1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
47 #include "compression.h"
49 #include "free-space-cache.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
57 #include "inode-item.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
69 #include "relocation.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_dio_data {
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
88 struct btrfs_dio_private {
93 /* This must be last */
94 struct btrfs_bio bbio;
97 static struct bio_set btrfs_dio_bioset;
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
123 static struct kmem_cache *btrfs_inode_cachep;
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 static noinline int cow_file_range(struct btrfs_inode *inode,
128 struct page *locked_page,
129 u64 start, u64 end, int *page_started,
130 unsigned long *nr_written, int unlock,
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 u64 len, u64 orig_start, u64 block_start,
134 u64 block_len, u64 orig_block_len,
135 u64 ram_bytes, int compress_type,
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 u64 root, void *warn_ctx)
141 struct data_reloc_warn *warn = warn_ctx;
142 struct btrfs_fs_info *fs_info = warn->fs_info;
143 struct extent_buffer *eb;
144 struct btrfs_inode_item *inode_item;
145 struct inode_fs_paths *ipath = NULL;
146 struct btrfs_root *local_root;
147 struct btrfs_key key;
148 unsigned int nofs_flag;
152 local_root = btrfs_get_fs_root(fs_info, root, true);
153 if (IS_ERR(local_root)) {
154 ret = PTR_ERR(local_root);
158 /* This makes the path point to (inum INODE_ITEM ioff). */
160 key.type = BTRFS_INODE_ITEM_KEY;
163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
165 btrfs_put_root(local_root);
166 btrfs_release_path(&warn->path);
170 eb = warn->path.nodes[0];
171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 nlink = btrfs_inode_nlink(eb, inode_item);
173 btrfs_release_path(&warn->path);
175 nofs_flag = memalloc_nofs_save();
176 ipath = init_ipath(4096, local_root, &warn->path);
177 memalloc_nofs_restore(nofs_flag);
179 btrfs_put_root(local_root);
180 ret = PTR_ERR(ipath);
183 * -ENOMEM, not a critical error, just output an generic error
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 warn->logical, warn->mirror_num, root, inum, offset);
191 ret = paths_from_inode(inum, ipath);
196 * We deliberately ignore the bit ipath might have been too small to
197 * hold all of the paths here
199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 warn->logical, warn->mirror_num, root, inum, offset,
203 fs_info->sectorsize, nlink,
204 (char *)(unsigned long)ipath->fspath->val[i]);
207 btrfs_put_root(local_root);
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 warn->logical, warn->mirror_num, root, inum, offset, ret);
221 * Do extra user-friendly error output (e.g. lookup all the affected files).
223 * Return true if we succeeded doing the backref lookup.
224 * Return false if such lookup failed, and has to fallback to the old error message.
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 const u8 *csum, const u8 *csum_expected,
230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 struct btrfs_path path = { 0 };
232 struct btrfs_key found_key = { 0 };
233 struct extent_buffer *eb;
234 struct btrfs_extent_item *ei;
235 const u32 csum_size = fs_info->csum_size;
241 mutex_lock(&fs_info->reloc_mutex);
242 logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 mutex_unlock(&fs_info->reloc_mutex);
245 if (logical == U64_MAX) {
246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 CSUM_FMT_VALUE(csum_size, csum),
251 CSUM_FMT_VALUE(csum_size, csum_expected),
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid,
260 btrfs_ino(inode), file_off, logical,
261 CSUM_FMT_VALUE(csum_size, csum),
262 CSUM_FMT_VALUE(csum_size, csum_expected),
265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 item_size = btrfs_item_size(eb, path.slots[0]);
274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 unsigned long ptr = 0;
280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 item_size, &ref_root,
284 btrfs_warn_rl(fs_info,
285 "failed to resolve tree backref for logical %llu: %d",
292 btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
295 (ref_level ? "node" : "leaf"),
296 ref_level, ref_root);
298 btrfs_release_path(&path);
300 struct btrfs_backref_walk_ctx ctx = { 0 };
301 struct data_reloc_warn reloc_warn = { 0 };
303 btrfs_release_path(&path);
305 ctx.bytenr = found_key.objectid;
306 ctx.extent_item_pos = logical - found_key.objectid;
307 ctx.fs_info = fs_info;
309 reloc_warn.logical = logical;
310 reloc_warn.extent_item_size = found_key.offset;
311 reloc_warn.mirror_num = mirror_num;
312 reloc_warn.fs_info = fs_info;
314 iterate_extent_inodes(&ctx, true,
315 data_reloc_print_warning_inode, &reloc_warn);
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
322 struct btrfs_root *root = inode->root;
323 const u32 csum_size = root->fs_info->csum_size;
325 /* For data reloc tree, it's better to do a backref lookup instead. */
326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 return print_data_reloc_error(inode, logical_start, csum,
328 csum_expected, mirror_num);
330 /* Output without objectid, which is more meaningful */
331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 root->root_key.objectid, btrfs_ino(inode),
336 CSUM_FMT_VALUE(csum_size, csum),
337 CSUM_FMT_VALUE(csum_size, csum_expected),
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
353 * ilock_flags can have the following bit set:
355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
362 if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 if (ilock_flags & BTRFS_ILOCK_TRY) {
364 if (!inode_trylock_shared(&inode->vfs_inode))
369 inode_lock_shared(&inode->vfs_inode);
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock(&inode->vfs_inode))
377 inode_lock(&inode->vfs_inode);
379 if (ilock_flags & BTRFS_ILOCK_MMAP)
380 down_write(&inode->i_mmap_lock);
385 * btrfs_inode_unlock - unock inode i_rwsem
387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388 * to decide whether the lock acquired is shared or exclusive.
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
392 if (ilock_flags & BTRFS_ILOCK_MMAP)
393 up_write(&inode->i_mmap_lock);
394 if (ilock_flags & BTRFS_ILOCK_SHARED)
395 inode_unlock_shared(&inode->vfs_inode);
397 inode_unlock(&inode->vfs_inode);
401 * Cleanup all submitted ordered extents in specified range to handle errors
402 * from the btrfs_run_delalloc_range() callback.
404 * NOTE: caller must ensure that when an error happens, it can not call
405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407 * to be released, which we want to happen only when finishing the ordered
408 * extent (btrfs_finish_ordered_io()).
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 struct page *locked_page,
412 u64 offset, u64 bytes)
414 unsigned long index = offset >> PAGE_SHIFT;
415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 u64 page_start = 0, page_end = 0;
420 page_start = page_offset(locked_page);
421 page_end = page_start + PAGE_SIZE - 1;
424 while (index <= end_index) {
426 * For locked page, we will call end_extent_writepage() on it
427 * in run_delalloc_range() for the error handling. That
428 * end_extent_writepage() function will call
429 * btrfs_mark_ordered_io_finished() to clear page Ordered and
430 * run the ordered extent accounting.
432 * Here we can't just clear the Ordered bit, or
433 * btrfs_mark_ordered_io_finished() would skip the accounting
434 * for the page range, and the ordered extent will never finish.
436 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
440 page = find_get_page(inode->vfs_inode.i_mapping, index);
446 * Here we just clear all Ordered bits for every page in the
447 * range, then btrfs_mark_ordered_io_finished() will handle
448 * the ordered extent accounting for the range.
450 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
456 /* The locked page covers the full range, nothing needs to be done */
457 if (bytes + offset <= page_start + PAGE_SIZE)
460 * In case this page belongs to the delalloc range being
461 * instantiated then skip it, since the first page of a range is
462 * going to be properly cleaned up by the caller of
465 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
466 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
467 offset = page_offset(locked_page) + PAGE_SIZE;
471 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
474 static int btrfs_dirty_inode(struct btrfs_inode *inode);
476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
477 struct btrfs_new_inode_args *args)
481 if (args->default_acl) {
482 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
488 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
492 if (!args->default_acl && !args->acl)
493 cache_no_acl(args->inode);
494 return btrfs_xattr_security_init(trans, args->inode, args->dir,
495 &args->dentry->d_name);
499 * this does all the hard work for inserting an inline extent into
500 * the btree. The caller should have done a btrfs_drop_extents so that
501 * no overlapping inline items exist in the btree
503 static int insert_inline_extent(struct btrfs_trans_handle *trans,
504 struct btrfs_path *path,
505 struct btrfs_inode *inode, bool extent_inserted,
506 size_t size, size_t compressed_size,
508 struct page **compressed_pages,
511 struct btrfs_root *root = inode->root;
512 struct extent_buffer *leaf;
513 struct page *page = NULL;
516 struct btrfs_file_extent_item *ei;
518 size_t cur_size = size;
521 ASSERT((compressed_size > 0 && compressed_pages) ||
522 (compressed_size == 0 && !compressed_pages));
524 if (compressed_size && compressed_pages)
525 cur_size = compressed_size;
527 if (!extent_inserted) {
528 struct btrfs_key key;
531 key.objectid = btrfs_ino(inode);
533 key.type = BTRFS_EXTENT_DATA_KEY;
535 datasize = btrfs_file_extent_calc_inline_size(cur_size);
536 ret = btrfs_insert_empty_item(trans, root, path, &key,
541 leaf = path->nodes[0];
542 ei = btrfs_item_ptr(leaf, path->slots[0],
543 struct btrfs_file_extent_item);
544 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
545 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
546 btrfs_set_file_extent_encryption(leaf, ei, 0);
547 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
548 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
549 ptr = btrfs_file_extent_inline_start(ei);
551 if (compress_type != BTRFS_COMPRESS_NONE) {
554 while (compressed_size > 0) {
555 cpage = compressed_pages[i];
556 cur_size = min_t(unsigned long, compressed_size,
559 kaddr = kmap_local_page(cpage);
560 write_extent_buffer(leaf, kaddr, ptr, cur_size);
565 compressed_size -= cur_size;
567 btrfs_set_file_extent_compression(leaf, ei,
570 page = find_get_page(inode->vfs_inode.i_mapping, 0);
571 btrfs_set_file_extent_compression(leaf, ei, 0);
572 kaddr = kmap_local_page(page);
573 write_extent_buffer(leaf, kaddr, ptr, size);
577 btrfs_mark_buffer_dirty(leaf);
578 btrfs_release_path(path);
581 * We align size to sectorsize for inline extents just for simplicity
584 ret = btrfs_inode_set_file_extent_range(inode, 0,
585 ALIGN(size, root->fs_info->sectorsize));
590 * We're an inline extent, so nobody can extend the file past i_size
591 * without locking a page we already have locked.
593 * We must do any i_size and inode updates before we unlock the pages.
594 * Otherwise we could end up racing with unlink.
596 i_size = i_size_read(&inode->vfs_inode);
597 if (update_i_size && size > i_size) {
598 i_size_write(&inode->vfs_inode, size);
601 inode->disk_i_size = i_size;
609 * conditionally insert an inline extent into the file. This
610 * does the checks required to make sure the data is small enough
611 * to fit as an inline extent.
613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
614 size_t compressed_size,
616 struct page **compressed_pages,
619 struct btrfs_drop_extents_args drop_args = { 0 };
620 struct btrfs_root *root = inode->root;
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 struct btrfs_trans_handle *trans;
623 u64 data_len = (compressed_size ?: size);
625 struct btrfs_path *path;
628 * We can create an inline extent if it ends at or beyond the current
629 * i_size, is no larger than a sector (decompressed), and the (possibly
630 * compressed) data fits in a leaf and the configured maximum inline
633 if (size < i_size_read(&inode->vfs_inode) ||
634 size > fs_info->sectorsize ||
635 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
636 data_len > fs_info->max_inline)
639 path = btrfs_alloc_path();
643 trans = btrfs_join_transaction(root);
645 btrfs_free_path(path);
646 return PTR_ERR(trans);
648 trans->block_rsv = &inode->block_rsv;
650 drop_args.path = path;
652 drop_args.end = fs_info->sectorsize;
653 drop_args.drop_cache = true;
654 drop_args.replace_extent = true;
655 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
656 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
658 btrfs_abort_transaction(trans, ret);
662 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
663 size, compressed_size, compress_type,
664 compressed_pages, update_i_size);
665 if (ret && ret != -ENOSPC) {
666 btrfs_abort_transaction(trans, ret);
668 } else if (ret == -ENOSPC) {
673 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
674 ret = btrfs_update_inode(trans, root, inode);
675 if (ret && ret != -ENOSPC) {
676 btrfs_abort_transaction(trans, ret);
678 } else if (ret == -ENOSPC) {
683 btrfs_set_inode_full_sync(inode);
686 * Don't forget to free the reserved space, as for inlined extent
687 * it won't count as data extent, free them directly here.
688 * And at reserve time, it's always aligned to page size, so
689 * just free one page here.
691 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
692 btrfs_free_path(path);
693 btrfs_end_transaction(trans);
697 struct async_extent {
702 unsigned long nr_pages;
704 struct list_head list;
708 struct btrfs_inode *inode;
709 struct page *locked_page;
712 blk_opf_t write_flags;
713 struct list_head extents;
714 struct cgroup_subsys_state *blkcg_css;
715 struct btrfs_work work;
716 struct async_cow *async_cow;
721 struct async_chunk chunks[];
724 static noinline int add_async_extent(struct async_chunk *cow,
725 u64 start, u64 ram_size,
728 unsigned long nr_pages,
731 struct async_extent *async_extent;
733 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
734 BUG_ON(!async_extent); /* -ENOMEM */
735 async_extent->start = start;
736 async_extent->ram_size = ram_size;
737 async_extent->compressed_size = compressed_size;
738 async_extent->pages = pages;
739 async_extent->nr_pages = nr_pages;
740 async_extent->compress_type = compress_type;
741 list_add_tail(&async_extent->list, &cow->extents);
746 * Check if the inode needs to be submitted to compression, based on mount
747 * options, defragmentation, properties or heuristics.
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
752 struct btrfs_fs_info *fs_info = inode->root->fs_info;
754 if (!btrfs_inode_can_compress(inode)) {
755 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
761 * Special check for subpage.
763 * We lock the full page then run each delalloc range in the page, thus
764 * for the following case, we will hit some subpage specific corner case:
767 * | |///////| |///////|
770 * In above case, both range A and range B will try to unlock the full
771 * page [0, 64K), causing the one finished later will have page
772 * unlocked already, triggering various page lock requirement BUG_ON()s.
774 * So here we add an artificial limit that subpage compression can only
775 * if the range is fully page aligned.
777 * In theory we only need to ensure the first page is fully covered, but
778 * the tailing partial page will be locked until the full compression
779 * finishes, delaying the write of other range.
781 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 * first to prevent any submitted async extent to unlock the full page.
783 * By this, we can ensure for subpage case that only the last async_cow
784 * will unlock the full page.
786 if (fs_info->sectorsize < PAGE_SIZE) {
787 if (!PAGE_ALIGNED(start) ||
788 !PAGE_ALIGNED(end + 1))
793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
796 if (inode->defrag_compress)
798 /* bad compression ratios */
799 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
801 if (btrfs_test_opt(fs_info, COMPRESS) ||
802 inode->flags & BTRFS_INODE_COMPRESS ||
803 inode->prop_compress)
804 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 u64 start, u64 end, u64 num_bytes, u32 small_write)
811 /* If this is a small write inside eof, kick off a defrag */
812 if (num_bytes < small_write &&
813 (start > 0 || end + 1 < inode->disk_i_size))
814 btrfs_add_inode_defrag(NULL, inode, small_write);
818 * we create compressed extents in two phases. The first
819 * phase compresses a range of pages that have already been
820 * locked (both pages and state bits are locked).
822 * This is done inside an ordered work queue, and the compression
823 * is spread across many cpus. The actual IO submission is step
824 * two, and the ordered work queue takes care of making sure that
825 * happens in the same order things were put onto the queue by
826 * writepages and friends.
828 * If this code finds it can't get good compression, it puts an
829 * entry onto the work queue to write the uncompressed bytes. This
830 * makes sure that both compressed inodes and uncompressed inodes
831 * are written in the same order that the flusher thread sent them
834 static noinline int compress_file_range(struct async_chunk *async_chunk)
836 struct btrfs_inode *inode = async_chunk->inode;
837 struct btrfs_fs_info *fs_info = inode->root->fs_info;
838 struct address_space *mapping = inode->vfs_inode.i_mapping;
839 u64 blocksize = fs_info->sectorsize;
840 u64 start = async_chunk->start;
841 u64 end = async_chunk->end;
845 struct page **pages = NULL;
846 unsigned long nr_pages;
847 unsigned long total_compressed = 0;
848 unsigned long total_in = 0;
851 int compress_type = fs_info->compress_type;
852 int compressed_extents = 0;
855 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
858 * We need to save i_size before now because it could change in between
859 * us evaluating the size and assigning it. This is because we lock and
860 * unlock the page in truncate and fallocate, and then modify the i_size
863 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 i_size = i_size_read(&inode->vfs_inode);
869 actual_end = min_t(u64, i_size, end + 1);
872 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
873 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 * we don't want to send crud past the end of i_size through
877 * compression, that's just a waste of CPU time. So, if the
878 * end of the file is before the start of our current
879 * requested range of bytes, we bail out to the uncompressed
880 * cleanup code that can deal with all of this.
882 * It isn't really the fastest way to fix things, but this is a
883 * very uncommon corner.
885 if (actual_end <= start)
886 goto cleanup_and_bail_uncompressed;
888 total_compressed = actual_end - start;
891 * Skip compression for a small file range(<=blocksize) that
892 * isn't an inline extent, since it doesn't save disk space at all.
894 if (total_compressed <= blocksize &&
895 (start > 0 || end + 1 < inode->disk_i_size))
896 goto cleanup_and_bail_uncompressed;
899 * For subpage case, we require full page alignment for the sector
901 * Thus we must also check against @actual_end, not just @end.
903 if (blocksize < PAGE_SIZE) {
904 if (!PAGE_ALIGNED(start) ||
905 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
906 goto cleanup_and_bail_uncompressed;
909 total_compressed = min_t(unsigned long, total_compressed,
910 BTRFS_MAX_UNCOMPRESSED);
915 * we do compression for mount -o compress and when the
916 * inode has not been flagged as nocompress. This flag can
917 * change at any time if we discover bad compression ratios.
919 if (inode_need_compress(inode, start, end)) {
921 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
923 /* just bail out to the uncompressed code */
928 if (inode->defrag_compress)
929 compress_type = inode->defrag_compress;
930 else if (inode->prop_compress)
931 compress_type = inode->prop_compress;
934 * we need to call clear_page_dirty_for_io on each
935 * page in the range. Otherwise applications with the file
936 * mmap'd can wander in and change the page contents while
937 * we are compressing them.
939 * If the compression fails for any reason, we set the pages
940 * dirty again later on.
942 * Note that the remaining part is redirtied, the start pointer
943 * has moved, the end is the original one.
946 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
950 /* Compression level is applied here and only here */
951 ret = btrfs_compress_pages(
952 compress_type | (fs_info->compress_level << 4),
960 unsigned long offset = offset_in_page(total_compressed);
961 struct page *page = pages[nr_pages - 1];
963 /* zero the tail end of the last page, we might be
964 * sending it down to disk
967 memzero_page(page, offset, PAGE_SIZE - offset);
973 * Check cow_file_range() for why we don't even try to create inline
974 * extent for subpage case.
976 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
977 /* lets try to make an inline extent */
978 if (ret || total_in < actual_end) {
979 /* we didn't compress the entire range, try
980 * to make an uncompressed inline extent.
982 ret = cow_file_range_inline(inode, actual_end,
983 0, BTRFS_COMPRESS_NONE,
986 /* try making a compressed inline extent */
987 ret = cow_file_range_inline(inode, actual_end,
989 compress_type, pages,
993 unsigned long clear_flags = EXTENT_DELALLOC |
994 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
995 EXTENT_DO_ACCOUNTING;
998 mapping_set_error(mapping, -EIO);
1001 * inline extent creation worked or returned error,
1002 * we don't need to create any more async work items.
1003 * Unlock and free up our temp pages.
1005 * We use DO_ACCOUNTING here because we need the
1006 * delalloc_release_metadata to be done _after_ we drop
1007 * our outstanding extent for clearing delalloc for this
1010 extent_clear_unlock_delalloc(inode, start, end,
1014 PAGE_START_WRITEBACK |
1015 PAGE_END_WRITEBACK);
1018 * Ensure we only free the compressed pages if we have
1019 * them allocated, as we can still reach here with
1020 * inode_need_compress() == false.
1023 for (i = 0; i < nr_pages; i++) {
1024 WARN_ON(pages[i]->mapping);
1033 if (will_compress) {
1035 * we aren't doing an inline extent round the compressed size
1036 * up to a block size boundary so the allocator does sane
1039 total_compressed = ALIGN(total_compressed, blocksize);
1042 * one last check to make sure the compression is really a
1043 * win, compare the page count read with the blocks on disk,
1044 * compression must free at least one sector size
1046 total_in = round_up(total_in, fs_info->sectorsize);
1047 if (total_compressed + blocksize <= total_in) {
1048 compressed_extents++;
1051 * The async work queues will take care of doing actual
1052 * allocation on disk for these compressed pages, and
1053 * will submit them to the elevator.
1055 add_async_extent(async_chunk, start, total_in,
1056 total_compressed, pages, nr_pages,
1059 if (start + total_in < end) {
1065 return compressed_extents;
1070 * the compression code ran but failed to make things smaller,
1071 * free any pages it allocated and our page pointer array
1073 for (i = 0; i < nr_pages; i++) {
1074 WARN_ON(pages[i]->mapping);
1079 total_compressed = 0;
1082 /* flag the file so we don't compress in the future */
1083 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1084 !(inode->prop_compress)) {
1085 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1088 cleanup_and_bail_uncompressed:
1090 * No compression, but we still need to write the pages in the file
1091 * we've been given so far. redirty the locked page if it corresponds
1092 * to our extent and set things up for the async work queue to run
1093 * cow_file_range to do the normal delalloc dance.
1095 if (async_chunk->locked_page &&
1096 (page_offset(async_chunk->locked_page) >= start &&
1097 page_offset(async_chunk->locked_page)) <= end) {
1098 __set_page_dirty_nobuffers(async_chunk->locked_page);
1099 /* unlocked later on in the async handlers */
1103 extent_range_redirty_for_io(&inode->vfs_inode, start, end);
1104 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1105 BTRFS_COMPRESS_NONE);
1106 compressed_extents++;
1108 return compressed_extents;
1111 static void free_async_extent_pages(struct async_extent *async_extent)
1115 if (!async_extent->pages)
1118 for (i = 0; i < async_extent->nr_pages; i++) {
1119 WARN_ON(async_extent->pages[i]->mapping);
1120 put_page(async_extent->pages[i]);
1122 kfree(async_extent->pages);
1123 async_extent->nr_pages = 0;
1124 async_extent->pages = NULL;
1127 static int submit_uncompressed_range(struct btrfs_inode *inode,
1128 struct async_extent *async_extent,
1129 struct page *locked_page)
1131 u64 start = async_extent->start;
1132 u64 end = async_extent->start + async_extent->ram_size - 1;
1133 unsigned long nr_written = 0;
1134 int page_started = 0;
1136 struct writeback_control wbc = {
1137 .sync_mode = WB_SYNC_ALL,
1138 .range_start = start,
1140 .no_cgroup_owner = 1,
1144 * Call cow_file_range() to run the delalloc range directly, since we
1145 * won't go to NOCOW or async path again.
1147 * Also we call cow_file_range() with @unlock_page == 0, so that we
1148 * can directly submit them without interruption.
1150 ret = cow_file_range(inode, locked_page, start, end, &page_started,
1151 &nr_written, 0, NULL);
1152 /* Inline extent inserted, page gets unlocked and everything is done */
1157 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1159 const u64 page_start = page_offset(locked_page);
1160 const u64 page_end = page_start + PAGE_SIZE - 1;
1162 set_page_writeback(locked_page);
1163 end_page_writeback(locked_page);
1164 end_extent_writepage(locked_page, ret, page_start, page_end);
1165 unlock_page(locked_page);
1170 /* All pages will be unlocked, including @locked_page */
1171 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1172 ret = extent_write_locked_range(&inode->vfs_inode, start, end, &wbc);
1173 wbc_detach_inode(&wbc);
1177 static int submit_one_async_extent(struct btrfs_inode *inode,
1178 struct async_chunk *async_chunk,
1179 struct async_extent *async_extent,
1182 struct extent_io_tree *io_tree = &inode->io_tree;
1183 struct btrfs_root *root = inode->root;
1184 struct btrfs_fs_info *fs_info = root->fs_info;
1185 struct btrfs_ordered_extent *ordered;
1186 struct btrfs_key ins;
1187 struct page *locked_page = NULL;
1188 struct extent_map *em;
1190 u64 start = async_extent->start;
1191 u64 end = async_extent->start + async_extent->ram_size - 1;
1193 if (async_chunk->blkcg_css)
1194 kthread_associate_blkcg(async_chunk->blkcg_css);
1197 * If async_chunk->locked_page is in the async_extent range, we need to
1200 if (async_chunk->locked_page) {
1201 u64 locked_page_start = page_offset(async_chunk->locked_page);
1202 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1204 if (!(start >= locked_page_end || end <= locked_page_start))
1205 locked_page = async_chunk->locked_page;
1207 lock_extent(io_tree, start, end, NULL);
1209 /* We have fall back to uncompressed write */
1210 if (!async_extent->pages) {
1211 ret = submit_uncompressed_range(inode, async_extent, locked_page);
1215 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1216 async_extent->compressed_size,
1217 async_extent->compressed_size,
1218 0, *alloc_hint, &ins, 1, 1);
1220 free_async_extent_pages(async_extent);
1222 * Here we used to try again by going back to non-compressed
1223 * path for ENOSPC. But we can't reserve space even for
1224 * compressed size, how could it work for uncompressed size
1225 * which requires larger size? So here we directly go error
1231 /* Here we're doing allocation and writeback of the compressed pages */
1232 em = create_io_em(inode, start,
1233 async_extent->ram_size, /* len */
1234 start, /* orig_start */
1235 ins.objectid, /* block_start */
1236 ins.offset, /* block_len */
1237 ins.offset, /* orig_block_len */
1238 async_extent->ram_size, /* ram_bytes */
1239 async_extent->compress_type,
1240 BTRFS_ORDERED_COMPRESSED);
1243 goto out_free_reserve;
1245 free_extent_map(em);
1247 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1248 async_extent->ram_size, /* num_bytes */
1249 async_extent->ram_size, /* ram_bytes */
1250 ins.objectid, /* disk_bytenr */
1251 ins.offset, /* disk_num_bytes */
1253 1 << BTRFS_ORDERED_COMPRESSED,
1254 async_extent->compress_type);
1255 if (IS_ERR(ordered)) {
1256 btrfs_drop_extent_map_range(inode, start, end, false);
1257 ret = PTR_ERR(ordered);
1258 goto out_free_reserve;
1260 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1262 /* Clear dirty, set writeback and unlock the pages. */
1263 extent_clear_unlock_delalloc(inode, start, end,
1264 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1265 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1266 btrfs_submit_compressed_write(ordered,
1267 async_extent->pages, /* compressed_pages */
1268 async_extent->nr_pages,
1269 async_chunk->write_flags, true);
1270 *alloc_hint = ins.objectid + ins.offset;
1272 if (async_chunk->blkcg_css)
1273 kthread_associate_blkcg(NULL);
1274 kfree(async_extent);
1278 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1279 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1281 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1282 extent_clear_unlock_delalloc(inode, start, end,
1283 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1284 EXTENT_DELALLOC_NEW |
1285 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1286 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1287 PAGE_END_WRITEBACK);
1288 free_async_extent_pages(async_extent);
1293 * Phase two of compressed writeback. This is the ordered portion of the code,
1294 * which only gets called in the order the work was queued. We walk all the
1295 * async extents created by compress_file_range and send them down to the disk.
1297 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1299 struct btrfs_inode *inode = async_chunk->inode;
1300 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1301 struct async_extent *async_extent;
1305 while (!list_empty(&async_chunk->extents)) {
1309 async_extent = list_entry(async_chunk->extents.next,
1310 struct async_extent, list);
1311 list_del(&async_extent->list);
1312 extent_start = async_extent->start;
1313 ram_size = async_extent->ram_size;
1315 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1317 btrfs_debug(fs_info,
1318 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1319 inode->root->root_key.objectid,
1320 btrfs_ino(inode), extent_start, ram_size, ret);
1324 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1327 struct extent_map_tree *em_tree = &inode->extent_tree;
1328 struct extent_map *em;
1331 read_lock(&em_tree->lock);
1332 em = search_extent_mapping(em_tree, start, num_bytes);
1335 * if block start isn't an actual block number then find the
1336 * first block in this inode and use that as a hint. If that
1337 * block is also bogus then just don't worry about it.
1339 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1340 free_extent_map(em);
1341 em = search_extent_mapping(em_tree, 0, 0);
1342 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1343 alloc_hint = em->block_start;
1345 free_extent_map(em);
1347 alloc_hint = em->block_start;
1348 free_extent_map(em);
1351 read_unlock(&em_tree->lock);
1357 * when extent_io.c finds a delayed allocation range in the file,
1358 * the call backs end up in this code. The basic idea is to
1359 * allocate extents on disk for the range, and create ordered data structs
1360 * in ram to track those extents.
1362 * locked_page is the page that writepage had locked already. We use
1363 * it to make sure we don't do extra locks or unlocks.
1365 * *page_started is set to one if we unlock locked_page and do everything
1366 * required to start IO on it. It may be clean and already done with
1367 * IO when we return.
1369 * When unlock == 1, we unlock the pages in successfully allocated regions.
1370 * When unlock == 0, we leave them locked for writing them out.
1372 * However, we unlock all the pages except @locked_page in case of failure.
1374 * In summary, page locking state will be as follow:
1376 * - page_started == 1 (return value)
1377 * - All the pages are unlocked. IO is started.
1378 * - Note that this can happen only on success
1380 * - All the pages except @locked_page are unlocked in any case
1382 * - On success, all the pages are locked for writing out them
1383 * - On failure, all the pages except @locked_page are unlocked
1385 * When a failure happens in the second or later iteration of the
1386 * while-loop, the ordered extents created in previous iterations are kept
1387 * intact. So, the caller must clean them up by calling
1388 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1391 static noinline int cow_file_range(struct btrfs_inode *inode,
1392 struct page *locked_page,
1393 u64 start, u64 end, int *page_started,
1394 unsigned long *nr_written, int unlock,
1397 struct btrfs_root *root = inode->root;
1398 struct btrfs_fs_info *fs_info = root->fs_info;
1400 u64 orig_start = start;
1402 unsigned long ram_size;
1403 u64 cur_alloc_size = 0;
1405 u64 blocksize = fs_info->sectorsize;
1406 struct btrfs_key ins;
1407 struct extent_map *em;
1408 unsigned clear_bits;
1409 unsigned long page_ops;
1410 bool extent_reserved = false;
1413 if (btrfs_is_free_space_inode(inode)) {
1418 num_bytes = ALIGN(end - start + 1, blocksize);
1419 num_bytes = max(blocksize, num_bytes);
1420 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1422 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1425 * Due to the page size limit, for subpage we can only trigger the
1426 * writeback for the dirty sectors of page, that means data writeback
1427 * is doing more writeback than what we want.
1429 * This is especially unexpected for some call sites like fallocate,
1430 * where we only increase i_size after everything is done.
1431 * This means we can trigger inline extent even if we didn't want to.
1432 * So here we skip inline extent creation completely.
1434 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1435 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1438 /* lets try to make an inline extent */
1439 ret = cow_file_range_inline(inode, actual_end, 0,
1440 BTRFS_COMPRESS_NONE, NULL, false);
1443 * We use DO_ACCOUNTING here because we need the
1444 * delalloc_release_metadata to be run _after_ we drop
1445 * our outstanding extent for clearing delalloc for this
1448 extent_clear_unlock_delalloc(inode, start, end,
1450 EXTENT_LOCKED | EXTENT_DELALLOC |
1451 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1452 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1453 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1454 *nr_written = *nr_written +
1455 (end - start + PAGE_SIZE) / PAGE_SIZE;
1458 * locked_page is locked by the caller of
1459 * writepage_delalloc(), not locked by
1460 * __process_pages_contig().
1462 * We can't let __process_pages_contig() to unlock it,
1463 * as it doesn't have any subpage::writers recorded.
1465 * Here we manually unlock the page, since the caller
1466 * can't use page_started to determine if it's an
1467 * inline extent or a compressed extent.
1469 unlock_page(locked_page);
1471 } else if (ret < 0) {
1476 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1479 * Relocation relies on the relocated extents to have exactly the same
1480 * size as the original extents. Normally writeback for relocation data
1481 * extents follows a NOCOW path because relocation preallocates the
1482 * extents. However, due to an operation such as scrub turning a block
1483 * group to RO mode, it may fallback to COW mode, so we must make sure
1484 * an extent allocated during COW has exactly the requested size and can
1485 * not be split into smaller extents, otherwise relocation breaks and
1486 * fails during the stage where it updates the bytenr of file extent
1489 if (btrfs_is_data_reloc_root(root))
1490 min_alloc_size = num_bytes;
1492 min_alloc_size = fs_info->sectorsize;
1494 while (num_bytes > 0) {
1495 struct btrfs_ordered_extent *ordered;
1497 cur_alloc_size = num_bytes;
1498 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1499 min_alloc_size, 0, alloc_hint,
1503 cur_alloc_size = ins.offset;
1504 extent_reserved = true;
1506 ram_size = ins.offset;
1507 em = create_io_em(inode, start, ins.offset, /* len */
1508 start, /* orig_start */
1509 ins.objectid, /* block_start */
1510 ins.offset, /* block_len */
1511 ins.offset, /* orig_block_len */
1512 ram_size, /* ram_bytes */
1513 BTRFS_COMPRESS_NONE, /* compress_type */
1514 BTRFS_ORDERED_REGULAR /* type */);
1519 free_extent_map(em);
1521 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1522 ram_size, ins.objectid, cur_alloc_size,
1523 0, 1 << BTRFS_ORDERED_REGULAR,
1524 BTRFS_COMPRESS_NONE);
1525 if (IS_ERR(ordered)) {
1526 ret = PTR_ERR(ordered);
1527 goto out_drop_extent_cache;
1530 if (btrfs_is_data_reloc_root(root)) {
1531 ret = btrfs_reloc_clone_csums(ordered);
1534 * Only drop cache here, and process as normal.
1536 * We must not allow extent_clear_unlock_delalloc()
1537 * at out_unlock label to free meta of this ordered
1538 * extent, as its meta should be freed by
1539 * btrfs_finish_ordered_io().
1541 * So we must continue until @start is increased to
1542 * skip current ordered extent.
1545 btrfs_drop_extent_map_range(inode, start,
1546 start + ram_size - 1,
1549 btrfs_put_ordered_extent(ordered);
1551 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1554 * We're not doing compressed IO, don't unlock the first page
1555 * (which the caller expects to stay locked), don't clear any
1556 * dirty bits and don't set any writeback bits
1558 * Do set the Ordered (Private2) bit so we know this page was
1559 * properly setup for writepage.
1561 page_ops = unlock ? PAGE_UNLOCK : 0;
1562 page_ops |= PAGE_SET_ORDERED;
1564 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1566 EXTENT_LOCKED | EXTENT_DELALLOC,
1568 if (num_bytes < cur_alloc_size)
1571 num_bytes -= cur_alloc_size;
1572 alloc_hint = ins.objectid + ins.offset;
1573 start += cur_alloc_size;
1574 extent_reserved = false;
1577 * btrfs_reloc_clone_csums() error, since start is increased
1578 * extent_clear_unlock_delalloc() at out_unlock label won't
1579 * free metadata of current ordered extent, we're OK to exit.
1587 out_drop_extent_cache:
1588 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1590 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1591 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1594 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1595 * caller to write out the successfully allocated region and retry.
1597 if (done_offset && ret == -EAGAIN) {
1598 if (orig_start < start)
1599 *done_offset = start - 1;
1601 *done_offset = start;
1603 } else if (ret == -EAGAIN) {
1604 /* Convert to -ENOSPC since the caller cannot retry. */
1609 * Now, we have three regions to clean up:
1611 * |-------(1)----|---(2)---|-------------(3)----------|
1612 * `- orig_start `- start `- start + cur_alloc_size `- end
1614 * We process each region below.
1617 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1618 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1619 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1622 * For the range (1). We have already instantiated the ordered extents
1623 * for this region. They are cleaned up by
1624 * btrfs_cleanup_ordered_extents() in e.g,
1625 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1626 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1627 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1630 * However, in case of unlock == 0, we still need to unlock the pages
1631 * (except @locked_page) to ensure all the pages are unlocked.
1633 if (!unlock && orig_start < start) {
1635 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1636 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1637 locked_page, 0, page_ops);
1641 * For the range (2). If we reserved an extent for our delalloc range
1642 * (or a subrange) and failed to create the respective ordered extent,
1643 * then it means that when we reserved the extent we decremented the
1644 * extent's size from the data space_info's bytes_may_use counter and
1645 * incremented the space_info's bytes_reserved counter by the same
1646 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1647 * to decrement again the data space_info's bytes_may_use counter,
1648 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1650 if (extent_reserved) {
1651 extent_clear_unlock_delalloc(inode, start,
1652 start + cur_alloc_size - 1,
1656 start += cur_alloc_size;
1660 * For the range (3). We never touched the region. In addition to the
1661 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1662 * space_info's bytes_may_use counter, reserved in
1663 * btrfs_check_data_free_space().
1666 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1667 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1668 clear_bits, page_ops);
1674 * work queue call back to started compression on a file and pages
1676 static noinline void async_cow_start(struct btrfs_work *work)
1678 struct async_chunk *async_chunk;
1679 int compressed_extents;
1681 async_chunk = container_of(work, struct async_chunk, work);
1683 compressed_extents = compress_file_range(async_chunk);
1684 if (compressed_extents == 0) {
1685 btrfs_add_delayed_iput(async_chunk->inode);
1686 async_chunk->inode = NULL;
1691 * work queue call back to submit previously compressed pages
1693 static noinline void async_cow_submit(struct btrfs_work *work)
1695 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1697 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1698 unsigned long nr_pages;
1700 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1704 * ->inode could be NULL if async_chunk_start has failed to compress,
1705 * in which case we don't have anything to submit, yet we need to
1706 * always adjust ->async_delalloc_pages as its paired with the init
1707 * happening in run_delalloc_compressed
1709 if (async_chunk->inode)
1710 submit_compressed_extents(async_chunk);
1712 /* atomic_sub_return implies a barrier */
1713 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1715 cond_wake_up_nomb(&fs_info->async_submit_wait);
1718 static noinline void async_cow_free(struct btrfs_work *work)
1720 struct async_chunk *async_chunk;
1721 struct async_cow *async_cow;
1723 async_chunk = container_of(work, struct async_chunk, work);
1724 if (async_chunk->inode)
1725 btrfs_add_delayed_iput(async_chunk->inode);
1726 if (async_chunk->blkcg_css)
1727 css_put(async_chunk->blkcg_css);
1729 async_cow = async_chunk->async_cow;
1730 if (atomic_dec_and_test(&async_cow->num_chunks))
1734 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1735 struct writeback_control *wbc,
1736 struct page *locked_page,
1737 u64 start, u64 end, int *page_started,
1738 unsigned long *nr_written)
1740 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1741 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1742 struct async_cow *ctx;
1743 struct async_chunk *async_chunk;
1744 unsigned long nr_pages;
1745 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1748 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1750 nofs_flag = memalloc_nofs_save();
1751 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1752 memalloc_nofs_restore(nofs_flag);
1756 unlock_extent(&inode->io_tree, start, end, NULL);
1757 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1759 async_chunk = ctx->chunks;
1760 atomic_set(&ctx->num_chunks, num_chunks);
1762 for (i = 0; i < num_chunks; i++) {
1763 u64 cur_end = min(end, start + SZ_512K - 1);
1766 * igrab is called higher up in the call chain, take only the
1767 * lightweight reference for the callback lifetime
1769 ihold(&inode->vfs_inode);
1770 async_chunk[i].async_cow = ctx;
1771 async_chunk[i].inode = inode;
1772 async_chunk[i].start = start;
1773 async_chunk[i].end = cur_end;
1774 async_chunk[i].write_flags = write_flags;
1775 INIT_LIST_HEAD(&async_chunk[i].extents);
1778 * The locked_page comes all the way from writepage and its
1779 * the original page we were actually given. As we spread
1780 * this large delalloc region across multiple async_chunk
1781 * structs, only the first struct needs a pointer to locked_page
1783 * This way we don't need racey decisions about who is supposed
1788 * Depending on the compressibility, the pages might or
1789 * might not go through async. We want all of them to
1790 * be accounted against wbc once. Let's do it here
1791 * before the paths diverge. wbc accounting is used
1792 * only for foreign writeback detection and doesn't
1793 * need full accuracy. Just account the whole thing
1794 * against the first page.
1796 wbc_account_cgroup_owner(wbc, locked_page,
1798 async_chunk[i].locked_page = locked_page;
1801 async_chunk[i].locked_page = NULL;
1804 if (blkcg_css != blkcg_root_css) {
1806 async_chunk[i].blkcg_css = blkcg_css;
1807 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1809 async_chunk[i].blkcg_css = NULL;
1812 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1813 async_cow_submit, async_cow_free);
1815 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1816 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1818 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1820 *nr_written += nr_pages;
1821 start = cur_end + 1;
1827 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1828 struct page *locked_page, u64 start,
1829 u64 end, int *page_started,
1830 unsigned long *nr_written,
1831 struct writeback_control *wbc)
1833 u64 done_offset = end;
1835 bool locked_page_done = false;
1837 while (start <= end) {
1838 ret = cow_file_range(inode, locked_page, start, end, page_started,
1839 nr_written, 0, &done_offset);
1840 if (ret && ret != -EAGAIN)
1843 if (*page_started) {
1851 if (done_offset == start) {
1852 wait_on_bit_io(&inode->root->fs_info->flags,
1853 BTRFS_FS_NEED_ZONE_FINISH,
1854 TASK_UNINTERRUPTIBLE);
1858 if (!locked_page_done) {
1859 __set_page_dirty_nobuffers(locked_page);
1860 account_page_redirty(locked_page);
1862 locked_page_done = true;
1863 extent_write_locked_range(&inode->vfs_inode, start, done_offset,
1865 start = done_offset + 1;
1873 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1874 u64 bytenr, u64 num_bytes, bool nowait)
1876 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1877 struct btrfs_ordered_sum *sums;
1881 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1883 if (ret == 0 && list_empty(&list))
1886 while (!list_empty(&list)) {
1887 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1888 list_del(&sums->list);
1896 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1897 const u64 start, const u64 end,
1898 int *page_started, unsigned long *nr_written)
1900 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1901 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1902 const u64 range_bytes = end + 1 - start;
1903 struct extent_io_tree *io_tree = &inode->io_tree;
1904 u64 range_start = start;
1908 * If EXTENT_NORESERVE is set it means that when the buffered write was
1909 * made we had not enough available data space and therefore we did not
1910 * reserve data space for it, since we though we could do NOCOW for the
1911 * respective file range (either there is prealloc extent or the inode
1912 * has the NOCOW bit set).
1914 * However when we need to fallback to COW mode (because for example the
1915 * block group for the corresponding extent was turned to RO mode by a
1916 * scrub or relocation) we need to do the following:
1918 * 1) We increment the bytes_may_use counter of the data space info.
1919 * If COW succeeds, it allocates a new data extent and after doing
1920 * that it decrements the space info's bytes_may_use counter and
1921 * increments its bytes_reserved counter by the same amount (we do
1922 * this at btrfs_add_reserved_bytes()). So we need to increment the
1923 * bytes_may_use counter to compensate (when space is reserved at
1924 * buffered write time, the bytes_may_use counter is incremented);
1926 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1927 * that if the COW path fails for any reason, it decrements (through
1928 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1929 * data space info, which we incremented in the step above.
1931 * If we need to fallback to cow and the inode corresponds to a free
1932 * space cache inode or an inode of the data relocation tree, we must
1933 * also increment bytes_may_use of the data space_info for the same
1934 * reason. Space caches and relocated data extents always get a prealloc
1935 * extent for them, however scrub or balance may have set the block
1936 * group that contains that extent to RO mode and therefore force COW
1937 * when starting writeback.
1939 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1940 EXTENT_NORESERVE, 0, NULL);
1941 if (count > 0 || is_space_ino || is_reloc_ino) {
1943 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1944 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1946 if (is_space_ino || is_reloc_ino)
1947 bytes = range_bytes;
1949 spin_lock(&sinfo->lock);
1950 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1951 spin_unlock(&sinfo->lock);
1954 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1958 return cow_file_range(inode, locked_page, start, end, page_started,
1959 nr_written, 1, NULL);
1962 struct can_nocow_file_extent_args {
1965 /* Start file offset of the range we want to NOCOW. */
1967 /* End file offset (inclusive) of the range we want to NOCOW. */
1969 bool writeback_path;
1972 * Free the path passed to can_nocow_file_extent() once it's not needed
1977 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1982 /* Number of bytes that can be written to in NOCOW mode. */
1987 * Check if we can NOCOW the file extent that the path points to.
1988 * This function may return with the path released, so the caller should check
1989 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1991 * Returns: < 0 on error
1992 * 0 if we can not NOCOW
1995 static int can_nocow_file_extent(struct btrfs_path *path,
1996 struct btrfs_key *key,
1997 struct btrfs_inode *inode,
1998 struct can_nocow_file_extent_args *args)
2000 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
2001 struct extent_buffer *leaf = path->nodes[0];
2002 struct btrfs_root *root = inode->root;
2003 struct btrfs_file_extent_item *fi;
2008 bool nowait = path->nowait;
2010 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2011 extent_type = btrfs_file_extent_type(leaf, fi);
2013 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
2016 /* Can't access these fields unless we know it's not an inline extent. */
2017 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2018 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
2019 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
2021 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
2022 extent_type == BTRFS_FILE_EXTENT_REG)
2026 * If the extent was created before the generation where the last snapshot
2027 * for its subvolume was created, then this implies the extent is shared,
2028 * hence we must COW.
2030 if (!args->strict &&
2031 btrfs_file_extent_generation(leaf, fi) <=
2032 btrfs_root_last_snapshot(&root->root_item))
2035 /* An explicit hole, must COW. */
2036 if (args->disk_bytenr == 0)
2039 /* Compressed/encrypted/encoded extents must be COWed. */
2040 if (btrfs_file_extent_compression(leaf, fi) ||
2041 btrfs_file_extent_encryption(leaf, fi) ||
2042 btrfs_file_extent_other_encoding(leaf, fi))
2045 extent_end = btrfs_file_extent_end(path);
2048 * The following checks can be expensive, as they need to take other
2049 * locks and do btree or rbtree searches, so release the path to avoid
2050 * blocking other tasks for too long.
2052 btrfs_release_path(path);
2054 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
2055 key->offset - args->extent_offset,
2056 args->disk_bytenr, args->strict, path);
2057 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2061 if (args->free_path) {
2063 * We don't need the path anymore, plus through the
2064 * csum_exist_in_range() call below we will end up allocating
2065 * another path. So free the path to avoid unnecessary extra
2068 btrfs_free_path(path);
2072 /* If there are pending snapshots for this root, we must COW. */
2073 if (args->writeback_path && !is_freespace_inode &&
2074 atomic_read(&root->snapshot_force_cow))
2077 args->disk_bytenr += args->extent_offset;
2078 args->disk_bytenr += args->start - key->offset;
2079 args->num_bytes = min(args->end + 1, extent_end) - args->start;
2082 * Force COW if csums exist in the range. This ensures that csums for a
2083 * given extent are either valid or do not exist.
2085 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
2087 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2093 if (args->free_path && path)
2094 btrfs_free_path(path);
2096 return ret < 0 ? ret : can_nocow;
2100 * when nowcow writeback call back. This checks for snapshots or COW copies
2101 * of the extents that exist in the file, and COWs the file as required.
2103 * If no cow copies or snapshots exist, we write directly to the existing
2106 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2107 struct page *locked_page,
2108 const u64 start, const u64 end,
2110 unsigned long *nr_written)
2112 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2113 struct btrfs_root *root = inode->root;
2114 struct btrfs_path *path;
2115 u64 cow_start = (u64)-1;
2116 u64 cur_offset = start;
2118 bool check_prev = true;
2119 u64 ino = btrfs_ino(inode);
2120 struct btrfs_block_group *bg;
2122 struct can_nocow_file_extent_args nocow_args = { 0 };
2124 path = btrfs_alloc_path();
2126 extent_clear_unlock_delalloc(inode, start, end, locked_page,
2127 EXTENT_LOCKED | EXTENT_DELALLOC |
2128 EXTENT_DO_ACCOUNTING |
2129 EXTENT_DEFRAG, PAGE_UNLOCK |
2130 PAGE_START_WRITEBACK |
2131 PAGE_END_WRITEBACK);
2135 nocow_args.end = end;
2136 nocow_args.writeback_path = true;
2139 struct btrfs_ordered_extent *ordered;
2140 struct btrfs_key found_key;
2141 struct btrfs_file_extent_item *fi;
2142 struct extent_buffer *leaf;
2151 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2157 * If there is no extent for our range when doing the initial
2158 * search, then go back to the previous slot as it will be the
2159 * one containing the search offset
2161 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2162 leaf = path->nodes[0];
2163 btrfs_item_key_to_cpu(leaf, &found_key,
2164 path->slots[0] - 1);
2165 if (found_key.objectid == ino &&
2166 found_key.type == BTRFS_EXTENT_DATA_KEY)
2171 /* Go to next leaf if we have exhausted the current one */
2172 leaf = path->nodes[0];
2173 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2174 ret = btrfs_next_leaf(root, path);
2176 if (cow_start != (u64)-1)
2177 cur_offset = cow_start;
2182 leaf = path->nodes[0];
2185 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2187 /* Didn't find anything for our INO */
2188 if (found_key.objectid > ino)
2191 * Keep searching until we find an EXTENT_ITEM or there are no
2192 * more extents for this inode
2194 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2195 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2200 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2201 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2202 found_key.offset > end)
2206 * If the found extent starts after requested offset, then
2207 * adjust extent_end to be right before this extent begins
2209 if (found_key.offset > cur_offset) {
2210 extent_end = found_key.offset;
2216 * Found extent which begins before our range and potentially
2219 fi = btrfs_item_ptr(leaf, path->slots[0],
2220 struct btrfs_file_extent_item);
2221 extent_type = btrfs_file_extent_type(leaf, fi);
2222 /* If this is triggered then we have a memory corruption. */
2223 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2224 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2228 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2229 extent_end = btrfs_file_extent_end(path);
2232 * If the extent we got ends before our current offset, skip to
2235 if (extent_end <= cur_offset) {
2240 nocow_args.start = cur_offset;
2241 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2243 if (cow_start != (u64)-1)
2244 cur_offset = cow_start;
2246 } else if (ret == 0) {
2251 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2256 * If nocow is false then record the beginning of the range
2257 * that needs to be COWed
2260 if (cow_start == (u64)-1)
2261 cow_start = cur_offset;
2262 cur_offset = extent_end;
2263 if (cur_offset > end)
2265 if (!path->nodes[0])
2272 * COW range from cow_start to found_key.offset - 1. As the key
2273 * will contain the beginning of the first extent that can be
2274 * NOCOW, following one which needs to be COW'ed
2276 if (cow_start != (u64)-1) {
2277 ret = fallback_to_cow(inode, locked_page,
2278 cow_start, found_key.offset - 1,
2279 page_started, nr_written);
2282 cow_start = (u64)-1;
2285 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2286 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2288 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2289 struct extent_map *em;
2291 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2293 nocow_args.disk_bytenr, /* block_start */
2294 nocow_args.num_bytes, /* block_len */
2295 nocow_args.disk_num_bytes, /* orig_block_len */
2296 ram_bytes, BTRFS_COMPRESS_NONE,
2297 BTRFS_ORDERED_PREALLOC);
2302 free_extent_map(em);
2305 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2306 nocow_args.num_bytes, nocow_args.num_bytes,
2307 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2309 ? (1 << BTRFS_ORDERED_PREALLOC)
2310 : (1 << BTRFS_ORDERED_NOCOW),
2311 BTRFS_COMPRESS_NONE);
2312 if (IS_ERR(ordered)) {
2314 btrfs_drop_extent_map_range(inode, cur_offset,
2317 ret = PTR_ERR(ordered);
2322 btrfs_dec_nocow_writers(bg);
2326 if (btrfs_is_data_reloc_root(root))
2328 * Error handled later, as we must prevent
2329 * extent_clear_unlock_delalloc() in error handler
2330 * from freeing metadata of created ordered extent.
2332 ret = btrfs_reloc_clone_csums(ordered);
2333 btrfs_put_ordered_extent(ordered);
2335 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2336 locked_page, EXTENT_LOCKED |
2338 EXTENT_CLEAR_DATA_RESV,
2339 PAGE_UNLOCK | PAGE_SET_ORDERED);
2341 cur_offset = extent_end;
2344 * btrfs_reloc_clone_csums() error, now we're OK to call error
2345 * handler, as metadata for created ordered extent will only
2346 * be freed by btrfs_finish_ordered_io().
2350 if (cur_offset > end)
2353 btrfs_release_path(path);
2355 if (cur_offset <= end && cow_start == (u64)-1)
2356 cow_start = cur_offset;
2358 if (cow_start != (u64)-1) {
2360 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2361 page_started, nr_written);
2368 btrfs_dec_nocow_writers(bg);
2370 if (ret && cur_offset < end)
2371 extent_clear_unlock_delalloc(inode, cur_offset, end,
2372 locked_page, EXTENT_LOCKED |
2373 EXTENT_DELALLOC | EXTENT_DEFRAG |
2374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2375 PAGE_START_WRITEBACK |
2376 PAGE_END_WRITEBACK);
2377 btrfs_free_path(path);
2381 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2383 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2384 if (inode->defrag_bytes &&
2385 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2394 * Function to process delayed allocation (create CoW) for ranges which are
2395 * being touched for the first time.
2397 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2398 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2399 struct writeback_control *wbc)
2402 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2405 * The range must cover part of the @locked_page, or the returned
2406 * @page_started can confuse the caller.
2408 ASSERT(!(end <= page_offset(locked_page) ||
2409 start >= page_offset(locked_page) + PAGE_SIZE));
2411 if (should_nocow(inode, start, end)) {
2413 * Normally on a zoned device we're only doing COW writes, but
2414 * in case of relocation on a zoned filesystem we have taken
2415 * precaution, that we're only writing sequentially. It's safe
2416 * to use run_delalloc_nocow() here, like for regular
2417 * preallocated inodes.
2419 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2420 ret = run_delalloc_nocow(inode, locked_page, start, end,
2421 page_started, nr_written);
2425 if (btrfs_inode_can_compress(inode) &&
2426 inode_need_compress(inode, start, end) &&
2427 run_delalloc_compressed(inode, wbc, locked_page, start,
2428 end, page_started, nr_written))
2432 ret = run_delalloc_zoned(inode, locked_page, start, end,
2433 page_started, nr_written, wbc);
2435 ret = cow_file_range(inode, locked_page, start, end,
2436 page_started, nr_written, 1, NULL);
2441 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2446 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2447 struct extent_state *orig, u64 split)
2449 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2452 /* not delalloc, ignore it */
2453 if (!(orig->state & EXTENT_DELALLOC))
2456 size = orig->end - orig->start + 1;
2457 if (size > fs_info->max_extent_size) {
2462 * See the explanation in btrfs_merge_delalloc_extent, the same
2463 * applies here, just in reverse.
2465 new_size = orig->end - split + 1;
2466 num_extents = count_max_extents(fs_info, new_size);
2467 new_size = split - orig->start;
2468 num_extents += count_max_extents(fs_info, new_size);
2469 if (count_max_extents(fs_info, size) >= num_extents)
2473 spin_lock(&inode->lock);
2474 btrfs_mod_outstanding_extents(inode, 1);
2475 spin_unlock(&inode->lock);
2479 * Handle merged delayed allocation extents so we can keep track of new extents
2480 * that are just merged onto old extents, such as when we are doing sequential
2481 * writes, so we can properly account for the metadata space we'll need.
2483 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2484 struct extent_state *other)
2486 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2487 u64 new_size, old_size;
2490 /* not delalloc, ignore it */
2491 if (!(other->state & EXTENT_DELALLOC))
2494 if (new->start > other->start)
2495 new_size = new->end - other->start + 1;
2497 new_size = other->end - new->start + 1;
2499 /* we're not bigger than the max, unreserve the space and go */
2500 if (new_size <= fs_info->max_extent_size) {
2501 spin_lock(&inode->lock);
2502 btrfs_mod_outstanding_extents(inode, -1);
2503 spin_unlock(&inode->lock);
2508 * We have to add up either side to figure out how many extents were
2509 * accounted for before we merged into one big extent. If the number of
2510 * extents we accounted for is <= the amount we need for the new range
2511 * then we can return, otherwise drop. Think of it like this
2515 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2516 * need 2 outstanding extents, on one side we have 1 and the other side
2517 * we have 1 so they are == and we can return. But in this case
2519 * [MAX_SIZE+4k][MAX_SIZE+4k]
2521 * Each range on their own accounts for 2 extents, but merged together
2522 * they are only 3 extents worth of accounting, so we need to drop in
2525 old_size = other->end - other->start + 1;
2526 num_extents = count_max_extents(fs_info, old_size);
2527 old_size = new->end - new->start + 1;
2528 num_extents += count_max_extents(fs_info, old_size);
2529 if (count_max_extents(fs_info, new_size) >= num_extents)
2532 spin_lock(&inode->lock);
2533 btrfs_mod_outstanding_extents(inode, -1);
2534 spin_unlock(&inode->lock);
2537 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2538 struct btrfs_inode *inode)
2540 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2542 spin_lock(&root->delalloc_lock);
2543 if (list_empty(&inode->delalloc_inodes)) {
2544 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2546 root->nr_delalloc_inodes++;
2547 if (root->nr_delalloc_inodes == 1) {
2548 spin_lock(&fs_info->delalloc_root_lock);
2549 BUG_ON(!list_empty(&root->delalloc_root));
2550 list_add_tail(&root->delalloc_root,
2551 &fs_info->delalloc_roots);
2552 spin_unlock(&fs_info->delalloc_root_lock);
2555 spin_unlock(&root->delalloc_lock);
2558 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2559 struct btrfs_inode *inode)
2561 struct btrfs_fs_info *fs_info = root->fs_info;
2563 if (!list_empty(&inode->delalloc_inodes)) {
2564 list_del_init(&inode->delalloc_inodes);
2565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2566 &inode->runtime_flags);
2567 root->nr_delalloc_inodes--;
2568 if (!root->nr_delalloc_inodes) {
2569 ASSERT(list_empty(&root->delalloc_inodes));
2570 spin_lock(&fs_info->delalloc_root_lock);
2571 BUG_ON(list_empty(&root->delalloc_root));
2572 list_del_init(&root->delalloc_root);
2573 spin_unlock(&fs_info->delalloc_root_lock);
2578 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2579 struct btrfs_inode *inode)
2581 spin_lock(&root->delalloc_lock);
2582 __btrfs_del_delalloc_inode(root, inode);
2583 spin_unlock(&root->delalloc_lock);
2587 * Properly track delayed allocation bytes in the inode and to maintain the
2588 * list of inodes that have pending delalloc work to be done.
2590 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2593 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2595 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2598 * set_bit and clear bit hooks normally require _irqsave/restore
2599 * but in this case, we are only testing for the DELALLOC
2600 * bit, which is only set or cleared with irqs on
2602 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2603 struct btrfs_root *root = inode->root;
2604 u64 len = state->end + 1 - state->start;
2605 u32 num_extents = count_max_extents(fs_info, len);
2606 bool do_list = !btrfs_is_free_space_inode(inode);
2608 spin_lock(&inode->lock);
2609 btrfs_mod_outstanding_extents(inode, num_extents);
2610 spin_unlock(&inode->lock);
2612 /* For sanity tests */
2613 if (btrfs_is_testing(fs_info))
2616 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2617 fs_info->delalloc_batch);
2618 spin_lock(&inode->lock);
2619 inode->delalloc_bytes += len;
2620 if (bits & EXTENT_DEFRAG)
2621 inode->defrag_bytes += len;
2622 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2623 &inode->runtime_flags))
2624 btrfs_add_delalloc_inodes(root, inode);
2625 spin_unlock(&inode->lock);
2628 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2629 (bits & EXTENT_DELALLOC_NEW)) {
2630 spin_lock(&inode->lock);
2631 inode->new_delalloc_bytes += state->end + 1 - state->start;
2632 spin_unlock(&inode->lock);
2637 * Once a range is no longer delalloc this function ensures that proper
2638 * accounting happens.
2640 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2641 struct extent_state *state, u32 bits)
2643 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2644 u64 len = state->end + 1 - state->start;
2645 u32 num_extents = count_max_extents(fs_info, len);
2647 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2648 spin_lock(&inode->lock);
2649 inode->defrag_bytes -= len;
2650 spin_unlock(&inode->lock);
2654 * set_bit and clear bit hooks normally require _irqsave/restore
2655 * but in this case, we are only testing for the DELALLOC
2656 * bit, which is only set or cleared with irqs on
2658 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2659 struct btrfs_root *root = inode->root;
2660 bool do_list = !btrfs_is_free_space_inode(inode);
2662 spin_lock(&inode->lock);
2663 btrfs_mod_outstanding_extents(inode, -num_extents);
2664 spin_unlock(&inode->lock);
2667 * We don't reserve metadata space for space cache inodes so we
2668 * don't need to call delalloc_release_metadata if there is an
2671 if (bits & EXTENT_CLEAR_META_RESV &&
2672 root != fs_info->tree_root)
2673 btrfs_delalloc_release_metadata(inode, len, false);
2675 /* For sanity tests. */
2676 if (btrfs_is_testing(fs_info))
2679 if (!btrfs_is_data_reloc_root(root) &&
2680 do_list && !(state->state & EXTENT_NORESERVE) &&
2681 (bits & EXTENT_CLEAR_DATA_RESV))
2682 btrfs_free_reserved_data_space_noquota(fs_info, len);
2684 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2685 fs_info->delalloc_batch);
2686 spin_lock(&inode->lock);
2687 inode->delalloc_bytes -= len;
2688 if (do_list && inode->delalloc_bytes == 0 &&
2689 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2690 &inode->runtime_flags))
2691 btrfs_del_delalloc_inode(root, inode);
2692 spin_unlock(&inode->lock);
2695 if ((state->state & EXTENT_DELALLOC_NEW) &&
2696 (bits & EXTENT_DELALLOC_NEW)) {
2697 spin_lock(&inode->lock);
2698 ASSERT(inode->new_delalloc_bytes >= len);
2699 inode->new_delalloc_bytes -= len;
2700 if (bits & EXTENT_ADD_INODE_BYTES)
2701 inode_add_bytes(&inode->vfs_inode, len);
2702 spin_unlock(&inode->lock);
2706 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2707 struct btrfs_ordered_extent *ordered)
2709 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2710 u64 len = bbio->bio.bi_iter.bi_size;
2711 struct btrfs_ordered_extent *new;
2714 /* Must always be called for the beginning of an ordered extent. */
2715 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2718 /* No need to split if the ordered extent covers the entire bio. */
2719 if (ordered->disk_num_bytes == len) {
2720 refcount_inc(&ordered->refs);
2721 bbio->ordered = ordered;
2726 * Don't split the extent_map for NOCOW extents, as we're writing into
2727 * a pre-existing one.
2729 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2730 ret = split_extent_map(bbio->inode, bbio->file_offset,
2731 ordered->num_bytes, len,
2732 ordered->disk_bytenr);
2737 new = btrfs_split_ordered_extent(ordered, len);
2739 return PTR_ERR(new);
2740 bbio->ordered = new;
2745 * given a list of ordered sums record them in the inode. This happens
2746 * at IO completion time based on sums calculated at bio submission time.
2748 static int add_pending_csums(struct btrfs_trans_handle *trans,
2749 struct list_head *list)
2751 struct btrfs_ordered_sum *sum;
2752 struct btrfs_root *csum_root = NULL;
2755 list_for_each_entry(sum, list, list) {
2756 trans->adding_csums = true;
2758 csum_root = btrfs_csum_root(trans->fs_info,
2760 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2761 trans->adding_csums = false;
2768 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2771 struct extent_state **cached_state)
2773 u64 search_start = start;
2774 const u64 end = start + len - 1;
2776 while (search_start < end) {
2777 const u64 search_len = end - search_start + 1;
2778 struct extent_map *em;
2782 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2786 if (em->block_start != EXTENT_MAP_HOLE)
2790 if (em->start < search_start)
2791 em_len -= search_start - em->start;
2792 if (em_len > search_len)
2793 em_len = search_len;
2795 ret = set_extent_bit(&inode->io_tree, search_start,
2796 search_start + em_len - 1,
2797 EXTENT_DELALLOC_NEW, cached_state);
2799 search_start = extent_map_end(em);
2800 free_extent_map(em);
2807 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2808 unsigned int extra_bits,
2809 struct extent_state **cached_state)
2811 WARN_ON(PAGE_ALIGNED(end));
2813 if (start >= i_size_read(&inode->vfs_inode) &&
2814 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2816 * There can't be any extents following eof in this case so just
2817 * set the delalloc new bit for the range directly.
2819 extra_bits |= EXTENT_DELALLOC_NEW;
2823 ret = btrfs_find_new_delalloc_bytes(inode, start,
2830 return set_extent_bit(&inode->io_tree, start, end,
2831 EXTENT_DELALLOC | extra_bits, cached_state);
2834 /* see btrfs_writepage_start_hook for details on why this is required */
2835 struct btrfs_writepage_fixup {
2837 struct btrfs_inode *inode;
2838 struct btrfs_work work;
2841 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2843 struct btrfs_writepage_fixup *fixup;
2844 struct btrfs_ordered_extent *ordered;
2845 struct extent_state *cached_state = NULL;
2846 struct extent_changeset *data_reserved = NULL;
2848 struct btrfs_inode *inode;
2852 bool free_delalloc_space = true;
2854 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2856 inode = fixup->inode;
2857 page_start = page_offset(page);
2858 page_end = page_offset(page) + PAGE_SIZE - 1;
2861 * This is similar to page_mkwrite, we need to reserve the space before
2862 * we take the page lock.
2864 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2870 * Before we queued this fixup, we took a reference on the page.
2871 * page->mapping may go NULL, but it shouldn't be moved to a different
2874 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2876 * Unfortunately this is a little tricky, either
2878 * 1) We got here and our page had already been dealt with and
2879 * we reserved our space, thus ret == 0, so we need to just
2880 * drop our space reservation and bail. This can happen the
2881 * first time we come into the fixup worker, or could happen
2882 * while waiting for the ordered extent.
2883 * 2) Our page was already dealt with, but we happened to get an
2884 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2885 * this case we obviously don't have anything to release, but
2886 * because the page was already dealt with we don't want to
2887 * mark the page with an error, so make sure we're resetting
2888 * ret to 0. This is why we have this check _before_ the ret
2889 * check, because we do not want to have a surprise ENOSPC
2890 * when the page was already properly dealt with.
2893 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2894 btrfs_delalloc_release_space(inode, data_reserved,
2895 page_start, PAGE_SIZE,
2903 * We can't mess with the page state unless it is locked, so now that
2904 * it is locked bail if we failed to make our space reservation.
2909 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2911 /* already ordered? We're done */
2912 if (PageOrdered(page))
2915 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2917 unlock_extent(&inode->io_tree, page_start, page_end,
2920 btrfs_start_ordered_extent(ordered);
2921 btrfs_put_ordered_extent(ordered);
2925 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2931 * Everything went as planned, we're now the owner of a dirty page with
2932 * delayed allocation bits set and space reserved for our COW
2935 * The page was dirty when we started, nothing should have cleaned it.
2937 BUG_ON(!PageDirty(page));
2938 free_delalloc_space = false;
2940 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2941 if (free_delalloc_space)
2942 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2944 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2948 * We hit ENOSPC or other errors. Update the mapping and page
2949 * to reflect the errors and clean the page.
2951 mapping_set_error(page->mapping, ret);
2952 end_extent_writepage(page, ret, page_start, page_end);
2953 clear_page_dirty_for_io(page);
2955 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2959 extent_changeset_free(data_reserved);
2961 * As a precaution, do a delayed iput in case it would be the last iput
2962 * that could need flushing space. Recursing back to fixup worker would
2965 btrfs_add_delayed_iput(inode);
2969 * There are a few paths in the higher layers of the kernel that directly
2970 * set the page dirty bit without asking the filesystem if it is a
2971 * good idea. This causes problems because we want to make sure COW
2972 * properly happens and the data=ordered rules are followed.
2974 * In our case any range that doesn't have the ORDERED bit set
2975 * hasn't been properly setup for IO. We kick off an async process
2976 * to fix it up. The async helper will wait for ordered extents, set
2977 * the delalloc bit and make it safe to write the page.
2979 int btrfs_writepage_cow_fixup(struct page *page)
2981 struct inode *inode = page->mapping->host;
2982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2983 struct btrfs_writepage_fixup *fixup;
2985 /* This page has ordered extent covering it already */
2986 if (PageOrdered(page))
2990 * PageChecked is set below when we create a fixup worker for this page,
2991 * don't try to create another one if we're already PageChecked()
2993 * The extent_io writepage code will redirty the page if we send back
2996 if (PageChecked(page))
2999 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3004 * We are already holding a reference to this inode from
3005 * write_cache_pages. We need to hold it because the space reservation
3006 * takes place outside of the page lock, and we can't trust
3007 * page->mapping outside of the page lock.
3010 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3012 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3014 fixup->inode = BTRFS_I(inode);
3015 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3020 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3021 struct btrfs_inode *inode, u64 file_pos,
3022 struct btrfs_file_extent_item *stack_fi,
3023 const bool update_inode_bytes,
3024 u64 qgroup_reserved)
3026 struct btrfs_root *root = inode->root;
3027 const u64 sectorsize = root->fs_info->sectorsize;
3028 struct btrfs_path *path;
3029 struct extent_buffer *leaf;
3030 struct btrfs_key ins;
3031 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3032 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3033 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3034 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3035 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3036 struct btrfs_drop_extents_args drop_args = { 0 };
3039 path = btrfs_alloc_path();
3044 * we may be replacing one extent in the tree with another.
3045 * The new extent is pinned in the extent map, and we don't want
3046 * to drop it from the cache until it is completely in the btree.
3048 * So, tell btrfs_drop_extents to leave this extent in the cache.
3049 * the caller is expected to unpin it and allow it to be merged
3052 drop_args.path = path;
3053 drop_args.start = file_pos;
3054 drop_args.end = file_pos + num_bytes;
3055 drop_args.replace_extent = true;
3056 drop_args.extent_item_size = sizeof(*stack_fi);
3057 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3061 if (!drop_args.extent_inserted) {
3062 ins.objectid = btrfs_ino(inode);
3063 ins.offset = file_pos;
3064 ins.type = BTRFS_EXTENT_DATA_KEY;
3066 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3071 leaf = path->nodes[0];
3072 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3073 write_extent_buffer(leaf, stack_fi,
3074 btrfs_item_ptr_offset(leaf, path->slots[0]),
3075 sizeof(struct btrfs_file_extent_item));
3077 btrfs_mark_buffer_dirty(leaf);
3078 btrfs_release_path(path);
3081 * If we dropped an inline extent here, we know the range where it is
3082 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3083 * number of bytes only for that range containing the inline extent.
3084 * The remaining of the range will be processed when clearning the
3085 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3087 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3088 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3090 inline_size = drop_args.bytes_found - inline_size;
3091 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3092 drop_args.bytes_found -= inline_size;
3093 num_bytes -= sectorsize;
3096 if (update_inode_bytes)
3097 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3099 ins.objectid = disk_bytenr;
3100 ins.offset = disk_num_bytes;
3101 ins.type = BTRFS_EXTENT_ITEM_KEY;
3103 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3107 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3109 qgroup_reserved, &ins);
3111 btrfs_free_path(path);
3116 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3119 struct btrfs_block_group *cache;
3121 cache = btrfs_lookup_block_group(fs_info, start);
3124 spin_lock(&cache->lock);
3125 cache->delalloc_bytes -= len;
3126 spin_unlock(&cache->lock);
3128 btrfs_put_block_group(cache);
3131 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3132 struct btrfs_ordered_extent *oe)
3134 struct btrfs_file_extent_item stack_fi;
3135 bool update_inode_bytes;
3136 u64 num_bytes = oe->num_bytes;
3137 u64 ram_bytes = oe->ram_bytes;
3139 memset(&stack_fi, 0, sizeof(stack_fi));
3140 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3141 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3142 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3143 oe->disk_num_bytes);
3144 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3145 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3146 num_bytes = oe->truncated_len;
3147 ram_bytes = num_bytes;
3149 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3150 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3151 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3152 /* Encryption and other encoding is reserved and all 0 */
3155 * For delalloc, when completing an ordered extent we update the inode's
3156 * bytes when clearing the range in the inode's io tree, so pass false
3157 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3158 * except if the ordered extent was truncated.
3160 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3161 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3162 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3164 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3165 oe->file_offset, &stack_fi,
3166 update_inode_bytes, oe->qgroup_rsv);
3170 * As ordered data IO finishes, this gets called so we can finish
3171 * an ordered extent if the range of bytes in the file it covers are
3174 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3176 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3177 struct btrfs_root *root = inode->root;
3178 struct btrfs_fs_info *fs_info = root->fs_info;
3179 struct btrfs_trans_handle *trans = NULL;
3180 struct extent_io_tree *io_tree = &inode->io_tree;
3181 struct extent_state *cached_state = NULL;
3183 int compress_type = 0;
3185 u64 logical_len = ordered_extent->num_bytes;
3186 bool freespace_inode;
3187 bool truncated = false;
3188 bool clear_reserved_extent = true;
3189 unsigned int clear_bits = EXTENT_DEFRAG;
3191 start = ordered_extent->file_offset;
3192 end = start + ordered_extent->num_bytes - 1;
3194 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3195 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3196 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3197 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3198 clear_bits |= EXTENT_DELALLOC_NEW;
3200 freespace_inode = btrfs_is_free_space_inode(inode);
3201 if (!freespace_inode)
3202 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3204 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3209 if (btrfs_is_zoned(fs_info))
3210 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3211 ordered_extent->disk_num_bytes);
3213 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3215 logical_len = ordered_extent->truncated_len;
3216 /* Truncated the entire extent, don't bother adding */
3221 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3222 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3224 btrfs_inode_safe_disk_i_size_write(inode, 0);
3225 if (freespace_inode)
3226 trans = btrfs_join_transaction_spacecache(root);
3228 trans = btrfs_join_transaction(root);
3229 if (IS_ERR(trans)) {
3230 ret = PTR_ERR(trans);
3234 trans->block_rsv = &inode->block_rsv;
3235 ret = btrfs_update_inode_fallback(trans, root, inode);
3236 if (ret) /* -ENOMEM or corruption */
3237 btrfs_abort_transaction(trans, ret);
3241 clear_bits |= EXTENT_LOCKED;
3242 lock_extent(io_tree, start, end, &cached_state);
3244 if (freespace_inode)
3245 trans = btrfs_join_transaction_spacecache(root);
3247 trans = btrfs_join_transaction(root);
3248 if (IS_ERR(trans)) {
3249 ret = PTR_ERR(trans);
3254 trans->block_rsv = &inode->block_rsv;
3256 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3257 compress_type = ordered_extent->compress_type;
3258 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3259 BUG_ON(compress_type);
3260 ret = btrfs_mark_extent_written(trans, inode,
3261 ordered_extent->file_offset,
3262 ordered_extent->file_offset +
3264 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3265 ordered_extent->disk_num_bytes);
3267 BUG_ON(root == fs_info->tree_root);
3268 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3270 clear_reserved_extent = false;
3271 btrfs_release_delalloc_bytes(fs_info,
3272 ordered_extent->disk_bytenr,
3273 ordered_extent->disk_num_bytes);
3276 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3277 ordered_extent->num_bytes, trans->transid);
3279 btrfs_abort_transaction(trans, ret);
3283 ret = add_pending_csums(trans, &ordered_extent->list);
3285 btrfs_abort_transaction(trans, ret);
3290 * If this is a new delalloc range, clear its new delalloc flag to
3291 * update the inode's number of bytes. This needs to be done first
3292 * before updating the inode item.
3294 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3295 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3296 clear_extent_bit(&inode->io_tree, start, end,
3297 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3300 btrfs_inode_safe_disk_i_size_write(inode, 0);
3301 ret = btrfs_update_inode_fallback(trans, root, inode);
3302 if (ret) { /* -ENOMEM or corruption */
3303 btrfs_abort_transaction(trans, ret);
3308 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3312 btrfs_end_transaction(trans);
3314 if (ret || truncated) {
3315 u64 unwritten_start = start;
3318 * If we failed to finish this ordered extent for any reason we
3319 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3320 * extent, and mark the inode with the error if it wasn't
3321 * already set. Any error during writeback would have already
3322 * set the mapping error, so we need to set it if we're the ones
3323 * marking this ordered extent as failed.
3325 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3326 &ordered_extent->flags))
3327 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3330 unwritten_start += logical_len;
3331 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3333 /* Drop extent maps for the part of the extent we didn't write. */
3334 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3337 * If the ordered extent had an IOERR or something else went
3338 * wrong we need to return the space for this ordered extent
3339 * back to the allocator. We only free the extent in the
3340 * truncated case if we didn't write out the extent at all.
3342 * If we made it past insert_reserved_file_extent before we
3343 * errored out then we don't need to do this as the accounting
3344 * has already been done.
3346 if ((ret || !logical_len) &&
3347 clear_reserved_extent &&
3348 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3349 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3351 * Discard the range before returning it back to the
3354 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3355 btrfs_discard_extent(fs_info,
3356 ordered_extent->disk_bytenr,
3357 ordered_extent->disk_num_bytes,
3359 btrfs_free_reserved_extent(fs_info,
3360 ordered_extent->disk_bytenr,
3361 ordered_extent->disk_num_bytes, 1);
3366 * This needs to be done to make sure anybody waiting knows we are done
3367 * updating everything for this ordered extent.
3369 btrfs_remove_ordered_extent(inode, ordered_extent);
3372 btrfs_put_ordered_extent(ordered_extent);
3373 /* once for the tree */
3374 btrfs_put_ordered_extent(ordered_extent);
3379 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3381 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3382 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3383 btrfs_finish_ordered_zoned(ordered);
3384 return btrfs_finish_one_ordered(ordered);
3387 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3388 struct page *page, u64 start,
3389 u64 end, bool uptodate)
3391 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3393 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3397 * Verify the checksum for a single sector without any extra action that depend
3398 * on the type of I/O.
3400 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3401 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3403 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3406 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3408 shash->tfm = fs_info->csum_shash;
3410 kaddr = kmap_local_page(page) + pgoff;
3411 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3412 kunmap_local(kaddr);
3414 if (memcmp(csum, csum_expected, fs_info->csum_size))
3420 * Verify the checksum of a single data sector.
3422 * @bbio: btrfs_io_bio which contains the csum
3423 * @dev: device the sector is on
3424 * @bio_offset: offset to the beginning of the bio (in bytes)
3425 * @bv: bio_vec to check
3427 * Check if the checksum on a data block is valid. When a checksum mismatch is
3428 * detected, report the error and fill the corrupted range with zero.
3430 * Return %true if the sector is ok or had no checksum to start with, else %false.
3432 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3433 u32 bio_offset, struct bio_vec *bv)
3435 struct btrfs_inode *inode = bbio->inode;
3436 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3437 u64 file_offset = bbio->file_offset + bio_offset;
3438 u64 end = file_offset + bv->bv_len - 1;
3440 u8 csum[BTRFS_CSUM_SIZE];
3442 ASSERT(bv->bv_len == fs_info->sectorsize);
3447 if (btrfs_is_data_reloc_root(inode->root) &&
3448 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3450 /* Skip the range without csum for data reloc inode */
3451 clear_extent_bits(&inode->io_tree, file_offset, end,
3456 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3458 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3464 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3467 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3473 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3475 * @inode: The inode we want to perform iput on
3477 * This function uses the generic vfs_inode::i_count to track whether we should
3478 * just decrement it (in case it's > 1) or if this is the last iput then link
3479 * the inode to the delayed iput machinery. Delayed iputs are processed at
3480 * transaction commit time/superblock commit/cleaner kthread.
3482 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3484 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3485 unsigned long flags;
3487 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3490 atomic_inc(&fs_info->nr_delayed_iputs);
3492 * Need to be irq safe here because we can be called from either an irq
3493 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3496 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3497 ASSERT(list_empty(&inode->delayed_iput));
3498 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3499 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3500 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3501 wake_up_process(fs_info->cleaner_kthread);
3504 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3505 struct btrfs_inode *inode)
3507 list_del_init(&inode->delayed_iput);
3508 spin_unlock_irq(&fs_info->delayed_iput_lock);
3509 iput(&inode->vfs_inode);
3510 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3511 wake_up(&fs_info->delayed_iputs_wait);
3512 spin_lock_irq(&fs_info->delayed_iput_lock);
3515 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3516 struct btrfs_inode *inode)
3518 if (!list_empty(&inode->delayed_iput)) {
3519 spin_lock_irq(&fs_info->delayed_iput_lock);
3520 if (!list_empty(&inode->delayed_iput))
3521 run_delayed_iput_locked(fs_info, inode);
3522 spin_unlock_irq(&fs_info->delayed_iput_lock);
3526 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3529 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3530 * calls btrfs_add_delayed_iput() and that needs to lock
3531 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3532 * prevent a deadlock.
3534 spin_lock_irq(&fs_info->delayed_iput_lock);
3535 while (!list_empty(&fs_info->delayed_iputs)) {
3536 struct btrfs_inode *inode;
3538 inode = list_first_entry(&fs_info->delayed_iputs,
3539 struct btrfs_inode, delayed_iput);
3540 run_delayed_iput_locked(fs_info, inode);
3541 if (need_resched()) {
3542 spin_unlock_irq(&fs_info->delayed_iput_lock);
3544 spin_lock_irq(&fs_info->delayed_iput_lock);
3547 spin_unlock_irq(&fs_info->delayed_iput_lock);
3551 * Wait for flushing all delayed iputs
3553 * @fs_info: the filesystem
3555 * This will wait on any delayed iputs that are currently running with KILLABLE
3556 * set. Once they are all done running we will return, unless we are killed in
3557 * which case we return EINTR. This helps in user operations like fallocate etc
3558 * that might get blocked on the iputs.
3560 * Return EINTR if we were killed, 0 if nothing's pending
3562 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3564 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3565 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3572 * This creates an orphan entry for the given inode in case something goes wrong
3573 * in the middle of an unlink.
3575 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3576 struct btrfs_inode *inode)
3580 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3581 if (ret && ret != -EEXIST) {
3582 btrfs_abort_transaction(trans, ret);
3590 * We have done the delete so we can go ahead and remove the orphan item for
3591 * this particular inode.
3593 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3594 struct btrfs_inode *inode)
3596 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3600 * this cleans up any orphans that may be left on the list from the last use
3603 int btrfs_orphan_cleanup(struct btrfs_root *root)
3605 struct btrfs_fs_info *fs_info = root->fs_info;
3606 struct btrfs_path *path;
3607 struct extent_buffer *leaf;
3608 struct btrfs_key key, found_key;
3609 struct btrfs_trans_handle *trans;
3610 struct inode *inode;
3611 u64 last_objectid = 0;
3612 int ret = 0, nr_unlink = 0;
3614 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3617 path = btrfs_alloc_path();
3622 path->reada = READA_BACK;
3624 key.objectid = BTRFS_ORPHAN_OBJECTID;
3625 key.type = BTRFS_ORPHAN_ITEM_KEY;
3626 key.offset = (u64)-1;
3629 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3634 * if ret == 0 means we found what we were searching for, which
3635 * is weird, but possible, so only screw with path if we didn't
3636 * find the key and see if we have stuff that matches
3640 if (path->slots[0] == 0)
3645 /* pull out the item */
3646 leaf = path->nodes[0];
3647 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3649 /* make sure the item matches what we want */
3650 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3652 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3655 /* release the path since we're done with it */
3656 btrfs_release_path(path);
3659 * this is where we are basically btrfs_lookup, without the
3660 * crossing root thing. we store the inode number in the
3661 * offset of the orphan item.
3664 if (found_key.offset == last_objectid) {
3666 "Error removing orphan entry, stopping orphan cleanup");
3671 last_objectid = found_key.offset;
3673 found_key.objectid = found_key.offset;
3674 found_key.type = BTRFS_INODE_ITEM_KEY;
3675 found_key.offset = 0;
3676 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3677 if (IS_ERR(inode)) {
3678 ret = PTR_ERR(inode);
3684 if (!inode && root == fs_info->tree_root) {
3685 struct btrfs_root *dead_root;
3686 int is_dead_root = 0;
3689 * This is an orphan in the tree root. Currently these
3690 * could come from 2 sources:
3691 * a) a root (snapshot/subvolume) deletion in progress
3692 * b) a free space cache inode
3693 * We need to distinguish those two, as the orphan item
3694 * for a root must not get deleted before the deletion
3695 * of the snapshot/subvolume's tree completes.
3697 * btrfs_find_orphan_roots() ran before us, which has
3698 * found all deleted roots and loaded them into
3699 * fs_info->fs_roots_radix. So here we can find if an
3700 * orphan item corresponds to a deleted root by looking
3701 * up the root from that radix tree.
3704 spin_lock(&fs_info->fs_roots_radix_lock);
3705 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3706 (unsigned long)found_key.objectid);
3707 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3709 spin_unlock(&fs_info->fs_roots_radix_lock);
3712 /* prevent this orphan from being found again */
3713 key.offset = found_key.objectid - 1;
3720 * If we have an inode with links, there are a couple of
3723 * 1. We were halfway through creating fsverity metadata for the
3724 * file. In that case, the orphan item represents incomplete
3725 * fsverity metadata which must be cleaned up with
3726 * btrfs_drop_verity_items and deleting the orphan item.
3728 * 2. Old kernels (before v3.12) used to create an
3729 * orphan item for truncate indicating that there were possibly
3730 * extent items past i_size that needed to be deleted. In v3.12,
3731 * truncate was changed to update i_size in sync with the extent
3732 * items, but the (useless) orphan item was still created. Since
3733 * v4.18, we don't create the orphan item for truncate at all.
3735 * So, this item could mean that we need to do a truncate, but
3736 * only if this filesystem was last used on a pre-v3.12 kernel
3737 * and was not cleanly unmounted. The odds of that are quite
3738 * slim, and it's a pain to do the truncate now, so just delete
3741 * It's also possible that this orphan item was supposed to be
3742 * deleted but wasn't. The inode number may have been reused,
3743 * but either way, we can delete the orphan item.
3745 if (!inode || inode->i_nlink) {
3747 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3753 trans = btrfs_start_transaction(root, 1);
3754 if (IS_ERR(trans)) {
3755 ret = PTR_ERR(trans);
3758 btrfs_debug(fs_info, "auto deleting %Lu",
3759 found_key.objectid);
3760 ret = btrfs_del_orphan_item(trans, root,
3761 found_key.objectid);
3762 btrfs_end_transaction(trans);
3770 /* this will do delete_inode and everything for us */
3773 /* release the path since we're done with it */
3774 btrfs_release_path(path);
3776 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3777 trans = btrfs_join_transaction(root);
3779 btrfs_end_transaction(trans);
3783 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3787 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3788 btrfs_free_path(path);
3793 * very simple check to peek ahead in the leaf looking for xattrs. If we
3794 * don't find any xattrs, we know there can't be any acls.
3796 * slot is the slot the inode is in, objectid is the objectid of the inode
3798 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3799 int slot, u64 objectid,
3800 int *first_xattr_slot)
3802 u32 nritems = btrfs_header_nritems(leaf);
3803 struct btrfs_key found_key;
3804 static u64 xattr_access = 0;
3805 static u64 xattr_default = 0;
3808 if (!xattr_access) {
3809 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3810 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3811 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3812 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3816 *first_xattr_slot = -1;
3817 while (slot < nritems) {
3818 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3820 /* we found a different objectid, there must not be acls */
3821 if (found_key.objectid != objectid)
3824 /* we found an xattr, assume we've got an acl */
3825 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3826 if (*first_xattr_slot == -1)
3827 *first_xattr_slot = slot;
3828 if (found_key.offset == xattr_access ||
3829 found_key.offset == xattr_default)
3834 * we found a key greater than an xattr key, there can't
3835 * be any acls later on
3837 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3844 * it goes inode, inode backrefs, xattrs, extents,
3845 * so if there are a ton of hard links to an inode there can
3846 * be a lot of backrefs. Don't waste time searching too hard,
3847 * this is just an optimization
3852 /* we hit the end of the leaf before we found an xattr or
3853 * something larger than an xattr. We have to assume the inode
3856 if (*first_xattr_slot == -1)
3857 *first_xattr_slot = slot;
3862 * read an inode from the btree into the in-memory inode
3864 static int btrfs_read_locked_inode(struct inode *inode,
3865 struct btrfs_path *in_path)
3867 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3868 struct btrfs_path *path = in_path;
3869 struct extent_buffer *leaf;
3870 struct btrfs_inode_item *inode_item;
3871 struct btrfs_root *root = BTRFS_I(inode)->root;
3872 struct btrfs_key location;
3877 bool filled = false;
3878 int first_xattr_slot;
3880 ret = btrfs_fill_inode(inode, &rdev);
3885 path = btrfs_alloc_path();
3890 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3892 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3894 if (path != in_path)
3895 btrfs_free_path(path);
3899 leaf = path->nodes[0];
3904 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3905 struct btrfs_inode_item);
3906 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3907 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3908 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3909 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3910 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3911 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3912 round_up(i_size_read(inode), fs_info->sectorsize));
3914 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3915 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3917 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3918 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3920 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3921 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3923 BTRFS_I(inode)->i_otime.tv_sec =
3924 btrfs_timespec_sec(leaf, &inode_item->otime);
3925 BTRFS_I(inode)->i_otime.tv_nsec =
3926 btrfs_timespec_nsec(leaf, &inode_item->otime);
3928 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3929 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3930 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3932 inode_set_iversion_queried(inode,
3933 btrfs_inode_sequence(leaf, inode_item));
3934 inode->i_generation = BTRFS_I(inode)->generation;
3936 rdev = btrfs_inode_rdev(leaf, inode_item);
3938 BTRFS_I(inode)->index_cnt = (u64)-1;
3939 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3940 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3944 * If we were modified in the current generation and evicted from memory
3945 * and then re-read we need to do a full sync since we don't have any
3946 * idea about which extents were modified before we were evicted from
3949 * This is required for both inode re-read from disk and delayed inode
3950 * in delayed_nodes_tree.
3952 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3953 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3954 &BTRFS_I(inode)->runtime_flags);
3957 * We don't persist the id of the transaction where an unlink operation
3958 * against the inode was last made. So here we assume the inode might
3959 * have been evicted, and therefore the exact value of last_unlink_trans
3960 * lost, and set it to last_trans to avoid metadata inconsistencies
3961 * between the inode and its parent if the inode is fsync'ed and the log
3962 * replayed. For example, in the scenario:
3965 * ln mydir/foo mydir/bar
3968 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3969 * xfs_io -c fsync mydir/foo
3971 * mount fs, triggers fsync log replay
3973 * We must make sure that when we fsync our inode foo we also log its
3974 * parent inode, otherwise after log replay the parent still has the
3975 * dentry with the "bar" name but our inode foo has a link count of 1
3976 * and doesn't have an inode ref with the name "bar" anymore.
3978 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3979 * but it guarantees correctness at the expense of occasional full
3980 * transaction commits on fsync if our inode is a directory, or if our
3981 * inode is not a directory, logging its parent unnecessarily.
3983 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3986 * Same logic as for last_unlink_trans. We don't persist the generation
3987 * of the last transaction where this inode was used for a reflink
3988 * operation, so after eviction and reloading the inode we must be
3989 * pessimistic and assume the last transaction that modified the inode.
3991 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3994 if (inode->i_nlink != 1 ||
3995 path->slots[0] >= btrfs_header_nritems(leaf))
3998 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3999 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4002 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4003 if (location.type == BTRFS_INODE_REF_KEY) {
4004 struct btrfs_inode_ref *ref;
4006 ref = (struct btrfs_inode_ref *)ptr;
4007 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4008 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4009 struct btrfs_inode_extref *extref;
4011 extref = (struct btrfs_inode_extref *)ptr;
4012 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4017 * try to precache a NULL acl entry for files that don't have
4018 * any xattrs or acls
4020 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4021 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4022 if (first_xattr_slot != -1) {
4023 path->slots[0] = first_xattr_slot;
4024 ret = btrfs_load_inode_props(inode, path);
4027 "error loading props for ino %llu (root %llu): %d",
4028 btrfs_ino(BTRFS_I(inode)),
4029 root->root_key.objectid, ret);
4031 if (path != in_path)
4032 btrfs_free_path(path);
4035 cache_no_acl(inode);
4037 switch (inode->i_mode & S_IFMT) {
4039 inode->i_mapping->a_ops = &btrfs_aops;
4040 inode->i_fop = &btrfs_file_operations;
4041 inode->i_op = &btrfs_file_inode_operations;
4044 inode->i_fop = &btrfs_dir_file_operations;
4045 inode->i_op = &btrfs_dir_inode_operations;
4048 inode->i_op = &btrfs_symlink_inode_operations;
4049 inode_nohighmem(inode);
4050 inode->i_mapping->a_ops = &btrfs_aops;
4053 inode->i_op = &btrfs_special_inode_operations;
4054 init_special_inode(inode, inode->i_mode, rdev);
4058 btrfs_sync_inode_flags_to_i_flags(inode);
4063 * given a leaf and an inode, copy the inode fields into the leaf
4065 static void fill_inode_item(struct btrfs_trans_handle *trans,
4066 struct extent_buffer *leaf,
4067 struct btrfs_inode_item *item,
4068 struct inode *inode)
4070 struct btrfs_map_token token;
4073 btrfs_init_map_token(&token, leaf);
4075 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4076 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4077 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4078 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4079 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4081 btrfs_set_token_timespec_sec(&token, &item->atime,
4082 inode->i_atime.tv_sec);
4083 btrfs_set_token_timespec_nsec(&token, &item->atime,
4084 inode->i_atime.tv_nsec);
4086 btrfs_set_token_timespec_sec(&token, &item->mtime,
4087 inode->i_mtime.tv_sec);
4088 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4089 inode->i_mtime.tv_nsec);
4091 btrfs_set_token_timespec_sec(&token, &item->ctime,
4092 inode_get_ctime(inode).tv_sec);
4093 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4094 inode_get_ctime(inode).tv_nsec);
4096 btrfs_set_token_timespec_sec(&token, &item->otime,
4097 BTRFS_I(inode)->i_otime.tv_sec);
4098 btrfs_set_token_timespec_nsec(&token, &item->otime,
4099 BTRFS_I(inode)->i_otime.tv_nsec);
4101 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4102 btrfs_set_token_inode_generation(&token, item,
4103 BTRFS_I(inode)->generation);
4104 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4105 btrfs_set_token_inode_transid(&token, item, trans->transid);
4106 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4107 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4108 BTRFS_I(inode)->ro_flags);
4109 btrfs_set_token_inode_flags(&token, item, flags);
4110 btrfs_set_token_inode_block_group(&token, item, 0);
4114 * copy everything in the in-memory inode into the btree.
4116 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4117 struct btrfs_root *root,
4118 struct btrfs_inode *inode)
4120 struct btrfs_inode_item *inode_item;
4121 struct btrfs_path *path;
4122 struct extent_buffer *leaf;
4125 path = btrfs_alloc_path();
4129 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4136 leaf = path->nodes[0];
4137 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4138 struct btrfs_inode_item);
4140 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4141 btrfs_mark_buffer_dirty(leaf);
4142 btrfs_set_inode_last_trans(trans, inode);
4145 btrfs_free_path(path);
4150 * copy everything in the in-memory inode into the btree.
4152 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4153 struct btrfs_root *root,
4154 struct btrfs_inode *inode)
4156 struct btrfs_fs_info *fs_info = root->fs_info;
4160 * If the inode is a free space inode, we can deadlock during commit
4161 * if we put it into the delayed code.
4163 * The data relocation inode should also be directly updated
4166 if (!btrfs_is_free_space_inode(inode)
4167 && !btrfs_is_data_reloc_root(root)
4168 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4169 btrfs_update_root_times(trans, root);
4171 ret = btrfs_delayed_update_inode(trans, root, inode);
4173 btrfs_set_inode_last_trans(trans, inode);
4177 return btrfs_update_inode_item(trans, root, inode);
4180 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4181 struct btrfs_root *root, struct btrfs_inode *inode)
4185 ret = btrfs_update_inode(trans, root, inode);
4187 return btrfs_update_inode_item(trans, root, inode);
4192 * unlink helper that gets used here in inode.c and in the tree logging
4193 * recovery code. It remove a link in a directory with a given name, and
4194 * also drops the back refs in the inode to the directory
4196 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4197 struct btrfs_inode *dir,
4198 struct btrfs_inode *inode,
4199 const struct fscrypt_str *name,
4200 struct btrfs_rename_ctx *rename_ctx)
4202 struct btrfs_root *root = dir->root;
4203 struct btrfs_fs_info *fs_info = root->fs_info;
4204 struct btrfs_path *path;
4206 struct btrfs_dir_item *di;
4208 u64 ino = btrfs_ino(inode);
4209 u64 dir_ino = btrfs_ino(dir);
4211 path = btrfs_alloc_path();
4217 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4218 if (IS_ERR_OR_NULL(di)) {
4219 ret = di ? PTR_ERR(di) : -ENOENT;
4222 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4225 btrfs_release_path(path);
4228 * If we don't have dir index, we have to get it by looking up
4229 * the inode ref, since we get the inode ref, remove it directly,
4230 * it is unnecessary to do delayed deletion.
4232 * But if we have dir index, needn't search inode ref to get it.
4233 * Since the inode ref is close to the inode item, it is better
4234 * that we delay to delete it, and just do this deletion when
4235 * we update the inode item.
4237 if (inode->dir_index) {
4238 ret = btrfs_delayed_delete_inode_ref(inode);
4240 index = inode->dir_index;
4245 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4248 "failed to delete reference to %.*s, inode %llu parent %llu",
4249 name->len, name->name, ino, dir_ino);
4250 btrfs_abort_transaction(trans, ret);
4255 rename_ctx->index = index;
4257 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4259 btrfs_abort_transaction(trans, ret);
4264 * If we are in a rename context, we don't need to update anything in the
4265 * log. That will be done later during the rename by btrfs_log_new_name().
4266 * Besides that, doing it here would only cause extra unnecessary btree
4267 * operations on the log tree, increasing latency for applications.
4270 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4271 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4275 * If we have a pending delayed iput we could end up with the final iput
4276 * being run in btrfs-cleaner context. If we have enough of these built
4277 * up we can end up burning a lot of time in btrfs-cleaner without any
4278 * way to throttle the unlinks. Since we're currently holding a ref on
4279 * the inode we can run the delayed iput here without any issues as the
4280 * final iput won't be done until after we drop the ref we're currently
4283 btrfs_run_delayed_iput(fs_info, inode);
4285 btrfs_free_path(path);
4289 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4290 inode_inc_iversion(&inode->vfs_inode);
4291 inode_inc_iversion(&dir->vfs_inode);
4292 inode_set_ctime_current(&inode->vfs_inode);
4293 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4294 ret = btrfs_update_inode(trans, root, dir);
4299 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4300 struct btrfs_inode *dir, struct btrfs_inode *inode,
4301 const struct fscrypt_str *name)
4305 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4307 drop_nlink(&inode->vfs_inode);
4308 ret = btrfs_update_inode(trans, inode->root, inode);
4314 * helper to start transaction for unlink and rmdir.
4316 * unlink and rmdir are special in btrfs, they do not always free space, so
4317 * if we cannot make our reservations the normal way try and see if there is
4318 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4319 * allow the unlink to occur.
4321 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4323 struct btrfs_root *root = dir->root;
4325 return btrfs_start_transaction_fallback_global_rsv(root,
4326 BTRFS_UNLINK_METADATA_UNITS);
4329 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4331 struct btrfs_trans_handle *trans;
4332 struct inode *inode = d_inode(dentry);
4334 struct fscrypt_name fname;
4336 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4340 /* This needs to handle no-key deletions later on */
4342 trans = __unlink_start_trans(BTRFS_I(dir));
4343 if (IS_ERR(trans)) {
4344 ret = PTR_ERR(trans);
4348 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4351 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4356 if (inode->i_nlink == 0) {
4357 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4363 btrfs_end_transaction(trans);
4364 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4366 fscrypt_free_filename(&fname);
4370 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4371 struct btrfs_inode *dir, struct dentry *dentry)
4373 struct btrfs_root *root = dir->root;
4374 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4375 struct btrfs_path *path;
4376 struct extent_buffer *leaf;
4377 struct btrfs_dir_item *di;
4378 struct btrfs_key key;
4382 u64 dir_ino = btrfs_ino(dir);
4383 struct fscrypt_name fname;
4385 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4389 /* This needs to handle no-key deletions later on */
4391 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4392 objectid = inode->root->root_key.objectid;
4393 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4394 objectid = inode->location.objectid;
4397 fscrypt_free_filename(&fname);
4401 path = btrfs_alloc_path();
4407 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4408 &fname.disk_name, -1);
4409 if (IS_ERR_OR_NULL(di)) {
4410 ret = di ? PTR_ERR(di) : -ENOENT;
4414 leaf = path->nodes[0];
4415 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4416 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4417 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4419 btrfs_abort_transaction(trans, ret);
4422 btrfs_release_path(path);
4425 * This is a placeholder inode for a subvolume we didn't have a
4426 * reference to at the time of the snapshot creation. In the meantime
4427 * we could have renamed the real subvol link into our snapshot, so
4428 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4429 * Instead simply lookup the dir_index_item for this entry so we can
4430 * remove it. Otherwise we know we have a ref to the root and we can
4431 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4433 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4434 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4435 if (IS_ERR_OR_NULL(di)) {
4440 btrfs_abort_transaction(trans, ret);
4444 leaf = path->nodes[0];
4445 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4447 btrfs_release_path(path);
4449 ret = btrfs_del_root_ref(trans, objectid,
4450 root->root_key.objectid, dir_ino,
4451 &index, &fname.disk_name);
4453 btrfs_abort_transaction(trans, ret);
4458 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4460 btrfs_abort_transaction(trans, ret);
4464 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4465 inode_inc_iversion(&dir->vfs_inode);
4466 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4467 ret = btrfs_update_inode_fallback(trans, root, dir);
4469 btrfs_abort_transaction(trans, ret);
4471 btrfs_free_path(path);
4472 fscrypt_free_filename(&fname);
4477 * Helper to check if the subvolume references other subvolumes or if it's
4480 static noinline int may_destroy_subvol(struct btrfs_root *root)
4482 struct btrfs_fs_info *fs_info = root->fs_info;
4483 struct btrfs_path *path;
4484 struct btrfs_dir_item *di;
4485 struct btrfs_key key;
4486 struct fscrypt_str name = FSTR_INIT("default", 7);
4490 path = btrfs_alloc_path();
4494 /* Make sure this root isn't set as the default subvol */
4495 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4496 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4498 if (di && !IS_ERR(di)) {
4499 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4500 if (key.objectid == root->root_key.objectid) {
4503 "deleting default subvolume %llu is not allowed",
4507 btrfs_release_path(path);
4510 key.objectid = root->root_key.objectid;
4511 key.type = BTRFS_ROOT_REF_KEY;
4512 key.offset = (u64)-1;
4514 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4520 if (path->slots[0] > 0) {
4522 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4523 if (key.objectid == root->root_key.objectid &&
4524 key.type == BTRFS_ROOT_REF_KEY)
4528 btrfs_free_path(path);
4532 /* Delete all dentries for inodes belonging to the root */
4533 static void btrfs_prune_dentries(struct btrfs_root *root)
4535 struct btrfs_fs_info *fs_info = root->fs_info;
4536 struct rb_node *node;
4537 struct rb_node *prev;
4538 struct btrfs_inode *entry;
4539 struct inode *inode;
4542 if (!BTRFS_FS_ERROR(fs_info))
4543 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4545 spin_lock(&root->inode_lock);
4547 node = root->inode_tree.rb_node;
4551 entry = rb_entry(node, struct btrfs_inode, rb_node);
4553 if (objectid < btrfs_ino(entry))
4554 node = node->rb_left;
4555 else if (objectid > btrfs_ino(entry))
4556 node = node->rb_right;
4562 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4563 if (objectid <= btrfs_ino(entry)) {
4567 prev = rb_next(prev);
4571 entry = rb_entry(node, struct btrfs_inode, rb_node);
4572 objectid = btrfs_ino(entry) + 1;
4573 inode = igrab(&entry->vfs_inode);
4575 spin_unlock(&root->inode_lock);
4576 if (atomic_read(&inode->i_count) > 1)
4577 d_prune_aliases(inode);
4579 * btrfs_drop_inode will have it removed from the inode
4580 * cache when its usage count hits zero.
4584 spin_lock(&root->inode_lock);
4588 if (cond_resched_lock(&root->inode_lock))
4591 node = rb_next(node);
4593 spin_unlock(&root->inode_lock);
4596 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4598 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4599 struct btrfs_root *root = dir->root;
4600 struct inode *inode = d_inode(dentry);
4601 struct btrfs_root *dest = BTRFS_I(inode)->root;
4602 struct btrfs_trans_handle *trans;
4603 struct btrfs_block_rsv block_rsv;
4608 * Don't allow to delete a subvolume with send in progress. This is
4609 * inside the inode lock so the error handling that has to drop the bit
4610 * again is not run concurrently.
4612 spin_lock(&dest->root_item_lock);
4613 if (dest->send_in_progress) {
4614 spin_unlock(&dest->root_item_lock);
4616 "attempt to delete subvolume %llu during send",
4617 dest->root_key.objectid);
4620 if (atomic_read(&dest->nr_swapfiles)) {
4621 spin_unlock(&dest->root_item_lock);
4623 "attempt to delete subvolume %llu with active swapfile",
4624 root->root_key.objectid);
4627 root_flags = btrfs_root_flags(&dest->root_item);
4628 btrfs_set_root_flags(&dest->root_item,
4629 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4630 spin_unlock(&dest->root_item_lock);
4632 down_write(&fs_info->subvol_sem);
4634 ret = may_destroy_subvol(dest);
4638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4640 * One for dir inode,
4641 * two for dir entries,
4642 * two for root ref/backref.
4644 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4648 trans = btrfs_start_transaction(root, 0);
4649 if (IS_ERR(trans)) {
4650 ret = PTR_ERR(trans);
4653 trans->block_rsv = &block_rsv;
4654 trans->bytes_reserved = block_rsv.size;
4656 btrfs_record_snapshot_destroy(trans, dir);
4658 ret = btrfs_unlink_subvol(trans, dir, dentry);
4660 btrfs_abort_transaction(trans, ret);
4664 ret = btrfs_record_root_in_trans(trans, dest);
4666 btrfs_abort_transaction(trans, ret);
4670 memset(&dest->root_item.drop_progress, 0,
4671 sizeof(dest->root_item.drop_progress));
4672 btrfs_set_root_drop_level(&dest->root_item, 0);
4673 btrfs_set_root_refs(&dest->root_item, 0);
4675 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4676 ret = btrfs_insert_orphan_item(trans,
4678 dest->root_key.objectid);
4680 btrfs_abort_transaction(trans, ret);
4685 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4686 BTRFS_UUID_KEY_SUBVOL,
4687 dest->root_key.objectid);
4688 if (ret && ret != -ENOENT) {
4689 btrfs_abort_transaction(trans, ret);
4692 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4693 ret = btrfs_uuid_tree_remove(trans,
4694 dest->root_item.received_uuid,
4695 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4696 dest->root_key.objectid);
4697 if (ret && ret != -ENOENT) {
4698 btrfs_abort_transaction(trans, ret);
4703 free_anon_bdev(dest->anon_dev);
4706 trans->block_rsv = NULL;
4707 trans->bytes_reserved = 0;
4708 ret = btrfs_end_transaction(trans);
4709 inode->i_flags |= S_DEAD;
4711 btrfs_subvolume_release_metadata(root, &block_rsv);
4713 up_write(&fs_info->subvol_sem);
4715 spin_lock(&dest->root_item_lock);
4716 root_flags = btrfs_root_flags(&dest->root_item);
4717 btrfs_set_root_flags(&dest->root_item,
4718 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4719 spin_unlock(&dest->root_item_lock);
4721 d_invalidate(dentry);
4722 btrfs_prune_dentries(dest);
4723 ASSERT(dest->send_in_progress == 0);
4729 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4731 struct inode *inode = d_inode(dentry);
4732 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4734 struct btrfs_trans_handle *trans;
4735 u64 last_unlink_trans;
4736 struct fscrypt_name fname;
4738 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4740 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4741 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4743 "extent tree v2 doesn't support snapshot deletion yet");
4746 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4749 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4753 /* This needs to handle no-key deletions later on */
4755 trans = __unlink_start_trans(BTRFS_I(dir));
4756 if (IS_ERR(trans)) {
4757 err = PTR_ERR(trans);
4761 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4762 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4766 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4770 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4772 /* now the directory is empty */
4773 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4776 btrfs_i_size_write(BTRFS_I(inode), 0);
4778 * Propagate the last_unlink_trans value of the deleted dir to
4779 * its parent directory. This is to prevent an unrecoverable
4780 * log tree in the case we do something like this:
4782 * 2) create snapshot under dir foo
4783 * 3) delete the snapshot
4786 * 6) fsync foo or some file inside foo
4788 if (last_unlink_trans >= trans->transid)
4789 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4792 btrfs_end_transaction(trans);
4794 btrfs_btree_balance_dirty(fs_info);
4795 fscrypt_free_filename(&fname);
4801 * btrfs_truncate_block - read, zero a chunk and write a block
4802 * @inode - inode that we're zeroing
4803 * @from - the offset to start zeroing
4804 * @len - the length to zero, 0 to zero the entire range respective to the
4806 * @front - zero up to the offset instead of from the offset on
4808 * This will find the block for the "from" offset and cow the block and zero the
4809 * part we want to zero. This is used with truncate and hole punching.
4811 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4814 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4815 struct address_space *mapping = inode->vfs_inode.i_mapping;
4816 struct extent_io_tree *io_tree = &inode->io_tree;
4817 struct btrfs_ordered_extent *ordered;
4818 struct extent_state *cached_state = NULL;
4819 struct extent_changeset *data_reserved = NULL;
4820 bool only_release_metadata = false;
4821 u32 blocksize = fs_info->sectorsize;
4822 pgoff_t index = from >> PAGE_SHIFT;
4823 unsigned offset = from & (blocksize - 1);
4825 gfp_t mask = btrfs_alloc_write_mask(mapping);
4826 size_t write_bytes = blocksize;
4831 if (IS_ALIGNED(offset, blocksize) &&
4832 (!len || IS_ALIGNED(len, blocksize)))
4835 block_start = round_down(from, blocksize);
4836 block_end = block_start + blocksize - 1;
4838 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4841 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4842 /* For nocow case, no need to reserve data space */
4843 only_release_metadata = true;
4848 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4850 if (!only_release_metadata)
4851 btrfs_free_reserved_data_space(inode, data_reserved,
4852 block_start, blocksize);
4856 page = find_or_create_page(mapping, index, mask);
4858 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4860 btrfs_delalloc_release_extents(inode, blocksize);
4865 if (!PageUptodate(page)) {
4866 ret = btrfs_read_folio(NULL, page_folio(page));
4868 if (page->mapping != mapping) {
4873 if (!PageUptodate(page)) {
4880 * We unlock the page after the io is completed and then re-lock it
4881 * above. release_folio() could have come in between that and cleared
4882 * PagePrivate(), but left the page in the mapping. Set the page mapped
4883 * here to make sure it's properly set for the subpage stuff.
4885 ret = set_page_extent_mapped(page);
4889 wait_on_page_writeback(page);
4891 lock_extent(io_tree, block_start, block_end, &cached_state);
4893 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4895 unlock_extent(io_tree, block_start, block_end, &cached_state);
4898 btrfs_start_ordered_extent(ordered);
4899 btrfs_put_ordered_extent(ordered);
4903 clear_extent_bit(&inode->io_tree, block_start, block_end,
4904 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4907 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4910 unlock_extent(io_tree, block_start, block_end, &cached_state);
4914 if (offset != blocksize) {
4916 len = blocksize - offset;
4918 memzero_page(page, (block_start - page_offset(page)),
4921 memzero_page(page, (block_start - page_offset(page)) + offset,
4924 btrfs_page_clear_checked(fs_info, page, block_start,
4925 block_end + 1 - block_start);
4926 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4927 unlock_extent(io_tree, block_start, block_end, &cached_state);
4929 if (only_release_metadata)
4930 set_extent_bit(&inode->io_tree, block_start, block_end,
4931 EXTENT_NORESERVE, NULL);
4935 if (only_release_metadata)
4936 btrfs_delalloc_release_metadata(inode, blocksize, true);
4938 btrfs_delalloc_release_space(inode, data_reserved,
4939 block_start, blocksize, true);
4941 btrfs_delalloc_release_extents(inode, blocksize);
4945 if (only_release_metadata)
4946 btrfs_check_nocow_unlock(inode);
4947 extent_changeset_free(data_reserved);
4951 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4952 u64 offset, u64 len)
4954 struct btrfs_fs_info *fs_info = root->fs_info;
4955 struct btrfs_trans_handle *trans;
4956 struct btrfs_drop_extents_args drop_args = { 0 };
4960 * If NO_HOLES is enabled, we don't need to do anything.
4961 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4962 * or btrfs_update_inode() will be called, which guarantee that the next
4963 * fsync will know this inode was changed and needs to be logged.
4965 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4969 * 1 - for the one we're dropping
4970 * 1 - for the one we're adding
4971 * 1 - for updating the inode.
4973 trans = btrfs_start_transaction(root, 3);
4975 return PTR_ERR(trans);
4977 drop_args.start = offset;
4978 drop_args.end = offset + len;
4979 drop_args.drop_cache = true;
4981 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4988 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4990 btrfs_abort_transaction(trans, ret);
4992 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4993 btrfs_update_inode(trans, root, inode);
4995 btrfs_end_transaction(trans);
5000 * This function puts in dummy file extents for the area we're creating a hole
5001 * for. So if we are truncating this file to a larger size we need to insert
5002 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5003 * the range between oldsize and size
5005 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5007 struct btrfs_root *root = inode->root;
5008 struct btrfs_fs_info *fs_info = root->fs_info;
5009 struct extent_io_tree *io_tree = &inode->io_tree;
5010 struct extent_map *em = NULL;
5011 struct extent_state *cached_state = NULL;
5012 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5013 u64 block_end = ALIGN(size, fs_info->sectorsize);
5020 * If our size started in the middle of a block we need to zero out the
5021 * rest of the block before we expand the i_size, otherwise we could
5022 * expose stale data.
5024 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5028 if (size <= hole_start)
5031 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5033 cur_offset = hole_start;
5035 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5036 block_end - cur_offset);
5042 last_byte = min(extent_map_end(em), block_end);
5043 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5044 hole_size = last_byte - cur_offset;
5046 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5047 struct extent_map *hole_em;
5049 err = maybe_insert_hole(root, inode, cur_offset,
5054 err = btrfs_inode_set_file_extent_range(inode,
5055 cur_offset, hole_size);
5059 hole_em = alloc_extent_map();
5061 btrfs_drop_extent_map_range(inode, cur_offset,
5062 cur_offset + hole_size - 1,
5064 btrfs_set_inode_full_sync(inode);
5067 hole_em->start = cur_offset;
5068 hole_em->len = hole_size;
5069 hole_em->orig_start = cur_offset;
5071 hole_em->block_start = EXTENT_MAP_HOLE;
5072 hole_em->block_len = 0;
5073 hole_em->orig_block_len = 0;
5074 hole_em->ram_bytes = hole_size;
5075 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5076 hole_em->generation = fs_info->generation;
5078 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5079 free_extent_map(hole_em);
5081 err = btrfs_inode_set_file_extent_range(inode,
5082 cur_offset, hole_size);
5087 free_extent_map(em);
5089 cur_offset = last_byte;
5090 if (cur_offset >= block_end)
5093 free_extent_map(em);
5094 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5098 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5100 struct btrfs_root *root = BTRFS_I(inode)->root;
5101 struct btrfs_trans_handle *trans;
5102 loff_t oldsize = i_size_read(inode);
5103 loff_t newsize = attr->ia_size;
5104 int mask = attr->ia_valid;
5108 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5109 * special case where we need to update the times despite not having
5110 * these flags set. For all other operations the VFS set these flags
5111 * explicitly if it wants a timestamp update.
5113 if (newsize != oldsize) {
5114 inode_inc_iversion(inode);
5115 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5116 inode->i_mtime = inode_set_ctime_current(inode);
5120 if (newsize > oldsize) {
5122 * Don't do an expanding truncate while snapshotting is ongoing.
5123 * This is to ensure the snapshot captures a fully consistent
5124 * state of this file - if the snapshot captures this expanding
5125 * truncation, it must capture all writes that happened before
5128 btrfs_drew_write_lock(&root->snapshot_lock);
5129 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5131 btrfs_drew_write_unlock(&root->snapshot_lock);
5135 trans = btrfs_start_transaction(root, 1);
5136 if (IS_ERR(trans)) {
5137 btrfs_drew_write_unlock(&root->snapshot_lock);
5138 return PTR_ERR(trans);
5141 i_size_write(inode, newsize);
5142 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5143 pagecache_isize_extended(inode, oldsize, newsize);
5144 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5145 btrfs_drew_write_unlock(&root->snapshot_lock);
5146 btrfs_end_transaction(trans);
5148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5150 if (btrfs_is_zoned(fs_info)) {
5151 ret = btrfs_wait_ordered_range(inode,
5152 ALIGN(newsize, fs_info->sectorsize),
5159 * We're truncating a file that used to have good data down to
5160 * zero. Make sure any new writes to the file get on disk
5164 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5165 &BTRFS_I(inode)->runtime_flags);
5167 truncate_setsize(inode, newsize);
5169 inode_dio_wait(inode);
5171 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5172 if (ret && inode->i_nlink) {
5176 * Truncate failed, so fix up the in-memory size. We
5177 * adjusted disk_i_size down as we removed extents, so
5178 * wait for disk_i_size to be stable and then update the
5179 * in-memory size to match.
5181 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5184 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5191 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5194 struct inode *inode = d_inode(dentry);
5195 struct btrfs_root *root = BTRFS_I(inode)->root;
5198 if (btrfs_root_readonly(root))
5201 err = setattr_prepare(idmap, dentry, attr);
5205 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5206 err = btrfs_setsize(inode, attr);
5211 if (attr->ia_valid) {
5212 setattr_copy(idmap, inode, attr);
5213 inode_inc_iversion(inode);
5214 err = btrfs_dirty_inode(BTRFS_I(inode));
5216 if (!err && attr->ia_valid & ATTR_MODE)
5217 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5224 * While truncating the inode pages during eviction, we get the VFS
5225 * calling btrfs_invalidate_folio() against each folio of the inode. This
5226 * is slow because the calls to btrfs_invalidate_folio() result in a
5227 * huge amount of calls to lock_extent() and clear_extent_bit(),
5228 * which keep merging and splitting extent_state structures over and over,
5229 * wasting lots of time.
5231 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5232 * skip all those expensive operations on a per folio basis and do only
5233 * the ordered io finishing, while we release here the extent_map and
5234 * extent_state structures, without the excessive merging and splitting.
5236 static void evict_inode_truncate_pages(struct inode *inode)
5238 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5239 struct rb_node *node;
5241 ASSERT(inode->i_state & I_FREEING);
5242 truncate_inode_pages_final(&inode->i_data);
5244 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5247 * Keep looping until we have no more ranges in the io tree.
5248 * We can have ongoing bios started by readahead that have
5249 * their endio callback (extent_io.c:end_bio_extent_readpage)
5250 * still in progress (unlocked the pages in the bio but did not yet
5251 * unlocked the ranges in the io tree). Therefore this means some
5252 * ranges can still be locked and eviction started because before
5253 * submitting those bios, which are executed by a separate task (work
5254 * queue kthread), inode references (inode->i_count) were not taken
5255 * (which would be dropped in the end io callback of each bio).
5256 * Therefore here we effectively end up waiting for those bios and
5257 * anyone else holding locked ranges without having bumped the inode's
5258 * reference count - if we don't do it, when they access the inode's
5259 * io_tree to unlock a range it may be too late, leading to an
5260 * use-after-free issue.
5262 spin_lock(&io_tree->lock);
5263 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5264 struct extent_state *state;
5265 struct extent_state *cached_state = NULL;
5268 unsigned state_flags;
5270 node = rb_first(&io_tree->state);
5271 state = rb_entry(node, struct extent_state, rb_node);
5272 start = state->start;
5274 state_flags = state->state;
5275 spin_unlock(&io_tree->lock);
5277 lock_extent(io_tree, start, end, &cached_state);
5280 * If still has DELALLOC flag, the extent didn't reach disk,
5281 * and its reserved space won't be freed by delayed_ref.
5282 * So we need to free its reserved space here.
5283 * (Refer to comment in btrfs_invalidate_folio, case 2)
5285 * Note, end is the bytenr of last byte, so we need + 1 here.
5287 if (state_flags & EXTENT_DELALLOC)
5288 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5291 clear_extent_bit(io_tree, start, end,
5292 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5296 spin_lock(&io_tree->lock);
5298 spin_unlock(&io_tree->lock);
5301 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5302 struct btrfs_block_rsv *rsv)
5304 struct btrfs_fs_info *fs_info = root->fs_info;
5305 struct btrfs_trans_handle *trans;
5306 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5310 * Eviction should be taking place at some place safe because of our
5311 * delayed iputs. However the normal flushing code will run delayed
5312 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5314 * We reserve the delayed_refs_extra here again because we can't use
5315 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5316 * above. We reserve our extra bit here because we generate a ton of
5317 * delayed refs activity by truncating.
5319 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5320 * if we fail to make this reservation we can re-try without the
5321 * delayed_refs_extra so we can make some forward progress.
5323 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5324 BTRFS_RESERVE_FLUSH_EVICT);
5326 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5327 BTRFS_RESERVE_FLUSH_EVICT);
5330 "could not allocate space for delete; will truncate on mount");
5331 return ERR_PTR(-ENOSPC);
5333 delayed_refs_extra = 0;
5336 trans = btrfs_join_transaction(root);
5340 if (delayed_refs_extra) {
5341 trans->block_rsv = &fs_info->trans_block_rsv;
5342 trans->bytes_reserved = delayed_refs_extra;
5343 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5344 delayed_refs_extra, true);
5349 void btrfs_evict_inode(struct inode *inode)
5351 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5352 struct btrfs_trans_handle *trans;
5353 struct btrfs_root *root = BTRFS_I(inode)->root;
5354 struct btrfs_block_rsv *rsv = NULL;
5357 trace_btrfs_inode_evict(inode);
5360 fsverity_cleanup_inode(inode);
5365 evict_inode_truncate_pages(inode);
5367 if (inode->i_nlink &&
5368 ((btrfs_root_refs(&root->root_item) != 0 &&
5369 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5370 btrfs_is_free_space_inode(BTRFS_I(inode))))
5373 if (is_bad_inode(inode))
5376 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5379 if (inode->i_nlink > 0) {
5380 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5381 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5386 * This makes sure the inode item in tree is uptodate and the space for
5387 * the inode update is released.
5389 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5394 * This drops any pending insert or delete operations we have for this
5395 * inode. We could have a delayed dir index deletion queued up, but
5396 * we're removing the inode completely so that'll be taken care of in
5399 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5401 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5404 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5405 rsv->failfast = true;
5407 btrfs_i_size_write(BTRFS_I(inode), 0);
5410 struct btrfs_truncate_control control = {
5411 .inode = BTRFS_I(inode),
5412 .ino = btrfs_ino(BTRFS_I(inode)),
5417 trans = evict_refill_and_join(root, rsv);
5421 trans->block_rsv = rsv;
5423 ret = btrfs_truncate_inode_items(trans, root, &control);
5424 trans->block_rsv = &fs_info->trans_block_rsv;
5425 btrfs_end_transaction(trans);
5427 * We have not added new delayed items for our inode after we
5428 * have flushed its delayed items, so no need to throttle on
5429 * delayed items. However we have modified extent buffers.
5431 btrfs_btree_balance_dirty_nodelay(fs_info);
5432 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5439 * Errors here aren't a big deal, it just means we leave orphan items in
5440 * the tree. They will be cleaned up on the next mount. If the inode
5441 * number gets reused, cleanup deletes the orphan item without doing
5442 * anything, and unlink reuses the existing orphan item.
5444 * If it turns out that we are dropping too many of these, we might want
5445 * to add a mechanism for retrying these after a commit.
5447 trans = evict_refill_and_join(root, rsv);
5448 if (!IS_ERR(trans)) {
5449 trans->block_rsv = rsv;
5450 btrfs_orphan_del(trans, BTRFS_I(inode));
5451 trans->block_rsv = &fs_info->trans_block_rsv;
5452 btrfs_end_transaction(trans);
5456 btrfs_free_block_rsv(fs_info, rsv);
5458 * If we didn't successfully delete, the orphan item will still be in
5459 * the tree and we'll retry on the next mount. Again, we might also want
5460 * to retry these periodically in the future.
5462 btrfs_remove_delayed_node(BTRFS_I(inode));
5463 fsverity_cleanup_inode(inode);
5468 * Return the key found in the dir entry in the location pointer, fill @type
5469 * with BTRFS_FT_*, and return 0.
5471 * If no dir entries were found, returns -ENOENT.
5472 * If found a corrupted location in dir entry, returns -EUCLEAN.
5474 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5475 struct btrfs_key *location, u8 *type)
5477 struct btrfs_dir_item *di;
5478 struct btrfs_path *path;
5479 struct btrfs_root *root = dir->root;
5481 struct fscrypt_name fname;
5483 path = btrfs_alloc_path();
5487 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5491 * fscrypt_setup_filename() should never return a positive value, but
5492 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5496 /* This needs to handle no-key deletions later on */
5498 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5499 &fname.disk_name, 0);
5500 if (IS_ERR_OR_NULL(di)) {
5501 ret = di ? PTR_ERR(di) : -ENOENT;
5505 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5506 if (location->type != BTRFS_INODE_ITEM_KEY &&
5507 location->type != BTRFS_ROOT_ITEM_KEY) {
5509 btrfs_warn(root->fs_info,
5510 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5511 __func__, fname.disk_name.name, btrfs_ino(dir),
5512 location->objectid, location->type, location->offset);
5515 *type = btrfs_dir_ftype(path->nodes[0], di);
5517 fscrypt_free_filename(&fname);
5518 btrfs_free_path(path);
5523 * when we hit a tree root in a directory, the btrfs part of the inode
5524 * needs to be changed to reflect the root directory of the tree root. This
5525 * is kind of like crossing a mount point.
5527 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5528 struct btrfs_inode *dir,
5529 struct dentry *dentry,
5530 struct btrfs_key *location,
5531 struct btrfs_root **sub_root)
5533 struct btrfs_path *path;
5534 struct btrfs_root *new_root;
5535 struct btrfs_root_ref *ref;
5536 struct extent_buffer *leaf;
5537 struct btrfs_key key;
5540 struct fscrypt_name fname;
5542 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5546 path = btrfs_alloc_path();
5553 key.objectid = dir->root->root_key.objectid;
5554 key.type = BTRFS_ROOT_REF_KEY;
5555 key.offset = location->objectid;
5557 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5564 leaf = path->nodes[0];
5565 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5566 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5567 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5570 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5571 (unsigned long)(ref + 1), fname.disk_name.len);
5575 btrfs_release_path(path);
5577 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5578 if (IS_ERR(new_root)) {
5579 err = PTR_ERR(new_root);
5583 *sub_root = new_root;
5584 location->objectid = btrfs_root_dirid(&new_root->root_item);
5585 location->type = BTRFS_INODE_ITEM_KEY;
5586 location->offset = 0;
5589 btrfs_free_path(path);
5590 fscrypt_free_filename(&fname);
5594 static void inode_tree_add(struct btrfs_inode *inode)
5596 struct btrfs_root *root = inode->root;
5597 struct btrfs_inode *entry;
5599 struct rb_node *parent;
5600 struct rb_node *new = &inode->rb_node;
5601 u64 ino = btrfs_ino(inode);
5603 if (inode_unhashed(&inode->vfs_inode))
5606 spin_lock(&root->inode_lock);
5607 p = &root->inode_tree.rb_node;
5610 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5612 if (ino < btrfs_ino(entry))
5613 p = &parent->rb_left;
5614 else if (ino > btrfs_ino(entry))
5615 p = &parent->rb_right;
5617 WARN_ON(!(entry->vfs_inode.i_state &
5618 (I_WILL_FREE | I_FREEING)));
5619 rb_replace_node(parent, new, &root->inode_tree);
5620 RB_CLEAR_NODE(parent);
5621 spin_unlock(&root->inode_lock);
5625 rb_link_node(new, parent, p);
5626 rb_insert_color(new, &root->inode_tree);
5627 spin_unlock(&root->inode_lock);
5630 static void inode_tree_del(struct btrfs_inode *inode)
5632 struct btrfs_root *root = inode->root;
5635 spin_lock(&root->inode_lock);
5636 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5637 rb_erase(&inode->rb_node, &root->inode_tree);
5638 RB_CLEAR_NODE(&inode->rb_node);
5639 empty = RB_EMPTY_ROOT(&root->inode_tree);
5641 spin_unlock(&root->inode_lock);
5643 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5644 spin_lock(&root->inode_lock);
5645 empty = RB_EMPTY_ROOT(&root->inode_tree);
5646 spin_unlock(&root->inode_lock);
5648 btrfs_add_dead_root(root);
5653 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5655 struct btrfs_iget_args *args = p;
5657 inode->i_ino = args->ino;
5658 BTRFS_I(inode)->location.objectid = args->ino;
5659 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5660 BTRFS_I(inode)->location.offset = 0;
5661 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5662 BUG_ON(args->root && !BTRFS_I(inode)->root);
5664 if (args->root && args->root == args->root->fs_info->tree_root &&
5665 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5666 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5667 &BTRFS_I(inode)->runtime_flags);
5671 static int btrfs_find_actor(struct inode *inode, void *opaque)
5673 struct btrfs_iget_args *args = opaque;
5675 return args->ino == BTRFS_I(inode)->location.objectid &&
5676 args->root == BTRFS_I(inode)->root;
5679 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5680 struct btrfs_root *root)
5682 struct inode *inode;
5683 struct btrfs_iget_args args;
5684 unsigned long hashval = btrfs_inode_hash(ino, root);
5689 inode = iget5_locked(s, hashval, btrfs_find_actor,
5690 btrfs_init_locked_inode,
5696 * Get an inode object given its inode number and corresponding root.
5697 * Path can be preallocated to prevent recursing back to iget through
5698 * allocator. NULL is also valid but may require an additional allocation
5701 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5702 struct btrfs_root *root, struct btrfs_path *path)
5704 struct inode *inode;
5706 inode = btrfs_iget_locked(s, ino, root);
5708 return ERR_PTR(-ENOMEM);
5710 if (inode->i_state & I_NEW) {
5713 ret = btrfs_read_locked_inode(inode, path);
5715 inode_tree_add(BTRFS_I(inode));
5716 unlock_new_inode(inode);
5720 * ret > 0 can come from btrfs_search_slot called by
5721 * btrfs_read_locked_inode, this means the inode item
5726 inode = ERR_PTR(ret);
5733 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5735 return btrfs_iget_path(s, ino, root, NULL);
5738 static struct inode *new_simple_dir(struct super_block *s,
5739 struct btrfs_key *key,
5740 struct btrfs_root *root)
5742 struct inode *inode = new_inode(s);
5745 return ERR_PTR(-ENOMEM);
5747 BTRFS_I(inode)->root = btrfs_grab_root(root);
5748 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5749 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5751 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5753 * We only need lookup, the rest is read-only and there's no inode
5754 * associated with the dentry
5756 inode->i_op = &simple_dir_inode_operations;
5757 inode->i_opflags &= ~IOP_XATTR;
5758 inode->i_fop = &simple_dir_operations;
5759 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5760 inode->i_mtime = inode_set_ctime_current(inode);
5761 inode->i_atime = inode->i_mtime;
5762 BTRFS_I(inode)->i_otime = inode->i_mtime;
5767 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5768 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5769 static_assert(BTRFS_FT_DIR == FT_DIR);
5770 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5771 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5772 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5773 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5774 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5776 static inline u8 btrfs_inode_type(struct inode *inode)
5778 return fs_umode_to_ftype(inode->i_mode);
5781 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5783 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5784 struct inode *inode;
5785 struct btrfs_root *root = BTRFS_I(dir)->root;
5786 struct btrfs_root *sub_root = root;
5787 struct btrfs_key location;
5791 if (dentry->d_name.len > BTRFS_NAME_LEN)
5792 return ERR_PTR(-ENAMETOOLONG);
5794 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5796 return ERR_PTR(ret);
5798 if (location.type == BTRFS_INODE_ITEM_KEY) {
5799 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5803 /* Do extra check against inode mode with di_type */
5804 if (btrfs_inode_type(inode) != di_type) {
5806 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5807 inode->i_mode, btrfs_inode_type(inode),
5810 return ERR_PTR(-EUCLEAN);
5815 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5816 &location, &sub_root);
5819 inode = ERR_PTR(ret);
5821 inode = new_simple_dir(dir->i_sb, &location, root);
5823 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5824 btrfs_put_root(sub_root);
5829 down_read(&fs_info->cleanup_work_sem);
5830 if (!sb_rdonly(inode->i_sb))
5831 ret = btrfs_orphan_cleanup(sub_root);
5832 up_read(&fs_info->cleanup_work_sem);
5835 inode = ERR_PTR(ret);
5842 static int btrfs_dentry_delete(const struct dentry *dentry)
5844 struct btrfs_root *root;
5845 struct inode *inode = d_inode(dentry);
5847 if (!inode && !IS_ROOT(dentry))
5848 inode = d_inode(dentry->d_parent);
5851 root = BTRFS_I(inode)->root;
5852 if (btrfs_root_refs(&root->root_item) == 0)
5855 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5861 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5864 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5866 if (inode == ERR_PTR(-ENOENT))
5868 return d_splice_alias(inode, dentry);
5872 * Find the highest existing sequence number in a directory and then set the
5873 * in-memory index_cnt variable to the first free sequence number.
5875 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5877 struct btrfs_root *root = inode->root;
5878 struct btrfs_key key, found_key;
5879 struct btrfs_path *path;
5880 struct extent_buffer *leaf;
5883 key.objectid = btrfs_ino(inode);
5884 key.type = BTRFS_DIR_INDEX_KEY;
5885 key.offset = (u64)-1;
5887 path = btrfs_alloc_path();
5891 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5894 /* FIXME: we should be able to handle this */
5899 if (path->slots[0] == 0) {
5900 inode->index_cnt = BTRFS_DIR_START_INDEX;
5906 leaf = path->nodes[0];
5907 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909 if (found_key.objectid != btrfs_ino(inode) ||
5910 found_key.type != BTRFS_DIR_INDEX_KEY) {
5911 inode->index_cnt = BTRFS_DIR_START_INDEX;
5915 inode->index_cnt = found_key.offset + 1;
5917 btrfs_free_path(path);
5921 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5923 if (dir->index_cnt == (u64)-1) {
5926 ret = btrfs_inode_delayed_dir_index_count(dir);
5928 ret = btrfs_set_inode_index_count(dir);
5934 *index = dir->index_cnt;
5940 * All this infrastructure exists because dir_emit can fault, and we are holding
5941 * the tree lock when doing readdir. For now just allocate a buffer and copy
5942 * our information into that, and then dir_emit from the buffer. This is
5943 * similar to what NFS does, only we don't keep the buffer around in pagecache
5944 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5945 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5948 static int btrfs_opendir(struct inode *inode, struct file *file)
5950 struct btrfs_file_private *private;
5954 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5958 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5961 private->last_index = last_index;
5962 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5963 if (!private->filldir_buf) {
5967 file->private_data = private;
5978 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5981 struct dir_entry *entry = addr;
5982 char *name = (char *)(entry + 1);
5984 ctx->pos = get_unaligned(&entry->offset);
5985 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5986 get_unaligned(&entry->ino),
5987 get_unaligned(&entry->type)))
5989 addr += sizeof(struct dir_entry) +
5990 get_unaligned(&entry->name_len);
5996 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5998 struct inode *inode = file_inode(file);
5999 struct btrfs_root *root = BTRFS_I(inode)->root;
6000 struct btrfs_file_private *private = file->private_data;
6001 struct btrfs_dir_item *di;
6002 struct btrfs_key key;
6003 struct btrfs_key found_key;
6004 struct btrfs_path *path;
6006 struct list_head ins_list;
6007 struct list_head del_list;
6014 struct btrfs_key location;
6016 if (!dir_emit_dots(file, ctx))
6019 path = btrfs_alloc_path();
6023 addr = private->filldir_buf;
6024 path->reada = READA_FORWARD;
6026 INIT_LIST_HEAD(&ins_list);
6027 INIT_LIST_HEAD(&del_list);
6028 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
6029 &ins_list, &del_list);
6032 key.type = BTRFS_DIR_INDEX_KEY;
6033 key.offset = ctx->pos;
6034 key.objectid = btrfs_ino(BTRFS_I(inode));
6036 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6037 struct dir_entry *entry;
6038 struct extent_buffer *leaf = path->nodes[0];
6041 if (found_key.objectid != key.objectid)
6043 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6045 if (found_key.offset < ctx->pos)
6047 if (found_key.offset > private->last_index)
6049 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6051 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6052 name_len = btrfs_dir_name_len(leaf, di);
6053 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6055 btrfs_release_path(path);
6056 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6059 addr = private->filldir_buf;
6065 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6067 name_ptr = (char *)(entry + 1);
6068 read_extent_buffer(leaf, name_ptr,
6069 (unsigned long)(di + 1), name_len);
6070 put_unaligned(name_len, &entry->name_len);
6071 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6072 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6073 put_unaligned(location.objectid, &entry->ino);
6074 put_unaligned(found_key.offset, &entry->offset);
6076 addr += sizeof(struct dir_entry) + name_len;
6077 total_len += sizeof(struct dir_entry) + name_len;
6079 /* Catch error encountered during iteration */
6083 btrfs_release_path(path);
6085 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6089 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6094 * Stop new entries from being returned after we return the last
6097 * New directory entries are assigned a strictly increasing
6098 * offset. This means that new entries created during readdir
6099 * are *guaranteed* to be seen in the future by that readdir.
6100 * This has broken buggy programs which operate on names as
6101 * they're returned by readdir. Until we re-use freed offsets
6102 * we have this hack to stop new entries from being returned
6103 * under the assumption that they'll never reach this huge
6106 * This is being careful not to overflow 32bit loff_t unless the
6107 * last entry requires it because doing so has broken 32bit apps
6110 if (ctx->pos >= INT_MAX)
6111 ctx->pos = LLONG_MAX;
6118 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6119 btrfs_free_path(path);
6124 * This is somewhat expensive, updating the tree every time the
6125 * inode changes. But, it is most likely to find the inode in cache.
6126 * FIXME, needs more benchmarking...there are no reasons other than performance
6127 * to keep or drop this code.
6129 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6131 struct btrfs_root *root = inode->root;
6132 struct btrfs_fs_info *fs_info = root->fs_info;
6133 struct btrfs_trans_handle *trans;
6136 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6139 trans = btrfs_join_transaction(root);
6141 return PTR_ERR(trans);
6143 ret = btrfs_update_inode(trans, root, inode);
6144 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6145 /* whoops, lets try again with the full transaction */
6146 btrfs_end_transaction(trans);
6147 trans = btrfs_start_transaction(root, 1);
6149 return PTR_ERR(trans);
6151 ret = btrfs_update_inode(trans, root, inode);
6153 btrfs_end_transaction(trans);
6154 if (inode->delayed_node)
6155 btrfs_balance_delayed_items(fs_info);
6161 * This is a copy of file_update_time. We need this so we can return error on
6162 * ENOSPC for updating the inode in the case of file write and mmap writes.
6164 static int btrfs_update_time(struct inode *inode, int flags)
6166 struct btrfs_root *root = BTRFS_I(inode)->root;
6167 bool dirty = flags & ~S_VERSION;
6169 if (btrfs_root_readonly(root))
6172 dirty = inode_update_timestamps(inode, flags);
6173 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6177 * helper to find a free sequence number in a given directory. This current
6178 * code is very simple, later versions will do smarter things in the btree
6180 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6184 if (dir->index_cnt == (u64)-1) {
6185 ret = btrfs_inode_delayed_dir_index_count(dir);
6187 ret = btrfs_set_inode_index_count(dir);
6193 *index = dir->index_cnt;
6199 static int btrfs_insert_inode_locked(struct inode *inode)
6201 struct btrfs_iget_args args;
6203 args.ino = BTRFS_I(inode)->location.objectid;
6204 args.root = BTRFS_I(inode)->root;
6206 return insert_inode_locked4(inode,
6207 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6208 btrfs_find_actor, &args);
6211 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6212 unsigned int *trans_num_items)
6214 struct inode *dir = args->dir;
6215 struct inode *inode = args->inode;
6218 if (!args->orphan) {
6219 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6225 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6227 fscrypt_free_filename(&args->fname);
6231 /* 1 to add inode item */
6232 *trans_num_items = 1;
6233 /* 1 to add compression property */
6234 if (BTRFS_I(dir)->prop_compress)
6235 (*trans_num_items)++;
6236 /* 1 to add default ACL xattr */
6237 if (args->default_acl)
6238 (*trans_num_items)++;
6239 /* 1 to add access ACL xattr */
6241 (*trans_num_items)++;
6242 #ifdef CONFIG_SECURITY
6243 /* 1 to add LSM xattr */
6244 if (dir->i_security)
6245 (*trans_num_items)++;
6248 /* 1 to add orphan item */
6249 (*trans_num_items)++;
6253 * 1 to add dir index
6254 * 1 to update parent inode item
6256 * No need for 1 unit for the inode ref item because it is
6257 * inserted in a batch together with the inode item at
6258 * btrfs_create_new_inode().
6260 *trans_num_items += 3;
6265 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6267 posix_acl_release(args->acl);
6268 posix_acl_release(args->default_acl);
6269 fscrypt_free_filename(&args->fname);
6273 * Inherit flags from the parent inode.
6275 * Currently only the compression flags and the cow flags are inherited.
6277 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6283 if (flags & BTRFS_INODE_NOCOMPRESS) {
6284 inode->flags &= ~BTRFS_INODE_COMPRESS;
6285 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6286 } else if (flags & BTRFS_INODE_COMPRESS) {
6287 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6288 inode->flags |= BTRFS_INODE_COMPRESS;
6291 if (flags & BTRFS_INODE_NODATACOW) {
6292 inode->flags |= BTRFS_INODE_NODATACOW;
6293 if (S_ISREG(inode->vfs_inode.i_mode))
6294 inode->flags |= BTRFS_INODE_NODATASUM;
6297 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6300 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6301 struct btrfs_new_inode_args *args)
6303 struct inode *dir = args->dir;
6304 struct inode *inode = args->inode;
6305 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6306 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6307 struct btrfs_root *root;
6308 struct btrfs_inode_item *inode_item;
6309 struct btrfs_key *location;
6310 struct btrfs_path *path;
6312 struct btrfs_inode_ref *ref;
6313 struct btrfs_key key[2];
6315 struct btrfs_item_batch batch;
6319 path = btrfs_alloc_path();
6324 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6325 root = BTRFS_I(inode)->root;
6327 ret = btrfs_get_free_objectid(root, &objectid);
6330 inode->i_ino = objectid;
6334 * O_TMPFILE, set link count to 0, so that after this point, we
6335 * fill in an inode item with the correct link count.
6337 set_nlink(inode, 0);
6339 trace_btrfs_inode_request(dir);
6341 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6345 /* index_cnt is ignored for everything but a dir. */
6346 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6347 BTRFS_I(inode)->generation = trans->transid;
6348 inode->i_generation = BTRFS_I(inode)->generation;
6351 * Subvolumes don't inherit flags from their parent directory.
6352 * Originally this was probably by accident, but we probably can't
6353 * change it now without compatibility issues.
6356 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6358 if (S_ISREG(inode->i_mode)) {
6359 if (btrfs_test_opt(fs_info, NODATASUM))
6360 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6361 if (btrfs_test_opt(fs_info, NODATACOW))
6362 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6363 BTRFS_INODE_NODATASUM;
6366 location = &BTRFS_I(inode)->location;
6367 location->objectid = objectid;
6368 location->offset = 0;
6369 location->type = BTRFS_INODE_ITEM_KEY;
6371 ret = btrfs_insert_inode_locked(inode);
6374 BTRFS_I(dir)->index_cnt--;
6379 * We could have gotten an inode number from somebody who was fsynced
6380 * and then removed in this same transaction, so let's just set full
6381 * sync since it will be a full sync anyway and this will blow away the
6382 * old info in the log.
6384 btrfs_set_inode_full_sync(BTRFS_I(inode));
6386 key[0].objectid = objectid;
6387 key[0].type = BTRFS_INODE_ITEM_KEY;
6390 sizes[0] = sizeof(struct btrfs_inode_item);
6392 if (!args->orphan) {
6394 * Start new inodes with an inode_ref. This is slightly more
6395 * efficient for small numbers of hard links since they will
6396 * be packed into one item. Extended refs will kick in if we
6397 * add more hard links than can fit in the ref item.
6399 key[1].objectid = objectid;
6400 key[1].type = BTRFS_INODE_REF_KEY;
6402 key[1].offset = objectid;
6403 sizes[1] = 2 + sizeof(*ref);
6405 key[1].offset = btrfs_ino(BTRFS_I(dir));
6406 sizes[1] = name->len + sizeof(*ref);
6410 batch.keys = &key[0];
6411 batch.data_sizes = &sizes[0];
6412 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6413 batch.nr = args->orphan ? 1 : 2;
6414 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6416 btrfs_abort_transaction(trans, ret);
6420 inode->i_mtime = inode_set_ctime_current(inode);
6421 inode->i_atime = inode->i_mtime;
6422 BTRFS_I(inode)->i_otime = inode->i_mtime;
6425 * We're going to fill the inode item now, so at this point the inode
6426 * must be fully initialized.
6429 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6430 struct btrfs_inode_item);
6431 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6432 sizeof(*inode_item));
6433 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6435 if (!args->orphan) {
6436 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6437 struct btrfs_inode_ref);
6438 ptr = (unsigned long)(ref + 1);
6440 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6441 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6442 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6444 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6446 btrfs_set_inode_ref_index(path->nodes[0], ref,
6447 BTRFS_I(inode)->dir_index);
6448 write_extent_buffer(path->nodes[0], name->name, ptr,
6453 btrfs_mark_buffer_dirty(path->nodes[0]);
6455 * We don't need the path anymore, plus inheriting properties, adding
6456 * ACLs, security xattrs, orphan item or adding the link, will result in
6457 * allocating yet another path. So just free our path.
6459 btrfs_free_path(path);
6463 struct inode *parent;
6466 * Subvolumes inherit properties from their parent subvolume,
6467 * not the directory they were created in.
6469 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6470 BTRFS_I(dir)->root);
6471 if (IS_ERR(parent)) {
6472 ret = PTR_ERR(parent);
6474 ret = btrfs_inode_inherit_props(trans, inode, parent);
6478 ret = btrfs_inode_inherit_props(trans, inode, dir);
6482 "error inheriting props for ino %llu (root %llu): %d",
6483 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6488 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6491 if (!args->subvol) {
6492 ret = btrfs_init_inode_security(trans, args);
6494 btrfs_abort_transaction(trans, ret);
6499 inode_tree_add(BTRFS_I(inode));
6501 trace_btrfs_inode_new(inode);
6502 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6504 btrfs_update_root_times(trans, root);
6507 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6509 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6510 0, BTRFS_I(inode)->dir_index);
6513 btrfs_abort_transaction(trans, ret);
6521 * discard_new_inode() calls iput(), but the caller owns the reference
6525 discard_new_inode(inode);
6527 btrfs_free_path(path);
6532 * utility function to add 'inode' into 'parent_inode' with
6533 * a give name and a given sequence number.
6534 * if 'add_backref' is true, also insert a backref from the
6535 * inode to the parent directory.
6537 int btrfs_add_link(struct btrfs_trans_handle *trans,
6538 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6539 const struct fscrypt_str *name, int add_backref, u64 index)
6542 struct btrfs_key key;
6543 struct btrfs_root *root = parent_inode->root;
6544 u64 ino = btrfs_ino(inode);
6545 u64 parent_ino = btrfs_ino(parent_inode);
6547 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6548 memcpy(&key, &inode->root->root_key, sizeof(key));
6551 key.type = BTRFS_INODE_ITEM_KEY;
6555 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6556 ret = btrfs_add_root_ref(trans, key.objectid,
6557 root->root_key.objectid, parent_ino,
6559 } else if (add_backref) {
6560 ret = btrfs_insert_inode_ref(trans, root, name,
6561 ino, parent_ino, index);
6564 /* Nothing to clean up yet */
6568 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6569 btrfs_inode_type(&inode->vfs_inode), index);
6570 if (ret == -EEXIST || ret == -EOVERFLOW)
6573 btrfs_abort_transaction(trans, ret);
6577 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6579 inode_inc_iversion(&parent_inode->vfs_inode);
6581 * If we are replaying a log tree, we do not want to update the mtime
6582 * and ctime of the parent directory with the current time, since the
6583 * log replay procedure is responsible for setting them to their correct
6584 * values (the ones it had when the fsync was done).
6586 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6587 parent_inode->vfs_inode.i_mtime =
6588 inode_set_ctime_current(&parent_inode->vfs_inode);
6590 ret = btrfs_update_inode(trans, root, parent_inode);
6592 btrfs_abort_transaction(trans, ret);
6596 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6599 err = btrfs_del_root_ref(trans, key.objectid,
6600 root->root_key.objectid, parent_ino,
6601 &local_index, name);
6603 btrfs_abort_transaction(trans, err);
6604 } else if (add_backref) {
6608 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6611 btrfs_abort_transaction(trans, err);
6614 /* Return the original error code */
6618 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6619 struct inode *inode)
6621 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6622 struct btrfs_root *root = BTRFS_I(dir)->root;
6623 struct btrfs_new_inode_args new_inode_args = {
6628 unsigned int trans_num_items;
6629 struct btrfs_trans_handle *trans;
6632 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6636 trans = btrfs_start_transaction(root, trans_num_items);
6637 if (IS_ERR(trans)) {
6638 err = PTR_ERR(trans);
6639 goto out_new_inode_args;
6642 err = btrfs_create_new_inode(trans, &new_inode_args);
6644 d_instantiate_new(dentry, inode);
6646 btrfs_end_transaction(trans);
6647 btrfs_btree_balance_dirty(fs_info);
6649 btrfs_new_inode_args_destroy(&new_inode_args);
6656 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6657 struct dentry *dentry, umode_t mode, dev_t rdev)
6659 struct inode *inode;
6661 inode = new_inode(dir->i_sb);
6664 inode_init_owner(idmap, inode, dir, mode);
6665 inode->i_op = &btrfs_special_inode_operations;
6666 init_special_inode(inode, inode->i_mode, rdev);
6667 return btrfs_create_common(dir, dentry, inode);
6670 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6671 struct dentry *dentry, umode_t mode, bool excl)
6673 struct inode *inode;
6675 inode = new_inode(dir->i_sb);
6678 inode_init_owner(idmap, inode, dir, mode);
6679 inode->i_fop = &btrfs_file_operations;
6680 inode->i_op = &btrfs_file_inode_operations;
6681 inode->i_mapping->a_ops = &btrfs_aops;
6682 return btrfs_create_common(dir, dentry, inode);
6685 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6686 struct dentry *dentry)
6688 struct btrfs_trans_handle *trans = NULL;
6689 struct btrfs_root *root = BTRFS_I(dir)->root;
6690 struct inode *inode = d_inode(old_dentry);
6691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6692 struct fscrypt_name fname;
6697 /* do not allow sys_link's with other subvols of the same device */
6698 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6701 if (inode->i_nlink >= BTRFS_LINK_MAX)
6704 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6708 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6713 * 2 items for inode and inode ref
6714 * 2 items for dir items
6715 * 1 item for parent inode
6716 * 1 item for orphan item deletion if O_TMPFILE
6718 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6719 if (IS_ERR(trans)) {
6720 err = PTR_ERR(trans);
6725 /* There are several dir indexes for this inode, clear the cache. */
6726 BTRFS_I(inode)->dir_index = 0ULL;
6728 inode_inc_iversion(inode);
6729 inode_set_ctime_current(inode);
6731 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6733 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6734 &fname.disk_name, 1, index);
6739 struct dentry *parent = dentry->d_parent;
6741 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6744 if (inode->i_nlink == 1) {
6746 * If new hard link count is 1, it's a file created
6747 * with open(2) O_TMPFILE flag.
6749 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6753 d_instantiate(dentry, inode);
6754 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6758 fscrypt_free_filename(&fname);
6760 btrfs_end_transaction(trans);
6762 inode_dec_link_count(inode);
6765 btrfs_btree_balance_dirty(fs_info);
6769 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6770 struct dentry *dentry, umode_t mode)
6772 struct inode *inode;
6774 inode = new_inode(dir->i_sb);
6777 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6778 inode->i_op = &btrfs_dir_inode_operations;
6779 inode->i_fop = &btrfs_dir_file_operations;
6780 return btrfs_create_common(dir, dentry, inode);
6783 static noinline int uncompress_inline(struct btrfs_path *path,
6785 struct btrfs_file_extent_item *item)
6788 struct extent_buffer *leaf = path->nodes[0];
6791 unsigned long inline_size;
6795 compress_type = btrfs_file_extent_compression(leaf, item);
6796 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6797 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6798 tmp = kmalloc(inline_size, GFP_NOFS);
6801 ptr = btrfs_file_extent_inline_start(item);
6803 read_extent_buffer(leaf, tmp, ptr, inline_size);
6805 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6806 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6809 * decompression code contains a memset to fill in any space between the end
6810 * of the uncompressed data and the end of max_size in case the decompressed
6811 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6812 * the end of an inline extent and the beginning of the next block, so we
6813 * cover that region here.
6816 if (max_size < PAGE_SIZE)
6817 memzero_page(page, max_size, PAGE_SIZE - max_size);
6822 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6825 struct btrfs_file_extent_item *fi;
6829 if (!page || PageUptodate(page))
6832 ASSERT(page_offset(page) == 0);
6834 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6835 struct btrfs_file_extent_item);
6836 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6837 return uncompress_inline(path, page, fi);
6839 copy_size = min_t(u64, PAGE_SIZE,
6840 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6841 kaddr = kmap_local_page(page);
6842 read_extent_buffer(path->nodes[0], kaddr,
6843 btrfs_file_extent_inline_start(fi), copy_size);
6844 kunmap_local(kaddr);
6845 if (copy_size < PAGE_SIZE)
6846 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6851 * Lookup the first extent overlapping a range in a file.
6853 * @inode: file to search in
6854 * @page: page to read extent data into if the extent is inline
6855 * @pg_offset: offset into @page to copy to
6856 * @start: file offset
6857 * @len: length of range starting at @start
6859 * Return the first &struct extent_map which overlaps the given range, reading
6860 * it from the B-tree and caching it if necessary. Note that there may be more
6861 * extents which overlap the given range after the returned extent_map.
6863 * If @page is not NULL and the extent is inline, this also reads the extent
6864 * data directly into the page and marks the extent up to date in the io_tree.
6866 * Return: ERR_PTR on error, non-NULL extent_map on success.
6868 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6869 struct page *page, size_t pg_offset,
6872 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6874 u64 extent_start = 0;
6876 u64 objectid = btrfs_ino(inode);
6877 int extent_type = -1;
6878 struct btrfs_path *path = NULL;
6879 struct btrfs_root *root = inode->root;
6880 struct btrfs_file_extent_item *item;
6881 struct extent_buffer *leaf;
6882 struct btrfs_key found_key;
6883 struct extent_map *em = NULL;
6884 struct extent_map_tree *em_tree = &inode->extent_tree;
6886 read_lock(&em_tree->lock);
6887 em = lookup_extent_mapping(em_tree, start, len);
6888 read_unlock(&em_tree->lock);
6891 if (em->start > start || em->start + em->len <= start)
6892 free_extent_map(em);
6893 else if (em->block_start == EXTENT_MAP_INLINE && page)
6894 free_extent_map(em);
6898 em = alloc_extent_map();
6903 em->start = EXTENT_MAP_HOLE;
6904 em->orig_start = EXTENT_MAP_HOLE;
6906 em->block_len = (u64)-1;
6908 path = btrfs_alloc_path();
6914 /* Chances are we'll be called again, so go ahead and do readahead */
6915 path->reada = READA_FORWARD;
6918 * The same explanation in load_free_space_cache applies here as well,
6919 * we only read when we're loading the free space cache, and at that
6920 * point the commit_root has everything we need.
6922 if (btrfs_is_free_space_inode(inode)) {
6923 path->search_commit_root = 1;
6924 path->skip_locking = 1;
6927 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6930 } else if (ret > 0) {
6931 if (path->slots[0] == 0)
6937 leaf = path->nodes[0];
6938 item = btrfs_item_ptr(leaf, path->slots[0],
6939 struct btrfs_file_extent_item);
6940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6941 if (found_key.objectid != objectid ||
6942 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6944 * If we backup past the first extent we want to move forward
6945 * and see if there is an extent in front of us, otherwise we'll
6946 * say there is a hole for our whole search range which can
6953 extent_type = btrfs_file_extent_type(leaf, item);
6954 extent_start = found_key.offset;
6955 extent_end = btrfs_file_extent_end(path);
6956 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6957 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6958 /* Only regular file could have regular/prealloc extent */
6959 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6962 "regular/prealloc extent found for non-regular inode %llu",
6966 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6968 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6969 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6974 if (start >= extent_end) {
6976 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6977 ret = btrfs_next_leaf(root, path);
6983 leaf = path->nodes[0];
6985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6986 if (found_key.objectid != objectid ||
6987 found_key.type != BTRFS_EXTENT_DATA_KEY)
6989 if (start + len <= found_key.offset)
6991 if (start > found_key.offset)
6994 /* New extent overlaps with existing one */
6996 em->orig_start = start;
6997 em->len = found_key.offset - start;
6998 em->block_start = EXTENT_MAP_HOLE;
7002 btrfs_extent_item_to_extent_map(inode, path, item, em);
7004 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7005 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7007 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7009 * Inline extent can only exist at file offset 0. This is
7010 * ensured by tree-checker and inline extent creation path.
7011 * Thus all members representing file offsets should be zero.
7013 ASSERT(pg_offset == 0);
7014 ASSERT(extent_start == 0);
7015 ASSERT(em->start == 0);
7018 * btrfs_extent_item_to_extent_map() should have properly
7019 * initialized em members already.
7021 * Other members are not utilized for inline extents.
7023 ASSERT(em->block_start == EXTENT_MAP_INLINE);
7024 ASSERT(em->len == fs_info->sectorsize);
7026 ret = read_inline_extent(inode, path, page);
7033 em->orig_start = start;
7035 em->block_start = EXTENT_MAP_HOLE;
7038 btrfs_release_path(path);
7039 if (em->start > start || extent_map_end(em) <= start) {
7041 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7042 em->start, em->len, start, len);
7047 write_lock(&em_tree->lock);
7048 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7049 write_unlock(&em_tree->lock);
7051 btrfs_free_path(path);
7053 trace_btrfs_get_extent(root, inode, em);
7056 free_extent_map(em);
7057 return ERR_PTR(ret);
7062 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7063 struct btrfs_dio_data *dio_data,
7066 const u64 orig_start,
7067 const u64 block_start,
7068 const u64 block_len,
7069 const u64 orig_block_len,
7070 const u64 ram_bytes,
7073 struct extent_map *em = NULL;
7074 struct btrfs_ordered_extent *ordered;
7076 if (type != BTRFS_ORDERED_NOCOW) {
7077 em = create_io_em(inode, start, len, orig_start, block_start,
7078 block_len, orig_block_len, ram_bytes,
7079 BTRFS_COMPRESS_NONE, /* compress_type */
7084 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7085 block_start, block_len, 0,
7087 (1 << BTRFS_ORDERED_DIRECT),
7088 BTRFS_COMPRESS_NONE);
7089 if (IS_ERR(ordered)) {
7091 free_extent_map(em);
7092 btrfs_drop_extent_map_range(inode, start,
7093 start + len - 1, false);
7095 em = ERR_CAST(ordered);
7097 ASSERT(!dio_data->ordered);
7098 dio_data->ordered = ordered;
7105 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7106 struct btrfs_dio_data *dio_data,
7109 struct btrfs_root *root = inode->root;
7110 struct btrfs_fs_info *fs_info = root->fs_info;
7111 struct extent_map *em;
7112 struct btrfs_key ins;
7116 alloc_hint = get_extent_allocation_hint(inode, start, len);
7117 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7118 0, alloc_hint, &ins, 1, 1);
7120 return ERR_PTR(ret);
7122 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7123 ins.objectid, ins.offset, ins.offset,
7124 ins.offset, BTRFS_ORDERED_REGULAR);
7125 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7127 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7133 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7135 struct btrfs_block_group *block_group;
7136 bool readonly = false;
7138 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7139 if (!block_group || block_group->ro)
7142 btrfs_put_block_group(block_group);
7147 * Check if we can do nocow write into the range [@offset, @offset + @len)
7149 * @offset: File offset
7150 * @len: The length to write, will be updated to the nocow writeable
7152 * @orig_start: (optional) Return the original file offset of the file extent
7153 * @orig_len: (optional) Return the original on-disk length of the file extent
7154 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7155 * @strict: if true, omit optimizations that might force us into unnecessary
7156 * cow. e.g., don't trust generation number.
7159 * >0 and update @len if we can do nocow write
7160 * 0 if we can't do nocow write
7161 * <0 if error happened
7163 * NOTE: This only checks the file extents, caller is responsible to wait for
7164 * any ordered extents.
7166 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7167 u64 *orig_start, u64 *orig_block_len,
7168 u64 *ram_bytes, bool nowait, bool strict)
7170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7171 struct can_nocow_file_extent_args nocow_args = { 0 };
7172 struct btrfs_path *path;
7174 struct extent_buffer *leaf;
7175 struct btrfs_root *root = BTRFS_I(inode)->root;
7176 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7177 struct btrfs_file_extent_item *fi;
7178 struct btrfs_key key;
7181 path = btrfs_alloc_path();
7184 path->nowait = nowait;
7186 ret = btrfs_lookup_file_extent(NULL, root, path,
7187 btrfs_ino(BTRFS_I(inode)), offset, 0);
7192 if (path->slots[0] == 0) {
7193 /* can't find the item, must cow */
7200 leaf = path->nodes[0];
7201 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7202 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7203 key.type != BTRFS_EXTENT_DATA_KEY) {
7204 /* not our file or wrong item type, must cow */
7208 if (key.offset > offset) {
7209 /* Wrong offset, must cow */
7213 if (btrfs_file_extent_end(path) <= offset)
7216 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7217 found_type = btrfs_file_extent_type(leaf, fi);
7219 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7221 nocow_args.start = offset;
7222 nocow_args.end = offset + *len - 1;
7223 nocow_args.strict = strict;
7224 nocow_args.free_path = true;
7226 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7227 /* can_nocow_file_extent() has freed the path. */
7231 /* Treat errors as not being able to NOCOW. */
7237 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7240 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7241 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7244 range_end = round_up(offset + nocow_args.num_bytes,
7245 root->fs_info->sectorsize) - 1;
7246 ret = test_range_bit(io_tree, offset, range_end,
7247 EXTENT_DELALLOC, 0, NULL);
7255 *orig_start = key.offset - nocow_args.extent_offset;
7257 *orig_block_len = nocow_args.disk_num_bytes;
7259 *len = nocow_args.num_bytes;
7262 btrfs_free_path(path);
7266 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7267 struct extent_state **cached_state,
7268 unsigned int iomap_flags)
7270 const bool writing = (iomap_flags & IOMAP_WRITE);
7271 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7272 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7273 struct btrfs_ordered_extent *ordered;
7278 if (!try_lock_extent(io_tree, lockstart, lockend,
7282 lock_extent(io_tree, lockstart, lockend, cached_state);
7285 * We're concerned with the entire range that we're going to be
7286 * doing DIO to, so we need to make sure there's no ordered
7287 * extents in this range.
7289 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7290 lockend - lockstart + 1);
7293 * We need to make sure there are no buffered pages in this
7294 * range either, we could have raced between the invalidate in
7295 * generic_file_direct_write and locking the extent. The
7296 * invalidate needs to happen so that reads after a write do not
7300 (!writing || !filemap_range_has_page(inode->i_mapping,
7301 lockstart, lockend)))
7304 unlock_extent(io_tree, lockstart, lockend, cached_state);
7308 btrfs_put_ordered_extent(ordered);
7313 * If we are doing a DIO read and the ordered extent we
7314 * found is for a buffered write, we can not wait for it
7315 * to complete and retry, because if we do so we can
7316 * deadlock with concurrent buffered writes on page
7317 * locks. This happens only if our DIO read covers more
7318 * than one extent map, if at this point has already
7319 * created an ordered extent for a previous extent map
7320 * and locked its range in the inode's io tree, and a
7321 * concurrent write against that previous extent map's
7322 * range and this range started (we unlock the ranges
7323 * in the io tree only when the bios complete and
7324 * buffered writes always lock pages before attempting
7325 * to lock range in the io tree).
7328 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7329 btrfs_start_ordered_extent(ordered);
7331 ret = nowait ? -EAGAIN : -ENOTBLK;
7332 btrfs_put_ordered_extent(ordered);
7335 * We could trigger writeback for this range (and wait
7336 * for it to complete) and then invalidate the pages for
7337 * this range (through invalidate_inode_pages2_range()),
7338 * but that can lead us to a deadlock with a concurrent
7339 * call to readahead (a buffered read or a defrag call
7340 * triggered a readahead) on a page lock due to an
7341 * ordered dio extent we created before but did not have
7342 * yet a corresponding bio submitted (whence it can not
7343 * complete), which makes readahead wait for that
7344 * ordered extent to complete while holding a lock on
7347 ret = nowait ? -EAGAIN : -ENOTBLK;
7359 /* The callers of this must take lock_extent() */
7360 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7361 u64 len, u64 orig_start, u64 block_start,
7362 u64 block_len, u64 orig_block_len,
7363 u64 ram_bytes, int compress_type,
7366 struct extent_map *em;
7369 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7370 type == BTRFS_ORDERED_COMPRESSED ||
7371 type == BTRFS_ORDERED_NOCOW ||
7372 type == BTRFS_ORDERED_REGULAR);
7374 em = alloc_extent_map();
7376 return ERR_PTR(-ENOMEM);
7379 em->orig_start = orig_start;
7381 em->block_len = block_len;
7382 em->block_start = block_start;
7383 em->orig_block_len = orig_block_len;
7384 em->ram_bytes = ram_bytes;
7385 em->generation = -1;
7386 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7387 if (type == BTRFS_ORDERED_PREALLOC) {
7388 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7389 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7390 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7391 em->compress_type = compress_type;
7394 ret = btrfs_replace_extent_map_range(inode, em, true);
7396 free_extent_map(em);
7397 return ERR_PTR(ret);
7400 /* em got 2 refs now, callers needs to do free_extent_map once. */
7405 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7406 struct inode *inode,
7407 struct btrfs_dio_data *dio_data,
7408 u64 start, u64 *lenp,
7409 unsigned int iomap_flags)
7411 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7413 struct extent_map *em = *map;
7415 u64 block_start, orig_start, orig_block_len, ram_bytes;
7416 struct btrfs_block_group *bg;
7417 bool can_nocow = false;
7418 bool space_reserved = false;
7424 * We don't allocate a new extent in the following cases
7426 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7428 * 2) The extent is marked as PREALLOC. We're good to go here and can
7429 * just use the extent.
7432 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7433 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7434 em->block_start != EXTENT_MAP_HOLE)) {
7435 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7436 type = BTRFS_ORDERED_PREALLOC;
7438 type = BTRFS_ORDERED_NOCOW;
7439 len = min(len, em->len - (start - em->start));
7440 block_start = em->block_start + (start - em->start);
7442 if (can_nocow_extent(inode, start, &len, &orig_start,
7443 &orig_block_len, &ram_bytes, false, false) == 1) {
7444 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7452 struct extent_map *em2;
7454 /* We can NOCOW, so only need to reserve metadata space. */
7455 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7458 /* Our caller expects us to free the input extent map. */
7459 free_extent_map(em);
7461 btrfs_dec_nocow_writers(bg);
7462 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7466 space_reserved = true;
7468 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7469 orig_start, block_start,
7470 len, orig_block_len,
7472 btrfs_dec_nocow_writers(bg);
7473 if (type == BTRFS_ORDERED_PREALLOC) {
7474 free_extent_map(em);
7484 dio_data->nocow_done = true;
7486 /* Our caller expects us to free the input extent map. */
7487 free_extent_map(em);
7496 * If we could not allocate data space before locking the file
7497 * range and we can't do a NOCOW write, then we have to fail.
7499 if (!dio_data->data_space_reserved) {
7505 * We have to COW and we have already reserved data space before,
7506 * so now we reserve only metadata.
7508 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7512 space_reserved = true;
7514 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7520 len = min(len, em->len - (start - em->start));
7522 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7523 prev_len - len, true);
7527 * We have created our ordered extent, so we can now release our reservation
7528 * for an outstanding extent.
7530 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7533 * Need to update the i_size under the extent lock so buffered
7534 * readers will get the updated i_size when we unlock.
7536 if (start + len > i_size_read(inode))
7537 i_size_write(inode, start + len);
7539 if (ret && space_reserved) {
7540 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7541 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7547 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7548 loff_t length, unsigned int flags, struct iomap *iomap,
7549 struct iomap *srcmap)
7551 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7552 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7553 struct extent_map *em;
7554 struct extent_state *cached_state = NULL;
7555 struct btrfs_dio_data *dio_data = iter->private;
7556 u64 lockstart, lockend;
7557 const bool write = !!(flags & IOMAP_WRITE);
7560 const u64 data_alloc_len = length;
7561 bool unlock_extents = false;
7564 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7565 * we're NOWAIT we may submit a bio for a partial range and return
7566 * EIOCBQUEUED, which would result in an errant short read.
7568 * The best way to handle this would be to allow for partial completions
7569 * of iocb's, so we could submit the partial bio, return and fault in
7570 * the rest of the pages, and then submit the io for the rest of the
7571 * range. However we don't have that currently, so simply return
7572 * -EAGAIN at this point so that the normal path is used.
7574 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7578 * Cap the size of reads to that usually seen in buffered I/O as we need
7579 * to allocate a contiguous array for the checksums.
7582 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7585 lockend = start + len - 1;
7588 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7589 * enough if we've written compressed pages to this area, so we need to
7590 * flush the dirty pages again to make absolutely sure that any
7591 * outstanding dirty pages are on disk - the first flush only starts
7592 * compression on the data, while keeping the pages locked, so by the
7593 * time the second flush returns we know bios for the compressed pages
7594 * were submitted and finished, and the pages no longer under writeback.
7596 * If we have a NOWAIT request and we have any pages in the range that
7597 * are locked, likely due to compression still in progress, we don't want
7598 * to block on page locks. We also don't want to block on pages marked as
7599 * dirty or under writeback (same as for the non-compression case).
7600 * iomap_dio_rw() did the same check, but after that and before we got
7601 * here, mmap'ed writes may have happened or buffered reads started
7602 * (readpage() and readahead(), which lock pages), as we haven't locked
7603 * the file range yet.
7605 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7606 &BTRFS_I(inode)->runtime_flags)) {
7607 if (flags & IOMAP_NOWAIT) {
7608 if (filemap_range_needs_writeback(inode->i_mapping,
7609 lockstart, lockend))
7612 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7613 start + length - 1);
7619 memset(dio_data, 0, sizeof(*dio_data));
7622 * We always try to allocate data space and must do it before locking
7623 * the file range, to avoid deadlocks with concurrent writes to the same
7624 * range if the range has several extents and the writes don't expand the
7625 * current i_size (the inode lock is taken in shared mode). If we fail to
7626 * allocate data space here we continue and later, after locking the
7627 * file range, we fail with ENOSPC only if we figure out we can not do a
7630 if (write && !(flags & IOMAP_NOWAIT)) {
7631 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7632 &dio_data->data_reserved,
7633 start, data_alloc_len, false);
7635 dio_data->data_space_reserved = true;
7636 else if (ret && !(BTRFS_I(inode)->flags &
7637 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7642 * If this errors out it's because we couldn't invalidate pagecache for
7643 * this range and we need to fallback to buffered IO, or we are doing a
7644 * NOWAIT read/write and we need to block.
7646 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7650 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7657 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7658 * io. INLINE is special, and we could probably kludge it in here, but
7659 * it's still buffered so for safety lets just fall back to the generic
7662 * For COMPRESSED we _have_ to read the entire extent in so we can
7663 * decompress it, so there will be buffering required no matter what we
7664 * do, so go ahead and fallback to buffered.
7666 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7667 * to buffered IO. Don't blame me, this is the price we pay for using
7670 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7671 em->block_start == EXTENT_MAP_INLINE) {
7672 free_extent_map(em);
7674 * If we are in a NOWAIT context, return -EAGAIN in order to
7675 * fallback to buffered IO. This is not only because we can
7676 * block with buffered IO (no support for NOWAIT semantics at
7677 * the moment) but also to avoid returning short reads to user
7678 * space - this happens if we were able to read some data from
7679 * previous non-compressed extents and then when we fallback to
7680 * buffered IO, at btrfs_file_read_iter() by calling
7681 * filemap_read(), we fail to fault in pages for the read buffer,
7682 * in which case filemap_read() returns a short read (the number
7683 * of bytes previously read is > 0, so it does not return -EFAULT).
7685 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7689 len = min(len, em->len - (start - em->start));
7692 * If we have a NOWAIT request and the range contains multiple extents
7693 * (or a mix of extents and holes), then we return -EAGAIN to make the
7694 * caller fallback to a context where it can do a blocking (without
7695 * NOWAIT) request. This way we avoid doing partial IO and returning
7696 * success to the caller, which is not optimal for writes and for reads
7697 * it can result in unexpected behaviour for an application.
7699 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7700 * iomap_dio_rw(), we can end up returning less data then what the caller
7701 * asked for, resulting in an unexpected, and incorrect, short read.
7702 * That is, the caller asked to read N bytes and we return less than that,
7703 * which is wrong unless we are crossing EOF. This happens if we get a
7704 * page fault error when trying to fault in pages for the buffer that is
7705 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7706 * have previously submitted bios for other extents in the range, in
7707 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7708 * those bios have completed by the time we get the page fault error,
7709 * which we return back to our caller - we should only return EIOCBQUEUED
7710 * after we have submitted bios for all the extents in the range.
7712 if ((flags & IOMAP_NOWAIT) && len < length) {
7713 free_extent_map(em);
7719 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7720 start, &len, flags);
7723 unlock_extents = true;
7724 /* Recalc len in case the new em is smaller than requested */
7725 len = min(len, em->len - (start - em->start));
7726 if (dio_data->data_space_reserved) {
7728 u64 release_len = 0;
7730 if (dio_data->nocow_done) {
7731 release_offset = start;
7732 release_len = data_alloc_len;
7733 } else if (len < data_alloc_len) {
7734 release_offset = start + len;
7735 release_len = data_alloc_len - len;
7738 if (release_len > 0)
7739 btrfs_free_reserved_data_space(BTRFS_I(inode),
7740 dio_data->data_reserved,
7746 * We need to unlock only the end area that we aren't using.
7747 * The rest is going to be unlocked by the endio routine.
7749 lockstart = start + len;
7750 if (lockstart < lockend)
7751 unlock_extents = true;
7755 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7758 free_extent_state(cached_state);
7761 * Translate extent map information to iomap.
7762 * We trim the extents (and move the addr) even though iomap code does
7763 * that, since we have locked only the parts we are performing I/O in.
7765 if ((em->block_start == EXTENT_MAP_HOLE) ||
7766 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7767 iomap->addr = IOMAP_NULL_ADDR;
7768 iomap->type = IOMAP_HOLE;
7770 iomap->addr = em->block_start + (start - em->start);
7771 iomap->type = IOMAP_MAPPED;
7773 iomap->offset = start;
7774 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7775 iomap->length = len;
7776 free_extent_map(em);
7781 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7784 if (dio_data->data_space_reserved) {
7785 btrfs_free_reserved_data_space(BTRFS_I(inode),
7786 dio_data->data_reserved,
7787 start, data_alloc_len);
7788 extent_changeset_free(dio_data->data_reserved);
7794 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7795 ssize_t written, unsigned int flags, struct iomap *iomap)
7797 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7798 struct btrfs_dio_data *dio_data = iter->private;
7799 size_t submitted = dio_data->submitted;
7800 const bool write = !!(flags & IOMAP_WRITE);
7803 if (!write && (iomap->type == IOMAP_HOLE)) {
7804 /* If reading from a hole, unlock and return */
7805 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7810 if (submitted < length) {
7812 length -= submitted;
7814 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7815 pos, length, false);
7817 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7818 pos + length - 1, NULL);
7822 btrfs_put_ordered_extent(dio_data->ordered);
7823 dio_data->ordered = NULL;
7827 extent_changeset_free(dio_data->data_reserved);
7831 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7833 struct btrfs_dio_private *dip =
7834 container_of(bbio, struct btrfs_dio_private, bbio);
7835 struct btrfs_inode *inode = bbio->inode;
7836 struct bio *bio = &bbio->bio;
7838 if (bio->bi_status) {
7839 btrfs_warn(inode->root->fs_info,
7840 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7841 btrfs_ino(inode), bio->bi_opf,
7842 dip->file_offset, dip->bytes, bio->bi_status);
7845 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7846 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7847 dip->file_offset, dip->bytes,
7850 unlock_extent(&inode->io_tree, dip->file_offset,
7851 dip->file_offset + dip->bytes - 1, NULL);
7854 bbio->bio.bi_private = bbio->private;
7855 iomap_dio_bio_end_io(bio);
7858 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7861 struct btrfs_bio *bbio = btrfs_bio(bio);
7862 struct btrfs_dio_private *dip =
7863 container_of(bbio, struct btrfs_dio_private, bbio);
7864 struct btrfs_dio_data *dio_data = iter->private;
7866 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7867 btrfs_dio_end_io, bio->bi_private);
7868 bbio->inode = BTRFS_I(iter->inode);
7869 bbio->file_offset = file_offset;
7871 dip->file_offset = file_offset;
7872 dip->bytes = bio->bi_iter.bi_size;
7874 dio_data->submitted += bio->bi_iter.bi_size;
7877 * Check if we are doing a partial write. If we are, we need to split
7878 * the ordered extent to match the submitted bio. Hang on to the
7879 * remaining unfinishable ordered_extent in dio_data so that it can be
7880 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7881 * remaining pages is blocked on the outstanding ordered extent.
7883 if (iter->flags & IOMAP_WRITE) {
7886 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7888 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7889 file_offset, dip->bytes,
7891 bio->bi_status = errno_to_blk_status(ret);
7892 iomap_dio_bio_end_io(bio);
7897 btrfs_submit_bio(bbio, 0);
7900 static const struct iomap_ops btrfs_dio_iomap_ops = {
7901 .iomap_begin = btrfs_dio_iomap_begin,
7902 .iomap_end = btrfs_dio_iomap_end,
7905 static const struct iomap_dio_ops btrfs_dio_ops = {
7906 .submit_io = btrfs_dio_submit_io,
7907 .bio_set = &btrfs_dio_bioset,
7910 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7912 struct btrfs_dio_data data = { 0 };
7914 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7915 IOMAP_DIO_PARTIAL, &data, done_before);
7918 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7921 struct btrfs_dio_data data = { 0 };
7923 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7924 IOMAP_DIO_PARTIAL, &data, done_before);
7927 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7932 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7937 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7938 * file range (0 to LLONG_MAX), but that is not enough if we have
7939 * compression enabled. The first filemap_fdatawrite_range() only kicks
7940 * in the compression of data (in an async thread) and will return
7941 * before the compression is done and writeback is started. A second
7942 * filemap_fdatawrite_range() is needed to wait for the compression to
7943 * complete and writeback to start. We also need to wait for ordered
7944 * extents to complete, because our fiemap implementation uses mainly
7945 * file extent items to list the extents, searching for extent maps
7946 * only for file ranges with holes or prealloc extents to figure out
7947 * if we have delalloc in those ranges.
7949 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7950 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7955 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7958 static int btrfs_writepages(struct address_space *mapping,
7959 struct writeback_control *wbc)
7961 return extent_writepages(mapping, wbc);
7964 static void btrfs_readahead(struct readahead_control *rac)
7966 extent_readahead(rac);
7970 * For release_folio() and invalidate_folio() we have a race window where
7971 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7972 * If we continue to release/invalidate the page, we could cause use-after-free
7973 * for subpage spinlock. So this function is to spin and wait for subpage
7976 static void wait_subpage_spinlock(struct page *page)
7978 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7979 struct btrfs_subpage *subpage;
7981 if (!btrfs_is_subpage(fs_info, page))
7984 ASSERT(PagePrivate(page) && page->private);
7985 subpage = (struct btrfs_subpage *)page->private;
7988 * This may look insane as we just acquire the spinlock and release it,
7989 * without doing anything. But we just want to make sure no one is
7990 * still holding the subpage spinlock.
7991 * And since the page is not dirty nor writeback, and we have page
7992 * locked, the only possible way to hold a spinlock is from the endio
7993 * function to clear page writeback.
7995 * Here we just acquire the spinlock so that all existing callers
7996 * should exit and we're safe to release/invalidate the page.
7998 spin_lock_irq(&subpage->lock);
7999 spin_unlock_irq(&subpage->lock);
8002 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8004 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8007 wait_subpage_spinlock(&folio->page);
8008 clear_page_extent_mapped(&folio->page);
8013 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8015 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8017 return __btrfs_release_folio(folio, gfp_flags);
8020 #ifdef CONFIG_MIGRATION
8021 static int btrfs_migrate_folio(struct address_space *mapping,
8022 struct folio *dst, struct folio *src,
8023 enum migrate_mode mode)
8025 int ret = filemap_migrate_folio(mapping, dst, src, mode);
8027 if (ret != MIGRATEPAGE_SUCCESS)
8030 if (folio_test_ordered(src)) {
8031 folio_clear_ordered(src);
8032 folio_set_ordered(dst);
8035 return MIGRATEPAGE_SUCCESS;
8038 #define btrfs_migrate_folio NULL
8041 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8044 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8045 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8046 struct extent_io_tree *tree = &inode->io_tree;
8047 struct extent_state *cached_state = NULL;
8048 u64 page_start = folio_pos(folio);
8049 u64 page_end = page_start + folio_size(folio) - 1;
8051 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8054 * We have folio locked so no new ordered extent can be created on this
8055 * page, nor bio can be submitted for this folio.
8057 * But already submitted bio can still be finished on this folio.
8058 * Furthermore, endio function won't skip folio which has Ordered
8059 * (Private2) already cleared, so it's possible for endio and
8060 * invalidate_folio to do the same ordered extent accounting twice
8063 * So here we wait for any submitted bios to finish, so that we won't
8064 * do double ordered extent accounting on the same folio.
8066 folio_wait_writeback(folio);
8067 wait_subpage_spinlock(&folio->page);
8070 * For subpage case, we have call sites like
8071 * btrfs_punch_hole_lock_range() which passes range not aligned to
8073 * If the range doesn't cover the full folio, we don't need to and
8074 * shouldn't clear page extent mapped, as folio->private can still
8075 * record subpage dirty bits for other part of the range.
8077 * For cases that invalidate the full folio even the range doesn't
8078 * cover the full folio, like invalidating the last folio, we're
8079 * still safe to wait for ordered extent to finish.
8081 if (!(offset == 0 && length == folio_size(folio))) {
8082 btrfs_release_folio(folio, GFP_NOFS);
8086 if (!inode_evicting)
8087 lock_extent(tree, page_start, page_end, &cached_state);
8090 while (cur < page_end) {
8091 struct btrfs_ordered_extent *ordered;
8094 u32 extra_flags = 0;
8096 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8097 page_end + 1 - cur);
8099 range_end = page_end;
8101 * No ordered extent covering this range, we are safe
8102 * to delete all extent states in the range.
8104 extra_flags = EXTENT_CLEAR_ALL_BITS;
8107 if (ordered->file_offset > cur) {
8109 * There is a range between [cur, oe->file_offset) not
8110 * covered by any ordered extent.
8111 * We are safe to delete all extent states, and handle
8112 * the ordered extent in the next iteration.
8114 range_end = ordered->file_offset - 1;
8115 extra_flags = EXTENT_CLEAR_ALL_BITS;
8119 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8121 ASSERT(range_end + 1 - cur < U32_MAX);
8122 range_len = range_end + 1 - cur;
8123 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8125 * If Ordered (Private2) is cleared, it means endio has
8126 * already been executed for the range.
8127 * We can't delete the extent states as
8128 * btrfs_finish_ordered_io() may still use some of them.
8132 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8135 * IO on this page will never be started, so we need to account
8136 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8137 * here, must leave that up for the ordered extent completion.
8139 * This will also unlock the range for incoming
8140 * btrfs_finish_ordered_io().
8142 if (!inode_evicting)
8143 clear_extent_bit(tree, cur, range_end,
8145 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8146 EXTENT_DEFRAG, &cached_state);
8148 spin_lock_irq(&inode->ordered_tree.lock);
8149 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8150 ordered->truncated_len = min(ordered->truncated_len,
8151 cur - ordered->file_offset);
8152 spin_unlock_irq(&inode->ordered_tree.lock);
8155 * If the ordered extent has finished, we're safe to delete all
8156 * the extent states of the range, otherwise
8157 * btrfs_finish_ordered_io() will get executed by endio for
8158 * other pages, so we can't delete extent states.
8160 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8161 cur, range_end + 1 - cur)) {
8162 btrfs_finish_ordered_io(ordered);
8164 * The ordered extent has finished, now we're again
8165 * safe to delete all extent states of the range.
8167 extra_flags = EXTENT_CLEAR_ALL_BITS;
8171 btrfs_put_ordered_extent(ordered);
8173 * Qgroup reserved space handler
8174 * Sector(s) here will be either:
8176 * 1) Already written to disk or bio already finished
8177 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8178 * Qgroup will be handled by its qgroup_record then.
8179 * btrfs_qgroup_free_data() call will do nothing here.
8181 * 2) Not written to disk yet
8182 * Then btrfs_qgroup_free_data() call will clear the
8183 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8184 * reserved data space.
8185 * Since the IO will never happen for this page.
8187 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8188 if (!inode_evicting) {
8189 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8190 EXTENT_DELALLOC | EXTENT_UPTODATE |
8191 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8192 extra_flags, &cached_state);
8194 cur = range_end + 1;
8197 * We have iterated through all ordered extents of the page, the page
8198 * should not have Ordered (Private2) anymore, or the above iteration
8199 * did something wrong.
8201 ASSERT(!folio_test_ordered(folio));
8202 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8203 if (!inode_evicting)
8204 __btrfs_release_folio(folio, GFP_NOFS);
8205 clear_page_extent_mapped(&folio->page);
8209 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8210 * called from a page fault handler when a page is first dirtied. Hence we must
8211 * be careful to check for EOF conditions here. We set the page up correctly
8212 * for a written page which means we get ENOSPC checking when writing into
8213 * holes and correct delalloc and unwritten extent mapping on filesystems that
8214 * support these features.
8216 * We are not allowed to take the i_mutex here so we have to play games to
8217 * protect against truncate races as the page could now be beyond EOF. Because
8218 * truncate_setsize() writes the inode size before removing pages, once we have
8219 * the page lock we can determine safely if the page is beyond EOF. If it is not
8220 * beyond EOF, then the page is guaranteed safe against truncation until we
8223 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8225 struct page *page = vmf->page;
8226 struct inode *inode = file_inode(vmf->vma->vm_file);
8227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8229 struct btrfs_ordered_extent *ordered;
8230 struct extent_state *cached_state = NULL;
8231 struct extent_changeset *data_reserved = NULL;
8232 unsigned long zero_start;
8242 reserved_space = PAGE_SIZE;
8244 sb_start_pagefault(inode->i_sb);
8245 page_start = page_offset(page);
8246 page_end = page_start + PAGE_SIZE - 1;
8250 * Reserving delalloc space after obtaining the page lock can lead to
8251 * deadlock. For example, if a dirty page is locked by this function
8252 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8253 * dirty page write out, then the btrfs_writepages() function could
8254 * end up waiting indefinitely to get a lock on the page currently
8255 * being processed by btrfs_page_mkwrite() function.
8257 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8258 page_start, reserved_space);
8260 ret2 = file_update_time(vmf->vma->vm_file);
8264 ret = vmf_error(ret2);
8270 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8272 down_read(&BTRFS_I(inode)->i_mmap_lock);
8274 size = i_size_read(inode);
8276 if ((page->mapping != inode->i_mapping) ||
8277 (page_start >= size)) {
8278 /* page got truncated out from underneath us */
8281 wait_on_page_writeback(page);
8283 lock_extent(io_tree, page_start, page_end, &cached_state);
8284 ret2 = set_page_extent_mapped(page);
8286 ret = vmf_error(ret2);
8287 unlock_extent(io_tree, page_start, page_end, &cached_state);
8292 * we can't set the delalloc bits if there are pending ordered
8293 * extents. Drop our locks and wait for them to finish
8295 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8298 unlock_extent(io_tree, page_start, page_end, &cached_state);
8300 up_read(&BTRFS_I(inode)->i_mmap_lock);
8301 btrfs_start_ordered_extent(ordered);
8302 btrfs_put_ordered_extent(ordered);
8306 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8307 reserved_space = round_up(size - page_start,
8308 fs_info->sectorsize);
8309 if (reserved_space < PAGE_SIZE) {
8310 end = page_start + reserved_space - 1;
8311 btrfs_delalloc_release_space(BTRFS_I(inode),
8312 data_reserved, page_start,
8313 PAGE_SIZE - reserved_space, true);
8318 * page_mkwrite gets called when the page is firstly dirtied after it's
8319 * faulted in, but write(2) could also dirty a page and set delalloc
8320 * bits, thus in this case for space account reason, we still need to
8321 * clear any delalloc bits within this page range since we have to
8322 * reserve data&meta space before lock_page() (see above comments).
8324 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8325 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8326 EXTENT_DEFRAG, &cached_state);
8328 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8331 unlock_extent(io_tree, page_start, page_end, &cached_state);
8332 ret = VM_FAULT_SIGBUS;
8336 /* page is wholly or partially inside EOF */
8337 if (page_start + PAGE_SIZE > size)
8338 zero_start = offset_in_page(size);
8340 zero_start = PAGE_SIZE;
8342 if (zero_start != PAGE_SIZE)
8343 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8345 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8346 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8347 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8349 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8351 unlock_extent(io_tree, page_start, page_end, &cached_state);
8352 up_read(&BTRFS_I(inode)->i_mmap_lock);
8354 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8355 sb_end_pagefault(inode->i_sb);
8356 extent_changeset_free(data_reserved);
8357 return VM_FAULT_LOCKED;
8361 up_read(&BTRFS_I(inode)->i_mmap_lock);
8363 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8364 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8365 reserved_space, (ret != 0));
8367 sb_end_pagefault(inode->i_sb);
8368 extent_changeset_free(data_reserved);
8372 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8374 struct btrfs_truncate_control control = {
8376 .ino = btrfs_ino(inode),
8377 .min_type = BTRFS_EXTENT_DATA_KEY,
8378 .clear_extent_range = true,
8380 struct btrfs_root *root = inode->root;
8381 struct btrfs_fs_info *fs_info = root->fs_info;
8382 struct btrfs_block_rsv *rsv;
8384 struct btrfs_trans_handle *trans;
8385 u64 mask = fs_info->sectorsize - 1;
8386 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8388 if (!skip_writeback) {
8389 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8390 inode->vfs_inode.i_size & (~mask),
8397 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8398 * things going on here:
8400 * 1) We need to reserve space to update our inode.
8402 * 2) We need to have something to cache all the space that is going to
8403 * be free'd up by the truncate operation, but also have some slack
8404 * space reserved in case it uses space during the truncate (thank you
8405 * very much snapshotting).
8407 * And we need these to be separate. The fact is we can use a lot of
8408 * space doing the truncate, and we have no earthly idea how much space
8409 * we will use, so we need the truncate reservation to be separate so it
8410 * doesn't end up using space reserved for updating the inode. We also
8411 * need to be able to stop the transaction and start a new one, which
8412 * means we need to be able to update the inode several times, and we
8413 * have no idea of knowing how many times that will be, so we can't just
8414 * reserve 1 item for the entirety of the operation, so that has to be
8415 * done separately as well.
8417 * So that leaves us with
8419 * 1) rsv - for the truncate reservation, which we will steal from the
8420 * transaction reservation.
8421 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8422 * updating the inode.
8424 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8427 rsv->size = min_size;
8428 rsv->failfast = true;
8431 * 1 for the truncate slack space
8432 * 1 for updating the inode.
8434 trans = btrfs_start_transaction(root, 2);
8435 if (IS_ERR(trans)) {
8436 ret = PTR_ERR(trans);
8440 /* Migrate the slack space for the truncate to our reserve */
8441 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8444 * We have reserved 2 metadata units when we started the transaction and
8445 * min_size matches 1 unit, so this should never fail, but if it does,
8446 * it's not critical we just fail truncation.
8449 btrfs_end_transaction(trans);
8453 trans->block_rsv = rsv;
8456 struct extent_state *cached_state = NULL;
8457 const u64 new_size = inode->vfs_inode.i_size;
8458 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8460 control.new_size = new_size;
8461 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8463 * We want to drop from the next block forward in case this new
8464 * size is not block aligned since we will be keeping the last
8465 * block of the extent just the way it is.
8467 btrfs_drop_extent_map_range(inode,
8468 ALIGN(new_size, fs_info->sectorsize),
8471 ret = btrfs_truncate_inode_items(trans, root, &control);
8473 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8474 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8476 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8478 trans->block_rsv = &fs_info->trans_block_rsv;
8479 if (ret != -ENOSPC && ret != -EAGAIN)
8482 ret = btrfs_update_inode(trans, root, inode);
8486 btrfs_end_transaction(trans);
8487 btrfs_btree_balance_dirty(fs_info);
8489 trans = btrfs_start_transaction(root, 2);
8490 if (IS_ERR(trans)) {
8491 ret = PTR_ERR(trans);
8496 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8497 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8498 rsv, min_size, false);
8500 * We have reserved 2 metadata units when we started the
8501 * transaction and min_size matches 1 unit, so this should never
8502 * fail, but if it does, it's not critical we just fail truncation.
8507 trans->block_rsv = rsv;
8511 * We can't call btrfs_truncate_block inside a trans handle as we could
8512 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8513 * know we've truncated everything except the last little bit, and can
8514 * do btrfs_truncate_block and then update the disk_i_size.
8516 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8517 btrfs_end_transaction(trans);
8518 btrfs_btree_balance_dirty(fs_info);
8520 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8523 trans = btrfs_start_transaction(root, 1);
8524 if (IS_ERR(trans)) {
8525 ret = PTR_ERR(trans);
8528 btrfs_inode_safe_disk_i_size_write(inode, 0);
8534 trans->block_rsv = &fs_info->trans_block_rsv;
8535 ret2 = btrfs_update_inode(trans, root, inode);
8539 ret2 = btrfs_end_transaction(trans);
8542 btrfs_btree_balance_dirty(fs_info);
8545 btrfs_free_block_rsv(fs_info, rsv);
8547 * So if we truncate and then write and fsync we normally would just
8548 * write the extents that changed, which is a problem if we need to
8549 * first truncate that entire inode. So set this flag so we write out
8550 * all of the extents in the inode to the sync log so we're completely
8553 * If no extents were dropped or trimmed we don't need to force the next
8554 * fsync to truncate all the inode's items from the log and re-log them
8555 * all. This means the truncate operation did not change the file size,
8556 * or changed it to a smaller size but there was only an implicit hole
8557 * between the old i_size and the new i_size, and there were no prealloc
8558 * extents beyond i_size to drop.
8560 if (control.extents_found > 0)
8561 btrfs_set_inode_full_sync(inode);
8566 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8569 struct inode *inode;
8571 inode = new_inode(dir->i_sb);
8574 * Subvolumes don't inherit the sgid bit or the parent's gid if
8575 * the parent's sgid bit is set. This is probably a bug.
8577 inode_init_owner(idmap, inode, NULL,
8578 S_IFDIR | (~current_umask() & S_IRWXUGO));
8579 inode->i_op = &btrfs_dir_inode_operations;
8580 inode->i_fop = &btrfs_dir_file_operations;
8585 struct inode *btrfs_alloc_inode(struct super_block *sb)
8587 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8588 struct btrfs_inode *ei;
8589 struct inode *inode;
8591 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8598 ei->last_sub_trans = 0;
8599 ei->logged_trans = 0;
8600 ei->delalloc_bytes = 0;
8601 ei->new_delalloc_bytes = 0;
8602 ei->defrag_bytes = 0;
8603 ei->disk_i_size = 0;
8607 ei->index_cnt = (u64)-1;
8609 ei->last_unlink_trans = 0;
8610 ei->last_reflink_trans = 0;
8611 ei->last_log_commit = 0;
8613 spin_lock_init(&ei->lock);
8614 ei->outstanding_extents = 0;
8615 if (sb->s_magic != BTRFS_TEST_MAGIC)
8616 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8617 BTRFS_BLOCK_RSV_DELALLOC);
8618 ei->runtime_flags = 0;
8619 ei->prop_compress = BTRFS_COMPRESS_NONE;
8620 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8622 ei->delayed_node = NULL;
8624 ei->i_otime.tv_sec = 0;
8625 ei->i_otime.tv_nsec = 0;
8627 inode = &ei->vfs_inode;
8628 extent_map_tree_init(&ei->extent_tree);
8629 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8630 ei->io_tree.inode = ei;
8631 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8632 IO_TREE_INODE_FILE_EXTENT);
8633 mutex_init(&ei->log_mutex);
8634 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8635 INIT_LIST_HEAD(&ei->delalloc_inodes);
8636 INIT_LIST_HEAD(&ei->delayed_iput);
8637 RB_CLEAR_NODE(&ei->rb_node);
8638 init_rwsem(&ei->i_mmap_lock);
8643 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8644 void btrfs_test_destroy_inode(struct inode *inode)
8646 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8647 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8651 void btrfs_free_inode(struct inode *inode)
8653 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8656 void btrfs_destroy_inode(struct inode *vfs_inode)
8658 struct btrfs_ordered_extent *ordered;
8659 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8660 struct btrfs_root *root = inode->root;
8661 bool freespace_inode;
8663 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8664 WARN_ON(vfs_inode->i_data.nrpages);
8665 WARN_ON(inode->block_rsv.reserved);
8666 WARN_ON(inode->block_rsv.size);
8667 WARN_ON(inode->outstanding_extents);
8668 if (!S_ISDIR(vfs_inode->i_mode)) {
8669 WARN_ON(inode->delalloc_bytes);
8670 WARN_ON(inode->new_delalloc_bytes);
8672 WARN_ON(inode->csum_bytes);
8673 WARN_ON(inode->defrag_bytes);
8676 * This can happen where we create an inode, but somebody else also
8677 * created the same inode and we need to destroy the one we already
8684 * If this is a free space inode do not take the ordered extents lockdep
8687 freespace_inode = btrfs_is_free_space_inode(inode);
8690 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8694 btrfs_err(root->fs_info,
8695 "found ordered extent %llu %llu on inode cleanup",
8696 ordered->file_offset, ordered->num_bytes);
8698 if (!freespace_inode)
8699 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8701 btrfs_remove_ordered_extent(inode, ordered);
8702 btrfs_put_ordered_extent(ordered);
8703 btrfs_put_ordered_extent(ordered);
8706 btrfs_qgroup_check_reserved_leak(inode);
8707 inode_tree_del(inode);
8708 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8709 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8710 btrfs_put_root(inode->root);
8713 int btrfs_drop_inode(struct inode *inode)
8715 struct btrfs_root *root = BTRFS_I(inode)->root;
8720 /* the snap/subvol tree is on deleting */
8721 if (btrfs_root_refs(&root->root_item) == 0)
8724 return generic_drop_inode(inode);
8727 static void init_once(void *foo)
8729 struct btrfs_inode *ei = foo;
8731 inode_init_once(&ei->vfs_inode);
8734 void __cold btrfs_destroy_cachep(void)
8737 * Make sure all delayed rcu free inodes are flushed before we
8741 bioset_exit(&btrfs_dio_bioset);
8742 kmem_cache_destroy(btrfs_inode_cachep);
8745 int __init btrfs_init_cachep(void)
8747 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8748 sizeof(struct btrfs_inode), 0,
8749 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8751 if (!btrfs_inode_cachep)
8754 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8755 offsetof(struct btrfs_dio_private, bbio.bio),
8761 btrfs_destroy_cachep();
8765 static int btrfs_getattr(struct mnt_idmap *idmap,
8766 const struct path *path, struct kstat *stat,
8767 u32 request_mask, unsigned int flags)
8771 struct inode *inode = d_inode(path->dentry);
8772 u32 blocksize = inode->i_sb->s_blocksize;
8773 u32 bi_flags = BTRFS_I(inode)->flags;
8774 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8776 stat->result_mask |= STATX_BTIME;
8777 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8778 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8779 if (bi_flags & BTRFS_INODE_APPEND)
8780 stat->attributes |= STATX_ATTR_APPEND;
8781 if (bi_flags & BTRFS_INODE_COMPRESS)
8782 stat->attributes |= STATX_ATTR_COMPRESSED;
8783 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8784 stat->attributes |= STATX_ATTR_IMMUTABLE;
8785 if (bi_flags & BTRFS_INODE_NODUMP)
8786 stat->attributes |= STATX_ATTR_NODUMP;
8787 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8788 stat->attributes |= STATX_ATTR_VERITY;
8790 stat->attributes_mask |= (STATX_ATTR_APPEND |
8791 STATX_ATTR_COMPRESSED |
8792 STATX_ATTR_IMMUTABLE |
8795 generic_fillattr(idmap, request_mask, inode, stat);
8796 stat->dev = BTRFS_I(inode)->root->anon_dev;
8798 spin_lock(&BTRFS_I(inode)->lock);
8799 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8800 inode_bytes = inode_get_bytes(inode);
8801 spin_unlock(&BTRFS_I(inode)->lock);
8802 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8803 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8807 static int btrfs_rename_exchange(struct inode *old_dir,
8808 struct dentry *old_dentry,
8809 struct inode *new_dir,
8810 struct dentry *new_dentry)
8812 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8813 struct btrfs_trans_handle *trans;
8814 unsigned int trans_num_items;
8815 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8816 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8817 struct inode *new_inode = new_dentry->d_inode;
8818 struct inode *old_inode = old_dentry->d_inode;
8819 struct btrfs_rename_ctx old_rename_ctx;
8820 struct btrfs_rename_ctx new_rename_ctx;
8821 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8822 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8827 bool need_abort = false;
8828 struct fscrypt_name old_fname, new_fname;
8829 struct fscrypt_str *old_name, *new_name;
8832 * For non-subvolumes allow exchange only within one subvolume, in the
8833 * same inode namespace. Two subvolumes (represented as directory) can
8834 * be exchanged as they're a logical link and have a fixed inode number.
8837 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8838 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8841 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8845 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8847 fscrypt_free_filename(&old_fname);
8851 old_name = &old_fname.disk_name;
8852 new_name = &new_fname.disk_name;
8854 /* close the race window with snapshot create/destroy ioctl */
8855 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8856 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8857 down_read(&fs_info->subvol_sem);
8861 * 1 to remove old dir item
8862 * 1 to remove old dir index
8863 * 1 to add new dir item
8864 * 1 to add new dir index
8865 * 1 to update parent inode
8867 * If the parents are the same, we only need to account for one
8869 trans_num_items = (old_dir == new_dir ? 9 : 10);
8870 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8872 * 1 to remove old root ref
8873 * 1 to remove old root backref
8874 * 1 to add new root ref
8875 * 1 to add new root backref
8877 trans_num_items += 4;
8880 * 1 to update inode item
8881 * 1 to remove old inode ref
8882 * 1 to add new inode ref
8884 trans_num_items += 3;
8886 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8887 trans_num_items += 4;
8889 trans_num_items += 3;
8890 trans = btrfs_start_transaction(root, trans_num_items);
8891 if (IS_ERR(trans)) {
8892 ret = PTR_ERR(trans);
8897 ret = btrfs_record_root_in_trans(trans, dest);
8903 * We need to find a free sequence number both in the source and
8904 * in the destination directory for the exchange.
8906 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8909 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8913 BTRFS_I(old_inode)->dir_index = 0ULL;
8914 BTRFS_I(new_inode)->dir_index = 0ULL;
8916 /* Reference for the source. */
8917 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8918 /* force full log commit if subvolume involved. */
8919 btrfs_set_log_full_commit(trans);
8921 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8922 btrfs_ino(BTRFS_I(new_dir)),
8929 /* And now for the dest. */
8930 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8931 /* force full log commit if subvolume involved. */
8932 btrfs_set_log_full_commit(trans);
8934 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8935 btrfs_ino(BTRFS_I(old_dir)),
8939 btrfs_abort_transaction(trans, ret);
8944 /* Update inode version and ctime/mtime. */
8945 inode_inc_iversion(old_dir);
8946 inode_inc_iversion(new_dir);
8947 inode_inc_iversion(old_inode);
8948 inode_inc_iversion(new_inode);
8949 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8951 if (old_dentry->d_parent != new_dentry->d_parent) {
8952 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8953 BTRFS_I(old_inode), true);
8954 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8955 BTRFS_I(new_inode), true);
8958 /* src is a subvolume */
8959 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8960 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8961 } else { /* src is an inode */
8962 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8963 BTRFS_I(old_dentry->d_inode),
8964 old_name, &old_rename_ctx);
8966 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8969 btrfs_abort_transaction(trans, ret);
8973 /* dest is a subvolume */
8974 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8975 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8976 } else { /* dest is an inode */
8977 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8978 BTRFS_I(new_dentry->d_inode),
8979 new_name, &new_rename_ctx);
8981 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8984 btrfs_abort_transaction(trans, ret);
8988 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8989 new_name, 0, old_idx);
8991 btrfs_abort_transaction(trans, ret);
8995 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8996 old_name, 0, new_idx);
8998 btrfs_abort_transaction(trans, ret);
9002 if (old_inode->i_nlink == 1)
9003 BTRFS_I(old_inode)->dir_index = old_idx;
9004 if (new_inode->i_nlink == 1)
9005 BTRFS_I(new_inode)->dir_index = new_idx;
9008 * Now pin the logs of the roots. We do it to ensure that no other task
9009 * can sync the logs while we are in progress with the rename, because
9010 * that could result in an inconsistency in case any of the inodes that
9011 * are part of this rename operation were logged before.
9013 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9014 btrfs_pin_log_trans(root);
9015 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9016 btrfs_pin_log_trans(dest);
9018 /* Do the log updates for all inodes. */
9019 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9020 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9021 old_rename_ctx.index, new_dentry->d_parent);
9022 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9023 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9024 new_rename_ctx.index, old_dentry->d_parent);
9026 /* Now unpin the logs. */
9027 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9028 btrfs_end_log_trans(root);
9029 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9030 btrfs_end_log_trans(dest);
9032 ret2 = btrfs_end_transaction(trans);
9033 ret = ret ? ret : ret2;
9035 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9036 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9037 up_read(&fs_info->subvol_sem);
9039 fscrypt_free_filename(&new_fname);
9040 fscrypt_free_filename(&old_fname);
9044 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9047 struct inode *inode;
9049 inode = new_inode(dir->i_sb);
9051 inode_init_owner(idmap, inode, dir,
9052 S_IFCHR | WHITEOUT_MODE);
9053 inode->i_op = &btrfs_special_inode_operations;
9054 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9059 static int btrfs_rename(struct mnt_idmap *idmap,
9060 struct inode *old_dir, struct dentry *old_dentry,
9061 struct inode *new_dir, struct dentry *new_dentry,
9064 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9065 struct btrfs_new_inode_args whiteout_args = {
9067 .dentry = old_dentry,
9069 struct btrfs_trans_handle *trans;
9070 unsigned int trans_num_items;
9071 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9072 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9073 struct inode *new_inode = d_inode(new_dentry);
9074 struct inode *old_inode = d_inode(old_dentry);
9075 struct btrfs_rename_ctx rename_ctx;
9079 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9080 struct fscrypt_name old_fname, new_fname;
9082 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9085 /* we only allow rename subvolume link between subvolumes */
9086 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9089 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9090 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9093 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9094 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9097 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9101 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9103 fscrypt_free_filename(&old_fname);
9107 /* check for collisions, even if the name isn't there */
9108 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9110 if (ret == -EEXIST) {
9112 * eexist without a new_inode */
9113 if (WARN_ON(!new_inode)) {
9114 goto out_fscrypt_names;
9117 /* maybe -EOVERFLOW */
9118 goto out_fscrypt_names;
9124 * we're using rename to replace one file with another. Start IO on it
9125 * now so we don't add too much work to the end of the transaction
9127 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9128 filemap_flush(old_inode->i_mapping);
9130 if (flags & RENAME_WHITEOUT) {
9131 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9132 if (!whiteout_args.inode) {
9134 goto out_fscrypt_names;
9136 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9138 goto out_whiteout_inode;
9140 /* 1 to update the old parent inode. */
9141 trans_num_items = 1;
9144 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9145 /* Close the race window with snapshot create/destroy ioctl */
9146 down_read(&fs_info->subvol_sem);
9148 * 1 to remove old root ref
9149 * 1 to remove old root backref
9150 * 1 to add new root ref
9151 * 1 to add new root backref
9153 trans_num_items += 4;
9157 * 1 to remove old inode ref
9158 * 1 to add new inode ref
9160 trans_num_items += 3;
9163 * 1 to remove old dir item
9164 * 1 to remove old dir index
9165 * 1 to add new dir item
9166 * 1 to add new dir index
9168 trans_num_items += 4;
9169 /* 1 to update new parent inode if it's not the same as the old parent */
9170 if (new_dir != old_dir)
9175 * 1 to remove inode ref
9176 * 1 to remove dir item
9177 * 1 to remove dir index
9178 * 1 to possibly add orphan item
9180 trans_num_items += 5;
9182 trans = btrfs_start_transaction(root, trans_num_items);
9183 if (IS_ERR(trans)) {
9184 ret = PTR_ERR(trans);
9189 ret = btrfs_record_root_in_trans(trans, dest);
9194 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9198 BTRFS_I(old_inode)->dir_index = 0ULL;
9199 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9200 /* force full log commit if subvolume involved. */
9201 btrfs_set_log_full_commit(trans);
9203 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9204 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9210 inode_inc_iversion(old_dir);
9211 inode_inc_iversion(new_dir);
9212 inode_inc_iversion(old_inode);
9213 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9215 if (old_dentry->d_parent != new_dentry->d_parent)
9216 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9217 BTRFS_I(old_inode), true);
9219 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9220 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9222 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9223 BTRFS_I(d_inode(old_dentry)),
9224 &old_fname.disk_name, &rename_ctx);
9226 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9229 btrfs_abort_transaction(trans, ret);
9234 inode_inc_iversion(new_inode);
9235 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9236 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9237 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9238 BUG_ON(new_inode->i_nlink == 0);
9240 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9241 BTRFS_I(d_inode(new_dentry)),
9242 &new_fname.disk_name);
9244 if (!ret && new_inode->i_nlink == 0)
9245 ret = btrfs_orphan_add(trans,
9246 BTRFS_I(d_inode(new_dentry)));
9248 btrfs_abort_transaction(trans, ret);
9253 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9254 &new_fname.disk_name, 0, index);
9256 btrfs_abort_transaction(trans, ret);
9260 if (old_inode->i_nlink == 1)
9261 BTRFS_I(old_inode)->dir_index = index;
9263 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9264 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9265 rename_ctx.index, new_dentry->d_parent);
9267 if (flags & RENAME_WHITEOUT) {
9268 ret = btrfs_create_new_inode(trans, &whiteout_args);
9270 btrfs_abort_transaction(trans, ret);
9273 unlock_new_inode(whiteout_args.inode);
9274 iput(whiteout_args.inode);
9275 whiteout_args.inode = NULL;
9279 ret2 = btrfs_end_transaction(trans);
9280 ret = ret ? ret : ret2;
9282 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9283 up_read(&fs_info->subvol_sem);
9284 if (flags & RENAME_WHITEOUT)
9285 btrfs_new_inode_args_destroy(&whiteout_args);
9287 if (flags & RENAME_WHITEOUT)
9288 iput(whiteout_args.inode);
9290 fscrypt_free_filename(&old_fname);
9291 fscrypt_free_filename(&new_fname);
9295 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9296 struct dentry *old_dentry, struct inode *new_dir,
9297 struct dentry *new_dentry, unsigned int flags)
9301 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9304 if (flags & RENAME_EXCHANGE)
9305 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9308 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9311 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9316 struct btrfs_delalloc_work {
9317 struct inode *inode;
9318 struct completion completion;
9319 struct list_head list;
9320 struct btrfs_work work;
9323 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9325 struct btrfs_delalloc_work *delalloc_work;
9326 struct inode *inode;
9328 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9330 inode = delalloc_work->inode;
9331 filemap_flush(inode->i_mapping);
9332 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9333 &BTRFS_I(inode)->runtime_flags))
9334 filemap_flush(inode->i_mapping);
9337 complete(&delalloc_work->completion);
9340 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9342 struct btrfs_delalloc_work *work;
9344 work = kmalloc(sizeof(*work), GFP_NOFS);
9348 init_completion(&work->completion);
9349 INIT_LIST_HEAD(&work->list);
9350 work->inode = inode;
9351 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9357 * some fairly slow code that needs optimization. This walks the list
9358 * of all the inodes with pending delalloc and forces them to disk.
9360 static int start_delalloc_inodes(struct btrfs_root *root,
9361 struct writeback_control *wbc, bool snapshot,
9362 bool in_reclaim_context)
9364 struct btrfs_inode *binode;
9365 struct inode *inode;
9366 struct btrfs_delalloc_work *work, *next;
9367 struct list_head works;
9368 struct list_head splice;
9370 bool full_flush = wbc->nr_to_write == LONG_MAX;
9372 INIT_LIST_HEAD(&works);
9373 INIT_LIST_HEAD(&splice);
9375 mutex_lock(&root->delalloc_mutex);
9376 spin_lock(&root->delalloc_lock);
9377 list_splice_init(&root->delalloc_inodes, &splice);
9378 while (!list_empty(&splice)) {
9379 binode = list_entry(splice.next, struct btrfs_inode,
9382 list_move_tail(&binode->delalloc_inodes,
9383 &root->delalloc_inodes);
9385 if (in_reclaim_context &&
9386 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9389 inode = igrab(&binode->vfs_inode);
9391 cond_resched_lock(&root->delalloc_lock);
9394 spin_unlock(&root->delalloc_lock);
9397 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9398 &binode->runtime_flags);
9400 work = btrfs_alloc_delalloc_work(inode);
9406 list_add_tail(&work->list, &works);
9407 btrfs_queue_work(root->fs_info->flush_workers,
9410 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9411 btrfs_add_delayed_iput(BTRFS_I(inode));
9412 if (ret || wbc->nr_to_write <= 0)
9416 spin_lock(&root->delalloc_lock);
9418 spin_unlock(&root->delalloc_lock);
9421 list_for_each_entry_safe(work, next, &works, list) {
9422 list_del_init(&work->list);
9423 wait_for_completion(&work->completion);
9427 if (!list_empty(&splice)) {
9428 spin_lock(&root->delalloc_lock);
9429 list_splice_tail(&splice, &root->delalloc_inodes);
9430 spin_unlock(&root->delalloc_lock);
9432 mutex_unlock(&root->delalloc_mutex);
9436 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9438 struct writeback_control wbc = {
9439 .nr_to_write = LONG_MAX,
9440 .sync_mode = WB_SYNC_NONE,
9442 .range_end = LLONG_MAX,
9444 struct btrfs_fs_info *fs_info = root->fs_info;
9446 if (BTRFS_FS_ERROR(fs_info))
9449 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9452 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9453 bool in_reclaim_context)
9455 struct writeback_control wbc = {
9457 .sync_mode = WB_SYNC_NONE,
9459 .range_end = LLONG_MAX,
9461 struct btrfs_root *root;
9462 struct list_head splice;
9465 if (BTRFS_FS_ERROR(fs_info))
9468 INIT_LIST_HEAD(&splice);
9470 mutex_lock(&fs_info->delalloc_root_mutex);
9471 spin_lock(&fs_info->delalloc_root_lock);
9472 list_splice_init(&fs_info->delalloc_roots, &splice);
9473 while (!list_empty(&splice)) {
9475 * Reset nr_to_write here so we know that we're doing a full
9479 wbc.nr_to_write = LONG_MAX;
9481 root = list_first_entry(&splice, struct btrfs_root,
9483 root = btrfs_grab_root(root);
9485 list_move_tail(&root->delalloc_root,
9486 &fs_info->delalloc_roots);
9487 spin_unlock(&fs_info->delalloc_root_lock);
9489 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9490 btrfs_put_root(root);
9491 if (ret < 0 || wbc.nr_to_write <= 0)
9493 spin_lock(&fs_info->delalloc_root_lock);
9495 spin_unlock(&fs_info->delalloc_root_lock);
9499 if (!list_empty(&splice)) {
9500 spin_lock(&fs_info->delalloc_root_lock);
9501 list_splice_tail(&splice, &fs_info->delalloc_roots);
9502 spin_unlock(&fs_info->delalloc_root_lock);
9504 mutex_unlock(&fs_info->delalloc_root_mutex);
9508 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9509 struct dentry *dentry, const char *symname)
9511 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9512 struct btrfs_trans_handle *trans;
9513 struct btrfs_root *root = BTRFS_I(dir)->root;
9514 struct btrfs_path *path;
9515 struct btrfs_key key;
9516 struct inode *inode;
9517 struct btrfs_new_inode_args new_inode_args = {
9521 unsigned int trans_num_items;
9526 struct btrfs_file_extent_item *ei;
9527 struct extent_buffer *leaf;
9529 name_len = strlen(symname);
9530 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9531 return -ENAMETOOLONG;
9533 inode = new_inode(dir->i_sb);
9536 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9537 inode->i_op = &btrfs_symlink_inode_operations;
9538 inode_nohighmem(inode);
9539 inode->i_mapping->a_ops = &btrfs_aops;
9540 btrfs_i_size_write(BTRFS_I(inode), name_len);
9541 inode_set_bytes(inode, name_len);
9543 new_inode_args.inode = inode;
9544 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9547 /* 1 additional item for the inline extent */
9550 trans = btrfs_start_transaction(root, trans_num_items);
9551 if (IS_ERR(trans)) {
9552 err = PTR_ERR(trans);
9553 goto out_new_inode_args;
9556 err = btrfs_create_new_inode(trans, &new_inode_args);
9560 path = btrfs_alloc_path();
9563 btrfs_abort_transaction(trans, err);
9564 discard_new_inode(inode);
9568 key.objectid = btrfs_ino(BTRFS_I(inode));
9570 key.type = BTRFS_EXTENT_DATA_KEY;
9571 datasize = btrfs_file_extent_calc_inline_size(name_len);
9572 err = btrfs_insert_empty_item(trans, root, path, &key,
9575 btrfs_abort_transaction(trans, err);
9576 btrfs_free_path(path);
9577 discard_new_inode(inode);
9581 leaf = path->nodes[0];
9582 ei = btrfs_item_ptr(leaf, path->slots[0],
9583 struct btrfs_file_extent_item);
9584 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9585 btrfs_set_file_extent_type(leaf, ei,
9586 BTRFS_FILE_EXTENT_INLINE);
9587 btrfs_set_file_extent_encryption(leaf, ei, 0);
9588 btrfs_set_file_extent_compression(leaf, ei, 0);
9589 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9590 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9592 ptr = btrfs_file_extent_inline_start(ei);
9593 write_extent_buffer(leaf, symname, ptr, name_len);
9594 btrfs_mark_buffer_dirty(leaf);
9595 btrfs_free_path(path);
9597 d_instantiate_new(dentry, inode);
9600 btrfs_end_transaction(trans);
9601 btrfs_btree_balance_dirty(fs_info);
9603 btrfs_new_inode_args_destroy(&new_inode_args);
9610 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9611 struct btrfs_trans_handle *trans_in,
9612 struct btrfs_inode *inode,
9613 struct btrfs_key *ins,
9616 struct btrfs_file_extent_item stack_fi;
9617 struct btrfs_replace_extent_info extent_info;
9618 struct btrfs_trans_handle *trans = trans_in;
9619 struct btrfs_path *path;
9620 u64 start = ins->objectid;
9621 u64 len = ins->offset;
9622 int qgroup_released;
9625 memset(&stack_fi, 0, sizeof(stack_fi));
9627 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9628 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9629 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9630 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9631 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9632 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9633 /* Encryption and other encoding is reserved and all 0 */
9635 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9636 if (qgroup_released < 0)
9637 return ERR_PTR(qgroup_released);
9640 ret = insert_reserved_file_extent(trans, inode,
9641 file_offset, &stack_fi,
9642 true, qgroup_released);
9648 extent_info.disk_offset = start;
9649 extent_info.disk_len = len;
9650 extent_info.data_offset = 0;
9651 extent_info.data_len = len;
9652 extent_info.file_offset = file_offset;
9653 extent_info.extent_buf = (char *)&stack_fi;
9654 extent_info.is_new_extent = true;
9655 extent_info.update_times = true;
9656 extent_info.qgroup_reserved = qgroup_released;
9657 extent_info.insertions = 0;
9659 path = btrfs_alloc_path();
9665 ret = btrfs_replace_file_extents(inode, path, file_offset,
9666 file_offset + len - 1, &extent_info,
9668 btrfs_free_path(path);
9675 * We have released qgroup data range at the beginning of the function,
9676 * and normally qgroup_released bytes will be freed when committing
9678 * But if we error out early, we have to free what we have released
9679 * or we leak qgroup data reservation.
9681 btrfs_qgroup_free_refroot(inode->root->fs_info,
9682 inode->root->root_key.objectid, qgroup_released,
9683 BTRFS_QGROUP_RSV_DATA);
9684 return ERR_PTR(ret);
9687 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9688 u64 start, u64 num_bytes, u64 min_size,
9689 loff_t actual_len, u64 *alloc_hint,
9690 struct btrfs_trans_handle *trans)
9692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9693 struct extent_map *em;
9694 struct btrfs_root *root = BTRFS_I(inode)->root;
9695 struct btrfs_key ins;
9696 u64 cur_offset = start;
9697 u64 clear_offset = start;
9700 u64 last_alloc = (u64)-1;
9702 bool own_trans = true;
9703 u64 end = start + num_bytes - 1;
9707 while (num_bytes > 0) {
9708 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9709 cur_bytes = max(cur_bytes, min_size);
9711 * If we are severely fragmented we could end up with really
9712 * small allocations, so if the allocator is returning small
9713 * chunks lets make its job easier by only searching for those
9716 cur_bytes = min(cur_bytes, last_alloc);
9717 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9718 min_size, 0, *alloc_hint, &ins, 1, 0);
9723 * We've reserved this space, and thus converted it from
9724 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9725 * from here on out we will only need to clear our reservation
9726 * for the remaining unreserved area, so advance our
9727 * clear_offset by our extent size.
9729 clear_offset += ins.offset;
9731 last_alloc = ins.offset;
9732 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9735 * Now that we inserted the prealloc extent we can finally
9736 * decrement the number of reservations in the block group.
9737 * If we did it before, we could race with relocation and have
9738 * relocation miss the reserved extent, making it fail later.
9740 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9741 if (IS_ERR(trans)) {
9742 ret = PTR_ERR(trans);
9743 btrfs_free_reserved_extent(fs_info, ins.objectid,
9748 em = alloc_extent_map();
9750 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9751 cur_offset + ins.offset - 1, false);
9752 btrfs_set_inode_full_sync(BTRFS_I(inode));
9756 em->start = cur_offset;
9757 em->orig_start = cur_offset;
9758 em->len = ins.offset;
9759 em->block_start = ins.objectid;
9760 em->block_len = ins.offset;
9761 em->orig_block_len = ins.offset;
9762 em->ram_bytes = ins.offset;
9763 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9764 em->generation = trans->transid;
9766 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9767 free_extent_map(em);
9769 num_bytes -= ins.offset;
9770 cur_offset += ins.offset;
9771 *alloc_hint = ins.objectid + ins.offset;
9773 inode_inc_iversion(inode);
9774 inode_set_ctime_current(inode);
9775 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9776 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9777 (actual_len > inode->i_size) &&
9778 (cur_offset > inode->i_size)) {
9779 if (cur_offset > actual_len)
9780 i_size = actual_len;
9782 i_size = cur_offset;
9783 i_size_write(inode, i_size);
9784 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9787 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9790 btrfs_abort_transaction(trans, ret);
9792 btrfs_end_transaction(trans);
9797 btrfs_end_transaction(trans);
9801 if (clear_offset < end)
9802 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9803 end - clear_offset + 1);
9807 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9808 u64 start, u64 num_bytes, u64 min_size,
9809 loff_t actual_len, u64 *alloc_hint)
9811 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9812 min_size, actual_len, alloc_hint,
9816 int btrfs_prealloc_file_range_trans(struct inode *inode,
9817 struct btrfs_trans_handle *trans, int mode,
9818 u64 start, u64 num_bytes, u64 min_size,
9819 loff_t actual_len, u64 *alloc_hint)
9821 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9822 min_size, actual_len, alloc_hint, trans);
9825 static int btrfs_permission(struct mnt_idmap *idmap,
9826 struct inode *inode, int mask)
9828 struct btrfs_root *root = BTRFS_I(inode)->root;
9829 umode_t mode = inode->i_mode;
9831 if (mask & MAY_WRITE &&
9832 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9833 if (btrfs_root_readonly(root))
9835 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9838 return generic_permission(idmap, inode, mask);
9841 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9842 struct file *file, umode_t mode)
9844 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9845 struct btrfs_trans_handle *trans;
9846 struct btrfs_root *root = BTRFS_I(dir)->root;
9847 struct inode *inode;
9848 struct btrfs_new_inode_args new_inode_args = {
9850 .dentry = file->f_path.dentry,
9853 unsigned int trans_num_items;
9856 inode = new_inode(dir->i_sb);
9859 inode_init_owner(idmap, inode, dir, mode);
9860 inode->i_fop = &btrfs_file_operations;
9861 inode->i_op = &btrfs_file_inode_operations;
9862 inode->i_mapping->a_ops = &btrfs_aops;
9864 new_inode_args.inode = inode;
9865 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9869 trans = btrfs_start_transaction(root, trans_num_items);
9870 if (IS_ERR(trans)) {
9871 ret = PTR_ERR(trans);
9872 goto out_new_inode_args;
9875 ret = btrfs_create_new_inode(trans, &new_inode_args);
9878 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9879 * set it to 1 because d_tmpfile() will issue a warning if the count is
9882 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9884 set_nlink(inode, 1);
9887 d_tmpfile(file, inode);
9888 unlock_new_inode(inode);
9889 mark_inode_dirty(inode);
9892 btrfs_end_transaction(trans);
9893 btrfs_btree_balance_dirty(fs_info);
9895 btrfs_new_inode_args_destroy(&new_inode_args);
9899 return finish_open_simple(file, ret);
9902 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9904 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9905 unsigned long index = start >> PAGE_SHIFT;
9906 unsigned long end_index = end >> PAGE_SHIFT;
9910 ASSERT(end + 1 - start <= U32_MAX);
9911 len = end + 1 - start;
9912 while (index <= end_index) {
9913 page = find_get_page(inode->vfs_inode.i_mapping, index);
9914 ASSERT(page); /* Pages should be in the extent_io_tree */
9916 btrfs_page_set_writeback(fs_info, page, start, len);
9922 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9925 switch (compress_type) {
9926 case BTRFS_COMPRESS_NONE:
9927 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9928 case BTRFS_COMPRESS_ZLIB:
9929 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9930 case BTRFS_COMPRESS_LZO:
9932 * The LZO format depends on the sector size. 64K is the maximum
9933 * sector size that we support.
9935 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9937 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9938 (fs_info->sectorsize_bits - 12);
9939 case BTRFS_COMPRESS_ZSTD:
9940 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9946 static ssize_t btrfs_encoded_read_inline(
9948 struct iov_iter *iter, u64 start,
9950 struct extent_state **cached_state,
9951 u64 extent_start, size_t count,
9952 struct btrfs_ioctl_encoded_io_args *encoded,
9955 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9956 struct btrfs_root *root = inode->root;
9957 struct btrfs_fs_info *fs_info = root->fs_info;
9958 struct extent_io_tree *io_tree = &inode->io_tree;
9959 struct btrfs_path *path;
9960 struct extent_buffer *leaf;
9961 struct btrfs_file_extent_item *item;
9967 path = btrfs_alloc_path();
9972 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9976 /* The extent item disappeared? */
9981 leaf = path->nodes[0];
9982 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9984 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9985 ptr = btrfs_file_extent_inline_start(item);
9987 encoded->len = min_t(u64, extent_start + ram_bytes,
9988 inode->vfs_inode.i_size) - iocb->ki_pos;
9989 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9990 btrfs_file_extent_compression(leaf, item));
9993 encoded->compression = ret;
9994 if (encoded->compression) {
9997 inline_size = btrfs_file_extent_inline_item_len(leaf,
9999 if (inline_size > count) {
10003 count = inline_size;
10004 encoded->unencoded_len = ram_bytes;
10005 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10007 count = min_t(u64, count, encoded->len);
10008 encoded->len = count;
10009 encoded->unencoded_len = count;
10010 ptr += iocb->ki_pos - extent_start;
10013 tmp = kmalloc(count, GFP_NOFS);
10018 read_extent_buffer(leaf, tmp, ptr, count);
10019 btrfs_release_path(path);
10020 unlock_extent(io_tree, start, lockend, cached_state);
10021 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10024 ret = copy_to_iter(tmp, count, iter);
10029 btrfs_free_path(path);
10033 struct btrfs_encoded_read_private {
10034 wait_queue_head_t wait;
10036 blk_status_t status;
10039 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10041 struct btrfs_encoded_read_private *priv = bbio->private;
10043 if (bbio->bio.bi_status) {
10045 * The memory barrier implied by the atomic_dec_return() here
10046 * pairs with the memory barrier implied by the
10047 * atomic_dec_return() or io_wait_event() in
10048 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10049 * write is observed before the load of status in
10050 * btrfs_encoded_read_regular_fill_pages().
10052 WRITE_ONCE(priv->status, bbio->bio.bi_status);
10054 if (!atomic_dec_return(&priv->pending))
10055 wake_up(&priv->wait);
10056 bio_put(&bbio->bio);
10059 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10060 u64 file_offset, u64 disk_bytenr,
10061 u64 disk_io_size, struct page **pages)
10063 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10064 struct btrfs_encoded_read_private priv = {
10065 .pending = ATOMIC_INIT(1),
10067 unsigned long i = 0;
10068 struct btrfs_bio *bbio;
10070 init_waitqueue_head(&priv.wait);
10072 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10073 btrfs_encoded_read_endio, &priv);
10074 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10075 bbio->inode = inode;
10078 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10080 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10081 atomic_inc(&priv.pending);
10082 btrfs_submit_bio(bbio, 0);
10084 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10085 btrfs_encoded_read_endio, &priv);
10086 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10087 bbio->inode = inode;
10092 disk_bytenr += bytes;
10093 disk_io_size -= bytes;
10094 } while (disk_io_size);
10096 atomic_inc(&priv.pending);
10097 btrfs_submit_bio(bbio, 0);
10099 if (atomic_dec_return(&priv.pending))
10100 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10101 /* See btrfs_encoded_read_endio() for ordering. */
10102 return blk_status_to_errno(READ_ONCE(priv.status));
10105 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10106 struct iov_iter *iter,
10107 u64 start, u64 lockend,
10108 struct extent_state **cached_state,
10109 u64 disk_bytenr, u64 disk_io_size,
10110 size_t count, bool compressed,
10113 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10114 struct extent_io_tree *io_tree = &inode->io_tree;
10115 struct page **pages;
10116 unsigned long nr_pages, i;
10118 size_t page_offset;
10121 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10122 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10125 ret = btrfs_alloc_page_array(nr_pages, pages);
10131 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10132 disk_io_size, pages);
10136 unlock_extent(io_tree, start, lockend, cached_state);
10137 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10144 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10145 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10148 while (cur < count) {
10149 size_t bytes = min_t(size_t, count - cur,
10150 PAGE_SIZE - page_offset);
10152 if (copy_page_to_iter(pages[i], page_offset, bytes,
10163 for (i = 0; i < nr_pages; i++) {
10165 __free_page(pages[i]);
10171 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10172 struct btrfs_ioctl_encoded_io_args *encoded)
10174 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10175 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10176 struct extent_io_tree *io_tree = &inode->io_tree;
10178 size_t count = iov_iter_count(iter);
10179 u64 start, lockend, disk_bytenr, disk_io_size;
10180 struct extent_state *cached_state = NULL;
10181 struct extent_map *em;
10182 bool unlocked = false;
10184 file_accessed(iocb->ki_filp);
10186 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10188 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10189 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10192 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10194 * We don't know how long the extent containing iocb->ki_pos is, but if
10195 * it's compressed we know that it won't be longer than this.
10197 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10200 struct btrfs_ordered_extent *ordered;
10202 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10203 lockend - start + 1);
10205 goto out_unlock_inode;
10206 lock_extent(io_tree, start, lockend, &cached_state);
10207 ordered = btrfs_lookup_ordered_range(inode, start,
10208 lockend - start + 1);
10211 btrfs_put_ordered_extent(ordered);
10212 unlock_extent(io_tree, start, lockend, &cached_state);
10216 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10219 goto out_unlock_extent;
10222 if (em->block_start == EXTENT_MAP_INLINE) {
10223 u64 extent_start = em->start;
10226 * For inline extents we get everything we need out of the
10229 free_extent_map(em);
10231 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10232 &cached_state, extent_start,
10233 count, encoded, &unlocked);
10238 * We only want to return up to EOF even if the extent extends beyond
10241 encoded->len = min_t(u64, extent_map_end(em),
10242 inode->vfs_inode.i_size) - iocb->ki_pos;
10243 if (em->block_start == EXTENT_MAP_HOLE ||
10244 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10245 disk_bytenr = EXTENT_MAP_HOLE;
10246 count = min_t(u64, count, encoded->len);
10247 encoded->len = count;
10248 encoded->unencoded_len = count;
10249 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10250 disk_bytenr = em->block_start;
10252 * Bail if the buffer isn't large enough to return the whole
10253 * compressed extent.
10255 if (em->block_len > count) {
10259 disk_io_size = em->block_len;
10260 count = em->block_len;
10261 encoded->unencoded_len = em->ram_bytes;
10262 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10263 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10264 em->compress_type);
10267 encoded->compression = ret;
10269 disk_bytenr = em->block_start + (start - em->start);
10270 if (encoded->len > count)
10271 encoded->len = count;
10273 * Don't read beyond what we locked. This also limits the page
10274 * allocations that we'll do.
10276 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10277 count = start + disk_io_size - iocb->ki_pos;
10278 encoded->len = count;
10279 encoded->unencoded_len = count;
10280 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10282 free_extent_map(em);
10285 if (disk_bytenr == EXTENT_MAP_HOLE) {
10286 unlock_extent(io_tree, start, lockend, &cached_state);
10287 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10289 ret = iov_iter_zero(count, iter);
10293 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10294 &cached_state, disk_bytenr,
10295 disk_io_size, count,
10296 encoded->compression,
10302 iocb->ki_pos += encoded->len;
10304 free_extent_map(em);
10307 unlock_extent(io_tree, start, lockend, &cached_state);
10310 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10314 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10315 const struct btrfs_ioctl_encoded_io_args *encoded)
10317 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10318 struct btrfs_root *root = inode->root;
10319 struct btrfs_fs_info *fs_info = root->fs_info;
10320 struct extent_io_tree *io_tree = &inode->io_tree;
10321 struct extent_changeset *data_reserved = NULL;
10322 struct extent_state *cached_state = NULL;
10323 struct btrfs_ordered_extent *ordered;
10327 u64 num_bytes, ram_bytes, disk_num_bytes;
10328 unsigned long nr_pages, i;
10329 struct page **pages;
10330 struct btrfs_key ins;
10331 bool extent_reserved = false;
10332 struct extent_map *em;
10335 switch (encoded->compression) {
10336 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10337 compression = BTRFS_COMPRESS_ZLIB;
10339 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10340 compression = BTRFS_COMPRESS_ZSTD;
10342 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10343 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10344 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10345 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10346 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10347 /* The sector size must match for LZO. */
10348 if (encoded->compression -
10349 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10350 fs_info->sectorsize_bits)
10352 compression = BTRFS_COMPRESS_LZO;
10357 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10360 orig_count = iov_iter_count(from);
10362 /* The extent size must be sane. */
10363 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10364 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10368 * The compressed data must be smaller than the decompressed data.
10370 * It's of course possible for data to compress to larger or the same
10371 * size, but the buffered I/O path falls back to no compression for such
10372 * data, and we don't want to break any assumptions by creating these
10375 * Note that this is less strict than the current check we have that the
10376 * compressed data must be at least one sector smaller than the
10377 * decompressed data. We only want to enforce the weaker requirement
10378 * from old kernels that it is at least one byte smaller.
10380 if (orig_count >= encoded->unencoded_len)
10383 /* The extent must start on a sector boundary. */
10384 start = iocb->ki_pos;
10385 if (!IS_ALIGNED(start, fs_info->sectorsize))
10389 * The extent must end on a sector boundary. However, we allow a write
10390 * which ends at or extends i_size to have an unaligned length; we round
10391 * up the extent size and set i_size to the unaligned end.
10393 if (start + encoded->len < inode->vfs_inode.i_size &&
10394 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10397 /* Finally, the offset in the unencoded data must be sector-aligned. */
10398 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10401 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10402 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10403 end = start + num_bytes - 1;
10406 * If the extent cannot be inline, the compressed data on disk must be
10407 * sector-aligned. For convenience, we extend it with zeroes if it
10410 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10411 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10412 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10415 for (i = 0; i < nr_pages; i++) {
10416 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10419 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10424 kaddr = kmap_local_page(pages[i]);
10425 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10426 kunmap_local(kaddr);
10430 if (bytes < PAGE_SIZE)
10431 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10432 kunmap_local(kaddr);
10436 struct btrfs_ordered_extent *ordered;
10438 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10441 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10442 start >> PAGE_SHIFT,
10443 end >> PAGE_SHIFT);
10446 lock_extent(io_tree, start, end, &cached_state);
10447 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10449 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10452 btrfs_put_ordered_extent(ordered);
10453 unlock_extent(io_tree, start, end, &cached_state);
10458 * We don't use the higher-level delalloc space functions because our
10459 * num_bytes and disk_num_bytes are different.
10461 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10464 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10466 goto out_free_data_space;
10467 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10470 goto out_qgroup_free_data;
10472 /* Try an inline extent first. */
10473 if (start == 0 && encoded->unencoded_len == encoded->len &&
10474 encoded->unencoded_offset == 0) {
10475 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10476 compression, pages, true);
10480 goto out_delalloc_release;
10484 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10485 disk_num_bytes, 0, 0, &ins, 1, 1);
10487 goto out_delalloc_release;
10488 extent_reserved = true;
10490 em = create_io_em(inode, start, num_bytes,
10491 start - encoded->unencoded_offset, ins.objectid,
10492 ins.offset, ins.offset, ram_bytes, compression,
10493 BTRFS_ORDERED_COMPRESSED);
10496 goto out_free_reserved;
10498 free_extent_map(em);
10500 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10501 ins.objectid, ins.offset,
10502 encoded->unencoded_offset,
10503 (1 << BTRFS_ORDERED_ENCODED) |
10504 (1 << BTRFS_ORDERED_COMPRESSED),
10506 if (IS_ERR(ordered)) {
10507 btrfs_drop_extent_map_range(inode, start, end, false);
10508 ret = PTR_ERR(ordered);
10509 goto out_free_reserved;
10511 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10513 if (start + encoded->len > inode->vfs_inode.i_size)
10514 i_size_write(&inode->vfs_inode, start + encoded->len);
10516 unlock_extent(io_tree, start, end, &cached_state);
10518 btrfs_delalloc_release_extents(inode, num_bytes);
10520 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10525 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10526 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10527 out_delalloc_release:
10528 btrfs_delalloc_release_extents(inode, num_bytes);
10529 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10530 out_qgroup_free_data:
10532 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10533 out_free_data_space:
10535 * If btrfs_reserve_extent() succeeded, then we already decremented
10538 if (!extent_reserved)
10539 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10541 unlock_extent(io_tree, start, end, &cached_state);
10543 for (i = 0; i < nr_pages; i++) {
10545 __free_page(pages[i]);
10550 iocb->ki_pos += encoded->len;
10556 * Add an entry indicating a block group or device which is pinned by a
10557 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10558 * negative errno on failure.
10560 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10561 bool is_block_group)
10563 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10564 struct btrfs_swapfile_pin *sp, *entry;
10565 struct rb_node **p;
10566 struct rb_node *parent = NULL;
10568 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10573 sp->is_block_group = is_block_group;
10574 sp->bg_extent_count = 1;
10576 spin_lock(&fs_info->swapfile_pins_lock);
10577 p = &fs_info->swapfile_pins.rb_node;
10580 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10581 if (sp->ptr < entry->ptr ||
10582 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10583 p = &(*p)->rb_left;
10584 } else if (sp->ptr > entry->ptr ||
10585 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10586 p = &(*p)->rb_right;
10588 if (is_block_group)
10589 entry->bg_extent_count++;
10590 spin_unlock(&fs_info->swapfile_pins_lock);
10595 rb_link_node(&sp->node, parent, p);
10596 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10597 spin_unlock(&fs_info->swapfile_pins_lock);
10601 /* Free all of the entries pinned by this swapfile. */
10602 static void btrfs_free_swapfile_pins(struct inode *inode)
10604 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10605 struct btrfs_swapfile_pin *sp;
10606 struct rb_node *node, *next;
10608 spin_lock(&fs_info->swapfile_pins_lock);
10609 node = rb_first(&fs_info->swapfile_pins);
10611 next = rb_next(node);
10612 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10613 if (sp->inode == inode) {
10614 rb_erase(&sp->node, &fs_info->swapfile_pins);
10615 if (sp->is_block_group) {
10616 btrfs_dec_block_group_swap_extents(sp->ptr,
10617 sp->bg_extent_count);
10618 btrfs_put_block_group(sp->ptr);
10624 spin_unlock(&fs_info->swapfile_pins_lock);
10627 struct btrfs_swap_info {
10633 unsigned long nr_pages;
10637 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10638 struct btrfs_swap_info *bsi)
10640 unsigned long nr_pages;
10641 unsigned long max_pages;
10642 u64 first_ppage, first_ppage_reported, next_ppage;
10646 * Our swapfile may have had its size extended after the swap header was
10647 * written. In that case activating the swapfile should not go beyond
10648 * the max size set in the swap header.
10650 if (bsi->nr_pages >= sis->max)
10653 max_pages = sis->max - bsi->nr_pages;
10654 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10655 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10657 if (first_ppage >= next_ppage)
10659 nr_pages = next_ppage - first_ppage;
10660 nr_pages = min(nr_pages, max_pages);
10662 first_ppage_reported = first_ppage;
10663 if (bsi->start == 0)
10664 first_ppage_reported++;
10665 if (bsi->lowest_ppage > first_ppage_reported)
10666 bsi->lowest_ppage = first_ppage_reported;
10667 if (bsi->highest_ppage < (next_ppage - 1))
10668 bsi->highest_ppage = next_ppage - 1;
10670 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10673 bsi->nr_extents += ret;
10674 bsi->nr_pages += nr_pages;
10678 static void btrfs_swap_deactivate(struct file *file)
10680 struct inode *inode = file_inode(file);
10682 btrfs_free_swapfile_pins(inode);
10683 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10686 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10689 struct inode *inode = file_inode(file);
10690 struct btrfs_root *root = BTRFS_I(inode)->root;
10691 struct btrfs_fs_info *fs_info = root->fs_info;
10692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10693 struct extent_state *cached_state = NULL;
10694 struct extent_map *em = NULL;
10695 struct btrfs_device *device = NULL;
10696 struct btrfs_swap_info bsi = {
10697 .lowest_ppage = (sector_t)-1ULL,
10704 * If the swap file was just created, make sure delalloc is done. If the
10705 * file changes again after this, the user is doing something stupid and
10706 * we don't really care.
10708 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10713 * The inode is locked, so these flags won't change after we check them.
10715 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10716 btrfs_warn(fs_info, "swapfile must not be compressed");
10719 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10720 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10723 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10724 btrfs_warn(fs_info, "swapfile must not be checksummed");
10729 * Balance or device remove/replace/resize can move stuff around from
10730 * under us. The exclop protection makes sure they aren't running/won't
10731 * run concurrently while we are mapping the swap extents, and
10732 * fs_info->swapfile_pins prevents them from running while the swap
10733 * file is active and moving the extents. Note that this also prevents
10734 * a concurrent device add which isn't actually necessary, but it's not
10735 * really worth the trouble to allow it.
10737 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10738 btrfs_warn(fs_info,
10739 "cannot activate swapfile while exclusive operation is running");
10744 * Prevent snapshot creation while we are activating the swap file.
10745 * We do not want to race with snapshot creation. If snapshot creation
10746 * already started before we bumped nr_swapfiles from 0 to 1 and
10747 * completes before the first write into the swap file after it is
10748 * activated, than that write would fallback to COW.
10750 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10751 btrfs_exclop_finish(fs_info);
10752 btrfs_warn(fs_info,
10753 "cannot activate swapfile because snapshot creation is in progress");
10757 * Snapshots can create extents which require COW even if NODATACOW is
10758 * set. We use this counter to prevent snapshots. We must increment it
10759 * before walking the extents because we don't want a concurrent
10760 * snapshot to run after we've already checked the extents.
10762 * It is possible that subvolume is marked for deletion but still not
10763 * removed yet. To prevent this race, we check the root status before
10764 * activating the swapfile.
10766 spin_lock(&root->root_item_lock);
10767 if (btrfs_root_dead(root)) {
10768 spin_unlock(&root->root_item_lock);
10770 btrfs_exclop_finish(fs_info);
10771 btrfs_warn(fs_info,
10772 "cannot activate swapfile because subvolume %llu is being deleted",
10773 root->root_key.objectid);
10776 atomic_inc(&root->nr_swapfiles);
10777 spin_unlock(&root->root_item_lock);
10779 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10781 lock_extent(io_tree, 0, isize - 1, &cached_state);
10783 while (start < isize) {
10784 u64 logical_block_start, physical_block_start;
10785 struct btrfs_block_group *bg;
10786 u64 len = isize - start;
10788 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10794 if (em->block_start == EXTENT_MAP_HOLE) {
10795 btrfs_warn(fs_info, "swapfile must not have holes");
10799 if (em->block_start == EXTENT_MAP_INLINE) {
10801 * It's unlikely we'll ever actually find ourselves
10802 * here, as a file small enough to fit inline won't be
10803 * big enough to store more than the swap header, but in
10804 * case something changes in the future, let's catch it
10805 * here rather than later.
10807 btrfs_warn(fs_info, "swapfile must not be inline");
10811 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10812 btrfs_warn(fs_info, "swapfile must not be compressed");
10817 logical_block_start = em->block_start + (start - em->start);
10818 len = min(len, em->len - (start - em->start));
10819 free_extent_map(em);
10822 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10828 btrfs_warn(fs_info,
10829 "swapfile must not be copy-on-write");
10834 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10840 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10841 btrfs_warn(fs_info,
10842 "swapfile must have single data profile");
10847 if (device == NULL) {
10848 device = em->map_lookup->stripes[0].dev;
10849 ret = btrfs_add_swapfile_pin(inode, device, false);
10854 } else if (device != em->map_lookup->stripes[0].dev) {
10855 btrfs_warn(fs_info, "swapfile must be on one device");
10860 physical_block_start = (em->map_lookup->stripes[0].physical +
10861 (logical_block_start - em->start));
10862 len = min(len, em->len - (logical_block_start - em->start));
10863 free_extent_map(em);
10866 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10868 btrfs_warn(fs_info,
10869 "could not find block group containing swapfile");
10874 if (!btrfs_inc_block_group_swap_extents(bg)) {
10875 btrfs_warn(fs_info,
10876 "block group for swapfile at %llu is read-only%s",
10878 atomic_read(&fs_info->scrubs_running) ?
10879 " (scrub running)" : "");
10880 btrfs_put_block_group(bg);
10885 ret = btrfs_add_swapfile_pin(inode, bg, true);
10887 btrfs_put_block_group(bg);
10894 if (bsi.block_len &&
10895 bsi.block_start + bsi.block_len == physical_block_start) {
10896 bsi.block_len += len;
10898 if (bsi.block_len) {
10899 ret = btrfs_add_swap_extent(sis, &bsi);
10904 bsi.block_start = physical_block_start;
10905 bsi.block_len = len;
10912 ret = btrfs_add_swap_extent(sis, &bsi);
10915 if (!IS_ERR_OR_NULL(em))
10916 free_extent_map(em);
10918 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10921 btrfs_swap_deactivate(file);
10923 btrfs_drew_write_unlock(&root->snapshot_lock);
10925 btrfs_exclop_finish(fs_info);
10931 sis->bdev = device->bdev;
10932 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10933 sis->max = bsi.nr_pages;
10934 sis->pages = bsi.nr_pages - 1;
10935 sis->highest_bit = bsi.nr_pages - 1;
10936 return bsi.nr_extents;
10939 static void btrfs_swap_deactivate(struct file *file)
10943 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10946 return -EOPNOTSUPP;
10951 * Update the number of bytes used in the VFS' inode. When we replace extents in
10952 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10953 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10954 * always get a correct value.
10956 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10957 const u64 add_bytes,
10958 const u64 del_bytes)
10960 if (add_bytes == del_bytes)
10963 spin_lock(&inode->lock);
10965 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10967 inode_add_bytes(&inode->vfs_inode, add_bytes);
10968 spin_unlock(&inode->lock);
10972 * Verify that there are no ordered extents for a given file range.
10974 * @inode: The target inode.
10975 * @start: Start offset of the file range, should be sector size aligned.
10976 * @end: End offset (inclusive) of the file range, its value +1 should be
10977 * sector size aligned.
10979 * This should typically be used for cases where we locked an inode's VFS lock in
10980 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10981 * we have flushed all delalloc in the range, we have waited for all ordered
10982 * extents in the range to complete and finally we have locked the file range in
10983 * the inode's io_tree.
10985 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10987 struct btrfs_root *root = inode->root;
10988 struct btrfs_ordered_extent *ordered;
10990 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10993 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10995 btrfs_err(root->fs_info,
10996 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10997 start, end, btrfs_ino(inode), root->root_key.objectid,
10998 ordered->file_offset,
10999 ordered->file_offset + ordered->num_bytes - 1);
11000 btrfs_put_ordered_extent(ordered);
11003 ASSERT(ordered == NULL);
11006 static const struct inode_operations btrfs_dir_inode_operations = {
11007 .getattr = btrfs_getattr,
11008 .lookup = btrfs_lookup,
11009 .create = btrfs_create,
11010 .unlink = btrfs_unlink,
11011 .link = btrfs_link,
11012 .mkdir = btrfs_mkdir,
11013 .rmdir = btrfs_rmdir,
11014 .rename = btrfs_rename2,
11015 .symlink = btrfs_symlink,
11016 .setattr = btrfs_setattr,
11017 .mknod = btrfs_mknod,
11018 .listxattr = btrfs_listxattr,
11019 .permission = btrfs_permission,
11020 .get_inode_acl = btrfs_get_acl,
11021 .set_acl = btrfs_set_acl,
11022 .update_time = btrfs_update_time,
11023 .tmpfile = btrfs_tmpfile,
11024 .fileattr_get = btrfs_fileattr_get,
11025 .fileattr_set = btrfs_fileattr_set,
11028 static const struct file_operations btrfs_dir_file_operations = {
11029 .llseek = generic_file_llseek,
11030 .read = generic_read_dir,
11031 .iterate_shared = btrfs_real_readdir,
11032 .open = btrfs_opendir,
11033 .unlocked_ioctl = btrfs_ioctl,
11034 #ifdef CONFIG_COMPAT
11035 .compat_ioctl = btrfs_compat_ioctl,
11037 .release = btrfs_release_file,
11038 .fsync = btrfs_sync_file,
11042 * btrfs doesn't support the bmap operation because swapfiles
11043 * use bmap to make a mapping of extents in the file. They assume
11044 * these extents won't change over the life of the file and they
11045 * use the bmap result to do IO directly to the drive.
11047 * the btrfs bmap call would return logical addresses that aren't
11048 * suitable for IO and they also will change frequently as COW
11049 * operations happen. So, swapfile + btrfs == corruption.
11051 * For now we're avoiding this by dropping bmap.
11053 static const struct address_space_operations btrfs_aops = {
11054 .read_folio = btrfs_read_folio,
11055 .writepages = btrfs_writepages,
11056 .readahead = btrfs_readahead,
11057 .invalidate_folio = btrfs_invalidate_folio,
11058 .release_folio = btrfs_release_folio,
11059 .migrate_folio = btrfs_migrate_folio,
11060 .dirty_folio = filemap_dirty_folio,
11061 .error_remove_page = generic_error_remove_page,
11062 .swap_activate = btrfs_swap_activate,
11063 .swap_deactivate = btrfs_swap_deactivate,
11066 static const struct inode_operations btrfs_file_inode_operations = {
11067 .getattr = btrfs_getattr,
11068 .setattr = btrfs_setattr,
11069 .listxattr = btrfs_listxattr,
11070 .permission = btrfs_permission,
11071 .fiemap = btrfs_fiemap,
11072 .get_inode_acl = btrfs_get_acl,
11073 .set_acl = btrfs_set_acl,
11074 .update_time = btrfs_update_time,
11075 .fileattr_get = btrfs_fileattr_get,
11076 .fileattr_set = btrfs_fileattr_set,
11078 static const struct inode_operations btrfs_special_inode_operations = {
11079 .getattr = btrfs_getattr,
11080 .setattr = btrfs_setattr,
11081 .permission = btrfs_permission,
11082 .listxattr = btrfs_listxattr,
11083 .get_inode_acl = btrfs_get_acl,
11084 .set_acl = btrfs_set_acl,
11085 .update_time = btrfs_update_time,
11087 static const struct inode_operations btrfs_symlink_inode_operations = {
11088 .get_link = page_get_link,
11089 .getattr = btrfs_getattr,
11090 .setattr = btrfs_setattr,
11091 .permission = btrfs_permission,
11092 .listxattr = btrfs_listxattr,
11093 .update_time = btrfs_update_time,
11096 const struct dentry_operations btrfs_dentry_operations = {
11097 .d_delete = btrfs_dentry_delete,