res, 0);
1856 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1858 struct io_ring_ctx *ctx = req->ctx;
1859 unsigned long flags;
1861 spin_lock_irqsave(&ctx->completion_lock, flags);
1862 __io_cqring_fill_event(req, res, cflags);
1863 io_commit_cqring(ctx);
1864 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1866 io_cqring_ev_posted(ctx);
1869 static void io_submit_flush_completions(struct io_comp_state *cs)
1871 struct io_ring_ctx *ctx = cs->ctx;
1873 spin_lock_irq(&ctx->completion_lock);
1874 while (!list_empty(&cs->list)) {
1875 struct io_kiocb *req;
1877 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1878 list_del(&req->compl.list);
1879 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1882 * io_free_req() doesn't care about completion_lock unless one
1883 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1884 * because of a potential deadlock with req->work.fs->lock
1886 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1887 |REQ_F_WORK_INITIALIZED)) {
1888 spin_unlock_irq(&ctx->completion_lock);
1890 spin_lock_irq(&ctx->completion_lock);
1895 io_commit_cqring(ctx);
1896 spin_unlock_irq(&ctx->completion_lock);
1898 io_cqring_ev_posted(ctx);
1902 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1903 struct io_comp_state *cs)
1906 io_cqring_add_event(req, res, cflags);
1911 req->compl.cflags = cflags;
1912 list_add_tail(&req->compl.list, &cs->list);
1914 io_submit_flush_completions(cs);
1918 static void io_req_complete(struct io_kiocb *req, long res)
1920 __io_req_complete(req, res, 0, NULL);
1923 static inline bool io_is_fallback_req(struct io_kiocb *req)
1925 return req == (struct io_kiocb *)
1926 ((unsigned long) req->ctx->fallback_req & ~1UL);
1929 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1931 struct io_kiocb *req;
1933 req = ctx->fallback_req;
1934 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1940 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1941 struct io_submit_state *state)
1943 if (!state->free_reqs) {
1944 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1948 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1949 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1952 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1953 * retry single alloc to be on the safe side.
1955 if (unlikely(ret <= 0)) {
1956 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1957 if (!state->reqs[0])
1961 state->free_reqs = ret;
1965 return state->reqs[state->free_reqs];
1967 return io_get_fallback_req(ctx);
1970 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1977 static void io_dismantle_req(struct io_kiocb *req)
1981 if (req->async_data)
1982 kfree(req->async_data);
1984 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1985 if (req->fixed_file_refs)
1986 percpu_ref_put(req->fixed_file_refs);
1987 io_req_clean_work(req);
1990 static void __io_free_req(struct io_kiocb *req)
1992 struct io_uring_task *tctx = req->task->io_uring;
1993 struct io_ring_ctx *ctx = req->ctx;
1995 io_dismantle_req(req);
1997 percpu_counter_dec(&tctx->inflight);
1998 if (atomic_read(&tctx->in_idle))
1999 wake_up(&tctx->wait);
2000 put_task_struct(req->task);
2002 if (likely(!io_is_fallback_req(req)))
2003 kmem_cache_free(req_cachep, req);
2005 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2006 percpu_ref_put(&ctx->refs);
2009 static inline void io_remove_next_linked(struct io_kiocb *req)
2011 struct io_kiocb *nxt = req->link;
2013 req->link = nxt->link;
2017 static void io_kill_linked_timeout(struct io_kiocb *req)
2019 struct io_ring_ctx *ctx = req->ctx;
2020 struct io_kiocb *link;
2021 bool cancelled = false;
2022 unsigned long flags;
2024 spin_lock_irqsave(&ctx->completion_lock, flags);
2028 * Can happen if a linked timeout fired and link had been like
2029 * req -> link t-out -> link t-out [-> ...]
2031 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2032 struct io_timeout_data *io = link->async_data;
2035 io_remove_next_linked(req);
2036 link->timeout.head = NULL;
2037 ret = hrtimer_try_to_cancel(&io->timer);
2039 io_cqring_fill_event(link, -ECANCELED);
2040 io_commit_cqring(ctx);
2044 req->flags &= ~REQ_F_LINK_TIMEOUT;
2045 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2048 io_cqring_ev_posted(ctx);
2054 static void io_fail_links(struct io_kiocb *req)
2056 struct io_kiocb *link, *nxt;
2057 struct io_ring_ctx *ctx = req->ctx;
2058 unsigned long flags;
2060 spin_lock_irqsave(&ctx->completion_lock, flags);
2068 trace_io_uring_fail_link(req, link);
2069 io_cqring_fill_event(link, -ECANCELED);
2072 * It's ok to free under spinlock as they're not linked anymore,
2073 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2076 if (link->flags & REQ_F_WORK_INITIALIZED)
2077 io_put_req_deferred(link, 2);
2079 io_double_put_req(link);
2082 io_commit_cqring(ctx);
2083 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2085 io_cqring_ev_posted(ctx);
2088 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2090 if (req->flags & REQ_F_LINK_TIMEOUT)
2091 io_kill_linked_timeout(req);
2094 * If LINK is set, we have dependent requests in this chain. If we
2095 * didn't fail this request, queue the first one up, moving any other
2096 * dependencies to the next request. In case of failure, fail the rest
2099 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2100 struct io_kiocb *nxt = req->link;
2109 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2111 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2113 return __io_req_find_next(req);
2116 static int io_req_task_work_add(struct io_kiocb *req)
2118 struct task_struct *tsk = req->task;
2119 struct io_ring_ctx *ctx = req->ctx;
2120 enum task_work_notify_mode notify;
2123 if (tsk->flags & PF_EXITING)
2127 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2128 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2129 * processing task_work. There's no reliable way to tell if TWA_RESUME
2133 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2134 notify = TWA_SIGNAL;
2136 ret = task_work_add(tsk, &req->task_work, notify);
2138 wake_up_process(tsk);
2143 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2145 struct io_ring_ctx *ctx = req->ctx;
2147 spin_lock_irq(&ctx->completion_lock);
2148 io_cqring_fill_event(req, error);
2149 io_commit_cqring(ctx);
2150 spin_unlock_irq(&ctx->completion_lock);
2152 io_cqring_ev_posted(ctx);
2153 req_set_fail_links(req);
2154 io_double_put_req(req);
2157 static void io_req_task_cancel(struct callback_head *cb)
2159 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2160 struct io_ring_ctx *ctx = req->ctx;
2162 __io_req_task_cancel(req, -ECANCELED);
2163 percpu_ref_put(&ctx->refs);
2166 static void __io_req_task_submit(struct io_kiocb *req)
2168 struct io_ring_ctx *ctx = req->ctx;
2170 mutex_lock(&ctx->uring_lock);
2171 if (!ctx->sqo_dead &&
2172 !__io_sq_thread_acquire_mm(ctx) &&
2173 !__io_sq_thread_acquire_files(ctx))
2174 __io_queue_sqe(req, NULL);
2176 __io_req_task_cancel(req, -EFAULT);
2177 mutex_unlock(&ctx->uring_lock);
2180 static void io_req_task_submit(struct callback_head *cb)
2182 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2183 struct io_ring_ctx *ctx = req->ctx;
2185 __io_req_task_submit(req);
2186 percpu_ref_put(&ctx->refs);
2189 static void io_req_task_queue(struct io_kiocb *req)
2193 init_task_work(&req->task_work, io_req_task_submit);
2194 percpu_ref_get(&req->ctx->refs);
2196 ret = io_req_task_work_add(req);
2197 if (unlikely(ret)) {
2198 struct task_struct *tsk;
2200 init_task_work(&req->task_work, io_req_task_cancel);
2201 tsk = io_wq_get_task(req->ctx->io_wq);
2202 task_work_add(tsk, &req->task_work, TWA_NONE);
2203 wake_up_process(tsk);
2207 static inline void io_queue_next(struct io_kiocb *req)
2209 struct io_kiocb *nxt = io_req_find_next(req);
2212 io_req_task_queue(nxt);
2215 static void io_free_req(struct io_kiocb *req)
2222 void *reqs[IO_IOPOLL_BATCH];
2225 struct task_struct *task;
2229 static inline void io_init_req_batch(struct req_batch *rb)
2236 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2237 struct req_batch *rb)
2239 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2240 percpu_ref_put_many(&ctx->refs, rb->to_free);
2244 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2245 struct req_batch *rb)
2248 __io_req_free_batch_flush(ctx, rb);
2250 struct io_uring_task *tctx = rb->task->io_uring;
2252 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2253 put_task_struct_many(rb->task, rb->task_refs);
2258 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2260 if (unlikely(io_is_fallback_req(req))) {
2266 if (req->task != rb->task) {
2268 struct io_uring_task *tctx = rb->task->io_uring;
2270 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2271 put_task_struct_many(rb->task, rb->task_refs);
2273 rb->task = req->task;
2278 io_dismantle_req(req);
2279 rb->reqs[rb->to_free++] = req;
2280 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2281 __io_req_free_batch_flush(req->ctx, rb);
2285 * Drop reference to request, return next in chain (if there is one) if this
2286 * was the last reference to this request.
2288 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2290 struct io_kiocb *nxt = NULL;
2292 if (refcount_dec_and_test(&req->refs)) {
2293 nxt = io_req_find_next(req);
2299 static void io_put_req(struct io_kiocb *req)
2301 if (refcount_dec_and_test(&req->refs))
2305 static void io_put_req_deferred_cb(struct callback_head *cb)
2307 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2312 static void io_free_req_deferred(struct io_kiocb *req)
2316 init_task_work(&req->task_work, io_put_req_deferred_cb);
2317 ret = io_req_task_work_add(req);
2318 if (unlikely(ret)) {
2319 struct task_struct *tsk;
2321 tsk = io_wq_get_task(req->ctx->io_wq);
2322 task_work_add(tsk, &req->task_work, TWA_NONE);
2323 wake_up_process(tsk);
2327 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2329 if (refcount_sub_and_test(refs, &req->refs))
2330 io_free_req_deferred(req);
2333 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2335 struct io_kiocb *nxt;
2338 * A ref is owned by io-wq in which context we're. So, if that's the
2339 * last one, it's safe to steal next work. False negatives are Ok,
2340 * it just will be re-punted async in io_put_work()
2342 if (refcount_read(&req->refs) != 1)
2345 nxt = io_req_find_next(req);
2346 return nxt ? &nxt->work : NULL;
2349 static void io_double_put_req(struct io_kiocb *req)
2351 /* drop both submit and complete references */
2352 if (refcount_sub_and_test(2, &req->refs))
2356 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2358 /* See comment at the top of this file */
2360 return __io_cqring_events(ctx);
2363 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2365 struct io_rings *rings = ctx->rings;
2367 /* make sure SQ entry isn't read before tail */
2368 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2371 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2373 unsigned int cflags;
2375 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2376 cflags |= IORING_CQE_F_BUFFER;
2377 req->flags &= ~REQ_F_BUFFER_SELECTED;
2382 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2384 struct io_buffer *kbuf;
2386 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2387 return io_put_kbuf(req, kbuf);
2390 static inline bool io_run_task_work(void)
2393 * Not safe to run on exiting task, and the task_work handling will
2394 * not add work to such a task.
2396 if (unlikely(current->flags & PF_EXITING))
2398 if (current->task_works) {
2399 __set_current_state(TASK_RUNNING);
2407 static void io_iopoll_queue(struct list_head *again)
2409 struct io_kiocb *req;
2412 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2413 list_del(&req->inflight_entry);
2414 __io_complete_rw(req, -EAGAIN, 0, NULL);
2415 } while (!list_empty(again));
2419 * Find and free completed poll iocbs
2421 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2422 struct list_head *done)
2424 struct req_batch rb;
2425 struct io_kiocb *req;
2428 /* order with ->result store in io_complete_rw_iopoll() */
2431 io_init_req_batch(&rb);
2432 while (!list_empty(done)) {
2435 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2436 if (READ_ONCE(req->result) == -EAGAIN) {
2438 req->iopoll_completed = 0;
2439 list_move_tail(&req->inflight_entry, &again);
2442 list_del(&req->inflight_entry);
2444 if (req->flags & REQ_F_BUFFER_SELECTED)
2445 cflags = io_put_rw_kbuf(req);
2447 __io_cqring_fill_event(req, req->result, cflags);
2450 if (refcount_dec_and_test(&req->refs))
2451 io_req_free_batch(&rb, req);
2454 io_commit_cqring(ctx);
2455 io_cqring_ev_posted_iopoll(ctx);
2456 io_req_free_batch_finish(ctx, &rb);
2458 if (!list_empty(&again))
2459 io_iopoll_queue(&again);
2462 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2465 struct io_kiocb *req, *tmp;
2471 * Only spin for completions if we don't have multiple devices hanging
2472 * off our complete list, and we're under the requested amount.
2474 spin = !ctx->poll_multi_file && *nr_events < min;
2477 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2478 struct kiocb *kiocb = &req->rw.kiocb;
2481 * Move completed and retryable entries to our local lists.
2482 * If we find a request that requires polling, break out
2483 * and complete those lists first, if we have entries there.
2485 if (READ_ONCE(req->iopoll_completed)) {
2486 list_move_tail(&req->inflight_entry, &done);
2489 if (!list_empty(&done))
2492 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2496 /* iopoll may have completed current req */
2497 if (READ_ONCE(req->iopoll_completed))
2498 list_move_tail(&req->inflight_entry, &done);
2505 if (!list_empty(&done))
2506 io_iopoll_complete(ctx, nr_events, &done);
2512 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2513 * non-spinning poll check - we'll still enter the driver poll loop, but only
2514 * as a non-spinning completion check.
2516 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2519 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2522 ret = io_do_iopoll(ctx, nr_events, min);
2525 if (*nr_events >= min)
2533 * We can't just wait for polled events to come to us, we have to actively
2534 * find and complete them.
2536 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2538 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2541 mutex_lock(&ctx->uring_lock);
2542 while (!list_empty(&ctx->iopoll_list)) {
2543 unsigned int nr_events = 0;
2545 io_do_iopoll(ctx, &nr_events, 0);
2547 /* let it sleep and repeat later if can't complete a request */
2551 * Ensure we allow local-to-the-cpu processing to take place,
2552 * in this case we need to ensure that we reap all events.
2553 * Also let task_work, etc. to progress by releasing the mutex
2555 if (need_resched()) {
2556 mutex_unlock(&ctx->uring_lock);
2558 mutex_lock(&ctx->uring_lock);
2561 mutex_unlock(&ctx->uring_lock);
2564 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2566 unsigned int nr_events = 0;
2567 int iters = 0, ret = 0;
2570 * We disallow the app entering submit/complete with polling, but we
2571 * still need to lock the ring to prevent racing with polled issue
2572 * that got punted to a workqueue.
2574 mutex_lock(&ctx->uring_lock);
2577 * Don't enter poll loop if we already have events pending.
2578 * If we do, we can potentially be spinning for commands that
2579 * already triggered a CQE (eg in error).
2581 if (test_bit(0, &ctx->cq_check_overflow))
2582 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2583 if (io_cqring_events(ctx))
2587 * If a submit got punted to a workqueue, we can have the
2588 * application entering polling for a command before it gets
2589 * issued. That app will hold the uring_lock for the duration
2590 * of the poll right here, so we need to take a breather every
2591 * now and then to ensure that the issue has a chance to add
2592 * the poll to the issued list. Otherwise we can spin here
2593 * forever, while the workqueue is stuck trying to acquire the
2596 if (!(++iters & 7)) {
2597 mutex_unlock(&ctx->uring_lock);
2599 mutex_lock(&ctx->uring_lock);
2602 ret = io_iopoll_getevents(ctx, &nr_events, min);
2606 } while (min && !nr_events && !need_resched());
2608 mutex_unlock(&ctx->uring_lock);
2612 static void kiocb_end_write(struct io_kiocb *req)
2615 * Tell lockdep we inherited freeze protection from submission
2618 if (req->flags & REQ_F_ISREG) {
2619 struct inode *inode = file_inode(req->file);
2621 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2623 file_end_write(req->file);
2626 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2627 struct io_comp_state *cs)
2629 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2632 if (kiocb->ki_flags & IOCB_WRITE)
2633 kiocb_end_write(req);
2635 if (res != req->result)
2636 req_set_fail_links(req);
2637 if (req->flags & REQ_F_BUFFER_SELECTED)
2638 cflags = io_put_rw_kbuf(req);
2639 __io_req_complete(req, res, cflags, cs);
2643 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2645 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2646 ssize_t ret = -ECANCELED;
2647 struct iov_iter iter;
2655 switch (req->opcode) {
2656 case IORING_OP_READV:
2657 case IORING_OP_READ_FIXED:
2658 case IORING_OP_READ:
2661 case IORING_OP_WRITEV:
2662 case IORING_OP_WRITE_FIXED:
2663 case IORING_OP_WRITE:
2667 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2672 if (!req->async_data) {
2673 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2676 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2684 req_set_fail_links(req);
2689 static bool io_rw_reissue(struct io_kiocb *req, long res)
2692 umode_t mode = file_inode(req->file)->i_mode;
2695 if (!S_ISBLK(mode) && !S_ISREG(mode))
2697 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2700 lockdep_assert_held(&req->ctx->uring_lock);
2702 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2704 if (io_resubmit_prep(req, ret)) {
2705 refcount_inc(&req->refs);
2706 io_queue_async_work(req);
2714 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2715 struct io_comp_state *cs)
2717 if (!io_rw_reissue(req, res))
2718 io_complete_rw_common(&req->rw.kiocb, res, cs);
2721 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2723 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2725 __io_complete_rw(req, res, res2, NULL);
2728 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2730 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2732 if (kiocb->ki_flags & IOCB_WRITE)
2733 kiocb_end_write(req);
2735 if (res != -EAGAIN && res != req->result)
2736 req_set_fail_links(req);
2738 WRITE_ONCE(req->result, res);
2739 /* order with io_poll_complete() checking ->result */
2741 WRITE_ONCE(req->iopoll_completed, 1);
2745 * After the iocb has been issued, it's safe to be found on the poll list.
2746 * Adding the kiocb to the list AFTER submission ensures that we don't
2747 * find it from a io_iopoll_getevents() thread before the issuer is done
2748 * accessing the kiocb cookie.
2750 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2752 struct io_ring_ctx *ctx = req->ctx;
2755 * Track whether we have multiple files in our lists. This will impact
2756 * how we do polling eventually, not spinning if we're on potentially
2757 * different devices.
2759 if (list_empty(&ctx->iopoll_list)) {
2760 ctx->poll_multi_file = false;
2761 } else if (!ctx->poll_multi_file) {
2762 struct io_kiocb *list_req;
2764 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2766 if (list_req->file != req->file)
2767 ctx->poll_multi_file = true;
2771 * For fast devices, IO may have already completed. If it has, add
2772 * it to the front so we find it first.
2774 if (READ_ONCE(req->iopoll_completed))
2775 list_add(&req->inflight_entry, &ctx->iopoll_list);
2777 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2780 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2781 * task context or in io worker task context. If current task context is
2782 * sq thread, we don't need to check whether should wake up sq thread.
2784 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2785 wq_has_sleeper(&ctx->sq_data->wait))
2786 wake_up(&ctx->sq_data->wait);
2789 static inline void __io_state_file_put(struct io_submit_state *state)
2791 fput_many(state->file, state->file_refs);
2792 state->file_refs = 0;
2795 static inline void io_state_file_put(struct io_submit_state *state)
2797 if (state->file_refs)
2798 __io_state_file_put(state);
2802 * Get as many references to a file as we have IOs left in this submission,
2803 * assuming most submissions are for one file, or at least that each file
2804 * has more than one submission.
2806 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2811 if (state->file_refs) {
2812 if (state->fd == fd) {
2816 __io_state_file_put(state);
2818 state->file = fget_many(fd, state->ios_left);
2819 if (unlikely(!state->file))
2823 state->file_refs = state->ios_left - 1;
2827 static bool io_bdev_nowait(struct block_device *bdev)
2829 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2833 * If we tracked the file through the SCM inflight mechanism, we could support
2834 * any file. For now, just ensure that anything potentially problematic is done
2837 static bool io_file_supports_async(struct file *file, int rw)
2839 umode_t mode = file_inode(file)->i_mode;
2841 if (S_ISBLK(mode)) {
2842 if (IS_ENABLED(CONFIG_BLOCK) &&
2843 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2847 if (S_ISCHR(mode) || S_ISSOCK(mode))
2849 if (S_ISREG(mode)) {
2850 if (IS_ENABLED(CONFIG_BLOCK) &&
2851 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2852 file->f_op != &io_uring_fops)
2857 /* any ->read/write should understand O_NONBLOCK */
2858 if (file->f_flags & O_NONBLOCK)
2861 if (!(file->f_mode & FMODE_NOWAIT))
2865 return file->f_op->read_iter != NULL;
2867 return file->f_op->write_iter != NULL;
2870 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2872 struct io_ring_ctx *ctx = req->ctx;
2873 struct kiocb *kiocb = &req->rw.kiocb;
2877 if (S_ISREG(file_inode(req->file)->i_mode))
2878 req->flags |= REQ_F_ISREG;
2880 kiocb->ki_pos = READ_ONCE(sqe->off);
2881 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2882 req->flags |= REQ_F_CUR_POS;
2883 kiocb->ki_pos = req->file->f_pos;
2885 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2886 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2887 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2891 ioprio = READ_ONCE(sqe->ioprio);
2893 ret = ioprio_check_cap(ioprio);
2897 kiocb->ki_ioprio = ioprio;
2899 kiocb->ki_ioprio = get_current_ioprio();
2901 /* don't allow async punt if RWF_NOWAIT was requested */
2902 if (kiocb->ki_flags & IOCB_NOWAIT)
2903 req->flags |= REQ_F_NOWAIT;
2905 if (ctx->flags & IORING_SETUP_IOPOLL) {
2906 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2907 !kiocb->ki_filp->f_op->iopoll)
2910 kiocb->ki_flags |= IOCB_HIPRI;
2911 kiocb->ki_complete = io_complete_rw_iopoll;
2912 req->iopoll_completed = 0;
2914 if (kiocb->ki_flags & IOCB_HIPRI)
2916 kiocb->ki_complete = io_complete_rw;
2919 req->rw.addr = READ_ONCE(sqe->addr);
2920 req->rw.len = READ_ONCE(sqe->len);
2921 req->buf_index = READ_ONCE(sqe->buf_index);
2925 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2931 case -ERESTARTNOINTR:
2932 case -ERESTARTNOHAND:
2933 case -ERESTART_RESTARTBLOCK:
2935 * We can't just restart the syscall, since previously
2936 * submitted sqes may already be in progress. Just fail this
2942 kiocb->ki_complete(kiocb, ret, 0);
2946 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2947 struct io_comp_state *cs)
2949 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2950 struct io_async_rw *io = req->async_data;
2952 /* add previously done IO, if any */
2953 if (io && io->bytes_done > 0) {
2955 ret = io->bytes_done;
2957 ret += io->bytes_done;
2960 if (req->flags & REQ_F_CUR_POS)
2961 req->file->f_pos = kiocb->ki_pos;
2962 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2963 __io_complete_rw(req, ret, 0, cs);
2965 io_rw_done(kiocb, ret);
2968 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2969 struct iov_iter *iter)
2971 struct io_ring_ctx *ctx = req->ctx;
2972 size_t len = req->rw.len;
2973 struct io_mapped_ubuf *imu;
2974 u16 index, buf_index = req->buf_index;
2978 if (unlikely(buf_index >= ctx->nr_user_bufs))
2980 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2981 imu = &ctx->user_bufs[index];
2982 buf_addr = req->rw.addr;
2985 if (buf_addr + len < buf_addr)
2987 /* not inside the mapped region */
2988 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2992 * May not be a start of buffer, set size appropriately
2993 * and advance us to the beginning.
2995 offset = buf_addr - imu->ubuf;
2996 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3000 * Don't use iov_iter_advance() here, as it's really slow for
3001 * using the latter parts of a big fixed buffer - it iterates
3002 * over each segment manually. We can cheat a bit here, because
3005 * 1) it's a BVEC iter, we set it up
3006 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3007 * first and last bvec
3009 * So just find our index, and adjust the iterator afterwards.
3010 * If the offset is within the first bvec (or the whole first
3011 * bvec, just use iov_iter_advance(). This makes it easier
3012 * since we can just skip the first segment, which may not
3013 * be PAGE_SIZE aligned.
3015 const struct bio_vec *bvec = imu->bvec;
3017 if (offset <= bvec->bv_len) {
3018 iov_iter_advance(iter, offset);
3020 unsigned long seg_skip;
3022 /* skip first vec */
3023 offset -= bvec->bv_len;
3024 seg_skip = 1 + (offset >> PAGE_SHIFT);
3026 iter->bvec = bvec + seg_skip;
3027 iter->nr_segs -= seg_skip;
3028 iter->count -= bvec->bv_len + offset;
3029 iter->iov_offset = offset & ~PAGE_MASK;
3036 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3039 mutex_unlock(&ctx->uring_lock);
3042 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3045 * "Normal" inline submissions always hold the uring_lock, since we
3046 * grab it from the system call. Same is true for the SQPOLL offload.
3047 * The only exception is when we've detached the request and issue it
3048 * from an async worker thread, grab the lock for that case.
3051 mutex_lock(&ctx->uring_lock);
3054 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3055 int bgid, struct io_buffer *kbuf,
3058 struct io_buffer *head;
3060 if (req->flags & REQ_F_BUFFER_SELECTED)
3063 io_ring_submit_lock(req->ctx, needs_lock);
3065 lockdep_assert_held(&req->ctx->uring_lock);
3067 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3069 if (!list_empty(&head->list)) {
3070 kbuf = list_last_entry(&head->list, struct io_buffer,
3072 list_del(&kbuf->list);
3075 idr_remove(&req->ctx->io_buffer_idr, bgid);
3077 if (*len > kbuf->len)
3080 kbuf = ERR_PTR(-ENOBUFS);
3083 io_ring_submit_unlock(req->ctx, needs_lock);
3088 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3091 struct io_buffer *kbuf;
3094 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3095 bgid = req->buf_index;
3096 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3099 req->rw.addr = (u64) (unsigned long) kbuf;
3100 req->flags |= REQ_F_BUFFER_SELECTED;
3101 return u64_to_user_ptr(kbuf->addr);
3104 #ifdef CONFIG_COMPAT
3105 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3108 struct compat_iovec __user *uiov;
3109 compat_ssize_t clen;
3113 uiov = u64_to_user_ptr(req->rw.addr);
3114 if (!access_ok(uiov, sizeof(*uiov)))
3116 if (__get_user(clen, &uiov->iov_len))
3122 buf = io_rw_buffer_select(req, &len, needs_lock);
3124 return PTR_ERR(buf);
3125 iov[0].iov_base = buf;
3126 iov[0].iov_len = (compat_size_t) len;
3131 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3134 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3138 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3141 len = iov[0].iov_len;
3144 buf = io_rw_buffer_select(req, &len, needs_lock);
3146 return PTR_ERR(buf);
3147 iov[0].iov_base = buf;
3148 iov[0].iov_len = len;
3152 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3155 if (req->flags & REQ_F_BUFFER_SELECTED) {
3156 struct io_buffer *kbuf;
3158 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3159 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3160 iov[0].iov_len = kbuf->len;
3163 if (req->rw.len != 1)
3166 #ifdef CONFIG_COMPAT
3167 if (req->ctx->compat)
3168 return io_compat_import(req, iov, needs_lock);
3171 return __io_iov_buffer_select(req, iov, needs_lock);
3174 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3175 struct iovec **iovec, struct iov_iter *iter,
3178 void __user *buf = u64_to_user_ptr(req->rw.addr);
3179 size_t sqe_len = req->rw.len;
3183 opcode = req->opcode;
3184 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3186 return io_import_fixed(req, rw, iter);
3189 /* buffer index only valid with fixed read/write, or buffer select */
3190 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3193 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3194 if (req->flags & REQ_F_BUFFER_SELECT) {
3195 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3197 return PTR_ERR(buf);
3198 req->rw.len = sqe_len;
3201 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3206 if (req->flags & REQ_F_BUFFER_SELECT) {
3207 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3209 ret = (*iovec)->iov_len;
3210 iov_iter_init(iter, rw, *iovec, 1, ret);
3216 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3220 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3222 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3226 * For files that don't have ->read_iter() and ->write_iter(), handle them
3227 * by looping over ->read() or ->write() manually.
3229 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3231 struct kiocb *kiocb = &req->rw.kiocb;
3232 struct file *file = req->file;
3236 * Don't support polled IO through this interface, and we can't
3237 * support non-blocking either. For the latter, this just causes
3238 * the kiocb to be handled from an async context.
3240 if (kiocb->ki_flags & IOCB_HIPRI)
3242 if (kiocb->ki_flags & IOCB_NOWAIT)
3245 while (iov_iter_count(iter)) {
3249 if (!iov_iter_is_bvec(iter)) {
3250 iovec = iov_iter_iovec(iter);
3252 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3253 iovec.iov_len = req->rw.len;
3257 nr = file->f_op->read(file, iovec.iov_base,
3258 iovec.iov_len, io_kiocb_ppos(kiocb));
3260 nr = file->f_op->write(file, iovec.iov_base,
3261 iovec.iov_len, io_kiocb_ppos(kiocb));
3270 if (nr != iovec.iov_len)
3274 iov_iter_advance(iter, nr);
3280 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3281 const struct iovec *fast_iov, struct iov_iter *iter)
3283 struct io_async_rw *rw = req->async_data;
3285 memcpy(&rw->iter, iter, sizeof(*iter));
3286 rw->free_iovec = iovec;
3288 /* can only be fixed buffers, no need to do anything */
3289 if (iov_iter_is_bvec(iter))
3292 unsigned iov_off = 0;
3294 rw->iter.iov = rw->fast_iov;
3295 if (iter->iov != fast_iov) {
3296 iov_off = iter->iov - fast_iov;
3297 rw->iter.iov += iov_off;
3299 if (rw->fast_iov != fast_iov)
3300 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3301 sizeof(struct iovec) * iter->nr_segs);
3303 req->flags |= REQ_F_NEED_CLEANUP;
3307 static inline int __io_alloc_async_data(struct io_kiocb *req)
3309 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3310 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3311 return req->async_data == NULL;
3314 static int io_alloc_async_data(struct io_kiocb *req)
3316 if (!io_op_defs[req->opcode].needs_async_data)
3319 return __io_alloc_async_data(req);
3322 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3323 const struct iovec *fast_iov,
3324 struct iov_iter *iter, bool force)
3326 if (!force && !io_op_defs[req->opcode].needs_async_data)
3328 if (!req->async_data) {
3329 if (__io_alloc_async_data(req))
3332 io_req_map_rw(req, iovec, fast_iov, iter);
3337 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3339 struct io_async_rw *iorw = req->async_data;
3340 struct iovec *iov = iorw->fast_iov;
3343 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3344 if (unlikely(ret < 0))
3347 iorw->bytes_done = 0;
3348 iorw->free_iovec = iov;
3350 req->flags |= REQ_F_NEED_CLEANUP;
3354 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3358 ret = io_prep_rw(req, sqe);
3362 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3365 /* either don't need iovec imported or already have it */
3366 if (!req->async_data)
3368 return io_rw_prep_async(req, READ);
3372 * This is our waitqueue callback handler, registered through lock_page_async()
3373 * when we initially tried to do the IO with the iocb armed our waitqueue.
3374 * This gets called when the page is unlocked, and we generally expect that to
3375 * happen when the page IO is completed and the page is now uptodate. This will
3376 * queue a task_work based retry of the operation, attempting to copy the data
3377 * again. If the latter fails because the page was NOT uptodate, then we will
3378 * do a thread based blocking retry of the operation. That's the unexpected
3381 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3382 int sync, void *arg)
3384 struct wait_page_queue *wpq;
3385 struct io_kiocb *req = wait->private;
3386 struct wait_page_key *key = arg;
3389 wpq = container_of(wait, struct wait_page_queue, wait);
3391 if (!wake_page_match(wpq, key))
3394 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3395 list_del_init(&wait->entry);
3397 init_task_work(&req->task_work, io_req_task_submit);
3398 percpu_ref_get(&req->ctx->refs);
3400 /* submit ref gets dropped, acquire a new one */
3401 refcount_inc(&req->refs);
3402 ret = io_req_task_work_add(req);
3403 if (unlikely(ret)) {
3404 struct task_struct *tsk;
3406 /* queue just for cancelation */
3407 init_task_work(&req->task_work, io_req_task_cancel);
3408 tsk = io_wq_get_task(req->ctx->io_wq);
3409 task_work_add(tsk, &req->task_work, TWA_NONE);
3410 wake_up_process(tsk);
3416 * This controls whether a given IO request should be armed for async page
3417 * based retry. If we return false here, the request is handed to the async
3418 * worker threads for retry. If we're doing buffered reads on a regular file,
3419 * we prepare a private wait_page_queue entry and retry the operation. This
3420 * will either succeed because the page is now uptodate and unlocked, or it
3421 * will register a callback when the page is unlocked at IO completion. Through
3422 * that callback, io_uring uses task_work to setup a retry of the operation.
3423 * That retry will attempt the buffered read again. The retry will generally
3424 * succeed, or in rare cases where it fails, we then fall back to using the
3425 * async worker threads for a blocking retry.
3427 static bool io_rw_should_retry(struct io_kiocb *req)
3429 struct io_async_rw *rw = req->async_data;
3430 struct wait_page_queue *wait = &rw->wpq;
3431 struct kiocb *kiocb = &req->rw.kiocb;
3433 /* never retry for NOWAIT, we just complete with -EAGAIN */
3434 if (req->flags & REQ_F_NOWAIT)
3437 /* Only for buffered IO */
3438 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3442 * just use poll if we can, and don't attempt if the fs doesn't
3443 * support callback based unlocks
3445 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3448 wait->wait.func = io_async_buf_func;
3449 wait->wait.private = req;
3450 wait->wait.flags = 0;
3451 INIT_LIST_HEAD(&wait->wait.entry);
3452 kiocb->ki_flags |= IOCB_WAITQ;
3453 kiocb->ki_flags &= ~IOCB_NOWAIT;
3454 kiocb->ki_waitq = wait;
3458 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3460 if (req->file->f_op->read_iter)
3461 return call_read_iter(req->file, &req->rw.kiocb, iter);
3462 else if (req->file->f_op->read)
3463 return loop_rw_iter(READ, req, iter);
3468 static int io_read(struct io_kiocb *req, bool force_nonblock,
3469 struct io_comp_state *cs)
3471 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3472 struct kiocb *kiocb = &req->rw.kiocb;
3473 struct iov_iter __iter, *iter = &__iter;
3474 struct io_async_rw *rw = req->async_data;
3475 ssize_t io_size, ret, ret2;
3482 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3486 io_size = iov_iter_count(iter);
3487 req->result = io_size;
3490 /* Ensure we clear previously set non-block flag */
3491 if (!force_nonblock)
3492 kiocb->ki_flags &= ~IOCB_NOWAIT;
3494 kiocb->ki_flags |= IOCB_NOWAIT;
3497 /* If the file doesn't support async, just async punt */
3498 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3502 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3506 ret = io_iter_do_read(req, iter);
3510 } else if (ret == -EIOCBQUEUED) {
3513 } else if (ret == -EAGAIN) {
3514 /* IOPOLL retry should happen for io-wq threads */
3515 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3517 /* no retry on NONBLOCK marked file */
3518 if (req->file->f_flags & O_NONBLOCK)
3520 /* some cases will consume bytes even on error returns */
3521 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3524 } else if (ret < 0) {
3525 /* make sure -ERESTARTSYS -> -EINTR is done */
3529 /* read it all, or we did blocking attempt. no retry. */
3530 if (!iov_iter_count(iter) || !force_nonblock ||
3531 (req->file->f_flags & O_NONBLOCK))
3536 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3543 rw = req->async_data;
3544 /* it's copied and will be cleaned with ->io */
3546 /* now use our persistent iterator, if we aren't already */
3549 rw->bytes_done += ret;
3550 /* if we can retry, do so with the callbacks armed */
3551 if (!io_rw_should_retry(req)) {
3552 kiocb->ki_flags &= ~IOCB_WAITQ;
3557 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3558 * get -EIOCBQUEUED, then we'll get a notification when the desired
3559 * page gets unlocked. We can also get a partial read here, and if we
3560 * do, then just retry at the new offset.
3562 ret = io_iter_do_read(req, iter);
3563 if (ret == -EIOCBQUEUED) {
3566 } else if (ret > 0 && ret < io_size) {
3567 /* we got some bytes, but not all. retry. */
3571 kiocb_done(kiocb, ret, cs);
3574 /* it's reportedly faster than delegating the null check to kfree() */
3580 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3584 ret = io_prep_rw(req, sqe);
3588 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3591 /* either don't need iovec imported or already have it */
3592 if (!req->async_data)
3594 return io_rw_prep_async(req, WRITE);
3597 static int io_write(struct io_kiocb *req, bool force_nonblock,
3598 struct io_comp_state *cs)
3600 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3601 struct kiocb *kiocb = &req->rw.kiocb;
3602 struct iov_iter __iter, *iter = &__iter;
3603 struct io_async_rw *rw = req->async_data;
3604 ssize_t ret, ret2, io_size;
3610 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3614 io_size = iov_iter_count(iter);
3615 req->result = io_size;
3617 /* Ensure we clear previously set non-block flag */
3618 if (!force_nonblock)
3619 kiocb->ki_flags &= ~IOCB_NOWAIT;
3621 kiocb->ki_flags |= IOCB_NOWAIT;
3623 /* If the file doesn't support async, just async punt */
3624 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3627 /* file path doesn't support NOWAIT for non-direct_IO */
3628 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3629 (req->flags & REQ_F_ISREG))
3632 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3637 * Open-code file_start_write here to grab freeze protection,
3638 * which will be released by another thread in
3639 * io_complete_rw(). Fool lockdep by telling it the lock got
3640 * released so that it doesn't complain about the held lock when
3641 * we return to userspace.
3643 if (req->flags & REQ_F_ISREG) {
3644 sb_start_write(file_inode(req->file)->i_sb);
3645 __sb_writers_release(file_inode(req->file)->i_sb,
3648 kiocb->ki_flags |= IOCB_WRITE;
3650 if (req->file->f_op->write_iter)
3651 ret2 = call_write_iter(req->file, kiocb, iter);
3652 else if (req->file->f_op->write)
3653 ret2 = loop_rw_iter(WRITE, req, iter);
3658 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3659 * retry them without IOCB_NOWAIT.
3661 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3663 /* no retry on NONBLOCK marked file */
3664 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3666 if (!force_nonblock || ret2 != -EAGAIN) {
3667 /* IOPOLL retry should happen for io-wq threads */
3668 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3671 kiocb_done(kiocb, ret2, cs);
3674 /* some cases will consume bytes even on error returns */
3675 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3676 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3681 /* it's reportedly faster than delegating the null check to kfree() */
3687 static int io_renameat_prep(struct io_kiocb *req,
3688 const struct io_uring_sqe *sqe)
3690 struct io_rename *ren = &req->rename;
3691 const char __user *oldf, *newf;
3693 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3696 ren->old_dfd = READ_ONCE(sqe->fd);
3697 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3698 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3699 ren->new_dfd = READ_ONCE(sqe->len);
3700 ren->flags = READ_ONCE(sqe->rename_flags);
3702 ren->oldpath = getname(oldf);
3703 if (IS_ERR(ren->oldpath))
3704 return PTR_ERR(ren->oldpath);
3706 ren->newpath = getname(newf);
3707 if (IS_ERR(ren->newpath)) {
3708 putname(ren->oldpath);
3709 return PTR_ERR(ren->newpath);
3712 req->flags |= REQ_F_NEED_CLEANUP;
3716 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3718 struct io_rename *ren = &req->rename;
3724 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3725 ren->newpath, ren->flags);
3727 req->flags &= ~REQ_F_NEED_CLEANUP;
3729 req_set_fail_links(req);
3730 io_req_complete(req, ret);
3734 static int io_unlinkat_prep(struct io_kiocb *req,
3735 const struct io_uring_sqe *sqe)
3737 struct io_unlink *un = &req->unlink;
3738 const char __user *fname;
3740 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3743 un->dfd = READ_ONCE(sqe->fd);
3745 un->flags = READ_ONCE(sqe->unlink_flags);
3746 if (un->flags & ~AT_REMOVEDIR)
3749 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3750 un->filename = getname(fname);
3751 if (IS_ERR(un->filename))
3752 return PTR_ERR(un->filename);
3754 req->flags |= REQ_F_NEED_CLEANUP;
3758 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3760 struct io_unlink *un = &req->unlink;
3766 if (un->flags & AT_REMOVEDIR)
3767 ret = do_rmdir(un->dfd, un->filename);
3769 ret = do_unlinkat(un->dfd, un->filename);
3771 req->flags &= ~REQ_F_NEED_CLEANUP;
3773 req_set_fail_links(req);
3774 io_req_complete(req, ret);
3778 static int io_shutdown_prep(struct io_kiocb *req,
3779 const struct io_uring_sqe *sqe)
3781 #if defined(CONFIG_NET)
3782 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3784 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3788 req->shutdown.how = READ_ONCE(sqe->len);
3795 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3797 #if defined(CONFIG_NET)
3798 struct socket *sock;
3804 sock = sock_from_file(req->file);
3805 if (unlikely(!sock))
3808 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3810 req_set_fail_links(req);
3811 io_req_complete(req, ret);
3818 static int __io_splice_prep(struct io_kiocb *req,
3819 const struct io_uring_sqe *sqe)
3821 struct io_splice* sp = &req->splice;
3822 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3824 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3828 sp->len = READ_ONCE(sqe->len);
3829 sp->flags = READ_ONCE(sqe->splice_flags);
3831 if (unlikely(sp->flags & ~valid_flags))
3834 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3835 (sp->flags & SPLICE_F_FD_IN_FIXED));
3838 req->flags |= REQ_F_NEED_CLEANUP;
3840 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3842 * Splice operation will be punted aync, and here need to
3843 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3845 io_req_init_async(req);
3846 req->work.flags |= IO_WQ_WORK_UNBOUND;
3852 static int io_tee_prep(struct io_kiocb *req,
3853 const struct io_uring_sqe *sqe)
3855 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3857 return __io_splice_prep(req, sqe);
3860 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3862 struct io_splice *sp = &req->splice;
3863 struct file *in = sp->file_in;
3864 struct file *out = sp->file_out;
3865 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3871 ret = do_tee(in, out, sp->len, flags);
3873 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3874 req->flags &= ~REQ_F_NEED_CLEANUP;
3877 req_set_fail_links(req);
3878 io_req_complete(req, ret);
3882 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3884 struct io_splice* sp = &req->splice;
3886 sp->off_in = READ_ONCE(sqe->splice_off_in);
3887 sp->off_out = READ_ONCE(sqe->off);
3888 return __io_splice_prep(req, sqe);
3891 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3893 struct io_splice *sp = &req->splice;
3894 struct file *in = sp->file_in;
3895 struct file *out = sp->file_out;
3896 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3897 loff_t *poff_in, *poff_out;
3903 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3904 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3907 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3909 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3910 req->flags &= ~REQ_F_NEED_CLEANUP;
3913 req_set_fail_links(req);
3914 io_req_complete(req, ret);
3919 * IORING_OP_NOP just posts a completion event, nothing else.
3921 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3923 struct io_ring_ctx *ctx = req->ctx;
3925 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3928 __io_req_complete(req, 0, 0, cs);
3932 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3934 struct io_ring_ctx *ctx = req->ctx;
3939 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3941 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3944 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3945 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3948 req->sync.off = READ_ONCE(sqe->off);
3949 req->sync.len = READ_ONCE(sqe->len);
3953 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3955 loff_t end = req->sync.off + req->sync.len;
3958 /* fsync always requires a blocking context */
3962 ret = vfs_fsync_range(req->file, req->sync.off,
3963 end > 0 ? end : LLONG_MAX,
3964 req->sync.flags & IORING_FSYNC_DATASYNC);
3966 req_set_fail_links(req);
3967 io_req_complete(req, ret);
3971 static int io_fallocate_prep(struct io_kiocb *req,
3972 const struct io_uring_sqe *sqe)
3974 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3976 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3979 req->sync.off = READ_ONCE(sqe->off);
3980 req->sync.len = READ_ONCE(sqe->addr);
3981 req->sync.mode = READ_ONCE(sqe->len);
3985 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3989 /* fallocate always requiring blocking context */
3992 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3995 req_set_fail_links(req);
3996 io_req_complete(req, ret);
4000 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4002 const char __user *fname;
4005 if (unlikely(sqe->ioprio || sqe->buf_index))
4007 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4010 /* open.how should be already initialised */
4011 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4012 req->open.how.flags |= O_LARGEFILE;
4014 req->open.dfd = READ_ONCE(sqe->fd);
4015 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4016 req->open.filename = getname(fname);
4017 if (IS_ERR(req->open.filename)) {
4018 ret = PTR_ERR(req->open.filename);
4019 req->open.filename = NULL;
4022 req->open.nofile = rlimit(RLIMIT_NOFILE);
4023 req->open.ignore_nonblock = false;
4024 req->flags |= REQ_F_NEED_CLEANUP;
4028 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4032 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4034 mode = READ_ONCE(sqe->len);
4035 flags = READ_ONCE(sqe->open_flags);
4036 req->open.how = build_open_how(flags, mode);
4037 return __io_openat_prep(req, sqe);
4040 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4042 struct open_how __user *how;
4046 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4048 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4049 len = READ_ONCE(sqe->len);
4050 if (len < OPEN_HOW_SIZE_VER0)
4053 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4058 return __io_openat_prep(req, sqe);
4061 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4063 struct open_flags op;
4067 if (force_nonblock && !req->open.ignore_nonblock)
4070 ret = build_open_flags(&req->open.how, &op);
4074 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4078 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4081 ret = PTR_ERR(file);
4083 * A work-around to ensure that /proc/self works that way
4084 * that it should - if we get -EOPNOTSUPP back, then assume
4085 * that proc_self_get_link() failed us because we're in async
4086 * context. We should be safe to retry this from the task
4087 * itself with force_nonblock == false set, as it should not
4088 * block on lookup. Would be nice to know this upfront and
4089 * avoid the async dance, but doesn't seem feasible.
4091 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4092 req->open.ignore_nonblock = true;
4093 refcount_inc(&req->refs);
4094 io_req_task_queue(req);
4098 fsnotify_open(file);
4099 fd_install(ret, file);
4102 putname(req->open.filename);
4103 req->flags &= ~REQ_F_NEED_CLEANUP;
4105 req_set_fail_links(req);
4106 io_req_complete(req, ret);
4110 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4112 return io_openat2(req, force_nonblock);
4115 static int io_remove_buffers_prep(struct io_kiocb *req,
4116 const struct io_uring_sqe *sqe)
4118 struct io_provide_buf *p = &req->pbuf;
4121 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4124 tmp = READ_ONCE(sqe->fd);
4125 if (!tmp || tmp > USHRT_MAX)
4128 memset(p, 0, sizeof(*p));
4130 p->bgid = READ_ONCE(sqe->buf_group);
4134 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4135 int bgid, unsigned nbufs)
4139 /* shouldn't happen */
4143 /* the head kbuf is the list itself */
4144 while (!list_empty(&buf->list)) {
4145 struct io_buffer *nxt;
4147 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4148 list_del(&nxt->list);
4155 idr_remove(&ctx->io_buffer_idr, bgid);
4160 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4161 struct io_comp_state *cs)
4163 struct io_provide_buf *p = &req->pbuf;
4164 struct io_ring_ctx *ctx = req->ctx;
4165 struct io_buffer *head;
4168 io_ring_submit_lock(ctx, !force_nonblock);
4170 lockdep_assert_held(&ctx->uring_lock);
4173 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4175 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4177 req_set_fail_links(req);
4179 /* need to hold the lock to complete IOPOLL requests */
4180 if (ctx->flags & IORING_SETUP_IOPOLL) {
4181 __io_req_complete(req, ret, 0, cs);
4182 io_ring_submit_unlock(ctx, !force_nonblock);
4184 io_ring_submit_unlock(ctx, !force_nonblock);
4185 __io_req_complete(req, ret, 0, cs);
4190 static int io_provide_buffers_prep(struct io_kiocb *req,
4191 const struct io_uring_sqe *sqe)
4193 struct io_provide_buf *p = &req->pbuf;
4196 if (sqe->ioprio || sqe->rw_flags)
4199 tmp = READ_ONCE(sqe->fd);
4200 if (!tmp || tmp > USHRT_MAX)
4203 p->addr = READ_ONCE(sqe->addr);
4204 p->len = READ_ONCE(sqe->len);
4206 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4209 p->bgid = READ_ONCE(sqe->buf_group);
4210 tmp = READ_ONCE(sqe->off);
4211 if (tmp > USHRT_MAX)
4217 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4219 struct io_buffer *buf;
4220 u64 addr = pbuf->addr;
4221 int i, bid = pbuf->bid;
4223 for (i = 0; i < pbuf->nbufs; i++) {
4224 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4229 buf->len = pbuf->len;
4234 INIT_LIST_HEAD(&buf->list);
4237 list_add_tail(&buf->list, &(*head)->list);
4241 return i ? i : -ENOMEM;
4244 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4245 struct io_comp_state *cs)
4247 struct io_provide_buf *p = &req->pbuf;
4248 struct io_ring_ctx *ctx = req->ctx;
4249 struct io_buffer *head, *list;
4252 io_ring_submit_lock(ctx, !force_nonblock);
4254 lockdep_assert_held(&ctx->uring_lock);
4256 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4258 ret = io_add_buffers(p, &head);
4263 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4266 __io_remove_buffers(ctx, head, p->bgid, -1U);
4272 req_set_fail_links(req);
4274 /* need to hold the lock to complete IOPOLL requests */
4275 if (ctx->flags & IORING_SETUP_IOPOLL) {
4276 __io_req_complete(req, ret, 0, cs);
4277 io_ring_submit_unlock(ctx, !force_nonblock);
4279 io_ring_submit_unlock(ctx, !force_nonblock);
4280 __io_req_complete(req, ret, 0, cs);
4285 static int io_epoll_ctl_prep(struct io_kiocb *req,
4286 const struct io_uring_sqe *sqe)
4288 #if defined(CONFIG_EPOLL)
4289 if (sqe->ioprio || sqe->buf_index)
4291 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4294 req->epoll.epfd = READ_ONCE(sqe->fd);
4295 req->epoll.op = READ_ONCE(sqe->len);
4296 req->epoll.fd = READ_ONCE(sqe->off);
4298 if (ep_op_has_event(req->epoll.op)) {
4299 struct epoll_event __user *ev;
4301 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4302 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4312 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4313 struct io_comp_state *cs)
4315 #if defined(CONFIG_EPOLL)
4316 struct io_epoll *ie = &req->epoll;
4319 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4320 if (force_nonblock && ret == -EAGAIN)
4324 req_set_fail_links(req);
4325 __io_req_complete(req, ret, 0, cs);
4332 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4334 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4335 if (sqe->ioprio || sqe->buf_index || sqe->off)
4337 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4340 req->madvise.addr = READ_ONCE(sqe->addr);
4341 req->madvise.len = READ_ONCE(sqe->len);
4342 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4349 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4351 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4352 struct io_madvise *ma = &req->madvise;
4358 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4360 req_set_fail_links(req);
4361 io_req_complete(req, ret);
4368 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4370 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4372 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4375 req->fadvise.offset = READ_ONCE(sqe->off);
4376 req->fadvise.len = READ_ONCE(sqe->len);
4377 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4381 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4383 struct io_fadvise *fa = &req->fadvise;
4386 if (force_nonblock) {
4387 switch (fa->advice) {
4388 case POSIX_FADV_NORMAL:
4389 case POSIX_FADV_RANDOM:
4390 case POSIX_FADV_SEQUENTIAL:
4397 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4399 req_set_fail_links(req);
4400 io_req_complete(req, ret);
4404 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4406 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4408 if (sqe->ioprio || sqe->buf_index)
4410 if (req->flags & REQ_F_FIXED_FILE)
4413 req->statx.dfd = READ_ONCE(sqe->fd);
4414 req->statx.mask = READ_ONCE(sqe->len);
4415 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4416 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4417 req->statx.flags = READ_ONCE(sqe->statx_flags);
4422 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4424 struct io_statx *ctx = &req->statx;
4427 if (force_nonblock) {
4428 /* only need file table for an actual valid fd */
4429 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4430 req->flags |= REQ_F_NO_FILE_TABLE;
4434 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4438 req_set_fail_links(req);
4439 io_req_complete(req, ret);
4443 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4446 * If we queue this for async, it must not be cancellable. That would
4447 * leave the 'file' in an undeterminate state, and here need to modify
4448 * io_wq_work.flags, so initialize io_wq_work firstly.
4450 io_req_init_async(req);
4451 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4453 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4455 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4456 sqe->rw_flags || sqe->buf_index)
4458 if (req->flags & REQ_F_FIXED_FILE)
4461 req->close.fd = READ_ONCE(sqe->fd);
4462 if ((req->file && req->file->f_op == &io_uring_fops))
4465 req->close.put_file = NULL;
4469 static int io_close(struct io_kiocb *req, bool force_nonblock,
4470 struct io_comp_state *cs)
4472 struct io_close *close = &req->close;
4475 /* might be already done during nonblock submission */
4476 if (!close->put_file) {
4477 ret = close_fd_get_file(close->fd, &close->put_file);
4479 return (ret == -ENOENT) ? -EBADF : ret;
4482 /* if the file has a flush method, be safe and punt to async */
4483 if (close->put_file->f_op->flush && force_nonblock) {
4484 /* was never set, but play safe */
4485 req->flags &= ~REQ_F_NOWAIT;
4486 /* avoid grabbing files - we don't need the files */
4487 req->flags |= REQ_F_NO_FILE_TABLE;
4491 /* No ->flush() or already async, safely close from here */
4492 ret = filp_close(close->put_file, req->work.identity->files);
4494 req_set_fail_links(req);
4495 fput(close->put_file);
4496 close->put_file = NULL;
4497 __io_req_complete(req, ret, 0, cs);
4501 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4503 struct io_ring_ctx *ctx = req->ctx;
4508 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4510 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4513 req->sync.off = READ_ONCE(sqe->off);
4514 req->sync.len = READ_ONCE(sqe->len);
4515 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4519 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4523 /* sync_file_range always requires a blocking context */
4527 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4530 req_set_fail_links(req);
4531 io_req_complete(req, ret);
4535 #if defined(CONFIG_NET)
4536 static int io_setup_async_msg(struct io_kiocb *req,
4537 struct io_async_msghdr *kmsg)
4539 struct io_async_msghdr *async_msg = req->async_data;
4543 if (io_alloc_async_data(req)) {
4544 if (kmsg->iov != kmsg->fast_iov)
4548 async_msg = req->async_data;
4549 req->flags |= REQ_F_NEED_CLEANUP;
4550 memcpy(async_msg, kmsg, sizeof(*kmsg));
4554 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4555 struct io_async_msghdr *iomsg)
4557 iomsg->iov = iomsg->fast_iov;
4558 iomsg->msg.msg_name = &iomsg->addr;
4559 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4560 req->sr_msg.msg_flags, &iomsg->iov);
4563 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4565 struct io_async_msghdr *async_msg = req->async_data;
4566 struct io_sr_msg *sr = &req->sr_msg;
4569 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4572 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4573 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4574 sr->len = READ_ONCE(sqe->len);
4576 #ifdef CONFIG_COMPAT
4577 if (req->ctx->compat)
4578 sr->msg_flags |= MSG_CMSG_COMPAT;
4581 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4583 ret = io_sendmsg_copy_hdr(req, async_msg);
4585 req->flags |= REQ_F_NEED_CLEANUP;
4589 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4590 struct io_comp_state *cs)
4592 struct io_async_msghdr iomsg, *kmsg;
4593 struct socket *sock;
4597 sock = sock_from_file(req->file);
4598 if (unlikely(!sock))
4601 if (req->async_data) {
4602 kmsg = req->async_data;
4603 kmsg->msg.msg_name = &kmsg->addr;
4604 /* if iov is set, it's allocated already */
4606 kmsg->iov = kmsg->fast_iov;
4607 kmsg->msg.msg_iter.iov = kmsg->iov;
4609 ret = io_sendmsg_copy_hdr(req, &iomsg);
4615 flags = req->sr_msg.msg_flags;
4616 if (flags & MSG_DONTWAIT)
4617 req->flags |= REQ_F_NOWAIT;
4618 else if (force_nonblock)
4619 flags |= MSG_DONTWAIT;
4621 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4622 if (force_nonblock && ret == -EAGAIN)
4623 return io_setup_async_msg(req, kmsg);
4624 if (ret == -ERESTARTSYS)
4627 if (kmsg->iov != kmsg->fast_iov)
4629 req->flags &= ~REQ_F_NEED_CLEANUP;
4631 req_set_fail_links(req);
4632 __io_req_complete(req, ret, 0, cs);
4636 static int io_send(struct io_kiocb *req, bool force_nonblock,
4637 struct io_comp_state *cs)
4639 struct io_sr_msg *sr = &req->sr_msg;
4642 struct socket *sock;
4646 sock = sock_from_file(req->file);
4647 if (unlikely(!sock))
4650 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4654 msg.msg_name = NULL;
4655 msg.msg_control = NULL;
4656 msg.msg_controllen = 0;
4657 msg.msg_namelen = 0;
4659 flags = req->sr_msg.msg_flags;
4660 if (flags & MSG_DONTWAIT)
4661 req->flags |= REQ_F_NOWAIT;
4662 else if (force_nonblock)
4663 flags |= MSG_DONTWAIT;
4665 msg.msg_flags = flags;
4666 ret = sock_sendmsg(sock, &msg);
4667 if (force_nonblock && ret == -EAGAIN)
4669 if (ret == -ERESTARTSYS)
4673 req_set_fail_links(req);
4674 __io_req_complete(req, ret, 0, cs);
4678 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4679 struct io_async_msghdr *iomsg)
4681 struct io_sr_msg *sr = &req->sr_msg;
4682 struct iovec __user *uiov;
4686 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4687 &iomsg->uaddr, &uiov, &iov_len);
4691 if (req->flags & REQ_F_BUFFER_SELECT) {
4694 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4696 sr->len = iomsg->iov[0].iov_len;
4697 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4701 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4702 &iomsg->iov, &iomsg->msg.msg_iter,
4711 #ifdef CONFIG_COMPAT
4712 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4713 struct io_async_msghdr *iomsg)
4715 struct compat_msghdr __user *msg_compat;
4716 struct io_sr_msg *sr = &req->sr_msg;
4717 struct compat_iovec __user *uiov;
4722 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4723 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4728 uiov = compat_ptr(ptr);
4729 if (req->flags & REQ_F_BUFFER_SELECT) {
4730 compat_ssize_t clen;
4734 if (!access_ok(uiov, sizeof(*uiov)))
4736 if (__get_user(clen, &uiov->iov_len))
4741 iomsg->iov[0].iov_len = clen;
4744 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4745 UIO_FASTIOV, &iomsg->iov,
4746 &iomsg->msg.msg_iter, true);
4755 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4756 struct io_async_msghdr *iomsg)
4758 iomsg->msg.msg_name = &iomsg->addr;
4759 iomsg->iov = iomsg->fast_iov;
4761 #ifdef CONFIG_COMPAT
4762 if (req->ctx->compat)
4763 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4766 return __io_recvmsg_copy_hdr(req, iomsg);
4769 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4772 struct io_sr_msg *sr = &req->sr_msg;
4773 struct io_buffer *kbuf;
4775 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4780 req->flags |= REQ_F_BUFFER_SELECTED;
4784 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4786 return io_put_kbuf(req, req->sr_msg.kbuf);
4789 static int io_recvmsg_prep(struct io_kiocb *req,
4790 const struct io_uring_sqe *sqe)
4792 struct io_async_msghdr *async_msg = req->async_data;
4793 struct io_sr_msg *sr = &req->sr_msg;
4796 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4799 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4800 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4801 sr->len = READ_ONCE(sqe->len);
4802 sr->bgid = READ_ONCE(sqe->buf_group);
4804 #ifdef CONFIG_COMPAT
4805 if (req->ctx->compat)
4806 sr->msg_flags |= MSG_CMSG_COMPAT;
4809 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4811 ret = io_recvmsg_copy_hdr(req, async_msg);
4813 req->flags |= REQ_F_NEED_CLEANUP;
4817 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4818 struct io_comp_state *cs)
4820 struct io_async_msghdr iomsg, *kmsg;
4821 struct socket *sock;
4822 struct io_buffer *kbuf;
4824 int ret, cflags = 0;
4826 sock = sock_from_file(req->file);
4827 if (unlikely(!sock))
4830 if (req->async_data) {
4831 kmsg = req->async_data;
4832 kmsg->msg.msg_name = &kmsg->addr;
4833 /* if iov is set, it's allocated already */
4835 kmsg->iov = kmsg->fast_iov;
4836 kmsg->msg.msg_iter.iov = kmsg->iov;
4838 ret = io_recvmsg_copy_hdr(req, &iomsg);
4844 if (req->flags & REQ_F_BUFFER_SELECT) {
4845 kbuf = io_recv_buffer_select(req, !force_nonblock);
4847 return PTR_ERR(kbuf);
4848 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4849 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4850 1, req->sr_msg.len);
4853 flags = req->sr_msg.msg_flags;
4854 if (flags & MSG_DONTWAIT)
4855 req->flags |= REQ_F_NOWAIT;
4856 else if (force_nonblock)
4857 flags |= MSG_DONTWAIT;
4859 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4860 kmsg->uaddr, flags);
4861 if (force_nonblock && ret == -EAGAIN)
4862 return io_setup_async_msg(req, kmsg);
4863 if (ret == -ERESTARTSYS)
4866 if (req->flags & REQ_F_BUFFER_SELECTED)
4867 cflags = io_put_recv_kbuf(req);
4868 if (kmsg->iov != kmsg->fast_iov)
4870 req->flags &= ~REQ_F_NEED_CLEANUP;
4872 req_set_fail_links(req);
4873 __io_req_complete(req, ret, cflags, cs);
4877 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4878 struct io_comp_state *cs)
4880 struct io_buffer *kbuf;
4881 struct io_sr_msg *sr = &req->sr_msg;
4883 void __user *buf = sr->buf;
4884 struct socket *sock;
4887 int ret, cflags = 0;
4889 sock = sock_from_file(req->file);
4890 if (unlikely(!sock))
4893 if (req->flags & REQ_F_BUFFER_SELECT) {
4894 kbuf = io_recv_buffer_select(req, !force_nonblock);
4896 return PTR_ERR(kbuf);
4897 buf = u64_to_user_ptr(kbuf->addr);
4900 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4904 msg.msg_name = NULL;
4905 msg.msg_control = NULL;
4906 msg.msg_controllen = 0;
4907 msg.msg_namelen = 0;
4908 msg.msg_iocb = NULL;
4911 flags = req->sr_msg.msg_flags;
4912 if (flags & MSG_DONTWAIT)
4913 req->flags |= REQ_F_NOWAIT;
4914 else if (force_nonblock)
4915 flags |= MSG_DONTWAIT;
4917 ret = sock_recvmsg(sock, &msg, flags);
4918 if (force_nonblock && ret == -EAGAIN)
4920 if (ret == -ERESTARTSYS)
4923 if (req->flags & REQ_F_BUFFER_SELECTED)
4924 cflags = io_put_recv_kbuf(req);
4926 req_set_fail_links(req);
4927 __io_req_complete(req, ret, cflags, cs);
4931 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4933 struct io_accept *accept = &req->accept;
4935 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4937 if (sqe->ioprio || sqe->len || sqe->buf_index)
4940 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4941 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4942 accept->flags = READ_ONCE(sqe->accept_flags);
4943 accept->nofile = rlimit(RLIMIT_NOFILE);
4947 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4948 struct io_comp_state *cs)
4950 struct io_accept *accept = &req->accept;
4951 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4954 if (req->file->f_flags & O_NONBLOCK)
4955 req->flags |= REQ_F_NOWAIT;
4957 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4958 accept->addr_len, accept->flags,
4960 if (ret == -EAGAIN && force_nonblock)
4963 if (ret == -ERESTARTSYS)
4965 req_set_fail_links(req);
4967 __io_req_complete(req, ret, 0, cs);
4971 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4973 struct io_connect *conn = &req->connect;
4974 struct io_async_connect *io = req->async_data;
4976 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4978 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4981 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4982 conn->addr_len = READ_ONCE(sqe->addr2);
4987 return move_addr_to_kernel(conn->addr, conn->addr_len,
4991 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4992 struct io_comp_state *cs)
4994 struct io_async_connect __io, *io;
4995 unsigned file_flags;
4998 if (req->async_data) {
4999 io = req->async_data;
5001 ret = move_addr_to_kernel(req->connect.addr,
5002 req->connect.addr_len,
5009 file_flags = force_nonblock ? O_NONBLOCK : 0;
5011 ret = __sys_connect_file(req->file, &io->address,
5012 req->connect.addr_len, file_flags);
5013 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5014 if (req->async_data)
5016 if (io_alloc_async_data(req)) {
5020 io = req->async_data;
5021 memcpy(req->async_data, &__io, sizeof(__io));
5024 if (ret == -ERESTARTSYS)
5028 req_set_fail_links(req);
5029 __io_req_complete(req, ret, 0, cs);
5032 #else /* !CONFIG_NET */
5033 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5038 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5039 struct io_comp_state *cs)
5044 static int io_send(struct io_kiocb *req, bool force_nonblock,
5045 struct io_comp_state *cs)
5050 static int io_recvmsg_prep(struct io_kiocb *req,
5051 const struct io_uring_sqe *sqe)
5056 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5057 struct io_comp_state *cs)
5062 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5063 struct io_comp_state *cs)
5068 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5073 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5074 struct io_comp_state *cs)
5079 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5084 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5085 struct io_comp_state *cs)
5089 #endif /* CONFIG_NET */
5091 struct io_poll_table {
5092 struct poll_table_struct pt;
5093 struct io_kiocb *req;
5097 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5098 __poll_t mask, task_work_func_t func)
5102 /* for instances that support it check for an event match first: */
5103 if (mask && !(mask & poll->events))
5106 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5108 list_del_init(&poll->wait.entry);
5111 init_task_work(&req->task_work, func);
5112 percpu_ref_get(&req->ctx->refs);
5115 * If this fails, then the task is exiting. When a task exits, the
5116 * work gets canceled, so just cancel this request as well instead
5117 * of executing it. We can't safely execute it anyway, as we may not
5118 * have the needed state needed for it anyway.
5120 ret = io_req_task_work_add(req);
5121 if (unlikely(ret)) {
5122 struct task_struct *tsk;
5124 WRITE_ONCE(poll->canceled, true);
5125 tsk = io_wq_get_task(req->ctx->io_wq);
5126 task_work_add(tsk, &req->task_work, TWA_NONE);
5127 wake_up_process(tsk);
5132 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5133 __acquires(&req->ctx->completion_lock)
5135 struct io_ring_ctx *ctx = req->ctx;
5137 if (!req->result && !READ_ONCE(poll->canceled)) {
5138 struct poll_table_struct pt = { ._key = poll->events };
5140 req->result = vfs_poll(req->file, &pt) & poll->events;
5143 spin_lock_irq(&ctx->completion_lock);
5144 if (!req->result && !READ_ONCE(poll->canceled)) {
5145 add_wait_queue(poll->head, &poll->wait);
5152 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5154 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5155 if (req->opcode == IORING_OP_POLL_ADD)
5156 return req->async_data;
5157 return req->apoll->double_poll;
5160 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5162 if (req->opcode == IORING_OP_POLL_ADD)
5164 return &req->apoll->poll;
5167 static void io_poll_remove_double(struct io_kiocb *req)
5169 struct io_poll_iocb *poll = io_poll_get_double(req);
5171 lockdep_assert_held(&req->ctx->completion_lock);
5173 if (poll && poll->head) {
5174 struct wait_queue_head *head = poll->head;
5176 spin_lock(&head->lock);
5177 list_del_init(&poll->wait.entry);
5178 if (poll->wait.private)
5179 refcount_dec(&req->refs);
5181 spin_unlock(&head->lock);
5185 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5187 struct io_ring_ctx *ctx = req->ctx;
5189 io_poll_remove_double(req);
5190 req->poll.done = true;
5191 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5192 io_commit_cqring(ctx);
5195 static void io_poll_task_func(struct callback_head *cb)
5197 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5198 struct io_ring_ctx *ctx = req->ctx;
5199 struct io_kiocb *nxt;
5201 if (io_poll_rewait(req, &req->poll)) {
5202 spin_unlock_irq(&ctx->completion_lock);
5204 hash_del(&req->hash_node);
5205 io_poll_complete(req, req->result, 0);
5206 spin_unlock_irq(&ctx->completion_lock);
5208 nxt = io_put_req_find_next(req);
5209 io_cqring_ev_posted(ctx);
5211 __io_req_task_submit(nxt);
5214 percpu_ref_put(&ctx->refs);
5217 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5218 int sync, void *key)
5220 struct io_kiocb *req = wait->private;
5221 struct io_poll_iocb *poll = io_poll_get_single(req);
5222 __poll_t mask = key_to_poll(key);
5224 /* for instances that support it check for an event match first: */
5225 if (mask && !(mask & poll->events))
5228 list_del_init(&wait->entry);
5230 if (poll && poll->head) {
5233 spin_lock(&poll->head->lock);
5234 done = list_empty(&poll->wait.entry);
5236 list_del_init(&poll->wait.entry);
5237 /* make sure double remove sees this as being gone */
5238 wait->private = NULL;
5239 spin_unlock(&poll->head->lock);
5241 /* use wait func handler, so it matches the rq type */
5242 poll->wait.func(&poll->wait, mode, sync, key);
5245 refcount_dec(&req->refs);
5249 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5250 wait_queue_func_t wake_func)
5254 poll->canceled = false;
5255 poll->events = events;
5256 INIT_LIST_HEAD(&poll->wait.entry);
5257 init_waitqueue_func_entry(&poll->wait, wake_func);
5260 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5261 struct wait_queue_head *head,
5262 struct io_poll_iocb **poll_ptr)
5264 struct io_kiocb *req = pt->req;
5267 * If poll->head is already set, it's because the file being polled
5268 * uses multiple waitqueues for poll handling (eg one for read, one
5269 * for write). Setup a separate io_poll_iocb if this happens.
5271 if (unlikely(poll->head)) {
5272 struct io_poll_iocb *poll_one = poll;
5274 /* already have a 2nd entry, fail a third attempt */
5276 pt->error = -EINVAL;
5279 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5281 pt->error = -ENOMEM;
5284 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5285 refcount_inc(&req->refs);
5286 poll->wait.private = req;
5293 if (poll->events & EPOLLEXCLUSIVE)
5294 add_wait_queue_exclusive(head, &poll->wait);
5296 add_wait_queue(head, &poll->wait);
5299 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5300 struct poll_table_struct *p)
5302 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5303 struct async_poll *apoll = pt->req->apoll;
5305 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5308 static void io_async_task_func(struct callback_head *cb)
5310 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5311 struct async_poll *apoll = req->apoll;
5312 struct io_ring_ctx *ctx = req->ctx;
5314 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5316 if (io_poll_rewait(req, &apoll->poll)) {
5317 spin_unlock_irq(&ctx->completion_lock);
5318 percpu_ref_put(&ctx->refs);
5322 /* If req is still hashed, it cannot have been canceled. Don't check. */
5323 if (hash_hashed(&req->hash_node))
5324 hash_del(&req->hash_node);
5326 io_poll_remove_double(req);
5327 spin_unlock_irq(&ctx->completion_lock);
5329 if (!READ_ONCE(apoll->poll.canceled))
5330 __io_req_task_submit(req);
5332 __io_req_task_cancel(req, -ECANCELED);
5334 percpu_ref_put(&ctx->refs);
5335 kfree(apoll->double_poll);
5339 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5342 struct io_kiocb *req = wait->private;
5343 struct io_poll_iocb *poll = &req->apoll->poll;
5345 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5348 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5351 static void io_poll_req_insert(struct io_kiocb *req)
5353 struct io_ring_ctx *ctx = req->ctx;
5354 struct hlist_head *list;
5356 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5357 hlist_add_head(&req->hash_node, list);
5360 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5361 struct io_poll_iocb *poll,
5362 struct io_poll_table *ipt, __poll_t mask,
5363 wait_queue_func_t wake_func)
5364 __acquires(&ctx->completion_lock)
5366 struct io_ring_ctx *ctx = req->ctx;
5367 bool cancel = false;
5369 INIT_HLIST_NODE(&req->hash_node);
5370 io_init_poll_iocb(poll, mask, wake_func);
5371 poll->file = req->file;
5372 poll->wait.private = req;
5374 ipt->pt._key = mask;
5376 ipt->error = -EINVAL;
5378 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5380 spin_lock_irq(&ctx->completion_lock);
5381 if (likely(poll->head)) {
5382 spin_lock(&poll->head->lock);
5383 if (unlikely(list_empty(&poll->wait.entry))) {
5389 if (mask || ipt->error)
5390 list_del_init(&poll->wait.entry);
5392 WRITE_ONCE(poll->canceled, true);
5393 else if (!poll->done) /* actually waiting for an event */
5394 io_poll_req_insert(req);
5395 spin_unlock(&poll->head->lock);
5401 static bool io_arm_poll_handler(struct io_kiocb *req)
5403 const struct io_op_def *def = &io_op_defs[req->opcode];
5404 struct io_ring_ctx *ctx = req->ctx;
5405 struct async_poll *apoll;
5406 struct io_poll_table ipt;
5410 if (!req->file || !file_can_poll(req->file))
5412 if (req->flags & REQ_F_POLLED)
5416 else if (def->pollout)
5420 /* if we can't nonblock try, then no point in arming a poll handler */
5421 if (!io_file_supports_async(req->file, rw))
5424 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5425 if (unlikely(!apoll))
5427 apoll->double_poll = NULL;
5429 req->flags |= REQ_F_POLLED;
5434 mask |= POLLIN | POLLRDNORM;
5436 mask |= POLLOUT | POLLWRNORM;
5438 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5439 if ((req->opcode == IORING_OP_RECVMSG) &&
5440 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5443 mask |= POLLERR | POLLPRI;
5445 ipt.pt._qproc = io_async_queue_proc;
5447 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5449 if (ret || ipt.error) {
5450 io_poll_remove_double(req);
5451 spin_unlock_irq(&ctx->completion_lock);
5452 kfree(apoll->double_poll);
5456 spin_unlock_irq(&ctx->completion_lock);
5457 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5458 apoll->poll.events);
5462 static bool __io_poll_remove_one(struct io_kiocb *req,
5463 struct io_poll_iocb *poll)
5465 bool do_complete = false;
5467 spin_lock(&poll->head->lock);
5468 WRITE_ONCE(poll->canceled, true);
5469 if (!list_empty(&poll->wait.entry)) {
5470 list_del_init(&poll->wait.entry);
5473 spin_unlock(&poll->head->lock);
5474 hash_del(&req->hash_node);
5478 static bool io_poll_remove_one(struct io_kiocb *req)
5482 io_poll_remove_double(req);
5484 if (req->opcode == IORING_OP_POLL_ADD) {
5485 do_complete = __io_poll_remove_one(req, &req->poll);
5487 struct async_poll *apoll = req->apoll;
5489 /* non-poll requests have submit ref still */
5490 do_complete = __io_poll_remove_one(req, &apoll->poll);
5493 kfree(apoll->double_poll);
5499 io_cqring_fill_event(req, -ECANCELED);
5500 io_commit_cqring(req->ctx);
5501 req_set_fail_links(req);
5502 io_put_req_deferred(req, 1);
5509 * Returns true if we found and killed one or more poll requests
5511 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5512 struct files_struct *files)
5514 struct hlist_node *tmp;
5515 struct io_kiocb *req;
5518 spin_lock_irq(&ctx->completion_lock);
5519 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5520 struct hlist_head *list;
5522 list = &ctx->cancel_hash[i];
5523 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5524 if (io_match_task(req, tsk, files))
5525 posted += io_poll_remove_one(req);
5528 spin_unlock_irq(&ctx->completion_lock);
5531 io_cqring_ev_posted(ctx);
5536 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5538 struct hlist_head *list;
5539 struct io_kiocb *req;
5541 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5542 hlist_for_each_entry(req, list, hash_node) {
5543 if (sqe_addr != req->user_data)
5545 if (io_poll_remove_one(req))
5553 static int io_poll_remove_prep(struct io_kiocb *req,
5554 const struct io_uring_sqe *sqe)
5556 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5558 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5562 req->poll_remove.addr = READ_ONCE(sqe->addr);
5567 * Find a running poll command that matches one specified in sqe->addr,
5568 * and remove it if found.
5570 static int io_poll_remove(struct io_kiocb *req)
5572 struct io_ring_ctx *ctx = req->ctx;
5575 spin_lock_irq(&ctx->completion_lock);
5576 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5577 spin_unlock_irq(&ctx->completion_lock);
5580 req_set_fail_links(req);
5581 io_req_complete(req, ret);
5585 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5588 struct io_kiocb *req = wait->private;
5589 struct io_poll_iocb *poll = &req->poll;
5591 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5594 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5595 struct poll_table_struct *p)
5597 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5599 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5602 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5604 struct io_poll_iocb *poll = &req->poll;
5607 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5609 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5612 events = READ_ONCE(sqe->poll32_events);
5614 events = swahw32(events);
5616 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5617 (events & EPOLLEXCLUSIVE);
5621 static int io_poll_add(struct io_kiocb *req)
5623 struct io_poll_iocb *poll = &req->poll;
5624 struct io_ring_ctx *ctx = req->ctx;
5625 struct io_poll_table ipt;
5628 ipt.pt._qproc = io_poll_queue_proc;
5630 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5633 if (mask) { /* no async, we'd stolen it */
5635 io_poll_complete(req, mask, 0);
5637 spin_unlock_irq(&ctx->completion_lock);
5640 io_cqring_ev_posted(ctx);
5646 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5648 struct io_timeout_data *data = container_of(timer,
5649 struct io_timeout_data, timer);
5650 struct io_kiocb *req = data->req;
5651 struct io_ring_ctx *ctx = req->ctx;
5652 unsigned long flags;
5654 spin_lock_irqsave(&ctx->completion_lock, flags);
5655 list_del_init(&req->timeout.list);
5656 atomic_set(&req->ctx->cq_timeouts,
5657 atomic_read(&req->ctx->cq_timeouts) + 1);
5659 io_cqring_fill_event(req, -ETIME);
5660 io_commit_cqring(ctx);
5661 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5663 io_cqring_ev_posted(ctx);
5664 req_set_fail_links(req);
5666 return HRTIMER_NORESTART;
5669 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5672 struct io_timeout_data *io;
5673 struct io_kiocb *req;
5676 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5677 if (user_data == req->user_data) {
5684 return ERR_PTR(ret);
5686 io = req->async_data;
5687 ret = hrtimer_try_to_cancel(&io->timer);
5689 return ERR_PTR(-EALREADY);
5690 list_del_init(&req->timeout.list);
5694 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5696 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5699 return PTR_ERR(req);
5701 req_set_fail_links(req);
5702 io_cqring_fill_event(req, -ECANCELED);
5703 io_put_req_deferred(req, 1);
5707 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5708 struct timespec64 *ts, enum hrtimer_mode mode)
5710 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5711 struct io_timeout_data *data;
5714 return PTR_ERR(req);
5716 req->timeout.off = 0; /* noseq */
5717 data = req->async_data;
5718 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5719 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5720 data->timer.function = io_timeout_fn;
5721 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5725 static int io_timeout_remove_prep(struct io_kiocb *req,
5726 const struct io_uring_sqe *sqe)
5728 struct io_timeout_rem *tr = &req->timeout_rem;
5730 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5732 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5734 if (sqe->ioprio || sqe->buf_index || sqe->len)
5737 tr->addr = READ_ONCE(sqe->addr);
5738 tr->flags = READ_ONCE(sqe->timeout_flags);
5739 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5740 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5742 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5744 } else if (tr->flags) {
5745 /* timeout removal doesn't support flags */
5753 * Remove or update an existing timeout command
5755 static int io_timeout_remove(struct io_kiocb *req)
5757 struct io_timeout_rem *tr = &req->timeout_rem;
5758 struct io_ring_ctx *ctx = req->ctx;
5761 spin_lock_irq(&ctx->completion_lock);
5762 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5763 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5764 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5766 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5768 ret = io_timeout_cancel(ctx, tr->addr);
5771 io_cqring_fill_event(req, ret);
5772 io_commit_cqring(ctx);
5773 spin_unlock_irq(&ctx->completion_lock);
5774 io_cqring_ev_posted(ctx);
5776 req_set_fail_links(req);
5781 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5782 bool is_timeout_link)
5784 struct io_timeout_data *data;
5786 u32 off = READ_ONCE(sqe->off);
5788 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5790 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5792 if (off && is_timeout_link)
5794 flags = READ_ONCE(sqe->timeout_flags);
5795 if (flags & ~IORING_TIMEOUT_ABS)
5798 req->timeout.off = off;
5800 if (!req->async_data && io_alloc_async_data(req))
5803 data = req->async_data;
5806 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5809 if (flags & IORING_TIMEOUT_ABS)
5810 data->mode = HRTIMER_MODE_ABS;
5812 data->mode = HRTIMER_MODE_REL;
5814 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5818 static int io_timeout(struct io_kiocb *req)
5820 struct io_ring_ctx *ctx = req->ctx;
5821 struct io_timeout_data *data = req->async_data;
5822 struct list_head *entry;
5823 u32 tail, off = req->timeout.off;
5825 spin_lock_irq(&ctx->completion_lock);
5828 * sqe->off holds how many events that need to occur for this
5829 * timeout event to be satisfied. If it isn't set, then this is
5830 * a pure timeout request, sequence isn't used.
5832 if (io_is_timeout_noseq(req)) {
5833 entry = ctx->timeout_list.prev;
5837 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5838 req->timeout.target_seq = tail + off;
5841 * Insertion sort, ensuring the first entry in the list is always
5842 * the one we need first.
5844 list_for_each_prev(entry, &ctx->timeout_list) {
5845 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5848 if (io_is_timeout_noseq(nxt))
5850 /* nxt.seq is behind @tail, otherwise would've been completed */
5851 if (off >= nxt->timeout.target_seq - tail)
5855 list_add(&req->timeout.list, entry);
5856 data->timer.function = io_timeout_fn;
5857 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5858 spin_unlock_irq(&ctx->completion_lock);
5862 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5864 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5866 return req->user_data == (unsigned long) data;
5869 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5871 enum io_wq_cancel cancel_ret;
5874 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5875 switch (cancel_ret) {
5876 case IO_WQ_CANCEL_OK:
5879 case IO_WQ_CANCEL_RUNNING:
5882 case IO_WQ_CANCEL_NOTFOUND:
5890 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5891 struct io_kiocb *req, __u64 sqe_addr,
5894 unsigned long flags;
5897 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5898 if (ret != -ENOENT) {
5899 spin_lock_irqsave(&ctx->completion_lock, flags);
5903 spin_lock_irqsave(&ctx->completion_lock, flags);
5904 ret = io_timeout_cancel(ctx, sqe_addr);
5907 ret = io_poll_cancel(ctx, sqe_addr);
5911 io_cqring_fill_event(req, ret);
5912 io_commit_cqring(ctx);
5913 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5914 io_cqring_ev_posted(ctx);
5917 req_set_fail_links(req);
5921 static int io_async_cancel_prep(struct io_kiocb *req,
5922 const struct io_uring_sqe *sqe)
5924 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5926 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5928 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5931 req->cancel.addr = READ_ONCE(sqe->addr);
5935 static int io_async_cancel(struct io_kiocb *req)
5937 struct io_ring_ctx *ctx = req->ctx;
5939 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5943 static int io_files_update_prep(struct io_kiocb *req,
5944 const struct io_uring_sqe *sqe)
5946 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5948 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5950 if (sqe->ioprio || sqe->rw_flags)
5953 req->files_update.offset = READ_ONCE(sqe->off);
5954 req->files_update.nr_args = READ_ONCE(sqe->len);
5955 if (!req->files_update.nr_args)
5957 req->files_update.arg = READ_ONCE(sqe->addr);
5961 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5962 struct io_comp_state *cs)
5964 struct io_ring_ctx *ctx = req->ctx;
5965 struct io_uring_files_update up;
5971 up.offset = req->files_update.offset;
5972 up.fds = req->files_update.arg;
5974 mutex_lock(&ctx->uring_lock);
5975 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5976 mutex_unlock(&ctx->uring_lock);
5979 req_set_fail_links(req);
5980 __io_req_complete(req, ret, 0, cs);
5984 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5986 switch (req->opcode) {
5989 case IORING_OP_READV:
5990 case IORING_OP_READ_FIXED:
5991 case IORING_OP_READ:
5992 return io_read_prep(req, sqe);
5993 case IORING_OP_WRITEV:
5994 case IORING_OP_WRITE_FIXED:
5995 case IORING_OP_WRITE:
5996 return io_write_prep(req, sqe);
5997 case IORING_OP_POLL_ADD:
5998 return io_poll_add_prep(req, sqe);
5999 case IORING_OP_POLL_REMOVE:
6000 return io_poll_remove_prep(req, sqe);
6001 case IORING_OP_FSYNC:
6002 return io_prep_fsync(req, sqe);
6003 case IORING_OP_SYNC_FILE_RANGE:
6004 return io_prep_sfr(req, sqe);
6005 case IORING_OP_SENDMSG:
6006 case IORING_OP_SEND:
6007 return io_sendmsg_prep(req, sqe);
6008 case IORING_OP_RECVMSG:
6009 case IORING_OP_RECV:
6010 return io_recvmsg_prep(req, sqe);
6011 case IORING_OP_CONNECT:
6012 return io_connect_prep(req, sqe);
6013 case IORING_OP_TIMEOUT:
6014 return io_timeout_prep(req, sqe, false);
6015 case IORING_OP_TIMEOUT_REMOVE:
6016 return io_timeout_remove_prep(req, sqe);
6017 case IORING_OP_ASYNC_CANCEL:
6018 return io_async_cancel_prep(req, sqe);
6019 case IORING_OP_LINK_TIMEOUT:
6020 return io_timeout_prep(req, sqe, true);
6021 case IORING_OP_ACCEPT:
6022 return io_accept_prep(req, sqe);
6023 case IORING_OP_FALLOCATE:
6024 return io_fallocate_prep(req, sqe);
6025 case IORING_OP_OPENAT:
6026 return io_openat_prep(req, sqe);
6027 case IORING_OP_CLOSE:
6028 return io_close_prep(req, sqe);
6029 case IORING_OP_FILES_UPDATE:
6030 return io_files_update_prep(req, sqe);
6031 case IORING_OP_STATX:
6032 return io_statx_prep(req, sqe);
6033 case IORING_OP_FADVISE:
6034 return io_fadvise_prep(req, sqe);
6035 case IORING_OP_MADVISE:
6036 return io_madvise_prep(req, sqe);
6037 case IORING_OP_OPENAT2:
6038 return io_openat2_prep(req, sqe);
6039 case IORING_OP_EPOLL_CTL:
6040 return io_epoll_ctl_prep(req, sqe);
6041 case IORING_OP_SPLICE:
6042 return io_splice_prep(req, sqe);
6043 case IORING_OP_PROVIDE_BUFFERS:
6044 return io_provide_buffers_prep(req, sqe);
6045 case IORING_OP_REMOVE_BUFFERS:
6046 return io_remove_buffers_prep(req, sqe);
6048 return io_tee_prep(req, sqe);
6049 case IORING_OP_SHUTDOWN:
6050 return io_shutdown_prep(req, sqe);
6051 case IORING_OP_RENAMEAT:
6052 return io_renameat_prep(req, sqe);
6053 case IORING_OP_UNLINKAT:
6054 return io_unlinkat_prep(req, sqe);
6057 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6062 static int io_req_defer_prep(struct io_kiocb *req,
6063 const struct io_uring_sqe *sqe)
6067 if (io_alloc_async_data(req))
6069 return io_req_prep(req, sqe);
6072 static u32 io_get_sequence(struct io_kiocb *req)
6074 struct io_kiocb *pos;
6075 struct io_ring_ctx *ctx = req->ctx;
6076 u32 total_submitted, nr_reqs = 0;
6078 io_for_each_link(pos, req)
6081 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6082 return total_submitted - nr_reqs;
6085 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6087 struct io_ring_ctx *ctx = req->ctx;
6088 struct io_defer_entry *de;
6092 /* Still need defer if there is pending req in defer list. */
6093 if (likely(list_empty_careful(&ctx->defer_list) &&
6094 !(req->flags & REQ_F_IO_DRAIN)))
6097 seq = io_get_sequence(req);
6098 /* Still a chance to pass the sequence check */
6099 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6102 if (!req->async_data) {
6103 ret = io_req_defer_prep(req, sqe);
6107 io_prep_async_link(req);
6108 de = kmalloc(sizeof(*de), GFP_KERNEL);
6112 spin_lock_irq(&ctx->completion_lock);
6113 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6114 spin_unlock_irq(&ctx->completion_lock);
6116 io_queue_async_work(req);
6117 return -EIOCBQUEUED;
6120 trace_io_uring_defer(ctx, req, req->user_data);
6123 list_add_tail(&de->list, &ctx->defer_list);
6124 spin_unlock_irq(&ctx->completion_lock);
6125 return -EIOCBQUEUED;
6128 static void io_req_drop_files(struct io_kiocb *req)
6130 struct io_ring_ctx *ctx = req->ctx;
6131 struct io_uring_task *tctx = req->task->io_uring;
6132 unsigned long flags;
6134 put_files_struct(req->work.identity->files);
6135 put_nsproxy(req->work.identity->nsproxy);
6136 spin_lock_irqsave(&ctx->inflight_lock, flags);
6137 list_del(&req->inflight_entry);
6138 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6139 req->flags &= ~REQ_F_INFLIGHT;
6140 req->work.flags &= ~IO_WQ_WORK_FILES;
6141 if (atomic_read(&tctx->in_idle))
6142 wake_up(&tctx->wait);
6145 static void __io_clean_op(struct io_kiocb *req)
6147 if (req->flags & REQ_F_BUFFER_SELECTED) {
6148 switch (req->opcode) {
6149 case IORING_OP_READV:
6150 case IORING_OP_READ_FIXED:
6151 case IORING_OP_READ:
6152 kfree((void *)(unsigned long)req->rw.addr);
6154 case IORING_OP_RECVMSG:
6155 case IORING_OP_RECV:
6156 kfree(req->sr_msg.kbuf);
6159 req->flags &= ~REQ_F_BUFFER_SELECTED;
6162 if (req->flags & REQ_F_NEED_CLEANUP) {
6163 switch (req->opcode) {
6164 case IORING_OP_READV:
6165 case IORING_OP_READ_FIXED:
6166 case IORING_OP_READ:
6167 case IORING_OP_WRITEV:
6168 case IORING_OP_WRITE_FIXED:
6169 case IORING_OP_WRITE: {
6170 struct io_async_rw *io = req->async_data;
6172 kfree(io->free_iovec);
6175 case IORING_OP_RECVMSG:
6176 case IORING_OP_SENDMSG: {
6177 struct io_async_msghdr *io = req->async_data;
6178 if (io->iov != io->fast_iov)
6182 case IORING_OP_SPLICE:
6184 io_put_file(req, req->splice.file_in,
6185 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6187 case IORING_OP_OPENAT:
6188 case IORING_OP_OPENAT2:
6189 if (req->open.filename)
6190 putname(req->open.filename);
6192 case IORING_OP_RENAMEAT:
6193 putname(req->rename.oldpath);
6194 putname(req->rename.newpath);
6196 case IORING_OP_UNLINKAT:
6197 putname(req->unlink.filename);
6200 req->flags &= ~REQ_F_NEED_CLEANUP;
6203 if (req->flags & REQ_F_INFLIGHT)
6204 io_req_drop_files(req);
6207 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6208 struct io_comp_state *cs)
6210 struct io_ring_ctx *ctx = req->ctx;
6213 switch (req->opcode) {
6215 ret = io_nop(req, cs);
6217 case IORING_OP_READV:
6218 case IORING_OP_READ_FIXED:
6219 case IORING_OP_READ:
6220 ret = io_read(req, force_nonblock, cs);
6222 case IORING_OP_WRITEV:
6223 case IORING_OP_WRITE_FIXED:
6224 case IORING_OP_WRITE:
6225 ret = io_write(req, force_nonblock, cs);
6227 case IORING_OP_FSYNC:
6228 ret = io_fsync(req, force_nonblock);
6230 case IORING_OP_POLL_ADD:
6231 ret = io_poll_add(req);
6233 case IORING_OP_POLL_REMOVE:
6234 ret = io_poll_remove(req);
6236 case IORING_OP_SYNC_FILE_RANGE:
6237 ret = io_sync_file_range(req, force_nonblock);
6239 case IORING_OP_SENDMSG:
6240 ret = io_sendmsg(req, force_nonblock, cs);
6242 case IORING_OP_SEND:
6243 ret = io_send(req, force_nonblock, cs);
6245 case IORING_OP_RECVMSG:
6246 ret = io_recvmsg(req, force_nonblock, cs);
6248 case IORING_OP_RECV:
6249 ret = io_recv(req, force_nonblock, cs);
6251 case IORING_OP_TIMEOUT:
6252 ret = io_timeout(req);
6254 case IORING_OP_TIMEOUT_REMOVE:
6255 ret = io_timeout_remove(req);
6257 case IORING_OP_ACCEPT:
6258 ret = io_accept(req, force_nonblock, cs);
6260 case IORING_OP_CONNECT:
6261 ret = io_connect(req, force_nonblock, cs);
6263 case IORING_OP_ASYNC_CANCEL:
6264 ret = io_async_cancel(req);
6266 case IORING_OP_FALLOCATE:
6267 ret = io_fallocate(req, force_nonblock);
6269 case IORING_OP_OPENAT:
6270 ret = io_openat(req, force_nonblock);
6272 case IORING_OP_CLOSE:
6273 ret = io_close(req, force_nonblock, cs);
6275 case IORING_OP_FILES_UPDATE:
6276 ret = io_files_update(req, force_nonblock, cs);
6278 case IORING_OP_STATX:
6279 ret = io_statx(req, force_nonblock);
6281 case IORING_OP_FADVISE:
6282 ret = io_fadvise(req, force_nonblock);
6284 case IORING_OP_MADVISE:
6285 ret = io_madvise(req, force_nonblock);
6287 case IORING_OP_OPENAT2:
6288 ret = io_openat2(req, force_nonblock);
6290 case IORING_OP_EPOLL_CTL:
6291 ret = io_epoll_ctl(req, force_nonblock, cs);
6293 case IORING_OP_SPLICE:
6294 ret = io_splice(req, force_nonblock);
6296 case IORING_OP_PROVIDE_BUFFERS:
6297 ret = io_provide_buffers(req, force_nonblock, cs);
6299 case IORING_OP_REMOVE_BUFFERS:
6300 ret = io_remove_buffers(req, force_nonblock, cs);
6303 ret = io_tee(req, force_nonblock);
6305 case IORING_OP_SHUTDOWN:
6306 ret = io_shutdown(req, force_nonblock);
6308 case IORING_OP_RENAMEAT:
6309 ret = io_renameat(req, force_nonblock);
6311 case IORING_OP_UNLINKAT:
6312 ret = io_unlinkat(req, force_nonblock);
6322 /* If the op doesn't have a file, we're not polling for it */
6323 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6324 const bool in_async = io_wq_current_is_worker();
6326 /* workqueue context doesn't hold uring_lock, grab it now */
6328 mutex_lock(&ctx->uring_lock);
6330 io_iopoll_req_issued(req, in_async);
6333 mutex_unlock(&ctx->uring_lock);
6339 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6341 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6342 struct io_kiocb *timeout;
6345 timeout = io_prep_linked_timeout(req);
6347 io_queue_linked_timeout(timeout);
6349 /* if NO_CANCEL is set, we must still run the work */
6350 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6351 IO_WQ_WORK_CANCEL) {
6357 ret = io_issue_sqe(req, false, NULL);
6359 * We can get EAGAIN for polled IO even though we're
6360 * forcing a sync submission from here, since we can't
6361 * wait for request slots on the block side.
6370 struct io_ring_ctx *lock_ctx = NULL;
6372 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6373 lock_ctx = req->ctx;
6376 * io_iopoll_complete() does not hold completion_lock to
6377 * complete polled io, so here for polled io, we can not call
6378 * io_req_complete() directly, otherwise there maybe concurrent
6379 * access to cqring, defer_list, etc, which is not safe. Given
6380 * that io_iopoll_complete() is always called under uring_lock,
6381 * so here for polled io, we also get uring_lock to complete
6385 mutex_lock(&lock_ctx->uring_lock);
6387 req_set_fail_links(req);
6388 io_req_complete(req, ret);
6391 mutex_unlock(&lock_ctx->uring_lock);
6394 return io_steal_work(req);
6397 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6400 struct fixed_file_table *table;
6402 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6403 return table->files[index & IORING_FILE_TABLE_MASK];
6406 static struct file *io_file_get(struct io_submit_state *state,
6407 struct io_kiocb *req, int fd, bool fixed)
6409 struct io_ring_ctx *ctx = req->ctx;
6413 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6415 fd = array_index_nospec(fd, ctx->nr_user_files);
6416 file = io_file_from_index(ctx, fd);
6417 io_set_resource_node(req);
6419 trace_io_uring_file_get(ctx, fd);
6420 file = __io_file_get(state, fd);
6426 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6428 struct io_timeout_data *data = container_of(timer,
6429 struct io_timeout_data, timer);
6430 struct io_kiocb *prev, *req = data->req;
6431 struct io_ring_ctx *ctx = req->ctx;
6432 unsigned long flags;
6434 spin_lock_irqsave(&ctx->completion_lock, flags);
6435 prev = req->timeout.head;
6436 req->timeout.head = NULL;
6439 * We don't expect the list to be empty, that will only happen if we
6440 * race with the completion of the linked work.
6442 if (prev && refcount_inc_not_zero(&prev->refs))
6443 io_remove_next_linked(prev);
6446 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6449 req_set_fail_links(prev);
6450 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6453 io_req_complete(req, -ETIME);
6455 return HRTIMER_NORESTART;
6458 static void __io_queue_linked_timeout(struct io_kiocb *req)
6461 * If the back reference is NULL, then our linked request finished
6462 * before we got a chance to setup the timer
6464 if (req->timeout.head) {
6465 struct io_timeout_data *data = req->async_data;
6467 data->timer.function = io_link_timeout_fn;
6468 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6473 static void io_queue_linked_timeout(struct io_kiocb *req)
6475 struct io_ring_ctx *ctx = req->ctx;
6477 spin_lock_irq(&ctx->completion_lock);
6478 __io_queue_linked_timeout(req);
6479 spin_unlock_irq(&ctx->completion_lock);
6481 /* drop submission reference */
6485 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6487 struct io_kiocb *nxt = req->link;
6489 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6490 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6493 nxt->timeout.head = req;
6494 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6495 req->flags |= REQ_F_LINK_TIMEOUT;
6499 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6501 struct io_kiocb *linked_timeout;
6502 const struct cred *old_creds = NULL;
6506 linked_timeout = io_prep_linked_timeout(req);
6508 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6509 (req->work.flags & IO_WQ_WORK_CREDS) &&
6510 req->work.identity->creds != current_cred()) {
6512 revert_creds(old_creds);
6513 if (old_creds == req->work.identity->creds)
6514 old_creds = NULL; /* restored original creds */
6516 old_creds = override_creds(req->work.identity->creds);
6519 ret = io_issue_sqe(req, true, cs);
6522 * We async punt it if the file wasn't marked NOWAIT, or if the file
6523 * doesn't support non-blocking read/write attempts
6525 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6526 if (!io_arm_poll_handler(req)) {
6528 * Queued up for async execution, worker will release
6529 * submit reference when the iocb is actually submitted.
6531 io_queue_async_work(req);
6535 io_queue_linked_timeout(linked_timeout);
6536 } else if (likely(!ret)) {
6537 /* drop submission reference */
6538 req = io_put_req_find_next(req);
6540 io_queue_linked_timeout(linked_timeout);
6543 if (!(req->flags & REQ_F_FORCE_ASYNC))
6545 io_queue_async_work(req);
6548 /* un-prep timeout, so it'll be killed as any other linked */
6549 req->flags &= ~REQ_F_LINK_TIMEOUT;
6550 req_set_fail_links(req);
6552 io_req_complete(req, ret);
6556 revert_creds(old_creds);
6559 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6560 struct io_comp_state *cs)
6564 ret = io_req_defer(req, sqe);
6566 if (ret != -EIOCBQUEUED) {
6568 req_set_fail_links(req);
6570 io_req_complete(req, ret);
6572 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6573 if (!req->async_data) {
6574 ret = io_req_defer_prep(req, sqe);
6578 io_queue_async_work(req);
6581 ret = io_req_prep(req, sqe);
6585 __io_queue_sqe(req, cs);
6589 static inline void io_queue_link_head(struct io_kiocb *req,
6590 struct io_comp_state *cs)
6592 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6594 io_req_complete(req, -ECANCELED);
6596 io_queue_sqe(req, NULL, cs);
6599 struct io_submit_link {
6600 struct io_kiocb *head;
6601 struct io_kiocb *last;
6604 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6605 struct io_submit_link *link, struct io_comp_state *cs)
6607 struct io_ring_ctx *ctx = req->ctx;
6611 * If we already have a head request, queue this one for async
6612 * submittal once the head completes. If we don't have a head but
6613 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6614 * submitted sync once the chain is complete. If none of those
6615 * conditions are true (normal request), then just queue it.
6618 struct io_kiocb *head = link->head;
6621 * Taking sequential execution of a link, draining both sides
6622 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6623 * requests in the link. So, it drains the head and the
6624 * next after the link request. The last one is done via
6625 * drain_next flag to persist the effect across calls.
6627 if (req->flags & REQ_F_IO_DRAIN) {
6628 head->flags |= REQ_F_IO_DRAIN;
6629 ctx->drain_next = 1;
6631 ret = io_req_defer_prep(req, sqe);
6632 if (unlikely(ret)) {
6633 /* fail even hard links since we don't submit */
6634 head->flags |= REQ_F_FAIL_LINK;
6637 trace_io_uring_link(ctx, req, head);
6638 link->last->link = req;
6641 /* last request of a link, enqueue the link */
6642 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6643 io_queue_link_head(head, cs);
6647 if (unlikely(ctx->drain_next)) {
6648 req->flags |= REQ_F_IO_DRAIN;
6649 ctx->drain_next = 0;
6651 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6652 ret = io_req_defer_prep(req, sqe);
6654 req->flags |= REQ_F_FAIL_LINK;
6658 io_queue_sqe(req, sqe, cs);
6666 * Batched submission is done, ensure local IO is flushed out.
6668 static void io_submit_state_end(struct io_submit_state *state)
6670 if (!list_empty(&state->comp.list))
6671 io_submit_flush_completions(&state->comp);
6672 if (state->plug_started)
6673 blk_finish_plug(&state->plug);
6674 io_state_file_put(state);
6675 if (state->free_reqs)
6676 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6680 * Start submission side cache.
6682 static void io_submit_state_start(struct io_submit_state *state,
6683 struct io_ring_ctx *ctx, unsigned int max_ios)
6685 state->plug_started = false;
6687 INIT_LIST_HEAD(&state->comp.list);
6688 state->comp.ctx = ctx;
6689 state->free_reqs = 0;
6690 state->file_refs = 0;
6691 state->ios_left = max_ios;
6694 static void io_commit_sqring(struct io_ring_ctx *ctx)
6696 struct io_rings *rings = ctx->rings;
6699 * Ensure any loads from the SQEs are done at this point,
6700 * since once we write the new head, the application could
6701 * write new data to them.
6703 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6707 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6708 * that is mapped by userspace. This means that care needs to be taken to
6709 * ensure that reads are stable, as we cannot rely on userspace always
6710 * being a good citizen. If members of the sqe are validated and then later
6711 * used, it's important that those reads are done through READ_ONCE() to
6712 * prevent a re-load down the line.
6714 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6716 u32 *sq_array = ctx->sq_array;
6720 * The cached sq head (or cq tail) serves two purposes:
6722 * 1) allows us to batch the cost of updating the user visible
6724 * 2) allows the kernel side to track the head on its own, even
6725 * though the application is the one updating it.
6727 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6728 if (likely(head < ctx->sq_entries))
6729 return &ctx->sq_sqes[head];
6731 /* drop invalid entries */
6732 ctx->cached_sq_dropped++;
6733 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6737 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6739 ctx->cached_sq_head++;
6743 * Check SQE restrictions (opcode and flags).
6745 * Returns 'true' if SQE is allowed, 'false' otherwise.
6747 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6748 struct io_kiocb *req,
6749 unsigned int sqe_flags)
6751 if (!ctx->restricted)
6754 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6757 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6758 ctx->restrictions.sqe_flags_required)
6761 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6762 ctx->restrictions.sqe_flags_required))
6768 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6769 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6770 IOSQE_BUFFER_SELECT)
6772 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6773 const struct io_uring_sqe *sqe,
6774 struct io_submit_state *state)
6776 unsigned int sqe_flags;
6779 req->opcode = READ_ONCE(sqe->opcode);
6780 req->user_data = READ_ONCE(sqe->user_data);
6781 req->async_data = NULL;
6786 req->fixed_file_refs = NULL;
6787 /* one is dropped after submission, the other at completion */
6788 refcount_set(&req->refs, 2);
6789 req->task = current;
6792 if (unlikely(req->opcode >= IORING_OP_LAST))
6795 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6798 sqe_flags = READ_ONCE(sqe->flags);
6799 /* enforce forwards compatibility on users */
6800 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6803 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6806 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6807 !io_op_defs[req->opcode].buffer_select)
6810 id = READ_ONCE(sqe->personality);
6812 struct io_identity *iod;
6814 iod = idr_find(&ctx->personality_idr, id);
6817 refcount_inc(&iod->count);
6819 __io_req_init_async(req);
6820 get_cred(iod->creds);
6821 req->work.identity = iod;
6822 req->work.flags |= IO_WQ_WORK_CREDS;
6825 /* same numerical values with corresponding REQ_F_*, safe to copy */
6826 req->flags |= sqe_flags;
6829 * Plug now if we have more than 1 IO left after this, and the target
6830 * is potentially a read/write to block based storage.
6832 if (!state->plug_started && state->ios_left > 1 &&
6833 io_op_defs[req->opcode].plug) {
6834 blk_start_plug(&state->plug);
6835 state->plug_started = true;
6839 if (io_op_defs[req->opcode].needs_file) {
6840 bool fixed = req->flags & REQ_F_FIXED_FILE;
6842 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6843 if (unlikely(!req->file &&
6844 !io_op_defs[req->opcode].needs_file_no_error))
6852 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6854 struct io_submit_state state;
6855 struct io_submit_link link;
6856 int i, submitted = 0;
6858 /* if we have a backlog and couldn't flush it all, return BUSY */
6859 if (test_bit(0, &ctx->sq_check_overflow)) {
6860 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6864 /* make sure SQ entry isn't read before tail */
6865 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6867 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6870 percpu_counter_add(¤t->io_uring->inflight, nr);
6871 refcount_add(nr, ¤t->usage);
6873 io_submit_state_start(&state, ctx, nr);
6876 for (i = 0; i < nr; i++) {
6877 const struct io_uring_sqe *sqe;
6878 struct io_kiocb *req;
6881 sqe = io_get_sqe(ctx);
6882 if (unlikely(!sqe)) {
6883 io_consume_sqe(ctx);
6886 req = io_alloc_req(ctx, &state);
6887 if (unlikely(!req)) {
6889 submitted = -EAGAIN;
6892 io_consume_sqe(ctx);
6893 /* will complete beyond this point, count as submitted */
6896 err = io_init_req(ctx, req, sqe, &state);
6897 if (unlikely(err)) {
6900 io_req_complete(req, err);
6904 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6905 true, io_async_submit(ctx));
6906 err = io_submit_sqe(req, sqe, &link, &state.comp);
6911 if (unlikely(submitted != nr)) {
6912 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6913 struct io_uring_task *tctx = current->io_uring;
6914 int unused = nr - ref_used;
6916 percpu_ref_put_many(&ctx->refs, unused);
6917 percpu_counter_sub(&tctx->inflight, unused);
6918 put_task_struct_many(current, unused);
6921 io_queue_link_head(link.head, &state.comp);
6922 io_submit_state_end(&state);
6924 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6925 io_commit_sqring(ctx);
6930 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6932 /* Tell userspace we may need a wakeup call */
6933 spin_lock_irq(&ctx->completion_lock);
6934 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6935 spin_unlock_irq(&ctx->completion_lock);
6938 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6940 spin_lock_irq(&ctx->completion_lock);
6941 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6942 spin_unlock_irq(&ctx->completion_lock);
6945 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6947 unsigned int to_submit;
6950 to_submit = io_sqring_entries(ctx);
6951 /* if we're handling multiple rings, cap submit size for fairness */
6952 if (cap_entries && to_submit > 8)
6955 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6956 unsigned nr_events = 0;
6958 mutex_lock(&ctx->uring_lock);
6959 if (!list_empty(&ctx->iopoll_list))
6960 io_do_iopoll(ctx, &nr_events, 0);
6962 if (to_submit && !ctx->sqo_dead &&
6963 likely(!percpu_ref_is_dying(&ctx->refs)))
6964 ret = io_submit_sqes(ctx, to_submit);
6965 mutex_unlock(&ctx->uring_lock);
6968 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6969 wake_up(&ctx->sqo_sq_wait);
6974 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6976 struct io_ring_ctx *ctx;
6977 unsigned sq_thread_idle = 0;
6979 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6980 if (sq_thread_idle < ctx->sq_thread_idle)
6981 sq_thread_idle = ctx->sq_thread_idle;
6984 sqd->sq_thread_idle = sq_thread_idle;
6987 static void io_sqd_init_new(struct io_sq_data *sqd)
6989 struct io_ring_ctx *ctx;
6991 while (!list_empty(&sqd->ctx_new_list)) {
6992 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6993 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6994 complete(&ctx->sq_thread_comp);
6997 io_sqd_update_thread_idle(sqd);
7000 static int io_sq_thread(void *data)
7002 struct cgroup_subsys_state *cur_css = NULL;
7003 struct files_struct *old_files = current->files;
7004 struct nsproxy *old_nsproxy = current->nsproxy;
7005 const struct cred *old_cred = NULL;
7006 struct io_sq_data *sqd = data;
7007 struct io_ring_ctx *ctx;
7008 unsigned long timeout = 0;
7012 current->files = NULL;
7013 current->nsproxy = NULL;
7014 task_unlock(current);
7016 while (!kthread_should_stop()) {
7018 bool cap_entries, sqt_spin, needs_sched;
7021 * Any changes to the sqd lists are synchronized through the
7022 * kthread parking. This synchronizes the thread vs users,
7023 * the users are synchronized on the sqd->ctx_lock.
7025 if (kthread_should_park()) {
7028 * When sq thread is unparked, in case the previous park operation
7029 * comes from io_put_sq_data(), which means that sq thread is going
7030 * to be stopped, so here needs to have a check.
7032 if (kthread_should_stop())
7036 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7037 io_sqd_init_new(sqd);
7038 timeout = jiffies + sqd->sq_thread_idle;
7042 cap_entries = !list_is_singular(&sqd->ctx_list);
7043 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7044 if (current->cred != ctx->creds) {
7046 revert_creds(old_cred);
7047 old_cred = override_creds(ctx->creds);
7049 io_sq_thread_associate_blkcg(ctx, &cur_css);
7051 current->loginuid = ctx->loginuid;
7052 current->sessionid = ctx->sessionid;
7055 ret = __io_sq_thread(ctx, cap_entries);
7056 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7059 io_sq_thread_drop_mm_files();
7062 if (sqt_spin || !time_after(jiffies, timeout)) {
7064 io_sq_thread_drop_mm_files();
7067 timeout = jiffies + sqd->sq_thread_idle;
7071 if (kthread_should_park())
7075 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7076 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7077 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7078 !list_empty_careful(&ctx->iopoll_list)) {
7079 needs_sched = false;
7082 if (io_sqring_entries(ctx)) {
7083 needs_sched = false;
7089 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7090 io_ring_set_wakeup_flag(ctx);
7093 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7094 io_ring_clear_wakeup_flag(ctx);
7097 finish_wait(&sqd->wait, &wait);
7098 timeout = jiffies + sqd->sq_thread_idle;
7102 io_sq_thread_drop_mm_files();
7105 io_sq_thread_unassociate_blkcg();
7107 revert_creds(old_cred);
7110 current->files = old_files;
7111 current->nsproxy = old_nsproxy;
7112 task_unlock(current);
7119 struct io_wait_queue {
7120 struct wait_queue_entry wq;
7121 struct io_ring_ctx *ctx;
7123 unsigned nr_timeouts;
7126 static inline bool io_should_wake(struct io_wait_queue *iowq)
7128 struct io_ring_ctx *ctx = iowq->ctx;
7131 * Wake up if we have enough events, or if a timeout occurred since we
7132 * started waiting. For timeouts, we always want to return to userspace,
7133 * regardless of event count.
7135 return io_cqring_events(ctx) >= iowq->to_wait ||
7136 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7139 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7140 int wake_flags, void *key)
7142 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7146 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7147 * the task, and the next invocation will do it.
7149 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7150 return autoremove_wake_function(curr, mode, wake_flags, key);
7154 static int io_run_task_work_sig(void)
7156 if (io_run_task_work())
7158 if (!signal_pending(current))
7160 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7161 return -ERESTARTSYS;
7166 * Wait until events become available, if we don't already have some. The
7167 * application must reap them itself, as they reside on the shared cq ring.
7169 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7170 const sigset_t __user *sig, size_t sigsz,
7171 struct __kernel_timespec __user *uts)
7173 struct io_wait_queue iowq = {
7176 .func = io_wake_function,
7177 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7180 .to_wait = min_events,
7182 struct io_rings *rings = ctx->rings;
7183 struct timespec64 ts;
7184 signed long timeout = 0;
7188 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7189 if (io_cqring_events(ctx) >= min_events)
7191 if (!io_run_task_work())
7196 #ifdef CONFIG_COMPAT
7197 if (in_compat_syscall())
7198 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7202 ret = set_user_sigmask(sig, sigsz);
7209 if (get_timespec64(&ts, uts))
7211 timeout = timespec64_to_jiffies(&ts);
7214 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7215 trace_io_uring_cqring_wait(ctx, min_events);
7217 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7218 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7219 TASK_INTERRUPTIBLE);
7220 /* make sure we run task_work before checking for signals */
7221 ret = io_run_task_work_sig();
7226 if (io_should_wake(&iowq))
7228 if (test_bit(0, &ctx->cq_check_overflow))
7231 timeout = schedule_timeout(timeout);
7240 finish_wait(&ctx->wait, &iowq.wq);
7242 restore_saved_sigmask_unless(ret == -EINTR);
7244 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7247 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7249 #if defined(CONFIG_UNIX)
7250 if (ctx->ring_sock) {
7251 struct sock *sock = ctx->ring_sock->sk;
7252 struct sk_buff *skb;
7254 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7260 for (i = 0; i < ctx->nr_user_files; i++) {
7263 file = io_file_from_index(ctx, i);
7270 static void io_file_ref_kill(struct percpu_ref *ref)
7272 struct fixed_file_data *data;
7274 data = container_of(ref, struct fixed_file_data, refs);
7275 complete(&data->done);
7278 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7279 struct fixed_file_ref_node *ref_node)
7281 spin_lock_bh(&file_data->lock);
7282 file_data->node = ref_node;
7283 list_add_tail(&ref_node->node, &file_data->ref_list);
7284 spin_unlock_bh(&file_data->lock);
7285 percpu_ref_get(&file_data->refs);
7288 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7290 struct fixed_file_data *data = ctx->file_data;
7291 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7292 unsigned nr_tables, i;
7297 backup_node = alloc_fixed_file_ref_node(ctx);
7301 spin_lock_bh(&data->lock);
7302 ref_node = data->node;
7303 spin_unlock_bh(&data->lock);
7305 percpu_ref_kill(&ref_node->refs);
7307 percpu_ref_kill(&data->refs);
7309 /* wait for all refs nodes to complete */
7310 flush_delayed_work(&ctx->file_put_work);
7312 ret = wait_for_completion_interruptible(&data->done);
7315 ret = io_run_task_work_sig();
7317 percpu_ref_resurrect(&data->refs);
7318 reinit_completion(&data->done);
7319 io_sqe_files_set_node(data, backup_node);
7324 __io_sqe_files_unregister(ctx);
7325 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7326 for (i = 0; i < nr_tables; i++)
7327 kfree(data->table[i].files);
7329 percpu_ref_exit(&data->refs);
7331 ctx->file_data = NULL;
7332 ctx->nr_user_files = 0;
7333 destroy_fixed_file_ref_node(backup_node);
7337 static void io_put_sq_data(struct io_sq_data *sqd)
7339 if (refcount_dec_and_test(&sqd->refs)) {
7341 * The park is a bit of a work-around, without it we get
7342 * warning spews on shutdown with SQPOLL set and affinity
7343 * set to a single CPU.
7346 kthread_park(sqd->thread);
7347 kthread_stop(sqd->thread);
7354 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7356 struct io_ring_ctx *ctx_attach;
7357 struct io_sq_data *sqd;
7360 f = fdget(p->wq_fd);
7362 return ERR_PTR(-ENXIO);
7363 if (f.file->f_op != &io_uring_fops) {
7365 return ERR_PTR(-EINVAL);
7368 ctx_attach = f.file->private_data;
7369 sqd = ctx_attach->sq_data;
7372 return ERR_PTR(-EINVAL);
7375 refcount_inc(&sqd->refs);
7380 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7382 struct io_sq_data *sqd;
7384 if (p->flags & IORING_SETUP_ATTACH_WQ)
7385 return io_attach_sq_data(p);
7387 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7389 return ERR_PTR(-ENOMEM);
7391 refcount_set(&sqd->refs, 1);
7392 INIT_LIST_HEAD(&sqd->ctx_list);
7393 INIT_LIST_HEAD(&sqd->ctx_new_list);
7394 mutex_init(&sqd->ctx_lock);
7395 mutex_init(&sqd->lock);
7396 init_waitqueue_head(&sqd->wait);
7400 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7401 __releases(&sqd->lock)
7405 kthread_unpark(sqd->thread);
7406 mutex_unlock(&sqd->lock);
7409 static void io_sq_thread_park(struct io_sq_data *sqd)
7410 __acquires(&sqd->lock)
7414 mutex_lock(&sqd->lock);
7415 kthread_park(sqd->thread);
7418 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7420 struct io_sq_data *sqd = ctx->sq_data;
7425 * We may arrive here from the error branch in
7426 * io_sq_offload_create() where the kthread is created
7427 * without being waked up, thus wake it up now to make
7428 * sure the wait will complete.
7430 wake_up_process(sqd->thread);
7431 wait_for_completion(&ctx->sq_thread_comp);
7433 io_sq_thread_park(sqd);
7436 mutex_lock(&sqd->ctx_lock);
7437 list_del(&ctx->sqd_list);
7438 io_sqd_update_thread_idle(sqd);
7439 mutex_unlock(&sqd->ctx_lock);
7442 io_sq_thread_unpark(sqd);
7444 io_put_sq_data(sqd);
7445 ctx->sq_data = NULL;
7449 static void io_finish_async(struct io_ring_ctx *ctx)
7451 io_sq_thread_stop(ctx);
7454 io_wq_destroy(ctx->io_wq);
7459 #if defined(CONFIG_UNIX)
7461 * Ensure the UNIX gc is aware of our file set, so we are certain that
7462 * the io_uring can be safely unregistered on process exit, even if we have
7463 * loops in the file referencing.
7465 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7467 struct sock *sk = ctx->ring_sock->sk;
7468 struct scm_fp_list *fpl;
7469 struct sk_buff *skb;
7472 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7476 skb = alloc_skb(0, GFP_KERNEL);
7485 fpl->user = get_uid(ctx->user);
7486 for (i = 0; i < nr; i++) {
7487 struct file *file = io_file_from_index(ctx, i + offset);
7491 fpl->fp[nr_files] = get_file(file);
7492 unix_inflight(fpl->user, fpl->fp[nr_files]);
7497 fpl->max = SCM_MAX_FD;
7498 fpl->count = nr_files;
7499 UNIXCB(skb).fp = fpl;
7500 skb->destructor = unix_destruct_scm;
7501 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7502 skb_queue_head(&sk->sk_receive_queue, skb);
7504 for (i = 0; i < nr_files; i++)
7515 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7516 * causes regular reference counting to break down. We rely on the UNIX
7517 * garbage collection to take care of this problem for us.
7519 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7521 unsigned left, total;
7525 left = ctx->nr_user_files;
7527 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7529 ret = __io_sqe_files_scm(ctx, this_files, total);
7533 total += this_files;
7539 while (total < ctx->nr_user_files) {
7540 struct file *file = io_file_from_index(ctx, total);
7550 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7556 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7557 unsigned nr_tables, unsigned nr_files)
7561 for (i = 0; i < nr_tables; i++) {
7562 struct fixed_file_table *table = &file_data->table[i];
7563 unsigned this_files;
7565 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7566 table->files = kcalloc(this_files, sizeof(struct file *),
7570 nr_files -= this_files;
7576 for (i = 0; i < nr_tables; i++) {
7577 struct fixed_file_table *table = &file_data->table[i];
7578 kfree(table->files);
7583 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7585 #if defined(CONFIG_UNIX)
7586 struct sock *sock = ctx->ring_sock->sk;
7587 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7588 struct sk_buff *skb;
7591 __skb_queue_head_init(&list);
7594 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7595 * remove this entry and rearrange the file array.
7597 skb = skb_dequeue(head);
7599 struct scm_fp_list *fp;
7601 fp = UNIXCB(skb).fp;
7602 for (i = 0; i < fp->count; i++) {
7605 if (fp->fp[i] != file)
7608 unix_notinflight(fp->user, fp->fp[i]);
7609 left = fp->count - 1 - i;
7611 memmove(&fp->fp[i], &fp->fp[i + 1],
7612 left * sizeof(struct file *));
7619 __skb_queue_tail(&list, skb);
7629 __skb_queue_tail(&list, skb);
7631 skb = skb_dequeue(head);
7634 if (skb_peek(&list)) {
7635 spin_lock_irq(&head->lock);
7636 while ((skb = __skb_dequeue(&list)) != NULL)
7637 __skb_queue_tail(head, skb);
7638 spin_unlock_irq(&head->lock);
7645 struct io_file_put {
7646 struct list_head list;
7650 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7652 struct fixed_file_data *file_data = ref_node->file_data;
7653 struct io_ring_ctx *ctx = file_data->ctx;
7654 struct io_file_put *pfile, *tmp;
7656 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7657 list_del(&pfile->list);
7658 io_ring_file_put(ctx, pfile->file);
7662 percpu_ref_exit(&ref_node->refs);
7664 percpu_ref_put(&file_data->refs);
7667 static void io_file_put_work(struct work_struct *work)
7669 struct io_ring_ctx *ctx;
7670 struct llist_node *node;
7672 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7673 node = llist_del_all(&ctx->file_put_llist);
7676 struct fixed_file_ref_node *ref_node;
7677 struct llist_node *next = node->next;
7679 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7680 __io_file_put_work(ref_node);
7685 static void io_file_data_ref_zero(struct percpu_ref *ref)
7687 struct fixed_file_ref_node *ref_node;
7688 struct fixed_file_data *data;
7689 struct io_ring_ctx *ctx;
7690 bool first_add = false;
7693 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7694 data = ref_node->file_data;
7697 spin_lock_bh(&data->lock);
7698 ref_node->done = true;
7700 while (!list_empty(&data->ref_list)) {
7701 ref_node = list_first_entry(&data->ref_list,
7702 struct fixed_file_ref_node, node);
7703 /* recycle ref nodes in order */
7704 if (!ref_node->done)
7706 list_del(&ref_node->node);
7707 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7709 spin_unlock_bh(&data->lock);
7711 if (percpu_ref_is_dying(&data->refs))
7715 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7717 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7720 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7721 struct io_ring_ctx *ctx)
7723 struct fixed_file_ref_node *ref_node;
7725 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7729 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7734 INIT_LIST_HEAD(&ref_node->node);
7735 INIT_LIST_HEAD(&ref_node->file_list);
7736 ref_node->file_data = ctx->file_data;
7737 ref_node->done = false;
7741 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7743 percpu_ref_exit(&ref_node->refs);
7747 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7750 __s32 __user *fds = (__s32 __user *) arg;
7751 unsigned nr_tables, i;
7753 int fd, ret = -ENOMEM;
7754 struct fixed_file_ref_node *ref_node;
7755 struct fixed_file_data *file_data;
7761 if (nr_args > IORING_MAX_FIXED_FILES)
7764 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7767 file_data->ctx = ctx;
7768 init_completion(&file_data->done);
7769 INIT_LIST_HEAD(&file_data->ref_list);
7770 spin_lock_init(&file_data->lock);
7772 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7773 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7775 if (!file_data->table)
7778 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7779 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7782 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7784 ctx->file_data = file_data;
7786 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7787 struct fixed_file_table *table;
7790 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7794 /* allow sparse sets */
7804 * Don't allow io_uring instances to be registered. If UNIX
7805 * isn't enabled, then this causes a reference cycle and this
7806 * instance can never get freed. If UNIX is enabled we'll
7807 * handle it just fine, but there's still no point in allowing
7808 * a ring fd as it doesn't support regular read/write anyway.
7810 if (file->f_op == &io_uring_fops) {
7814 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7815 index = i & IORING_FILE_TABLE_MASK;
7816 table->files[index] = file;
7819 ret = io_sqe_files_scm(ctx);
7821 io_sqe_files_unregister(ctx);
7825 ref_node = alloc_fixed_file_ref_node(ctx);
7827 io_sqe_files_unregister(ctx);
7831 io_sqe_files_set_node(file_data, ref_node);
7834 for (i = 0; i < ctx->nr_user_files; i++) {
7835 file = io_file_from_index(ctx, i);
7839 for (i = 0; i < nr_tables; i++)
7840 kfree(file_data->table[i].files);
7841 ctx->nr_user_files = 0;
7843 percpu_ref_exit(&file_data->refs);
7845 kfree(file_data->table);
7847 ctx->file_data = NULL;
7851 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7854 #if defined(CONFIG_UNIX)
7855 struct sock *sock = ctx->ring_sock->sk;
7856 struct sk_buff_head *head = &sock->sk_receive_queue;
7857 struct sk_buff *skb;
7860 * See if we can merge this file into an existing skb SCM_RIGHTS
7861 * file set. If there's no room, fall back to allocating a new skb
7862 * and filling it in.
7864 spin_lock_irq(&head->lock);
7865 skb = skb_peek(head);
7867 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7869 if (fpl->count < SCM_MAX_FD) {
7870 __skb_unlink(skb, head);
7871 spin_unlock_irq(&head->lock);
7872 fpl->fp[fpl->count] = get_file(file);
7873 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7875 spin_lock_irq(&head->lock);
7876 __skb_queue_head(head, skb);
7881 spin_unlock_irq(&head->lock);
7888 return __io_sqe_files_scm(ctx, 1, index);
7894 static int io_queue_file_removal(struct fixed_file_data *data,
7897 struct io_file_put *pfile;
7898 struct fixed_file_ref_node *ref_node = data->node;
7900 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7905 list_add(&pfile->list, &ref_node->file_list);
7910 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7911 struct io_uring_files_update *up,
7914 struct fixed_file_data *data = ctx->file_data;
7915 struct fixed_file_ref_node *ref_node;
7920 bool needs_switch = false;
7922 if (check_add_overflow(up->offset, nr_args, &done))
7924 if (done > ctx->nr_user_files)
7927 ref_node = alloc_fixed_file_ref_node(ctx);
7932 fds = u64_to_user_ptr(up->fds);
7934 struct fixed_file_table *table;
7938 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7942 i = array_index_nospec(up->offset, ctx->nr_user_files);
7943 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7944 index = i & IORING_FILE_TABLE_MASK;
7945 if (table->files[index]) {
7946 file = table->files[index];
7947 err = io_queue_file_removal(data, file);
7950 table->files[index] = NULL;
7951 needs_switch = true;
7960 * Don't allow io_uring instances to be registered. If
7961 * UNIX isn't enabled, then this causes a reference
7962 * cycle and this instance can never get freed. If UNIX
7963 * is enabled we'll handle it just fine, but there's
7964 * still no point in allowing a ring fd as it doesn't
7965 * support regular read/write anyway.
7967 if (file->f_op == &io_uring_fops) {
7972 table->files[index] = file;
7973 err = io_sqe_file_register(ctx, file, i);
7975 table->files[index] = NULL;
7986 percpu_ref_kill(&data->node->refs);
7987 io_sqe_files_set_node(data, ref_node);
7989 destroy_fixed_file_ref_node(ref_node);
7991 return done ? done : err;
7994 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7997 struct io_uring_files_update up;
7999 if (!ctx->file_data)
8003 if (copy_from_user(&up, arg, sizeof(up)))
8008 return __io_sqe_files_update(ctx, &up, nr_args);
8011 static void io_free_work(struct io_wq_work *work)
8013 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8015 /* Consider that io_steal_work() relies on this ref */
8019 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8020 struct io_uring_params *p)
8022 struct io_wq_data data;
8024 struct io_ring_ctx *ctx_attach;
8025 unsigned int concurrency;
8028 data.user = ctx->user;
8029 data.free_work = io_free_work;
8030 data.do_work = io_wq_submit_work;
8032 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8033 /* Do QD, or 4 * CPUS, whatever is smallest */
8034 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8036 ctx->io_wq = io_wq_create(concurrency, &data);
8037 if (IS_ERR(ctx->io_wq)) {
8038 ret = PTR_ERR(ctx->io_wq);
8044 f = fdget(p->wq_fd);
8048 if (f.file->f_op != &io_uring_fops) {
8053 ctx_attach = f.file->private_data;
8054 /* @io_wq is protected by holding the fd */
8055 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8060 ctx->io_wq = ctx_attach->io_wq;
8066 static int io_uring_alloc_task_context(struct task_struct *task)
8068 struct io_uring_task *tctx;
8071 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8072 if (unlikely(!tctx))
8075 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8076 if (unlikely(ret)) {
8082 init_waitqueue_head(&tctx->wait);
8084 atomic_set(&tctx->in_idle, 0);
8085 tctx->sqpoll = false;
8086 io_init_identity(&tctx->__identity);
8087 tctx->identity = &tctx->__identity;
8088 task->io_uring = tctx;
8092 void __io_uring_free(struct task_struct *tsk)
8094 struct io_uring_task *tctx = tsk->io_uring;
8096 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8097 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8098 if (tctx->identity != &tctx->__identity)
8099 kfree(tctx->identity);
8100 percpu_counter_destroy(&tctx->inflight);
8102 tsk->io_uring = NULL;
8105 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8106 struct io_uring_params *p)
8110 if (ctx->flags & IORING_SETUP_SQPOLL) {
8111 struct io_sq_data *sqd;
8114 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8117 sqd = io_get_sq_data(p);
8124 io_sq_thread_park(sqd);
8125 mutex_lock(&sqd->ctx_lock);
8126 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8127 mutex_unlock(&sqd->ctx_lock);
8128 io_sq_thread_unpark(sqd);
8130 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8131 if (!ctx->sq_thread_idle)
8132 ctx->sq_thread_idle = HZ;
8137 if (p->flags & IORING_SETUP_SQ_AFF) {
8138 int cpu = p->sq_thread_cpu;
8141 if (cpu >= nr_cpu_ids)
8143 if (!cpu_online(cpu))
8146 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8147 cpu, "io_uring-sq");
8149 sqd->thread = kthread_create(io_sq_thread, sqd,
8152 if (IS_ERR(sqd->thread)) {
8153 ret = PTR_ERR(sqd->thread);
8157 ret = io_uring_alloc_task_context(sqd->thread);
8160 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8161 /* Can't have SQ_AFF without SQPOLL */
8167 ret = io_init_wq_offload(ctx, p);
8173 io_finish_async(ctx);
8177 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8179 struct io_sq_data *sqd = ctx->sq_data;
8181 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8182 wake_up_process(sqd->thread);
8185 static inline void __io_unaccount_mem(struct user_struct *user,
8186 unsigned long nr_pages)
8188 atomic_long_sub(nr_pages, &user->locked_vm);
8191 static inline int __io_account_mem(struct user_struct *user,
8192 unsigned long nr_pages)
8194 unsigned long page_limit, cur_pages, new_pages;
8196 /* Don't allow more pages than we can safely lock */
8197 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8200 cur_pages = atomic_long_read(&user->locked_vm);
8201 new_pages = cur_pages + nr_pages;
8202 if (new_pages > page_limit)
8204 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8205 new_pages) != cur_pages);
8210 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8211 enum io_mem_account acct)
8214 __io_unaccount_mem(ctx->user, nr_pages);
8216 if (ctx->mm_account) {
8217 if (acct == ACCT_LOCKED) {
8218 mmap_write_lock(ctx->mm_account);
8219 ctx->mm_account->locked_vm -= nr_pages;
8220 mmap_write_unlock(ctx->mm_account);
8221 }else if (acct == ACCT_PINNED) {
8222 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8227 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8228 enum io_mem_account acct)
8232 if (ctx->limit_mem) {
8233 ret = __io_account_mem(ctx->user, nr_pages);
8238 if (ctx->mm_account) {
8239 if (acct == ACCT_LOCKED) {
8240 mmap_write_lock(ctx->mm_account);
8241 ctx->mm_account->locked_vm += nr_pages;
8242 mmap_write_unlock(ctx->mm_account);
8243 } else if (acct == ACCT_PINNED) {
8244 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8251 static void io_mem_free(void *ptr)
8258 page = virt_to_head_page(ptr);
8259 if (put_page_testzero(page))
8260 free_compound_page(page);
8263 static void *io_mem_alloc(size_t size)
8265 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8268 return (void *) __get_free_pages(gfp_flags, get_order(size));
8271 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8274 struct io_rings *rings;
8275 size_t off, sq_array_size;
8277 off = struct_size(rings, cqes, cq_entries);
8278 if (off == SIZE_MAX)
8282 off = ALIGN(off, SMP_CACHE_BYTES);
8290 sq_array_size = array_size(sizeof(u32), sq_entries);
8291 if (sq_array_size == SIZE_MAX)
8294 if (check_add_overflow(off, sq_array_size, &off))
8300 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8304 pages = (size_t)1 << get_order(
8305 rings_size(sq_entries, cq_entries, NULL));
8306 pages += (size_t)1 << get_order(
8307 array_size(sizeof(struct io_uring_sqe), sq_entries));
8312 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8316 if (!ctx->user_bufs)
8319 for (i = 0; i < ctx->nr_user_bufs; i++) {
8320 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8322 for (j = 0; j < imu->nr_bvecs; j++)
8323 unpin_user_page(imu->bvec[j].bv_page);
8325 if (imu->acct_pages)
8326 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8331 kfree(ctx->user_bufs);
8332 ctx->user_bufs = NULL;
8333 ctx->nr_user_bufs = 0;
8337 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8338 void __user *arg, unsigned index)
8340 struct iovec __user *src;
8342 #ifdef CONFIG_COMPAT
8344 struct compat_iovec __user *ciovs;
8345 struct compat_iovec ciov;
8347 ciovs = (struct compat_iovec __user *) arg;
8348 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8351 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8352 dst->iov_len = ciov.iov_len;
8356 src = (struct iovec __user *) arg;
8357 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8363 * Not super efficient, but this is just a registration time. And we do cache
8364 * the last compound head, so generally we'll only do a full search if we don't
8367 * We check if the given compound head page has already been accounted, to
8368 * avoid double accounting it. This allows us to account the full size of the
8369 * page, not just the constituent pages of a huge page.
8371 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8372 int nr_pages, struct page *hpage)
8376 /* check current page array */
8377 for (i = 0; i < nr_pages; i++) {
8378 if (!PageCompound(pages[i]))
8380 if (compound_head(pages[i]) == hpage)
8384 /* check previously registered pages */
8385 for (i = 0; i < ctx->nr_user_bufs; i++) {
8386 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8388 for (j = 0; j < imu->nr_bvecs; j++) {
8389 if (!PageCompound(imu->bvec[j].bv_page))
8391 if (compound_head(imu->bvec[j].bv_page) == hpage)
8399 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8400 int nr_pages, struct io_mapped_ubuf *imu,
8401 struct page **last_hpage)
8405 for (i = 0; i < nr_pages; i++) {
8406 if (!PageCompound(pages[i])) {
8411 hpage = compound_head(pages[i]);
8412 if (hpage == *last_hpage)
8414 *last_hpage = hpage;
8415 if (headpage_already_acct(ctx, pages, i, hpage))
8417 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8421 if (!imu->acct_pages)
8424 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8426 imu->acct_pages = 0;
8430 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8433 struct vm_area_struct **vmas = NULL;
8434 struct page **pages = NULL;
8435 struct page *last_hpage = NULL;
8436 int i, j, got_pages = 0;
8441 if (!nr_args || nr_args > UIO_MAXIOV)
8444 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8446 if (!ctx->user_bufs)
8449 for (i = 0; i < nr_args; i++) {
8450 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8451 unsigned long off, start, end, ubuf;
8456 ret = io_copy_iov(ctx, &iov, arg, i);
8461 * Don't impose further limits on the size and buffer
8462 * constraints here, we'll -EINVAL later when IO is
8463 * submitted if they are wrong.
8466 if (!iov.iov_base || !iov.iov_len)
8469 /* arbitrary limit, but we need something */
8470 if (iov.iov_len > SZ_1G)
8473 ubuf = (unsigned long) iov.iov_base;
8474 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8475 start = ubuf >> PAGE_SHIFT;
8476 nr_pages = end - start;
8479 if (!pages || nr_pages > got_pages) {
8482 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8484 vmas = kvmalloc_array(nr_pages,
8485 sizeof(struct vm_area_struct *),
8487 if (!pages || !vmas) {
8491 got_pages = nr_pages;
8494 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8501 mmap_read_lock(current->mm);
8502 pret = pin_user_pages(ubuf, nr_pages,
8503 FOLL_WRITE | FOLL_LONGTERM,
8505 if (pret == nr_pages) {
8506 /* don't support file backed memory */
8507 for (j = 0; j < nr_pages; j++) {
8508 struct vm_area_struct *vma = vmas[j];
8511 !is_file_hugepages(vma->vm_file)) {
8517 ret = pret < 0 ? pret : -EFAULT;
8519 mmap_read_unlock(current->mm);
8522 * if we did partial map, or found file backed vmas,
8523 * release any pages we did get
8526 unpin_user_pages(pages, pret);
8531 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8533 unpin_user_pages(pages, pret);
8538 off = ubuf & ~PAGE_MASK;
8540 for (j = 0; j < nr_pages; j++) {
8543 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8544 imu->bvec[j].bv_page = pages[j];
8545 imu->bvec[j].bv_len = vec_len;
8546 imu->bvec[j].bv_offset = off;
8550 /* store original address for later verification */
8552 imu->len = iov.iov_len;
8553 imu->nr_bvecs = nr_pages;
8555 ctx->nr_user_bufs++;
8563 io_sqe_buffer_unregister(ctx);
8567 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8569 __s32 __user *fds = arg;
8575 if (copy_from_user(&fd, fds, sizeof(*fds)))
8578 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8579 if (IS_ERR(ctx->cq_ev_fd)) {
8580 int ret = PTR_ERR(ctx->cq_ev_fd);
8581 ctx->cq_ev_fd = NULL;
8588 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8590 if (ctx->cq_ev_fd) {
8591 eventfd_ctx_put(ctx->cq_ev_fd);
8592 ctx->cq_ev_fd = NULL;
8599 static int __io_destroy_buffers(int id, void *p, void *data)
8601 struct io_ring_ctx *ctx = data;
8602 struct io_buffer *buf = p;
8604 __io_remove_buffers(ctx, buf, id, -1U);
8608 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8610 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8611 idr_destroy(&ctx->io_buffer_idr);
8614 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8616 io_finish_async(ctx);
8617 io_sqe_buffer_unregister(ctx);
8619 if (ctx->sqo_task) {
8620 put_task_struct(ctx->sqo_task);
8621 ctx->sqo_task = NULL;
8622 mmdrop(ctx->mm_account);
8623 ctx->mm_account = NULL;
8626 #ifdef CONFIG_BLK_CGROUP
8627 if (ctx->sqo_blkcg_css)
8628 css_put(ctx->sqo_blkcg_css);
8631 io_sqe_files_unregister(ctx);
8632 io_eventfd_unregister(ctx);
8633 io_destroy_buffers(ctx);
8634 idr_destroy(&ctx->personality_idr);
8636 #if defined(CONFIG_UNIX)
8637 if (ctx->ring_sock) {
8638 ctx->ring_sock->file = NULL; /* so that iput() is called */
8639 sock_release(ctx->ring_sock);
8643 io_mem_free(ctx->rings);
8644 io_mem_free(ctx->sq_sqes);
8646 percpu_ref_exit(&ctx->refs);
8647 free_uid(ctx->user);
8648 put_cred(ctx->creds);
8649 kfree(ctx->cancel_hash);
8650 kmem_cache_free(req_cachep, ctx->fallback_req);
8654 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8656 struct io_ring_ctx *ctx = file->private_data;
8659 poll_wait(file, &ctx->cq_wait, wait);
8661 * synchronizes with barrier from wq_has_sleeper call in
8665 if (!io_sqring_full(ctx))
8666 mask |= EPOLLOUT | EPOLLWRNORM;
8667 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8668 if (io_cqring_events(ctx))
8669 mask |= EPOLLIN | EPOLLRDNORM;
8674 static int io_uring_fasync(int fd, struct file *file, int on)
8676 struct io_ring_ctx *ctx = file->private_data;
8678 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8681 static int io_remove_personalities(int id, void *p, void *data)
8683 struct io_ring_ctx *ctx = data;
8684 struct io_identity *iod;
8686 iod = idr_remove(&ctx->personality_idr, id);
8688 put_cred(iod->creds);
8689 if (refcount_dec_and_test(&iod->count))
8695 static void io_ring_exit_work(struct work_struct *work)
8697 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8701 * If we're doing polled IO and end up having requests being
8702 * submitted async (out-of-line), then completions can come in while
8703 * we're waiting for refs to drop. We need to reap these manually,
8704 * as nobody else will be looking for them.
8707 __io_uring_cancel_task_requests(ctx, NULL);
8708 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8709 io_ring_ctx_free(ctx);
8712 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8714 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8716 return req->ctx == data;
8719 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8721 mutex_lock(&ctx->uring_lock);
8722 percpu_ref_kill(&ctx->refs);
8724 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8727 /* if force is set, the ring is going away. always drop after that */
8728 ctx->cq_overflow_flushed = 1;
8730 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8731 mutex_unlock(&ctx->uring_lock);
8733 io_kill_timeouts(ctx, NULL, NULL);
8734 io_poll_remove_all(ctx, NULL, NULL);
8737 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8739 /* if we failed setting up the ctx, we might not have any rings */
8740 io_iopoll_try_reap_events(ctx);
8741 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8744 * Do this upfront, so we won't have a grace period where the ring
8745 * is closed but resources aren't reaped yet. This can cause
8746 * spurious failure in setting up a new ring.
8748 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8751 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8753 * Use system_unbound_wq to avoid spawning tons of event kworkers
8754 * if we're exiting a ton of rings at the same time. It just adds
8755 * noise and overhead, there's no discernable change in runtime
8756 * over using system_wq.
8758 queue_work(system_unbound_wq, &ctx->exit_work);
8761 static int io_uring_release(struct inode *inode, struct file *file)
8763 struct io_ring_ctx *ctx = file->private_data;
8765 file->private_data = NULL;
8766 io_ring_ctx_wait_and_kill(ctx);
8770 struct io_task_cancel {
8771 struct task_struct *task;
8772 struct files_struct *files;
8775 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8777 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8778 struct io_task_cancel *cancel = data;
8781 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8782 unsigned long flags;
8783 struct io_ring_ctx *ctx = req->ctx;
8785 /* protect against races with linked timeouts */
8786 spin_lock_irqsave(&ctx->completion_lock, flags);
8787 ret = io_match_task(req, cancel->task, cancel->files);
8788 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8790 ret = io_match_task(req, cancel->task, cancel->files);
8795 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8796 struct task_struct *task,
8797 struct files_struct *files)
8799 struct io_defer_entry *de = NULL;
8802 spin_lock_irq(&ctx->completion_lock);
8803 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8804 if (io_match_task(de->req, task, files)) {
8805 list_cut_position(&list, &ctx->defer_list, &de->list);
8809 spin_unlock_irq(&ctx->completion_lock);
8811 while (!list_empty(&list)) {
8812 de = list_first_entry(&list, struct io_defer_entry, list);
8813 list_del_init(&de->list);
8814 req_set_fail_links(de->req);
8815 io_put_req(de->req);
8816 io_req_complete(de->req, -ECANCELED);
8821 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8822 struct task_struct *task,
8823 struct files_struct *files)
8825 while (!list_empty_careful(&ctx->inflight_list)) {
8826 struct io_task_cancel cancel = { .task = task, .files = files };
8827 struct io_kiocb *req;
8831 spin_lock_irq(&ctx->inflight_lock);
8832 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8833 if (req->task != task ||
8834 req->work.identity->files != files)
8840 prepare_to_wait(&task->io_uring->wait, &wait,
8841 TASK_UNINTERRUPTIBLE);
8842 spin_unlock_irq(&ctx->inflight_lock);
8844 /* We need to keep going until we don't find a matching req */
8848 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8849 io_poll_remove_all(ctx, task, files);
8850 io_kill_timeouts(ctx, task, files);
8851 /* cancellations _may_ trigger task work */
8854 finish_wait(&task->io_uring->wait, &wait);
8858 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8859 struct task_struct *task)
8862 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8863 enum io_wq_cancel cret;
8867 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8869 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8872 /* SQPOLL thread does its own polling */
8873 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8874 while (!list_empty_careful(&ctx->iopoll_list)) {
8875 io_iopoll_try_reap_events(ctx);
8880 ret |= io_poll_remove_all(ctx, task, NULL);
8881 ret |= io_kill_timeouts(ctx, task, NULL);
8882 ret |= io_run_task_work();
8889 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8891 WARN_ON_ONCE(ctx->sqo_task != current);
8893 mutex_lock(&ctx->uring_lock);
8895 mutex_unlock(&ctx->uring_lock);
8897 /* make sure callers enter the ring to get error */
8898 io_ring_set_wakeup_flag(ctx);
8902 * We need to iteratively cancel requests, in case a request has dependent
8903 * hard links. These persist even for failure of cancelations, hence keep
8904 * looping until none are found.
8906 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8907 struct files_struct *files)
8909 struct task_struct *task = current;
8911 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8912 /* for SQPOLL only sqo_task has task notes */
8913 io_disable_sqo_submit(ctx);
8914 task = ctx->sq_data->thread;
8915 atomic_inc(&task->io_uring->in_idle);
8916 io_sq_thread_park(ctx->sq_data);
8919 io_cancel_defer_files(ctx, task, files);
8920 io_cqring_overflow_flush(ctx, true, task, files);
8923 __io_uring_cancel_task_requests(ctx, task);
8925 io_uring_cancel_files(ctx, task, files);
8927 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8928 atomic_dec(&task->io_uring->in_idle);
8930 * If the files that are going away are the ones in the thread
8931 * identity, clear them out.
8933 if (task->io_uring->identity->files == files)
8934 task->io_uring->identity->files = NULL;
8935 io_sq_thread_unpark(ctx->sq_data);
8940 * Note that this task has used io_uring. We use it for cancelation purposes.
8942 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8944 struct io_uring_task *tctx = current->io_uring;
8947 if (unlikely(!tctx)) {
8948 ret = io_uring_alloc_task_context(current);
8951 tctx = current->io_uring;
8953 if (tctx->last != file) {
8954 void *old = xa_load(&tctx->xa, (unsigned long)file);
8958 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8969 * This is race safe in that the task itself is doing this, hence it
8970 * cannot be going through the exit/cancel paths at the same time.
8971 * This cannot be modified while exit/cancel is running.
8973 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8974 tctx->sqpoll = true;
8980 * Remove this io_uring_file -> task mapping.
8982 static void io_uring_del_task_file(struct file *file)
8984 struct io_uring_task *tctx = current->io_uring;
8986 if (tctx->last == file)
8988 file = xa_erase(&tctx->xa, (unsigned long)file);
8993 static void io_uring_remove_task_files(struct io_uring_task *tctx)
8996 unsigned long index;
8998 xa_for_each(&tctx->xa, index, file)
8999 io_uring_del_task_file(file);
9002 void __io_uring_files_cancel(struct files_struct *files)
9004 struct io_uring_task *tctx = current->io_uring;
9006 unsigned long index;
9008 /* make sure overflow events are dropped */
9009 atomic_inc(&tctx->in_idle);
9010 xa_for_each(&tctx->xa, index, file)
9011 io_uring_cancel_task_requests(file->private_data, files);
9012 atomic_dec(&tctx->in_idle);
9015 io_uring_remove_task_files(tctx);
9018 static s64 tctx_inflight(struct io_uring_task *tctx)
9020 unsigned long index;
9024 inflight = percpu_counter_sum(&tctx->inflight);
9029 * If we have SQPOLL rings, then we need to iterate and find them, and
9030 * add the pending count for those.
9032 xa_for_each(&tctx->xa, index, file) {
9033 struct io_ring_ctx *ctx = file->private_data;
9035 if (ctx->flags & IORING_SETUP_SQPOLL) {
9036 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9038 inflight += percpu_counter_sum(&__tctx->inflight);
9046 * Find any io_uring fd that this task has registered or done IO on, and cancel
9049 void __io_uring_task_cancel(void)
9051 struct io_uring_task *tctx = current->io_uring;
9055 /* make sure overflow events are dropped */
9056 atomic_inc(&tctx->in_idle);
9059 /* read completions before cancelations */
9060 inflight = tctx_inflight(tctx);
9063 __io_uring_files_cancel(NULL);
9065 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9068 * If we've seen completions, retry. This avoids a race where
9069 * a completion comes in before we did prepare_to_wait().
9071 if (inflight != tctx_inflight(tctx))
9074 finish_wait(&tctx->wait, &wait);
9077 atomic_dec(&tctx->in_idle);
9079 io_uring_remove_task_files(tctx);
9082 static int io_uring_flush(struct file *file, void *data)
9084 struct io_uring_task *tctx = current->io_uring;
9085 struct io_ring_ctx *ctx = file->private_data;
9090 /* we should have cancelled and erased it before PF_EXITING */
9091 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9092 xa_load(&tctx->xa, (unsigned long)file));
9095 * fput() is pending, will be 2 if the only other ref is our potential
9096 * task file note. If the task is exiting, drop regardless of count.
9098 if (atomic_long_read(&file->f_count) != 2)
9101 if (ctx->flags & IORING_SETUP_SQPOLL) {
9102 /* there is only one file note, which is owned by sqo_task */
9103 WARN_ON_ONCE((ctx->sqo_task == current) ==
9104 !xa_load(&tctx->xa, (unsigned long)file));
9106 io_disable_sqo_submit(ctx);
9109 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9110 io_uring_del_task_file(file);
9114 static void *io_uring_validate_mmap_request(struct file *file,
9115 loff_t pgoff, size_t sz)
9117 struct io_ring_ctx *ctx = file->private_data;
9118 loff_t offset = pgoff << PAGE_SHIFT;
9123 case IORING_OFF_SQ_RING:
9124 case IORING_OFF_CQ_RING:
9127 case IORING_OFF_SQES:
9131 return ERR_PTR(-EINVAL);
9134 page = virt_to_head_page(ptr);
9135 if (sz > page_size(page))
9136 return ERR_PTR(-EINVAL);
9143 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9145 size_t sz = vma->vm_end - vma->vm_start;
9149 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9151 return PTR_ERR(ptr);
9153 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9154 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9157 #else /* !CONFIG_MMU */
9159 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9161 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9164 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9166 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9169 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9170 unsigned long addr, unsigned long len,
9171 unsigned long pgoff, unsigned long flags)
9175 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9177 return PTR_ERR(ptr);
9179 return (unsigned long) ptr;
9182 #endif /* !CONFIG_MMU */
9184 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9190 if (!io_sqring_full(ctx))
9193 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9195 if (unlikely(ctx->sqo_dead)) {
9200 if (!io_sqring_full(ctx))
9204 } while (!signal_pending(current));
9206 finish_wait(&ctx->sqo_sq_wait, &wait);
9211 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9212 struct __kernel_timespec __user **ts,
9213 const sigset_t __user **sig)
9215 struct io_uring_getevents_arg arg;
9218 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9219 * is just a pointer to the sigset_t.
9221 if (!(flags & IORING_ENTER_EXT_ARG)) {
9222 *sig = (const sigset_t __user *) argp;
9228 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9229 * timespec and sigset_t pointers if good.
9231 if (*argsz != sizeof(arg))
9233 if (copy_from_user(&arg, argp, sizeof(arg)))
9235 *sig = u64_to_user_ptr(arg.sigmask);
9236 *argsz = arg.sigmask_sz;
9237 *ts = u64_to_user_ptr(arg.ts);
9241 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9242 u32, min_complete, u32, flags, const void __user *, argp,
9245 struct io_ring_ctx *ctx;
9252 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9253 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9261 if (f.file->f_op != &io_uring_fops)
9265 ctx = f.file->private_data;
9266 if (!percpu_ref_tryget(&ctx->refs))
9270 if (ctx->flags & IORING_SETUP_R_DISABLED)
9274 * For SQ polling, the thread will do all submissions and completions.
9275 * Just return the requested submit count, and wake the thread if
9279 if (ctx->flags & IORING_SETUP_SQPOLL) {
9280 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9283 if (unlikely(ctx->sqo_dead))
9285 if (flags & IORING_ENTER_SQ_WAKEUP)
9286 wake_up(&ctx->sq_data->wait);
9287 if (flags & IORING_ENTER_SQ_WAIT) {
9288 ret = io_sqpoll_wait_sq(ctx);
9292 submitted = to_submit;
9293 } else if (to_submit) {
9294 ret = io_uring_add_task_file(ctx, f.file);
9297 mutex_lock(&ctx->uring_lock);
9298 submitted = io_submit_sqes(ctx, to_submit);
9299 mutex_unlock(&ctx->uring_lock);
9301 if (submitted != to_submit)
9304 if (flags & IORING_ENTER_GETEVENTS) {
9305 const sigset_t __user *sig;
9306 struct __kernel_timespec __user *ts;
9308 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9312 min_complete = min(min_complete, ctx->cq_entries);
9315 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9316 * space applications don't need to do io completion events
9317 * polling again, they can rely on io_sq_thread to do polling
9318 * work, which can reduce cpu usage and uring_lock contention.
9320 if (ctx->flags & IORING_SETUP_IOPOLL &&
9321 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9322 ret = io_iopoll_check(ctx, min_complete);
9324 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9329 percpu_ref_put(&ctx->refs);
9332 return submitted ? submitted : ret;
9335 #ifdef CONFIG_PROC_FS
9336 static int io_uring_show_cred(int id, void *p, void *data)
9338 struct io_identity *iod = p;
9339 const struct cred *cred = iod->creds;
9340 struct seq_file *m = data;
9341 struct user_namespace *uns = seq_user_ns(m);
9342 struct group_info *gi;
9347 seq_printf(m, "%5d\n", id);
9348 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9349 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9350 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9351 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9352 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9353 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9354 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9355 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9356 seq_puts(m, "\n\tGroups:\t");
9357 gi = cred->group_info;
9358 for (g = 0; g < gi->ngroups; g++) {
9359 seq_put_decimal_ull(m, g ? " " : "",
9360 from_kgid_munged(uns, gi->gid[g]));
9362 seq_puts(m, "\n\tCapEff:\t");
9363 cap = cred->cap_effective;
9364 CAP_FOR_EACH_U32(__capi)
9365 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9370 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9372 struct io_sq_data *sq = NULL;
9377 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9378 * since fdinfo case grabs it in the opposite direction of normal use
9379 * cases. If we fail to get the lock, we just don't iterate any
9380 * structures that could be going away outside the io_uring mutex.
9382 has_lock = mutex_trylock(&ctx->uring_lock);
9384 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9387 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9388 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9389 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9390 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9391 struct fixed_file_table *table;
9394 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9395 f = table->files[i & IORING_FILE_TABLE_MASK];
9397 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9399 seq_printf(m, "%5u: <none>\n", i);
9401 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9402 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9403 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9405 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9406 (unsigned int) buf->len);
9408 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9409 seq_printf(m, "Personalities:\n");
9410 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9412 seq_printf(m, "PollList:\n");
9413 spin_lock_irq(&ctx->completion_lock);
9414 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9415 struct hlist_head *list = &ctx->cancel_hash[i];
9416 struct io_kiocb *req;
9418 hlist_for_each_entry(req, list, hash_node)
9419 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9420 req->task->task_works != NULL);
9422 spin_unlock_irq(&ctx->completion_lock);
9424 mutex_unlock(&ctx->uring_lock);
9427 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9429 struct io_ring_ctx *ctx = f->private_data;
9431 if (percpu_ref_tryget(&ctx->refs)) {
9432 __io_uring_show_fdinfo(ctx, m);
9433 percpu_ref_put(&ctx->refs);
9438 static const struct file_operations io_uring_fops = {
9439 .release = io_uring_release,
9440 .flush = io_uring_flush,
9441 .mmap = io_uring_mmap,
9443 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9444 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9446 .poll = io_uring_poll,
9447 .fasync = io_uring_fasync,
9448 #ifdef CONFIG_PROC_FS
9449 .show_fdinfo = io_uring_show_fdinfo,
9453 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9454 struct io_uring_params *p)
9456 struct io_rings *rings;
9457 size_t size, sq_array_offset;
9459 /* make sure these are sane, as we already accounted them */
9460 ctx->sq_entries = p->sq_entries;
9461 ctx->cq_entries = p->cq_entries;
9463 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9464 if (size == SIZE_MAX)
9467 rings = io_mem_alloc(size);
9472 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9473 rings->sq_ring_mask = p->sq_entries - 1;
9474 rings->cq_ring_mask = p->cq_entries - 1;
9475 rings->sq_ring_entries = p->sq_entries;
9476 rings->cq_ring_entries = p->cq_entries;
9477 ctx->sq_mask = rings->sq_ring_mask;
9478 ctx->cq_mask = rings->cq_ring_mask;
9480 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9481 if (size == SIZE_MAX) {
9482 io_mem_free(ctx->rings);
9487 ctx->sq_sqes = io_mem_alloc(size);
9488 if (!ctx->sq_sqes) {
9489 io_mem_free(ctx->rings);
9497 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9501 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9505 ret = io_uring_add_task_file(ctx, file);
9510 fd_install(fd, file);
9515 * Allocate an anonymous fd, this is what constitutes the application
9516 * visible backing of an io_uring instance. The application mmaps this
9517 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9518 * we have to tie this fd to a socket for file garbage collection purposes.
9520 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9523 #if defined(CONFIG_UNIX)
9526 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9529 return ERR_PTR(ret);
9532 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9533 O_RDWR | O_CLOEXEC);
9534 #if defined(CONFIG_UNIX)
9536 sock_release(ctx->ring_sock);
9537 ctx->ring_sock = NULL;
9539 ctx->ring_sock->file = file;
9545 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9546 struct io_uring_params __user *params)
9548 struct user_struct *user = NULL;
9549 struct io_ring_ctx *ctx;
9556 if (entries > IORING_MAX_ENTRIES) {
9557 if (!(p->flags & IORING_SETUP_CLAMP))
9559 entries = IORING_MAX_ENTRIES;
9563 * Use twice as many entries for the CQ ring. It's possible for the
9564 * application to drive a higher depth than the size of the SQ ring,
9565 * since the sqes are only used at submission time. This allows for
9566 * some flexibility in overcommitting a bit. If the application has
9567 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9568 * of CQ ring entries manually.
9570 p->sq_entries = roundup_pow_of_two(entries);
9571 if (p->flags & IORING_SETUP_CQSIZE) {
9573 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9574 * to a power-of-two, if it isn't already. We do NOT impose
9575 * any cq vs sq ring sizing.
9579 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9580 if (!(p->flags & IORING_SETUP_CLAMP))
9582 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9584 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9585 if (p->cq_entries < p->sq_entries)
9588 p->cq_entries = 2 * p->sq_entries;
9591 user = get_uid(current_user());
9592 limit_mem = !capable(CAP_IPC_LOCK);
9595 ret = __io_account_mem(user,
9596 ring_pages(p->sq_entries, p->cq_entries));
9603 ctx = io_ring_ctx_alloc(p);
9606 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9611 ctx->compat = in_compat_syscall();
9613 ctx->creds = get_current_cred();
9615 ctx->loginuid = current->loginuid;
9616 ctx->sessionid = current->sessionid;
9618 ctx->sqo_task = get_task_struct(current);
9621 * This is just grabbed for accounting purposes. When a process exits,
9622 * the mm is exited and dropped before the files, hence we need to hang
9623 * on to this mm purely for the purposes of being able to unaccount
9624 * memory (locked/pinned vm). It's not used for anything else.
9626 mmgrab(current->mm);
9627 ctx->mm_account = current->mm;
9629 #ifdef CONFIG_BLK_CGROUP
9631 * The sq thread will belong to the original cgroup it was inited in.
9632 * If the cgroup goes offline (e.g. disabling the io controller), then
9633 * issued bios will be associated with the closest cgroup later in the
9637 ctx->sqo_blkcg_css = blkcg_css();
9638 ret = css_tryget_online(ctx->sqo_blkcg_css);
9641 /* don't init against a dying cgroup, have the user try again */
9642 ctx->sqo_blkcg_css = NULL;
9649 * Account memory _before_ installing the file descriptor. Once
9650 * the descriptor is installed, it can get closed at any time. Also
9651 * do this before hitting the general error path, as ring freeing
9652 * will un-account as well.
9654 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9656 ctx->limit_mem = limit_mem;
9658 ret = io_allocate_scq_urings(ctx, p);
9662 ret = io_sq_offload_create(ctx, p);
9666 if (!(p->flags & IORING_SETUP_R_DISABLED))
9667 io_sq_offload_start(ctx);
9669 memset(&p->sq_off, 0, sizeof(p->sq_off));
9670 p->sq_off.head = offsetof(struct io_rings, sq.head);
9671 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9672 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9673 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9674 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9675 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9676 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9678 memset(&p->cq_off, 0, sizeof(p->cq_off));
9679 p->cq_off.head = offsetof(struct io_rings, cq.head);
9680 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9681 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9682 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9683 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9684 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9685 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9687 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9688 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9689 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9690 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9691 IORING_FEAT_EXT_ARG;
9693 if (copy_to_user(params, p, sizeof(*p))) {
9698 file = io_uring_get_file(ctx);
9700 ret = PTR_ERR(file);
9705 * Install ring fd as the very last thing, so we don't risk someone
9706 * having closed it before we finish setup
9708 ret = io_uring_install_fd(ctx, file);
9710 /* fput will clean it up */
9715 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9718 io_disable_sqo_submit(ctx);
9719 io_ring_ctx_wait_and_kill(ctx);
9724 * Sets up an aio uring context, and returns the fd. Applications asks for a
9725 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9726 * params structure passed in.
9728 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9730 struct io_uring_params p;
9733 if (copy_from_user(&p, params, sizeof(p)))
9735 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9740 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9741 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9742 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9743 IORING_SETUP_R_DISABLED))
9746 return io_uring_create(entries, &p, params);
9749 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9750 struct io_uring_params __user *, params)
9752 return io_uring_setup(entries, params);
9755 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9757 struct io_uring_probe *p;
9761 size = struct_size(p, ops, nr_args);
9762 if (size == SIZE_MAX)
9764 p = kzalloc(size, GFP_KERNEL);
9769 if (copy_from_user(p, arg, size))
9772 if (memchr_inv(p, 0, size))
9775 p->last_op = IORING_OP_LAST - 1;
9776 if (nr_args > IORING_OP_LAST)
9777 nr_args = IORING_OP_LAST;
9779 for (i = 0; i < nr_args; i++) {
9781 if (!io_op_defs[i].not_supported)
9782 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9787 if (copy_to_user(arg, p, size))
9794 static int io_register_personality(struct io_ring_ctx *ctx)
9796 struct io_identity *id;
9799 id = kmalloc(sizeof(*id), GFP_KERNEL);
9803 io_init_identity(id);
9804 id->creds = get_current_cred();
9806 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9808 put_cred(id->creds);
9814 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9816 struct io_identity *iod;
9818 iod = idr_remove(&ctx->personality_idr, id);
9820 put_cred(iod->creds);
9821 if (refcount_dec_and_test(&iod->count))
9829 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9830 unsigned int nr_args)
9832 struct io_uring_restriction *res;
9836 /* Restrictions allowed only if rings started disabled */
9837 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9840 /* We allow only a single restrictions registration */
9841 if (ctx->restrictions.registered)
9844 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9847 size = array_size(nr_args, sizeof(*res));
9848 if (size == SIZE_MAX)
9851 res = memdup_user(arg, size);
9853 return PTR_ERR(res);
9857 for (i = 0; i < nr_args; i++) {
9858 switch (res[i].opcode) {
9859 case IORING_RESTRICTION_REGISTER_OP:
9860 if (res[i].register_op >= IORING_REGISTER_LAST) {
9865 __set_bit(res[i].register_op,
9866 ctx->restrictions.register_op);
9868 case IORING_RESTRICTION_SQE_OP:
9869 if (res[i].sqe_op >= IORING_OP_LAST) {
9874 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9876 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9877 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9879 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9880 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9889 /* Reset all restrictions if an error happened */
9891 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9893 ctx->restrictions.registered = true;
9899 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9901 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9904 if (ctx->restrictions.registered)
9905 ctx->restricted = 1;
9907 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9909 io_sq_offload_start(ctx);
9914 static bool io_register_op_must_quiesce(int op)
9917 case IORING_UNREGISTER_FILES:
9918 case IORING_REGISTER_FILES_UPDATE:
9919 case IORING_REGISTER_PROBE:
9920 case IORING_REGISTER_PERSONALITY:
9921 case IORING_UNREGISTER_PERSONALITY:
9928 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9929 void __user *arg, unsigned nr_args)
9930 __releases(ctx->uring_lock)
9931 __acquires(ctx->uring_lock)
9936 * We're inside the ring mutex, if the ref is already dying, then
9937 * someone else killed the ctx or is already going through
9938 * io_uring_register().
9940 if (percpu_ref_is_dying(&ctx->refs))
9943 if (io_register_op_must_quiesce(opcode)) {
9944 percpu_ref_kill(&ctx->refs);
9947 * Drop uring mutex before waiting for references to exit. If
9948 * another thread is currently inside io_uring_enter() it might
9949 * need to grab the uring_lock to make progress. If we hold it
9950 * here across the drain wait, then we can deadlock. It's safe
9951 * to drop the mutex here, since no new references will come in
9952 * after we've killed the percpu ref.
9954 mutex_unlock(&ctx->uring_lock);
9956 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9959 ret = io_run_task_work_sig();
9964 mutex_lock(&ctx->uring_lock);
9967 percpu_ref_resurrect(&ctx->refs);
9972 if (ctx->restricted) {
9973 if (opcode >= IORING_REGISTER_LAST) {
9978 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9985 case IORING_REGISTER_BUFFERS:
9986 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9988 case IORING_UNREGISTER_BUFFERS:
9992 ret = io_sqe_buffer_unregister(ctx);
9994 case IORING_REGISTER_FILES:
9995 ret = io_sqe_files_register(ctx, arg, nr_args);
9997 case IORING_UNREGISTER_FILES:
10001 ret = io_sqe_files_unregister(ctx);
10003 case IORING_REGISTER_FILES_UPDATE:
10004 ret = io_sqe_files_update(ctx, arg, nr_args);
10006 case IORING_REGISTER_EVENTFD:
10007 case IORING_REGISTER_EVENTFD_ASYNC:
10011 ret = io_eventfd_register(ctx, arg);
10014 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10015 ctx->eventfd_async = 1;
10017 ctx->eventfd_async = 0;
10019 case IORING_UNREGISTER_EVENTFD:
10021 if (arg || nr_args)
10023 ret = io_eventfd_unregister(ctx);
10025 case IORING_REGISTER_PROBE:
10027 if (!arg || nr_args > 256)
10029 ret = io_probe(ctx, arg, nr_args);
10031 case IORING_REGISTER_PERSONALITY:
10033 if (arg || nr_args)
10035 ret = io_register_personality(ctx);
10037 case IORING_UNREGISTER_PERSONALITY:
10041 ret = io_unregister_personality(ctx, nr_args);
10043 case IORING_REGISTER_ENABLE_RINGS:
10045 if (arg || nr_args)
10047 ret = io_register_enable_rings(ctx);
10049 case IORING_REGISTER_RESTRICTIONS:
10050 ret = io_register_restrictions(ctx, arg, nr_args);
10058 if (io_register_op_must_quiesce(opcode)) {
10059 /* bring the ctx back to life */
10060 percpu_ref_reinit(&ctx->refs);
10062 reinit_completion(&ctx->ref_comp);
10067 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10068 void __user *, arg, unsigned int, nr_args)
10070 struct io_ring_ctx *ctx;
10079 if (f.file->f_op != &io_uring_fops)
10082 ctx = f.file->private_data;
10084 mutex_lock(&ctx->uring_lock);
10085 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10086 mutex_unlock(&ctx->uring_lock);
10087 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10088 ctx->cq_ev_fd != NULL, ret);
10094 static int __init io_uring_init(void)
10096 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10097 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10098 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10101 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10102 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10103 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10104 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10105 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10106 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10107 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10108 BUILD_BUG_SQE_ELEM(8, __u64, off);
10109 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10110 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10111 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10112 BUILD_BUG_SQE_ELEM(24, __u32, len);
10113 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10114 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10115 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10116 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10117 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10118 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10119 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10120 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10121 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10122 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10123 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10124 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10125 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10126 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10127 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10128 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10129 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10130 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10131 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10133 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10134 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10135 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10138 __initcall(io_uring_init);