1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 unsigned int journal_inum);
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 * page lock -> i_data_sem (rw)
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
115 * transaction start -> page lock(s) -> i_data_sem (rw)
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
130 #define IS_EXT2_SB(sb) (0)
134 static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
150 * buffer's verified bit is no longer valid after reading from
151 * disk again due to write out error, clear it to make sure we
152 * recheck the buffer contents.
154 clear_buffer_verified(bh);
156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
158 submit_bh(REQ_OP_READ, op_flags, bh);
161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
164 BUG_ON(!buffer_locked(bh));
166 if (ext4_buffer_uptodate(bh)) {
170 __ext4_read_bh(bh, op_flags, end_io);
173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
175 BUG_ON(!buffer_locked(bh));
177 if (ext4_buffer_uptodate(bh)) {
182 __ext4_read_bh(bh, op_flags, end_io);
185 if (buffer_uptodate(bh))
190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
192 if (trylock_buffer(bh)) {
194 return ext4_read_bh(bh, op_flags, NULL);
195 ext4_read_bh_nowait(bh, op_flags, NULL);
200 if (buffer_uptodate(bh))
208 * This works like __bread_gfp() except it uses ERR_PTR for error
209 * returns. Currently with sb_bread it's impossible to distinguish
210 * between ENOMEM and EIO situations (since both result in a NULL
213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 sector_t block, int op_flags,
217 struct buffer_head *bh;
220 bh = sb_getblk_gfp(sb, block, gfp);
222 return ERR_PTR(-ENOMEM);
223 if (ext4_buffer_uptodate(bh))
226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
243 return __ext4_sb_bread_gfp(sb, block, 0, 0);
246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
251 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
256 static int ext4_verify_csum_type(struct super_block *sb,
257 struct ext4_super_block *es)
259 if (!ext4_has_feature_metadata_csum(sb))
262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
265 static __le32 ext4_superblock_csum(struct super_block *sb,
266 struct ext4_super_block *es)
268 struct ext4_sb_info *sbi = EXT4_SB(sb);
269 int offset = offsetof(struct ext4_super_block, s_checksum);
272 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
274 return cpu_to_le32(csum);
277 static int ext4_superblock_csum_verify(struct super_block *sb,
278 struct ext4_super_block *es)
280 if (!ext4_has_metadata_csum(sb))
283 return es->s_checksum == ext4_superblock_csum(sb, es);
286 void ext4_superblock_csum_set(struct super_block *sb)
288 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
290 if (!ext4_has_metadata_csum(sb))
293 es->s_checksum = ext4_superblock_csum(sb, es);
296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 struct ext4_group_desc *bg)
299 return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 struct ext4_group_desc *bg)
307 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
312 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 struct ext4_group_desc *bg)
315 return le32_to_cpu(bg->bg_inode_table_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
320 __u32 ext4_free_group_clusters(struct super_block *sb,
321 struct ext4_group_desc *bg)
323 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
328 __u32 ext4_free_inodes_count(struct super_block *sb,
329 struct ext4_group_desc *bg)
331 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
336 __u32 ext4_used_dirs_count(struct super_block *sb,
337 struct ext4_group_desc *bg)
339 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
344 __u32 ext4_itable_unused_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
347 return le16_to_cpu(bg->bg_itable_unused_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
352 void ext4_block_bitmap_set(struct super_block *sb,
353 struct ext4_group_desc *bg, ext4_fsblk_t blk)
355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
360 void ext4_inode_bitmap_set(struct super_block *sb,
361 struct ext4_group_desc *bg, ext4_fsblk_t blk)
363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
368 void ext4_inode_table_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
376 void ext4_free_group_clusters_set(struct super_block *sb,
377 struct ext4_group_desc *bg, __u32 count)
379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
384 void ext4_free_inodes_set(struct super_block *sb,
385 struct ext4_group_desc *bg, __u32 count)
387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
392 void ext4_used_dirs_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
400 void ext4_itable_unused_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
410 now = clamp_val(now, 0, (1ull << 40) - 1);
412 *lo = cpu_to_le32(lower_32_bits(now));
413 *hi = upper_32_bits(now);
416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
420 #define ext4_update_tstamp(es, tstamp) \
421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 ktime_get_real_seconds())
423 #define ext4_get_tstamp(es, tstamp) \
424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
427 * The del_gendisk() function uninitializes the disk-specific data
428 * structures, including the bdi structure, without telling anyone
429 * else. Once this happens, any attempt to call mark_buffer_dirty()
430 * (for example, by ext4_commit_super), will cause a kernel OOPS.
431 * This is a kludge to prevent these oops until we can put in a proper
432 * hook in del_gendisk() to inform the VFS and file system layers.
434 static int block_device_ejected(struct super_block *sb)
436 struct inode *bd_inode = sb->s_bdev->bd_inode;
437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
439 return bdi->dev == NULL;
442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
444 struct super_block *sb = journal->j_private;
445 struct ext4_sb_info *sbi = EXT4_SB(sb);
446 int error = is_journal_aborted(journal);
447 struct ext4_journal_cb_entry *jce;
449 BUG_ON(txn->t_state == T_FINISHED);
451 ext4_process_freed_data(sb, txn->t_tid);
453 spin_lock(&sbi->s_md_lock);
454 while (!list_empty(&txn->t_private_list)) {
455 jce = list_entry(txn->t_private_list.next,
456 struct ext4_journal_cb_entry, jce_list);
457 list_del_init(&jce->jce_list);
458 spin_unlock(&sbi->s_md_lock);
459 jce->jce_func(sb, jce, error);
460 spin_lock(&sbi->s_md_lock);
462 spin_unlock(&sbi->s_md_lock);
466 * This writepage callback for write_cache_pages()
467 * takes care of a few cases after page cleaning.
469 * write_cache_pages() already checks for dirty pages
470 * and calls clear_page_dirty_for_io(), which we want,
471 * to write protect the pages.
473 * However, we may have to redirty a page (see below.)
475 static int ext4_journalled_writepage_callback(struct page *page,
476 struct writeback_control *wbc,
479 transaction_t *transaction = (transaction_t *) data;
480 struct buffer_head *bh, *head;
481 struct journal_head *jh;
483 bh = head = page_buffers(page);
486 * We have to redirty a page in these cases:
487 * 1) If buffer is dirty, it means the page was dirty because it
488 * contains a buffer that needs checkpointing. So the dirty bit
489 * needs to be preserved so that checkpointing writes the buffer
491 * 2) If buffer is not part of the committing transaction
492 * (we may have just accidentally come across this buffer because
493 * inode range tracking is not exact) or if the currently running
494 * transaction already contains this buffer as well, dirty bit
495 * needs to be preserved so that the buffer gets writeprotected
496 * properly on running transaction's commit.
499 if (buffer_dirty(bh) ||
500 (jh && (jh->b_transaction != transaction ||
501 jh->b_next_transaction))) {
502 redirty_page_for_writepage(wbc, page);
505 } while ((bh = bh->b_this_page) != head);
508 return AOP_WRITEPAGE_ACTIVATE;
511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 struct writeback_control wbc = {
515 .sync_mode = WB_SYNC_ALL,
516 .nr_to_write = LONG_MAX,
517 .range_start = jinode->i_dirty_start,
518 .range_end = jinode->i_dirty_end,
521 return write_cache_pages(mapping, &wbc,
522 ext4_journalled_writepage_callback,
523 jinode->i_transaction);
526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
530 if (ext4_should_journal_data(jinode->i_vfs_inode))
531 ret = ext4_journalled_submit_inode_data_buffers(jinode);
533 ret = jbd2_journal_submit_inode_data_buffers(jinode);
538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
542 if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 ret = jbd2_journal_finish_inode_data_buffers(jinode);
548 static bool system_going_down(void)
550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 || system_state == SYSTEM_RESTART;
554 struct ext4_err_translation {
559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
561 static struct ext4_err_translation err_translation[] = {
562 EXT4_ERR_TRANSLATE(EIO),
563 EXT4_ERR_TRANSLATE(ENOMEM),
564 EXT4_ERR_TRANSLATE(EFSBADCRC),
565 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 EXT4_ERR_TRANSLATE(ENOSPC),
567 EXT4_ERR_TRANSLATE(ENOKEY),
568 EXT4_ERR_TRANSLATE(EROFS),
569 EXT4_ERR_TRANSLATE(EFBIG),
570 EXT4_ERR_TRANSLATE(EEXIST),
571 EXT4_ERR_TRANSLATE(ERANGE),
572 EXT4_ERR_TRANSLATE(EOVERFLOW),
573 EXT4_ERR_TRANSLATE(EBUSY),
574 EXT4_ERR_TRANSLATE(ENOTDIR),
575 EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 EXT4_ERR_TRANSLATE(EFAULT),
580 static int ext4_errno_to_code(int errno)
584 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 if (err_translation[i].errno == errno)
586 return err_translation[i].code;
587 return EXT4_ERR_UNKNOWN;
590 static void save_error_info(struct super_block *sb, int error,
591 __u32 ino, __u64 block,
592 const char *func, unsigned int line)
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
596 /* We default to EFSCORRUPTED error... */
598 error = EFSCORRUPTED;
600 spin_lock(&sbi->s_error_lock);
601 sbi->s_add_error_count++;
602 sbi->s_last_error_code = error;
603 sbi->s_last_error_line = line;
604 sbi->s_last_error_ino = ino;
605 sbi->s_last_error_block = block;
606 sbi->s_last_error_func = func;
607 sbi->s_last_error_time = ktime_get_real_seconds();
608 if (!sbi->s_first_error_time) {
609 sbi->s_first_error_code = error;
610 sbi->s_first_error_line = line;
611 sbi->s_first_error_ino = ino;
612 sbi->s_first_error_block = block;
613 sbi->s_first_error_func = func;
614 sbi->s_first_error_time = sbi->s_last_error_time;
616 spin_unlock(&sbi->s_error_lock);
619 /* Deal with the reporting of failure conditions on a filesystem such as
620 * inconsistencies detected or read IO failures.
622 * On ext2, we can store the error state of the filesystem in the
623 * superblock. That is not possible on ext4, because we may have other
624 * write ordering constraints on the superblock which prevent us from
625 * writing it out straight away; and given that the journal is about to
626 * be aborted, we can't rely on the current, or future, transactions to
627 * write out the superblock safely.
629 * We'll just use the jbd2_journal_abort() error code to record an error in
630 * the journal instead. On recovery, the journal will complain about
631 * that error until we've noted it down and cleared it.
633 * If force_ro is set, we unconditionally force the filesystem into an
634 * ABORT|READONLY state, unless the error response on the fs has been set to
635 * panic in which case we take the easy way out and panic immediately. This is
636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637 * at a critical moment in log management.
639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 __u32 ino, __u64 block,
641 const char *func, unsigned int line)
643 journal_t *journal = EXT4_SB(sb)->s_journal;
644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 if (test_opt(sb, WARN_ON_ERROR))
650 if (!continue_fs && !sb_rdonly(sb)) {
651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
653 jbd2_journal_abort(journal, -EIO);
656 if (!bdev_read_only(sb->s_bdev)) {
657 save_error_info(sb, error, ino, block, func, line);
659 * In case the fs should keep running, we need to writeout
660 * superblock through the journal. Due to lock ordering
661 * constraints, it may not be safe to do it right here so we
662 * defer superblock flushing to a workqueue.
665 schedule_work(&EXT4_SB(sb)->s_error_work);
667 ext4_commit_super(sb);
671 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
672 * could panic during 'reboot -f' as the underlying device got already
675 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
676 panic("EXT4-fs (device %s): panic forced after error\n",
680 if (sb_rdonly(sb) || continue_fs)
683 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
685 * Make sure updated value of ->s_mount_flags will be visible before
689 sb->s_flags |= SB_RDONLY;
692 static void flush_stashed_error_work(struct work_struct *work)
694 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
696 journal_t *journal = sbi->s_journal;
700 * If the journal is still running, we have to write out superblock
701 * through the journal to avoid collisions of other journalled sb
704 * We use directly jbd2 functions here to avoid recursing back into
705 * ext4 error handling code during handling of previous errors.
707 if (!sb_rdonly(sbi->s_sb) && journal) {
708 handle = jbd2_journal_start(journal, 1);
711 if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) {
712 jbd2_journal_stop(handle);
715 ext4_update_super(sbi->s_sb);
716 if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) {
717 jbd2_journal_stop(handle);
720 jbd2_journal_stop(handle);
725 * Write through journal failed. Write sb directly to get error info
726 * out and hope for the best.
728 ext4_commit_super(sbi->s_sb);
731 #define ext4_error_ratelimit(sb) \
732 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
735 void __ext4_error(struct super_block *sb, const char *function,
736 unsigned int line, bool force_ro, int error, __u64 block,
737 const char *fmt, ...)
739 struct va_format vaf;
742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745 trace_ext4_error(sb, function, line);
746 if (ext4_error_ratelimit(sb)) {
751 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
752 sb->s_id, function, line, current->comm, &vaf);
755 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
758 void __ext4_error_inode(struct inode *inode, const char *function,
759 unsigned int line, ext4_fsblk_t block, int error,
760 const char *fmt, ...)
763 struct va_format vaf;
765 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
768 trace_ext4_error(inode->i_sb, function, line);
769 if (ext4_error_ratelimit(inode->i_sb)) {
774 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
775 "inode #%lu: block %llu: comm %s: %pV\n",
776 inode->i_sb->s_id, function, line, inode->i_ino,
777 block, current->comm, &vaf);
779 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
780 "inode #%lu: comm %s: %pV\n",
781 inode->i_sb->s_id, function, line, inode->i_ino,
782 current->comm, &vaf);
785 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
789 void __ext4_error_file(struct file *file, const char *function,
790 unsigned int line, ext4_fsblk_t block,
791 const char *fmt, ...)
794 struct va_format vaf;
795 struct inode *inode = file_inode(file);
796 char pathname[80], *path;
798 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
801 trace_ext4_error(inode->i_sb, function, line);
802 if (ext4_error_ratelimit(inode->i_sb)) {
803 path = file_path(file, pathname, sizeof(pathname));
811 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
812 "block %llu: comm %s: path %s: %pV\n",
813 inode->i_sb->s_id, function, line, inode->i_ino,
814 block, current->comm, path, &vaf);
817 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
818 "comm %s: path %s: %pV\n",
819 inode->i_sb->s_id, function, line, inode->i_ino,
820 current->comm, path, &vaf);
823 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
827 const char *ext4_decode_error(struct super_block *sb, int errno,
834 errstr = "Corrupt filesystem";
837 errstr = "Filesystem failed CRC";
840 errstr = "IO failure";
843 errstr = "Out of memory";
846 if (!sb || (EXT4_SB(sb)->s_journal &&
847 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
848 errstr = "Journal has aborted";
850 errstr = "Readonly filesystem";
853 /* If the caller passed in an extra buffer for unknown
854 * errors, textualise them now. Else we just return
857 /* Check for truncated error codes... */
858 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
867 /* __ext4_std_error decodes expected errors from journaling functions
868 * automatically and invokes the appropriate error response. */
870 void __ext4_std_error(struct super_block *sb, const char *function,
871 unsigned int line, int errno)
876 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
879 /* Special case: if the error is EROFS, and we're not already
880 * inside a transaction, then there's really no point in logging
882 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
885 if (ext4_error_ratelimit(sb)) {
886 errstr = ext4_decode_error(sb, errno, nbuf);
887 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
888 sb->s_id, function, line, errstr);
891 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
894 void __ext4_msg(struct super_block *sb,
895 const char *prefix, const char *fmt, ...)
897 struct va_format vaf;
900 atomic_inc(&EXT4_SB(sb)->s_msg_count);
901 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
907 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
911 static int ext4_warning_ratelimit(struct super_block *sb)
913 atomic_inc(&EXT4_SB(sb)->s_warning_count);
914 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
918 void __ext4_warning(struct super_block *sb, const char *function,
919 unsigned int line, const char *fmt, ...)
921 struct va_format vaf;
924 if (!ext4_warning_ratelimit(sb))
930 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
931 sb->s_id, function, line, &vaf);
935 void __ext4_warning_inode(const struct inode *inode, const char *function,
936 unsigned int line, const char *fmt, ...)
938 struct va_format vaf;
941 if (!ext4_warning_ratelimit(inode->i_sb))
947 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
948 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
949 function, line, inode->i_ino, current->comm, &vaf);
953 void __ext4_grp_locked_error(const char *function, unsigned int line,
954 struct super_block *sb, ext4_group_t grp,
955 unsigned long ino, ext4_fsblk_t block,
956 const char *fmt, ...)
960 struct va_format vaf;
963 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
966 trace_ext4_error(sb, function, line);
967 if (ext4_error_ratelimit(sb)) {
971 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
972 sb->s_id, function, line, grp);
974 printk(KERN_CONT "inode %lu: ", ino);
976 printk(KERN_CONT "block %llu:",
977 (unsigned long long) block);
978 printk(KERN_CONT "%pV\n", &vaf);
982 if (test_opt(sb, ERRORS_CONT)) {
983 if (test_opt(sb, WARN_ON_ERROR))
985 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
986 if (!bdev_read_only(sb->s_bdev)) {
987 save_error_info(sb, EFSCORRUPTED, ino, block, function,
989 schedule_work(&EXT4_SB(sb)->s_error_work);
993 ext4_unlock_group(sb, grp);
994 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
996 * We only get here in the ERRORS_RO case; relocking the group
997 * may be dangerous, but nothing bad will happen since the
998 * filesystem will have already been marked read/only and the
999 * journal has been aborted. We return 1 as a hint to callers
1000 * who might what to use the return value from
1001 * ext4_grp_locked_error() to distinguish between the
1002 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1003 * aggressively from the ext4 function in question, with a
1004 * more appropriate error code.
1006 ext4_lock_group(sb, grp);
1010 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1014 struct ext4_sb_info *sbi = EXT4_SB(sb);
1015 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1016 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1019 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1020 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1023 percpu_counter_sub(&sbi->s_freeclusters_counter,
1027 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1028 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1033 count = ext4_free_inodes_count(sb, gdp);
1034 percpu_counter_sub(&sbi->s_freeinodes_counter,
1040 void ext4_update_dynamic_rev(struct super_block *sb)
1042 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1044 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1048 "updating to rev %d because of new feature flag, "
1049 "running e2fsck is recommended",
1052 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1053 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1054 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1055 /* leave es->s_feature_*compat flags alone */
1056 /* es->s_uuid will be set by e2fsck if empty */
1059 * The rest of the superblock fields should be zero, and if not it
1060 * means they are likely already in use, so leave them alone. We
1061 * can leave it up to e2fsck to clean up any inconsistencies there.
1066 * Open the external journal device
1068 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1070 struct block_device *bdev;
1072 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1078 ext4_msg(sb, KERN_ERR,
1079 "failed to open journal device unknown-block(%u,%u) %ld",
1080 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1085 * Release the journal device
1087 static void ext4_blkdev_put(struct block_device *bdev)
1089 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1092 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1094 struct block_device *bdev;
1095 bdev = sbi->s_journal_bdev;
1097 ext4_blkdev_put(bdev);
1098 sbi->s_journal_bdev = NULL;
1102 static inline struct inode *orphan_list_entry(struct list_head *l)
1104 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1107 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1109 struct list_head *l;
1111 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1112 le32_to_cpu(sbi->s_es->s_last_orphan));
1114 printk(KERN_ERR "sb_info orphan list:\n");
1115 list_for_each(l, &sbi->s_orphan) {
1116 struct inode *inode = orphan_list_entry(l);
1118 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1119 inode->i_sb->s_id, inode->i_ino, inode,
1120 inode->i_mode, inode->i_nlink,
1121 NEXT_ORPHAN(inode));
1126 static int ext4_quota_off(struct super_block *sb, int type);
1128 static inline void ext4_quota_off_umount(struct super_block *sb)
1132 /* Use our quota_off function to clear inode flags etc. */
1133 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1134 ext4_quota_off(sb, type);
1138 * This is a helper function which is used in the mount/remount
1139 * codepaths (which holds s_umount) to fetch the quota file name.
1141 static inline char *get_qf_name(struct super_block *sb,
1142 struct ext4_sb_info *sbi,
1145 return rcu_dereference_protected(sbi->s_qf_names[type],
1146 lockdep_is_held(&sb->s_umount));
1149 static inline void ext4_quota_off_umount(struct super_block *sb)
1154 static void ext4_put_super(struct super_block *sb)
1156 struct ext4_sb_info *sbi = EXT4_SB(sb);
1157 struct ext4_super_block *es = sbi->s_es;
1158 struct buffer_head **group_desc;
1159 struct flex_groups **flex_groups;
1163 ext4_unregister_li_request(sb);
1164 ext4_quota_off_umount(sb);
1166 flush_work(&sbi->s_error_work);
1167 destroy_workqueue(sbi->rsv_conversion_wq);
1170 * Unregister sysfs before destroying jbd2 journal.
1171 * Since we could still access attr_journal_task attribute via sysfs
1172 * path which could have sbi->s_journal->j_task as NULL
1174 ext4_unregister_sysfs(sb);
1176 if (sbi->s_journal) {
1177 aborted = is_journal_aborted(sbi->s_journal);
1178 err = jbd2_journal_destroy(sbi->s_journal);
1179 sbi->s_journal = NULL;
1180 if ((err < 0) && !aborted) {
1181 ext4_abort(sb, -err, "Couldn't clean up the journal");
1185 ext4_es_unregister_shrinker(sbi);
1186 del_timer_sync(&sbi->s_err_report);
1187 ext4_release_system_zone(sb);
1188 ext4_mb_release(sb);
1189 ext4_ext_release(sb);
1191 if (!sb_rdonly(sb) && !aborted) {
1192 ext4_clear_feature_journal_needs_recovery(sb);
1193 es->s_state = cpu_to_le16(sbi->s_mount_state);
1196 ext4_commit_super(sb);
1199 group_desc = rcu_dereference(sbi->s_group_desc);
1200 for (i = 0; i < sbi->s_gdb_count; i++)
1201 brelse(group_desc[i]);
1203 flex_groups = rcu_dereference(sbi->s_flex_groups);
1205 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1206 kvfree(flex_groups[i]);
1207 kvfree(flex_groups);
1210 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1211 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1212 percpu_counter_destroy(&sbi->s_dirs_counter);
1213 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1214 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1215 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1217 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1218 kfree(get_qf_name(sb, sbi, i));
1221 /* Debugging code just in case the in-memory inode orphan list
1222 * isn't empty. The on-disk one can be non-empty if we've
1223 * detected an error and taken the fs readonly, but the
1224 * in-memory list had better be clean by this point. */
1225 if (!list_empty(&sbi->s_orphan))
1226 dump_orphan_list(sb, sbi);
1227 ASSERT(list_empty(&sbi->s_orphan));
1229 sync_blockdev(sb->s_bdev);
1230 invalidate_bdev(sb->s_bdev);
1231 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1233 * Invalidate the journal device's buffers. We don't want them
1234 * floating about in memory - the physical journal device may
1235 * hotswapped, and it breaks the `ro-after' testing code.
1237 sync_blockdev(sbi->s_journal_bdev);
1238 invalidate_bdev(sbi->s_journal_bdev);
1239 ext4_blkdev_remove(sbi);
1242 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1243 sbi->s_ea_inode_cache = NULL;
1245 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1246 sbi->s_ea_block_cache = NULL;
1248 ext4_stop_mmpd(sbi);
1251 sb->s_fs_info = NULL;
1253 * Now that we are completely done shutting down the
1254 * superblock, we need to actually destroy the kobject.
1256 kobject_put(&sbi->s_kobj);
1257 wait_for_completion(&sbi->s_kobj_unregister);
1258 if (sbi->s_chksum_driver)
1259 crypto_free_shash(sbi->s_chksum_driver);
1260 kfree(sbi->s_blockgroup_lock);
1261 fs_put_dax(sbi->s_daxdev);
1262 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1263 #ifdef CONFIG_UNICODE
1264 utf8_unload(sb->s_encoding);
1269 static struct kmem_cache *ext4_inode_cachep;
1272 * Called inside transaction, so use GFP_NOFS
1274 static struct inode *ext4_alloc_inode(struct super_block *sb)
1276 struct ext4_inode_info *ei;
1278 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1282 inode_set_iversion(&ei->vfs_inode, 1);
1283 spin_lock_init(&ei->i_raw_lock);
1284 INIT_LIST_HEAD(&ei->i_prealloc_list);
1285 atomic_set(&ei->i_prealloc_active, 0);
1286 spin_lock_init(&ei->i_prealloc_lock);
1287 ext4_es_init_tree(&ei->i_es_tree);
1288 rwlock_init(&ei->i_es_lock);
1289 INIT_LIST_HEAD(&ei->i_es_list);
1290 ei->i_es_all_nr = 0;
1291 ei->i_es_shk_nr = 0;
1292 ei->i_es_shrink_lblk = 0;
1293 ei->i_reserved_data_blocks = 0;
1294 spin_lock_init(&(ei->i_block_reservation_lock));
1295 ext4_init_pending_tree(&ei->i_pending_tree);
1297 ei->i_reserved_quota = 0;
1298 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1301 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1302 spin_lock_init(&ei->i_completed_io_lock);
1304 ei->i_datasync_tid = 0;
1305 atomic_set(&ei->i_unwritten, 0);
1306 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1307 ext4_fc_init_inode(&ei->vfs_inode);
1308 mutex_init(&ei->i_fc_lock);
1309 return &ei->vfs_inode;
1312 static int ext4_drop_inode(struct inode *inode)
1314 int drop = generic_drop_inode(inode);
1317 drop = fscrypt_drop_inode(inode);
1319 trace_ext4_drop_inode(inode, drop);
1323 static void ext4_free_in_core_inode(struct inode *inode)
1325 fscrypt_free_inode(inode);
1326 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1327 pr_warn("%s: inode %ld still in fc list",
1328 __func__, inode->i_ino);
1330 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1333 static void ext4_destroy_inode(struct inode *inode)
1335 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1336 ext4_msg(inode->i_sb, KERN_ERR,
1337 "Inode %lu (%p): orphan list check failed!",
1338 inode->i_ino, EXT4_I(inode));
1339 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1340 EXT4_I(inode), sizeof(struct ext4_inode_info),
1346 static void init_once(void *foo)
1348 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1350 INIT_LIST_HEAD(&ei->i_orphan);
1351 init_rwsem(&ei->xattr_sem);
1352 init_rwsem(&ei->i_data_sem);
1353 init_rwsem(&ei->i_mmap_sem);
1354 inode_init_once(&ei->vfs_inode);
1355 ext4_fc_init_inode(&ei->vfs_inode);
1358 static int __init init_inodecache(void)
1360 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1361 sizeof(struct ext4_inode_info), 0,
1362 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1364 offsetof(struct ext4_inode_info, i_data),
1365 sizeof_field(struct ext4_inode_info, i_data),
1367 if (ext4_inode_cachep == NULL)
1372 static void destroy_inodecache(void)
1375 * Make sure all delayed rcu free inodes are flushed before we
1379 kmem_cache_destroy(ext4_inode_cachep);
1382 void ext4_clear_inode(struct inode *inode)
1385 invalidate_inode_buffers(inode);
1387 ext4_discard_preallocations(inode, 0);
1388 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1390 if (EXT4_I(inode)->jinode) {
1391 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1392 EXT4_I(inode)->jinode);
1393 jbd2_free_inode(EXT4_I(inode)->jinode);
1394 EXT4_I(inode)->jinode = NULL;
1396 fscrypt_put_encryption_info(inode);
1397 fsverity_cleanup_inode(inode);
1400 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1401 u64 ino, u32 generation)
1403 struct inode *inode;
1406 * Currently we don't know the generation for parent directory, so
1407 * a generation of 0 means "accept any"
1409 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1411 return ERR_CAST(inode);
1412 if (generation && inode->i_generation != generation) {
1414 return ERR_PTR(-ESTALE);
1420 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1421 int fh_len, int fh_type)
1423 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1424 ext4_nfs_get_inode);
1427 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1428 int fh_len, int fh_type)
1430 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1431 ext4_nfs_get_inode);
1434 static int ext4_nfs_commit_metadata(struct inode *inode)
1436 struct writeback_control wbc = {
1437 .sync_mode = WB_SYNC_ALL
1440 trace_ext4_nfs_commit_metadata(inode);
1441 return ext4_write_inode(inode, &wbc);
1445 * Try to release metadata pages (indirect blocks, directories) which are
1446 * mapped via the block device. Since these pages could have journal heads
1447 * which would prevent try_to_free_buffers() from freeing them, we must use
1448 * jbd2 layer's try_to_free_buffers() function to release them.
1450 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1453 journal_t *journal = EXT4_SB(sb)->s_journal;
1455 WARN_ON(PageChecked(page));
1456 if (!page_has_buffers(page))
1459 return jbd2_journal_try_to_free_buffers(journal, page);
1461 return try_to_free_buffers(page);
1464 #ifdef CONFIG_FS_ENCRYPTION
1465 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1467 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1468 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1471 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1474 handle_t *handle = fs_data;
1475 int res, res2, credits, retries = 0;
1478 * Encrypting the root directory is not allowed because e2fsck expects
1479 * lost+found to exist and be unencrypted, and encrypting the root
1480 * directory would imply encrypting the lost+found directory as well as
1481 * the filename "lost+found" itself.
1483 if (inode->i_ino == EXT4_ROOT_INO)
1486 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1489 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1492 res = ext4_convert_inline_data(inode);
1497 * If a journal handle was specified, then the encryption context is
1498 * being set on a new inode via inheritance and is part of a larger
1499 * transaction to create the inode. Otherwise the encryption context is
1500 * being set on an existing inode in its own transaction. Only in the
1501 * latter case should the "retry on ENOSPC" logic be used.
1505 res = ext4_xattr_set_handle(handle, inode,
1506 EXT4_XATTR_INDEX_ENCRYPTION,
1507 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1510 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1511 ext4_clear_inode_state(inode,
1512 EXT4_STATE_MAY_INLINE_DATA);
1514 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1515 * S_DAX may be disabled
1517 ext4_set_inode_flags(inode, false);
1522 res = dquot_initialize(inode);
1526 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1531 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1533 return PTR_ERR(handle);
1535 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1536 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1539 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1541 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1542 * S_DAX may be disabled
1544 ext4_set_inode_flags(inode, false);
1545 res = ext4_mark_inode_dirty(handle, inode);
1547 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1549 res2 = ext4_journal_stop(handle);
1551 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1558 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1560 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1563 static bool ext4_has_stable_inodes(struct super_block *sb)
1565 return ext4_has_feature_stable_inodes(sb);
1568 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1569 int *ino_bits_ret, int *lblk_bits_ret)
1571 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1572 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1575 static const struct fscrypt_operations ext4_cryptops = {
1576 .key_prefix = "ext4:",
1577 .get_context = ext4_get_context,
1578 .set_context = ext4_set_context,
1579 .get_dummy_policy = ext4_get_dummy_policy,
1580 .empty_dir = ext4_empty_dir,
1581 .max_namelen = EXT4_NAME_LEN,
1582 .has_stable_inodes = ext4_has_stable_inodes,
1583 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1588 static const char * const quotatypes[] = INITQFNAMES;
1589 #define QTYPE2NAME(t) (quotatypes[t])
1591 static int ext4_write_dquot(struct dquot *dquot);
1592 static int ext4_acquire_dquot(struct dquot *dquot);
1593 static int ext4_release_dquot(struct dquot *dquot);
1594 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1595 static int ext4_write_info(struct super_block *sb, int type);
1596 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1597 const struct path *path);
1598 static int ext4_quota_on_mount(struct super_block *sb, int type);
1599 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1600 size_t len, loff_t off);
1601 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1602 const char *data, size_t len, loff_t off);
1603 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1604 unsigned int flags);
1605 static int ext4_enable_quotas(struct super_block *sb);
1607 static struct dquot **ext4_get_dquots(struct inode *inode)
1609 return EXT4_I(inode)->i_dquot;
1612 static const struct dquot_operations ext4_quota_operations = {
1613 .get_reserved_space = ext4_get_reserved_space,
1614 .write_dquot = ext4_write_dquot,
1615 .acquire_dquot = ext4_acquire_dquot,
1616 .release_dquot = ext4_release_dquot,
1617 .mark_dirty = ext4_mark_dquot_dirty,
1618 .write_info = ext4_write_info,
1619 .alloc_dquot = dquot_alloc,
1620 .destroy_dquot = dquot_destroy,
1621 .get_projid = ext4_get_projid,
1622 .get_inode_usage = ext4_get_inode_usage,
1623 .get_next_id = dquot_get_next_id,
1626 static const struct quotactl_ops ext4_qctl_operations = {
1627 .quota_on = ext4_quota_on,
1628 .quota_off = ext4_quota_off,
1629 .quota_sync = dquot_quota_sync,
1630 .get_state = dquot_get_state,
1631 .set_info = dquot_set_dqinfo,
1632 .get_dqblk = dquot_get_dqblk,
1633 .set_dqblk = dquot_set_dqblk,
1634 .get_nextdqblk = dquot_get_next_dqblk,
1638 static const struct super_operations ext4_sops = {
1639 .alloc_inode = ext4_alloc_inode,
1640 .free_inode = ext4_free_in_core_inode,
1641 .destroy_inode = ext4_destroy_inode,
1642 .write_inode = ext4_write_inode,
1643 .dirty_inode = ext4_dirty_inode,
1644 .drop_inode = ext4_drop_inode,
1645 .evict_inode = ext4_evict_inode,
1646 .put_super = ext4_put_super,
1647 .sync_fs = ext4_sync_fs,
1648 .freeze_fs = ext4_freeze,
1649 .unfreeze_fs = ext4_unfreeze,
1650 .statfs = ext4_statfs,
1651 .remount_fs = ext4_remount,
1652 .show_options = ext4_show_options,
1654 .quota_read = ext4_quota_read,
1655 .quota_write = ext4_quota_write,
1656 .get_dquots = ext4_get_dquots,
1658 .bdev_try_to_free_page = bdev_try_to_free_page,
1661 static const struct export_operations ext4_export_ops = {
1662 .fh_to_dentry = ext4_fh_to_dentry,
1663 .fh_to_parent = ext4_fh_to_parent,
1664 .get_parent = ext4_get_parent,
1665 .commit_metadata = ext4_nfs_commit_metadata,
1669 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1670 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1671 Opt_nouid32, Opt_debug, Opt_removed,
1672 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1673 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1674 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1675 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1676 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1677 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1679 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1680 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1681 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1682 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1683 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1684 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1685 Opt_nowarn_on_error, Opt_mblk_io_submit,
1686 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1687 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1688 Opt_inode_readahead_blks, Opt_journal_ioprio,
1689 Opt_dioread_nolock, Opt_dioread_lock,
1690 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1691 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1692 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1693 #ifdef CONFIG_EXT4_DEBUG
1694 Opt_fc_debug_max_replay, Opt_fc_debug_force
1698 static const match_table_t tokens = {
1699 {Opt_bsd_df, "bsddf"},
1700 {Opt_minix_df, "minixdf"},
1701 {Opt_grpid, "grpid"},
1702 {Opt_grpid, "bsdgroups"},
1703 {Opt_nogrpid, "nogrpid"},
1704 {Opt_nogrpid, "sysvgroups"},
1705 {Opt_resgid, "resgid=%u"},
1706 {Opt_resuid, "resuid=%u"},
1708 {Opt_err_cont, "errors=continue"},
1709 {Opt_err_panic, "errors=panic"},
1710 {Opt_err_ro, "errors=remount-ro"},
1711 {Opt_nouid32, "nouid32"},
1712 {Opt_debug, "debug"},
1713 {Opt_removed, "oldalloc"},
1714 {Opt_removed, "orlov"},
1715 {Opt_user_xattr, "user_xattr"},
1716 {Opt_nouser_xattr, "nouser_xattr"},
1718 {Opt_noacl, "noacl"},
1719 {Opt_noload, "norecovery"},
1720 {Opt_noload, "noload"},
1721 {Opt_removed, "nobh"},
1722 {Opt_removed, "bh"},
1723 {Opt_commit, "commit=%u"},
1724 {Opt_min_batch_time, "min_batch_time=%u"},
1725 {Opt_max_batch_time, "max_batch_time=%u"},
1726 {Opt_journal_dev, "journal_dev=%u"},
1727 {Opt_journal_path, "journal_path=%s"},
1728 {Opt_journal_checksum, "journal_checksum"},
1729 {Opt_nojournal_checksum, "nojournal_checksum"},
1730 {Opt_journal_async_commit, "journal_async_commit"},
1731 {Opt_abort, "abort"},
1732 {Opt_data_journal, "data=journal"},
1733 {Opt_data_ordered, "data=ordered"},
1734 {Opt_data_writeback, "data=writeback"},
1735 {Opt_data_err_abort, "data_err=abort"},
1736 {Opt_data_err_ignore, "data_err=ignore"},
1737 {Opt_offusrjquota, "usrjquota="},
1738 {Opt_usrjquota, "usrjquota=%s"},
1739 {Opt_offgrpjquota, "grpjquota="},
1740 {Opt_grpjquota, "grpjquota=%s"},
1741 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1742 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1743 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1744 {Opt_grpquota, "grpquota"},
1745 {Opt_noquota, "noquota"},
1746 {Opt_quota, "quota"},
1747 {Opt_usrquota, "usrquota"},
1748 {Opt_prjquota, "prjquota"},
1749 {Opt_barrier, "barrier=%u"},
1750 {Opt_barrier, "barrier"},
1751 {Opt_nobarrier, "nobarrier"},
1752 {Opt_i_version, "i_version"},
1754 {Opt_dax_always, "dax=always"},
1755 {Opt_dax_inode, "dax=inode"},
1756 {Opt_dax_never, "dax=never"},
1757 {Opt_stripe, "stripe=%u"},
1758 {Opt_delalloc, "delalloc"},
1759 {Opt_warn_on_error, "warn_on_error"},
1760 {Opt_nowarn_on_error, "nowarn_on_error"},
1761 {Opt_lazytime, "lazytime"},
1762 {Opt_nolazytime, "nolazytime"},
1763 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1764 {Opt_nodelalloc, "nodelalloc"},
1765 {Opt_removed, "mblk_io_submit"},
1766 {Opt_removed, "nomblk_io_submit"},
1767 {Opt_block_validity, "block_validity"},
1768 {Opt_noblock_validity, "noblock_validity"},
1769 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1770 {Opt_journal_ioprio, "journal_ioprio=%u"},
1771 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1772 {Opt_auto_da_alloc, "auto_da_alloc"},
1773 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1774 {Opt_dioread_nolock, "dioread_nolock"},
1775 {Opt_dioread_lock, "nodioread_nolock"},
1776 {Opt_dioread_lock, "dioread_lock"},
1777 {Opt_discard, "discard"},
1778 {Opt_nodiscard, "nodiscard"},
1779 {Opt_init_itable, "init_itable=%u"},
1780 {Opt_init_itable, "init_itable"},
1781 {Opt_noinit_itable, "noinit_itable"},
1782 #ifdef CONFIG_EXT4_DEBUG
1783 {Opt_fc_debug_force, "fc_debug_force"},
1784 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1786 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1787 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1788 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1789 {Opt_inlinecrypt, "inlinecrypt"},
1790 {Opt_nombcache, "nombcache"},
1791 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1792 {Opt_removed, "prefetch_block_bitmaps"},
1793 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1794 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1795 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1796 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1797 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1798 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1799 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1803 static ext4_fsblk_t get_sb_block(void **data)
1805 ext4_fsblk_t sb_block;
1806 char *options = (char *) *data;
1808 if (!options || strncmp(options, "sb=", 3) != 0)
1809 return 1; /* Default location */
1812 /* TODO: use simple_strtoll with >32bit ext4 */
1813 sb_block = simple_strtoul(options, &options, 0);
1814 if (*options && *options != ',') {
1815 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1819 if (*options == ',')
1821 *data = (void *) options;
1826 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1827 #define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1829 static const char deprecated_msg[] =
1830 "Mount option \"%s\" will be removed by %s\n"
1834 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1836 struct ext4_sb_info *sbi = EXT4_SB(sb);
1837 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1840 if (sb_any_quota_loaded(sb) && !old_qname) {
1841 ext4_msg(sb, KERN_ERR,
1842 "Cannot change journaled "
1843 "quota options when quota turned on");
1846 if (ext4_has_feature_quota(sb)) {
1847 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1848 "ignored when QUOTA feature is enabled");
1851 qname = match_strdup(args);
1853 ext4_msg(sb, KERN_ERR,
1854 "Not enough memory for storing quotafile name");
1858 if (strcmp(old_qname, qname) == 0)
1861 ext4_msg(sb, KERN_ERR,
1862 "%s quota file already specified",
1866 if (strchr(qname, '/')) {
1867 ext4_msg(sb, KERN_ERR,
1868 "quotafile must be on filesystem root");
1871 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1879 static int clear_qf_name(struct super_block *sb, int qtype)
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 char *old_qname = get_qf_name(sb, sbi, qtype);
1885 if (sb_any_quota_loaded(sb) && old_qname) {
1886 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1887 " when quota turned on");
1890 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1897 #define MOPT_SET 0x0001
1898 #define MOPT_CLEAR 0x0002
1899 #define MOPT_NOSUPPORT 0x0004
1900 #define MOPT_EXPLICIT 0x0008
1901 #define MOPT_CLEAR_ERR 0x0010
1902 #define MOPT_GTE0 0x0020
1905 #define MOPT_QFMT 0x0040
1907 #define MOPT_Q MOPT_NOSUPPORT
1908 #define MOPT_QFMT MOPT_NOSUPPORT
1910 #define MOPT_DATAJ 0x0080
1911 #define MOPT_NO_EXT2 0x0100
1912 #define MOPT_NO_EXT3 0x0200
1913 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1914 #define MOPT_STRING 0x0400
1915 #define MOPT_SKIP 0x0800
1916 #define MOPT_2 0x1000
1918 static const struct mount_opts {
1922 } ext4_mount_opts[] = {
1923 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1924 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1925 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1926 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1927 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1928 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1929 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1930 MOPT_EXT4_ONLY | MOPT_SET},
1931 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1932 MOPT_EXT4_ONLY | MOPT_CLEAR},
1933 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1934 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1935 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1936 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1937 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1938 MOPT_EXT4_ONLY | MOPT_CLEAR},
1939 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1940 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1941 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1942 MOPT_EXT4_ONLY | MOPT_CLEAR},
1943 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1944 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1945 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1946 EXT4_MOUNT_JOURNAL_CHECKSUM),
1947 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1948 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1949 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1950 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1951 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1952 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1954 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1956 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1957 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1958 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1959 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1960 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1961 {Opt_commit, 0, MOPT_GTE0},
1962 {Opt_max_batch_time, 0, MOPT_GTE0},
1963 {Opt_min_batch_time, 0, MOPT_GTE0},
1964 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1965 {Opt_init_itable, 0, MOPT_GTE0},
1966 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1967 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1968 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1969 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1970 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1971 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1972 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1973 {Opt_stripe, 0, MOPT_GTE0},
1974 {Opt_resuid, 0, MOPT_GTE0},
1975 {Opt_resgid, 0, MOPT_GTE0},
1976 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1977 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1978 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1979 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1980 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1981 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1982 MOPT_NO_EXT2 | MOPT_DATAJ},
1983 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1984 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1985 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1986 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1987 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1989 {Opt_acl, 0, MOPT_NOSUPPORT},
1990 {Opt_noacl, 0, MOPT_NOSUPPORT},
1992 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1993 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1994 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1995 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1996 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1998 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
2000 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2002 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2003 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2004 MOPT_CLEAR | MOPT_Q},
2005 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2006 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2007 {Opt_offusrjquota, 0, MOPT_Q},
2008 {Opt_offgrpjquota, 0, MOPT_Q},
2009 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2010 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2011 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2012 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2013 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2014 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2015 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2017 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2018 #ifdef CONFIG_EXT4_DEBUG
2019 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2020 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2021 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2026 #ifdef CONFIG_UNICODE
2027 static const struct ext4_sb_encodings {
2031 } ext4_sb_encoding_map[] = {
2032 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2035 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2036 const struct ext4_sb_encodings **encoding,
2039 __u16 magic = le16_to_cpu(es->s_encoding);
2042 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2043 if (magic == ext4_sb_encoding_map[i].magic)
2046 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2049 *encoding = &ext4_sb_encoding_map[i];
2050 *flags = le16_to_cpu(es->s_encoding_flags);
2056 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2058 const substring_t *arg,
2061 #ifdef CONFIG_FS_ENCRYPTION
2062 struct ext4_sb_info *sbi = EXT4_SB(sb);
2066 * This mount option is just for testing, and it's not worthwhile to
2067 * implement the extra complexity (e.g. RCU protection) that would be
2068 * needed to allow it to be set or changed during remount. We do allow
2069 * it to be specified during remount, but only if there is no change.
2071 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2072 ext4_msg(sb, KERN_WARNING,
2073 "Can't set test_dummy_encryption on remount");
2076 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2077 &sbi->s_dummy_enc_policy);
2080 ext4_msg(sb, KERN_WARNING,
2081 "Can't change test_dummy_encryption on remount");
2082 else if (err == -EINVAL)
2083 ext4_msg(sb, KERN_WARNING,
2084 "Value of option \"%s\" is unrecognized", opt);
2086 ext4_msg(sb, KERN_WARNING,
2087 "Error processing option \"%s\" [%d]",
2091 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2093 ext4_msg(sb, KERN_WARNING,
2094 "Test dummy encryption mount option ignored");
2099 struct ext4_parsed_options {
2100 unsigned long journal_devnum;
2101 unsigned int journal_ioprio;
2102 int mb_optimize_scan;
2105 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2106 substring_t *args, struct ext4_parsed_options *parsed_opts,
2109 struct ext4_sb_info *sbi = EXT4_SB(sb);
2110 const struct mount_opts *m;
2116 if (token == Opt_usrjquota)
2117 return set_qf_name(sb, USRQUOTA, &args[0]);
2118 else if (token == Opt_grpjquota)
2119 return set_qf_name(sb, GRPQUOTA, &args[0]);
2120 else if (token == Opt_offusrjquota)
2121 return clear_qf_name(sb, USRQUOTA);
2122 else if (token == Opt_offgrpjquota)
2123 return clear_qf_name(sb, GRPQUOTA);
2127 case Opt_nouser_xattr:
2128 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2131 return 1; /* handled by get_sb_block() */
2133 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2136 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2139 sb->s_flags |= SB_I_VERSION;
2142 sb->s_flags |= SB_LAZYTIME;
2144 case Opt_nolazytime:
2145 sb->s_flags &= ~SB_LAZYTIME;
2147 case Opt_inlinecrypt:
2148 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2149 sb->s_flags |= SB_INLINECRYPT;
2151 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2156 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2157 if (token == m->token)
2160 if (m->token == Opt_err) {
2161 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2162 "or missing value", opt);
2166 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2167 ext4_msg(sb, KERN_ERR,
2168 "Mount option \"%s\" incompatible with ext2", opt);
2171 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2172 ext4_msg(sb, KERN_ERR,
2173 "Mount option \"%s\" incompatible with ext3", opt);
2177 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2179 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2181 if (m->flags & MOPT_EXPLICIT) {
2182 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2183 set_opt2(sb, EXPLICIT_DELALLOC);
2184 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2185 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2189 if (m->flags & MOPT_CLEAR_ERR)
2190 clear_opt(sb, ERRORS_MASK);
2191 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2192 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2193 "options when quota turned on");
2197 if (m->flags & MOPT_NOSUPPORT) {
2198 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2199 } else if (token == Opt_commit) {
2201 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2202 else if (arg > INT_MAX / HZ) {
2203 ext4_msg(sb, KERN_ERR,
2204 "Invalid commit interval %d, "
2205 "must be smaller than %d",
2209 sbi->s_commit_interval = HZ * arg;
2210 } else if (token == Opt_debug_want_extra_isize) {
2213 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2214 ext4_msg(sb, KERN_ERR,
2215 "Invalid want_extra_isize %d", arg);
2218 sbi->s_want_extra_isize = arg;
2219 } else if (token == Opt_max_batch_time) {
2220 sbi->s_max_batch_time = arg;
2221 } else if (token == Opt_min_batch_time) {
2222 sbi->s_min_batch_time = arg;
2223 } else if (token == Opt_inode_readahead_blks) {
2224 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2225 ext4_msg(sb, KERN_ERR,
2226 "EXT4-fs: inode_readahead_blks must be "
2227 "0 or a power of 2 smaller than 2^31");
2230 sbi->s_inode_readahead_blks = arg;
2231 } else if (token == Opt_init_itable) {
2232 set_opt(sb, INIT_INODE_TABLE);
2234 arg = EXT4_DEF_LI_WAIT_MULT;
2235 sbi->s_li_wait_mult = arg;
2236 } else if (token == Opt_max_dir_size_kb) {
2237 sbi->s_max_dir_size_kb = arg;
2238 #ifdef CONFIG_EXT4_DEBUG
2239 } else if (token == Opt_fc_debug_max_replay) {
2240 sbi->s_fc_debug_max_replay = arg;
2242 } else if (token == Opt_stripe) {
2243 sbi->s_stripe = arg;
2244 } else if (token == Opt_resuid) {
2245 uid = make_kuid(current_user_ns(), arg);
2246 if (!uid_valid(uid)) {
2247 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2250 sbi->s_resuid = uid;
2251 } else if (token == Opt_resgid) {
2252 gid = make_kgid(current_user_ns(), arg);
2253 if (!gid_valid(gid)) {
2254 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2257 sbi->s_resgid = gid;
2258 } else if (token == Opt_journal_dev) {
2260 ext4_msg(sb, KERN_ERR,
2261 "Cannot specify journal on remount");
2264 parsed_opts->journal_devnum = arg;
2265 } else if (token == Opt_journal_path) {
2267 struct inode *journal_inode;
2272 ext4_msg(sb, KERN_ERR,
2273 "Cannot specify journal on remount");
2276 journal_path = match_strdup(&args[0]);
2277 if (!journal_path) {
2278 ext4_msg(sb, KERN_ERR, "error: could not dup "
2279 "journal device string");
2283 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2285 ext4_msg(sb, KERN_ERR, "error: could not find "
2286 "journal device path: error %d", error);
2287 kfree(journal_path);
2291 journal_inode = d_inode(path.dentry);
2292 if (!S_ISBLK(journal_inode->i_mode)) {
2293 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2294 "is not a block device", journal_path);
2296 kfree(journal_path);
2300 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2302 kfree(journal_path);
2303 } else if (token == Opt_journal_ioprio) {
2305 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2309 parsed_opts->journal_ioprio =
2310 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2311 } else if (token == Opt_test_dummy_encryption) {
2312 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2314 } else if (m->flags & MOPT_DATAJ) {
2316 if (!sbi->s_journal)
2317 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2318 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2319 ext4_msg(sb, KERN_ERR,
2320 "Cannot change data mode on remount");
2324 clear_opt(sb, DATA_FLAGS);
2325 sbi->s_mount_opt |= m->mount_opt;
2328 } else if (m->flags & MOPT_QFMT) {
2329 if (sb_any_quota_loaded(sb) &&
2330 sbi->s_jquota_fmt != m->mount_opt) {
2331 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2332 "quota options when quota turned on");
2335 if (ext4_has_feature_quota(sb)) {
2336 ext4_msg(sb, KERN_INFO,
2337 "Quota format mount options ignored "
2338 "when QUOTA feature is enabled");
2341 sbi->s_jquota_fmt = m->mount_opt;
2343 } else if (token == Opt_dax || token == Opt_dax_always ||
2344 token == Opt_dax_inode || token == Opt_dax_never) {
2345 #ifdef CONFIG_FS_DAX
2348 case Opt_dax_always:
2350 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2351 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2352 fail_dax_change_remount:
2353 ext4_msg(sb, KERN_ERR, "can't change "
2354 "dax mount option while remounting");
2358 (test_opt(sb, DATA_FLAGS) ==
2359 EXT4_MOUNT_JOURNAL_DATA)) {
2360 ext4_msg(sb, KERN_ERR, "can't mount with "
2361 "both data=journal and dax");
2364 ext4_msg(sb, KERN_WARNING,
2365 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2366 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2367 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2371 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2372 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2373 goto fail_dax_change_remount;
2374 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2375 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2379 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2380 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2381 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2382 goto fail_dax_change_remount;
2383 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2384 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2385 /* Strictly for printing options */
2386 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2390 ext4_msg(sb, KERN_INFO, "dax option not supported");
2391 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2392 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2395 } else if (token == Opt_data_err_abort) {
2396 sbi->s_mount_opt |= m->mount_opt;
2397 } else if (token == Opt_data_err_ignore) {
2398 sbi->s_mount_opt &= ~m->mount_opt;
2399 } else if (token == Opt_mb_optimize_scan) {
2400 if (arg != 0 && arg != 1) {
2401 ext4_msg(sb, KERN_WARNING,
2402 "mb_optimize_scan should be set to 0 or 1.");
2405 parsed_opts->mb_optimize_scan = arg;
2409 if (m->flags & MOPT_CLEAR)
2411 else if (unlikely(!(m->flags & MOPT_SET))) {
2412 ext4_msg(sb, KERN_WARNING,
2413 "buggy handling of option %s", opt);
2417 if (m->flags & MOPT_2) {
2419 sbi->s_mount_opt2 |= m->mount_opt;
2421 sbi->s_mount_opt2 &= ~m->mount_opt;
2424 sbi->s_mount_opt |= m->mount_opt;
2426 sbi->s_mount_opt &= ~m->mount_opt;
2432 static int parse_options(char *options, struct super_block *sb,
2433 struct ext4_parsed_options *ret_opts,
2436 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2437 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2438 substring_t args[MAX_OPT_ARGS];
2444 while ((p = strsep(&options, ",")) != NULL) {
2448 * Initialize args struct so we know whether arg was
2449 * found; some options take optional arguments.
2451 args[0].to = args[0].from = NULL;
2452 token = match_token(p, tokens, args);
2453 if (handle_mount_opt(sb, p, token, args, ret_opts,
2459 * We do the test below only for project quotas. 'usrquota' and
2460 * 'grpquota' mount options are allowed even without quota feature
2461 * to support legacy quotas in quota files.
2463 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2464 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2465 "Cannot enable project quota enforcement.");
2468 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2469 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2470 if (usr_qf_name || grp_qf_name) {
2471 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2472 clear_opt(sb, USRQUOTA);
2474 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2475 clear_opt(sb, GRPQUOTA);
2477 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2478 ext4_msg(sb, KERN_ERR, "old and new quota "
2483 if (!sbi->s_jquota_fmt) {
2484 ext4_msg(sb, KERN_ERR, "journaled quota format "
2490 if (test_opt(sb, DIOREAD_NOLOCK)) {
2492 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2493 if (blocksize < PAGE_SIZE)
2494 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2495 "experimental mount option 'dioread_nolock' "
2496 "for blocksize < PAGE_SIZE");
2501 static inline void ext4_show_quota_options(struct seq_file *seq,
2502 struct super_block *sb)
2504 #if defined(CONFIG_QUOTA)
2505 struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 char *usr_qf_name, *grp_qf_name;
2508 if (sbi->s_jquota_fmt) {
2511 switch (sbi->s_jquota_fmt) {
2522 seq_printf(seq, ",jqfmt=%s", fmtname);
2526 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2527 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2529 seq_show_option(seq, "usrjquota", usr_qf_name);
2531 seq_show_option(seq, "grpjquota", grp_qf_name);
2536 static const char *token2str(int token)
2538 const struct match_token *t;
2540 for (t = tokens; t->token != Opt_err; t++)
2541 if (t->token == token && !strchr(t->pattern, '='))
2548 * - it's set to a non-default value OR
2549 * - if the per-sb default is different from the global default
2551 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2554 struct ext4_sb_info *sbi = EXT4_SB(sb);
2555 struct ext4_super_block *es = sbi->s_es;
2556 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2557 const struct mount_opts *m;
2558 char sep = nodefs ? '\n' : ',';
2560 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2561 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2563 if (sbi->s_sb_block != 1)
2564 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2566 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2567 int want_set = m->flags & MOPT_SET;
2568 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2569 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2571 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2572 continue; /* skip if same as the default */
2574 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2575 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2576 continue; /* select Opt_noFoo vs Opt_Foo */
2577 SEQ_OPTS_PRINT("%s", token2str(m->token));
2580 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2581 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2582 SEQ_OPTS_PRINT("resuid=%u",
2583 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2584 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2585 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2586 SEQ_OPTS_PRINT("resgid=%u",
2587 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2588 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2589 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2590 SEQ_OPTS_PUTS("errors=remount-ro");
2591 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2592 SEQ_OPTS_PUTS("errors=continue");
2593 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2594 SEQ_OPTS_PUTS("errors=panic");
2595 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2596 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2597 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2598 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2599 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2600 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2601 if (sb->s_flags & SB_I_VERSION)
2602 SEQ_OPTS_PUTS("i_version");
2603 if (nodefs || sbi->s_stripe)
2604 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2605 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2606 (sbi->s_mount_opt ^ def_mount_opt)) {
2607 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2608 SEQ_OPTS_PUTS("data=journal");
2609 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2610 SEQ_OPTS_PUTS("data=ordered");
2611 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2612 SEQ_OPTS_PUTS("data=writeback");
2615 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2616 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2617 sbi->s_inode_readahead_blks);
2619 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2620 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2621 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2622 if (nodefs || sbi->s_max_dir_size_kb)
2623 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2624 if (test_opt(sb, DATA_ERR_ABORT))
2625 SEQ_OPTS_PUTS("data_err=abort");
2627 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2629 if (sb->s_flags & SB_INLINECRYPT)
2630 SEQ_OPTS_PUTS("inlinecrypt");
2632 if (test_opt(sb, DAX_ALWAYS)) {
2634 SEQ_OPTS_PUTS("dax");
2636 SEQ_OPTS_PUTS("dax=always");
2637 } else if (test_opt2(sb, DAX_NEVER)) {
2638 SEQ_OPTS_PUTS("dax=never");
2639 } else if (test_opt2(sb, DAX_INODE)) {
2640 SEQ_OPTS_PUTS("dax=inode");
2642 ext4_show_quota_options(seq, sb);
2646 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2648 return _ext4_show_options(seq, root->d_sb, 0);
2651 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2653 struct super_block *sb = seq->private;
2656 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2657 rc = _ext4_show_options(seq, sb, 1);
2658 seq_puts(seq, "\n");
2662 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2665 struct ext4_sb_info *sbi = EXT4_SB(sb);
2668 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2669 ext4_msg(sb, KERN_ERR, "revision level too high, "
2670 "forcing read-only mode");
2676 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2677 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2678 "running e2fsck is recommended");
2679 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2680 ext4_msg(sb, KERN_WARNING,
2681 "warning: mounting fs with errors, "
2682 "running e2fsck is recommended");
2683 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2684 le16_to_cpu(es->s_mnt_count) >=
2685 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2686 ext4_msg(sb, KERN_WARNING,
2687 "warning: maximal mount count reached, "
2688 "running e2fsck is recommended");
2689 else if (le32_to_cpu(es->s_checkinterval) &&
2690 (ext4_get_tstamp(es, s_lastcheck) +
2691 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2692 ext4_msg(sb, KERN_WARNING,
2693 "warning: checktime reached, "
2694 "running e2fsck is recommended");
2695 if (!sbi->s_journal)
2696 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2697 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2698 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2699 le16_add_cpu(&es->s_mnt_count, 1);
2700 ext4_update_tstamp(es, s_mtime);
2702 ext4_set_feature_journal_needs_recovery(sb);
2704 err = ext4_commit_super(sb);
2706 if (test_opt(sb, DEBUG))
2707 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2708 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2710 sbi->s_groups_count,
2711 EXT4_BLOCKS_PER_GROUP(sb),
2712 EXT4_INODES_PER_GROUP(sb),
2713 sbi->s_mount_opt, sbi->s_mount_opt2);
2715 cleancache_init_fs(sb);
2719 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2721 struct ext4_sb_info *sbi = EXT4_SB(sb);
2722 struct flex_groups **old_groups, **new_groups;
2725 if (!sbi->s_log_groups_per_flex)
2728 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2729 if (size <= sbi->s_flex_groups_allocated)
2732 new_groups = kvzalloc(roundup_pow_of_two(size *
2733 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2735 ext4_msg(sb, KERN_ERR,
2736 "not enough memory for %d flex group pointers", size);
2739 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2740 new_groups[i] = kvzalloc(roundup_pow_of_two(
2741 sizeof(struct flex_groups)),
2743 if (!new_groups[i]) {
2744 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2745 kvfree(new_groups[j]);
2747 ext4_msg(sb, KERN_ERR,
2748 "not enough memory for %d flex groups", size);
2753 old_groups = rcu_dereference(sbi->s_flex_groups);
2755 memcpy(new_groups, old_groups,
2756 (sbi->s_flex_groups_allocated *
2757 sizeof(struct flex_groups *)));
2759 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2760 sbi->s_flex_groups_allocated = size;
2762 ext4_kvfree_array_rcu(old_groups);
2766 static int ext4_fill_flex_info(struct super_block *sb)
2768 struct ext4_sb_info *sbi = EXT4_SB(sb);
2769 struct ext4_group_desc *gdp = NULL;
2770 struct flex_groups *fg;
2771 ext4_group_t flex_group;
2774 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2775 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2776 sbi->s_log_groups_per_flex = 0;
2780 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2784 for (i = 0; i < sbi->s_groups_count; i++) {
2785 gdp = ext4_get_group_desc(sb, i, NULL);
2787 flex_group = ext4_flex_group(sbi, i);
2788 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2789 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2790 atomic64_add(ext4_free_group_clusters(sb, gdp),
2791 &fg->free_clusters);
2792 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2800 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2801 struct ext4_group_desc *gdp)
2803 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2805 __le32 le_group = cpu_to_le32(block_group);
2806 struct ext4_sb_info *sbi = EXT4_SB(sb);
2808 if (ext4_has_metadata_csum(sbi->s_sb)) {
2809 /* Use new metadata_csum algorithm */
2811 __u16 dummy_csum = 0;
2813 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2815 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2816 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2817 sizeof(dummy_csum));
2818 offset += sizeof(dummy_csum);
2819 if (offset < sbi->s_desc_size)
2820 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2821 sbi->s_desc_size - offset);
2823 crc = csum32 & 0xFFFF;
2827 /* old crc16 code */
2828 if (!ext4_has_feature_gdt_csum(sb))
2831 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2832 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2833 crc = crc16(crc, (__u8 *)gdp, offset);
2834 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2835 /* for checksum of struct ext4_group_desc do the rest...*/
2836 if (ext4_has_feature_64bit(sb) &&
2837 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2838 crc = crc16(crc, (__u8 *)gdp + offset,
2839 le16_to_cpu(sbi->s_es->s_desc_size) -
2843 return cpu_to_le16(crc);
2846 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2847 struct ext4_group_desc *gdp)
2849 if (ext4_has_group_desc_csum(sb) &&
2850 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2856 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2857 struct ext4_group_desc *gdp)
2859 if (!ext4_has_group_desc_csum(sb))
2861 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2864 /* Called at mount-time, super-block is locked */
2865 static int ext4_check_descriptors(struct super_block *sb,
2866 ext4_fsblk_t sb_block,
2867 ext4_group_t *first_not_zeroed)
2869 struct ext4_sb_info *sbi = EXT4_SB(sb);
2870 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2871 ext4_fsblk_t last_block;
2872 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2873 ext4_fsblk_t block_bitmap;
2874 ext4_fsblk_t inode_bitmap;
2875 ext4_fsblk_t inode_table;
2876 int flexbg_flag = 0;
2877 ext4_group_t i, grp = sbi->s_groups_count;
2879 if (ext4_has_feature_flex_bg(sb))
2882 ext4_debug("Checking group descriptors");
2884 for (i = 0; i < sbi->s_groups_count; i++) {
2885 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2887 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2888 last_block = ext4_blocks_count(sbi->s_es) - 1;
2890 last_block = first_block +
2891 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2893 if ((grp == sbi->s_groups_count) &&
2894 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2897 block_bitmap = ext4_block_bitmap(sb, gdp);
2898 if (block_bitmap == sb_block) {
2899 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2900 "Block bitmap for group %u overlaps "
2905 if (block_bitmap >= sb_block + 1 &&
2906 block_bitmap <= last_bg_block) {
2907 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2908 "Block bitmap for group %u overlaps "
2909 "block group descriptors", i);
2913 if (block_bitmap < first_block || block_bitmap > last_block) {
2914 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2915 "Block bitmap for group %u not in group "
2916 "(block %llu)!", i, block_bitmap);
2919 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2920 if (inode_bitmap == sb_block) {
2921 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2922 "Inode bitmap for group %u overlaps "
2927 if (inode_bitmap >= sb_block + 1 &&
2928 inode_bitmap <= last_bg_block) {
2929 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2930 "Inode bitmap for group %u overlaps "
2931 "block group descriptors", i);
2935 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2936 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2937 "Inode bitmap for group %u not in group "
2938 "(block %llu)!", i, inode_bitmap);
2941 inode_table = ext4_inode_table(sb, gdp);
2942 if (inode_table == sb_block) {
2943 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2944 "Inode table for group %u overlaps "
2949 if (inode_table >= sb_block + 1 &&
2950 inode_table <= last_bg_block) {
2951 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2952 "Inode table for group %u overlaps "
2953 "block group descriptors", i);
2957 if (inode_table < first_block ||
2958 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2959 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2960 "Inode table for group %u not in group "
2961 "(block %llu)!", i, inode_table);
2964 ext4_lock_group(sb, i);
2965 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2966 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2967 "Checksum for group %u failed (%u!=%u)",
2968 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2969 gdp)), le16_to_cpu(gdp->bg_checksum));
2970 if (!sb_rdonly(sb)) {
2971 ext4_unlock_group(sb, i);
2975 ext4_unlock_group(sb, i);
2977 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2979 if (NULL != first_not_zeroed)
2980 *first_not_zeroed = grp;
2984 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2985 * the superblock) which were deleted from all directories, but held open by
2986 * a process at the time of a crash. We walk the list and try to delete these
2987 * inodes at recovery time (only with a read-write filesystem).
2989 * In order to keep the orphan inode chain consistent during traversal (in
2990 * case of crash during recovery), we link each inode into the superblock
2991 * orphan list_head and handle it the same way as an inode deletion during
2992 * normal operation (which journals the operations for us).
2994 * We only do an iget() and an iput() on each inode, which is very safe if we
2995 * accidentally point at an in-use or already deleted inode. The worst that
2996 * can happen in this case is that we get a "bit already cleared" message from
2997 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2998 * e2fsck was run on this filesystem, and it must have already done the orphan
2999 * inode cleanup for us, so we can safely abort without any further action.
3001 static void ext4_orphan_cleanup(struct super_block *sb,
3002 struct ext4_super_block *es)
3004 unsigned int s_flags = sb->s_flags;
3005 int ret, nr_orphans = 0, nr_truncates = 0;
3007 int quota_update = 0;
3010 if (!es->s_last_orphan) {
3011 jbd_debug(4, "no orphan inodes to clean up\n");
3015 if (bdev_read_only(sb->s_bdev)) {
3016 ext4_msg(sb, KERN_ERR, "write access "
3017 "unavailable, skipping orphan cleanup");
3021 /* Check if feature set would not allow a r/w mount */
3022 if (!ext4_feature_set_ok(sb, 0)) {
3023 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3024 "unknown ROCOMPAT features");
3028 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3029 /* don't clear list on RO mount w/ errors */
3030 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3031 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3032 "clearing orphan list.\n");
3033 es->s_last_orphan = 0;
3035 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3039 if (s_flags & SB_RDONLY) {
3040 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3041 sb->s_flags &= ~SB_RDONLY;
3045 * Turn on quotas which were not enabled for read-only mounts if
3046 * filesystem has quota feature, so that they are updated correctly.
3048 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3049 int ret = ext4_enable_quotas(sb);
3054 ext4_msg(sb, KERN_ERR,
3055 "Cannot turn on quotas: error %d", ret);
3058 /* Turn on journaled quotas used for old sytle */
3059 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3060 if (EXT4_SB(sb)->s_qf_names[i]) {
3061 int ret = ext4_quota_on_mount(sb, i);
3066 ext4_msg(sb, KERN_ERR,
3067 "Cannot turn on journaled "
3068 "quota: type %d: error %d", i, ret);
3073 while (es->s_last_orphan) {
3074 struct inode *inode;
3077 * We may have encountered an error during cleanup; if
3078 * so, skip the rest.
3080 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3081 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3082 es->s_last_orphan = 0;
3086 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3087 if (IS_ERR(inode)) {
3088 es->s_last_orphan = 0;
3092 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3093 dquot_initialize(inode);
3094 if (inode->i_nlink) {
3095 if (test_opt(sb, DEBUG))
3096 ext4_msg(sb, KERN_DEBUG,
3097 "%s: truncating inode %lu to %lld bytes",
3098 __func__, inode->i_ino, inode->i_size);
3099 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3100 inode->i_ino, inode->i_size);
3102 truncate_inode_pages(inode->i_mapping, inode->i_size);
3103 ret = ext4_truncate(inode);
3105 ext4_std_error(inode->i_sb, ret);
3106 inode_unlock(inode);
3109 if (test_opt(sb, DEBUG))
3110 ext4_msg(sb, KERN_DEBUG,
3111 "%s: deleting unreferenced inode %lu",
3112 __func__, inode->i_ino);
3113 jbd_debug(2, "deleting unreferenced inode %lu\n",
3117 iput(inode); /* The delete magic happens here! */
3120 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3123 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3124 PLURAL(nr_orphans));
3126 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3127 PLURAL(nr_truncates));
3129 /* Turn off quotas if they were enabled for orphan cleanup */
3131 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3132 if (sb_dqopt(sb)->files[i])
3133 dquot_quota_off(sb, i);
3137 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3141 * Maximal extent format file size.
3142 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3143 * extent format containers, within a sector_t, and within i_blocks
3144 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3145 * so that won't be a limiting factor.
3147 * However there is other limiting factor. We do store extents in the form
3148 * of starting block and length, hence the resulting length of the extent
3149 * covering maximum file size must fit into on-disk format containers as
3150 * well. Given that length is always by 1 unit bigger than max unit (because
3151 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3153 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3155 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3158 loff_t upper_limit = MAX_LFS_FILESIZE;
3160 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3162 if (!has_huge_files) {
3163 upper_limit = (1LL << 32) - 1;
3165 /* total blocks in file system block size */
3166 upper_limit >>= (blkbits - 9);
3167 upper_limit <<= blkbits;
3171 * 32-bit extent-start container, ee_block. We lower the maxbytes
3172 * by one fs block, so ee_len can cover the extent of maximum file
3175 res = (1LL << 32) - 1;
3178 /* Sanity check against vm- & vfs- imposed limits */
3179 if (res > upper_limit)
3186 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3187 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3188 * We need to be 1 filesystem block less than the 2^48 sector limit.
3190 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3192 loff_t res = EXT4_NDIR_BLOCKS;
3195 /* This is calculated to be the largest file size for a dense, block
3196 * mapped file such that the file's total number of 512-byte sectors,
3197 * including data and all indirect blocks, does not exceed (2^48 - 1).
3199 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3200 * number of 512-byte sectors of the file.
3203 if (!has_huge_files) {
3205 * !has_huge_files or implies that the inode i_block field
3206 * represents total file blocks in 2^32 512-byte sectors ==
3207 * size of vfs inode i_blocks * 8
3209 upper_limit = (1LL << 32) - 1;
3211 /* total blocks in file system block size */
3212 upper_limit >>= (bits - 9);
3216 * We use 48 bit ext4_inode i_blocks
3217 * With EXT4_HUGE_FILE_FL set the i_blocks
3218 * represent total number of blocks in
3219 * file system block size
3221 upper_limit = (1LL << 48) - 1;
3225 /* indirect blocks */
3227 /* double indirect blocks */
3228 meta_blocks += 1 + (1LL << (bits-2));
3229 /* tripple indirect blocks */
3230 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3232 upper_limit -= meta_blocks;
3233 upper_limit <<= bits;
3235 res += 1LL << (bits-2);
3236 res += 1LL << (2*(bits-2));
3237 res += 1LL << (3*(bits-2));
3239 if (res > upper_limit)
3242 if (res > MAX_LFS_FILESIZE)
3243 res = MAX_LFS_FILESIZE;
3248 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3249 ext4_fsblk_t logical_sb_block, int nr)
3251 struct ext4_sb_info *sbi = EXT4_SB(sb);
3252 ext4_group_t bg, first_meta_bg;
3255 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3257 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3258 return logical_sb_block + nr + 1;
3259 bg = sbi->s_desc_per_block * nr;
3260 if (ext4_bg_has_super(sb, bg))
3264 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3265 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3266 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3269 if (sb->s_blocksize == 1024 && nr == 0 &&
3270 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3273 return (has_super + ext4_group_first_block_no(sb, bg));
3277 * ext4_get_stripe_size: Get the stripe size.
3278 * @sbi: In memory super block info
3280 * If we have specified it via mount option, then
3281 * use the mount option value. If the value specified at mount time is
3282 * greater than the blocks per group use the super block value.
3283 * If the super block value is greater than blocks per group return 0.
3284 * Allocator needs it be less than blocks per group.
3287 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3289 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3290 unsigned long stripe_width =
3291 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3294 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3295 ret = sbi->s_stripe;
3296 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3298 else if (stride && stride <= sbi->s_blocks_per_group)
3304 * If the stripe width is 1, this makes no sense and
3305 * we set it to 0 to turn off stripe handling code.
3314 * Check whether this filesystem can be mounted based on
3315 * the features present and the RDONLY/RDWR mount requested.
3316 * Returns 1 if this filesystem can be mounted as requested,
3317 * 0 if it cannot be.
3319 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3321 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3322 ext4_msg(sb, KERN_ERR,
3323 "Couldn't mount because of "
3324 "unsupported optional features (%x)",
3325 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3326 ~EXT4_FEATURE_INCOMPAT_SUPP));
3330 #ifndef CONFIG_UNICODE
3331 if (ext4_has_feature_casefold(sb)) {
3332 ext4_msg(sb, KERN_ERR,
3333 "Filesystem with casefold feature cannot be "
3334 "mounted without CONFIG_UNICODE");
3342 if (ext4_has_feature_readonly(sb)) {
3343 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3344 sb->s_flags |= SB_RDONLY;
3348 /* Check that feature set is OK for a read-write mount */
3349 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3350 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3351 "unsupported optional features (%x)",
3352 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3353 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3356 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3357 ext4_msg(sb, KERN_ERR,
3358 "Can't support bigalloc feature without "
3359 "extents feature\n");
3363 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3364 if (!readonly && (ext4_has_feature_quota(sb) ||
3365 ext4_has_feature_project(sb))) {
3366 ext4_msg(sb, KERN_ERR,
3367 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3370 #endif /* CONFIG_QUOTA */
3375 * This function is called once a day if we have errors logged
3376 * on the file system
3378 static void print_daily_error_info(struct timer_list *t)
3380 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3381 struct super_block *sb = sbi->s_sb;
3382 struct ext4_super_block *es = sbi->s_es;
3384 if (es->s_error_count)
3385 /* fsck newer than v1.41.13 is needed to clean this condition. */
3386 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3387 le32_to_cpu(es->s_error_count));
3388 if (es->s_first_error_time) {
3389 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3391 ext4_get_tstamp(es, s_first_error_time),
3392 (int) sizeof(es->s_first_error_func),
3393 es->s_first_error_func,
3394 le32_to_cpu(es->s_first_error_line));
3395 if (es->s_first_error_ino)
3396 printk(KERN_CONT ": inode %u",
3397 le32_to_cpu(es->s_first_error_ino));
3398 if (es->s_first_error_block)
3399 printk(KERN_CONT ": block %llu", (unsigned long long)
3400 le64_to_cpu(es->s_first_error_block));
3401 printk(KERN_CONT "\n");
3403 if (es->s_last_error_time) {
3404 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3406 ext4_get_tstamp(es, s_last_error_time),
3407 (int) sizeof(es->s_last_error_func),
3408 es->s_last_error_func,
3409 le32_to_cpu(es->s_last_error_line));
3410 if (es->s_last_error_ino)
3411 printk(KERN_CONT ": inode %u",
3412 le32_to_cpu(es->s_last_error_ino));
3413 if (es->s_last_error_block)
3414 printk(KERN_CONT ": block %llu", (unsigned long long)
3415 le64_to_cpu(es->s_last_error_block));
3416 printk(KERN_CONT "\n");
3418 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3421 /* Find next suitable group and run ext4_init_inode_table */
3422 static int ext4_run_li_request(struct ext4_li_request *elr)
3424 struct ext4_group_desc *gdp = NULL;
3425 struct super_block *sb = elr->lr_super;
3426 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3427 ext4_group_t group = elr->lr_next_group;
3428 unsigned long timeout = 0;
3429 unsigned int prefetch_ios = 0;
3432 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3433 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3434 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3436 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3438 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3440 if (group >= elr->lr_next_group) {
3442 if (elr->lr_first_not_zeroed != ngroups &&
3443 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3444 elr->lr_next_group = elr->lr_first_not_zeroed;
3445 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3452 for (; group < ngroups; group++) {
3453 gdp = ext4_get_group_desc(sb, group, NULL);
3459 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3463 if (group >= ngroups)
3468 ret = ext4_init_inode_table(sb, group,
3469 elr->lr_timeout ? 0 : 1);
3470 trace_ext4_lazy_itable_init(sb, group);
3471 if (elr->lr_timeout == 0) {
3472 timeout = (jiffies - timeout) *
3473 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3474 elr->lr_timeout = timeout;
3476 elr->lr_next_sched = jiffies + elr->lr_timeout;
3477 elr->lr_next_group = group + 1;
3483 * Remove lr_request from the list_request and free the
3484 * request structure. Should be called with li_list_mtx held
3486 static void ext4_remove_li_request(struct ext4_li_request *elr)
3491 list_del(&elr->lr_request);
3492 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3496 static void ext4_unregister_li_request(struct super_block *sb)
3498 mutex_lock(&ext4_li_mtx);
3499 if (!ext4_li_info) {
3500 mutex_unlock(&ext4_li_mtx);
3504 mutex_lock(&ext4_li_info->li_list_mtx);
3505 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3506 mutex_unlock(&ext4_li_info->li_list_mtx);
3507 mutex_unlock(&ext4_li_mtx);
3510 static struct task_struct *ext4_lazyinit_task;
3513 * This is the function where ext4lazyinit thread lives. It walks
3514 * through the request list searching for next scheduled filesystem.
3515 * When such a fs is found, run the lazy initialization request
3516 * (ext4_rn_li_request) and keep track of the time spend in this
3517 * function. Based on that time we compute next schedule time of
3518 * the request. When walking through the list is complete, compute
3519 * next waking time and put itself into sleep.
3521 static int ext4_lazyinit_thread(void *arg)
3523 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3524 struct list_head *pos, *n;
3525 struct ext4_li_request *elr;
3526 unsigned long next_wakeup, cur;
3528 BUG_ON(NULL == eli);
3532 next_wakeup = MAX_JIFFY_OFFSET;
3534 mutex_lock(&eli->li_list_mtx);
3535 if (list_empty(&eli->li_request_list)) {
3536 mutex_unlock(&eli->li_list_mtx);
3539 list_for_each_safe(pos, n, &eli->li_request_list) {
3542 elr = list_entry(pos, struct ext4_li_request,
3545 if (time_before(jiffies, elr->lr_next_sched)) {
3546 if (time_before(elr->lr_next_sched, next_wakeup))
3547 next_wakeup = elr->lr_next_sched;
3550 if (down_read_trylock(&elr->lr_super->s_umount)) {
3551 if (sb_start_write_trylock(elr->lr_super)) {
3554 * We hold sb->s_umount, sb can not
3555 * be removed from the list, it is
3556 * now safe to drop li_list_mtx
3558 mutex_unlock(&eli->li_list_mtx);
3559 err = ext4_run_li_request(elr);
3560 sb_end_write(elr->lr_super);
3561 mutex_lock(&eli->li_list_mtx);
3564 up_read((&elr->lr_super->s_umount));
3566 /* error, remove the lazy_init job */
3568 ext4_remove_li_request(elr);
3572 elr->lr_next_sched = jiffies +
3574 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3576 if (time_before(elr->lr_next_sched, next_wakeup))
3577 next_wakeup = elr->lr_next_sched;
3579 mutex_unlock(&eli->li_list_mtx);
3584 if ((time_after_eq(cur, next_wakeup)) ||
3585 (MAX_JIFFY_OFFSET == next_wakeup)) {
3590 schedule_timeout_interruptible(next_wakeup - cur);
3592 if (kthread_should_stop()) {
3593 ext4_clear_request_list();
3600 * It looks like the request list is empty, but we need
3601 * to check it under the li_list_mtx lock, to prevent any
3602 * additions into it, and of course we should lock ext4_li_mtx
3603 * to atomically free the list and ext4_li_info, because at
3604 * this point another ext4 filesystem could be registering
3607 mutex_lock(&ext4_li_mtx);
3608 mutex_lock(&eli->li_list_mtx);
3609 if (!list_empty(&eli->li_request_list)) {
3610 mutex_unlock(&eli->li_list_mtx);
3611 mutex_unlock(&ext4_li_mtx);
3614 mutex_unlock(&eli->li_list_mtx);
3615 kfree(ext4_li_info);
3616 ext4_li_info = NULL;
3617 mutex_unlock(&ext4_li_mtx);
3622 static void ext4_clear_request_list(void)
3624 struct list_head *pos, *n;
3625 struct ext4_li_request *elr;
3627 mutex_lock(&ext4_li_info->li_list_mtx);
3628 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3629 elr = list_entry(pos, struct ext4_li_request,
3631 ext4_remove_li_request(elr);
3633 mutex_unlock(&ext4_li_info->li_list_mtx);
3636 static int ext4_run_lazyinit_thread(void)
3638 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3639 ext4_li_info, "ext4lazyinit");
3640 if (IS_ERR(ext4_lazyinit_task)) {
3641 int err = PTR_ERR(ext4_lazyinit_task);
3642 ext4_clear_request_list();
3643 kfree(ext4_li_info);
3644 ext4_li_info = NULL;
3645 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3646 "initialization thread\n",
3650 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3655 * Check whether it make sense to run itable init. thread or not.
3656 * If there is at least one uninitialized inode table, return
3657 * corresponding group number, else the loop goes through all
3658 * groups and return total number of groups.
3660 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3662 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3663 struct ext4_group_desc *gdp = NULL;
3665 if (!ext4_has_group_desc_csum(sb))
3668 for (group = 0; group < ngroups; group++) {
3669 gdp = ext4_get_group_desc(sb, group, NULL);
3673 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3680 static int ext4_li_info_new(void)
3682 struct ext4_lazy_init *eli = NULL;
3684 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3688 INIT_LIST_HEAD(&eli->li_request_list);
3689 mutex_init(&eli->li_list_mtx);
3691 eli->li_state |= EXT4_LAZYINIT_QUIT;
3698 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3701 struct ext4_li_request *elr;
3703 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3708 elr->lr_first_not_zeroed = start;
3709 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3710 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3711 elr->lr_next_group = start;
3713 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3717 * Randomize first schedule time of the request to
3718 * spread the inode table initialization requests
3721 elr->lr_next_sched = jiffies + (prandom_u32() %
3722 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3726 int ext4_register_li_request(struct super_block *sb,
3727 ext4_group_t first_not_zeroed)
3729 struct ext4_sb_info *sbi = EXT4_SB(sb);
3730 struct ext4_li_request *elr = NULL;
3731 ext4_group_t ngroups = sbi->s_groups_count;
3734 mutex_lock(&ext4_li_mtx);
3735 if (sbi->s_li_request != NULL) {
3737 * Reset timeout so it can be computed again, because
3738 * s_li_wait_mult might have changed.
3740 sbi->s_li_request->lr_timeout = 0;
3744 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3745 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3746 !test_opt(sb, INIT_INODE_TABLE)))
3749 elr = ext4_li_request_new(sb, first_not_zeroed);
3755 if (NULL == ext4_li_info) {
3756 ret = ext4_li_info_new();
3761 mutex_lock(&ext4_li_info->li_list_mtx);
3762 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3763 mutex_unlock(&ext4_li_info->li_list_mtx);
3765 sbi->s_li_request = elr;
3767 * set elr to NULL here since it has been inserted to
3768 * the request_list and the removal and free of it is
3769 * handled by ext4_clear_request_list from now on.
3773 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3774 ret = ext4_run_lazyinit_thread();
3779 mutex_unlock(&ext4_li_mtx);
3786 * We do not need to lock anything since this is called on
3789 static void ext4_destroy_lazyinit_thread(void)
3792 * If thread exited earlier
3793 * there's nothing to be done.
3795 if (!ext4_li_info || !ext4_lazyinit_task)
3798 kthread_stop(ext4_lazyinit_task);
3801 static int set_journal_csum_feature_set(struct super_block *sb)
3804 int compat, incompat;
3805 struct ext4_sb_info *sbi = EXT4_SB(sb);
3807 if (ext4_has_metadata_csum(sb)) {
3808 /* journal checksum v3 */
3810 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3812 /* journal checksum v1 */
3813 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3817 jbd2_journal_clear_features(sbi->s_journal,
3818 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3819 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3820 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3821 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3822 ret = jbd2_journal_set_features(sbi->s_journal,
3824 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3826 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3827 ret = jbd2_journal_set_features(sbi->s_journal,
3830 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3831 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3833 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3834 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3841 * Note: calculating the overhead so we can be compatible with
3842 * historical BSD practice is quite difficult in the face of
3843 * clusters/bigalloc. This is because multiple metadata blocks from
3844 * different block group can end up in the same allocation cluster.
3845 * Calculating the exact overhead in the face of clustered allocation
3846 * requires either O(all block bitmaps) in memory or O(number of block
3847 * groups**2) in time. We will still calculate the superblock for
3848 * older file systems --- and if we come across with a bigalloc file
3849 * system with zero in s_overhead_clusters the estimate will be close to
3850 * correct especially for very large cluster sizes --- but for newer
3851 * file systems, it's better to calculate this figure once at mkfs
3852 * time, and store it in the superblock. If the superblock value is
3853 * present (even for non-bigalloc file systems), we will use it.
3855 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3858 struct ext4_sb_info *sbi = EXT4_SB(sb);
3859 struct ext4_group_desc *gdp;
3860 ext4_fsblk_t first_block, last_block, b;
3861 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3862 int s, j, count = 0;
3864 if (!ext4_has_feature_bigalloc(sb))
3865 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3866 sbi->s_itb_per_group + 2);
3868 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3869 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3870 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3871 for (i = 0; i < ngroups; i++) {
3872 gdp = ext4_get_group_desc(sb, i, NULL);
3873 b = ext4_block_bitmap(sb, gdp);
3874 if (b >= first_block && b <= last_block) {
3875 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3878 b = ext4_inode_bitmap(sb, gdp);
3879 if (b >= first_block && b <= last_block) {
3880 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3883 b = ext4_inode_table(sb, gdp);
3884 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3885 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3886 int c = EXT4_B2C(sbi, b - first_block);
3887 ext4_set_bit(c, buf);
3893 if (ext4_bg_has_super(sb, grp)) {
3894 ext4_set_bit(s++, buf);
3897 j = ext4_bg_num_gdb(sb, grp);
3898 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3899 ext4_error(sb, "Invalid number of block group "
3900 "descriptor blocks: %d", j);
3901 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3905 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3909 return EXT4_CLUSTERS_PER_GROUP(sb) -
3910 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3914 * Compute the overhead and stash it in sbi->s_overhead
3916 int ext4_calculate_overhead(struct super_block *sb)
3918 struct ext4_sb_info *sbi = EXT4_SB(sb);
3919 struct ext4_super_block *es = sbi->s_es;
3920 struct inode *j_inode;
3921 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3922 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3923 ext4_fsblk_t overhead = 0;
3924 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3930 * Compute the overhead (FS structures). This is constant
3931 * for a given filesystem unless the number of block groups
3932 * changes so we cache the previous value until it does.
3936 * All of the blocks before first_data_block are overhead
3938 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3941 * Add the overhead found in each block group
3943 for (i = 0; i < ngroups; i++) {
3946 blks = count_overhead(sb, i, buf);
3949 memset(buf, 0, PAGE_SIZE);
3954 * Add the internal journal blocks whether the journal has been
3957 if (sbi->s_journal && !sbi->s_journal_bdev)
3958 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3959 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3960 /* j_inum for internal journal is non-zero */
3961 j_inode = ext4_get_journal_inode(sb, j_inum);
3963 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3964 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3967 ext4_msg(sb, KERN_ERR, "can't get journal size");
3970 sbi->s_overhead = overhead;
3972 free_page((unsigned long) buf);
3976 static void ext4_set_resv_clusters(struct super_block *sb)
3978 ext4_fsblk_t resv_clusters;
3979 struct ext4_sb_info *sbi = EXT4_SB(sb);
3982 * There's no need to reserve anything when we aren't using extents.
3983 * The space estimates are exact, there are no unwritten extents,
3984 * hole punching doesn't need new metadata... This is needed especially
3985 * to keep ext2/3 backward compatibility.
3987 if (!ext4_has_feature_extents(sb))
3990 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3991 * This should cover the situations where we can not afford to run
3992 * out of space like for example punch hole, or converting
3993 * unwritten extents in delalloc path. In most cases such
3994 * allocation would require 1, or 2 blocks, higher numbers are
3997 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3998 sbi->s_cluster_bits);
4000 do_div(resv_clusters, 50);
4001 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4003 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4006 static const char *ext4_quota_mode(struct super_block *sb)
4009 if (!ext4_quota_capable(sb))
4012 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4013 return "journalled";
4021 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4023 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4024 char *orig_data = kstrdup(data, GFP_KERNEL);
4025 struct buffer_head *bh, **group_desc;
4026 struct ext4_super_block *es = NULL;
4027 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4028 struct flex_groups **flex_groups;
4030 ext4_fsblk_t sb_block = get_sb_block(&data);
4031 ext4_fsblk_t logical_sb_block;
4032 unsigned long offset = 0;
4033 unsigned long def_mount_opts;
4037 int blocksize, clustersize;
4038 unsigned int db_count;
4040 int needs_recovery, has_huge_files;
4043 ext4_group_t first_not_zeroed;
4044 struct ext4_parsed_options parsed_opts;
4046 /* Set defaults for the variables that will be set during parsing */
4047 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4048 parsed_opts.journal_devnum = 0;
4049 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4051 if ((data && !orig_data) || !sbi)
4054 sbi->s_daxdev = dax_dev;
4055 sbi->s_blockgroup_lock =
4056 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4057 if (!sbi->s_blockgroup_lock)
4060 sb->s_fs_info = sbi;
4062 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4063 sbi->s_sb_block = sb_block;
4064 sbi->s_sectors_written_start =
4065 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4067 /* Cleanup superblock name */
4068 strreplace(sb->s_id, '/', '!');
4070 /* -EINVAL is default */
4072 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4074 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4079 * The ext4 superblock will not be buffer aligned for other than 1kB
4080 * block sizes. We need to calculate the offset from buffer start.
4082 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4083 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4084 offset = do_div(logical_sb_block, blocksize);
4086 logical_sb_block = sb_block;
4089 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4091 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4096 * Note: s_es must be initialized as soon as possible because
4097 * some ext4 macro-instructions depend on its value
4099 es = (struct ext4_super_block *) (bh->b_data + offset);
4101 sb->s_magic = le16_to_cpu(es->s_magic);
4102 if (sb->s_magic != EXT4_SUPER_MAGIC)
4104 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4106 /* Warn if metadata_csum and gdt_csum are both set. */
4107 if (ext4_has_feature_metadata_csum(sb) &&
4108 ext4_has_feature_gdt_csum(sb))
4109 ext4_warning(sb, "metadata_csum and uninit_bg are "
4110 "redundant flags; please run fsck.");
4112 /* Check for a known checksum algorithm */
4113 if (!ext4_verify_csum_type(sb, es)) {
4114 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4115 "unknown checksum algorithm.");
4120 /* Load the checksum driver */
4121 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4122 if (IS_ERR(sbi->s_chksum_driver)) {
4123 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4124 ret = PTR_ERR(sbi->s_chksum_driver);
4125 sbi->s_chksum_driver = NULL;
4129 /* Check superblock checksum */
4130 if (!ext4_superblock_csum_verify(sb, es)) {
4131 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4132 "invalid superblock checksum. Run e2fsck?");
4138 /* Precompute checksum seed for all metadata */
4139 if (ext4_has_feature_csum_seed(sb))
4140 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4141 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4142 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4143 sizeof(es->s_uuid));
4145 /* Set defaults before we parse the mount options */
4146 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4147 set_opt(sb, INIT_INODE_TABLE);
4148 if (def_mount_opts & EXT4_DEFM_DEBUG)
4150 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4152 if (def_mount_opts & EXT4_DEFM_UID16)
4153 set_opt(sb, NO_UID32);
4154 /* xattr user namespace & acls are now defaulted on */
4155 set_opt(sb, XATTR_USER);
4156 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4157 set_opt(sb, POSIX_ACL);
4159 if (ext4_has_feature_fast_commit(sb))
4160 set_opt2(sb, JOURNAL_FAST_COMMIT);
4161 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4162 if (ext4_has_metadata_csum(sb))
4163 set_opt(sb, JOURNAL_CHECKSUM);
4165 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4166 set_opt(sb, JOURNAL_DATA);
4167 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4168 set_opt(sb, ORDERED_DATA);
4169 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4170 set_opt(sb, WRITEBACK_DATA);
4172 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4173 set_opt(sb, ERRORS_PANIC);
4174 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4175 set_opt(sb, ERRORS_CONT);
4177 set_opt(sb, ERRORS_RO);
4178 /* block_validity enabled by default; disable with noblock_validity */
4179 set_opt(sb, BLOCK_VALIDITY);
4180 if (def_mount_opts & EXT4_DEFM_DISCARD)
4181 set_opt(sb, DISCARD);
4183 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4184 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4185 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4186 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4187 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4189 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4190 set_opt(sb, BARRIER);
4193 * enable delayed allocation by default
4194 * Use -o nodelalloc to turn it off
4196 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4197 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4198 set_opt(sb, DELALLOC);
4201 * set default s_li_wait_mult for lazyinit, for the case there is
4202 * no mount option specified.
4204 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4206 if (le32_to_cpu(es->s_log_block_size) >
4207 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4208 ext4_msg(sb, KERN_ERR,
4209 "Invalid log block size: %u",
4210 le32_to_cpu(es->s_log_block_size));
4213 if (le32_to_cpu(es->s_log_cluster_size) >
4214 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4215 ext4_msg(sb, KERN_ERR,
4216 "Invalid log cluster size: %u",
4217 le32_to_cpu(es->s_log_cluster_size));
4221 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4223 if (blocksize == PAGE_SIZE)
4224 set_opt(sb, DIOREAD_NOLOCK);
4226 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4227 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4228 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4230 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4231 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4232 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4233 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4237 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4238 (!is_power_of_2(sbi->s_inode_size)) ||
4239 (sbi->s_inode_size > blocksize)) {
4240 ext4_msg(sb, KERN_ERR,
4241 "unsupported inode size: %d",
4243 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4247 * i_atime_extra is the last extra field available for
4248 * [acm]times in struct ext4_inode. Checking for that
4249 * field should suffice to ensure we have extra space
4252 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4253 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4254 sb->s_time_gran = 1;
4255 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4257 sb->s_time_gran = NSEC_PER_SEC;
4258 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4260 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4262 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4263 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4264 EXT4_GOOD_OLD_INODE_SIZE;
4265 if (ext4_has_feature_extra_isize(sb)) {
4266 unsigned v, max = (sbi->s_inode_size -
4267 EXT4_GOOD_OLD_INODE_SIZE);
4269 v = le16_to_cpu(es->s_want_extra_isize);
4271 ext4_msg(sb, KERN_ERR,
4272 "bad s_want_extra_isize: %d", v);
4275 if (sbi->s_want_extra_isize < v)
4276 sbi->s_want_extra_isize = v;
4278 v = le16_to_cpu(es->s_min_extra_isize);
4280 ext4_msg(sb, KERN_ERR,
4281 "bad s_min_extra_isize: %d", v);
4284 if (sbi->s_want_extra_isize < v)
4285 sbi->s_want_extra_isize = v;
4289 if (sbi->s_es->s_mount_opts[0]) {
4290 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4291 sizeof(sbi->s_es->s_mount_opts),
4295 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4296 ext4_msg(sb, KERN_WARNING,
4297 "failed to parse options in superblock: %s",
4300 kfree(s_mount_opts);
4302 sbi->s_def_mount_opt = sbi->s_mount_opt;
4303 if (!parse_options((char *) data, sb, &parsed_opts, 0))
4306 #ifdef CONFIG_UNICODE
4307 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4308 const struct ext4_sb_encodings *encoding_info;
4309 struct unicode_map *encoding;
4310 __u16 encoding_flags;
4312 if (ext4_sb_read_encoding(es, &encoding_info,
4314 ext4_msg(sb, KERN_ERR,
4315 "Encoding requested by superblock is unknown");
4319 encoding = utf8_load(encoding_info->version);
4320 if (IS_ERR(encoding)) {
4321 ext4_msg(sb, KERN_ERR,
4322 "can't mount with superblock charset: %s-%s "
4323 "not supported by the kernel. flags: 0x%x.",
4324 encoding_info->name, encoding_info->version,
4328 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4329 "%s-%s with flags 0x%hx", encoding_info->name,
4330 encoding_info->version?:"\b", encoding_flags);
4332 sb->s_encoding = encoding;
4333 sb->s_encoding_flags = encoding_flags;
4337 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4338 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4339 /* can't mount with both data=journal and dioread_nolock. */
4340 clear_opt(sb, DIOREAD_NOLOCK);
4341 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4342 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4343 ext4_msg(sb, KERN_ERR, "can't mount with "
4344 "both data=journal and delalloc");
4347 if (test_opt(sb, DAX_ALWAYS)) {
4348 ext4_msg(sb, KERN_ERR, "can't mount with "
4349 "both data=journal and dax");
4352 if (ext4_has_feature_encrypt(sb)) {
4353 ext4_msg(sb, KERN_WARNING,
4354 "encrypted files will use data=ordered "
4355 "instead of data journaling mode");
4357 if (test_opt(sb, DELALLOC))
4358 clear_opt(sb, DELALLOC);
4360 sb->s_iflags |= SB_I_CGROUPWB;
4363 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4364 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4366 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4367 (ext4_has_compat_features(sb) ||
4368 ext4_has_ro_compat_features(sb) ||
4369 ext4_has_incompat_features(sb)))
4370 ext4_msg(sb, KERN_WARNING,
4371 "feature flags set on rev 0 fs, "
4372 "running e2fsck is recommended");
4374 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4375 set_opt2(sb, HURD_COMPAT);
4376 if (ext4_has_feature_64bit(sb)) {
4377 ext4_msg(sb, KERN_ERR,
4378 "The Hurd can't support 64-bit file systems");
4383 * ea_inode feature uses l_i_version field which is not
4384 * available in HURD_COMPAT mode.
4386 if (ext4_has_feature_ea_inode(sb)) {
4387 ext4_msg(sb, KERN_ERR,
4388 "ea_inode feature is not supported for Hurd");
4393 if (IS_EXT2_SB(sb)) {
4394 if (ext2_feature_set_ok(sb))
4395 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4396 "using the ext4 subsystem");
4399 * If we're probing be silent, if this looks like
4400 * it's actually an ext[34] filesystem.
4402 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4404 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4405 "to feature incompatibilities");
4410 if (IS_EXT3_SB(sb)) {
4411 if (ext3_feature_set_ok(sb))
4412 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4413 "using the ext4 subsystem");
4416 * If we're probing be silent, if this looks like
4417 * it's actually an ext4 filesystem.
4419 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4421 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4422 "to feature incompatibilities");
4428 * Check feature flags regardless of the revision level, since we
4429 * previously didn't change the revision level when setting the flags,
4430 * so there is a chance incompat flags are set on a rev 0 filesystem.
4432 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4435 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4436 ext4_msg(sb, KERN_ERR,
4437 "Number of reserved GDT blocks insanely large: %d",
4438 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4442 if (bdev_dax_supported(sb->s_bdev, blocksize))
4443 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4445 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4446 if (ext4_has_feature_inline_data(sb)) {
4447 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4448 " that may contain inline data");
4451 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4452 ext4_msg(sb, KERN_ERR,
4453 "DAX unsupported by block device.");
4458 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4459 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4460 es->s_encryption_level);
4464 if (sb->s_blocksize != blocksize) {
4466 * bh must be released before kill_bdev(), otherwise
4467 * it won't be freed and its page also. kill_bdev()
4468 * is called by sb_set_blocksize().
4471 /* Validate the filesystem blocksize */
4472 if (!sb_set_blocksize(sb, blocksize)) {
4473 ext4_msg(sb, KERN_ERR, "bad block size %d",
4479 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4480 offset = do_div(logical_sb_block, blocksize);
4481 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4483 ext4_msg(sb, KERN_ERR,
4484 "Can't read superblock on 2nd try");
4489 es = (struct ext4_super_block *)(bh->b_data + offset);
4491 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4492 ext4_msg(sb, KERN_ERR,
4493 "Magic mismatch, very weird!");
4498 has_huge_files = ext4_has_feature_huge_file(sb);
4499 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4501 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4503 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4504 if (ext4_has_feature_64bit(sb)) {
4505 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4506 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4507 !is_power_of_2(sbi->s_desc_size)) {
4508 ext4_msg(sb, KERN_ERR,
4509 "unsupported descriptor size %lu",
4514 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4516 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4517 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4519 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4520 if (sbi->s_inodes_per_block == 0)
4522 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4523 sbi->s_inodes_per_group > blocksize * 8) {
4524 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4525 sbi->s_inodes_per_group);
4528 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4529 sbi->s_inodes_per_block;
4530 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4532 sbi->s_mount_state = le16_to_cpu(es->s_state);
4533 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4534 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4536 for (i = 0; i < 4; i++)
4537 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4538 sbi->s_def_hash_version = es->s_def_hash_version;
4539 if (ext4_has_feature_dir_index(sb)) {
4540 i = le32_to_cpu(es->s_flags);
4541 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4542 sbi->s_hash_unsigned = 3;
4543 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4544 #ifdef __CHAR_UNSIGNED__
4547 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4548 sbi->s_hash_unsigned = 3;
4552 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4557 /* Handle clustersize */
4558 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4559 if (ext4_has_feature_bigalloc(sb)) {
4560 if (clustersize < blocksize) {
4561 ext4_msg(sb, KERN_ERR,
4562 "cluster size (%d) smaller than "
4563 "block size (%d)", clustersize, blocksize);
4566 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4567 le32_to_cpu(es->s_log_block_size);
4568 sbi->s_clusters_per_group =
4569 le32_to_cpu(es->s_clusters_per_group);
4570 if (sbi->s_clusters_per_group > blocksize * 8) {
4571 ext4_msg(sb, KERN_ERR,
4572 "#clusters per group too big: %lu",
4573 sbi->s_clusters_per_group);
4576 if (sbi->s_blocks_per_group !=
4577 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4578 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4579 "clusters per group (%lu) inconsistent",
4580 sbi->s_blocks_per_group,
4581 sbi->s_clusters_per_group);
4585 if (clustersize != blocksize) {
4586 ext4_msg(sb, KERN_ERR,
4587 "fragment/cluster size (%d) != "
4588 "block size (%d)", clustersize, blocksize);
4591 if (sbi->s_blocks_per_group > blocksize * 8) {
4592 ext4_msg(sb, KERN_ERR,
4593 "#blocks per group too big: %lu",
4594 sbi->s_blocks_per_group);
4597 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4598 sbi->s_cluster_bits = 0;
4600 sbi->s_cluster_ratio = clustersize / blocksize;
4602 /* Do we have standard group size of clustersize * 8 blocks ? */
4603 if (sbi->s_blocks_per_group == clustersize << 3)
4604 set_opt2(sb, STD_GROUP_SIZE);
4607 * Test whether we have more sectors than will fit in sector_t,
4608 * and whether the max offset is addressable by the page cache.
4610 err = generic_check_addressable(sb->s_blocksize_bits,
4611 ext4_blocks_count(es));
4613 ext4_msg(sb, KERN_ERR, "filesystem"
4614 " too large to mount safely on this system");
4618 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4621 /* check blocks count against device size */
4622 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4623 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4624 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4625 "exceeds size of device (%llu blocks)",
4626 ext4_blocks_count(es), blocks_count);
4631 * It makes no sense for the first data block to be beyond the end
4632 * of the filesystem.
4634 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4635 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4636 "block %u is beyond end of filesystem (%llu)",
4637 le32_to_cpu(es->s_first_data_block),
4638 ext4_blocks_count(es));
4641 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4642 (sbi->s_cluster_ratio == 1)) {
4643 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4644 "block is 0 with a 1k block and cluster size");
4648 blocks_count = (ext4_blocks_count(es) -
4649 le32_to_cpu(es->s_first_data_block) +
4650 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4651 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4652 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4653 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4654 "(block count %llu, first data block %u, "
4655 "blocks per group %lu)", blocks_count,
4656 ext4_blocks_count(es),
4657 le32_to_cpu(es->s_first_data_block),
4658 EXT4_BLOCKS_PER_GROUP(sb));
4661 sbi->s_groups_count = blocks_count;
4662 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4663 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4664 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4665 le32_to_cpu(es->s_inodes_count)) {
4666 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4667 le32_to_cpu(es->s_inodes_count),
4668 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4672 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4673 EXT4_DESC_PER_BLOCK(sb);
4674 if (ext4_has_feature_meta_bg(sb)) {
4675 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4676 ext4_msg(sb, KERN_WARNING,
4677 "first meta block group too large: %u "
4678 "(group descriptor block count %u)",
4679 le32_to_cpu(es->s_first_meta_bg), db_count);
4683 rcu_assign_pointer(sbi->s_group_desc,
4684 kvmalloc_array(db_count,
4685 sizeof(struct buffer_head *),
4687 if (sbi->s_group_desc == NULL) {
4688 ext4_msg(sb, KERN_ERR, "not enough memory");
4693 bgl_lock_init(sbi->s_blockgroup_lock);
4695 /* Pre-read the descriptors into the buffer cache */
4696 for (i = 0; i < db_count; i++) {
4697 block = descriptor_loc(sb, logical_sb_block, i);
4698 ext4_sb_breadahead_unmovable(sb, block);
4701 for (i = 0; i < db_count; i++) {
4702 struct buffer_head *bh;
4704 block = descriptor_loc(sb, logical_sb_block, i);
4705 bh = ext4_sb_bread_unmovable(sb, block);
4707 ext4_msg(sb, KERN_ERR,
4708 "can't read group descriptor %d", i);
4714 rcu_dereference(sbi->s_group_desc)[i] = bh;
4717 sbi->s_gdb_count = db_count;
4718 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4719 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4720 ret = -EFSCORRUPTED;
4724 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4725 spin_lock_init(&sbi->s_error_lock);
4726 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4728 /* Register extent status tree shrinker */
4729 if (ext4_es_register_shrinker(sbi))
4732 sbi->s_stripe = ext4_get_stripe_size(sbi);
4733 sbi->s_extent_max_zeroout_kb = 32;
4736 * set up enough so that it can read an inode
4738 sb->s_op = &ext4_sops;
4739 sb->s_export_op = &ext4_export_ops;
4740 sb->s_xattr = ext4_xattr_handlers;
4741 #ifdef CONFIG_FS_ENCRYPTION
4742 sb->s_cop = &ext4_cryptops;
4744 #ifdef CONFIG_FS_VERITY
4745 sb->s_vop = &ext4_verityops;
4748 sb->dq_op = &ext4_quota_operations;
4749 if (ext4_has_feature_quota(sb))
4750 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4752 sb->s_qcop = &ext4_qctl_operations;
4753 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4755 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4757 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4758 mutex_init(&sbi->s_orphan_lock);
4760 /* Initialize fast commit stuff */
4761 atomic_set(&sbi->s_fc_subtid, 0);
4762 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4763 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4764 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4765 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4766 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4767 sbi->s_fc_bytes = 0;
4768 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4769 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4770 spin_lock_init(&sbi->s_fc_lock);
4771 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4772 sbi->s_fc_replay_state.fc_regions = NULL;
4773 sbi->s_fc_replay_state.fc_regions_size = 0;
4774 sbi->s_fc_replay_state.fc_regions_used = 0;
4775 sbi->s_fc_replay_state.fc_regions_valid = 0;
4776 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4777 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4778 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4782 needs_recovery = (es->s_last_orphan != 0 ||
4783 ext4_has_feature_journal_needs_recovery(sb));
4785 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4786 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4787 goto failed_mount3a;
4790 * The first inode we look at is the journal inode. Don't try
4791 * root first: it may be modified in the journal!
4793 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4794 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4796 goto failed_mount3a;
4797 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4798 ext4_has_feature_journal_needs_recovery(sb)) {
4799 ext4_msg(sb, KERN_ERR, "required journal recovery "
4800 "suppressed and not mounted read-only");
4801 goto failed_mount_wq;
4803 /* Nojournal mode, all journal mount options are illegal */
4804 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4805 ext4_msg(sb, KERN_ERR, "can't mount with "
4806 "journal_checksum, fs mounted w/o journal");
4807 goto failed_mount_wq;
4809 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4810 ext4_msg(sb, KERN_ERR, "can't mount with "
4811 "journal_async_commit, fs mounted w/o journal");
4812 goto failed_mount_wq;
4814 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4815 ext4_msg(sb, KERN_ERR, "can't mount with "
4816 "commit=%lu, fs mounted w/o journal",
4817 sbi->s_commit_interval / HZ);
4818 goto failed_mount_wq;
4820 if (EXT4_MOUNT_DATA_FLAGS &
4821 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4822 ext4_msg(sb, KERN_ERR, "can't mount with "
4823 "data=, fs mounted w/o journal");
4824 goto failed_mount_wq;
4826 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4827 clear_opt(sb, JOURNAL_CHECKSUM);
4828 clear_opt(sb, DATA_FLAGS);
4829 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4830 sbi->s_journal = NULL;
4835 if (ext4_has_feature_64bit(sb) &&
4836 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4837 JBD2_FEATURE_INCOMPAT_64BIT)) {
4838 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4839 goto failed_mount_wq;
4842 if (!set_journal_csum_feature_set(sb)) {
4843 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4845 goto failed_mount_wq;
4848 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4849 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4850 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4851 ext4_msg(sb, KERN_ERR,
4852 "Failed to set fast commit journal feature");
4853 goto failed_mount_wq;
4856 /* We have now updated the journal if required, so we can
4857 * validate the data journaling mode. */
4858 switch (test_opt(sb, DATA_FLAGS)) {
4860 /* No mode set, assume a default based on the journal
4861 * capabilities: ORDERED_DATA if the journal can
4862 * cope, else JOURNAL_DATA
4864 if (jbd2_journal_check_available_features
4865 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4866 set_opt(sb, ORDERED_DATA);
4867 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4869 set_opt(sb, JOURNAL_DATA);
4870 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4874 case EXT4_MOUNT_ORDERED_DATA:
4875 case EXT4_MOUNT_WRITEBACK_DATA:
4876 if (!jbd2_journal_check_available_features
4877 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4878 ext4_msg(sb, KERN_ERR, "Journal does not support "
4879 "requested data journaling mode");
4880 goto failed_mount_wq;
4887 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4888 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4889 ext4_msg(sb, KERN_ERR, "can't mount with "
4890 "journal_async_commit in data=ordered mode");
4891 goto failed_mount_wq;
4894 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4896 sbi->s_journal->j_submit_inode_data_buffers =
4897 ext4_journal_submit_inode_data_buffers;
4898 sbi->s_journal->j_finish_inode_data_buffers =
4899 ext4_journal_finish_inode_data_buffers;
4902 if (!test_opt(sb, NO_MBCACHE)) {
4903 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4904 if (!sbi->s_ea_block_cache) {
4905 ext4_msg(sb, KERN_ERR,
4906 "Failed to create ea_block_cache");
4907 goto failed_mount_wq;
4910 if (ext4_has_feature_ea_inode(sb)) {
4911 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4912 if (!sbi->s_ea_inode_cache) {
4913 ext4_msg(sb, KERN_ERR,
4914 "Failed to create ea_inode_cache");
4915 goto failed_mount_wq;
4920 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4921 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4922 goto failed_mount_wq;
4925 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4926 !ext4_has_feature_encrypt(sb)) {
4927 ext4_set_feature_encrypt(sb);
4928 ext4_commit_super(sb);
4932 * Get the # of file system overhead blocks from the
4933 * superblock if present.
4935 if (es->s_overhead_clusters)
4936 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4938 err = ext4_calculate_overhead(sb);
4940 goto failed_mount_wq;
4944 * The maximum number of concurrent works can be high and
4945 * concurrency isn't really necessary. Limit it to 1.
4947 EXT4_SB(sb)->rsv_conversion_wq =
4948 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4949 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4950 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4956 * The jbd2_journal_load will have done any necessary log recovery,
4957 * so we can safely mount the rest of the filesystem now.
4960 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4962 ext4_msg(sb, KERN_ERR, "get root inode failed");
4963 ret = PTR_ERR(root);
4967 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4968 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4973 sb->s_root = d_make_root(root);
4975 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4980 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4981 if (ret == -EROFS) {
4982 sb->s_flags |= SB_RDONLY;
4985 goto failed_mount4a;
4987 ext4_set_resv_clusters(sb);
4989 if (test_opt(sb, BLOCK_VALIDITY)) {
4990 err = ext4_setup_system_zone(sb);
4992 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4994 goto failed_mount4a;
4997 ext4_fc_replay_cleanup(sb);
5002 * Enable optimize_scan if number of groups is > threshold. This can be
5003 * turned off by passing "mb_optimize_scan=0". This can also be
5004 * turned on forcefully by passing "mb_optimize_scan=1".
5006 if (parsed_opts.mb_optimize_scan == 1)
5007 set_opt2(sb, MB_OPTIMIZE_SCAN);
5008 else if (parsed_opts.mb_optimize_scan == 0)
5009 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5010 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5011 set_opt2(sb, MB_OPTIMIZE_SCAN);
5013 err = ext4_mb_init(sb);
5015 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5021 * We can only set up the journal commit callback once
5022 * mballoc is initialized
5025 sbi->s_journal->j_commit_callback =
5026 ext4_journal_commit_callback;
5028 block = ext4_count_free_clusters(sb);
5029 ext4_free_blocks_count_set(sbi->s_es,
5030 EXT4_C2B(sbi, block));
5031 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5034 unsigned long freei = ext4_count_free_inodes(sb);
5035 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5036 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5040 err = percpu_counter_init(&sbi->s_dirs_counter,
5041 ext4_count_dirs(sb), GFP_KERNEL);
5043 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5046 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5049 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5052 ext4_msg(sb, KERN_ERR, "insufficient memory");
5056 if (ext4_has_feature_flex_bg(sb))
5057 if (!ext4_fill_flex_info(sb)) {
5058 ext4_msg(sb, KERN_ERR,
5059 "unable to initialize "
5060 "flex_bg meta info!");
5064 err = ext4_register_li_request(sb, first_not_zeroed);
5068 err = ext4_register_sysfs(sb);
5073 /* Enable quota usage during mount. */
5074 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5075 err = ext4_enable_quotas(sb);
5079 #endif /* CONFIG_QUOTA */
5082 * Save the original bdev mapping's wb_err value which could be
5083 * used to detect the metadata async write error.
5085 spin_lock_init(&sbi->s_bdev_wb_lock);
5086 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5087 &sbi->s_bdev_wb_err);
5088 sb->s_bdev->bd_super = sb;
5089 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5090 ext4_orphan_cleanup(sb, es);
5091 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5092 if (needs_recovery) {
5093 ext4_msg(sb, KERN_INFO, "recovery complete");
5094 err = ext4_mark_recovery_complete(sb, es);
5098 if (EXT4_SB(sb)->s_journal) {
5099 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5100 descr = " journalled data mode";
5101 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5102 descr = " ordered data mode";
5104 descr = " writeback data mode";
5106 descr = "out journal";
5108 if (test_opt(sb, DISCARD)) {
5109 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5110 if (!blk_queue_discard(q))
5111 ext4_msg(sb, KERN_WARNING,
5112 "mounting with \"discard\" option, but "
5113 "the device does not support discard");
5116 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5117 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5118 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5119 (int) sizeof(sbi->s_es->s_mount_opts),
5120 sbi->s_es->s_mount_opts,
5121 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5122 ext4_quota_mode(sb));
5124 if (es->s_error_count)
5125 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5127 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5128 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5129 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5130 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5131 atomic_set(&sbi->s_warning_count, 0);
5132 atomic_set(&sbi->s_msg_count, 0);
5139 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5143 ext4_unregister_sysfs(sb);
5144 kobject_put(&sbi->s_kobj);
5146 ext4_unregister_li_request(sb);
5148 ext4_mb_release(sb);
5150 flex_groups = rcu_dereference(sbi->s_flex_groups);
5152 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5153 kvfree(flex_groups[i]);
5154 kvfree(flex_groups);
5157 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5158 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5159 percpu_counter_destroy(&sbi->s_dirs_counter);
5160 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5161 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5162 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5164 ext4_ext_release(sb);
5165 ext4_release_system_zone(sb);
5170 ext4_msg(sb, KERN_ERR, "mount failed");
5171 if (EXT4_SB(sb)->rsv_conversion_wq)
5172 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5174 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5175 sbi->s_ea_inode_cache = NULL;
5177 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5178 sbi->s_ea_block_cache = NULL;
5180 if (sbi->s_journal) {
5181 jbd2_journal_destroy(sbi->s_journal);
5182 sbi->s_journal = NULL;
5185 ext4_es_unregister_shrinker(sbi);
5187 flush_work(&sbi->s_error_work);
5188 del_timer_sync(&sbi->s_err_report);
5189 ext4_stop_mmpd(sbi);
5192 group_desc = rcu_dereference(sbi->s_group_desc);
5193 for (i = 0; i < db_count; i++)
5194 brelse(group_desc[i]);
5198 if (sbi->s_chksum_driver)
5199 crypto_free_shash(sbi->s_chksum_driver);
5201 #ifdef CONFIG_UNICODE
5202 utf8_unload(sb->s_encoding);
5206 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5207 kfree(get_qf_name(sb, sbi, i));
5209 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5210 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5212 ext4_blkdev_remove(sbi);
5214 sb->s_fs_info = NULL;
5215 kfree(sbi->s_blockgroup_lock);
5219 fs_put_dax(dax_dev);
5220 return err ? err : ret;
5224 * Setup any per-fs journal parameters now. We'll do this both on
5225 * initial mount, once the journal has been initialised but before we've
5226 * done any recovery; and again on any subsequent remount.
5228 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5230 struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 journal->j_commit_interval = sbi->s_commit_interval;
5233 journal->j_min_batch_time = sbi->s_min_batch_time;
5234 journal->j_max_batch_time = sbi->s_max_batch_time;
5235 ext4_fc_init(sb, journal);
5237 write_lock(&journal->j_state_lock);
5238 if (test_opt(sb, BARRIER))
5239 journal->j_flags |= JBD2_BARRIER;
5241 journal->j_flags &= ~JBD2_BARRIER;
5242 if (test_opt(sb, DATA_ERR_ABORT))
5243 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5245 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5246 write_unlock(&journal->j_state_lock);
5249 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5250 unsigned int journal_inum)
5252 struct inode *journal_inode;
5255 * Test for the existence of a valid inode on disk. Bad things
5256 * happen if we iget() an unused inode, as the subsequent iput()
5257 * will try to delete it.
5259 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5260 if (IS_ERR(journal_inode)) {
5261 ext4_msg(sb, KERN_ERR, "no journal found");
5264 if (!journal_inode->i_nlink) {
5265 make_bad_inode(journal_inode);
5266 iput(journal_inode);
5267 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5271 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5272 journal_inode, journal_inode->i_size);
5273 if (!S_ISREG(journal_inode->i_mode)) {
5274 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5275 iput(journal_inode);
5278 return journal_inode;
5281 static journal_t *ext4_get_journal(struct super_block *sb,
5282 unsigned int journal_inum)
5284 struct inode *journal_inode;
5287 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5290 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5294 journal = jbd2_journal_init_inode(journal_inode);
5296 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5297 iput(journal_inode);
5300 journal->j_private = sb;
5301 ext4_init_journal_params(sb, journal);
5305 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5308 struct buffer_head *bh;
5312 int hblock, blocksize;
5313 ext4_fsblk_t sb_block;
5314 unsigned long offset;
5315 struct ext4_super_block *es;
5316 struct block_device *bdev;
5318 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5321 bdev = ext4_blkdev_get(j_dev, sb);
5325 blocksize = sb->s_blocksize;
5326 hblock = bdev_logical_block_size(bdev);
5327 if (blocksize < hblock) {
5328 ext4_msg(sb, KERN_ERR,
5329 "blocksize too small for journal device");
5333 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5334 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5335 set_blocksize(bdev, blocksize);
5336 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5337 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5338 "external journal");
5342 es = (struct ext4_super_block *) (bh->b_data + offset);
5343 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5344 !(le32_to_cpu(es->s_feature_incompat) &
5345 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5346 ext4_msg(sb, KERN_ERR, "external journal has "
5352 if ((le32_to_cpu(es->s_feature_ro_compat) &
5353 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5354 es->s_checksum != ext4_superblock_csum(sb, es)) {
5355 ext4_msg(sb, KERN_ERR, "external journal has "
5356 "corrupt superblock");
5361 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5362 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5367 len = ext4_blocks_count(es);
5368 start = sb_block + 1;
5369 brelse(bh); /* we're done with the superblock */
5371 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5372 start, len, blocksize);
5374 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5377 journal->j_private = sb;
5378 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5379 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5382 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5383 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5384 "user (unsupported) - %d",
5385 be32_to_cpu(journal->j_superblock->s_nr_users));
5388 EXT4_SB(sb)->s_journal_bdev = bdev;
5389 ext4_init_journal_params(sb, journal);
5393 jbd2_journal_destroy(journal);
5395 ext4_blkdev_put(bdev);
5399 static int ext4_load_journal(struct super_block *sb,
5400 struct ext4_super_block *es,
5401 unsigned long journal_devnum)
5404 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5407 int really_read_only;
5410 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5411 return -EFSCORRUPTED;
5413 if (journal_devnum &&
5414 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5415 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5416 "numbers have changed");
5417 journal_dev = new_decode_dev(journal_devnum);
5419 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5421 if (journal_inum && journal_dev) {
5422 ext4_msg(sb, KERN_ERR,
5423 "filesystem has both journal inode and journal device!");
5428 journal = ext4_get_journal(sb, journal_inum);
5432 journal = ext4_get_dev_journal(sb, journal_dev);
5437 journal_dev_ro = bdev_read_only(journal->j_dev);
5438 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5440 if (journal_dev_ro && !sb_rdonly(sb)) {
5441 ext4_msg(sb, KERN_ERR,
5442 "journal device read-only, try mounting with '-o ro'");
5448 * Are we loading a blank journal or performing recovery after a
5449 * crash? For recovery, we need to check in advance whether we
5450 * can get read-write access to the device.
5452 if (ext4_has_feature_journal_needs_recovery(sb)) {
5453 if (sb_rdonly(sb)) {
5454 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5455 "required on readonly filesystem");
5456 if (really_read_only) {
5457 ext4_msg(sb, KERN_ERR, "write access "
5458 "unavailable, cannot proceed "
5459 "(try mounting with noload)");
5463 ext4_msg(sb, KERN_INFO, "write access will "
5464 "be enabled during recovery");
5468 if (!(journal->j_flags & JBD2_BARRIER))
5469 ext4_msg(sb, KERN_INFO, "barriers disabled");
5471 if (!ext4_has_feature_journal_needs_recovery(sb))
5472 err = jbd2_journal_wipe(journal, !really_read_only);
5474 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5476 memcpy(save, ((char *) es) +
5477 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5478 err = jbd2_journal_load(journal);
5480 memcpy(((char *) es) + EXT4_S_ERR_START,
5481 save, EXT4_S_ERR_LEN);
5486 ext4_msg(sb, KERN_ERR, "error loading journal");
5490 EXT4_SB(sb)->s_journal = journal;
5491 err = ext4_clear_journal_err(sb, es);
5493 EXT4_SB(sb)->s_journal = NULL;
5494 jbd2_journal_destroy(journal);
5498 if (!really_read_only && journal_devnum &&
5499 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5500 es->s_journal_dev = cpu_to_le32(journal_devnum);
5502 /* Make sure we flush the recovery flag to disk. */
5503 ext4_commit_super(sb);
5509 jbd2_journal_destroy(journal);
5513 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5514 static void ext4_update_super(struct super_block *sb)
5516 struct ext4_sb_info *sbi = EXT4_SB(sb);
5517 struct ext4_super_block *es = sbi->s_es;
5518 struct buffer_head *sbh = sbi->s_sbh;
5522 * If the file system is mounted read-only, don't update the
5523 * superblock write time. This avoids updating the superblock
5524 * write time when we are mounting the root file system
5525 * read/only but we need to replay the journal; at that point,
5526 * for people who are east of GMT and who make their clock
5527 * tick in localtime for Windows bug-for-bug compatibility,
5528 * the clock is set in the future, and this will cause e2fsck
5529 * to complain and force a full file system check.
5531 if (!(sb->s_flags & SB_RDONLY))
5532 ext4_update_tstamp(es, s_wtime);
5533 es->s_kbytes_written =
5534 cpu_to_le64(sbi->s_kbytes_written +
5535 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5536 sbi->s_sectors_written_start) >> 1));
5537 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5538 ext4_free_blocks_count_set(es,
5539 EXT4_C2B(sbi, percpu_counter_sum_positive(
5540 &sbi->s_freeclusters_counter)));
5541 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5542 es->s_free_inodes_count =
5543 cpu_to_le32(percpu_counter_sum_positive(
5544 &sbi->s_freeinodes_counter));
5545 /* Copy error information to the on-disk superblock */
5546 spin_lock(&sbi->s_error_lock);
5547 if (sbi->s_add_error_count > 0) {
5548 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5549 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5550 __ext4_update_tstamp(&es->s_first_error_time,
5551 &es->s_first_error_time_hi,
5552 sbi->s_first_error_time);
5553 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5554 sizeof(es->s_first_error_func));
5555 es->s_first_error_line =
5556 cpu_to_le32(sbi->s_first_error_line);
5557 es->s_first_error_ino =
5558 cpu_to_le32(sbi->s_first_error_ino);
5559 es->s_first_error_block =
5560 cpu_to_le64(sbi->s_first_error_block);
5561 es->s_first_error_errcode =
5562 ext4_errno_to_code(sbi->s_first_error_code);
5564 __ext4_update_tstamp(&es->s_last_error_time,
5565 &es->s_last_error_time_hi,
5566 sbi->s_last_error_time);
5567 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5568 sizeof(es->s_last_error_func));
5569 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5570 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5571 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5572 es->s_last_error_errcode =
5573 ext4_errno_to_code(sbi->s_last_error_code);
5575 * Start the daily error reporting function if it hasn't been
5578 if (!es->s_error_count)
5579 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5580 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5581 sbi->s_add_error_count = 0;
5583 spin_unlock(&sbi->s_error_lock);
5585 ext4_superblock_csum_set(sb);
5589 static int ext4_commit_super(struct super_block *sb)
5591 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5596 if (block_device_ejected(sb))
5599 ext4_update_super(sb);
5601 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5603 * Oh, dear. A previous attempt to write the
5604 * superblock failed. This could happen because the
5605 * USB device was yanked out. Or it could happen to
5606 * be a transient write error and maybe the block will
5607 * be remapped. Nothing we can do but to retry the
5608 * write and hope for the best.
5610 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5611 "superblock detected");
5612 clear_buffer_write_io_error(sbh);
5613 set_buffer_uptodate(sbh);
5615 BUFFER_TRACE(sbh, "marking dirty");
5616 mark_buffer_dirty(sbh);
5617 error = __sync_dirty_buffer(sbh,
5618 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5619 if (buffer_write_io_error(sbh)) {
5620 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5622 clear_buffer_write_io_error(sbh);
5623 set_buffer_uptodate(sbh);
5629 * Have we just finished recovery? If so, and if we are mounting (or
5630 * remounting) the filesystem readonly, then we will end up with a
5631 * consistent fs on disk. Record that fact.
5633 static int ext4_mark_recovery_complete(struct super_block *sb,
5634 struct ext4_super_block *es)
5637 journal_t *journal = EXT4_SB(sb)->s_journal;
5639 if (!ext4_has_feature_journal(sb)) {
5640 if (journal != NULL) {
5641 ext4_error(sb, "Journal got removed while the fs was "
5643 return -EFSCORRUPTED;
5647 jbd2_journal_lock_updates(journal);
5648 err = jbd2_journal_flush(journal);
5652 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5653 ext4_clear_feature_journal_needs_recovery(sb);
5654 ext4_commit_super(sb);
5657 jbd2_journal_unlock_updates(journal);
5662 * If we are mounting (or read-write remounting) a filesystem whose journal
5663 * has recorded an error from a previous lifetime, move that error to the
5664 * main filesystem now.
5666 static int ext4_clear_journal_err(struct super_block *sb,
5667 struct ext4_super_block *es)
5673 if (!ext4_has_feature_journal(sb)) {
5674 ext4_error(sb, "Journal got removed while the fs was mounted!");
5675 return -EFSCORRUPTED;
5678 journal = EXT4_SB(sb)->s_journal;
5681 * Now check for any error status which may have been recorded in the
5682 * journal by a prior ext4_error() or ext4_abort()
5685 j_errno = jbd2_journal_errno(journal);
5689 errstr = ext4_decode_error(sb, j_errno, nbuf);
5690 ext4_warning(sb, "Filesystem error recorded "
5691 "from previous mount: %s", errstr);
5692 ext4_warning(sb, "Marking fs in need of filesystem check.");
5694 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5695 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5696 ext4_commit_super(sb);
5698 jbd2_journal_clear_err(journal);
5699 jbd2_journal_update_sb_errno(journal);
5705 * Force the running and committing transactions to commit,
5706 * and wait on the commit.
5708 int ext4_force_commit(struct super_block *sb)
5715 journal = EXT4_SB(sb)->s_journal;
5716 return ext4_journal_force_commit(journal);
5719 static int ext4_sync_fs(struct super_block *sb, int wait)
5723 bool needs_barrier = false;
5724 struct ext4_sb_info *sbi = EXT4_SB(sb);
5726 if (unlikely(ext4_forced_shutdown(sbi)))
5729 trace_ext4_sync_fs(sb, wait);
5730 flush_workqueue(sbi->rsv_conversion_wq);
5732 * Writeback quota in non-journalled quota case - journalled quota has
5735 dquot_writeback_dquots(sb, -1);
5737 * Data writeback is possible w/o journal transaction, so barrier must
5738 * being sent at the end of the function. But we can skip it if
5739 * transaction_commit will do it for us.
5741 if (sbi->s_journal) {
5742 target = jbd2_get_latest_transaction(sbi->s_journal);
5743 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5744 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5745 needs_barrier = true;
5747 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5749 ret = jbd2_log_wait_commit(sbi->s_journal,
5752 } else if (wait && test_opt(sb, BARRIER))
5753 needs_barrier = true;
5754 if (needs_barrier) {
5756 err = blkdev_issue_flush(sb->s_bdev);
5765 * LVM calls this function before a (read-only) snapshot is created. This
5766 * gives us a chance to flush the journal completely and mark the fs clean.
5768 * Note that only this function cannot bring a filesystem to be in a clean
5769 * state independently. It relies on upper layer to stop all data & metadata
5772 static int ext4_freeze(struct super_block *sb)
5780 journal = EXT4_SB(sb)->s_journal;
5783 /* Now we set up the journal barrier. */
5784 jbd2_journal_lock_updates(journal);
5787 * Don't clear the needs_recovery flag if we failed to
5788 * flush the journal.
5790 error = jbd2_journal_flush(journal);
5794 /* Journal blocked and flushed, clear needs_recovery flag. */
5795 ext4_clear_feature_journal_needs_recovery(sb);
5798 error = ext4_commit_super(sb);
5801 /* we rely on upper layer to stop further updates */
5802 jbd2_journal_unlock_updates(journal);
5807 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5808 * flag here, even though the filesystem is not technically dirty yet.
5810 static int ext4_unfreeze(struct super_block *sb)
5812 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5815 if (EXT4_SB(sb)->s_journal) {
5816 /* Reset the needs_recovery flag before the fs is unlocked. */
5817 ext4_set_feature_journal_needs_recovery(sb);
5820 ext4_commit_super(sb);
5825 * Structure to save mount options for ext4_remount's benefit
5827 struct ext4_mount_options {
5828 unsigned long s_mount_opt;
5829 unsigned long s_mount_opt2;
5832 unsigned long s_commit_interval;
5833 u32 s_min_batch_time, s_max_batch_time;
5836 char *s_qf_names[EXT4_MAXQUOTAS];
5840 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5842 struct ext4_super_block *es;
5843 struct ext4_sb_info *sbi = EXT4_SB(sb);
5844 unsigned long old_sb_flags, vfs_flags;
5845 struct ext4_mount_options old_opts;
5846 int enable_quota = 0;
5851 char *to_free[EXT4_MAXQUOTAS];
5853 char *orig_data = kstrdup(data, GFP_KERNEL);
5854 struct ext4_parsed_options parsed_opts;
5856 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5857 parsed_opts.journal_devnum = 0;
5859 if (data && !orig_data)
5862 /* Store the original options */
5863 old_sb_flags = sb->s_flags;
5864 old_opts.s_mount_opt = sbi->s_mount_opt;
5865 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5866 old_opts.s_resuid = sbi->s_resuid;
5867 old_opts.s_resgid = sbi->s_resgid;
5868 old_opts.s_commit_interval = sbi->s_commit_interval;
5869 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5870 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5872 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5873 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5874 if (sbi->s_qf_names[i]) {
5875 char *qf_name = get_qf_name(sb, sbi, i);
5877 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5878 if (!old_opts.s_qf_names[i]) {
5879 for (j = 0; j < i; j++)
5880 kfree(old_opts.s_qf_names[j]);
5885 old_opts.s_qf_names[i] = NULL;
5887 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5888 parsed_opts.journal_ioprio =
5889 sbi->s_journal->j_task->io_context->ioprio;
5892 * Some options can be enabled by ext4 and/or by VFS mount flag
5893 * either way we need to make sure it matches in both *flags and
5894 * s_flags. Copy those selected flags from *flags to s_flags
5896 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5897 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5899 if (!parse_options(data, sb, &parsed_opts, 1)) {
5904 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5905 test_opt(sb, JOURNAL_CHECKSUM)) {
5906 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5907 "during remount not supported; ignoring");
5908 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5911 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5912 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5913 ext4_msg(sb, KERN_ERR, "can't mount with "
5914 "both data=journal and delalloc");
5918 if (test_opt(sb, DIOREAD_NOLOCK)) {
5919 ext4_msg(sb, KERN_ERR, "can't mount with "
5920 "both data=journal and dioread_nolock");
5924 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5925 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5926 ext4_msg(sb, KERN_ERR, "can't mount with "
5927 "journal_async_commit in data=ordered mode");
5933 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5934 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5939 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5940 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5942 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5943 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5947 if (sbi->s_journal) {
5948 ext4_init_journal_params(sb, sbi->s_journal);
5949 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5952 /* Flush outstanding errors before changing fs state */
5953 flush_work(&sbi->s_error_work);
5955 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5956 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5961 if (*flags & SB_RDONLY) {
5962 err = sync_filesystem(sb);
5965 err = dquot_suspend(sb, -1);
5970 * First of all, the unconditional stuff we have to do
5971 * to disable replay of the journal when we next remount
5973 sb->s_flags |= SB_RDONLY;
5976 * OK, test if we are remounting a valid rw partition
5977 * readonly, and if so set the rdonly flag and then
5978 * mark the partition as valid again.
5980 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5981 (sbi->s_mount_state & EXT4_VALID_FS))
5982 es->s_state = cpu_to_le16(sbi->s_mount_state);
5984 if (sbi->s_journal) {
5986 * We let remount-ro finish even if marking fs
5987 * as clean failed...
5989 ext4_mark_recovery_complete(sb, es);
5991 ext4_stop_mmpd(sbi);
5993 /* Make sure we can mount this feature set readwrite */
5994 if (ext4_has_feature_readonly(sb) ||
5995 !ext4_feature_set_ok(sb, 0)) {
6000 * Make sure the group descriptor checksums
6001 * are sane. If they aren't, refuse to remount r/w.
6003 for (g = 0; g < sbi->s_groups_count; g++) {
6004 struct ext4_group_desc *gdp =
6005 ext4_get_group_desc(sb, g, NULL);
6007 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6008 ext4_msg(sb, KERN_ERR,
6009 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6010 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6011 le16_to_cpu(gdp->bg_checksum));
6018 * If we have an unprocessed orphan list hanging
6019 * around from a previously readonly bdev mount,
6020 * require a full umount/remount for now.
6022 if (es->s_last_orphan) {
6023 ext4_msg(sb, KERN_WARNING, "Couldn't "
6024 "remount RDWR because of unprocessed "
6025 "orphan inode list. Please "
6026 "umount/remount instead");
6032 * Mounting a RDONLY partition read-write, so reread
6033 * and store the current valid flag. (It may have
6034 * been changed by e2fsck since we originally mounted
6037 if (sbi->s_journal) {
6038 err = ext4_clear_journal_err(sb, es);
6042 sbi->s_mount_state = le16_to_cpu(es->s_state);
6044 err = ext4_setup_super(sb, es, 0);
6048 sb->s_flags &= ~SB_RDONLY;
6049 if (ext4_has_feature_mmp(sb))
6050 if (ext4_multi_mount_protect(sb,
6051 le64_to_cpu(es->s_mmp_block))) {
6060 * Reinitialize lazy itable initialization thread based on
6063 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6064 ext4_unregister_li_request(sb);
6066 ext4_group_t first_not_zeroed;
6067 first_not_zeroed = ext4_has_uninit_itable(sb);
6068 ext4_register_li_request(sb, first_not_zeroed);
6072 * Handle creation of system zone data early because it can fail.
6073 * Releasing of existing data is done when we are sure remount will
6076 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6077 err = ext4_setup_system_zone(sb);
6082 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6083 err = ext4_commit_super(sb);
6089 /* Release old quota file names */
6090 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6091 kfree(old_opts.s_qf_names[i]);
6093 if (sb_any_quota_suspended(sb))
6094 dquot_resume(sb, -1);
6095 else if (ext4_has_feature_quota(sb)) {
6096 err = ext4_enable_quotas(sb);
6102 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6103 ext4_release_system_zone(sb);
6106 * Some options can be enabled by ext4 and/or by VFS mount flag
6107 * either way we need to make sure it matches in both *flags and
6108 * s_flags. Copy those selected flags from s_flags to *flags
6110 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6112 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6113 orig_data, ext4_quota_mode(sb));
6118 sb->s_flags = old_sb_flags;
6119 sbi->s_mount_opt = old_opts.s_mount_opt;
6120 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6121 sbi->s_resuid = old_opts.s_resuid;
6122 sbi->s_resgid = old_opts.s_resgid;
6123 sbi->s_commit_interval = old_opts.s_commit_interval;
6124 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6125 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6126 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6127 ext4_release_system_zone(sb);
6129 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6130 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6131 to_free[i] = get_qf_name(sb, sbi, i);
6132 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6135 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6143 static int ext4_statfs_project(struct super_block *sb,
6144 kprojid_t projid, struct kstatfs *buf)
6147 struct dquot *dquot;
6151 qid = make_kqid_projid(projid);
6152 dquot = dqget(sb, qid);
6154 return PTR_ERR(dquot);
6155 spin_lock(&dquot->dq_dqb_lock);
6157 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6158 dquot->dq_dqb.dqb_bhardlimit);
6159 limit >>= sb->s_blocksize_bits;
6161 if (limit && buf->f_blocks > limit) {
6162 curblock = (dquot->dq_dqb.dqb_curspace +
6163 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6164 buf->f_blocks = limit;
6165 buf->f_bfree = buf->f_bavail =
6166 (buf->f_blocks > curblock) ?
6167 (buf->f_blocks - curblock) : 0;
6170 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6171 dquot->dq_dqb.dqb_ihardlimit);
6172 if (limit && buf->f_files > limit) {
6173 buf->f_files = limit;
6175 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6176 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6179 spin_unlock(&dquot->dq_dqb_lock);
6185 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6187 struct super_block *sb = dentry->d_sb;
6188 struct ext4_sb_info *sbi = EXT4_SB(sb);
6189 struct ext4_super_block *es = sbi->s_es;
6190 ext4_fsblk_t overhead = 0, resv_blocks;
6192 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6194 if (!test_opt(sb, MINIX_DF))
6195 overhead = sbi->s_overhead;
6197 buf->f_type = EXT4_SUPER_MAGIC;
6198 buf->f_bsize = sb->s_blocksize;
6199 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6200 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6201 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6202 /* prevent underflow in case that few free space is available */
6203 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6204 buf->f_bavail = buf->f_bfree -
6205 (ext4_r_blocks_count(es) + resv_blocks);
6206 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6208 buf->f_files = le32_to_cpu(es->s_inodes_count);
6209 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6210 buf->f_namelen = EXT4_NAME_LEN;
6211 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6214 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6215 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6216 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6225 * Helper functions so that transaction is started before we acquire dqio_sem
6226 * to keep correct lock ordering of transaction > dqio_sem
6228 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6230 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6233 static int ext4_write_dquot(struct dquot *dquot)
6237 struct inode *inode;
6239 inode = dquot_to_inode(dquot);
6240 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6241 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6243 return PTR_ERR(handle);
6244 ret = dquot_commit(dquot);
6245 err = ext4_journal_stop(handle);
6251 static int ext4_acquire_dquot(struct dquot *dquot)
6256 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6257 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6259 return PTR_ERR(handle);
6260 ret = dquot_acquire(dquot);
6261 err = ext4_journal_stop(handle);
6267 static int ext4_release_dquot(struct dquot *dquot)
6272 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6273 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6274 if (IS_ERR(handle)) {
6275 /* Release dquot anyway to avoid endless cycle in dqput() */
6276 dquot_release(dquot);
6277 return PTR_ERR(handle);
6279 ret = dquot_release(dquot);
6280 err = ext4_journal_stop(handle);
6286 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6288 struct super_block *sb = dquot->dq_sb;
6290 if (ext4_is_quota_journalled(sb)) {
6291 dquot_mark_dquot_dirty(dquot);
6292 return ext4_write_dquot(dquot);
6294 return dquot_mark_dquot_dirty(dquot);
6298 static int ext4_write_info(struct super_block *sb, int type)
6303 /* Data block + inode block */
6304 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6306 return PTR_ERR(handle);
6307 ret = dquot_commit_info(sb, type);
6308 err = ext4_journal_stop(handle);
6315 * Turn on quotas during mount time - we need to find
6316 * the quota file and such...
6318 static int ext4_quota_on_mount(struct super_block *sb, int type)
6320 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6321 EXT4_SB(sb)->s_jquota_fmt, type);
6324 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6326 struct ext4_inode_info *ei = EXT4_I(inode);
6328 /* The first argument of lockdep_set_subclass has to be
6329 * *exactly* the same as the argument to init_rwsem() --- in
6330 * this case, in init_once() --- or lockdep gets unhappy
6331 * because the name of the lock is set using the
6332 * stringification of the argument to init_rwsem().
6334 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6335 lockdep_set_subclass(&ei->i_data_sem, subclass);
6339 * Standard function to be called on quota_on
6341 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6342 const struct path *path)
6346 if (!test_opt(sb, QUOTA))
6349 /* Quotafile not on the same filesystem? */
6350 if (path->dentry->d_sb != sb)
6353 /* Quota already enabled for this file? */
6354 if (IS_NOQUOTA(d_inode(path->dentry)))
6357 /* Journaling quota? */
6358 if (EXT4_SB(sb)->s_qf_names[type]) {
6359 /* Quotafile not in fs root? */
6360 if (path->dentry->d_parent != sb->s_root)
6361 ext4_msg(sb, KERN_WARNING,
6362 "Quota file not on filesystem root. "
6363 "Journaled quota will not work");
6364 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6367 * Clear the flag just in case mount options changed since
6370 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6374 * When we journal data on quota file, we have to flush journal to see
6375 * all updates to the file when we bypass pagecache...
6377 if (EXT4_SB(sb)->s_journal &&
6378 ext4_should_journal_data(d_inode(path->dentry))) {
6380 * We don't need to lock updates but journal_flush() could
6381 * otherwise be livelocked...
6383 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6384 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6385 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6390 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6391 err = dquot_quota_on(sb, type, format_id, path);
6393 lockdep_set_quota_inode(path->dentry->d_inode,
6396 struct inode *inode = d_inode(path->dentry);
6400 * Set inode flags to prevent userspace from messing with quota
6401 * files. If this fails, we return success anyway since quotas
6402 * are already enabled and this is not a hard failure.
6405 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6408 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6409 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6410 S_NOATIME | S_IMMUTABLE);
6411 err = ext4_mark_inode_dirty(handle, inode);
6412 ext4_journal_stop(handle);
6414 inode_unlock(inode);
6419 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6423 struct inode *qf_inode;
6424 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6425 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6426 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6427 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6430 BUG_ON(!ext4_has_feature_quota(sb));
6432 if (!qf_inums[type])
6435 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6436 if (IS_ERR(qf_inode)) {
6437 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6438 return PTR_ERR(qf_inode);
6441 /* Don't account quota for quota files to avoid recursion */
6442 qf_inode->i_flags |= S_NOQUOTA;
6443 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6444 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6446 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6452 /* Enable usage tracking for all quota types. */
6453 static int ext4_enable_quotas(struct super_block *sb)
6456 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6457 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6458 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6459 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6461 bool quota_mopt[EXT4_MAXQUOTAS] = {
6462 test_opt(sb, USRQUOTA),
6463 test_opt(sb, GRPQUOTA),
6464 test_opt(sb, PRJQUOTA),
6467 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6468 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6469 if (qf_inums[type]) {
6470 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6471 DQUOT_USAGE_ENABLED |
6472 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6475 "Failed to enable quota tracking "
6476 "(type=%d, err=%d). Please run "
6477 "e2fsck to fix.", type, err);
6478 for (type--; type >= 0; type--)
6479 dquot_quota_off(sb, type);
6488 static int ext4_quota_off(struct super_block *sb, int type)
6490 struct inode *inode = sb_dqopt(sb)->files[type];
6494 /* Force all delayed allocation blocks to be allocated.
6495 * Caller already holds s_umount sem */
6496 if (test_opt(sb, DELALLOC))
6497 sync_filesystem(sb);
6499 if (!inode || !igrab(inode))
6502 err = dquot_quota_off(sb, type);
6503 if (err || ext4_has_feature_quota(sb))
6508 * Update modification times of quota files when userspace can
6509 * start looking at them. If we fail, we return success anyway since
6510 * this is not a hard failure and quotas are already disabled.
6512 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6513 if (IS_ERR(handle)) {
6514 err = PTR_ERR(handle);
6517 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6518 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6519 inode->i_mtime = inode->i_ctime = current_time(inode);
6520 err = ext4_mark_inode_dirty(handle, inode);
6521 ext4_journal_stop(handle);
6523 inode_unlock(inode);
6525 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6529 return dquot_quota_off(sb, type);
6532 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6533 * acquiring the locks... As quota files are never truncated and quota code
6534 * itself serializes the operations (and no one else should touch the files)
6535 * we don't have to be afraid of races */
6536 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6537 size_t len, loff_t off)
6539 struct inode *inode = sb_dqopt(sb)->files[type];
6540 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6541 int offset = off & (sb->s_blocksize - 1);
6544 struct buffer_head *bh;
6545 loff_t i_size = i_size_read(inode);
6549 if (off+len > i_size)
6552 while (toread > 0) {
6553 tocopy = sb->s_blocksize - offset < toread ?
6554 sb->s_blocksize - offset : toread;
6555 bh = ext4_bread(NULL, inode, blk, 0);
6558 if (!bh) /* A hole? */
6559 memset(data, 0, tocopy);
6561 memcpy(data, bh->b_data+offset, tocopy);
6571 /* Write to quotafile (we know the transaction is already started and has
6572 * enough credits) */
6573 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6574 const char *data, size_t len, loff_t off)
6576 struct inode *inode = sb_dqopt(sb)->files[type];
6577 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6578 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6580 struct buffer_head *bh;
6581 handle_t *handle = journal_current_handle();
6583 if (EXT4_SB(sb)->s_journal && !handle) {
6584 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6585 " cancelled because transaction is not started",
6586 (unsigned long long)off, (unsigned long long)len);
6590 * Since we account only one data block in transaction credits,
6591 * then it is impossible to cross a block boundary.
6593 if (sb->s_blocksize - offset < len) {
6594 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6595 " cancelled because not block aligned",
6596 (unsigned long long)off, (unsigned long long)len);
6601 bh = ext4_bread(handle, inode, blk,
6602 EXT4_GET_BLOCKS_CREATE |
6603 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6604 } while (PTR_ERR(bh) == -ENOSPC &&
6605 ext4_should_retry_alloc(inode->i_sb, &retries));
6610 BUFFER_TRACE(bh, "get write access");
6611 err = ext4_journal_get_write_access(handle, bh);
6617 memcpy(bh->b_data+offset, data, len);
6618 flush_dcache_page(bh->b_page);
6620 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6623 if (inode->i_size < off + len) {
6624 i_size_write(inode, off + len);
6625 EXT4_I(inode)->i_disksize = inode->i_size;
6626 err2 = ext4_mark_inode_dirty(handle, inode);
6627 if (unlikely(err2 && !err))
6630 return err ? err : len;
6634 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6635 const char *dev_name, void *data)
6637 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6640 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6641 static inline void register_as_ext2(void)
6643 int err = register_filesystem(&ext2_fs_type);
6646 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6649 static inline void unregister_as_ext2(void)
6651 unregister_filesystem(&ext2_fs_type);
6654 static inline int ext2_feature_set_ok(struct super_block *sb)
6656 if (ext4_has_unknown_ext2_incompat_features(sb))
6660 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6665 static inline void register_as_ext2(void) { }
6666 static inline void unregister_as_ext2(void) { }
6667 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6670 static inline void register_as_ext3(void)
6672 int err = register_filesystem(&ext3_fs_type);
6675 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6678 static inline void unregister_as_ext3(void)
6680 unregister_filesystem(&ext3_fs_type);
6683 static inline int ext3_feature_set_ok(struct super_block *sb)
6685 if (ext4_has_unknown_ext3_incompat_features(sb))
6687 if (!ext4_has_feature_journal(sb))
6691 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6696 static struct file_system_type ext4_fs_type = {
6697 .owner = THIS_MODULE,
6699 .mount = ext4_mount,
6700 .kill_sb = kill_block_super,
6701 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6703 MODULE_ALIAS_FS("ext4");
6705 /* Shared across all ext4 file systems */
6706 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6708 static int __init ext4_init_fs(void)
6712 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6713 ext4_li_info = NULL;
6715 /* Build-time check for flags consistency */
6716 ext4_check_flag_values();
6718 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6719 init_waitqueue_head(&ext4__ioend_wq[i]);
6721 err = ext4_init_es();
6725 err = ext4_init_pending();
6729 err = ext4_init_post_read_processing();
6733 err = ext4_init_pageio();
6737 err = ext4_init_system_zone();
6741 err = ext4_init_sysfs();
6745 err = ext4_init_mballoc();
6748 err = init_inodecache();
6752 err = ext4_fc_init_dentry_cache();
6758 err = register_filesystem(&ext4_fs_type);
6764 unregister_as_ext2();
6765 unregister_as_ext3();
6767 destroy_inodecache();
6769 ext4_exit_mballoc();
6773 ext4_exit_system_zone();
6777 ext4_exit_post_read_processing();
6779 ext4_exit_pending();
6786 static void __exit ext4_exit_fs(void)
6788 ext4_destroy_lazyinit_thread();
6789 unregister_as_ext2();
6790 unregister_as_ext3();
6791 unregister_filesystem(&ext4_fs_type);
6792 destroy_inodecache();
6793 ext4_exit_mballoc();
6795 ext4_exit_system_zone();
6797 ext4_exit_post_read_processing();
6799 ext4_exit_pending();
6802 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6803 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6804 MODULE_LICENSE("GPL");
6805 MODULE_SOFTDEP("pre: crc32c");
6806 module_init(ext4_init_fs)
6807 module_exit(ext4_exit_fs)