2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
90 EXPORT_SYMBOL(ib_event_msg);
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory management operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 size_t index = status;
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
124 EXPORT_SYMBOL(ib_wc_status_msg);
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
153 EXPORT_SYMBOL(ib_rate_to_mult);
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
182 EXPORT_SYMBOL(mult_to_ib_rate);
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
211 EXPORT_SYMBOL(ib_rate_to_mbps);
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
226 return RDMA_TRANSPORT_IB;
228 EXPORT_SYMBOL(rdma_node_get_transport);
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
232 enum rdma_transport_type lt;
233 if (device->ops.get_link_layer)
234 return device->ops.get_link_layer(device, port_num);
236 lt = rdma_node_get_transport(device->node_type);
237 if (lt == RDMA_TRANSPORT_IB)
238 return IB_LINK_LAYER_INFINIBAND;
240 return IB_LINK_LAYER_ETHERNET;
242 EXPORT_SYMBOL(rdma_port_get_link_layer);
244 /* Protection domains */
247 * __ib_alloc_pd - Allocates an unused protection domain.
248 * @device: The device on which to allocate the protection domain.
249 * @flags: protection domain flags
250 * @caller: caller's build-time module name
252 * A protection domain object provides an association between QPs, shared
253 * receive queues, address handles, memory regions, and memory windows.
255 * Every PD has a local_dma_lkey which can be used as the lkey value for local
258 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
262 int mr_access_flags = 0;
265 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 return ERR_PTR(-ENOMEM);
271 pd->__internal_mr = NULL;
272 atomic_set(&pd->usecnt, 0);
275 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
276 rdma_restrack_set_name(&pd->res, caller);
278 ret = device->ops.alloc_pd(pd, NULL);
280 rdma_restrack_put(&pd->res);
284 rdma_restrack_add(&pd->res);
286 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
287 pd->local_dma_lkey = device->local_dma_lkey;
289 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
292 pr_warn("%s: enabling unsafe global rkey\n", caller);
293 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
296 if (mr_access_flags) {
299 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
305 mr->device = pd->device;
307 mr->type = IB_MR_TYPE_DMA;
309 mr->need_inval = false;
311 pd->__internal_mr = mr;
313 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
314 pd->local_dma_lkey = pd->__internal_mr->lkey;
316 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
317 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
322 EXPORT_SYMBOL(__ib_alloc_pd);
325 * ib_dealloc_pd_user - Deallocates a protection domain.
326 * @pd: The protection domain to deallocate.
327 * @udata: Valid user data or NULL for kernel object
329 * It is an error to call this function while any resources in the pd still
330 * exist. The caller is responsible to synchronously destroy them and
331 * guarantee no new allocations will happen.
333 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
337 if (pd->__internal_mr) {
338 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 pd->__internal_mr = NULL;
343 /* uverbs manipulates usecnt with proper locking, while the kabi
344 requires the caller to guarantee we can't race here. */
345 WARN_ON(atomic_read(&pd->usecnt));
347 ret = pd->device->ops.dealloc_pd(pd, udata);
351 rdma_restrack_del(&pd->res);
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
357 /* Address handles */
360 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361 * @dest: Pointer to destination ah_attr. Contents of the destination
362 * pointer is assumed to be invalid and attribute are overwritten.
363 * @src: Pointer to source ah_attr.
365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366 const struct rdma_ah_attr *src)
369 if (dest->grh.sgid_attr)
370 rdma_hold_gid_attr(dest->grh.sgid_attr);
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
375 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
376 * @old: Pointer to existing ah_attr which needs to be replaced.
377 * old is assumed to be valid or zero'd
378 * @new: Pointer to the new ah_attr.
380 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381 * old the ah_attr is valid; after that it copies the new attribute and holds
382 * the reference to the replaced ah_attr.
384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385 const struct rdma_ah_attr *new)
387 rdma_destroy_ah_attr(old);
389 if (old->grh.sgid_attr)
390 rdma_hold_gid_attr(old->grh.sgid_attr);
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
395 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396 * @dest: Pointer to destination ah_attr to copy to.
397 * dest is assumed to be valid or zero'd
398 * @src: Pointer to the new ah_attr.
400 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401 * if it is valid. This also transfers ownership of internal references from
402 * src to dest, making src invalid in the process. No new reference of the src
405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
407 rdma_destroy_ah_attr(dest);
409 src->grh.sgid_attr = NULL;
411 EXPORT_SYMBOL(rdma_move_ah_attr);
414 * Validate that the rdma_ah_attr is valid for the device before passing it
417 static int rdma_check_ah_attr(struct ib_device *device,
418 struct rdma_ah_attr *ah_attr)
420 if (!rdma_is_port_valid(device, ah_attr->port_num))
423 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425 !(ah_attr->ah_flags & IB_AH_GRH))
428 if (ah_attr->grh.sgid_attr) {
430 * Make sure the passed sgid_attr is consistent with the
433 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
441 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442 * On success the caller is responsible to call rdma_unfill_sgid_attr().
444 static int rdma_fill_sgid_attr(struct ib_device *device,
445 struct rdma_ah_attr *ah_attr,
446 const struct ib_gid_attr **old_sgid_attr)
448 const struct ib_gid_attr *sgid_attr;
449 struct ib_global_route *grh;
452 *old_sgid_attr = ah_attr->grh.sgid_attr;
454 ret = rdma_check_ah_attr(device, ah_attr);
458 if (!(ah_attr->ah_flags & IB_AH_GRH))
461 grh = rdma_ah_retrieve_grh(ah_attr);
466 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467 if (IS_ERR(sgid_attr))
468 return PTR_ERR(sgid_attr);
470 /* Move ownerhip of the kref into the ah_attr */
471 grh->sgid_attr = sgid_attr;
475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476 const struct ib_gid_attr *old_sgid_attr)
479 * Fill didn't change anything, the caller retains ownership of
482 if (ah_attr->grh.sgid_attr == old_sgid_attr)
486 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487 * doesn't see any change in the rdma_ah_attr. If we get here
488 * old_sgid_attr is NULL.
490 rdma_destroy_ah_attr(ah_attr);
493 static const struct ib_gid_attr *
494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495 const struct ib_gid_attr *old_attr)
498 rdma_put_gid_attr(old_attr);
499 if (ah_attr->ah_flags & IB_AH_GRH) {
500 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501 return ah_attr->grh.sgid_attr;
506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507 struct rdma_ah_attr *ah_attr,
509 struct ib_udata *udata,
510 struct net_device *xmit_slave)
512 struct rdma_ah_init_attr init_attr = {};
513 struct ib_device *device = pd->device;
517 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
519 if (!udata && !device->ops.create_ah)
520 return ERR_PTR(-EOPNOTSUPP);
522 ah = rdma_zalloc_drv_obj_gfp(
524 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
526 return ERR_PTR(-ENOMEM);
530 ah->type = ah_attr->type;
531 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532 init_attr.ah_attr = ah_attr;
533 init_attr.flags = flags;
534 init_attr.xmit_slave = xmit_slave;
537 ret = device->ops.create_user_ah(ah, &init_attr, udata);
539 ret = device->ops.create_ah(ah, &init_attr, NULL);
545 atomic_inc(&pd->usecnt);
550 * rdma_create_ah - Creates an address handle for the
551 * given address vector.
552 * @pd: The protection domain associated with the address handle.
553 * @ah_attr: The attributes of the address vector.
554 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
556 * It returns 0 on success and returns appropriate error code on error.
557 * The address handle is used to reference a local or global destination
558 * in all UD QP post sends.
560 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563 const struct ib_gid_attr *old_sgid_attr;
564 struct net_device *slave;
568 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
572 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
573 GFP_KERNEL : GFP_ATOMIC);
575 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
576 return (void *)slave;
578 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
579 rdma_lag_put_ah_roce_slave(slave);
580 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583 EXPORT_SYMBOL(rdma_create_ah);
586 * rdma_create_user_ah - Creates an address handle for the
587 * given address vector.
588 * It resolves destination mac address for ah attribute of RoCE type.
589 * @pd: The protection domain associated with the address handle.
590 * @ah_attr: The attributes of the address vector.
591 * @udata: pointer to user's input output buffer information need by
594 * It returns 0 on success and returns appropriate error code on error.
595 * The address handle is used to reference a local or global destination
596 * in all UD QP post sends.
598 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
599 struct rdma_ah_attr *ah_attr,
600 struct ib_udata *udata)
602 const struct ib_gid_attr *old_sgid_attr;
606 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
610 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
611 err = ib_resolve_eth_dmac(pd->device, ah_attr);
618 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
622 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625 EXPORT_SYMBOL(rdma_create_user_ah);
627 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
629 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
630 struct iphdr ip4h_checked;
631 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
633 /* If it's IPv6, the version must be 6, otherwise, the first
634 * 20 bytes (before the IPv4 header) are garbled.
636 if (ip6h->version != 6)
637 return (ip4h->version == 4) ? 4 : 0;
638 /* version may be 6 or 4 because the first 20 bytes could be garbled */
640 /* RoCE v2 requires no options, thus header length
647 * We can't write on scattered buffers so we need to copy to
650 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
651 ip4h_checked.check = 0;
652 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
653 /* if IPv4 header checksum is OK, believe it */
654 if (ip4h->check == ip4h_checked.check)
658 EXPORT_SYMBOL(ib_get_rdma_header_version);
660 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
662 const struct ib_grh *grh)
666 if (rdma_protocol_ib(device, port_num))
667 return RDMA_NETWORK_IB;
669 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
671 if (grh_version == 4)
672 return RDMA_NETWORK_IPV4;
674 if (grh->next_hdr == IPPROTO_UDP)
675 return RDMA_NETWORK_IPV6;
677 return RDMA_NETWORK_ROCE_V1;
680 struct find_gid_index_context {
682 enum ib_gid_type gid_type;
685 static bool find_gid_index(const union ib_gid *gid,
686 const struct ib_gid_attr *gid_attr,
689 struct find_gid_index_context *ctx = context;
690 u16 vlan_id = 0xffff;
693 if (ctx->gid_type != gid_attr->gid_type)
696 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
700 return ctx->vlan_id == vlan_id;
703 static const struct ib_gid_attr *
704 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
705 u16 vlan_id, const union ib_gid *sgid,
706 enum ib_gid_type gid_type)
708 struct find_gid_index_context context = {.vlan_id = vlan_id,
709 .gid_type = gid_type};
711 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
715 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
716 enum rdma_network_type net_type,
717 union ib_gid *sgid, union ib_gid *dgid)
719 struct sockaddr_in src_in;
720 struct sockaddr_in dst_in;
721 __be32 src_saddr, dst_saddr;
726 if (net_type == RDMA_NETWORK_IPV4) {
727 memcpy(&src_in.sin_addr.s_addr,
728 &hdr->roce4grh.saddr, 4);
729 memcpy(&dst_in.sin_addr.s_addr,
730 &hdr->roce4grh.daddr, 4);
731 src_saddr = src_in.sin_addr.s_addr;
732 dst_saddr = dst_in.sin_addr.s_addr;
733 ipv6_addr_set_v4mapped(src_saddr,
734 (struct in6_addr *)sgid);
735 ipv6_addr_set_v4mapped(dst_saddr,
736 (struct in6_addr *)dgid);
738 } else if (net_type == RDMA_NETWORK_IPV6 ||
739 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
740 *dgid = hdr->ibgrh.dgid;
741 *sgid = hdr->ibgrh.sgid;
747 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
749 /* Resolve destination mac address and hop limit for unicast destination
750 * GID entry, considering the source GID entry as well.
751 * ah_attribute must have have valid port_num, sgid_index.
753 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
754 struct rdma_ah_attr *ah_attr)
756 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
757 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
758 int hop_limit = 0xff;
761 /* If destination is link local and source GID is RoCEv1,
762 * IP stack is not used.
764 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
765 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
766 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
771 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
773 sgid_attr, &hop_limit);
775 grh->hop_limit = hop_limit;
780 * This function initializes address handle attributes from the incoming packet.
781 * Incoming packet has dgid of the receiver node on which this code is
782 * getting executed and, sgid contains the GID of the sender.
784 * When resolving mac address of destination, the arrived dgid is used
785 * as sgid and, sgid is used as dgid because sgid contains destinations
786 * GID whom to respond to.
788 * On success the caller is responsible to call rdma_destroy_ah_attr on the
791 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
792 const struct ib_wc *wc, const struct ib_grh *grh,
793 struct rdma_ah_attr *ah_attr)
797 enum rdma_network_type net_type = RDMA_NETWORK_IB;
798 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
799 const struct ib_gid_attr *sgid_attr;
806 memset(ah_attr, 0, sizeof *ah_attr);
807 ah_attr->type = rdma_ah_find_type(device, port_num);
808 if (rdma_cap_eth_ah(device, port_num)) {
809 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
810 net_type = wc->network_hdr_type;
812 net_type = ib_get_net_type_by_grh(device, port_num, grh);
813 gid_type = ib_network_to_gid_type(net_type);
815 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
820 rdma_ah_set_sl(ah_attr, wc->sl);
821 rdma_ah_set_port_num(ah_attr, port_num);
823 if (rdma_protocol_roce(device, port_num)) {
824 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
825 wc->vlan_id : 0xffff;
827 if (!(wc->wc_flags & IB_WC_GRH))
830 sgid_attr = get_sgid_attr_from_eth(device, port_num,
833 if (IS_ERR(sgid_attr))
834 return PTR_ERR(sgid_attr);
836 flow_class = be32_to_cpu(grh->version_tclass_flow);
837 rdma_move_grh_sgid_attr(ah_attr,
839 flow_class & 0xFFFFF,
841 (flow_class >> 20) & 0xFF,
844 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
846 rdma_destroy_ah_attr(ah_attr);
850 rdma_ah_set_dlid(ah_attr, wc->slid);
851 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
853 if ((wc->wc_flags & IB_WC_GRH) == 0)
856 if (dgid.global.interface_id !=
857 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
858 sgid_attr = rdma_find_gid_by_port(
859 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
861 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
863 if (IS_ERR(sgid_attr))
864 return PTR_ERR(sgid_attr);
865 flow_class = be32_to_cpu(grh->version_tclass_flow);
866 rdma_move_grh_sgid_attr(ah_attr,
868 flow_class & 0xFFFFF,
870 (flow_class >> 20) & 0xFF,
876 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882 * @attr: Pointer to AH attribute structure
883 * @dgid: Destination GID
884 * @flow_label: Flow label
885 * @hop_limit: Hop limit
886 * @traffic_class: traffic class
887 * @sgid_attr: Pointer to SGID attribute
889 * This takes ownership of the sgid_attr reference. The caller must ensure
890 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
891 * calling this function.
893 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
894 u32 flow_label, u8 hop_limit, u8 traffic_class,
895 const struct ib_gid_attr *sgid_attr)
897 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
899 attr->grh.sgid_attr = sgid_attr;
901 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904 * rdma_destroy_ah_attr - Release reference to SGID attribute of
906 * @ah_attr: Pointer to ah attribute
908 * Release reference to the SGID attribute of the ah attribute if it is
909 * non NULL. It is safe to call this multiple times, and safe to call it on
910 * a zero initialized ah_attr.
912 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
914 if (ah_attr->grh.sgid_attr) {
915 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
916 ah_attr->grh.sgid_attr = NULL;
919 EXPORT_SYMBOL(rdma_destroy_ah_attr);
921 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
922 const struct ib_grh *grh, u8 port_num)
924 struct rdma_ah_attr ah_attr;
928 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
932 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
934 rdma_destroy_ah_attr(&ah_attr);
937 EXPORT_SYMBOL(ib_create_ah_from_wc);
939 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
941 const struct ib_gid_attr *old_sgid_attr;
944 if (ah->type != ah_attr->type)
947 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
951 ret = ah->device->ops.modify_ah ?
952 ah->device->ops.modify_ah(ah, ah_attr) :
955 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
956 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959 EXPORT_SYMBOL(rdma_modify_ah);
961 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
963 ah_attr->grh.sgid_attr = NULL;
965 return ah->device->ops.query_ah ?
966 ah->device->ops.query_ah(ah, ah_attr) :
969 EXPORT_SYMBOL(rdma_query_ah);
971 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
973 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
977 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
981 ret = ah->device->ops.destroy_ah(ah, flags);
985 atomic_dec(&pd->usecnt);
987 rdma_put_gid_attr(sgid_attr);
992 EXPORT_SYMBOL(rdma_destroy_ah_user);
994 /* Shared receive queues */
997 * ib_create_srq_user - Creates a SRQ associated with the specified protection
999 * @pd: The protection domain associated with the SRQ.
1000 * @srq_init_attr: A list of initial attributes required to create the
1001 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1002 * the actual capabilities of the created SRQ.
1003 * @uobject: uobject pointer if this is not a kernel SRQ
1004 * @udata: udata pointer if this is not a kernel SRQ
1006 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1007 * requested size of the SRQ, and set to the actual values allocated
1008 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1009 * will always be at least as large as the requested values.
1011 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1012 struct ib_srq_init_attr *srq_init_attr,
1013 struct ib_usrq_object *uobject,
1014 struct ib_udata *udata)
1019 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1021 return ERR_PTR(-ENOMEM);
1023 srq->device = pd->device;
1025 srq->event_handler = srq_init_attr->event_handler;
1026 srq->srq_context = srq_init_attr->srq_context;
1027 srq->srq_type = srq_init_attr->srq_type;
1028 srq->uobject = uobject;
1030 if (ib_srq_has_cq(srq->srq_type)) {
1031 srq->ext.cq = srq_init_attr->ext.cq;
1032 atomic_inc(&srq->ext.cq->usecnt);
1034 if (srq->srq_type == IB_SRQT_XRC) {
1035 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1038 atomic_inc(&pd->usecnt);
1040 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1042 atomic_dec(&srq->pd->usecnt);
1043 if (srq->srq_type == IB_SRQT_XRC)
1044 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1045 if (ib_srq_has_cq(srq->srq_type))
1046 atomic_dec(&srq->ext.cq->usecnt);
1048 return ERR_PTR(ret);
1053 EXPORT_SYMBOL(ib_create_srq_user);
1055 int ib_modify_srq(struct ib_srq *srq,
1056 struct ib_srq_attr *srq_attr,
1057 enum ib_srq_attr_mask srq_attr_mask)
1059 return srq->device->ops.modify_srq ?
1060 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1061 NULL) : -EOPNOTSUPP;
1063 EXPORT_SYMBOL(ib_modify_srq);
1065 int ib_query_srq(struct ib_srq *srq,
1066 struct ib_srq_attr *srq_attr)
1068 return srq->device->ops.query_srq ?
1069 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1071 EXPORT_SYMBOL(ib_query_srq);
1073 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1077 if (atomic_read(&srq->usecnt))
1080 ret = srq->device->ops.destroy_srq(srq, udata);
1084 atomic_dec(&srq->pd->usecnt);
1085 if (srq->srq_type == IB_SRQT_XRC)
1086 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1087 if (ib_srq_has_cq(srq->srq_type))
1088 atomic_dec(&srq->ext.cq->usecnt);
1093 EXPORT_SYMBOL(ib_destroy_srq_user);
1097 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1099 struct ib_qp *qp = context;
1100 unsigned long flags;
1102 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1103 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1104 if (event->element.qp->event_handler)
1105 event->element.qp->event_handler(event, event->element.qp->qp_context);
1106 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1109 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1110 void (*event_handler)(struct ib_event *, void *),
1114 unsigned long flags;
1117 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1119 return ERR_PTR(-ENOMEM);
1121 qp->real_qp = real_qp;
1122 err = ib_open_shared_qp_security(qp, real_qp->device);
1125 return ERR_PTR(err);
1128 qp->real_qp = real_qp;
1129 atomic_inc(&real_qp->usecnt);
1130 qp->device = real_qp->device;
1131 qp->event_handler = event_handler;
1132 qp->qp_context = qp_context;
1133 qp->qp_num = real_qp->qp_num;
1134 qp->qp_type = real_qp->qp_type;
1136 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1137 list_add(&qp->open_list, &real_qp->open_list);
1138 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1143 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1144 struct ib_qp_open_attr *qp_open_attr)
1146 struct ib_qp *qp, *real_qp;
1148 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1149 return ERR_PTR(-EINVAL);
1151 down_read(&xrcd->tgt_qps_rwsem);
1152 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1154 up_read(&xrcd->tgt_qps_rwsem);
1155 return ERR_PTR(-EINVAL);
1157 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1158 qp_open_attr->qp_context);
1159 up_read(&xrcd->tgt_qps_rwsem);
1162 EXPORT_SYMBOL(ib_open_qp);
1164 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1165 struct ib_qp_init_attr *qp_init_attr)
1167 struct ib_qp *real_qp = qp;
1170 qp->event_handler = __ib_shared_qp_event_handler;
1171 qp->qp_context = qp;
1173 qp->send_cq = qp->recv_cq = NULL;
1175 qp->xrcd = qp_init_attr->xrcd;
1176 atomic_inc(&qp_init_attr->xrcd->usecnt);
1177 INIT_LIST_HEAD(&qp->open_list);
1179 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1180 qp_init_attr->qp_context);
1184 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1185 real_qp, GFP_KERNEL));
1188 return ERR_PTR(err);
1194 * ib_create_named_qp - Creates a kernel QP associated with the specified protection
1196 * @pd: The protection domain associated with the QP.
1197 * @qp_init_attr: A list of initial attributes required to create the
1198 * QP. If QP creation succeeds, then the attributes are updated to
1199 * the actual capabilities of the created QP.
1200 * @caller: caller's build-time module name
1202 * NOTE: for user qp use ib_create_qp_user with valid udata!
1204 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
1205 struct ib_qp_init_attr *qp_init_attr,
1208 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1212 if (qp_init_attr->rwq_ind_tbl &&
1213 (qp_init_attr->recv_cq ||
1214 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1215 qp_init_attr->cap.max_recv_sge))
1216 return ERR_PTR(-EINVAL);
1218 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1219 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1220 return ERR_PTR(-EINVAL);
1223 * If the callers is using the RDMA API calculate the resources
1224 * needed for the RDMA READ/WRITE operations.
1226 * Note that these callers need to pass in a port number.
1228 if (qp_init_attr->cap.max_rdma_ctxs)
1229 rdma_rw_init_qp(device, qp_init_attr);
1231 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1235 ret = ib_create_qp_security(qp, device);
1239 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1240 struct ib_qp *xrc_qp =
1241 create_xrc_qp_user(qp, qp_init_attr);
1243 if (IS_ERR(xrc_qp)) {
1244 ret = PTR_ERR(xrc_qp);
1250 qp->event_handler = qp_init_attr->event_handler;
1251 qp->qp_context = qp_init_attr->qp_context;
1252 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1256 qp->recv_cq = qp_init_attr->recv_cq;
1257 if (qp_init_attr->recv_cq)
1258 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1259 qp->srq = qp_init_attr->srq;
1261 atomic_inc(&qp_init_attr->srq->usecnt);
1264 qp->send_cq = qp_init_attr->send_cq;
1267 atomic_inc(&pd->usecnt);
1268 if (qp_init_attr->send_cq)
1269 atomic_inc(&qp_init_attr->send_cq->usecnt);
1270 if (qp_init_attr->rwq_ind_tbl)
1271 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1273 if (qp_init_attr->cap.max_rdma_ctxs) {
1274 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1280 * Note: all hw drivers guarantee that max_send_sge is lower than
1281 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1282 * max_send_sge <= max_sge_rd.
1284 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1285 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1286 device->attrs.max_sge_rd);
1287 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1288 qp->integrity_en = true;
1294 return ERR_PTR(ret);
1297 EXPORT_SYMBOL(ib_create_named_qp);
1299 static const struct {
1301 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1302 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1303 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1305 [IB_QPS_RESET] = { .valid = 1 },
1309 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1312 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1313 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1315 IB_QP_ACCESS_FLAGS),
1316 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1318 IB_QP_ACCESS_FLAGS),
1319 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1321 IB_QP_ACCESS_FLAGS),
1322 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1324 IB_QP_ACCESS_FLAGS),
1325 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1327 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1333 [IB_QPS_RESET] = { .valid = 1 },
1334 [IB_QPS_ERR] = { .valid = 1 },
1338 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1341 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1343 IB_QP_ACCESS_FLAGS),
1344 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1346 IB_QP_ACCESS_FLAGS),
1347 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1349 IB_QP_ACCESS_FLAGS),
1350 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1352 IB_QP_ACCESS_FLAGS),
1353 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1355 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1362 [IB_QPT_UC] = (IB_QP_AV |
1366 [IB_QPT_RC] = (IB_QP_AV |
1370 IB_QP_MAX_DEST_RD_ATOMIC |
1371 IB_QP_MIN_RNR_TIMER),
1372 [IB_QPT_XRC_INI] = (IB_QP_AV |
1376 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1380 IB_QP_MAX_DEST_RD_ATOMIC |
1381 IB_QP_MIN_RNR_TIMER),
1384 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1386 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1387 IB_QP_ACCESS_FLAGS |
1389 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1390 IB_QP_ACCESS_FLAGS |
1392 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1393 IB_QP_ACCESS_FLAGS |
1395 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1396 IB_QP_ACCESS_FLAGS |
1398 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1400 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1406 [IB_QPS_RESET] = { .valid = 1 },
1407 [IB_QPS_ERR] = { .valid = 1 },
1411 [IB_QPT_UD] = IB_QP_SQ_PSN,
1412 [IB_QPT_UC] = IB_QP_SQ_PSN,
1413 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1417 IB_QP_MAX_QP_RD_ATOMIC),
1418 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1422 IB_QP_MAX_QP_RD_ATOMIC),
1423 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1425 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1426 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1429 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1431 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1433 IB_QP_ACCESS_FLAGS |
1434 IB_QP_PATH_MIG_STATE),
1435 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1437 IB_QP_ACCESS_FLAGS |
1438 IB_QP_MIN_RNR_TIMER |
1439 IB_QP_PATH_MIG_STATE),
1440 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1442 IB_QP_ACCESS_FLAGS |
1443 IB_QP_PATH_MIG_STATE),
1444 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1446 IB_QP_ACCESS_FLAGS |
1447 IB_QP_MIN_RNR_TIMER |
1448 IB_QP_PATH_MIG_STATE),
1449 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1451 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1453 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1458 [IB_QPS_RESET] = { .valid = 1 },
1459 [IB_QPS_ERR] = { .valid = 1 },
1463 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1465 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1466 IB_QP_ACCESS_FLAGS |
1468 IB_QP_PATH_MIG_STATE),
1469 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1470 IB_QP_ACCESS_FLAGS |
1472 IB_QP_PATH_MIG_STATE |
1473 IB_QP_MIN_RNR_TIMER),
1474 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1475 IB_QP_ACCESS_FLAGS |
1477 IB_QP_PATH_MIG_STATE),
1478 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1479 IB_QP_ACCESS_FLAGS |
1481 IB_QP_PATH_MIG_STATE |
1482 IB_QP_MIN_RNR_TIMER),
1483 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1485 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1487 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1493 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1494 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1495 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1496 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1497 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1498 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1499 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1504 [IB_QPS_RESET] = { .valid = 1 },
1505 [IB_QPS_ERR] = { .valid = 1 },
1509 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1511 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1513 IB_QP_ACCESS_FLAGS |
1514 IB_QP_PATH_MIG_STATE),
1515 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1517 IB_QP_ACCESS_FLAGS |
1518 IB_QP_MIN_RNR_TIMER |
1519 IB_QP_PATH_MIG_STATE),
1520 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1522 IB_QP_ACCESS_FLAGS |
1523 IB_QP_PATH_MIG_STATE),
1524 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1526 IB_QP_ACCESS_FLAGS |
1527 IB_QP_MIN_RNR_TIMER |
1528 IB_QP_PATH_MIG_STATE),
1529 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1531 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1538 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1540 [IB_QPT_UC] = (IB_QP_AV |
1542 IB_QP_ACCESS_FLAGS |
1544 IB_QP_PATH_MIG_STATE),
1545 [IB_QPT_RC] = (IB_QP_PORT |
1550 IB_QP_MAX_QP_RD_ATOMIC |
1551 IB_QP_MAX_DEST_RD_ATOMIC |
1553 IB_QP_ACCESS_FLAGS |
1555 IB_QP_MIN_RNR_TIMER |
1556 IB_QP_PATH_MIG_STATE),
1557 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1562 IB_QP_MAX_QP_RD_ATOMIC |
1564 IB_QP_ACCESS_FLAGS |
1566 IB_QP_PATH_MIG_STATE),
1567 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1570 IB_QP_MAX_DEST_RD_ATOMIC |
1572 IB_QP_ACCESS_FLAGS |
1574 IB_QP_MIN_RNR_TIMER |
1575 IB_QP_PATH_MIG_STATE),
1576 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1578 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1584 [IB_QPS_RESET] = { .valid = 1 },
1585 [IB_QPS_ERR] = { .valid = 1 },
1589 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1591 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1592 IB_QP_ACCESS_FLAGS),
1593 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1595 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1601 [IB_QPS_RESET] = { .valid = 1 },
1602 [IB_QPS_ERR] = { .valid = 1 }
1606 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1607 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1609 enum ib_qp_attr_mask req_param, opt_param;
1611 if (mask & IB_QP_CUR_STATE &&
1612 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1613 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1616 if (!qp_state_table[cur_state][next_state].valid)
1619 req_param = qp_state_table[cur_state][next_state].req_param[type];
1620 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1622 if ((mask & req_param) != req_param)
1625 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1630 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1633 * ib_resolve_eth_dmac - Resolve destination mac address
1634 * @device: Device to consider
1635 * @ah_attr: address handle attribute which describes the
1636 * source and destination parameters
1637 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1638 * returns 0 on success or appropriate error code. It initializes the
1639 * necessary ah_attr fields when call is successful.
1641 static int ib_resolve_eth_dmac(struct ib_device *device,
1642 struct rdma_ah_attr *ah_attr)
1646 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1647 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1650 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1651 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1653 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1654 (char *)ah_attr->roce.dmac);
1657 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1662 static bool is_qp_type_connected(const struct ib_qp *qp)
1664 return (qp->qp_type == IB_QPT_UC ||
1665 qp->qp_type == IB_QPT_RC ||
1666 qp->qp_type == IB_QPT_XRC_INI ||
1667 qp->qp_type == IB_QPT_XRC_TGT);
1671 * IB core internal function to perform QP attributes modification.
1673 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1674 int attr_mask, struct ib_udata *udata)
1676 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1677 const struct ib_gid_attr *old_sgid_attr_av;
1678 const struct ib_gid_attr *old_sgid_attr_alt_av;
1681 attr->xmit_slave = NULL;
1682 if (attr_mask & IB_QP_AV) {
1683 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1688 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1689 is_qp_type_connected(qp)) {
1690 struct net_device *slave;
1693 * If the user provided the qp_attr then we have to
1694 * resolve it. Kerne users have to provide already
1695 * resolved rdma_ah_attr's.
1698 ret = ib_resolve_eth_dmac(qp->device,
1703 slave = rdma_lag_get_ah_roce_slave(qp->device,
1706 if (IS_ERR(slave)) {
1707 ret = PTR_ERR(slave);
1710 attr->xmit_slave = slave;
1713 if (attr_mask & IB_QP_ALT_PATH) {
1715 * FIXME: This does not track the migration state, so if the
1716 * user loads a new alternate path after the HW has migrated
1717 * from primary->alternate we will keep the wrong
1718 * references. This is OK for IB because the reference
1719 * counting does not serve any functional purpose.
1721 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1722 &old_sgid_attr_alt_av);
1727 * Today the core code can only handle alternate paths and APM
1728 * for IB. Ban them in roce mode.
1730 if (!(rdma_protocol_ib(qp->device,
1731 attr->alt_ah_attr.port_num) &&
1732 rdma_protocol_ib(qp->device, port))) {
1738 if (rdma_ib_or_roce(qp->device, port)) {
1739 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1740 dev_warn(&qp->device->dev,
1741 "%s rq_psn overflow, masking to 24 bits\n",
1743 attr->rq_psn &= 0xffffff;
1746 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1747 dev_warn(&qp->device->dev,
1748 " %s sq_psn overflow, masking to 24 bits\n",
1750 attr->sq_psn &= 0xffffff;
1755 * Bind this qp to a counter automatically based on the rdma counter
1756 * rules. This only set in RST2INIT with port specified
1758 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1759 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1760 rdma_counter_bind_qp_auto(qp, attr->port_num);
1762 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1766 if (attr_mask & IB_QP_PORT)
1767 qp->port = attr->port_num;
1768 if (attr_mask & IB_QP_AV)
1770 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1771 if (attr_mask & IB_QP_ALT_PATH)
1772 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1773 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1776 if (attr_mask & IB_QP_ALT_PATH)
1777 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1779 if (attr_mask & IB_QP_AV) {
1780 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1781 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1787 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1788 * @ib_qp: The QP to modify.
1789 * @attr: On input, specifies the QP attributes to modify. On output,
1790 * the current values of selected QP attributes are returned.
1791 * @attr_mask: A bit-mask used to specify which attributes of the QP
1792 * are being modified.
1793 * @udata: pointer to user's input output buffer information
1794 * are being modified.
1795 * It returns 0 on success and returns appropriate error code on error.
1797 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1798 int attr_mask, struct ib_udata *udata)
1800 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1802 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1804 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width)
1808 struct net_device *netdev;
1809 struct ethtool_link_ksettings lksettings;
1811 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1814 netdev = ib_device_get_netdev(dev, port_num);
1819 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1824 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1825 netdev_speed = lksettings.base.speed;
1827 netdev_speed = SPEED_1000;
1828 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1832 if (netdev_speed <= SPEED_1000) {
1833 *width = IB_WIDTH_1X;
1834 *speed = IB_SPEED_SDR;
1835 } else if (netdev_speed <= SPEED_10000) {
1836 *width = IB_WIDTH_1X;
1837 *speed = IB_SPEED_FDR10;
1838 } else if (netdev_speed <= SPEED_20000) {
1839 *width = IB_WIDTH_4X;
1840 *speed = IB_SPEED_DDR;
1841 } else if (netdev_speed <= SPEED_25000) {
1842 *width = IB_WIDTH_1X;
1843 *speed = IB_SPEED_EDR;
1844 } else if (netdev_speed <= SPEED_40000) {
1845 *width = IB_WIDTH_4X;
1846 *speed = IB_SPEED_FDR10;
1848 *width = IB_WIDTH_4X;
1849 *speed = IB_SPEED_EDR;
1854 EXPORT_SYMBOL(ib_get_eth_speed);
1856 int ib_modify_qp(struct ib_qp *qp,
1857 struct ib_qp_attr *qp_attr,
1860 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1862 EXPORT_SYMBOL(ib_modify_qp);
1864 int ib_query_qp(struct ib_qp *qp,
1865 struct ib_qp_attr *qp_attr,
1867 struct ib_qp_init_attr *qp_init_attr)
1869 qp_attr->ah_attr.grh.sgid_attr = NULL;
1870 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1872 return qp->device->ops.query_qp ?
1873 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1874 qp_init_attr) : -EOPNOTSUPP;
1876 EXPORT_SYMBOL(ib_query_qp);
1878 int ib_close_qp(struct ib_qp *qp)
1880 struct ib_qp *real_qp;
1881 unsigned long flags;
1883 real_qp = qp->real_qp;
1887 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1888 list_del(&qp->open_list);
1889 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1891 atomic_dec(&real_qp->usecnt);
1893 ib_close_shared_qp_security(qp->qp_sec);
1898 EXPORT_SYMBOL(ib_close_qp);
1900 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1902 struct ib_xrcd *xrcd;
1903 struct ib_qp *real_qp;
1906 real_qp = qp->real_qp;
1907 xrcd = real_qp->xrcd;
1908 down_write(&xrcd->tgt_qps_rwsem);
1910 if (atomic_read(&real_qp->usecnt) == 0)
1911 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1914 up_write(&xrcd->tgt_qps_rwsem);
1917 ret = ib_destroy_qp(real_qp);
1919 atomic_dec(&xrcd->usecnt);
1925 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1927 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1928 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1930 struct ib_cq *scq, *rcq;
1932 struct ib_rwq_ind_table *ind_tbl;
1933 struct ib_qp_security *sec;
1936 WARN_ON_ONCE(qp->mrs_used > 0);
1938 if (atomic_read(&qp->usecnt))
1941 if (qp->real_qp != qp)
1942 return __ib_destroy_shared_qp(qp);
1948 ind_tbl = qp->rwq_ind_tbl;
1951 ib_destroy_qp_security_begin(sec);
1954 rdma_rw_cleanup_mrs(qp);
1956 rdma_counter_unbind_qp(qp, true);
1957 rdma_restrack_del(&qp->res);
1958 ret = qp->device->ops.destroy_qp(qp, udata);
1960 if (alt_path_sgid_attr)
1961 rdma_put_gid_attr(alt_path_sgid_attr);
1963 rdma_put_gid_attr(av_sgid_attr);
1965 atomic_dec(&pd->usecnt);
1967 atomic_dec(&scq->usecnt);
1969 atomic_dec(&rcq->usecnt);
1971 atomic_dec(&srq->usecnt);
1973 atomic_dec(&ind_tbl->usecnt);
1975 ib_destroy_qp_security_end(sec);
1978 ib_destroy_qp_security_abort(sec);
1983 EXPORT_SYMBOL(ib_destroy_qp_user);
1985 /* Completion queues */
1987 struct ib_cq *__ib_create_cq(struct ib_device *device,
1988 ib_comp_handler comp_handler,
1989 void (*event_handler)(struct ib_event *, void *),
1991 const struct ib_cq_init_attr *cq_attr,
1997 cq = rdma_zalloc_drv_obj(device, ib_cq);
1999 return ERR_PTR(-ENOMEM);
2001 cq->device = device;
2003 cq->comp_handler = comp_handler;
2004 cq->event_handler = event_handler;
2005 cq->cq_context = cq_context;
2006 atomic_set(&cq->usecnt, 0);
2008 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2009 rdma_restrack_set_name(&cq->res, caller);
2011 ret = device->ops.create_cq(cq, cq_attr, NULL);
2013 rdma_restrack_put(&cq->res);
2015 return ERR_PTR(ret);
2018 rdma_restrack_add(&cq->res);
2021 EXPORT_SYMBOL(__ib_create_cq);
2023 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2028 return cq->device->ops.modify_cq ?
2029 cq->device->ops.modify_cq(cq, cq_count,
2030 cq_period) : -EOPNOTSUPP;
2032 EXPORT_SYMBOL(rdma_set_cq_moderation);
2034 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2038 if (WARN_ON_ONCE(cq->shared))
2041 if (atomic_read(&cq->usecnt))
2044 ret = cq->device->ops.destroy_cq(cq, udata);
2048 rdma_restrack_del(&cq->res);
2052 EXPORT_SYMBOL(ib_destroy_cq_user);
2054 int ib_resize_cq(struct ib_cq *cq, int cqe)
2059 return cq->device->ops.resize_cq ?
2060 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2062 EXPORT_SYMBOL(ib_resize_cq);
2064 /* Memory regions */
2066 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2067 u64 virt_addr, int access_flags)
2071 if (access_flags & IB_ACCESS_ON_DEMAND) {
2072 if (!(pd->device->attrs.device_cap_flags &
2073 IB_DEVICE_ON_DEMAND_PAGING)) {
2074 pr_debug("ODP support not available\n");
2075 return ERR_PTR(-EINVAL);
2079 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2080 access_flags, NULL);
2085 mr->device = pd->device;
2088 atomic_inc(&pd->usecnt);
2090 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2091 rdma_restrack_parent_name(&mr->res, &pd->res);
2092 rdma_restrack_add(&mr->res);
2096 EXPORT_SYMBOL(ib_reg_user_mr);
2098 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2099 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2101 if (!pd->device->ops.advise_mr)
2107 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2110 EXPORT_SYMBOL(ib_advise_mr);
2112 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2114 struct ib_pd *pd = mr->pd;
2115 struct ib_dm *dm = mr->dm;
2116 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2120 rdma_restrack_del(&mr->res);
2121 ret = mr->device->ops.dereg_mr(mr, udata);
2123 atomic_dec(&pd->usecnt);
2125 atomic_dec(&dm->usecnt);
2131 EXPORT_SYMBOL(ib_dereg_mr_user);
2134 * ib_alloc_mr() - Allocates a memory region
2135 * @pd: protection domain associated with the region
2136 * @mr_type: memory region type
2137 * @max_num_sg: maximum sg entries available for registration.
2140 * Memory registeration page/sg lists must not exceed max_num_sg.
2141 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2142 * max_num_sg * used_page_size.
2145 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2150 if (!pd->device->ops.alloc_mr) {
2151 mr = ERR_PTR(-EOPNOTSUPP);
2155 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2157 mr = ERR_PTR(-EINVAL);
2161 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2165 mr->device = pd->device;
2169 atomic_inc(&pd->usecnt);
2170 mr->need_inval = false;
2172 mr->sig_attrs = NULL;
2174 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2175 rdma_restrack_parent_name(&mr->res, &pd->res);
2176 rdma_restrack_add(&mr->res);
2178 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2181 EXPORT_SYMBOL(ib_alloc_mr);
2184 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2185 * @pd: protection domain associated with the region
2186 * @max_num_data_sg: maximum data sg entries available for registration
2187 * @max_num_meta_sg: maximum metadata sg entries available for
2191 * Memory registration page/sg lists must not exceed max_num_sg,
2192 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2195 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2196 u32 max_num_data_sg,
2197 u32 max_num_meta_sg)
2200 struct ib_sig_attrs *sig_attrs;
2202 if (!pd->device->ops.alloc_mr_integrity ||
2203 !pd->device->ops.map_mr_sg_pi) {
2204 mr = ERR_PTR(-EOPNOTSUPP);
2208 if (!max_num_meta_sg) {
2209 mr = ERR_PTR(-EINVAL);
2213 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2215 mr = ERR_PTR(-ENOMEM);
2219 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2226 mr->device = pd->device;
2230 atomic_inc(&pd->usecnt);
2231 mr->need_inval = false;
2232 mr->type = IB_MR_TYPE_INTEGRITY;
2233 mr->sig_attrs = sig_attrs;
2235 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2236 rdma_restrack_parent_name(&mr->res, &pd->res);
2237 rdma_restrack_add(&mr->res);
2239 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2242 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2244 /* Multicast groups */
2246 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2248 struct ib_qp_init_attr init_attr = {};
2249 struct ib_qp_attr attr = {};
2250 int num_eth_ports = 0;
2253 /* If QP state >= init, it is assigned to a port and we can check this
2256 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2257 if (attr.qp_state >= IB_QPS_INIT) {
2258 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2259 IB_LINK_LAYER_INFINIBAND)
2265 /* Can't get a quick answer, iterate over all ports */
2266 for (port = 0; port < qp->device->phys_port_cnt; port++)
2267 if (rdma_port_get_link_layer(qp->device, port) !=
2268 IB_LINK_LAYER_INFINIBAND)
2271 /* If we have at lease one Ethernet port, RoCE annex declares that
2272 * multicast LID should be ignored. We can't tell at this step if the
2273 * QP belongs to an IB or Ethernet port.
2278 /* If all the ports are IB, we can check according to IB spec. */
2280 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2281 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2284 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2288 if (!qp->device->ops.attach_mcast)
2291 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2292 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2295 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2297 atomic_inc(&qp->usecnt);
2300 EXPORT_SYMBOL(ib_attach_mcast);
2302 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2306 if (!qp->device->ops.detach_mcast)
2309 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2310 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2313 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2315 atomic_dec(&qp->usecnt);
2318 EXPORT_SYMBOL(ib_detach_mcast);
2321 * ib_alloc_xrcd_user - Allocates an XRC domain.
2322 * @device: The device on which to allocate the XRC domain.
2323 * @inode: inode to connect XRCD
2324 * @udata: Valid user data or NULL for kernel object
2326 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2327 struct inode *inode, struct ib_udata *udata)
2329 struct ib_xrcd *xrcd;
2332 if (!device->ops.alloc_xrcd)
2333 return ERR_PTR(-EOPNOTSUPP);
2335 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2337 return ERR_PTR(-ENOMEM);
2339 xrcd->device = device;
2340 xrcd->inode = inode;
2341 atomic_set(&xrcd->usecnt, 0);
2342 init_rwsem(&xrcd->tgt_qps_rwsem);
2343 xa_init(&xrcd->tgt_qps);
2345 ret = device->ops.alloc_xrcd(xrcd, udata);
2351 return ERR_PTR(ret);
2353 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2356 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2357 * @xrcd: The XRC domain to deallocate.
2358 * @udata: Valid user data or NULL for kernel object
2360 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2364 if (atomic_read(&xrcd->usecnt))
2367 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2368 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2374 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2377 * ib_create_wq - Creates a WQ associated with the specified protection
2379 * @pd: The protection domain associated with the WQ.
2380 * @wq_attr: A list of initial attributes required to create the
2381 * WQ. If WQ creation succeeds, then the attributes are updated to
2382 * the actual capabilities of the created WQ.
2384 * wq_attr->max_wr and wq_attr->max_sge determine
2385 * the requested size of the WQ, and set to the actual values allocated
2387 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2388 * at least as large as the requested values.
2390 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2391 struct ib_wq_init_attr *wq_attr)
2395 if (!pd->device->ops.create_wq)
2396 return ERR_PTR(-EOPNOTSUPP);
2398 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2400 wq->event_handler = wq_attr->event_handler;
2401 wq->wq_context = wq_attr->wq_context;
2402 wq->wq_type = wq_attr->wq_type;
2403 wq->cq = wq_attr->cq;
2404 wq->device = pd->device;
2407 atomic_inc(&pd->usecnt);
2408 atomic_inc(&wq_attr->cq->usecnt);
2409 atomic_set(&wq->usecnt, 0);
2413 EXPORT_SYMBOL(ib_create_wq);
2416 * ib_destroy_wq_user - Destroys the specified user WQ.
2417 * @wq: The WQ to destroy.
2418 * @udata: Valid user data
2420 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2422 struct ib_cq *cq = wq->cq;
2423 struct ib_pd *pd = wq->pd;
2426 if (atomic_read(&wq->usecnt))
2429 ret = wq->device->ops.destroy_wq(wq, udata);
2433 atomic_dec(&pd->usecnt);
2434 atomic_dec(&cq->usecnt);
2437 EXPORT_SYMBOL(ib_destroy_wq_user);
2440 * ib_modify_wq - Modifies the specified WQ.
2441 * @wq: The WQ to modify.
2442 * @wq_attr: On input, specifies the WQ attributes to modify.
2443 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2444 * are being modified.
2445 * On output, the current values of selected WQ attributes are returned.
2447 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2452 if (!wq->device->ops.modify_wq)
2455 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2458 EXPORT_SYMBOL(ib_modify_wq);
2460 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2461 struct ib_mr_status *mr_status)
2463 if (!mr->device->ops.check_mr_status)
2466 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2468 EXPORT_SYMBOL(ib_check_mr_status);
2470 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2473 if (!device->ops.set_vf_link_state)
2476 return device->ops.set_vf_link_state(device, vf, port, state);
2478 EXPORT_SYMBOL(ib_set_vf_link_state);
2480 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2481 struct ifla_vf_info *info)
2483 if (!device->ops.get_vf_config)
2486 return device->ops.get_vf_config(device, vf, port, info);
2488 EXPORT_SYMBOL(ib_get_vf_config);
2490 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2491 struct ifla_vf_stats *stats)
2493 if (!device->ops.get_vf_stats)
2496 return device->ops.get_vf_stats(device, vf, port, stats);
2498 EXPORT_SYMBOL(ib_get_vf_stats);
2500 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2503 if (!device->ops.set_vf_guid)
2506 return device->ops.set_vf_guid(device, vf, port, guid, type);
2508 EXPORT_SYMBOL(ib_set_vf_guid);
2510 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2511 struct ifla_vf_guid *node_guid,
2512 struct ifla_vf_guid *port_guid)
2514 if (!device->ops.get_vf_guid)
2517 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2519 EXPORT_SYMBOL(ib_get_vf_guid);
2521 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2522 * information) and set an appropriate memory region for registration.
2523 * @mr: memory region
2524 * @data_sg: dma mapped scatterlist for data
2525 * @data_sg_nents: number of entries in data_sg
2526 * @data_sg_offset: offset in bytes into data_sg
2527 * @meta_sg: dma mapped scatterlist for metadata
2528 * @meta_sg_nents: number of entries in meta_sg
2529 * @meta_sg_offset: offset in bytes into meta_sg
2530 * @page_size: page vector desired page size
2533 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2535 * Return: 0 on success.
2537 * After this completes successfully, the memory region
2538 * is ready for registration.
2540 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2541 int data_sg_nents, unsigned int *data_sg_offset,
2542 struct scatterlist *meta_sg, int meta_sg_nents,
2543 unsigned int *meta_sg_offset, unsigned int page_size)
2545 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2546 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2549 mr->page_size = page_size;
2551 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2552 data_sg_offset, meta_sg,
2553 meta_sg_nents, meta_sg_offset);
2555 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2558 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2559 * and set it the memory region.
2560 * @mr: memory region
2561 * @sg: dma mapped scatterlist
2562 * @sg_nents: number of entries in sg
2563 * @sg_offset: offset in bytes into sg
2564 * @page_size: page vector desired page size
2568 * - The first sg element is allowed to have an offset.
2569 * - Each sg element must either be aligned to page_size or virtually
2570 * contiguous to the previous element. In case an sg element has a
2571 * non-contiguous offset, the mapping prefix will not include it.
2572 * - The last sg element is allowed to have length less than page_size.
2573 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2574 * then only max_num_sg entries will be mapped.
2575 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2576 * constraints holds and the page_size argument is ignored.
2578 * Returns the number of sg elements that were mapped to the memory region.
2580 * After this completes successfully, the memory region
2581 * is ready for registration.
2583 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2584 unsigned int *sg_offset, unsigned int page_size)
2586 if (unlikely(!mr->device->ops.map_mr_sg))
2589 mr->page_size = page_size;
2591 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2593 EXPORT_SYMBOL(ib_map_mr_sg);
2596 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2598 * @mr: memory region
2599 * @sgl: dma mapped scatterlist
2600 * @sg_nents: number of entries in sg
2601 * @sg_offset_p: ==== =======================================================
2602 * IN start offset in bytes into sg
2603 * OUT offset in bytes for element n of the sg of the first
2604 * byte that has not been processed where n is the return
2605 * value of this function.
2606 * ==== =======================================================
2607 * @set_page: driver page assignment function pointer
2609 * Core service helper for drivers to convert the largest
2610 * prefix of given sg list to a page vector. The sg list
2611 * prefix converted is the prefix that meet the requirements
2614 * Returns the number of sg elements that were assigned to
2617 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2618 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2620 struct scatterlist *sg;
2621 u64 last_end_dma_addr = 0;
2622 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2623 unsigned int last_page_off = 0;
2624 u64 page_mask = ~((u64)mr->page_size - 1);
2627 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2630 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2633 for_each_sg(sgl, sg, sg_nents, i) {
2634 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2635 u64 prev_addr = dma_addr;
2636 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2637 u64 end_dma_addr = dma_addr + dma_len;
2638 u64 page_addr = dma_addr & page_mask;
2641 * For the second and later elements, check whether either the
2642 * end of element i-1 or the start of element i is not aligned
2643 * on a page boundary.
2645 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2646 /* Stop mapping if there is a gap. */
2647 if (last_end_dma_addr != dma_addr)
2651 * Coalesce this element with the last. If it is small
2652 * enough just update mr->length. Otherwise start
2653 * mapping from the next page.
2659 ret = set_page(mr, page_addr);
2660 if (unlikely(ret < 0)) {
2661 sg_offset = prev_addr - sg_dma_address(sg);
2662 mr->length += prev_addr - dma_addr;
2664 *sg_offset_p = sg_offset;
2665 return i || sg_offset ? i : ret;
2667 prev_addr = page_addr;
2669 page_addr += mr->page_size;
2670 } while (page_addr < end_dma_addr);
2672 mr->length += dma_len;
2673 last_end_dma_addr = end_dma_addr;
2674 last_page_off = end_dma_addr & ~page_mask;
2683 EXPORT_SYMBOL(ib_sg_to_pages);
2685 struct ib_drain_cqe {
2687 struct completion done;
2690 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2692 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2695 complete(&cqe->done);
2699 * Post a WR and block until its completion is reaped for the SQ.
2701 static void __ib_drain_sq(struct ib_qp *qp)
2703 struct ib_cq *cq = qp->send_cq;
2704 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2705 struct ib_drain_cqe sdrain;
2706 struct ib_rdma_wr swr = {
2709 { .wr_cqe = &sdrain.cqe, },
2710 .opcode = IB_WR_RDMA_WRITE,
2715 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2717 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2721 sdrain.cqe.done = ib_drain_qp_done;
2722 init_completion(&sdrain.done);
2724 ret = ib_post_send(qp, &swr.wr, NULL);
2726 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2730 if (cq->poll_ctx == IB_POLL_DIRECT)
2731 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2732 ib_process_cq_direct(cq, -1);
2734 wait_for_completion(&sdrain.done);
2738 * Post a WR and block until its completion is reaped for the RQ.
2740 static void __ib_drain_rq(struct ib_qp *qp)
2742 struct ib_cq *cq = qp->recv_cq;
2743 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2744 struct ib_drain_cqe rdrain;
2745 struct ib_recv_wr rwr = {};
2748 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2750 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2754 rwr.wr_cqe = &rdrain.cqe;
2755 rdrain.cqe.done = ib_drain_qp_done;
2756 init_completion(&rdrain.done);
2758 ret = ib_post_recv(qp, &rwr, NULL);
2760 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2764 if (cq->poll_ctx == IB_POLL_DIRECT)
2765 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2766 ib_process_cq_direct(cq, -1);
2768 wait_for_completion(&rdrain.done);
2772 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2774 * @qp: queue pair to drain
2776 * If the device has a provider-specific drain function, then
2777 * call that. Otherwise call the generic drain function
2782 * ensure there is room in the CQ and SQ for the drain work request and
2785 * allocate the CQ using ib_alloc_cq().
2787 * ensure that there are no other contexts that are posting WRs concurrently.
2788 * Otherwise the drain is not guaranteed.
2790 void ib_drain_sq(struct ib_qp *qp)
2792 if (qp->device->ops.drain_sq)
2793 qp->device->ops.drain_sq(qp);
2796 trace_cq_drain_complete(qp->send_cq);
2798 EXPORT_SYMBOL(ib_drain_sq);
2801 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2803 * @qp: queue pair to drain
2805 * If the device has a provider-specific drain function, then
2806 * call that. Otherwise call the generic drain function
2811 * ensure there is room in the CQ and RQ for the drain work request and
2814 * allocate the CQ using ib_alloc_cq().
2816 * ensure that there are no other contexts that are posting WRs concurrently.
2817 * Otherwise the drain is not guaranteed.
2819 void ib_drain_rq(struct ib_qp *qp)
2821 if (qp->device->ops.drain_rq)
2822 qp->device->ops.drain_rq(qp);
2825 trace_cq_drain_complete(qp->recv_cq);
2827 EXPORT_SYMBOL(ib_drain_rq);
2830 * ib_drain_qp() - Block until all CQEs have been consumed by the
2831 * application on both the RQ and SQ.
2832 * @qp: queue pair to drain
2836 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2839 * allocate the CQs using ib_alloc_cq().
2841 * ensure that there are no other contexts that are posting WRs concurrently.
2842 * Otherwise the drain is not guaranteed.
2844 void ib_drain_qp(struct ib_qp *qp)
2850 EXPORT_SYMBOL(ib_drain_qp);
2852 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2853 enum rdma_netdev_t type, const char *name,
2854 unsigned char name_assign_type,
2855 void (*setup)(struct net_device *))
2857 struct rdma_netdev_alloc_params params;
2858 struct net_device *netdev;
2861 if (!device->ops.rdma_netdev_get_params)
2862 return ERR_PTR(-EOPNOTSUPP);
2864 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2869 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2870 setup, params.txqs, params.rxqs);
2872 return ERR_PTR(-ENOMEM);
2876 EXPORT_SYMBOL(rdma_alloc_netdev);
2878 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2879 enum rdma_netdev_t type, const char *name,
2880 unsigned char name_assign_type,
2881 void (*setup)(struct net_device *),
2882 struct net_device *netdev)
2884 struct rdma_netdev_alloc_params params;
2887 if (!device->ops.rdma_netdev_get_params)
2890 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2895 return params.initialize_rdma_netdev(device, port_num,
2896 netdev, params.param);
2898 EXPORT_SYMBOL(rdma_init_netdev);
2900 void __rdma_block_iter_start(struct ib_block_iter *biter,
2901 struct scatterlist *sglist, unsigned int nents,
2904 memset(biter, 0, sizeof(struct ib_block_iter));
2905 biter->__sg = sglist;
2906 biter->__sg_nents = nents;
2908 /* Driver provides best block size to use */
2909 biter->__pg_bit = __fls(pgsz);
2911 EXPORT_SYMBOL(__rdma_block_iter_start);
2913 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2915 unsigned int block_offset;
2917 if (!biter->__sg_nents || !biter->__sg)
2920 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2921 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2922 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2924 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2925 biter->__sg_advance = 0;
2926 biter->__sg = sg_next(biter->__sg);
2927 biter->__sg_nents--;
2932 EXPORT_SYMBOL(__rdma_block_iter_next);