1 // SPDX-License-Identifier: GPL-2.0-only
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/pgtable.h>
14 #include <linux/random.h>
16 #include <asm/cacheflush.h>
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
26 KASLR_DISABLED_CMDLINE,
27 KASLR_DISABLED_NO_SEED,
28 KASLR_DISABLED_FDT_REMAP,
31 static enum kaslr_status __initdata kaslr_status;
32 u64 __ro_after_init module_alloc_base;
33 u16 __initdata memstart_offset_seed;
35 static __init u64 get_kaslr_seed(void *fdt)
41 node = fdt_path_offset(fdt, "/chosen");
45 prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
46 if (!prop || len != sizeof(u64))
49 ret = fdt64_to_cpu(*prop);
54 struct arm64_ftr_override kaslr_feature_override __initdata;
57 * This routine will be executed with the kernel mapped at its default virtual
58 * address, and if it returns successfully, the kernel will be remapped, and
59 * start_kernel() will be executed from a randomized virtual offset. The
60 * relocation will result in all absolute references (e.g., static variables
61 * containing function pointers) to be reinitialized, and zero-initialized
62 * .bss variables will be reset to 0.
64 u64 __init kaslr_early_init(void)
67 u64 seed, offset, mask, module_range;
71 * Set a reasonable default for module_alloc_base in case
72 * we end up running with module randomization disabled.
74 module_alloc_base = (u64)_etext - MODULES_VSIZE;
75 __flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
78 * Try to map the FDT early. If this fails, we simply bail,
79 * and proceed with KASLR disabled. We will make another
80 * attempt at mapping the FDT in setup_machine()
82 fdt = get_early_fdt_ptr();
84 kaslr_status = KASLR_DISABLED_FDT_REMAP;
89 * Retrieve (and wipe) the seed from the FDT
91 seed = get_kaslr_seed(fdt);
94 * Check if 'nokaslr' appears on the command line, and
95 * return 0 if that is the case.
97 if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) {
98 kaslr_status = KASLR_DISABLED_CMDLINE;
103 * Mix in any entropy obtainable architecturally if enabled
107 if (arch_get_random_seed_long_early(&raw))
111 kaslr_status = KASLR_DISABLED_NO_SEED;
116 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
117 * kernel image offset from the seed. Let's place the kernel in the
118 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
119 * the lower and upper quarters to avoid colliding with other
121 * Even if we could randomize at page granularity for 16k and 64k pages,
122 * let's always round to 2 MB so we don't interfere with the ability to
123 * map using contiguous PTEs
125 mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
126 offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
128 /* use the top 16 bits to randomize the linear region */
129 memstart_offset_seed = seed >> 48;
131 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
132 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
134 * KASAN does not expect the module region to intersect the
135 * vmalloc region, since shadow memory is allocated for each
136 * module at load time, whereas the vmalloc region is shadowed
137 * by KASAN zero pages. So keep modules out of the vmalloc
138 * region if KASAN is enabled, and put the kernel well within
139 * 4 GB of the module region.
141 return offset % SZ_2G;
143 if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
145 * Randomize the module region over a 2 GB window covering the
146 * kernel. This reduces the risk of modules leaking information
147 * about the address of the kernel itself, but results in
148 * branches between modules and the core kernel that are
149 * resolved via PLTs. (Branches between modules will be
150 * resolved normally.)
152 module_range = SZ_2G - (u64)(_end - _stext);
153 module_alloc_base = max((u64)_end + offset - SZ_2G,
157 * Randomize the module region by setting module_alloc_base to
158 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
159 * _stext) . This guarantees that the resulting region still
160 * covers [_stext, _etext], and that all relative branches can
161 * be resolved without veneers.
163 module_range = MODULES_VSIZE - (u64)(_etext - _stext);
164 module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
167 /* use the lower 21 bits to randomize the base of the module region */
168 module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
169 module_alloc_base &= PAGE_MASK;
171 __flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
172 __flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
177 static int __init kaslr_init(void)
179 switch (kaslr_status) {
181 pr_info("KASLR enabled\n");
183 case KASLR_DISABLED_CMDLINE:
184 pr_info("KASLR disabled on command line\n");
186 case KASLR_DISABLED_NO_SEED:
187 pr_warn("KASLR disabled due to lack of seed\n");
189 case KASLR_DISABLED_FDT_REMAP:
190 pr_warn("KASLR disabled due to FDT remapping failure\n");
196 core_initcall(kaslr_init)