]> Git Repo - linux.git/blob - drivers/infiniband/core/verbs.c
Merge tag 'afs-fixes-04012021' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         default:               return  -1;
151         }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157         switch (mult) {
158         case 1:   return IB_RATE_2_5_GBPS;
159         case 2:   return IB_RATE_5_GBPS;
160         case 4:   return IB_RATE_10_GBPS;
161         case 8:   return IB_RATE_20_GBPS;
162         case 12:  return IB_RATE_30_GBPS;
163         case 16:  return IB_RATE_40_GBPS;
164         case 24:  return IB_RATE_60_GBPS;
165         case 32:  return IB_RATE_80_GBPS;
166         case 48:  return IB_RATE_120_GBPS;
167         case 6:   return IB_RATE_14_GBPS;
168         case 22:  return IB_RATE_56_GBPS;
169         case 45:  return IB_RATE_112_GBPS;
170         case 67:  return IB_RATE_168_GBPS;
171         case 10:  return IB_RATE_25_GBPS;
172         case 40:  return IB_RATE_100_GBPS;
173         case 80:  return IB_RATE_200_GBPS;
174         case 120: return IB_RATE_300_GBPS;
175         case 11:  return IB_RATE_28_GBPS;
176         case 20:  return IB_RATE_50_GBPS;
177         case 160: return IB_RATE_400_GBPS;
178         case 240: return IB_RATE_600_GBPS;
179         default:  return IB_RATE_PORT_CURRENT;
180         }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186         switch (rate) {
187         case IB_RATE_2_5_GBPS: return 2500;
188         case IB_RATE_5_GBPS:   return 5000;
189         case IB_RATE_10_GBPS:  return 10000;
190         case IB_RATE_20_GBPS:  return 20000;
191         case IB_RATE_30_GBPS:  return 30000;
192         case IB_RATE_40_GBPS:  return 40000;
193         case IB_RATE_60_GBPS:  return 60000;
194         case IB_RATE_80_GBPS:  return 80000;
195         case IB_RATE_120_GBPS: return 120000;
196         case IB_RATE_14_GBPS:  return 14062;
197         case IB_RATE_56_GBPS:  return 56250;
198         case IB_RATE_112_GBPS: return 112500;
199         case IB_RATE_168_GBPS: return 168750;
200         case IB_RATE_25_GBPS:  return 25781;
201         case IB_RATE_100_GBPS: return 103125;
202         case IB_RATE_200_GBPS: return 206250;
203         case IB_RATE_300_GBPS: return 309375;
204         case IB_RATE_28_GBPS:  return 28125;
205         case IB_RATE_50_GBPS:  return 53125;
206         case IB_RATE_400_GBPS: return 425000;
207         case IB_RATE_600_GBPS: return 637500;
208         default:               return -1;
209         }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217         if (node_type == RDMA_NODE_USNIC)
218                 return RDMA_TRANSPORT_USNIC;
219         if (node_type == RDMA_NODE_USNIC_UDP)
220                 return RDMA_TRANSPORT_USNIC_UDP;
221         if (node_type == RDMA_NODE_RNIC)
222                 return RDMA_TRANSPORT_IWARP;
223         if (node_type == RDMA_NODE_UNSPECIFIED)
224                 return RDMA_TRANSPORT_UNSPECIFIED;
225
226         return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
231 {
232         enum rdma_transport_type lt;
233         if (device->ops.get_link_layer)
234                 return device->ops.get_link_layer(device, port_num);
235
236         lt = rdma_node_get_transport(device->node_type);
237         if (lt == RDMA_TRANSPORT_IB)
238                 return IB_LINK_LAYER_INFINIBAND;
239
240         return IB_LINK_LAYER_ETHERNET;
241 }
242 EXPORT_SYMBOL(rdma_port_get_link_layer);
243
244 /* Protection domains */
245
246 /**
247  * __ib_alloc_pd - Allocates an unused protection domain.
248  * @device: The device on which to allocate the protection domain.
249  * @flags: protection domain flags
250  * @caller: caller's build-time module name
251  *
252  * A protection domain object provides an association between QPs, shared
253  * receive queues, address handles, memory regions, and memory windows.
254  *
255  * Every PD has a local_dma_lkey which can be used as the lkey value for local
256  * memory operations.
257  */
258 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
259                 const char *caller)
260 {
261         struct ib_pd *pd;
262         int mr_access_flags = 0;
263         int ret;
264
265         pd = rdma_zalloc_drv_obj(device, ib_pd);
266         if (!pd)
267                 return ERR_PTR(-ENOMEM);
268
269         pd->device = device;
270         pd->uobject = NULL;
271         pd->__internal_mr = NULL;
272         atomic_set(&pd->usecnt, 0);
273         pd->flags = flags;
274
275         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
276         rdma_restrack_set_name(&pd->res, caller);
277
278         ret = device->ops.alloc_pd(pd, NULL);
279         if (ret) {
280                 rdma_restrack_put(&pd->res);
281                 kfree(pd);
282                 return ERR_PTR(ret);
283         }
284         rdma_restrack_add(&pd->res);
285
286         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
287                 pd->local_dma_lkey = device->local_dma_lkey;
288         else
289                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
290
291         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
292                 pr_warn("%s: enabling unsafe global rkey\n", caller);
293                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
294         }
295
296         if (mr_access_flags) {
297                 struct ib_mr *mr;
298
299                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
300                 if (IS_ERR(mr)) {
301                         ib_dealloc_pd(pd);
302                         return ERR_CAST(mr);
303                 }
304
305                 mr->device      = pd->device;
306                 mr->pd          = pd;
307                 mr->type        = IB_MR_TYPE_DMA;
308                 mr->uobject     = NULL;
309                 mr->need_inval  = false;
310
311                 pd->__internal_mr = mr;
312
313                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
314                         pd->local_dma_lkey = pd->__internal_mr->lkey;
315
316                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
317                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
318         }
319
320         return pd;
321 }
322 EXPORT_SYMBOL(__ib_alloc_pd);
323
324 /**
325  * ib_dealloc_pd_user - Deallocates a protection domain.
326  * @pd: The protection domain to deallocate.
327  * @udata: Valid user data or NULL for kernel object
328  *
329  * It is an error to call this function while any resources in the pd still
330  * exist.  The caller is responsible to synchronously destroy them and
331  * guarantee no new allocations will happen.
332  */
333 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
334 {
335         int ret;
336
337         if (pd->__internal_mr) {
338                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
339                 WARN_ON(ret);
340                 pd->__internal_mr = NULL;
341         }
342
343         /* uverbs manipulates usecnt with proper locking, while the kabi
344            requires the caller to guarantee we can't race here. */
345         WARN_ON(atomic_read(&pd->usecnt));
346
347         ret = pd->device->ops.dealloc_pd(pd, udata);
348         if (ret)
349                 return ret;
350
351         rdma_restrack_del(&pd->res);
352         kfree(pd);
353         return ret;
354 }
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
356
357 /* Address handles */
358
359 /**
360  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361  * @dest:       Pointer to destination ah_attr. Contents of the destination
362  *              pointer is assumed to be invalid and attribute are overwritten.
363  * @src:        Pointer to source ah_attr.
364  */
365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366                        const struct rdma_ah_attr *src)
367 {
368         *dest = *src;
369         if (dest->grh.sgid_attr)
370                 rdma_hold_gid_attr(dest->grh.sgid_attr);
371 }
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
373
374 /**
375  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
376  * @old:        Pointer to existing ah_attr which needs to be replaced.
377  *              old is assumed to be valid or zero'd
378  * @new:        Pointer to the new ah_attr.
379  *
380  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381  * old the ah_attr is valid; after that it copies the new attribute and holds
382  * the reference to the replaced ah_attr.
383  */
384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385                           const struct rdma_ah_attr *new)
386 {
387         rdma_destroy_ah_attr(old);
388         *old = *new;
389         if (old->grh.sgid_attr)
390                 rdma_hold_gid_attr(old->grh.sgid_attr);
391 }
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
393
394 /**
395  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396  * @dest:       Pointer to destination ah_attr to copy to.
397  *              dest is assumed to be valid or zero'd
398  * @src:        Pointer to the new ah_attr.
399  *
400  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401  * if it is valid. This also transfers ownership of internal references from
402  * src to dest, making src invalid in the process. No new reference of the src
403  * ah_attr is taken.
404  */
405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
406 {
407         rdma_destroy_ah_attr(dest);
408         *dest = *src;
409         src->grh.sgid_attr = NULL;
410 }
411 EXPORT_SYMBOL(rdma_move_ah_attr);
412
413 /*
414  * Validate that the rdma_ah_attr is valid for the device before passing it
415  * off to the driver.
416  */
417 static int rdma_check_ah_attr(struct ib_device *device,
418                               struct rdma_ah_attr *ah_attr)
419 {
420         if (!rdma_is_port_valid(device, ah_attr->port_num))
421                 return -EINVAL;
422
423         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425             !(ah_attr->ah_flags & IB_AH_GRH))
426                 return -EINVAL;
427
428         if (ah_attr->grh.sgid_attr) {
429                 /*
430                  * Make sure the passed sgid_attr is consistent with the
431                  * parameters
432                  */
433                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435                         return -EINVAL;
436         }
437         return 0;
438 }
439
440 /*
441  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442  * On success the caller is responsible to call rdma_unfill_sgid_attr().
443  */
444 static int rdma_fill_sgid_attr(struct ib_device *device,
445                                struct rdma_ah_attr *ah_attr,
446                                const struct ib_gid_attr **old_sgid_attr)
447 {
448         const struct ib_gid_attr *sgid_attr;
449         struct ib_global_route *grh;
450         int ret;
451
452         *old_sgid_attr = ah_attr->grh.sgid_attr;
453
454         ret = rdma_check_ah_attr(device, ah_attr);
455         if (ret)
456                 return ret;
457
458         if (!(ah_attr->ah_flags & IB_AH_GRH))
459                 return 0;
460
461         grh = rdma_ah_retrieve_grh(ah_attr);
462         if (grh->sgid_attr)
463                 return 0;
464
465         sgid_attr =
466                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467         if (IS_ERR(sgid_attr))
468                 return PTR_ERR(sgid_attr);
469
470         /* Move ownerhip of the kref into the ah_attr */
471         grh->sgid_attr = sgid_attr;
472         return 0;
473 }
474
475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476                                   const struct ib_gid_attr *old_sgid_attr)
477 {
478         /*
479          * Fill didn't change anything, the caller retains ownership of
480          * whatever it passed
481          */
482         if (ah_attr->grh.sgid_attr == old_sgid_attr)
483                 return;
484
485         /*
486          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487          * doesn't see any change in the rdma_ah_attr. If we get here
488          * old_sgid_attr is NULL.
489          */
490         rdma_destroy_ah_attr(ah_attr);
491 }
492
493 static const struct ib_gid_attr *
494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495                       const struct ib_gid_attr *old_attr)
496 {
497         if (old_attr)
498                 rdma_put_gid_attr(old_attr);
499         if (ah_attr->ah_flags & IB_AH_GRH) {
500                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501                 return ah_attr->grh.sgid_attr;
502         }
503         return NULL;
504 }
505
506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507                                      struct rdma_ah_attr *ah_attr,
508                                      u32 flags,
509                                      struct ib_udata *udata,
510                                      struct net_device *xmit_slave)
511 {
512         struct rdma_ah_init_attr init_attr = {};
513         struct ib_device *device = pd->device;
514         struct ib_ah *ah;
515         int ret;
516
517         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
518
519         if (!udata && !device->ops.create_ah)
520                 return ERR_PTR(-EOPNOTSUPP);
521
522         ah = rdma_zalloc_drv_obj_gfp(
523                 device, ib_ah,
524                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
525         if (!ah)
526                 return ERR_PTR(-ENOMEM);
527
528         ah->device = device;
529         ah->pd = pd;
530         ah->type = ah_attr->type;
531         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532         init_attr.ah_attr = ah_attr;
533         init_attr.flags = flags;
534         init_attr.xmit_slave = xmit_slave;
535
536         if (udata)
537                 ret = device->ops.create_user_ah(ah, &init_attr, udata);
538         else
539                 ret = device->ops.create_ah(ah, &init_attr, NULL);
540         if (ret) {
541                 kfree(ah);
542                 return ERR_PTR(ret);
543         }
544
545         atomic_inc(&pd->usecnt);
546         return ah;
547 }
548
549 /**
550  * rdma_create_ah - Creates an address handle for the
551  * given address vector.
552  * @pd: The protection domain associated with the address handle.
553  * @ah_attr: The attributes of the address vector.
554  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
555  *
556  * It returns 0 on success and returns appropriate error code on error.
557  * The address handle is used to reference a local or global destination
558  * in all UD QP post sends.
559  */
560 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
561                              u32 flags)
562 {
563         const struct ib_gid_attr *old_sgid_attr;
564         struct net_device *slave;
565         struct ib_ah *ah;
566         int ret;
567
568         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
569         if (ret)
570                 return ERR_PTR(ret);
571         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
572                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
573                                            GFP_KERNEL : GFP_ATOMIC);
574         if (IS_ERR(slave)) {
575                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
576                 return (void *)slave;
577         }
578         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
579         rdma_lag_put_ah_roce_slave(slave);
580         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
581         return ah;
582 }
583 EXPORT_SYMBOL(rdma_create_ah);
584
585 /**
586  * rdma_create_user_ah - Creates an address handle for the
587  * given address vector.
588  * It resolves destination mac address for ah attribute of RoCE type.
589  * @pd: The protection domain associated with the address handle.
590  * @ah_attr: The attributes of the address vector.
591  * @udata: pointer to user's input output buffer information need by
592  *         provider driver.
593  *
594  * It returns 0 on success and returns appropriate error code on error.
595  * The address handle is used to reference a local or global destination
596  * in all UD QP post sends.
597  */
598 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
599                                   struct rdma_ah_attr *ah_attr,
600                                   struct ib_udata *udata)
601 {
602         const struct ib_gid_attr *old_sgid_attr;
603         struct ib_ah *ah;
604         int err;
605
606         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
607         if (err)
608                 return ERR_PTR(err);
609
610         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
611                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
612                 if (err) {
613                         ah = ERR_PTR(err);
614                         goto out;
615                 }
616         }
617
618         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
619                              udata, NULL);
620
621 out:
622         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
623         return ah;
624 }
625 EXPORT_SYMBOL(rdma_create_user_ah);
626
627 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
628 {
629         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
630         struct iphdr ip4h_checked;
631         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
632
633         /* If it's IPv6, the version must be 6, otherwise, the first
634          * 20 bytes (before the IPv4 header) are garbled.
635          */
636         if (ip6h->version != 6)
637                 return (ip4h->version == 4) ? 4 : 0;
638         /* version may be 6 or 4 because the first 20 bytes could be garbled */
639
640         /* RoCE v2 requires no options, thus header length
641          * must be 5 words
642          */
643         if (ip4h->ihl != 5)
644                 return 6;
645
646         /* Verify checksum.
647          * We can't write on scattered buffers so we need to copy to
648          * temp buffer.
649          */
650         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
651         ip4h_checked.check = 0;
652         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
653         /* if IPv4 header checksum is OK, believe it */
654         if (ip4h->check == ip4h_checked.check)
655                 return 4;
656         return 6;
657 }
658 EXPORT_SYMBOL(ib_get_rdma_header_version);
659
660 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
661                                                      u8 port_num,
662                                                      const struct ib_grh *grh)
663 {
664         int grh_version;
665
666         if (rdma_protocol_ib(device, port_num))
667                 return RDMA_NETWORK_IB;
668
669         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
670
671         if (grh_version == 4)
672                 return RDMA_NETWORK_IPV4;
673
674         if (grh->next_hdr == IPPROTO_UDP)
675                 return RDMA_NETWORK_IPV6;
676
677         return RDMA_NETWORK_ROCE_V1;
678 }
679
680 struct find_gid_index_context {
681         u16 vlan_id;
682         enum ib_gid_type gid_type;
683 };
684
685 static bool find_gid_index(const union ib_gid *gid,
686                            const struct ib_gid_attr *gid_attr,
687                            void *context)
688 {
689         struct find_gid_index_context *ctx = context;
690         u16 vlan_id = 0xffff;
691         int ret;
692
693         if (ctx->gid_type != gid_attr->gid_type)
694                 return false;
695
696         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
697         if (ret)
698                 return false;
699
700         return ctx->vlan_id == vlan_id;
701 }
702
703 static const struct ib_gid_attr *
704 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
705                        u16 vlan_id, const union ib_gid *sgid,
706                        enum ib_gid_type gid_type)
707 {
708         struct find_gid_index_context context = {.vlan_id = vlan_id,
709                                                  .gid_type = gid_type};
710
711         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
712                                        &context);
713 }
714
715 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
716                               enum rdma_network_type net_type,
717                               union ib_gid *sgid, union ib_gid *dgid)
718 {
719         struct sockaddr_in  src_in;
720         struct sockaddr_in  dst_in;
721         __be32 src_saddr, dst_saddr;
722
723         if (!sgid || !dgid)
724                 return -EINVAL;
725
726         if (net_type == RDMA_NETWORK_IPV4) {
727                 memcpy(&src_in.sin_addr.s_addr,
728                        &hdr->roce4grh.saddr, 4);
729                 memcpy(&dst_in.sin_addr.s_addr,
730                        &hdr->roce4grh.daddr, 4);
731                 src_saddr = src_in.sin_addr.s_addr;
732                 dst_saddr = dst_in.sin_addr.s_addr;
733                 ipv6_addr_set_v4mapped(src_saddr,
734                                        (struct in6_addr *)sgid);
735                 ipv6_addr_set_v4mapped(dst_saddr,
736                                        (struct in6_addr *)dgid);
737                 return 0;
738         } else if (net_type == RDMA_NETWORK_IPV6 ||
739                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
740                 *dgid = hdr->ibgrh.dgid;
741                 *sgid = hdr->ibgrh.sgid;
742                 return 0;
743         } else {
744                 return -EINVAL;
745         }
746 }
747 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
748
749 /* Resolve destination mac address and hop limit for unicast destination
750  * GID entry, considering the source GID entry as well.
751  * ah_attribute must have have valid port_num, sgid_index.
752  */
753 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
754                                        struct rdma_ah_attr *ah_attr)
755 {
756         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
757         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
758         int hop_limit = 0xff;
759         int ret = 0;
760
761         /* If destination is link local and source GID is RoCEv1,
762          * IP stack is not used.
763          */
764         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
765             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
766                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
767                                 ah_attr->roce.dmac);
768                 return ret;
769         }
770
771         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
772                                            ah_attr->roce.dmac,
773                                            sgid_attr, &hop_limit);
774
775         grh->hop_limit = hop_limit;
776         return ret;
777 }
778
779 /*
780  * This function initializes address handle attributes from the incoming packet.
781  * Incoming packet has dgid of the receiver node on which this code is
782  * getting executed and, sgid contains the GID of the sender.
783  *
784  * When resolving mac address of destination, the arrived dgid is used
785  * as sgid and, sgid is used as dgid because sgid contains destinations
786  * GID whom to respond to.
787  *
788  * On success the caller is responsible to call rdma_destroy_ah_attr on the
789  * attr.
790  */
791 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
792                             const struct ib_wc *wc, const struct ib_grh *grh,
793                             struct rdma_ah_attr *ah_attr)
794 {
795         u32 flow_class;
796         int ret;
797         enum rdma_network_type net_type = RDMA_NETWORK_IB;
798         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
799         const struct ib_gid_attr *sgid_attr;
800         int hoplimit = 0xff;
801         union ib_gid dgid;
802         union ib_gid sgid;
803
804         might_sleep();
805
806         memset(ah_attr, 0, sizeof *ah_attr);
807         ah_attr->type = rdma_ah_find_type(device, port_num);
808         if (rdma_cap_eth_ah(device, port_num)) {
809                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
810                         net_type = wc->network_hdr_type;
811                 else
812                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
813                 gid_type = ib_network_to_gid_type(net_type);
814         }
815         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
816                                         &sgid, &dgid);
817         if (ret)
818                 return ret;
819
820         rdma_ah_set_sl(ah_attr, wc->sl);
821         rdma_ah_set_port_num(ah_attr, port_num);
822
823         if (rdma_protocol_roce(device, port_num)) {
824                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
825                                 wc->vlan_id : 0xffff;
826
827                 if (!(wc->wc_flags & IB_WC_GRH))
828                         return -EPROTOTYPE;
829
830                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
831                                                    vlan_id, &dgid,
832                                                    gid_type);
833                 if (IS_ERR(sgid_attr))
834                         return PTR_ERR(sgid_attr);
835
836                 flow_class = be32_to_cpu(grh->version_tclass_flow);
837                 rdma_move_grh_sgid_attr(ah_attr,
838                                         &sgid,
839                                         flow_class & 0xFFFFF,
840                                         hoplimit,
841                                         (flow_class >> 20) & 0xFF,
842                                         sgid_attr);
843
844                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
845                 if (ret)
846                         rdma_destroy_ah_attr(ah_attr);
847
848                 return ret;
849         } else {
850                 rdma_ah_set_dlid(ah_attr, wc->slid);
851                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
852
853                 if ((wc->wc_flags & IB_WC_GRH) == 0)
854                         return 0;
855
856                 if (dgid.global.interface_id !=
857                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
858                         sgid_attr = rdma_find_gid_by_port(
859                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
860                 } else
861                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
862
863                 if (IS_ERR(sgid_attr))
864                         return PTR_ERR(sgid_attr);
865                 flow_class = be32_to_cpu(grh->version_tclass_flow);
866                 rdma_move_grh_sgid_attr(ah_attr,
867                                         &sgid,
868                                         flow_class & 0xFFFFF,
869                                         hoplimit,
870                                         (flow_class >> 20) & 0xFF,
871                                         sgid_attr);
872
873                 return 0;
874         }
875 }
876 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
877
878 /**
879  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
880  * of the reference
881  *
882  * @attr:       Pointer to AH attribute structure
883  * @dgid:       Destination GID
884  * @flow_label: Flow label
885  * @hop_limit:  Hop limit
886  * @traffic_class: traffic class
887  * @sgid_attr:  Pointer to SGID attribute
888  *
889  * This takes ownership of the sgid_attr reference. The caller must ensure
890  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
891  * calling this function.
892  */
893 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
894                              u32 flow_label, u8 hop_limit, u8 traffic_class,
895                              const struct ib_gid_attr *sgid_attr)
896 {
897         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
898                         traffic_class);
899         attr->grh.sgid_attr = sgid_attr;
900 }
901 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
902
903 /**
904  * rdma_destroy_ah_attr - Release reference to SGID attribute of
905  * ah attribute.
906  * @ah_attr: Pointer to ah attribute
907  *
908  * Release reference to the SGID attribute of the ah attribute if it is
909  * non NULL. It is safe to call this multiple times, and safe to call it on
910  * a zero initialized ah_attr.
911  */
912 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
913 {
914         if (ah_attr->grh.sgid_attr) {
915                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
916                 ah_attr->grh.sgid_attr = NULL;
917         }
918 }
919 EXPORT_SYMBOL(rdma_destroy_ah_attr);
920
921 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
922                                    const struct ib_grh *grh, u8 port_num)
923 {
924         struct rdma_ah_attr ah_attr;
925         struct ib_ah *ah;
926         int ret;
927
928         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
929         if (ret)
930                 return ERR_PTR(ret);
931
932         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
933
934         rdma_destroy_ah_attr(&ah_attr);
935         return ah;
936 }
937 EXPORT_SYMBOL(ib_create_ah_from_wc);
938
939 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
940 {
941         const struct ib_gid_attr *old_sgid_attr;
942         int ret;
943
944         if (ah->type != ah_attr->type)
945                 return -EINVAL;
946
947         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
948         if (ret)
949                 return ret;
950
951         ret = ah->device->ops.modify_ah ?
952                 ah->device->ops.modify_ah(ah, ah_attr) :
953                 -EOPNOTSUPP;
954
955         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
956         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
957         return ret;
958 }
959 EXPORT_SYMBOL(rdma_modify_ah);
960
961 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
962 {
963         ah_attr->grh.sgid_attr = NULL;
964
965         return ah->device->ops.query_ah ?
966                 ah->device->ops.query_ah(ah, ah_attr) :
967                 -EOPNOTSUPP;
968 }
969 EXPORT_SYMBOL(rdma_query_ah);
970
971 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
972 {
973         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
974         struct ib_pd *pd;
975         int ret;
976
977         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
978
979         pd = ah->pd;
980
981         ret = ah->device->ops.destroy_ah(ah, flags);
982         if (ret)
983                 return ret;
984
985         atomic_dec(&pd->usecnt);
986         if (sgid_attr)
987                 rdma_put_gid_attr(sgid_attr);
988
989         kfree(ah);
990         return ret;
991 }
992 EXPORT_SYMBOL(rdma_destroy_ah_user);
993
994 /* Shared receive queues */
995
996 /**
997  * ib_create_srq_user - Creates a SRQ associated with the specified protection
998  *   domain.
999  * @pd: The protection domain associated with the SRQ.
1000  * @srq_init_attr: A list of initial attributes required to create the
1001  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1002  *   the actual capabilities of the created SRQ.
1003  * @uobject: uobject pointer if this is not a kernel SRQ
1004  * @udata: udata pointer if this is not a kernel SRQ
1005  *
1006  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1007  * requested size of the SRQ, and set to the actual values allocated
1008  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1009  * will always be at least as large as the requested values.
1010  */
1011 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1012                                   struct ib_srq_init_attr *srq_init_attr,
1013                                   struct ib_usrq_object *uobject,
1014                                   struct ib_udata *udata)
1015 {
1016         struct ib_srq *srq;
1017         int ret;
1018
1019         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1020         if (!srq)
1021                 return ERR_PTR(-ENOMEM);
1022
1023         srq->device = pd->device;
1024         srq->pd = pd;
1025         srq->event_handler = srq_init_attr->event_handler;
1026         srq->srq_context = srq_init_attr->srq_context;
1027         srq->srq_type = srq_init_attr->srq_type;
1028         srq->uobject = uobject;
1029
1030         if (ib_srq_has_cq(srq->srq_type)) {
1031                 srq->ext.cq = srq_init_attr->ext.cq;
1032                 atomic_inc(&srq->ext.cq->usecnt);
1033         }
1034         if (srq->srq_type == IB_SRQT_XRC) {
1035                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1036                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037         }
1038         atomic_inc(&pd->usecnt);
1039
1040         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1041         if (ret) {
1042                 atomic_dec(&srq->pd->usecnt);
1043                 if (srq->srq_type == IB_SRQT_XRC)
1044                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1045                 if (ib_srq_has_cq(srq->srq_type))
1046                         atomic_dec(&srq->ext.cq->usecnt);
1047                 kfree(srq);
1048                 return ERR_PTR(ret);
1049         }
1050
1051         return srq;
1052 }
1053 EXPORT_SYMBOL(ib_create_srq_user);
1054
1055 int ib_modify_srq(struct ib_srq *srq,
1056                   struct ib_srq_attr *srq_attr,
1057                   enum ib_srq_attr_mask srq_attr_mask)
1058 {
1059         return srq->device->ops.modify_srq ?
1060                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1061                                             NULL) : -EOPNOTSUPP;
1062 }
1063 EXPORT_SYMBOL(ib_modify_srq);
1064
1065 int ib_query_srq(struct ib_srq *srq,
1066                  struct ib_srq_attr *srq_attr)
1067 {
1068         return srq->device->ops.query_srq ?
1069                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1070 }
1071 EXPORT_SYMBOL(ib_query_srq);
1072
1073 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1074 {
1075         int ret;
1076
1077         if (atomic_read(&srq->usecnt))
1078                 return -EBUSY;
1079
1080         ret = srq->device->ops.destroy_srq(srq, udata);
1081         if (ret)
1082                 return ret;
1083
1084         atomic_dec(&srq->pd->usecnt);
1085         if (srq->srq_type == IB_SRQT_XRC)
1086                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1087         if (ib_srq_has_cq(srq->srq_type))
1088                 atomic_dec(&srq->ext.cq->usecnt);
1089         kfree(srq);
1090
1091         return ret;
1092 }
1093 EXPORT_SYMBOL(ib_destroy_srq_user);
1094
1095 /* Queue pairs */
1096
1097 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1098 {
1099         struct ib_qp *qp = context;
1100         unsigned long flags;
1101
1102         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1103         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1104                 if (event->element.qp->event_handler)
1105                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1106         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1107 }
1108
1109 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1110                                   void (*event_handler)(struct ib_event *, void *),
1111                                   void *qp_context)
1112 {
1113         struct ib_qp *qp;
1114         unsigned long flags;
1115         int err;
1116
1117         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1118         if (!qp)
1119                 return ERR_PTR(-ENOMEM);
1120
1121         qp->real_qp = real_qp;
1122         err = ib_open_shared_qp_security(qp, real_qp->device);
1123         if (err) {
1124                 kfree(qp);
1125                 return ERR_PTR(err);
1126         }
1127
1128         qp->real_qp = real_qp;
1129         atomic_inc(&real_qp->usecnt);
1130         qp->device = real_qp->device;
1131         qp->event_handler = event_handler;
1132         qp->qp_context = qp_context;
1133         qp->qp_num = real_qp->qp_num;
1134         qp->qp_type = real_qp->qp_type;
1135
1136         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1137         list_add(&qp->open_list, &real_qp->open_list);
1138         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1139
1140         return qp;
1141 }
1142
1143 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1144                          struct ib_qp_open_attr *qp_open_attr)
1145 {
1146         struct ib_qp *qp, *real_qp;
1147
1148         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1149                 return ERR_PTR(-EINVAL);
1150
1151         down_read(&xrcd->tgt_qps_rwsem);
1152         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1153         if (!real_qp) {
1154                 up_read(&xrcd->tgt_qps_rwsem);
1155                 return ERR_PTR(-EINVAL);
1156         }
1157         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1158                           qp_open_attr->qp_context);
1159         up_read(&xrcd->tgt_qps_rwsem);
1160         return qp;
1161 }
1162 EXPORT_SYMBOL(ib_open_qp);
1163
1164 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1165                                         struct ib_qp_init_attr *qp_init_attr)
1166 {
1167         struct ib_qp *real_qp = qp;
1168         int err;
1169
1170         qp->event_handler = __ib_shared_qp_event_handler;
1171         qp->qp_context = qp;
1172         qp->pd = NULL;
1173         qp->send_cq = qp->recv_cq = NULL;
1174         qp->srq = NULL;
1175         qp->xrcd = qp_init_attr->xrcd;
1176         atomic_inc(&qp_init_attr->xrcd->usecnt);
1177         INIT_LIST_HEAD(&qp->open_list);
1178
1179         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1180                           qp_init_attr->qp_context);
1181         if (IS_ERR(qp))
1182                 return qp;
1183
1184         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1185                               real_qp, GFP_KERNEL));
1186         if (err) {
1187                 ib_close_qp(qp);
1188                 return ERR_PTR(err);
1189         }
1190         return qp;
1191 }
1192
1193 /**
1194  * ib_create_named_qp - Creates a kernel QP associated with the specified protection
1195  *   domain.
1196  * @pd: The protection domain associated with the QP.
1197  * @qp_init_attr: A list of initial attributes required to create the
1198  *   QP.  If QP creation succeeds, then the attributes are updated to
1199  *   the actual capabilities of the created QP.
1200  * @caller: caller's build-time module name
1201  *
1202  * NOTE: for user qp use ib_create_qp_user with valid udata!
1203  */
1204 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
1205                                  struct ib_qp_init_attr *qp_init_attr,
1206                                  const char *caller)
1207 {
1208         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1209         struct ib_qp *qp;
1210         int ret;
1211
1212         if (qp_init_attr->rwq_ind_tbl &&
1213             (qp_init_attr->recv_cq ||
1214             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1215             qp_init_attr->cap.max_recv_sge))
1216                 return ERR_PTR(-EINVAL);
1217
1218         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1219             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1220                 return ERR_PTR(-EINVAL);
1221
1222         /*
1223          * If the callers is using the RDMA API calculate the resources
1224          * needed for the RDMA READ/WRITE operations.
1225          *
1226          * Note that these callers need to pass in a port number.
1227          */
1228         if (qp_init_attr->cap.max_rdma_ctxs)
1229                 rdma_rw_init_qp(device, qp_init_attr);
1230
1231         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1232         if (IS_ERR(qp))
1233                 return qp;
1234
1235         ret = ib_create_qp_security(qp, device);
1236         if (ret)
1237                 goto err;
1238
1239         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1240                 struct ib_qp *xrc_qp =
1241                         create_xrc_qp_user(qp, qp_init_attr);
1242
1243                 if (IS_ERR(xrc_qp)) {
1244                         ret = PTR_ERR(xrc_qp);
1245                         goto err;
1246                 }
1247                 return xrc_qp;
1248         }
1249
1250         qp->event_handler = qp_init_attr->event_handler;
1251         qp->qp_context = qp_init_attr->qp_context;
1252         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1253                 qp->recv_cq = NULL;
1254                 qp->srq = NULL;
1255         } else {
1256                 qp->recv_cq = qp_init_attr->recv_cq;
1257                 if (qp_init_attr->recv_cq)
1258                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1259                 qp->srq = qp_init_attr->srq;
1260                 if (qp->srq)
1261                         atomic_inc(&qp_init_attr->srq->usecnt);
1262         }
1263
1264         qp->send_cq = qp_init_attr->send_cq;
1265         qp->xrcd    = NULL;
1266
1267         atomic_inc(&pd->usecnt);
1268         if (qp_init_attr->send_cq)
1269                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1270         if (qp_init_attr->rwq_ind_tbl)
1271                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1272
1273         if (qp_init_attr->cap.max_rdma_ctxs) {
1274                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1275                 if (ret)
1276                         goto err;
1277         }
1278
1279         /*
1280          * Note: all hw drivers guarantee that max_send_sge is lower than
1281          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1282          * max_send_sge <= max_sge_rd.
1283          */
1284         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1285         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1286                                  device->attrs.max_sge_rd);
1287         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1288                 qp->integrity_en = true;
1289
1290         return qp;
1291
1292 err:
1293         ib_destroy_qp(qp);
1294         return ERR_PTR(ret);
1295
1296 }
1297 EXPORT_SYMBOL(ib_create_named_qp);
1298
1299 static const struct {
1300         int                     valid;
1301         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1302         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1303 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1304         [IB_QPS_RESET] = {
1305                 [IB_QPS_RESET] = { .valid = 1 },
1306                 [IB_QPS_INIT]  = {
1307                         .valid = 1,
1308                         .req_param = {
1309                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1310                                                 IB_QP_PORT                      |
1311                                                 IB_QP_QKEY),
1312                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1313                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1314                                                 IB_QP_PORT                      |
1315                                                 IB_QP_ACCESS_FLAGS),
1316                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1317                                                 IB_QP_PORT                      |
1318                                                 IB_QP_ACCESS_FLAGS),
1319                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1320                                                 IB_QP_PORT                      |
1321                                                 IB_QP_ACCESS_FLAGS),
1322                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1323                                                 IB_QP_PORT                      |
1324                                                 IB_QP_ACCESS_FLAGS),
1325                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1326                                                 IB_QP_QKEY),
1327                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1328                                                 IB_QP_QKEY),
1329                         }
1330                 },
1331         },
1332         [IB_QPS_INIT]  = {
1333                 [IB_QPS_RESET] = { .valid = 1 },
1334                 [IB_QPS_ERR] =   { .valid = 1 },
1335                 [IB_QPS_INIT]  = {
1336                         .valid = 1,
1337                         .opt_param = {
1338                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1339                                                 IB_QP_PORT                      |
1340                                                 IB_QP_QKEY),
1341                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1342                                                 IB_QP_PORT                      |
1343                                                 IB_QP_ACCESS_FLAGS),
1344                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1345                                                 IB_QP_PORT                      |
1346                                                 IB_QP_ACCESS_FLAGS),
1347                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1348                                                 IB_QP_PORT                      |
1349                                                 IB_QP_ACCESS_FLAGS),
1350                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1351                                                 IB_QP_PORT                      |
1352                                                 IB_QP_ACCESS_FLAGS),
1353                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1354                                                 IB_QP_QKEY),
1355                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1356                                                 IB_QP_QKEY),
1357                         }
1358                 },
1359                 [IB_QPS_RTR]   = {
1360                         .valid = 1,
1361                         .req_param = {
1362                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1363                                                 IB_QP_PATH_MTU                  |
1364                                                 IB_QP_DEST_QPN                  |
1365                                                 IB_QP_RQ_PSN),
1366                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1367                                                 IB_QP_PATH_MTU                  |
1368                                                 IB_QP_DEST_QPN                  |
1369                                                 IB_QP_RQ_PSN                    |
1370                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1371                                                 IB_QP_MIN_RNR_TIMER),
1372                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1373                                                 IB_QP_PATH_MTU                  |
1374                                                 IB_QP_DEST_QPN                  |
1375                                                 IB_QP_RQ_PSN),
1376                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1377                                                 IB_QP_PATH_MTU                  |
1378                                                 IB_QP_DEST_QPN                  |
1379                                                 IB_QP_RQ_PSN                    |
1380                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1381                                                 IB_QP_MIN_RNR_TIMER),
1382                         },
1383                         .opt_param = {
1384                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1385                                                  IB_QP_QKEY),
1386                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1387                                                  IB_QP_ACCESS_FLAGS             |
1388                                                  IB_QP_PKEY_INDEX),
1389                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1390                                                  IB_QP_ACCESS_FLAGS             |
1391                                                  IB_QP_PKEY_INDEX),
1392                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1393                                                  IB_QP_ACCESS_FLAGS             |
1394                                                  IB_QP_PKEY_INDEX),
1395                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1396                                                  IB_QP_ACCESS_FLAGS             |
1397                                                  IB_QP_PKEY_INDEX),
1398                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1399                                                  IB_QP_QKEY),
1400                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1401                                                  IB_QP_QKEY),
1402                          },
1403                 },
1404         },
1405         [IB_QPS_RTR]   = {
1406                 [IB_QPS_RESET] = { .valid = 1 },
1407                 [IB_QPS_ERR] =   { .valid = 1 },
1408                 [IB_QPS_RTS]   = {
1409                         .valid = 1,
1410                         .req_param = {
1411                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1412                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1413                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1414                                                 IB_QP_RETRY_CNT                 |
1415                                                 IB_QP_RNR_RETRY                 |
1416                                                 IB_QP_SQ_PSN                    |
1417                                                 IB_QP_MAX_QP_RD_ATOMIC),
1418                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1419                                                 IB_QP_RETRY_CNT                 |
1420                                                 IB_QP_RNR_RETRY                 |
1421                                                 IB_QP_SQ_PSN                    |
1422                                                 IB_QP_MAX_QP_RD_ATOMIC),
1423                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1424                                                 IB_QP_SQ_PSN),
1425                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1426                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1427                         },
1428                         .opt_param = {
1429                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1430                                                  IB_QP_QKEY),
1431                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1432                                                  IB_QP_ALT_PATH                 |
1433                                                  IB_QP_ACCESS_FLAGS             |
1434                                                  IB_QP_PATH_MIG_STATE),
1435                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1436                                                  IB_QP_ALT_PATH                 |
1437                                                  IB_QP_ACCESS_FLAGS             |
1438                                                  IB_QP_MIN_RNR_TIMER            |
1439                                                  IB_QP_PATH_MIG_STATE),
1440                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1441                                                  IB_QP_ALT_PATH                 |
1442                                                  IB_QP_ACCESS_FLAGS             |
1443                                                  IB_QP_PATH_MIG_STATE),
1444                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1445                                                  IB_QP_ALT_PATH                 |
1446                                                  IB_QP_ACCESS_FLAGS             |
1447                                                  IB_QP_MIN_RNR_TIMER            |
1448                                                  IB_QP_PATH_MIG_STATE),
1449                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1450                                                  IB_QP_QKEY),
1451                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1452                                                  IB_QP_QKEY),
1453                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1454                          }
1455                 }
1456         },
1457         [IB_QPS_RTS]   = {
1458                 [IB_QPS_RESET] = { .valid = 1 },
1459                 [IB_QPS_ERR] =   { .valid = 1 },
1460                 [IB_QPS_RTS]   = {
1461                         .valid = 1,
1462                         .opt_param = {
1463                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1464                                                 IB_QP_QKEY),
1465                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1466                                                 IB_QP_ACCESS_FLAGS              |
1467                                                 IB_QP_ALT_PATH                  |
1468                                                 IB_QP_PATH_MIG_STATE),
1469                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1470                                                 IB_QP_ACCESS_FLAGS              |
1471                                                 IB_QP_ALT_PATH                  |
1472                                                 IB_QP_PATH_MIG_STATE            |
1473                                                 IB_QP_MIN_RNR_TIMER),
1474                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1475                                                 IB_QP_ACCESS_FLAGS              |
1476                                                 IB_QP_ALT_PATH                  |
1477                                                 IB_QP_PATH_MIG_STATE),
1478                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1479                                                 IB_QP_ACCESS_FLAGS              |
1480                                                 IB_QP_ALT_PATH                  |
1481                                                 IB_QP_PATH_MIG_STATE            |
1482                                                 IB_QP_MIN_RNR_TIMER),
1483                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1484                                                 IB_QP_QKEY),
1485                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1486                                                 IB_QP_QKEY),
1487                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1488                         }
1489                 },
1490                 [IB_QPS_SQD]   = {
1491                         .valid = 1,
1492                         .opt_param = {
1493                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1494                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1495                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1496                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1497                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1498                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1499                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1500                         }
1501                 },
1502         },
1503         [IB_QPS_SQD]   = {
1504                 [IB_QPS_RESET] = { .valid = 1 },
1505                 [IB_QPS_ERR] =   { .valid = 1 },
1506                 [IB_QPS_RTS]   = {
1507                         .valid = 1,
1508                         .opt_param = {
1509                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1510                                                 IB_QP_QKEY),
1511                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1512                                                 IB_QP_ALT_PATH                  |
1513                                                 IB_QP_ACCESS_FLAGS              |
1514                                                 IB_QP_PATH_MIG_STATE),
1515                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1516                                                 IB_QP_ALT_PATH                  |
1517                                                 IB_QP_ACCESS_FLAGS              |
1518                                                 IB_QP_MIN_RNR_TIMER             |
1519                                                 IB_QP_PATH_MIG_STATE),
1520                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1521                                                 IB_QP_ALT_PATH                  |
1522                                                 IB_QP_ACCESS_FLAGS              |
1523                                                 IB_QP_PATH_MIG_STATE),
1524                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1525                                                 IB_QP_ALT_PATH                  |
1526                                                 IB_QP_ACCESS_FLAGS              |
1527                                                 IB_QP_MIN_RNR_TIMER             |
1528                                                 IB_QP_PATH_MIG_STATE),
1529                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1530                                                 IB_QP_QKEY),
1531                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1532                                                 IB_QP_QKEY),
1533                         }
1534                 },
1535                 [IB_QPS_SQD]   = {
1536                         .valid = 1,
1537                         .opt_param = {
1538                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1539                                                 IB_QP_QKEY),
1540                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1541                                                 IB_QP_ALT_PATH                  |
1542                                                 IB_QP_ACCESS_FLAGS              |
1543                                                 IB_QP_PKEY_INDEX                |
1544                                                 IB_QP_PATH_MIG_STATE),
1545                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1546                                                 IB_QP_AV                        |
1547                                                 IB_QP_TIMEOUT                   |
1548                                                 IB_QP_RETRY_CNT                 |
1549                                                 IB_QP_RNR_RETRY                 |
1550                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1551                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1552                                                 IB_QP_ALT_PATH                  |
1553                                                 IB_QP_ACCESS_FLAGS              |
1554                                                 IB_QP_PKEY_INDEX                |
1555                                                 IB_QP_MIN_RNR_TIMER             |
1556                                                 IB_QP_PATH_MIG_STATE),
1557                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1558                                                 IB_QP_AV                        |
1559                                                 IB_QP_TIMEOUT                   |
1560                                                 IB_QP_RETRY_CNT                 |
1561                                                 IB_QP_RNR_RETRY                 |
1562                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1563                                                 IB_QP_ALT_PATH                  |
1564                                                 IB_QP_ACCESS_FLAGS              |
1565                                                 IB_QP_PKEY_INDEX                |
1566                                                 IB_QP_PATH_MIG_STATE),
1567                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1568                                                 IB_QP_AV                        |
1569                                                 IB_QP_TIMEOUT                   |
1570                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1571                                                 IB_QP_ALT_PATH                  |
1572                                                 IB_QP_ACCESS_FLAGS              |
1573                                                 IB_QP_PKEY_INDEX                |
1574                                                 IB_QP_MIN_RNR_TIMER             |
1575                                                 IB_QP_PATH_MIG_STATE),
1576                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1577                                                 IB_QP_QKEY),
1578                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1579                                                 IB_QP_QKEY),
1580                         }
1581                 }
1582         },
1583         [IB_QPS_SQE]   = {
1584                 [IB_QPS_RESET] = { .valid = 1 },
1585                 [IB_QPS_ERR] =   { .valid = 1 },
1586                 [IB_QPS_RTS]   = {
1587                         .valid = 1,
1588                         .opt_param = {
1589                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1590                                                 IB_QP_QKEY),
1591                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1592                                                 IB_QP_ACCESS_FLAGS),
1593                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1594                                                 IB_QP_QKEY),
1595                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1596                                                 IB_QP_QKEY),
1597                         }
1598                 }
1599         },
1600         [IB_QPS_ERR] = {
1601                 [IB_QPS_RESET] = { .valid = 1 },
1602                 [IB_QPS_ERR] =   { .valid = 1 }
1603         }
1604 };
1605
1606 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1607                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1608 {
1609         enum ib_qp_attr_mask req_param, opt_param;
1610
1611         if (mask & IB_QP_CUR_STATE  &&
1612             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1613             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1614                 return false;
1615
1616         if (!qp_state_table[cur_state][next_state].valid)
1617                 return false;
1618
1619         req_param = qp_state_table[cur_state][next_state].req_param[type];
1620         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1621
1622         if ((mask & req_param) != req_param)
1623                 return false;
1624
1625         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1626                 return false;
1627
1628         return true;
1629 }
1630 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1631
1632 /**
1633  * ib_resolve_eth_dmac - Resolve destination mac address
1634  * @device:             Device to consider
1635  * @ah_attr:            address handle attribute which describes the
1636  *                      source and destination parameters
1637  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1638  * returns 0 on success or appropriate error code. It initializes the
1639  * necessary ah_attr fields when call is successful.
1640  */
1641 static int ib_resolve_eth_dmac(struct ib_device *device,
1642                                struct rdma_ah_attr *ah_attr)
1643 {
1644         int ret = 0;
1645
1646         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1647                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1648                         __be32 addr = 0;
1649
1650                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1651                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1652                 } else {
1653                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1654                                         (char *)ah_attr->roce.dmac);
1655                 }
1656         } else {
1657                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1658         }
1659         return ret;
1660 }
1661
1662 static bool is_qp_type_connected(const struct ib_qp *qp)
1663 {
1664         return (qp->qp_type == IB_QPT_UC ||
1665                 qp->qp_type == IB_QPT_RC ||
1666                 qp->qp_type == IB_QPT_XRC_INI ||
1667                 qp->qp_type == IB_QPT_XRC_TGT);
1668 }
1669
1670 /*
1671  * IB core internal function to perform QP attributes modification.
1672  */
1673 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1674                          int attr_mask, struct ib_udata *udata)
1675 {
1676         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1677         const struct ib_gid_attr *old_sgid_attr_av;
1678         const struct ib_gid_attr *old_sgid_attr_alt_av;
1679         int ret;
1680
1681         attr->xmit_slave = NULL;
1682         if (attr_mask & IB_QP_AV) {
1683                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1684                                           &old_sgid_attr_av);
1685                 if (ret)
1686                         return ret;
1687
1688                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1689                     is_qp_type_connected(qp)) {
1690                         struct net_device *slave;
1691
1692                         /*
1693                          * If the user provided the qp_attr then we have to
1694                          * resolve it. Kerne users have to provide already
1695                          * resolved rdma_ah_attr's.
1696                          */
1697                         if (udata) {
1698                                 ret = ib_resolve_eth_dmac(qp->device,
1699                                                           &attr->ah_attr);
1700                                 if (ret)
1701                                         goto out_av;
1702                         }
1703                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1704                                                            &attr->ah_attr,
1705                                                            GFP_KERNEL);
1706                         if (IS_ERR(slave)) {
1707                                 ret = PTR_ERR(slave);
1708                                 goto out_av;
1709                         }
1710                         attr->xmit_slave = slave;
1711                 }
1712         }
1713         if (attr_mask & IB_QP_ALT_PATH) {
1714                 /*
1715                  * FIXME: This does not track the migration state, so if the
1716                  * user loads a new alternate path after the HW has migrated
1717                  * from primary->alternate we will keep the wrong
1718                  * references. This is OK for IB because the reference
1719                  * counting does not serve any functional purpose.
1720                  */
1721                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1722                                           &old_sgid_attr_alt_av);
1723                 if (ret)
1724                         goto out_av;
1725
1726                 /*
1727                  * Today the core code can only handle alternate paths and APM
1728                  * for IB. Ban them in roce mode.
1729                  */
1730                 if (!(rdma_protocol_ib(qp->device,
1731                                        attr->alt_ah_attr.port_num) &&
1732                       rdma_protocol_ib(qp->device, port))) {
1733                         ret = -EINVAL;
1734                         goto out;
1735                 }
1736         }
1737
1738         if (rdma_ib_or_roce(qp->device, port)) {
1739                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1740                         dev_warn(&qp->device->dev,
1741                                  "%s rq_psn overflow, masking to 24 bits\n",
1742                                  __func__);
1743                         attr->rq_psn &= 0xffffff;
1744                 }
1745
1746                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1747                         dev_warn(&qp->device->dev,
1748                                  " %s sq_psn overflow, masking to 24 bits\n",
1749                                  __func__);
1750                         attr->sq_psn &= 0xffffff;
1751                 }
1752         }
1753
1754         /*
1755          * Bind this qp to a counter automatically based on the rdma counter
1756          * rules. This only set in RST2INIT with port specified
1757          */
1758         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1759             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1760                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1761
1762         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1763         if (ret)
1764                 goto out;
1765
1766         if (attr_mask & IB_QP_PORT)
1767                 qp->port = attr->port_num;
1768         if (attr_mask & IB_QP_AV)
1769                 qp->av_sgid_attr =
1770                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1771         if (attr_mask & IB_QP_ALT_PATH)
1772                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1773                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1774
1775 out:
1776         if (attr_mask & IB_QP_ALT_PATH)
1777                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1778 out_av:
1779         if (attr_mask & IB_QP_AV) {
1780                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1781                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1782         }
1783         return ret;
1784 }
1785
1786 /**
1787  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1788  * @ib_qp: The QP to modify.
1789  * @attr: On input, specifies the QP attributes to modify.  On output,
1790  *   the current values of selected QP attributes are returned.
1791  * @attr_mask: A bit-mask used to specify which attributes of the QP
1792  *   are being modified.
1793  * @udata: pointer to user's input output buffer information
1794  *   are being modified.
1795  * It returns 0 on success and returns appropriate error code on error.
1796  */
1797 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1798                             int attr_mask, struct ib_udata *udata)
1799 {
1800         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1801 }
1802 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1803
1804 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width)
1805 {
1806         int rc;
1807         u32 netdev_speed;
1808         struct net_device *netdev;
1809         struct ethtool_link_ksettings lksettings;
1810
1811         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1812                 return -EINVAL;
1813
1814         netdev = ib_device_get_netdev(dev, port_num);
1815         if (!netdev)
1816                 return -ENODEV;
1817
1818         rtnl_lock();
1819         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1820         rtnl_unlock();
1821
1822         dev_put(netdev);
1823
1824         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1825                 netdev_speed = lksettings.base.speed;
1826         } else {
1827                 netdev_speed = SPEED_1000;
1828                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1829                         netdev_speed);
1830         }
1831
1832         if (netdev_speed <= SPEED_1000) {
1833                 *width = IB_WIDTH_1X;
1834                 *speed = IB_SPEED_SDR;
1835         } else if (netdev_speed <= SPEED_10000) {
1836                 *width = IB_WIDTH_1X;
1837                 *speed = IB_SPEED_FDR10;
1838         } else if (netdev_speed <= SPEED_20000) {
1839                 *width = IB_WIDTH_4X;
1840                 *speed = IB_SPEED_DDR;
1841         } else if (netdev_speed <= SPEED_25000) {
1842                 *width = IB_WIDTH_1X;
1843                 *speed = IB_SPEED_EDR;
1844         } else if (netdev_speed <= SPEED_40000) {
1845                 *width = IB_WIDTH_4X;
1846                 *speed = IB_SPEED_FDR10;
1847         } else {
1848                 *width = IB_WIDTH_4X;
1849                 *speed = IB_SPEED_EDR;
1850         }
1851
1852         return 0;
1853 }
1854 EXPORT_SYMBOL(ib_get_eth_speed);
1855
1856 int ib_modify_qp(struct ib_qp *qp,
1857                  struct ib_qp_attr *qp_attr,
1858                  int qp_attr_mask)
1859 {
1860         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1861 }
1862 EXPORT_SYMBOL(ib_modify_qp);
1863
1864 int ib_query_qp(struct ib_qp *qp,
1865                 struct ib_qp_attr *qp_attr,
1866                 int qp_attr_mask,
1867                 struct ib_qp_init_attr *qp_init_attr)
1868 {
1869         qp_attr->ah_attr.grh.sgid_attr = NULL;
1870         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1871
1872         return qp->device->ops.query_qp ?
1873                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1874                                          qp_init_attr) : -EOPNOTSUPP;
1875 }
1876 EXPORT_SYMBOL(ib_query_qp);
1877
1878 int ib_close_qp(struct ib_qp *qp)
1879 {
1880         struct ib_qp *real_qp;
1881         unsigned long flags;
1882
1883         real_qp = qp->real_qp;
1884         if (real_qp == qp)
1885                 return -EINVAL;
1886
1887         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1888         list_del(&qp->open_list);
1889         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1890
1891         atomic_dec(&real_qp->usecnt);
1892         if (qp->qp_sec)
1893                 ib_close_shared_qp_security(qp->qp_sec);
1894         kfree(qp);
1895
1896         return 0;
1897 }
1898 EXPORT_SYMBOL(ib_close_qp);
1899
1900 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1901 {
1902         struct ib_xrcd *xrcd;
1903         struct ib_qp *real_qp;
1904         int ret;
1905
1906         real_qp = qp->real_qp;
1907         xrcd = real_qp->xrcd;
1908         down_write(&xrcd->tgt_qps_rwsem);
1909         ib_close_qp(qp);
1910         if (atomic_read(&real_qp->usecnt) == 0)
1911                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1912         else
1913                 real_qp = NULL;
1914         up_write(&xrcd->tgt_qps_rwsem);
1915
1916         if (real_qp) {
1917                 ret = ib_destroy_qp(real_qp);
1918                 if (!ret)
1919                         atomic_dec(&xrcd->usecnt);
1920         }
1921
1922         return 0;
1923 }
1924
1925 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1926 {
1927         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1928         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1929         struct ib_pd *pd;
1930         struct ib_cq *scq, *rcq;
1931         struct ib_srq *srq;
1932         struct ib_rwq_ind_table *ind_tbl;
1933         struct ib_qp_security *sec;
1934         int ret;
1935
1936         WARN_ON_ONCE(qp->mrs_used > 0);
1937
1938         if (atomic_read(&qp->usecnt))
1939                 return -EBUSY;
1940
1941         if (qp->real_qp != qp)
1942                 return __ib_destroy_shared_qp(qp);
1943
1944         pd   = qp->pd;
1945         scq  = qp->send_cq;
1946         rcq  = qp->recv_cq;
1947         srq  = qp->srq;
1948         ind_tbl = qp->rwq_ind_tbl;
1949         sec  = qp->qp_sec;
1950         if (sec)
1951                 ib_destroy_qp_security_begin(sec);
1952
1953         if (!qp->uobject)
1954                 rdma_rw_cleanup_mrs(qp);
1955
1956         rdma_counter_unbind_qp(qp, true);
1957         rdma_restrack_del(&qp->res);
1958         ret = qp->device->ops.destroy_qp(qp, udata);
1959         if (!ret) {
1960                 if (alt_path_sgid_attr)
1961                         rdma_put_gid_attr(alt_path_sgid_attr);
1962                 if (av_sgid_attr)
1963                         rdma_put_gid_attr(av_sgid_attr);
1964                 if (pd)
1965                         atomic_dec(&pd->usecnt);
1966                 if (scq)
1967                         atomic_dec(&scq->usecnt);
1968                 if (rcq)
1969                         atomic_dec(&rcq->usecnt);
1970                 if (srq)
1971                         atomic_dec(&srq->usecnt);
1972                 if (ind_tbl)
1973                         atomic_dec(&ind_tbl->usecnt);
1974                 if (sec)
1975                         ib_destroy_qp_security_end(sec);
1976         } else {
1977                 if (sec)
1978                         ib_destroy_qp_security_abort(sec);
1979         }
1980
1981         return ret;
1982 }
1983 EXPORT_SYMBOL(ib_destroy_qp_user);
1984
1985 /* Completion queues */
1986
1987 struct ib_cq *__ib_create_cq(struct ib_device *device,
1988                              ib_comp_handler comp_handler,
1989                              void (*event_handler)(struct ib_event *, void *),
1990                              void *cq_context,
1991                              const struct ib_cq_init_attr *cq_attr,
1992                              const char *caller)
1993 {
1994         struct ib_cq *cq;
1995         int ret;
1996
1997         cq = rdma_zalloc_drv_obj(device, ib_cq);
1998         if (!cq)
1999                 return ERR_PTR(-ENOMEM);
2000
2001         cq->device = device;
2002         cq->uobject = NULL;
2003         cq->comp_handler = comp_handler;
2004         cq->event_handler = event_handler;
2005         cq->cq_context = cq_context;
2006         atomic_set(&cq->usecnt, 0);
2007
2008         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2009         rdma_restrack_set_name(&cq->res, caller);
2010
2011         ret = device->ops.create_cq(cq, cq_attr, NULL);
2012         if (ret) {
2013                 rdma_restrack_put(&cq->res);
2014                 kfree(cq);
2015                 return ERR_PTR(ret);
2016         }
2017
2018         rdma_restrack_add(&cq->res);
2019         return cq;
2020 }
2021 EXPORT_SYMBOL(__ib_create_cq);
2022
2023 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2024 {
2025         if (cq->shared)
2026                 return -EOPNOTSUPP;
2027
2028         return cq->device->ops.modify_cq ?
2029                 cq->device->ops.modify_cq(cq, cq_count,
2030                                           cq_period) : -EOPNOTSUPP;
2031 }
2032 EXPORT_SYMBOL(rdma_set_cq_moderation);
2033
2034 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2035 {
2036         int ret;
2037
2038         if (WARN_ON_ONCE(cq->shared))
2039                 return -EOPNOTSUPP;
2040
2041         if (atomic_read(&cq->usecnt))
2042                 return -EBUSY;
2043
2044         ret = cq->device->ops.destroy_cq(cq, udata);
2045         if (ret)
2046                 return ret;
2047
2048         rdma_restrack_del(&cq->res);
2049         kfree(cq);
2050         return ret;
2051 }
2052 EXPORT_SYMBOL(ib_destroy_cq_user);
2053
2054 int ib_resize_cq(struct ib_cq *cq, int cqe)
2055 {
2056         if (cq->shared)
2057                 return -EOPNOTSUPP;
2058
2059         return cq->device->ops.resize_cq ?
2060                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2061 }
2062 EXPORT_SYMBOL(ib_resize_cq);
2063
2064 /* Memory regions */
2065
2066 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2067                              u64 virt_addr, int access_flags)
2068 {
2069         struct ib_mr *mr;
2070
2071         if (access_flags & IB_ACCESS_ON_DEMAND) {
2072                 if (!(pd->device->attrs.device_cap_flags &
2073                       IB_DEVICE_ON_DEMAND_PAGING)) {
2074                         pr_debug("ODP support not available\n");
2075                         return ERR_PTR(-EINVAL);
2076                 }
2077         }
2078
2079         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2080                                          access_flags, NULL);
2081
2082         if (IS_ERR(mr))
2083                 return mr;
2084
2085         mr->device = pd->device;
2086         mr->pd = pd;
2087         mr->dm = NULL;
2088         atomic_inc(&pd->usecnt);
2089
2090         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2091         rdma_restrack_parent_name(&mr->res, &pd->res);
2092         rdma_restrack_add(&mr->res);
2093
2094         return mr;
2095 }
2096 EXPORT_SYMBOL(ib_reg_user_mr);
2097
2098 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2099                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2100 {
2101         if (!pd->device->ops.advise_mr)
2102                 return -EOPNOTSUPP;
2103
2104         if (!num_sge)
2105                 return 0;
2106
2107         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2108                                          NULL);
2109 }
2110 EXPORT_SYMBOL(ib_advise_mr);
2111
2112 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2113 {
2114         struct ib_pd *pd = mr->pd;
2115         struct ib_dm *dm = mr->dm;
2116         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2117         int ret;
2118
2119         trace_mr_dereg(mr);
2120         rdma_restrack_del(&mr->res);
2121         ret = mr->device->ops.dereg_mr(mr, udata);
2122         if (!ret) {
2123                 atomic_dec(&pd->usecnt);
2124                 if (dm)
2125                         atomic_dec(&dm->usecnt);
2126                 kfree(sig_attrs);
2127         }
2128
2129         return ret;
2130 }
2131 EXPORT_SYMBOL(ib_dereg_mr_user);
2132
2133 /**
2134  * ib_alloc_mr() - Allocates a memory region
2135  * @pd:            protection domain associated with the region
2136  * @mr_type:       memory region type
2137  * @max_num_sg:    maximum sg entries available for registration.
2138  *
2139  * Notes:
2140  * Memory registeration page/sg lists must not exceed max_num_sg.
2141  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2142  * max_num_sg * used_page_size.
2143  *
2144  */
2145 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2146                           u32 max_num_sg)
2147 {
2148         struct ib_mr *mr;
2149
2150         if (!pd->device->ops.alloc_mr) {
2151                 mr = ERR_PTR(-EOPNOTSUPP);
2152                 goto out;
2153         }
2154
2155         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2156                 WARN_ON_ONCE(1);
2157                 mr = ERR_PTR(-EINVAL);
2158                 goto out;
2159         }
2160
2161         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2162         if (IS_ERR(mr))
2163                 goto out;
2164
2165         mr->device = pd->device;
2166         mr->pd = pd;
2167         mr->dm = NULL;
2168         mr->uobject = NULL;
2169         atomic_inc(&pd->usecnt);
2170         mr->need_inval = false;
2171         mr->type = mr_type;
2172         mr->sig_attrs = NULL;
2173
2174         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2175         rdma_restrack_parent_name(&mr->res, &pd->res);
2176         rdma_restrack_add(&mr->res);
2177 out:
2178         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2179         return mr;
2180 }
2181 EXPORT_SYMBOL(ib_alloc_mr);
2182
2183 /**
2184  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2185  * @pd:                      protection domain associated with the region
2186  * @max_num_data_sg:         maximum data sg entries available for registration
2187  * @max_num_meta_sg:         maximum metadata sg entries available for
2188  *                           registration
2189  *
2190  * Notes:
2191  * Memory registration page/sg lists must not exceed max_num_sg,
2192  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2193  *
2194  */
2195 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2196                                     u32 max_num_data_sg,
2197                                     u32 max_num_meta_sg)
2198 {
2199         struct ib_mr *mr;
2200         struct ib_sig_attrs *sig_attrs;
2201
2202         if (!pd->device->ops.alloc_mr_integrity ||
2203             !pd->device->ops.map_mr_sg_pi) {
2204                 mr = ERR_PTR(-EOPNOTSUPP);
2205                 goto out;
2206         }
2207
2208         if (!max_num_meta_sg) {
2209                 mr = ERR_PTR(-EINVAL);
2210                 goto out;
2211         }
2212
2213         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2214         if (!sig_attrs) {
2215                 mr = ERR_PTR(-ENOMEM);
2216                 goto out;
2217         }
2218
2219         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2220                                                 max_num_meta_sg);
2221         if (IS_ERR(mr)) {
2222                 kfree(sig_attrs);
2223                 goto out;
2224         }
2225
2226         mr->device = pd->device;
2227         mr->pd = pd;
2228         mr->dm = NULL;
2229         mr->uobject = NULL;
2230         atomic_inc(&pd->usecnt);
2231         mr->need_inval = false;
2232         mr->type = IB_MR_TYPE_INTEGRITY;
2233         mr->sig_attrs = sig_attrs;
2234
2235         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2236         rdma_restrack_parent_name(&mr->res, &pd->res);
2237         rdma_restrack_add(&mr->res);
2238 out:
2239         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2240         return mr;
2241 }
2242 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2243
2244 /* Multicast groups */
2245
2246 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2247 {
2248         struct ib_qp_init_attr init_attr = {};
2249         struct ib_qp_attr attr = {};
2250         int num_eth_ports = 0;
2251         int port;
2252
2253         /* If QP state >= init, it is assigned to a port and we can check this
2254          * port only.
2255          */
2256         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2257                 if (attr.qp_state >= IB_QPS_INIT) {
2258                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2259                             IB_LINK_LAYER_INFINIBAND)
2260                                 return true;
2261                         goto lid_check;
2262                 }
2263         }
2264
2265         /* Can't get a quick answer, iterate over all ports */
2266         for (port = 0; port < qp->device->phys_port_cnt; port++)
2267                 if (rdma_port_get_link_layer(qp->device, port) !=
2268                     IB_LINK_LAYER_INFINIBAND)
2269                         num_eth_ports++;
2270
2271         /* If we have at lease one Ethernet port, RoCE annex declares that
2272          * multicast LID should be ignored. We can't tell at this step if the
2273          * QP belongs to an IB or Ethernet port.
2274          */
2275         if (num_eth_ports)
2276                 return true;
2277
2278         /* If all the ports are IB, we can check according to IB spec. */
2279 lid_check:
2280         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2281                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2282 }
2283
2284 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2285 {
2286         int ret;
2287
2288         if (!qp->device->ops.attach_mcast)
2289                 return -EOPNOTSUPP;
2290
2291         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2292             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2293                 return -EINVAL;
2294
2295         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2296         if (!ret)
2297                 atomic_inc(&qp->usecnt);
2298         return ret;
2299 }
2300 EXPORT_SYMBOL(ib_attach_mcast);
2301
2302 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2303 {
2304         int ret;
2305
2306         if (!qp->device->ops.detach_mcast)
2307                 return -EOPNOTSUPP;
2308
2309         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2310             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2311                 return -EINVAL;
2312
2313         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2314         if (!ret)
2315                 atomic_dec(&qp->usecnt);
2316         return ret;
2317 }
2318 EXPORT_SYMBOL(ib_detach_mcast);
2319
2320 /**
2321  * ib_alloc_xrcd_user - Allocates an XRC domain.
2322  * @device: The device on which to allocate the XRC domain.
2323  * @inode: inode to connect XRCD
2324  * @udata: Valid user data or NULL for kernel object
2325  */
2326 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2327                                    struct inode *inode, struct ib_udata *udata)
2328 {
2329         struct ib_xrcd *xrcd;
2330         int ret;
2331
2332         if (!device->ops.alloc_xrcd)
2333                 return ERR_PTR(-EOPNOTSUPP);
2334
2335         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2336         if (!xrcd)
2337                 return ERR_PTR(-ENOMEM);
2338
2339         xrcd->device = device;
2340         xrcd->inode = inode;
2341         atomic_set(&xrcd->usecnt, 0);
2342         init_rwsem(&xrcd->tgt_qps_rwsem);
2343         xa_init(&xrcd->tgt_qps);
2344
2345         ret = device->ops.alloc_xrcd(xrcd, udata);
2346         if (ret)
2347                 goto err;
2348         return xrcd;
2349 err:
2350         kfree(xrcd);
2351         return ERR_PTR(ret);
2352 }
2353 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2354
2355 /**
2356  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2357  * @xrcd: The XRC domain to deallocate.
2358  * @udata: Valid user data or NULL for kernel object
2359  */
2360 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2361 {
2362         int ret;
2363
2364         if (atomic_read(&xrcd->usecnt))
2365                 return -EBUSY;
2366
2367         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2368         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2369         if (ret)
2370                 return ret;
2371         kfree(xrcd);
2372         return ret;
2373 }
2374 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2375
2376 /**
2377  * ib_create_wq - Creates a WQ associated with the specified protection
2378  * domain.
2379  * @pd: The protection domain associated with the WQ.
2380  * @wq_attr: A list of initial attributes required to create the
2381  * WQ. If WQ creation succeeds, then the attributes are updated to
2382  * the actual capabilities of the created WQ.
2383  *
2384  * wq_attr->max_wr and wq_attr->max_sge determine
2385  * the requested size of the WQ, and set to the actual values allocated
2386  * on return.
2387  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2388  * at least as large as the requested values.
2389  */
2390 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2391                            struct ib_wq_init_attr *wq_attr)
2392 {
2393         struct ib_wq *wq;
2394
2395         if (!pd->device->ops.create_wq)
2396                 return ERR_PTR(-EOPNOTSUPP);
2397
2398         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2399         if (!IS_ERR(wq)) {
2400                 wq->event_handler = wq_attr->event_handler;
2401                 wq->wq_context = wq_attr->wq_context;
2402                 wq->wq_type = wq_attr->wq_type;
2403                 wq->cq = wq_attr->cq;
2404                 wq->device = pd->device;
2405                 wq->pd = pd;
2406                 wq->uobject = NULL;
2407                 atomic_inc(&pd->usecnt);
2408                 atomic_inc(&wq_attr->cq->usecnt);
2409                 atomic_set(&wq->usecnt, 0);
2410         }
2411         return wq;
2412 }
2413 EXPORT_SYMBOL(ib_create_wq);
2414
2415 /**
2416  * ib_destroy_wq_user - Destroys the specified user WQ.
2417  * @wq: The WQ to destroy.
2418  * @udata: Valid user data
2419  */
2420 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2421 {
2422         struct ib_cq *cq = wq->cq;
2423         struct ib_pd *pd = wq->pd;
2424         int ret;
2425
2426         if (atomic_read(&wq->usecnt))
2427                 return -EBUSY;
2428
2429         ret = wq->device->ops.destroy_wq(wq, udata);
2430         if (ret)
2431                 return ret;
2432
2433         atomic_dec(&pd->usecnt);
2434         atomic_dec(&cq->usecnt);
2435         return ret;
2436 }
2437 EXPORT_SYMBOL(ib_destroy_wq_user);
2438
2439 /**
2440  * ib_modify_wq - Modifies the specified WQ.
2441  * @wq: The WQ to modify.
2442  * @wq_attr: On input, specifies the WQ attributes to modify.
2443  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2444  *   are being modified.
2445  * On output, the current values of selected WQ attributes are returned.
2446  */
2447 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2448                  u32 wq_attr_mask)
2449 {
2450         int err;
2451
2452         if (!wq->device->ops.modify_wq)
2453                 return -EOPNOTSUPP;
2454
2455         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2456         return err;
2457 }
2458 EXPORT_SYMBOL(ib_modify_wq);
2459
2460 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2461                        struct ib_mr_status *mr_status)
2462 {
2463         if (!mr->device->ops.check_mr_status)
2464                 return -EOPNOTSUPP;
2465
2466         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2467 }
2468 EXPORT_SYMBOL(ib_check_mr_status);
2469
2470 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2471                          int state)
2472 {
2473         if (!device->ops.set_vf_link_state)
2474                 return -EOPNOTSUPP;
2475
2476         return device->ops.set_vf_link_state(device, vf, port, state);
2477 }
2478 EXPORT_SYMBOL(ib_set_vf_link_state);
2479
2480 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2481                      struct ifla_vf_info *info)
2482 {
2483         if (!device->ops.get_vf_config)
2484                 return -EOPNOTSUPP;
2485
2486         return device->ops.get_vf_config(device, vf, port, info);
2487 }
2488 EXPORT_SYMBOL(ib_get_vf_config);
2489
2490 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2491                     struct ifla_vf_stats *stats)
2492 {
2493         if (!device->ops.get_vf_stats)
2494                 return -EOPNOTSUPP;
2495
2496         return device->ops.get_vf_stats(device, vf, port, stats);
2497 }
2498 EXPORT_SYMBOL(ib_get_vf_stats);
2499
2500 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2501                    int type)
2502 {
2503         if (!device->ops.set_vf_guid)
2504                 return -EOPNOTSUPP;
2505
2506         return device->ops.set_vf_guid(device, vf, port, guid, type);
2507 }
2508 EXPORT_SYMBOL(ib_set_vf_guid);
2509
2510 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2511                    struct ifla_vf_guid *node_guid,
2512                    struct ifla_vf_guid *port_guid)
2513 {
2514         if (!device->ops.get_vf_guid)
2515                 return -EOPNOTSUPP;
2516
2517         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2518 }
2519 EXPORT_SYMBOL(ib_get_vf_guid);
2520 /**
2521  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2522  *     information) and set an appropriate memory region for registration.
2523  * @mr:             memory region
2524  * @data_sg:        dma mapped scatterlist for data
2525  * @data_sg_nents:  number of entries in data_sg
2526  * @data_sg_offset: offset in bytes into data_sg
2527  * @meta_sg:        dma mapped scatterlist for metadata
2528  * @meta_sg_nents:  number of entries in meta_sg
2529  * @meta_sg_offset: offset in bytes into meta_sg
2530  * @page_size:      page vector desired page size
2531  *
2532  * Constraints:
2533  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2534  *
2535  * Return: 0 on success.
2536  *
2537  * After this completes successfully, the  memory region
2538  * is ready for registration.
2539  */
2540 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2541                     int data_sg_nents, unsigned int *data_sg_offset,
2542                     struct scatterlist *meta_sg, int meta_sg_nents,
2543                     unsigned int *meta_sg_offset, unsigned int page_size)
2544 {
2545         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2546                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2547                 return -EOPNOTSUPP;
2548
2549         mr->page_size = page_size;
2550
2551         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2552                                             data_sg_offset, meta_sg,
2553                                             meta_sg_nents, meta_sg_offset);
2554 }
2555 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2556
2557 /**
2558  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2559  *     and set it the memory region.
2560  * @mr:            memory region
2561  * @sg:            dma mapped scatterlist
2562  * @sg_nents:      number of entries in sg
2563  * @sg_offset:     offset in bytes into sg
2564  * @page_size:     page vector desired page size
2565  *
2566  * Constraints:
2567  *
2568  * - The first sg element is allowed to have an offset.
2569  * - Each sg element must either be aligned to page_size or virtually
2570  *   contiguous to the previous element. In case an sg element has a
2571  *   non-contiguous offset, the mapping prefix will not include it.
2572  * - The last sg element is allowed to have length less than page_size.
2573  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2574  *   then only max_num_sg entries will be mapped.
2575  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2576  *   constraints holds and the page_size argument is ignored.
2577  *
2578  * Returns the number of sg elements that were mapped to the memory region.
2579  *
2580  * After this completes successfully, the  memory region
2581  * is ready for registration.
2582  */
2583 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2584                  unsigned int *sg_offset, unsigned int page_size)
2585 {
2586         if (unlikely(!mr->device->ops.map_mr_sg))
2587                 return -EOPNOTSUPP;
2588
2589         mr->page_size = page_size;
2590
2591         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2592 }
2593 EXPORT_SYMBOL(ib_map_mr_sg);
2594
2595 /**
2596  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2597  *     to a page vector
2598  * @mr:            memory region
2599  * @sgl:           dma mapped scatterlist
2600  * @sg_nents:      number of entries in sg
2601  * @sg_offset_p:   ==== =======================================================
2602  *                 IN   start offset in bytes into sg
2603  *                 OUT  offset in bytes for element n of the sg of the first
2604  *                      byte that has not been processed where n is the return
2605  *                      value of this function.
2606  *                 ==== =======================================================
2607  * @set_page:      driver page assignment function pointer
2608  *
2609  * Core service helper for drivers to convert the largest
2610  * prefix of given sg list to a page vector. The sg list
2611  * prefix converted is the prefix that meet the requirements
2612  * of ib_map_mr_sg.
2613  *
2614  * Returns the number of sg elements that were assigned to
2615  * a page vector.
2616  */
2617 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2618                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2619 {
2620         struct scatterlist *sg;
2621         u64 last_end_dma_addr = 0;
2622         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2623         unsigned int last_page_off = 0;
2624         u64 page_mask = ~((u64)mr->page_size - 1);
2625         int i, ret;
2626
2627         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2628                 return -EINVAL;
2629
2630         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2631         mr->length = 0;
2632
2633         for_each_sg(sgl, sg, sg_nents, i) {
2634                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2635                 u64 prev_addr = dma_addr;
2636                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2637                 u64 end_dma_addr = dma_addr + dma_len;
2638                 u64 page_addr = dma_addr & page_mask;
2639
2640                 /*
2641                  * For the second and later elements, check whether either the
2642                  * end of element i-1 or the start of element i is not aligned
2643                  * on a page boundary.
2644                  */
2645                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2646                         /* Stop mapping if there is a gap. */
2647                         if (last_end_dma_addr != dma_addr)
2648                                 break;
2649
2650                         /*
2651                          * Coalesce this element with the last. If it is small
2652                          * enough just update mr->length. Otherwise start
2653                          * mapping from the next page.
2654                          */
2655                         goto next_page;
2656                 }
2657
2658                 do {
2659                         ret = set_page(mr, page_addr);
2660                         if (unlikely(ret < 0)) {
2661                                 sg_offset = prev_addr - sg_dma_address(sg);
2662                                 mr->length += prev_addr - dma_addr;
2663                                 if (sg_offset_p)
2664                                         *sg_offset_p = sg_offset;
2665                                 return i || sg_offset ? i : ret;
2666                         }
2667                         prev_addr = page_addr;
2668 next_page:
2669                         page_addr += mr->page_size;
2670                 } while (page_addr < end_dma_addr);
2671
2672                 mr->length += dma_len;
2673                 last_end_dma_addr = end_dma_addr;
2674                 last_page_off = end_dma_addr & ~page_mask;
2675
2676                 sg_offset = 0;
2677         }
2678
2679         if (sg_offset_p)
2680                 *sg_offset_p = 0;
2681         return i;
2682 }
2683 EXPORT_SYMBOL(ib_sg_to_pages);
2684
2685 struct ib_drain_cqe {
2686         struct ib_cqe cqe;
2687         struct completion done;
2688 };
2689
2690 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2691 {
2692         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2693                                                 cqe);
2694
2695         complete(&cqe->done);
2696 }
2697
2698 /*
2699  * Post a WR and block until its completion is reaped for the SQ.
2700  */
2701 static void __ib_drain_sq(struct ib_qp *qp)
2702 {
2703         struct ib_cq *cq = qp->send_cq;
2704         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2705         struct ib_drain_cqe sdrain;
2706         struct ib_rdma_wr swr = {
2707                 .wr = {
2708                         .next = NULL,
2709                         { .wr_cqe       = &sdrain.cqe, },
2710                         .opcode = IB_WR_RDMA_WRITE,
2711                 },
2712         };
2713         int ret;
2714
2715         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2716         if (ret) {
2717                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2718                 return;
2719         }
2720
2721         sdrain.cqe.done = ib_drain_qp_done;
2722         init_completion(&sdrain.done);
2723
2724         ret = ib_post_send(qp, &swr.wr, NULL);
2725         if (ret) {
2726                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2727                 return;
2728         }
2729
2730         if (cq->poll_ctx == IB_POLL_DIRECT)
2731                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2732                         ib_process_cq_direct(cq, -1);
2733         else
2734                 wait_for_completion(&sdrain.done);
2735 }
2736
2737 /*
2738  * Post a WR and block until its completion is reaped for the RQ.
2739  */
2740 static void __ib_drain_rq(struct ib_qp *qp)
2741 {
2742         struct ib_cq *cq = qp->recv_cq;
2743         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2744         struct ib_drain_cqe rdrain;
2745         struct ib_recv_wr rwr = {};
2746         int ret;
2747
2748         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2749         if (ret) {
2750                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2751                 return;
2752         }
2753
2754         rwr.wr_cqe = &rdrain.cqe;
2755         rdrain.cqe.done = ib_drain_qp_done;
2756         init_completion(&rdrain.done);
2757
2758         ret = ib_post_recv(qp, &rwr, NULL);
2759         if (ret) {
2760                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2761                 return;
2762         }
2763
2764         if (cq->poll_ctx == IB_POLL_DIRECT)
2765                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2766                         ib_process_cq_direct(cq, -1);
2767         else
2768                 wait_for_completion(&rdrain.done);
2769 }
2770
2771 /**
2772  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2773  *                 application.
2774  * @qp:            queue pair to drain
2775  *
2776  * If the device has a provider-specific drain function, then
2777  * call that.  Otherwise call the generic drain function
2778  * __ib_drain_sq().
2779  *
2780  * The caller must:
2781  *
2782  * ensure there is room in the CQ and SQ for the drain work request and
2783  * completion.
2784  *
2785  * allocate the CQ using ib_alloc_cq().
2786  *
2787  * ensure that there are no other contexts that are posting WRs concurrently.
2788  * Otherwise the drain is not guaranteed.
2789  */
2790 void ib_drain_sq(struct ib_qp *qp)
2791 {
2792         if (qp->device->ops.drain_sq)
2793                 qp->device->ops.drain_sq(qp);
2794         else
2795                 __ib_drain_sq(qp);
2796         trace_cq_drain_complete(qp->send_cq);
2797 }
2798 EXPORT_SYMBOL(ib_drain_sq);
2799
2800 /**
2801  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2802  *                 application.
2803  * @qp:            queue pair to drain
2804  *
2805  * If the device has a provider-specific drain function, then
2806  * call that.  Otherwise call the generic drain function
2807  * __ib_drain_rq().
2808  *
2809  * The caller must:
2810  *
2811  * ensure there is room in the CQ and RQ for the drain work request and
2812  * completion.
2813  *
2814  * allocate the CQ using ib_alloc_cq().
2815  *
2816  * ensure that there are no other contexts that are posting WRs concurrently.
2817  * Otherwise the drain is not guaranteed.
2818  */
2819 void ib_drain_rq(struct ib_qp *qp)
2820 {
2821         if (qp->device->ops.drain_rq)
2822                 qp->device->ops.drain_rq(qp);
2823         else
2824                 __ib_drain_rq(qp);
2825         trace_cq_drain_complete(qp->recv_cq);
2826 }
2827 EXPORT_SYMBOL(ib_drain_rq);
2828
2829 /**
2830  * ib_drain_qp() - Block until all CQEs have been consumed by the
2831  *                 application on both the RQ and SQ.
2832  * @qp:            queue pair to drain
2833  *
2834  * The caller must:
2835  *
2836  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2837  * and completions.
2838  *
2839  * allocate the CQs using ib_alloc_cq().
2840  *
2841  * ensure that there are no other contexts that are posting WRs concurrently.
2842  * Otherwise the drain is not guaranteed.
2843  */
2844 void ib_drain_qp(struct ib_qp *qp)
2845 {
2846         ib_drain_sq(qp);
2847         if (!qp->srq)
2848                 ib_drain_rq(qp);
2849 }
2850 EXPORT_SYMBOL(ib_drain_qp);
2851
2852 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2853                                      enum rdma_netdev_t type, const char *name,
2854                                      unsigned char name_assign_type,
2855                                      void (*setup)(struct net_device *))
2856 {
2857         struct rdma_netdev_alloc_params params;
2858         struct net_device *netdev;
2859         int rc;
2860
2861         if (!device->ops.rdma_netdev_get_params)
2862                 return ERR_PTR(-EOPNOTSUPP);
2863
2864         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2865                                                 &params);
2866         if (rc)
2867                 return ERR_PTR(rc);
2868
2869         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2870                                   setup, params.txqs, params.rxqs);
2871         if (!netdev)
2872                 return ERR_PTR(-ENOMEM);
2873
2874         return netdev;
2875 }
2876 EXPORT_SYMBOL(rdma_alloc_netdev);
2877
2878 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2879                      enum rdma_netdev_t type, const char *name,
2880                      unsigned char name_assign_type,
2881                      void (*setup)(struct net_device *),
2882                      struct net_device *netdev)
2883 {
2884         struct rdma_netdev_alloc_params params;
2885         int rc;
2886
2887         if (!device->ops.rdma_netdev_get_params)
2888                 return -EOPNOTSUPP;
2889
2890         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2891                                                 &params);
2892         if (rc)
2893                 return rc;
2894
2895         return params.initialize_rdma_netdev(device, port_num,
2896                                              netdev, params.param);
2897 }
2898 EXPORT_SYMBOL(rdma_init_netdev);
2899
2900 void __rdma_block_iter_start(struct ib_block_iter *biter,
2901                              struct scatterlist *sglist, unsigned int nents,
2902                              unsigned long pgsz)
2903 {
2904         memset(biter, 0, sizeof(struct ib_block_iter));
2905         biter->__sg = sglist;
2906         biter->__sg_nents = nents;
2907
2908         /* Driver provides best block size to use */
2909         biter->__pg_bit = __fls(pgsz);
2910 }
2911 EXPORT_SYMBOL(__rdma_block_iter_start);
2912
2913 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2914 {
2915         unsigned int block_offset;
2916
2917         if (!biter->__sg_nents || !biter->__sg)
2918                 return false;
2919
2920         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2921         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2922         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2923
2924         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2925                 biter->__sg_advance = 0;
2926                 biter->__sg = sg_next(biter->__sg);
2927                 biter->__sg_nents--;
2928         }
2929
2930         return true;
2931 }
2932 EXPORT_SYMBOL(__rdma_block_iter_next);
This page took 0.205383 seconds and 4 git commands to generate.