1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
53 * FIXME: remove all knowledge of the buffer layer from the core VM
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * Shared mappings now work. 15.8.1995 Bruno.
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
76 * ->swap_lock (exclusive_swap_page, others)
80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
88 * ->lock_page (access_process_vm)
90 * ->i_mutex (generic_perform_write)
91 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
94 * sb_lock (fs/fs-writeback.c)
95 * ->i_pages lock (__sync_single_inode)
98 * ->anon_vma.lock (vma_adjust)
101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
103 * ->page_table_lock or pte_lock
104 * ->swap_lock (try_to_unmap_one)
105 * ->private_lock (try_to_unmap_one)
106 * ->i_pages lock (try_to_unmap_one)
107 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
109 * ->private_lock (page_remove_rmap->set_page_dirty)
110 * ->i_pages lock (page_remove_rmap->set_page_dirty)
111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
112 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
115 * ->inode->i_lock (zap_pte_range->set_page_dirty)
116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 static void page_cache_delete(struct address_space *mapping,
123 struct page *page, void *shadow)
125 XA_STATE(xas, &mapping->i_pages, page->index);
128 mapping_set_update(&xas, mapping);
130 /* hugetlb pages are represented by a single entry in the xarray */
131 if (!PageHuge(page)) {
132 xas_set_order(&xas, page->index, compound_order(page));
133 nr = compound_nr(page);
136 VM_BUG_ON_PAGE(!PageLocked(page), page);
137 VM_BUG_ON_PAGE(PageTail(page), page);
138 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
143 page->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrexceptional += nr;
149 * Make sure the nrexceptional update is committed before
150 * the nrpages update so that final truncate racing
151 * with reclaim does not see both counters 0 at the
152 * same time and miss a shadow entry.
156 mapping->nrpages -= nr;
159 static void unaccount_page_cache_page(struct address_space *mapping,
165 * if we're uptodate, flush out into the cleancache, otherwise
166 * invalidate any existing cleancache entries. We can't leave
167 * stale data around in the cleancache once our page is gone
169 if (PageUptodate(page) && PageMappedToDisk(page))
170 cleancache_put_page(page);
172 cleancache_invalidate_page(mapping, page);
174 VM_BUG_ON_PAGE(PageTail(page), page);
175 VM_BUG_ON_PAGE(page_mapped(page), page);
176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
180 current->comm, page_to_pfn(page));
181 dump_page(page, "still mapped when deleted");
183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
185 mapcount = page_mapcount(page);
186 if (mapping_exiting(mapping) &&
187 page_count(page) >= mapcount + 2) {
189 * All vmas have already been torn down, so it's
190 * a good bet that actually the page is unmapped,
191 * and we'd prefer not to leak it: if we're wrong,
192 * some other bad page check should catch it later.
194 page_mapcount_reset(page);
195 page_ref_sub(page, mapcount);
199 /* hugetlb pages do not participate in page cache accounting. */
203 nr = thp_nr_pages(page);
205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 if (PageSwapBacked(page)) {
207 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 if (PageTransHuge(page))
209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 } else if (PageTransHuge(page)) {
211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 filemap_nr_thps_dec(mapping);
216 * At this point page must be either written or cleaned by
217 * truncate. Dirty page here signals a bug and loss of
220 * This fixes dirty accounting after removing the page entirely
221 * but leaves PageDirty set: it has no effect for truncated
222 * page and anyway will be cleared before returning page into
225 if (WARN_ON_ONCE(PageDirty(page)))
226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
230 * Delete a page from the page cache and free it. Caller has to make
231 * sure the page is locked and that nobody else uses it - or that usage
232 * is safe. The caller must hold the i_pages lock.
234 void __delete_from_page_cache(struct page *page, void *shadow)
236 struct address_space *mapping = page->mapping;
238 trace_mm_filemap_delete_from_page_cache(page);
240 unaccount_page_cache_page(mapping, page);
241 page_cache_delete(mapping, page, shadow);
244 static void page_cache_free_page(struct address_space *mapping,
247 void (*freepage)(struct page *);
249 freepage = mapping->a_ops->freepage;
253 if (PageTransHuge(page) && !PageHuge(page)) {
254 page_ref_sub(page, thp_nr_pages(page));
255 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
262 * delete_from_page_cache - delete page from page cache
263 * @page: the page which the kernel is trying to remove from page cache
265 * This must be called only on pages that have been verified to be in the page
266 * cache and locked. It will never put the page into the free list, the caller
267 * has a reference on the page.
269 void delete_from_page_cache(struct page *page)
271 struct address_space *mapping = page_mapping(page);
274 BUG_ON(!PageLocked(page));
275 xa_lock_irqsave(&mapping->i_pages, flags);
276 __delete_from_page_cache(page, NULL);
277 xa_unlock_irqrestore(&mapping->i_pages, flags);
279 page_cache_free_page(mapping, page);
281 EXPORT_SYMBOL(delete_from_page_cache);
284 * page_cache_delete_batch - delete several pages from page cache
285 * @mapping: the mapping to which pages belong
286 * @pvec: pagevec with pages to delete
288 * The function walks over mapping->i_pages and removes pages passed in @pvec
289 * from the mapping. The function expects @pvec to be sorted by page index
290 * and is optimised for it to be dense.
291 * It tolerates holes in @pvec (mapping entries at those indices are not
292 * modified). The function expects only THP head pages to be present in the
295 * The function expects the i_pages lock to be held.
297 static void page_cache_delete_batch(struct address_space *mapping,
298 struct pagevec *pvec)
300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
305 mapping_set_update(&xas, mapping);
306 xas_for_each(&xas, page, ULONG_MAX) {
307 if (i >= pagevec_count(pvec))
310 /* A swap/dax/shadow entry got inserted? Skip it. */
311 if (xa_is_value(page))
314 * A page got inserted in our range? Skip it. We have our
315 * pages locked so they are protected from being removed.
316 * If we see a page whose index is higher than ours, it
317 * means our page has been removed, which shouldn't be
318 * possible because we're holding the PageLock.
320 if (page != pvec->pages[i]) {
321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
326 WARN_ON_ONCE(!PageLocked(page));
328 if (page->index == xas.xa_index)
329 page->mapping = NULL;
330 /* Leave page->index set: truncation lookup relies on it */
333 * Move to the next page in the vector if this is a regular
334 * page or the index is of the last sub-page of this compound
337 if (page->index + compound_nr(page) - 1 == xas.xa_index)
339 xas_store(&xas, NULL);
342 mapping->nrpages -= total_pages;
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 struct pagevec *pvec)
351 if (!pagevec_count(pvec))
354 xa_lock_irqsave(&mapping->i_pages, flags);
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
358 unaccount_page_cache_page(mapping, pvec->pages[i]);
360 page_cache_delete_batch(mapping, pvec);
361 xa_unlock_irqrestore(&mapping->i_pages, flags);
363 for (i = 0; i < pagevec_count(pvec); i++)
364 page_cache_free_page(mapping, pvec->pages[i]);
367 int filemap_check_errors(struct address_space *mapping)
370 /* Check for outstanding write errors */
371 if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
374 if (test_bit(AS_EIO, &mapping->flags) &&
375 test_and_clear_bit(AS_EIO, &mapping->flags))
379 EXPORT_SYMBOL(filemap_check_errors);
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
383 /* Check for outstanding write errors */
384 if (test_bit(AS_EIO, &mapping->flags))
386 if (test_bit(AS_ENOSPC, &mapping->flags))
392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393 * @mapping: address space structure to write
394 * @start: offset in bytes where the range starts
395 * @end: offset in bytes where the range ends (inclusive)
396 * @sync_mode: enable synchronous operation
398 * Start writeback against all of a mapping's dirty pages that lie
399 * within the byte offsets <start, end> inclusive.
401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402 * opposed to a regular memory cleansing writeback. The difference between
403 * these two operations is that if a dirty page/buffer is encountered, it must
404 * be waited upon, and not just skipped over.
406 * Return: %0 on success, negative error code otherwise.
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end, int sync_mode)
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
414 .nr_to_write = LONG_MAX,
415 .range_start = start,
419 if (!mapping_can_writeback(mapping) ||
420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
423 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 ret = do_writepages(mapping, &wbc);
425 wbc_detach_inode(&wbc);
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
435 int filemap_fdatawrite(struct address_space *mapping)
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
439 EXPORT_SYMBOL(filemap_fdatawrite);
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
455 * Return: %0 on success, negative error code otherwise.
457 int filemap_flush(struct address_space *mapping)
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
461 EXPORT_SYMBOL(filemap_flush);
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
472 * Return: %true if at least one page exists in the specified range,
475 bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
482 if (end_byte < start_byte)
487 page = xas_find(&xas, max);
488 if (xas_retry(&xas, page))
490 /* Shadow entries don't count */
491 if (xa_is_value(page))
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
504 EXPORT_SYMBOL(filemap_range_has_page);
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 loff_t start_byte, loff_t end_byte)
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
514 if (end_byte < start_byte)
518 while (index <= end) {
521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 end, PAGECACHE_TAG_WRITEBACK);
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page = pvec.pages[i];
529 wait_on_page_writeback(page);
530 ClearPageError(page);
532 pagevec_release(&pvec);
538 * filemap_fdatawait_range - wait for writeback to complete
539 * @mapping: address space structure to wait for
540 * @start_byte: offset in bytes where the range starts
541 * @end_byte: offset in bytes where the range ends (inclusive)
543 * Walk the list of under-writeback pages of the given address space
544 * in the given range and wait for all of them. Check error status of
545 * the address space and return it.
547 * Since the error status of the address space is cleared by this function,
548 * callers are responsible for checking the return value and handling and/or
549 * reporting the error.
551 * Return: error status of the address space.
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 __filemap_fdatawait_range(mapping, start_byte, end_byte);
557 return filemap_check_errors(mapping);
559 EXPORT_SYMBOL(filemap_fdatawait_range);
562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563 * @mapping: address space structure to wait for
564 * @start_byte: offset in bytes where the range starts
565 * @end_byte: offset in bytes where the range ends (inclusive)
567 * Walk the list of under-writeback pages of the given address space in the
568 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
569 * this function does not clear error status of the address space.
571 * Use this function if callers don't handle errors themselves. Expected
572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 loff_t start_byte, loff_t end_byte)
578 __filemap_fdatawait_range(mapping, start_byte, end_byte);
579 return filemap_check_and_keep_errors(mapping);
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584 * file_fdatawait_range - wait for writeback to complete
585 * @file: file pointing to address space structure to wait for
586 * @start_byte: offset in bytes where the range starts
587 * @end_byte: offset in bytes where the range ends (inclusive)
589 * Walk the list of under-writeback pages of the address space that file
590 * refers to, in the given range and wait for all of them. Check error
591 * status of the address space vs. the file->f_wb_err cursor and return it.
593 * Since the error status of the file is advanced by this function,
594 * callers are responsible for checking the return value and handling and/or
595 * reporting the error.
597 * Return: error status of the address space vs. the file->f_wb_err cursor.
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
601 struct address_space *mapping = file->f_mapping;
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return file_check_and_advance_wb_err(file);
606 EXPORT_SYMBOL(file_fdatawait_range);
609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610 * @mapping: address space structure to wait for
612 * Walk the list of under-writeback pages of the given address space
613 * and wait for all of them. Unlike filemap_fdatawait(), this function
614 * does not clear error status of the address space.
616 * Use this function if callers don't handle errors themselves. Expected
617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * Return: error status of the address space.
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 return filemap_check_and_keep_errors(mapping);
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
632 if (dax_mapping(mapping))
633 return mapping->nrexceptional;
635 return mapping->nrpages;
639 * filemap_write_and_wait_range - write out & wait on a file range
640 * @mapping: the address_space for the pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
644 * Write out and wait upon file offsets lstart->lend, inclusive.
646 * Note that @lend is inclusive (describes the last byte to be written) so
647 * that this function can be used to write to the very end-of-file (end = -1).
649 * Return: error status of the address space.
651 int filemap_write_and_wait_range(struct address_space *mapping,
652 loff_t lstart, loff_t lend)
656 if (mapping_needs_writeback(mapping)) {
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
660 * Even if the above returned error, the pages may be
661 * written partially (e.g. -ENOSPC), so we wait for it.
662 * But the -EIO is special case, it may indicate the worst
663 * thing (e.g. bug) happened, so we avoid waiting for it.
666 int err2 = filemap_fdatawait_range(mapping,
671 /* Clear any previously stored errors */
672 filemap_check_errors(mapping);
675 err = filemap_check_errors(mapping);
679 EXPORT_SYMBOL(filemap_write_and_wait_range);
681 void __filemap_set_wb_err(struct address_space *mapping, int err)
683 errseq_t eseq = errseq_set(&mapping->wb_err, err);
685 trace_filemap_set_wb_err(mapping, eseq);
687 EXPORT_SYMBOL(__filemap_set_wb_err);
690 * file_check_and_advance_wb_err - report wb error (if any) that was previously
691 * and advance wb_err to current one
692 * @file: struct file on which the error is being reported
694 * When userland calls fsync (or something like nfsd does the equivalent), we
695 * want to report any writeback errors that occurred since the last fsync (or
696 * since the file was opened if there haven't been any).
698 * Grab the wb_err from the mapping. If it matches what we have in the file,
699 * then just quickly return 0. The file is all caught up.
701 * If it doesn't match, then take the mapping value, set the "seen" flag in
702 * it and try to swap it into place. If it works, or another task beat us
703 * to it with the new value, then update the f_wb_err and return the error
704 * portion. The error at this point must be reported via proper channels
705 * (a'la fsync, or NFS COMMIT operation, etc.).
707 * While we handle mapping->wb_err with atomic operations, the f_wb_err
708 * value is protected by the f_lock since we must ensure that it reflects
709 * the latest value swapped in for this file descriptor.
711 * Return: %0 on success, negative error code otherwise.
713 int file_check_and_advance_wb_err(struct file *file)
716 errseq_t old = READ_ONCE(file->f_wb_err);
717 struct address_space *mapping = file->f_mapping;
719 /* Locklessly handle the common case where nothing has changed */
720 if (errseq_check(&mapping->wb_err, old)) {
721 /* Something changed, must use slow path */
722 spin_lock(&file->f_lock);
723 old = file->f_wb_err;
724 err = errseq_check_and_advance(&mapping->wb_err,
726 trace_file_check_and_advance_wb_err(file, old);
727 spin_unlock(&file->f_lock);
731 * We're mostly using this function as a drop in replacement for
732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 * that the legacy code would have had on these flags.
735 clear_bit(AS_EIO, &mapping->flags);
736 clear_bit(AS_ENOSPC, &mapping->flags);
739 EXPORT_SYMBOL(file_check_and_advance_wb_err);
742 * file_write_and_wait_range - write out & wait on a file range
743 * @file: file pointing to address_space with pages
744 * @lstart: offset in bytes where the range starts
745 * @lend: offset in bytes where the range ends (inclusive)
747 * Write out and wait upon file offsets lstart->lend, inclusive.
749 * Note that @lend is inclusive (describes the last byte to be written) so
750 * that this function can be used to write to the very end-of-file (end = -1).
752 * After writing out and waiting on the data, we check and advance the
753 * f_wb_err cursor to the latest value, and return any errors detected there.
755 * Return: %0 on success, negative error code otherwise.
757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
760 struct address_space *mapping = file->f_mapping;
762 if (mapping_needs_writeback(mapping)) {
763 err = __filemap_fdatawrite_range(mapping, lstart, lend,
765 /* See comment of filemap_write_and_wait() */
767 __filemap_fdatawait_range(mapping, lstart, lend);
769 err2 = file_check_and_advance_wb_err(file);
774 EXPORT_SYMBOL(file_write_and_wait_range);
777 * replace_page_cache_page - replace a pagecache page with a new one
778 * @old: page to be replaced
779 * @new: page to replace with
781 * This function replaces a page in the pagecache with a new one. On
782 * success it acquires the pagecache reference for the new page and
783 * drops it for the old page. Both the old and new pages must be
784 * locked. This function does not add the new page to the LRU, the
785 * caller must do that.
787 * The remove + add is atomic. This function cannot fail.
789 void replace_page_cache_page(struct page *old, struct page *new)
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
802 new->mapping = mapping;
805 mem_cgroup_migrate(old, new);
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
811 /* hugetlb pages do not participate in page cache accounting. */
813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
816 if (PageSwapBacked(old))
817 __dec_lruvec_page_state(old, NR_SHMEM);
818 if (PageSwapBacked(new))
819 __inc_lruvec_page_state(new, NR_SHMEM);
820 xas_unlock_irqrestore(&xas, flags);
825 EXPORT_SYMBOL_GPL(replace_page_cache_page);
827 noinline int __add_to_page_cache_locked(struct page *page,
828 struct address_space *mapping,
829 pgoff_t offset, gfp_t gfp,
832 XA_STATE(xas, &mapping->i_pages, offset);
833 int huge = PageHuge(page);
835 bool charged = false;
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 mapping_set_update(&xas, mapping);
842 page->mapping = mapping;
843 page->index = offset;
846 error = mem_cgroup_charge(page, current->mm, gfp);
852 gfp &= GFP_RECLAIM_MASK;
855 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 void *entry, *old = NULL;
858 if (order > thp_order(page))
859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
862 xas_for_each_conflict(&xas, entry) {
864 if (!xa_is_value(entry)) {
865 xas_set_err(&xas, -EEXIST);
873 /* entry may have been split before we acquired lock */
874 order = xa_get_order(xas.xa, xas.xa_index);
875 if (order > thp_order(page)) {
876 xas_split(&xas, old, order);
881 xas_store(&xas, page);
886 mapping->nrexceptional--;
889 /* hugetlb pages do not participate in page cache accounting */
891 __inc_lruvec_page_state(page, NR_FILE_PAGES);
893 xas_unlock_irq(&xas);
894 } while (xas_nomem(&xas, gfp));
896 if (xas_error(&xas)) {
897 error = xas_error(&xas);
899 mem_cgroup_uncharge(page);
903 trace_mm_filemap_add_to_page_cache(page);
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
914 * add_to_page_cache_locked - add a locked page to the pagecache
916 * @mapping: the page's address_space
917 * @offset: page index
918 * @gfp_mask: page allocation mode
920 * This function is used to add a page to the pagecache. It must be locked.
921 * This function does not add the page to the LRU. The caller must do that.
923 * Return: %0 on success, negative error code otherwise.
925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 pgoff_t offset, gfp_t gfp_mask)
928 return __add_to_page_cache_locked(page, mapping, offset,
931 EXPORT_SYMBOL(add_to_page_cache_locked);
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934 pgoff_t offset, gfp_t gfp_mask)
939 __SetPageLocked(page);
940 ret = __add_to_page_cache_locked(page, mapping, offset,
943 __ClearPageLocked(page);
946 * The page might have been evicted from cache only
947 * recently, in which case it should be activated like
948 * any other repeatedly accessed page.
949 * The exception is pages getting rewritten; evicting other
950 * data from the working set, only to cache data that will
951 * get overwritten with something else, is a waste of memory.
953 WARN_ON_ONCE(PageActive(page));
954 if (!(gfp_mask & __GFP_WRITE) && shadow)
955 workingset_refault(page, shadow);
960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
963 struct page *__page_cache_alloc(gfp_t gfp)
968 if (cpuset_do_page_mem_spread()) {
969 unsigned int cpuset_mems_cookie;
971 cpuset_mems_cookie = read_mems_allowed_begin();
972 n = cpuset_mem_spread_node();
973 page = __alloc_pages_node(n, gfp, 0);
974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978 return alloc_pages(gfp, 0);
980 EXPORT_SYMBOL(__page_cache_alloc);
984 * In order to wait for pages to become available there must be
985 * waitqueues associated with pages. By using a hash table of
986 * waitqueues where the bucket discipline is to maintain all
987 * waiters on the same queue and wake all when any of the pages
988 * become available, and for the woken contexts to check to be
989 * sure the appropriate page became available, this saves space
990 * at a cost of "thundering herd" phenomena during rare hash
993 #define PAGE_WAIT_TABLE_BITS 8
994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
997 static wait_queue_head_t *page_waitqueue(struct page *page)
999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1002 void __init pagecache_init(void)
1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 init_waitqueue_head(&page_wait_table[i]);
1009 page_writeback_init();
1013 * The page wait code treats the "wait->flags" somewhat unusually, because
1014 * we have multiple different kinds of waits, not just the usual "exclusive"
1019 * (a) no special bits set:
1021 * We're just waiting for the bit to be released, and when a waker
1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023 * and remove it from the wait queue.
1025 * Simple and straightforward.
1027 * (b) WQ_FLAG_EXCLUSIVE:
1029 * The waiter is waiting to get the lock, and only one waiter should
1030 * be woken up to avoid any thundering herd behavior. We'll set the
1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1033 * This is the traditional exclusive wait.
1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1037 * The waiter is waiting to get the bit, and additionally wants the
1038 * lock to be transferred to it for fair lock behavior. If the lock
1039 * cannot be taken, we stop walking the wait queue without waking
1042 * This is the "fair lock handoff" case, and in addition to setting
1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044 * that it now has the lock.
1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1053 if (!wake_page_match(wait_page, key))
1057 * If it's a lock handoff wait, we get the bit for it, and
1058 * stop walking (and do not wake it up) if we can't.
1060 flags = wait->flags;
1061 if (flags & WQ_FLAG_EXCLUSIVE) {
1062 if (test_bit(key->bit_nr, &key->page->flags))
1064 if (flags & WQ_FLAG_CUSTOM) {
1065 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1067 flags |= WQ_FLAG_DONE;
1072 * We are holding the wait-queue lock, but the waiter that
1073 * is waiting for this will be checking the flags without
1076 * So update the flags atomically, and wake up the waiter
1077 * afterwards to avoid any races. This store-release pairs
1078 * with the load-acquire in wait_on_page_bit_common().
1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 wake_up_state(wait->private, mode);
1084 * Ok, we have successfully done what we're waiting for,
1085 * and we can unconditionally remove the wait entry.
1087 * Note that this pairs with the "finish_wait()" in the
1088 * waiter, and has to be the absolute last thing we do.
1089 * After this list_del_init(&wait->entry) the wait entry
1090 * might be de-allocated and the process might even have
1093 list_del_init_careful(&wait->entry);
1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1097 static void wake_up_page_bit(struct page *page, int bit_nr)
1099 wait_queue_head_t *q = page_waitqueue(page);
1100 struct wait_page_key key;
1101 unsigned long flags;
1102 wait_queue_entry_t bookmark;
1105 key.bit_nr = bit_nr;
1109 bookmark.private = NULL;
1110 bookmark.func = NULL;
1111 INIT_LIST_HEAD(&bookmark.entry);
1113 spin_lock_irqsave(&q->lock, flags);
1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1118 * Take a breather from holding the lock,
1119 * allow pages that finish wake up asynchronously
1120 * to acquire the lock and remove themselves
1123 spin_unlock_irqrestore(&q->lock, flags);
1125 spin_lock_irqsave(&q->lock, flags);
1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1130 * It is possible for other pages to have collided on the waitqueue
1131 * hash, so in that case check for a page match. That prevents a long-
1134 * It is still possible to miss a case here, when we woke page waiters
1135 * and removed them from the waitqueue, but there are still other
1138 if (!waitqueue_active(q) || !key.page_match) {
1139 ClearPageWaiters(page);
1141 * It's possible to miss clearing Waiters here, when we woke
1142 * our page waiters, but the hashed waitqueue has waiters for
1143 * other pages on it.
1145 * That's okay, it's a rare case. The next waker will clear it.
1148 spin_unlock_irqrestore(&q->lock, flags);
1151 static void wake_up_page(struct page *page, int bit)
1153 if (!PageWaiters(page))
1155 wake_up_page_bit(page, bit);
1159 * A choice of three behaviors for wait_on_page_bit_common():
1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1163 * __lock_page() waiting on then setting PG_locked.
1165 SHARED, /* Hold ref to page and check the bit when woken, like
1166 * wait_on_page_writeback() waiting on PG_writeback.
1168 DROP, /* Drop ref to page before wait, no check when woken,
1169 * like put_and_wait_on_page_locked() on PG_locked.
1174 * Attempt to check (or get) the page bit, and mark us done
1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 struct wait_queue_entry *wait)
1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 if (test_and_set_bit(bit_nr, &page->flags))
1183 } else if (test_bit(bit_nr, &page->flags))
1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1190 /* How many times do we accept lock stealing from under a waiter? */
1191 int sysctl_page_lock_unfairness = 5;
1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194 struct page *page, int bit_nr, int state, enum behavior behavior)
1196 int unfairness = sysctl_page_lock_unfairness;
1197 struct wait_page_queue wait_page;
1198 wait_queue_entry_t *wait = &wait_page.wait;
1199 bool thrashing = false;
1200 bool delayacct = false;
1201 unsigned long pflags;
1203 if (bit_nr == PG_locked &&
1204 !PageUptodate(page) && PageWorkingset(page)) {
1205 if (!PageSwapBacked(page)) {
1206 delayacct_thrashing_start();
1209 psi_memstall_enter(&pflags);
1214 wait->func = wake_page_function;
1215 wait_page.page = page;
1216 wait_page.bit_nr = bit_nr;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1230 * Do the SetPageWaiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1240 spin_lock_irq(&q->lock);
1241 SetPageWaiters(page);
1242 if (!trylock_page_bit_common(page, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
1247 * From now on, all the logic will be based on
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
1252 * We can drop our reference to the page.
1254 if (behavior == DROP)
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1266 set_current_state(state);
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1290 * And if that fails, we'll have to retry this all.
1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1295 wait->flags |= WQ_FLAG_DONE;
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1305 finish_wait(q, wait);
1309 delayacct_thrashing_end();
1310 psi_memstall_leave(&pflags);
1314 * NOTE! The wait->flags weren't stable until we've done the
1315 * 'finish_wait()', and we could have exited the loop above due
1316 * to a signal, and had a wakeup event happen after the signal
1317 * test but before the 'finish_wait()'.
1319 * So only after the finish_wait() can we reliably determine
1320 * if we got woken up or not, so we can now figure out the final
1321 * return value based on that state without races.
1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1326 if (behavior == EXCLUSIVE)
1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1332 void wait_on_page_bit(struct page *page, int bit_nr)
1334 wait_queue_head_t *q = page_waitqueue(page);
1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1337 EXPORT_SYMBOL(wait_on_page_bit);
1339 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1341 wait_queue_head_t *q = page_waitqueue(page);
1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1344 EXPORT_SYMBOL(wait_on_page_bit_killable);
1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348 * @page: The page to wait for.
1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1351 * The caller should hold a reference on @page. They expect the page to
1352 * become unlocked relatively soon, but do not wish to hold up migration
1353 * (for example) by holding the reference while waiting for the page to
1354 * come unlocked. After this function returns, the caller should not
1355 * dereference @page.
1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1359 int put_and_wait_on_page_locked(struct page *page, int state)
1361 wait_queue_head_t *q;
1363 page = compound_head(page);
1364 q = page_waitqueue(page);
1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1370 * @page: Page defining the wait queue of interest
1371 * @waiter: Waiter to add to the queue
1373 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1377 wait_queue_head_t *q = page_waitqueue(page);
1378 unsigned long flags;
1380 spin_lock_irqsave(&q->lock, flags);
1381 __add_wait_queue_entry_tail(q, waiter);
1382 SetPageWaiters(page);
1383 spin_unlock_irqrestore(&q->lock, flags);
1385 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1387 #ifndef clear_bit_unlock_is_negative_byte
1390 * PG_waiters is the high bit in the same byte as PG_lock.
1392 * On x86 (and on many other architectures), we can clear PG_lock and
1393 * test the sign bit at the same time. But if the architecture does
1394 * not support that special operation, we just do this all by hand
1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1398 * being cleared, but a memory barrier should be unnecessary since it is
1399 * in the same byte as PG_locked.
1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1403 clear_bit_unlock(nr, mem);
1404 /* smp_mb__after_atomic(); */
1405 return test_bit(PG_waiters, mem);
1411 * unlock_page - unlock a locked page
1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1416 * mechanism between PageLocked pages and PageWriteback pages is shared.
1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1419 * Note that this depends on PG_waiters being the sign bit in the byte
1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421 * clear the PG_locked bit and test PG_waiters at the same time fairly
1422 * portably (architectures that do LL/SC can test any bit, while x86 can
1423 * test the sign bit).
1425 void unlock_page(struct page *page)
1427 BUILD_BUG_ON(PG_waiters != 7);
1428 page = compound_head(page);
1429 VM_BUG_ON_PAGE(!PageLocked(page), page);
1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 wake_up_page_bit(page, PG_locked);
1433 EXPORT_SYMBOL(unlock_page);
1436 * end_page_private_2 - Clear PG_private_2 and release any waiters
1439 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1440 * this. The page ref held for PG_private_2 being set is released.
1442 * This is, for example, used when a netfs page is being written to a local
1443 * disk cache, thereby allowing writes to the cache for the same page to be
1446 void end_page_private_2(struct page *page)
1448 page = compound_head(page);
1449 VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1450 clear_bit_unlock(PG_private_2, &page->flags);
1451 wake_up_page_bit(page, PG_private_2);
1454 EXPORT_SYMBOL(end_page_private_2);
1457 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1458 * @page: The page to wait on
1460 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1462 void wait_on_page_private_2(struct page *page)
1464 page = compound_head(page);
1465 while (PagePrivate2(page))
1466 wait_on_page_bit(page, PG_private_2);
1468 EXPORT_SYMBOL(wait_on_page_private_2);
1471 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1472 * @page: The page to wait on
1474 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1475 * fatal signal is received by the calling task.
1478 * - 0 if successful.
1479 * - -EINTR if a fatal signal was encountered.
1481 int wait_on_page_private_2_killable(struct page *page)
1485 page = compound_head(page);
1486 while (PagePrivate2(page)) {
1487 ret = wait_on_page_bit_killable(page, PG_private_2);
1494 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1497 * end_page_writeback - end writeback against a page
1500 void end_page_writeback(struct page *page)
1503 * TestClearPageReclaim could be used here but it is an atomic
1504 * operation and overkill in this particular case. Failing to
1505 * shuffle a page marked for immediate reclaim is too mild to
1506 * justify taking an atomic operation penalty at the end of
1507 * ever page writeback.
1509 if (PageReclaim(page)) {
1510 ClearPageReclaim(page);
1511 rotate_reclaimable_page(page);
1515 * Writeback does not hold a page reference of its own, relying
1516 * on truncation to wait for the clearing of PG_writeback.
1517 * But here we must make sure that the page is not freed and
1518 * reused before the wake_up_page().
1521 if (!test_clear_page_writeback(page))
1524 smp_mb__after_atomic();
1525 wake_up_page(page, PG_writeback);
1528 EXPORT_SYMBOL(end_page_writeback);
1531 * After completing I/O on a page, call this routine to update the page
1532 * flags appropriately
1534 void page_endio(struct page *page, bool is_write, int err)
1538 SetPageUptodate(page);
1540 ClearPageUptodate(page);
1546 struct address_space *mapping;
1549 mapping = page_mapping(page);
1551 mapping_set_error(mapping, err);
1553 end_page_writeback(page);
1556 EXPORT_SYMBOL_GPL(page_endio);
1559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1560 * @__page: the page to lock
1562 void __lock_page(struct page *__page)
1564 struct page *page = compound_head(__page);
1565 wait_queue_head_t *q = page_waitqueue(page);
1566 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1569 EXPORT_SYMBOL(__lock_page);
1571 int __lock_page_killable(struct page *__page)
1573 struct page *page = compound_head(__page);
1574 wait_queue_head_t *q = page_waitqueue(page);
1575 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1578 EXPORT_SYMBOL_GPL(__lock_page_killable);
1580 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1582 struct wait_queue_head *q = page_waitqueue(page);
1586 wait->bit_nr = PG_locked;
1588 spin_lock_irq(&q->lock);
1589 __add_wait_queue_entry_tail(q, &wait->wait);
1590 SetPageWaiters(page);
1591 ret = !trylock_page(page);
1593 * If we were successful now, we know we're still on the
1594 * waitqueue as we're still under the lock. This means it's
1595 * safe to remove and return success, we know the callback
1596 * isn't going to trigger.
1599 __remove_wait_queue(q, &wait->wait);
1602 spin_unlock_irq(&q->lock);
1608 * 1 - page is locked; mmap_lock is still held.
1609 * 0 - page is not locked.
1610 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1611 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1612 * which case mmap_lock is still held.
1614 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1615 * with the page locked and the mmap_lock unperturbed.
1617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1620 if (fault_flag_allow_retry_first(flags)) {
1622 * CAUTION! In this case, mmap_lock is not released
1623 * even though return 0.
1625 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1628 mmap_read_unlock(mm);
1629 if (flags & FAULT_FLAG_KILLABLE)
1630 wait_on_page_locked_killable(page);
1632 wait_on_page_locked(page);
1635 if (flags & FAULT_FLAG_KILLABLE) {
1638 ret = __lock_page_killable(page);
1640 mmap_read_unlock(mm);
1651 * page_cache_next_miss() - Find the next gap in the page cache.
1652 * @mapping: Mapping.
1654 * @max_scan: Maximum range to search.
1656 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1657 * gap with the lowest index.
1659 * This function may be called under the rcu_read_lock. However, this will
1660 * not atomically search a snapshot of the cache at a single point in time.
1661 * For example, if a gap is created at index 5, then subsequently a gap is
1662 * created at index 10, page_cache_next_miss covering both indices may
1663 * return 10 if called under the rcu_read_lock.
1665 * Return: The index of the gap if found, otherwise an index outside the
1666 * range specified (in which case 'return - index >= max_scan' will be true).
1667 * In the rare case of index wrap-around, 0 will be returned.
1669 pgoff_t page_cache_next_miss(struct address_space *mapping,
1670 pgoff_t index, unsigned long max_scan)
1672 XA_STATE(xas, &mapping->i_pages, index);
1674 while (max_scan--) {
1675 void *entry = xas_next(&xas);
1676 if (!entry || xa_is_value(entry))
1678 if (xas.xa_index == 0)
1682 return xas.xa_index;
1684 EXPORT_SYMBOL(page_cache_next_miss);
1687 * page_cache_prev_miss() - Find the previous gap in the page cache.
1688 * @mapping: Mapping.
1690 * @max_scan: Maximum range to search.
1692 * Search the range [max(index - max_scan + 1, 0), index] for the
1693 * gap with the highest index.
1695 * This function may be called under the rcu_read_lock. However, this will
1696 * not atomically search a snapshot of the cache at a single point in time.
1697 * For example, if a gap is created at index 10, then subsequently a gap is
1698 * created at index 5, page_cache_prev_miss() covering both indices may
1699 * return 5 if called under the rcu_read_lock.
1701 * Return: The index of the gap if found, otherwise an index outside the
1702 * range specified (in which case 'index - return >= max_scan' will be true).
1703 * In the rare case of wrap-around, ULONG_MAX will be returned.
1705 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1706 pgoff_t index, unsigned long max_scan)
1708 XA_STATE(xas, &mapping->i_pages, index);
1710 while (max_scan--) {
1711 void *entry = xas_prev(&xas);
1712 if (!entry || xa_is_value(entry))
1714 if (xas.xa_index == ULONG_MAX)
1718 return xas.xa_index;
1720 EXPORT_SYMBOL(page_cache_prev_miss);
1723 * mapping_get_entry - Get a page cache entry.
1724 * @mapping: the address_space to search
1725 * @index: The page cache index.
1727 * Looks up the page cache slot at @mapping & @offset. If there is a
1728 * page cache page, the head page is returned with an increased refcount.
1730 * If the slot holds a shadow entry of a previously evicted page, or a
1731 * swap entry from shmem/tmpfs, it is returned.
1733 * Return: The head page or shadow entry, %NULL if nothing is found.
1735 static struct page *mapping_get_entry(struct address_space *mapping,
1738 XA_STATE(xas, &mapping->i_pages, index);
1744 page = xas_load(&xas);
1745 if (xas_retry(&xas, page))
1748 * A shadow entry of a recently evicted page, or a swap entry from
1749 * shmem/tmpfs. Return it without attempting to raise page count.
1751 if (!page || xa_is_value(page))
1754 if (!page_cache_get_speculative(page))
1758 * Has the page moved or been split?
1759 * This is part of the lockless pagecache protocol. See
1760 * include/linux/pagemap.h for details.
1762 if (unlikely(page != xas_reload(&xas))) {
1773 * pagecache_get_page - Find and get a reference to a page.
1774 * @mapping: The address_space to search.
1775 * @index: The page index.
1776 * @fgp_flags: %FGP flags modify how the page is returned.
1777 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1779 * Looks up the page cache entry at @mapping & @index.
1781 * @fgp_flags can be zero or more of these flags:
1783 * * %FGP_ACCESSED - The page will be marked accessed.
1784 * * %FGP_LOCK - The page is returned locked.
1785 * * %FGP_HEAD - If the page is present and a THP, return the head page
1786 * rather than the exact page specified by the index.
1787 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1788 * instead of allocating a new page to replace it.
1789 * * %FGP_CREAT - If no page is present then a new page is allocated using
1790 * @gfp_mask and added to the page cache and the VM's LRU list.
1791 * The page is returned locked and with an increased refcount.
1792 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1793 * page is already in cache. If the page was allocated, unlock it before
1794 * returning so the caller can do the same dance.
1795 * * %FGP_WRITE - The page will be written
1796 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1797 * * %FGP_NOWAIT - Don't get blocked by page lock
1799 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1800 * if the %GFP flags specified for %FGP_CREAT are atomic.
1802 * If there is a page cache page, it is returned with an increased refcount.
1804 * Return: The found page or %NULL otherwise.
1806 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1807 int fgp_flags, gfp_t gfp_mask)
1812 page = mapping_get_entry(mapping, index);
1813 if (xa_is_value(page)) {
1814 if (fgp_flags & FGP_ENTRY)
1821 if (fgp_flags & FGP_LOCK) {
1822 if (fgp_flags & FGP_NOWAIT) {
1823 if (!trylock_page(page)) {
1831 /* Has the page been truncated? */
1832 if (unlikely(page->mapping != mapping)) {
1837 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1840 if (fgp_flags & FGP_ACCESSED)
1841 mark_page_accessed(page);
1842 else if (fgp_flags & FGP_WRITE) {
1843 /* Clear idle flag for buffer write */
1844 if (page_is_idle(page))
1845 clear_page_idle(page);
1847 if (!(fgp_flags & FGP_HEAD))
1848 page = find_subpage(page, index);
1851 if (!page && (fgp_flags & FGP_CREAT)) {
1853 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1854 gfp_mask |= __GFP_WRITE;
1855 if (fgp_flags & FGP_NOFS)
1856 gfp_mask &= ~__GFP_FS;
1858 page = __page_cache_alloc(gfp_mask);
1862 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1863 fgp_flags |= FGP_LOCK;
1865 /* Init accessed so avoid atomic mark_page_accessed later */
1866 if (fgp_flags & FGP_ACCESSED)
1867 __SetPageReferenced(page);
1869 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1870 if (unlikely(err)) {
1878 * add_to_page_cache_lru locks the page, and for mmap we expect
1881 if (page && (fgp_flags & FGP_FOR_MMAP))
1887 EXPORT_SYMBOL(pagecache_get_page);
1889 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1895 if (mark == XA_PRESENT)
1896 page = xas_find(xas, max);
1898 page = xas_find_marked(xas, max, mark);
1900 if (xas_retry(xas, page))
1903 * A shadow entry of a recently evicted page, a swap
1904 * entry from shmem/tmpfs or a DAX entry. Return it
1905 * without attempting to raise page count.
1907 if (!page || xa_is_value(page))
1910 if (!page_cache_get_speculative(page))
1913 /* Has the page moved or been split? */
1914 if (unlikely(page != xas_reload(xas))) {
1926 * find_get_entries - gang pagecache lookup
1927 * @mapping: The address_space to search
1928 * @start: The starting page cache index
1929 * @end: The final page index (inclusive).
1930 * @pvec: Where the resulting entries are placed.
1931 * @indices: The cache indices corresponding to the entries in @entries
1933 * find_get_entries() will search for and return a batch of entries in
1934 * the mapping. The entries are placed in @pvec. find_get_entries()
1935 * takes a reference on any actual pages it returns.
1937 * The search returns a group of mapping-contiguous page cache entries
1938 * with ascending indexes. There may be holes in the indices due to
1939 * not-present pages.
1941 * Any shadow entries of evicted pages, or swap entries from
1942 * shmem/tmpfs, are included in the returned array.
1944 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1945 * stops at that page: the caller is likely to have a better way to handle
1946 * the compound page as a whole, and then skip its extent, than repeatedly
1947 * calling find_get_entries() to return all its tails.
1949 * Return: the number of pages and shadow entries which were found.
1951 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1952 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1954 XA_STATE(xas, &mapping->i_pages, start);
1956 unsigned int ret = 0;
1957 unsigned nr_entries = PAGEVEC_SIZE;
1960 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1962 * Terminate early on finding a THP, to allow the caller to
1963 * handle it all at once; but continue if this is hugetlbfs.
1965 if (!xa_is_value(page) && PageTransHuge(page) &&
1967 page = find_subpage(page, xas.xa_index);
1968 nr_entries = ret + 1;
1971 indices[ret] = xas.xa_index;
1972 pvec->pages[ret] = page;
1973 if (++ret == nr_entries)
1983 * find_lock_entries - Find a batch of pagecache entries.
1984 * @mapping: The address_space to search.
1985 * @start: The starting page cache index.
1986 * @end: The final page index (inclusive).
1987 * @pvec: Where the resulting entries are placed.
1988 * @indices: The cache indices of the entries in @pvec.
1990 * find_lock_entries() will return a batch of entries from @mapping.
1991 * Swap, shadow and DAX entries are included. Pages are returned
1992 * locked and with an incremented refcount. Pages which are locked by
1993 * somebody else or under writeback are skipped. Only the head page of
1994 * a THP is returned. Pages which are partially outside the range are
1997 * The entries have ascending indexes. The indices may not be consecutive
1998 * due to not-present entries, THP pages, pages which could not be locked
1999 * or pages under writeback.
2001 * Return: The number of entries which were found.
2003 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2004 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2006 XA_STATE(xas, &mapping->i_pages, start);
2010 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2011 if (!xa_is_value(page)) {
2012 if (page->index < start)
2014 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2015 if (page->index + thp_nr_pages(page) - 1 > end)
2017 if (!trylock_page(page))
2019 if (page->mapping != mapping || PageWriteback(page))
2021 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2024 indices[pvec->nr] = xas.xa_index;
2025 if (!pagevec_add(pvec, page))
2033 if (!xa_is_value(page) && PageTransHuge(page)) {
2034 unsigned int nr_pages = thp_nr_pages(page);
2036 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2037 xas_set(&xas, page->index + nr_pages);
2038 if (xas.xa_index < nr_pages)
2044 return pagevec_count(pvec);
2048 * find_get_pages_range - gang pagecache lookup
2049 * @mapping: The address_space to search
2050 * @start: The starting page index
2051 * @end: The final page index (inclusive)
2052 * @nr_pages: The maximum number of pages
2053 * @pages: Where the resulting pages are placed
2055 * find_get_pages_range() will search for and return a group of up to @nr_pages
2056 * pages in the mapping starting at index @start and up to index @end
2057 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2058 * a reference against the returned pages.
2060 * The search returns a group of mapping-contiguous pages with ascending
2061 * indexes. There may be holes in the indices due to not-present pages.
2062 * We also update @start to index the next page for the traversal.
2064 * Return: the number of pages which were found. If this number is
2065 * smaller than @nr_pages, the end of specified range has been
2068 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2069 pgoff_t end, unsigned int nr_pages,
2070 struct page **pages)
2072 XA_STATE(xas, &mapping->i_pages, *start);
2076 if (unlikely(!nr_pages))
2080 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2081 /* Skip over shadow, swap and DAX entries */
2082 if (xa_is_value(page))
2085 pages[ret] = find_subpage(page, xas.xa_index);
2086 if (++ret == nr_pages) {
2087 *start = xas.xa_index + 1;
2093 * We come here when there is no page beyond @end. We take care to not
2094 * overflow the index @start as it confuses some of the callers. This
2095 * breaks the iteration when there is a page at index -1 but that is
2096 * already broken anyway.
2098 if (end == (pgoff_t)-1)
2099 *start = (pgoff_t)-1;
2109 * find_get_pages_contig - gang contiguous pagecache lookup
2110 * @mapping: The address_space to search
2111 * @index: The starting page index
2112 * @nr_pages: The maximum number of pages
2113 * @pages: Where the resulting pages are placed
2115 * find_get_pages_contig() works exactly like find_get_pages(), except
2116 * that the returned number of pages are guaranteed to be contiguous.
2118 * Return: the number of pages which were found.
2120 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2121 unsigned int nr_pages, struct page **pages)
2123 XA_STATE(xas, &mapping->i_pages, index);
2125 unsigned int ret = 0;
2127 if (unlikely(!nr_pages))
2131 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2132 if (xas_retry(&xas, page))
2135 * If the entry has been swapped out, we can stop looking.
2136 * No current caller is looking for DAX entries.
2138 if (xa_is_value(page))
2141 if (!page_cache_get_speculative(page))
2144 /* Has the page moved or been split? */
2145 if (unlikely(page != xas_reload(&xas)))
2148 pages[ret] = find_subpage(page, xas.xa_index);
2149 if (++ret == nr_pages)
2160 EXPORT_SYMBOL(find_get_pages_contig);
2163 * find_get_pages_range_tag - Find and return head pages matching @tag.
2164 * @mapping: the address_space to search
2165 * @index: the starting page index
2166 * @end: The final page index (inclusive)
2167 * @tag: the tag index
2168 * @nr_pages: the maximum number of pages
2169 * @pages: where the resulting pages are placed
2171 * Like find_get_pages(), except we only return head pages which are tagged
2172 * with @tag. @index is updated to the index immediately after the last
2173 * page we return, ready for the next iteration.
2175 * Return: the number of pages which were found.
2177 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2178 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2179 struct page **pages)
2181 XA_STATE(xas, &mapping->i_pages, *index);
2185 if (unlikely(!nr_pages))
2189 while ((page = find_get_entry(&xas, end, tag))) {
2191 * Shadow entries should never be tagged, but this iteration
2192 * is lockless so there is a window for page reclaim to evict
2193 * a page we saw tagged. Skip over it.
2195 if (xa_is_value(page))
2199 if (++ret == nr_pages) {
2200 *index = page->index + thp_nr_pages(page);
2206 * We come here when we got to @end. We take care to not overflow the
2207 * index @index as it confuses some of the callers. This breaks the
2208 * iteration when there is a page at index -1 but that is already
2211 if (end == (pgoff_t)-1)
2212 *index = (pgoff_t)-1;
2220 EXPORT_SYMBOL(find_get_pages_range_tag);
2223 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2224 * a _large_ part of the i/o request. Imagine the worst scenario:
2226 * ---R__________________________________________B__________
2227 * ^ reading here ^ bad block(assume 4k)
2229 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2230 * => failing the whole request => read(R) => read(R+1) =>
2231 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2232 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2233 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2235 * It is going insane. Fix it by quickly scaling down the readahead size.
2237 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2243 * filemap_get_read_batch - Get a batch of pages for read
2245 * Get a batch of pages which represent a contiguous range of bytes
2246 * in the file. No tail pages will be returned. If @index is in the
2247 * middle of a THP, the entire THP will be returned. The last page in
2248 * the batch may have Readahead set or be not Uptodate so that the
2249 * caller can take the appropriate action.
2251 static void filemap_get_read_batch(struct address_space *mapping,
2252 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2254 XA_STATE(xas, &mapping->i_pages, index);
2258 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2259 if (xas_retry(&xas, head))
2261 if (xas.xa_index > max || xa_is_value(head))
2263 if (!page_cache_get_speculative(head))
2266 /* Has the page moved or been split? */
2267 if (unlikely(head != xas_reload(&xas)))
2270 if (!pagevec_add(pvec, head))
2272 if (!PageUptodate(head))
2274 if (PageReadahead(head))
2276 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2277 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2287 static int filemap_read_page(struct file *file, struct address_space *mapping,
2293 * A previous I/O error may have been due to temporary failures,
2294 * eg. multipath errors. PG_error will be set again if readpage
2297 ClearPageError(page);
2298 /* Start the actual read. The read will unlock the page. */
2299 error = mapping->a_ops->readpage(file, page);
2303 error = wait_on_page_locked_killable(page);
2306 if (PageUptodate(page))
2308 if (!page->mapping) /* page truncated */
2309 return AOP_TRUNCATED_PAGE;
2310 shrink_readahead_size_eio(&file->f_ra);
2314 static bool filemap_range_uptodate(struct address_space *mapping,
2315 loff_t pos, struct iov_iter *iter, struct page *page)
2319 if (PageUptodate(page))
2321 /* pipes can't handle partially uptodate pages */
2322 if (iov_iter_is_pipe(iter))
2324 if (!mapping->a_ops->is_partially_uptodate)
2326 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2329 count = iter->count;
2330 if (page_offset(page) > pos) {
2331 count -= page_offset(page) - pos;
2334 pos -= page_offset(page);
2337 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2340 static int filemap_update_page(struct kiocb *iocb,
2341 struct address_space *mapping, struct iov_iter *iter,
2346 if (!trylock_page(page)) {
2347 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2349 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2350 put_and_wait_on_page_locked(page, TASK_KILLABLE);
2351 return AOP_TRUNCATED_PAGE;
2353 error = __lock_page_async(page, iocb->ki_waitq);
2362 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2366 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2369 error = filemap_read_page(iocb->ki_filp, mapping, page);
2370 if (error == AOP_TRUNCATED_PAGE)
2376 return AOP_TRUNCATED_PAGE;
2382 static int filemap_create_page(struct file *file,
2383 struct address_space *mapping, pgoff_t index,
2384 struct pagevec *pvec)
2389 page = page_cache_alloc(mapping);
2393 error = add_to_page_cache_lru(page, mapping, index,
2394 mapping_gfp_constraint(mapping, GFP_KERNEL));
2395 if (error == -EEXIST)
2396 error = AOP_TRUNCATED_PAGE;
2400 error = filemap_read_page(file, mapping, page);
2404 pagevec_add(pvec, page);
2411 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2412 struct address_space *mapping, struct page *page,
2415 if (iocb->ki_flags & IOCB_NOIO)
2417 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2418 page->index, last_index - page->index);
2422 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2423 struct pagevec *pvec)
2425 struct file *filp = iocb->ki_filp;
2426 struct address_space *mapping = filp->f_mapping;
2427 struct file_ra_state *ra = &filp->f_ra;
2428 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2433 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2435 if (fatal_signal_pending(current))
2438 filemap_get_read_batch(mapping, index, last_index, pvec);
2439 if (!pagevec_count(pvec)) {
2440 if (iocb->ki_flags & IOCB_NOIO)
2442 page_cache_sync_readahead(mapping, ra, filp, index,
2443 last_index - index);
2444 filemap_get_read_batch(mapping, index, last_index, pvec);
2446 if (!pagevec_count(pvec)) {
2447 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2449 err = filemap_create_page(filp, mapping,
2450 iocb->ki_pos >> PAGE_SHIFT, pvec);
2451 if (err == AOP_TRUNCATED_PAGE)
2456 page = pvec->pages[pagevec_count(pvec) - 1];
2457 if (PageReadahead(page)) {
2458 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2462 if (!PageUptodate(page)) {
2463 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2464 iocb->ki_flags |= IOCB_NOWAIT;
2465 err = filemap_update_page(iocb, mapping, iter, page);
2474 if (likely(--pvec->nr))
2476 if (err == AOP_TRUNCATED_PAGE)
2482 * filemap_read - Read data from the page cache.
2483 * @iocb: The iocb to read.
2484 * @iter: Destination for the data.
2485 * @already_read: Number of bytes already read by the caller.
2487 * Copies data from the page cache. If the data is not currently present,
2488 * uses the readahead and readpage address_space operations to fetch it.
2490 * Return: Total number of bytes copied, including those already read by
2491 * the caller. If an error happens before any bytes are copied, returns
2492 * a negative error number.
2494 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2495 ssize_t already_read)
2497 struct file *filp = iocb->ki_filp;
2498 struct file_ra_state *ra = &filp->f_ra;
2499 struct address_space *mapping = filp->f_mapping;
2500 struct inode *inode = mapping->host;
2501 struct pagevec pvec;
2503 bool writably_mapped;
2504 loff_t isize, end_offset;
2506 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2508 if (unlikely(!iov_iter_count(iter)))
2511 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2512 pagevec_init(&pvec);
2518 * If we've already successfully copied some data, then we
2519 * can no longer safely return -EIOCBQUEUED. Hence mark
2520 * an async read NOWAIT at that point.
2522 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2523 iocb->ki_flags |= IOCB_NOWAIT;
2525 error = filemap_get_pages(iocb, iter, &pvec);
2530 * i_size must be checked after we know the pages are Uptodate.
2532 * Checking i_size after the check allows us to calculate
2533 * the correct value for "nr", which means the zero-filled
2534 * part of the page is not copied back to userspace (unless
2535 * another truncate extends the file - this is desired though).
2537 isize = i_size_read(inode);
2538 if (unlikely(iocb->ki_pos >= isize))
2540 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2543 * Once we start copying data, we don't want to be touching any
2544 * cachelines that might be contended:
2546 writably_mapped = mapping_writably_mapped(mapping);
2549 * When a sequential read accesses a page several times, only
2550 * mark it as accessed the first time.
2552 if (iocb->ki_pos >> PAGE_SHIFT !=
2553 ra->prev_pos >> PAGE_SHIFT)
2554 mark_page_accessed(pvec.pages[0]);
2556 for (i = 0; i < pagevec_count(&pvec); i++) {
2557 struct page *page = pvec.pages[i];
2558 size_t page_size = thp_size(page);
2559 size_t offset = iocb->ki_pos & (page_size - 1);
2560 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2561 page_size - offset);
2564 if (end_offset < page_offset(page))
2567 mark_page_accessed(page);
2569 * If users can be writing to this page using arbitrary
2570 * virtual addresses, take care about potential aliasing
2571 * before reading the page on the kernel side.
2573 if (writably_mapped) {
2576 for (j = 0; j < thp_nr_pages(page); j++)
2577 flush_dcache_page(page + j);
2580 copied = copy_page_to_iter(page, offset, bytes, iter);
2582 already_read += copied;
2583 iocb->ki_pos += copied;
2584 ra->prev_pos = iocb->ki_pos;
2586 if (copied < bytes) {
2592 for (i = 0; i < pagevec_count(&pvec); i++)
2593 put_page(pvec.pages[i]);
2594 pagevec_reinit(&pvec);
2595 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2597 file_accessed(filp);
2599 return already_read ? already_read : error;
2601 EXPORT_SYMBOL_GPL(filemap_read);
2604 * generic_file_read_iter - generic filesystem read routine
2605 * @iocb: kernel I/O control block
2606 * @iter: destination for the data read
2608 * This is the "read_iter()" routine for all filesystems
2609 * that can use the page cache directly.
2611 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2612 * be returned when no data can be read without waiting for I/O requests
2613 * to complete; it doesn't prevent readahead.
2615 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2616 * requests shall be made for the read or for readahead. When no data
2617 * can be read, -EAGAIN shall be returned. When readahead would be
2618 * triggered, a partial, possibly empty read shall be returned.
2621 * * number of bytes copied, even for partial reads
2622 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2625 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2627 size_t count = iov_iter_count(iter);
2631 return 0; /* skip atime */
2633 if (iocb->ki_flags & IOCB_DIRECT) {
2634 struct file *file = iocb->ki_filp;
2635 struct address_space *mapping = file->f_mapping;
2636 struct inode *inode = mapping->host;
2639 size = i_size_read(inode);
2640 if (iocb->ki_flags & IOCB_NOWAIT) {
2641 if (filemap_range_has_page(mapping, iocb->ki_pos,
2642 iocb->ki_pos + count - 1))
2645 retval = filemap_write_and_wait_range(mapping,
2647 iocb->ki_pos + count - 1);
2652 file_accessed(file);
2654 retval = mapping->a_ops->direct_IO(iocb, iter);
2656 iocb->ki_pos += retval;
2659 if (retval != -EIOCBQUEUED)
2660 iov_iter_revert(iter, count - iov_iter_count(iter));
2663 * Btrfs can have a short DIO read if we encounter
2664 * compressed extents, so if there was an error, or if
2665 * we've already read everything we wanted to, or if
2666 * there was a short read because we hit EOF, go ahead
2667 * and return. Otherwise fallthrough to buffered io for
2668 * the rest of the read. Buffered reads will not work for
2669 * DAX files, so don't bother trying.
2671 if (retval < 0 || !count || iocb->ki_pos >= size ||
2676 return filemap_read(iocb, iter, retval);
2678 EXPORT_SYMBOL(generic_file_read_iter);
2680 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2681 struct address_space *mapping, struct page *page,
2682 loff_t start, loff_t end, bool seek_data)
2684 const struct address_space_operations *ops = mapping->a_ops;
2685 size_t offset, bsz = i_blocksize(mapping->host);
2687 if (xa_is_value(page) || PageUptodate(page))
2688 return seek_data ? start : end;
2689 if (!ops->is_partially_uptodate)
2690 return seek_data ? end : start;
2695 if (unlikely(page->mapping != mapping))
2698 offset = offset_in_thp(page, start) & ~(bsz - 1);
2701 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2703 start = (start + bsz) & ~(bsz - 1);
2705 } while (offset < thp_size(page));
2713 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2715 if (xa_is_value(page))
2716 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2717 return thp_size(page);
2721 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2722 * @mapping: Address space to search.
2723 * @start: First byte to consider.
2724 * @end: Limit of search (exclusive).
2725 * @whence: Either SEEK_HOLE or SEEK_DATA.
2727 * If the page cache knows which blocks contain holes and which blocks
2728 * contain data, your filesystem can use this function to implement
2729 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2730 * entirely memory-based such as tmpfs, and filesystems which support
2731 * unwritten extents.
2733 * Return: The requested offset on successs, or -ENXIO if @whence specifies
2734 * SEEK_DATA and there is no data after @start. There is an implicit hole
2735 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2736 * and @end contain data.
2738 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2739 loff_t end, int whence)
2741 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2742 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2743 bool seek_data = (whence == SEEK_DATA);
2750 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2751 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2752 unsigned int seek_size;
2760 seek_size = seek_page_size(&xas, page);
2761 pos = round_up(pos + 1, seek_size);
2762 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2768 if (seek_size > PAGE_SIZE)
2769 xas_set(&xas, pos >> PAGE_SHIFT);
2770 if (!xa_is_value(page))
2777 if (page && !xa_is_value(page))
2785 #define MMAP_LOTSAMISS (100)
2787 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2788 * @vmf - the vm_fault for this fault.
2789 * @page - the page to lock.
2790 * @fpin - the pointer to the file we may pin (or is already pinned).
2792 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2793 * It differs in that it actually returns the page locked if it returns 1 and 0
2794 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2795 * will point to the pinned file and needs to be fput()'ed at a later point.
2797 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2800 if (trylock_page(page))
2804 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2805 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2806 * is supposed to work. We have way too many special cases..
2808 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2811 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2812 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2813 if (__lock_page_killable(page)) {
2815 * We didn't have the right flags to drop the mmap_lock,
2816 * but all fault_handlers only check for fatal signals
2817 * if we return VM_FAULT_RETRY, so we need to drop the
2818 * mmap_lock here and return 0 if we don't have a fpin.
2821 mmap_read_unlock(vmf->vma->vm_mm);
2831 * Synchronous readahead happens when we don't even find a page in the page
2832 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2833 * to drop the mmap sem we return the file that was pinned in order for us to do
2834 * that. If we didn't pin a file then we return NULL. The file that is
2835 * returned needs to be fput()'ed when we're done with it.
2837 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2839 struct file *file = vmf->vma->vm_file;
2840 struct file_ra_state *ra = &file->f_ra;
2841 struct address_space *mapping = file->f_mapping;
2842 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2843 struct file *fpin = NULL;
2844 unsigned int mmap_miss;
2846 /* If we don't want any read-ahead, don't bother */
2847 if (vmf->vma->vm_flags & VM_RAND_READ)
2852 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2853 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2854 page_cache_sync_ra(&ractl, ra->ra_pages);
2858 /* Avoid banging the cache line if not needed */
2859 mmap_miss = READ_ONCE(ra->mmap_miss);
2860 if (mmap_miss < MMAP_LOTSAMISS * 10)
2861 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2864 * Do we miss much more than hit in this file? If so,
2865 * stop bothering with read-ahead. It will only hurt.
2867 if (mmap_miss > MMAP_LOTSAMISS)
2873 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2874 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2875 ra->size = ra->ra_pages;
2876 ra->async_size = ra->ra_pages / 4;
2877 ractl._index = ra->start;
2878 do_page_cache_ra(&ractl, ra->size, ra->async_size);
2883 * Asynchronous readahead happens when we find the page and PG_readahead,
2884 * so we want to possibly extend the readahead further. We return the file that
2885 * was pinned if we have to drop the mmap_lock in order to do IO.
2887 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2890 struct file *file = vmf->vma->vm_file;
2891 struct file_ra_state *ra = &file->f_ra;
2892 struct address_space *mapping = file->f_mapping;
2893 struct file *fpin = NULL;
2894 unsigned int mmap_miss;
2895 pgoff_t offset = vmf->pgoff;
2897 /* If we don't want any read-ahead, don't bother */
2898 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2900 mmap_miss = READ_ONCE(ra->mmap_miss);
2902 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2903 if (PageReadahead(page)) {
2904 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2905 page_cache_async_readahead(mapping, ra, file,
2906 page, offset, ra->ra_pages);
2912 * filemap_fault - read in file data for page fault handling
2913 * @vmf: struct vm_fault containing details of the fault
2915 * filemap_fault() is invoked via the vma operations vector for a
2916 * mapped memory region to read in file data during a page fault.
2918 * The goto's are kind of ugly, but this streamlines the normal case of having
2919 * it in the page cache, and handles the special cases reasonably without
2920 * having a lot of duplicated code.
2922 * vma->vm_mm->mmap_lock must be held on entry.
2924 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2925 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2927 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2928 * has not been released.
2930 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2932 * Return: bitwise-OR of %VM_FAULT_ codes.
2934 vm_fault_t filemap_fault(struct vm_fault *vmf)
2937 struct file *file = vmf->vma->vm_file;
2938 struct file *fpin = NULL;
2939 struct address_space *mapping = file->f_mapping;
2940 struct file_ra_state *ra = &file->f_ra;
2941 struct inode *inode = mapping->host;
2942 pgoff_t offset = vmf->pgoff;
2947 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2948 if (unlikely(offset >= max_off))
2949 return VM_FAULT_SIGBUS;
2952 * Do we have something in the page cache already?
2954 page = find_get_page(mapping, offset);
2955 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2957 * We found the page, so try async readahead before
2958 * waiting for the lock.
2960 fpin = do_async_mmap_readahead(vmf, page);
2962 /* No page in the page cache at all */
2963 count_vm_event(PGMAJFAULT);
2964 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2965 ret = VM_FAULT_MAJOR;
2966 fpin = do_sync_mmap_readahead(vmf);
2968 page = pagecache_get_page(mapping, offset,
2969 FGP_CREAT|FGP_FOR_MMAP,
2974 return VM_FAULT_OOM;
2978 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2981 /* Did it get truncated? */
2982 if (unlikely(compound_head(page)->mapping != mapping)) {
2987 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2990 * We have a locked page in the page cache, now we need to check
2991 * that it's up-to-date. If not, it is going to be due to an error.
2993 if (unlikely(!PageUptodate(page)))
2994 goto page_not_uptodate;
2997 * We've made it this far and we had to drop our mmap_lock, now is the
2998 * time to return to the upper layer and have it re-find the vma and
3007 * Found the page and have a reference on it.
3008 * We must recheck i_size under page lock.
3010 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3011 if (unlikely(offset >= max_off)) {
3014 return VM_FAULT_SIGBUS;
3018 return ret | VM_FAULT_LOCKED;
3022 * Umm, take care of errors if the page isn't up-to-date.
3023 * Try to re-read it _once_. We do this synchronously,
3024 * because there really aren't any performance issues here
3025 * and we need to check for errors.
3027 ClearPageError(page);
3028 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3029 error = mapping->a_ops->readpage(file, page);
3031 wait_on_page_locked(page);
3032 if (!PageUptodate(page))
3039 if (!error || error == AOP_TRUNCATED_PAGE)
3042 shrink_readahead_size_eio(ra);
3043 return VM_FAULT_SIGBUS;
3047 * We dropped the mmap_lock, we need to return to the fault handler to
3048 * re-find the vma and come back and find our hopefully still populated
3055 return ret | VM_FAULT_RETRY;
3057 EXPORT_SYMBOL(filemap_fault);
3059 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3061 struct mm_struct *mm = vmf->vma->vm_mm;
3063 /* Huge page is mapped? No need to proceed. */
3064 if (pmd_trans_huge(*vmf->pmd)) {
3070 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3071 vm_fault_t ret = do_set_pmd(vmf, page);
3073 /* The page is mapped successfully, reference consumed. */
3079 if (pmd_none(*vmf->pmd)) {
3080 vmf->ptl = pmd_lock(mm, vmf->pmd);
3081 if (likely(pmd_none(*vmf->pmd))) {
3083 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3084 vmf->prealloc_pte = NULL;
3086 spin_unlock(vmf->ptl);
3089 /* See comment in handle_pte_fault() */
3090 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3099 static struct page *next_uptodate_page(struct page *page,
3100 struct address_space *mapping,
3101 struct xa_state *xas, pgoff_t end_pgoff)
3103 unsigned long max_idx;
3108 if (xas_retry(xas, page))
3110 if (xa_is_value(page))
3112 if (PageLocked(page))
3114 if (!page_cache_get_speculative(page))
3116 /* Has the page moved or been split? */
3117 if (unlikely(page != xas_reload(xas)))
3119 if (!PageUptodate(page) || PageReadahead(page))
3121 if (PageHWPoison(page))
3123 if (!trylock_page(page))
3125 if (page->mapping != mapping)
3127 if (!PageUptodate(page))
3129 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3130 if (xas->xa_index >= max_idx)
3137 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3142 static inline struct page *first_map_page(struct address_space *mapping,
3143 struct xa_state *xas,
3146 return next_uptodate_page(xas_find(xas, end_pgoff),
3147 mapping, xas, end_pgoff);
3150 static inline struct page *next_map_page(struct address_space *mapping,
3151 struct xa_state *xas,
3154 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3155 mapping, xas, end_pgoff);
3158 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3159 pgoff_t start_pgoff, pgoff_t end_pgoff)
3161 struct vm_area_struct *vma = vmf->vma;
3162 struct file *file = vma->vm_file;
3163 struct address_space *mapping = file->f_mapping;
3164 pgoff_t last_pgoff = start_pgoff;
3166 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3167 struct page *head, *page;
3168 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3172 head = first_map_page(mapping, &xas, end_pgoff);
3176 if (filemap_map_pmd(vmf, head)) {
3177 ret = VM_FAULT_NOPAGE;
3181 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3182 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3184 page = find_subpage(head, xas.xa_index);
3185 if (PageHWPoison(page))
3191 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3192 vmf->pte += xas.xa_index - last_pgoff;
3193 last_pgoff = xas.xa_index;
3195 if (!pte_none(*vmf->pte))
3198 /* We're about to handle the fault */
3199 if (vmf->address == addr)
3200 ret = VM_FAULT_NOPAGE;
3202 do_set_pte(vmf, page, addr);
3203 /* no need to invalidate: a not-present page won't be cached */
3204 update_mmu_cache(vma, addr, vmf->pte);
3210 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3211 pte_unmap_unlock(vmf->pte, vmf->ptl);
3214 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3217 EXPORT_SYMBOL(filemap_map_pages);
3219 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3221 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3222 struct page *page = vmf->page;
3223 vm_fault_t ret = VM_FAULT_LOCKED;
3225 sb_start_pagefault(mapping->host->i_sb);
3226 file_update_time(vmf->vma->vm_file);
3228 if (page->mapping != mapping) {
3230 ret = VM_FAULT_NOPAGE;
3234 * We mark the page dirty already here so that when freeze is in
3235 * progress, we are guaranteed that writeback during freezing will
3236 * see the dirty page and writeprotect it again.
3238 set_page_dirty(page);
3239 wait_for_stable_page(page);
3241 sb_end_pagefault(mapping->host->i_sb);
3245 const struct vm_operations_struct generic_file_vm_ops = {
3246 .fault = filemap_fault,
3247 .map_pages = filemap_map_pages,
3248 .page_mkwrite = filemap_page_mkwrite,
3251 /* This is used for a general mmap of a disk file */
3253 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3255 struct address_space *mapping = file->f_mapping;
3257 if (!mapping->a_ops->readpage)
3259 file_accessed(file);
3260 vma->vm_ops = &generic_file_vm_ops;
3265 * This is for filesystems which do not implement ->writepage.
3267 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3269 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3271 return generic_file_mmap(file, vma);
3274 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3276 return VM_FAULT_SIGBUS;
3278 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3282 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3286 #endif /* CONFIG_MMU */
3288 EXPORT_SYMBOL(filemap_page_mkwrite);
3289 EXPORT_SYMBOL(generic_file_mmap);
3290 EXPORT_SYMBOL(generic_file_readonly_mmap);
3292 static struct page *wait_on_page_read(struct page *page)
3294 if (!IS_ERR(page)) {
3295 wait_on_page_locked(page);
3296 if (!PageUptodate(page)) {
3298 page = ERR_PTR(-EIO);
3304 static struct page *do_read_cache_page(struct address_space *mapping,
3306 int (*filler)(void *, struct page *),
3313 page = find_get_page(mapping, index);
3315 page = __page_cache_alloc(gfp);
3317 return ERR_PTR(-ENOMEM);
3318 err = add_to_page_cache_lru(page, mapping, index, gfp);
3319 if (unlikely(err)) {
3323 /* Presumably ENOMEM for xarray node */
3324 return ERR_PTR(err);
3329 err = filler(data, page);
3331 err = mapping->a_ops->readpage(data, page);
3335 return ERR_PTR(err);
3338 page = wait_on_page_read(page);
3343 if (PageUptodate(page))
3347 * Page is not up to date and may be locked due to one of the following
3348 * case a: Page is being filled and the page lock is held
3349 * case b: Read/write error clearing the page uptodate status
3350 * case c: Truncation in progress (page locked)
3351 * case d: Reclaim in progress
3353 * Case a, the page will be up to date when the page is unlocked.
3354 * There is no need to serialise on the page lock here as the page
3355 * is pinned so the lock gives no additional protection. Even if the
3356 * page is truncated, the data is still valid if PageUptodate as
3357 * it's a race vs truncate race.
3358 * Case b, the page will not be up to date
3359 * Case c, the page may be truncated but in itself, the data may still
3360 * be valid after IO completes as it's a read vs truncate race. The
3361 * operation must restart if the page is not uptodate on unlock but
3362 * otherwise serialising on page lock to stabilise the mapping gives
3363 * no additional guarantees to the caller as the page lock is
3364 * released before return.
3365 * Case d, similar to truncation. If reclaim holds the page lock, it
3366 * will be a race with remove_mapping that determines if the mapping
3367 * is valid on unlock but otherwise the data is valid and there is
3368 * no need to serialise with page lock.
3370 * As the page lock gives no additional guarantee, we optimistically
3371 * wait on the page to be unlocked and check if it's up to date and
3372 * use the page if it is. Otherwise, the page lock is required to
3373 * distinguish between the different cases. The motivation is that we
3374 * avoid spurious serialisations and wakeups when multiple processes
3375 * wait on the same page for IO to complete.
3377 wait_on_page_locked(page);
3378 if (PageUptodate(page))
3381 /* Distinguish between all the cases under the safety of the lock */
3384 /* Case c or d, restart the operation */
3385 if (!page->mapping) {
3391 /* Someone else locked and filled the page in a very small window */
3392 if (PageUptodate(page)) {
3398 * A previous I/O error may have been due to temporary
3400 * Clear page error before actual read, PG_error will be
3401 * set again if read page fails.
3403 ClearPageError(page);
3407 mark_page_accessed(page);
3412 * read_cache_page - read into page cache, fill it if needed
3413 * @mapping: the page's address_space
3414 * @index: the page index
3415 * @filler: function to perform the read
3416 * @data: first arg to filler(data, page) function, often left as NULL
3418 * Read into the page cache. If a page already exists, and PageUptodate() is
3419 * not set, try to fill the page and wait for it to become unlocked.
3421 * If the page does not get brought uptodate, return -EIO.
3423 * Return: up to date page on success, ERR_PTR() on failure.
3425 struct page *read_cache_page(struct address_space *mapping,
3427 int (*filler)(void *, struct page *),
3430 return do_read_cache_page(mapping, index, filler, data,
3431 mapping_gfp_mask(mapping));
3433 EXPORT_SYMBOL(read_cache_page);
3436 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3437 * @mapping: the page's address_space
3438 * @index: the page index
3439 * @gfp: the page allocator flags to use if allocating
3441 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3442 * any new page allocations done using the specified allocation flags.
3444 * If the page does not get brought uptodate, return -EIO.
3446 * Return: up to date page on success, ERR_PTR() on failure.
3448 struct page *read_cache_page_gfp(struct address_space *mapping,
3452 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3454 EXPORT_SYMBOL(read_cache_page_gfp);
3456 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3457 loff_t pos, unsigned len, unsigned flags,
3458 struct page **pagep, void **fsdata)
3460 const struct address_space_operations *aops = mapping->a_ops;
3462 return aops->write_begin(file, mapping, pos, len, flags,
3465 EXPORT_SYMBOL(pagecache_write_begin);
3467 int pagecache_write_end(struct file *file, struct address_space *mapping,
3468 loff_t pos, unsigned len, unsigned copied,
3469 struct page *page, void *fsdata)
3471 const struct address_space_operations *aops = mapping->a_ops;
3473 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3475 EXPORT_SYMBOL(pagecache_write_end);
3478 * Warn about a page cache invalidation failure during a direct I/O write.
3480 void dio_warn_stale_pagecache(struct file *filp)
3482 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3486 errseq_set(&filp->f_mapping->wb_err, -EIO);
3487 if (__ratelimit(&_rs)) {
3488 path = file_path(filp, pathname, sizeof(pathname));
3491 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3492 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3498 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3500 struct file *file = iocb->ki_filp;
3501 struct address_space *mapping = file->f_mapping;
3502 struct inode *inode = mapping->host;
3503 loff_t pos = iocb->ki_pos;
3508 write_len = iov_iter_count(from);
3509 end = (pos + write_len - 1) >> PAGE_SHIFT;
3511 if (iocb->ki_flags & IOCB_NOWAIT) {
3512 /* If there are pages to writeback, return */
3513 if (filemap_range_has_page(file->f_mapping, pos,
3514 pos + write_len - 1))
3517 written = filemap_write_and_wait_range(mapping, pos,
3518 pos + write_len - 1);
3524 * After a write we want buffered reads to be sure to go to disk to get
3525 * the new data. We invalidate clean cached page from the region we're
3526 * about to write. We do this *before* the write so that we can return
3527 * without clobbering -EIOCBQUEUED from ->direct_IO().
3529 written = invalidate_inode_pages2_range(mapping,
3530 pos >> PAGE_SHIFT, end);
3532 * If a page can not be invalidated, return 0 to fall back
3533 * to buffered write.
3536 if (written == -EBUSY)
3541 written = mapping->a_ops->direct_IO(iocb, from);
3544 * Finally, try again to invalidate clean pages which might have been
3545 * cached by non-direct readahead, or faulted in by get_user_pages()
3546 * if the source of the write was an mmap'ed region of the file
3547 * we're writing. Either one is a pretty crazy thing to do,
3548 * so we don't support it 100%. If this invalidation
3549 * fails, tough, the write still worked...
3551 * Most of the time we do not need this since dio_complete() will do
3552 * the invalidation for us. However there are some file systems that
3553 * do not end up with dio_complete() being called, so let's not break
3554 * them by removing it completely.
3556 * Noticeable example is a blkdev_direct_IO().
3558 * Skip invalidation for async writes or if mapping has no pages.
3560 if (written > 0 && mapping->nrpages &&
3561 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3562 dio_warn_stale_pagecache(file);
3566 write_len -= written;
3567 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3568 i_size_write(inode, pos);
3569 mark_inode_dirty(inode);
3573 if (written != -EIOCBQUEUED)
3574 iov_iter_revert(from, write_len - iov_iter_count(from));
3578 EXPORT_SYMBOL(generic_file_direct_write);
3581 * Find or create a page at the given pagecache position. Return the locked
3582 * page. This function is specifically for buffered writes.
3584 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3585 pgoff_t index, unsigned flags)
3588 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3590 if (flags & AOP_FLAG_NOFS)
3591 fgp_flags |= FGP_NOFS;
3593 page = pagecache_get_page(mapping, index, fgp_flags,
3594 mapping_gfp_mask(mapping));
3596 wait_for_stable_page(page);
3600 EXPORT_SYMBOL(grab_cache_page_write_begin);
3602 ssize_t generic_perform_write(struct file *file,
3603 struct iov_iter *i, loff_t pos)
3605 struct address_space *mapping = file->f_mapping;
3606 const struct address_space_operations *a_ops = mapping->a_ops;
3608 ssize_t written = 0;
3609 unsigned int flags = 0;
3613 unsigned long offset; /* Offset into pagecache page */
3614 unsigned long bytes; /* Bytes to write to page */
3615 size_t copied; /* Bytes copied from user */
3618 offset = (pos & (PAGE_SIZE - 1));
3619 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3624 * Bring in the user page that we will copy from _first_.
3625 * Otherwise there's a nasty deadlock on copying from the
3626 * same page as we're writing to, without it being marked
3629 * Not only is this an optimisation, but it is also required
3630 * to check that the address is actually valid, when atomic
3631 * usercopies are used, below.
3633 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3638 if (fatal_signal_pending(current)) {
3643 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3645 if (unlikely(status < 0))
3648 if (mapping_writably_mapped(mapping))
3649 flush_dcache_page(page);
3651 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3652 flush_dcache_page(page);
3654 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3656 if (unlikely(status < 0))
3662 iov_iter_advance(i, copied);
3663 if (unlikely(copied == 0)) {
3665 * If we were unable to copy any data at all, we must
3666 * fall back to a single segment length write.
3668 * If we didn't fallback here, we could livelock
3669 * because not all segments in the iov can be copied at
3670 * once without a pagefault.
3672 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3673 iov_iter_single_seg_count(i));
3679 balance_dirty_pages_ratelimited(mapping);
3680 } while (iov_iter_count(i));
3682 return written ? written : status;
3684 EXPORT_SYMBOL(generic_perform_write);
3687 * __generic_file_write_iter - write data to a file
3688 * @iocb: IO state structure (file, offset, etc.)
3689 * @from: iov_iter with data to write
3691 * This function does all the work needed for actually writing data to a
3692 * file. It does all basic checks, removes SUID from the file, updates
3693 * modification times and calls proper subroutines depending on whether we
3694 * do direct IO or a standard buffered write.
3696 * It expects i_mutex to be grabbed unless we work on a block device or similar
3697 * object which does not need locking at all.
3699 * This function does *not* take care of syncing data in case of O_SYNC write.
3700 * A caller has to handle it. This is mainly due to the fact that we want to
3701 * avoid syncing under i_mutex.
3704 * * number of bytes written, even for truncated writes
3705 * * negative error code if no data has been written at all
3707 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3709 struct file *file = iocb->ki_filp;
3710 struct address_space * mapping = file->f_mapping;
3711 struct inode *inode = mapping->host;
3712 ssize_t written = 0;
3716 /* We can write back this queue in page reclaim */
3717 current->backing_dev_info = inode_to_bdi(inode);
3718 err = file_remove_privs(file);
3722 err = file_update_time(file);
3726 if (iocb->ki_flags & IOCB_DIRECT) {
3727 loff_t pos, endbyte;
3729 written = generic_file_direct_write(iocb, from);
3731 * If the write stopped short of completing, fall back to
3732 * buffered writes. Some filesystems do this for writes to
3733 * holes, for example. For DAX files, a buffered write will
3734 * not succeed (even if it did, DAX does not handle dirty
3735 * page-cache pages correctly).
3737 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3740 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3742 * If generic_perform_write() returned a synchronous error
3743 * then we want to return the number of bytes which were
3744 * direct-written, or the error code if that was zero. Note
3745 * that this differs from normal direct-io semantics, which
3746 * will return -EFOO even if some bytes were written.
3748 if (unlikely(status < 0)) {
3753 * We need to ensure that the page cache pages are written to
3754 * disk and invalidated to preserve the expected O_DIRECT
3757 endbyte = pos + status - 1;
3758 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3760 iocb->ki_pos = endbyte + 1;
3762 invalidate_mapping_pages(mapping,
3764 endbyte >> PAGE_SHIFT);
3767 * We don't know how much we wrote, so just return
3768 * the number of bytes which were direct-written
3772 written = generic_perform_write(file, from, iocb->ki_pos);
3773 if (likely(written > 0))
3774 iocb->ki_pos += written;
3777 current->backing_dev_info = NULL;
3778 return written ? written : err;
3780 EXPORT_SYMBOL(__generic_file_write_iter);
3783 * generic_file_write_iter - write data to a file
3784 * @iocb: IO state structure
3785 * @from: iov_iter with data to write
3787 * This is a wrapper around __generic_file_write_iter() to be used by most
3788 * filesystems. It takes care of syncing the file in case of O_SYNC file
3789 * and acquires i_mutex as needed.
3791 * * negative error code if no data has been written at all of
3792 * vfs_fsync_range() failed for a synchronous write
3793 * * number of bytes written, even for truncated writes
3795 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3797 struct file *file = iocb->ki_filp;
3798 struct inode *inode = file->f_mapping->host;
3802 ret = generic_write_checks(iocb, from);
3804 ret = __generic_file_write_iter(iocb, from);
3805 inode_unlock(inode);
3808 ret = generic_write_sync(iocb, ret);
3811 EXPORT_SYMBOL(generic_file_write_iter);
3814 * try_to_release_page() - release old fs-specific metadata on a page
3816 * @page: the page which the kernel is trying to free
3817 * @gfp_mask: memory allocation flags (and I/O mode)
3819 * The address_space is to try to release any data against the page
3820 * (presumably at page->private).
3822 * This may also be called if PG_fscache is set on a page, indicating that the
3823 * page is known to the local caching routines.
3825 * The @gfp_mask argument specifies whether I/O may be performed to release
3826 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3828 * Return: %1 if the release was successful, otherwise return zero.
3830 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3832 struct address_space * const mapping = page->mapping;
3834 BUG_ON(!PageLocked(page));
3835 if (PageWriteback(page))
3838 if (mapping && mapping->a_ops->releasepage)
3839 return mapping->a_ops->releasepage(page, gfp_mask);
3840 return try_to_free_buffers(page);
3843 EXPORT_SYMBOL(try_to_release_page);