1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
35 * The support of additional filter rules compares (>, <, >=, <=) was
39 * filesystem information.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
91 /* number of audit rules */
94 /* determines whether we collect data for signals sent */
97 struct audit_aux_data {
98 struct audit_aux_data *next;
102 #define AUDIT_AUX_IPCPERM 0
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS 16
107 struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
110 kuid_t target_auid[AUDIT_AUX_PIDS];
111 kuid_t target_uid[AUDIT_AUX_PIDS];
112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
113 u32 target_sid[AUDIT_AUX_PIDS];
114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
118 struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
126 struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
131 static int audit_match_perm(struct audit_context *ctx, int mask)
138 switch (audit_classify_syscall(ctx->arch, n)) {
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
162 return mask & ACC_MODE(ctx->argv[1]);
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 return mask & AUDIT_PERM_EXEC;
174 static int audit_match_filetype(struct audit_context *ctx, int val)
176 struct audit_names *n;
177 umode_t mode = (umode_t)val;
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context *ctx)
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
225 ctx->tree_count = 30;
231 static int grow_tree_refs(struct audit_context *ctx)
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
240 p->next = ctx->trees;
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
251 #ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
255 /* we started with empty chain */
256 p = ctx->first_trees;
258 /* if the very first allocation has failed, nothing to do */
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 audit_put_chunk(q->c[n]);
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
274 ctx->tree_count = count;
278 static void free_tree_refs(struct audit_context *ctx)
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289 #ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
310 static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
315 struct audit_names *n;
319 rc = audit_uid_comparator(uid, f->op, name->uid);
325 list_for_each_entry(n, &ctx->names_list, list) {
326 rc = audit_uid_comparator(uid, f->op, n->uid);
334 static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
339 struct audit_names *n;
343 rc = audit_gid_comparator(gid, f->op, name->gid);
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
358 static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 return audit_compare_uid(cred->uid, name, f, ctx);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 return audit_compare_gid(cred->gid, name, f, ctx);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 return audit_compare_uid(cred->euid, name, f, ctx);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 return audit_compare_gid(cred->egid, name, f, ctx);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->suid, name, f, ctx);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->sgid, name, f, ctx);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 return audit_compare_uid(cred->fsuid, name, f, ctx);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 return audit_compare_gid(cred->fsgid, name, f, ctx);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 case AUDIT_COMPARE_UID_TO_EUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 case AUDIT_COMPARE_UID_TO_SUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 case AUDIT_COMPARE_UID_TO_FSUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 case AUDIT_COMPARE_AUID_TO_SUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 case AUDIT_COMPARE_AUID_TO_FSUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
445 const struct cred *cred;
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451 for (i = 0; i < rule->field_count; i++) {
452 struct audit_field *f = &rule->fields[i];
453 struct audit_names *n;
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
465 ctx->ppid = task_ppid_nr(tsk);
466 result = audit_comparator(ctx->ppid, f->op, f->val);
470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 if (f->op == Audit_equal) {
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
488 result = !in_group_p(f->gid);
492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 if (f->op == Audit_equal) {
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
498 result = !in_egroup_p(f->gid);
502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
508 result = audit_comparator(tsk->personality, f->op, f->val);
512 result = audit_comparator(ctx->arch, f->op, f->val);
516 if (ctx && ctx->return_valid)
517 result = audit_comparator(ctx->return_code, f->op, f->val);
520 if (ctx && ctx->return_valid) {
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
533 list_for_each_entry(n, &ctx->names_list, list) {
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
548 list_for_each_entry(n, &ctx->names_list, list) {
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
559 result = audit_comparator(name->ino, f->op, f->val);
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
571 result = audit_uid_comparator(name->uid, f->op, f->uid);
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
583 result = audit_gid_comparator(name->gid, f->op, f->gid);
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
599 result = match_tree_refs(ctx, rule->tree);
604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
621 security_task_getsecid(tsk, &sid);
624 result = security_audit_rule_match(sid, f->type,
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
638 /* Find files that match */
640 result = security_audit_rule_match(
641 name->osid, f->type, f->op,
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
653 /* Find ipc objects that match */
654 if (!ctx || ctx->type != AUDIT_IPC)
656 if (security_audit_rule_match(ctx->ipc.osid,
667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
674 result = audit_match_perm(ctx, f->val);
677 result = audit_match_filetype(ctx, f->val);
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
688 if (rule->prio <= ctx->prio)
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
694 ctx->prio = rule->prio;
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
703 /* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
709 struct audit_entry *e;
710 enum audit_state state;
713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
723 return AUDIT_BUILD_CONTEXT;
726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
730 if (val > 0xffffffff)
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
737 bit = AUDIT_BIT(val);
739 return rule->mask[word] & bit;
742 /* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
747 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
751 struct audit_entry *e;
752 enum audit_state state;
754 if (audit_pid && tsk->tgid == audit_pid)
755 return AUDIT_DISABLED;
758 if (!list_empty(list)) {
759 list_for_each_entry_rcu(e, list, list) {
760 if (audit_in_mask(&e->rule, ctx->major) &&
761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
764 ctx->current_state = state;
770 return AUDIT_BUILD_CONTEXT;
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
777 static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
785 if (list_empty(list))
788 list_for_each_entry_rcu(e, list, list) {
789 if (audit_in_mask(&e->rule, ctx->major) &&
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
799 /* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing. We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
806 struct audit_names *n;
808 if (audit_pid && tsk->tgid == audit_pid)
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
825 struct audit_context *context = tsk->audit_context;
829 context->return_valid = return_valid;
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
840 * but is faster than a bunch of ||
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
847 context->return_code = return_code;
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
854 tsk->audit_context = NULL;
858 static inline void audit_proctitle_free(struct audit_context *context)
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
865 static inline void audit_free_names(struct audit_context *context)
867 struct audit_names *n, *next;
870 if (context->put_count + context->ino_count != context->name_count) {
873 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
874 " name_count=%d put_count=%d ino_count=%d"
875 " [NOT freeing]\n", __FILE__, __LINE__,
876 context->serial, context->major, context->in_syscall,
877 context->name_count, context->put_count,
879 list_for_each_entry(n, &context->names_list, list) {
880 pr_err("names[%d] = %p = %s\n", i++, n->name,
881 n->name->name ?: "(null)");
888 context->put_count = 0;
889 context->ino_count = 0;
892 list_for_each_entry_safe(n, next, &context->names_list, list) {
894 if (n->name && n->name_put)
895 final_putname(n->name);
899 context->name_count = 0;
900 path_put(&context->pwd);
901 context->pwd.dentry = NULL;
902 context->pwd.mnt = NULL;
905 static inline void audit_free_aux(struct audit_context *context)
907 struct audit_aux_data *aux;
909 while ((aux = context->aux)) {
910 context->aux = aux->next;
913 while ((aux = context->aux_pids)) {
914 context->aux_pids = aux->next;
919 static inline struct audit_context *audit_alloc_context(enum audit_state state)
921 struct audit_context *context;
923 context = kzalloc(sizeof(*context), GFP_KERNEL);
926 context->state = state;
927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
928 INIT_LIST_HEAD(&context->killed_trees);
929 INIT_LIST_HEAD(&context->names_list);
934 * audit_alloc - allocate an audit context block for a task
937 * Filter on the task information and allocate a per-task audit context
938 * if necessary. Doing so turns on system call auditing for the
939 * specified task. This is called from copy_process, so no lock is
942 int audit_alloc(struct task_struct *tsk)
944 struct audit_context *context;
945 enum audit_state state;
948 if (likely(!audit_ever_enabled))
949 return 0; /* Return if not auditing. */
951 state = audit_filter_task(tsk, &key);
952 if (state == AUDIT_DISABLED) {
953 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
957 if (!(context = audit_alloc_context(state))) {
959 audit_log_lost("out of memory in audit_alloc");
962 context->filterkey = key;
964 tsk->audit_context = context;
965 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
969 static inline void audit_free_context(struct audit_context *context)
971 audit_free_names(context);
972 unroll_tree_refs(context, NULL, 0);
973 free_tree_refs(context);
974 audit_free_aux(context);
975 kfree(context->filterkey);
976 kfree(context->sockaddr);
977 audit_proctitle_free(context);
981 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
982 kuid_t auid, kuid_t uid, unsigned int sessionid,
985 struct audit_buffer *ab;
990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
995 from_kuid(&init_user_ns, auid),
996 from_kuid(&init_user_ns, uid), sessionid);
998 if (security_secid_to_secctx(sid, &ctx, &len)) {
999 audit_log_format(ab, " obj=(none)");
1002 audit_log_format(ab, " obj=%s", ctx);
1003 security_release_secctx(ctx, len);
1006 audit_log_format(ab, " ocomm=");
1007 audit_log_untrustedstring(ab, comm);
1014 * to_send and len_sent accounting are very loose estimates. We aren't
1015 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1016 * within about 500 bytes (next page boundary)
1018 * why snprintf? an int is up to 12 digits long. if we just assumed when
1019 * logging that a[%d]= was going to be 16 characters long we would be wasting
1020 * space in every audit message. In one 7500 byte message we can log up to
1021 * about 1000 min size arguments. That comes down to about 50% waste of space
1022 * if we didn't do the snprintf to find out how long arg_num_len was.
1024 static int audit_log_single_execve_arg(struct audit_context *context,
1025 struct audit_buffer **ab,
1028 const char __user *p,
1031 char arg_num_len_buf[12];
1032 const char __user *tmp_p = p;
1033 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1034 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1035 size_t len, len_left, to_send;
1036 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1037 unsigned int i, has_cntl = 0, too_long = 0;
1040 /* strnlen_user includes the null we don't want to send */
1041 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1044 * We just created this mm, if we can't find the strings
1045 * we just copied into it something is _very_ wrong. Similar
1046 * for strings that are too long, we should not have created
1049 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1051 send_sig(SIGKILL, current, 0);
1055 /* walk the whole argument looking for non-ascii chars */
1057 if (len_left > MAX_EXECVE_AUDIT_LEN)
1058 to_send = MAX_EXECVE_AUDIT_LEN;
1061 ret = copy_from_user(buf, tmp_p, to_send);
1063 * There is no reason for this copy to be short. We just
1064 * copied them here, and the mm hasn't been exposed to user-
1069 send_sig(SIGKILL, current, 0);
1072 buf[to_send] = '\0';
1073 has_cntl = audit_string_contains_control(buf, to_send);
1076 * hex messages get logged as 2 bytes, so we can only
1077 * send half as much in each message
1079 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1082 len_left -= to_send;
1084 } while (len_left > 0);
1088 if (len > max_execve_audit_len)
1091 /* rewalk the argument actually logging the message */
1092 for (i = 0; len_left > 0; i++) {
1095 if (len_left > max_execve_audit_len)
1096 to_send = max_execve_audit_len;
1100 /* do we have space left to send this argument in this ab? */
1101 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1103 room_left -= (to_send * 2);
1105 room_left -= to_send;
1106 if (room_left < 0) {
1109 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 * first record needs to say how long the original string was
1116 * so we can be sure nothing was lost.
1118 if ((i == 0) && (too_long))
1119 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1120 has_cntl ? 2*len : len);
1123 * normally arguments are small enough to fit and we already
1124 * filled buf above when we checked for control characters
1125 * so don't bother with another copy_from_user
1127 if (len >= max_execve_audit_len)
1128 ret = copy_from_user(buf, p, to_send);
1133 send_sig(SIGKILL, current, 0);
1136 buf[to_send] = '\0';
1138 /* actually log it */
1139 audit_log_format(*ab, " a%d", arg_num);
1141 audit_log_format(*ab, "[%d]", i);
1142 audit_log_format(*ab, "=");
1144 audit_log_n_hex(*ab, buf, to_send);
1146 audit_log_string(*ab, buf);
1149 len_left -= to_send;
1150 *len_sent += arg_num_len;
1152 *len_sent += to_send * 2;
1154 *len_sent += to_send;
1156 /* include the null we didn't log */
1160 static void audit_log_execve_info(struct audit_context *context,
1161 struct audit_buffer **ab)
1164 size_t len_sent = 0;
1165 const char __user *p;
1168 p = (const char __user *)current->mm->arg_start;
1170 audit_log_format(*ab, "argc=%d", context->execve.argc);
1173 * we need some kernel buffer to hold the userspace args. Just
1174 * allocate one big one rather than allocating one of the right size
1175 * for every single argument inside audit_log_single_execve_arg()
1176 * should be <8k allocation so should be pretty safe.
1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1180 audit_panic("out of memory for argv string");
1184 for (i = 0; i < context->execve.argc; i++) {
1185 len = audit_log_single_execve_arg(context, ab, i,
1194 static void show_special(struct audit_context *context, int *call_panic)
1196 struct audit_buffer *ab;
1199 ab = audit_log_start(context, GFP_KERNEL, context->type);
1203 switch (context->type) {
1204 case AUDIT_SOCKETCALL: {
1205 int nargs = context->socketcall.nargs;
1206 audit_log_format(ab, "nargs=%d", nargs);
1207 for (i = 0; i < nargs; i++)
1208 audit_log_format(ab, " a%d=%lx", i,
1209 context->socketcall.args[i]);
1212 u32 osid = context->ipc.osid;
1214 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1215 from_kuid(&init_user_ns, context->ipc.uid),
1216 from_kgid(&init_user_ns, context->ipc.gid),
1221 if (security_secid_to_secctx(osid, &ctx, &len)) {
1222 audit_log_format(ab, " osid=%u", osid);
1225 audit_log_format(ab, " obj=%s", ctx);
1226 security_release_secctx(ctx, len);
1229 if (context->ipc.has_perm) {
1231 ab = audit_log_start(context, GFP_KERNEL,
1232 AUDIT_IPC_SET_PERM);
1235 audit_log_format(ab,
1236 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1237 context->ipc.qbytes,
1238 context->ipc.perm_uid,
1239 context->ipc.perm_gid,
1240 context->ipc.perm_mode);
1243 case AUDIT_MQ_OPEN: {
1244 audit_log_format(ab,
1245 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 context->mq_open.oflag, context->mq_open.mode,
1248 context->mq_open.attr.mq_flags,
1249 context->mq_open.attr.mq_maxmsg,
1250 context->mq_open.attr.mq_msgsize,
1251 context->mq_open.attr.mq_curmsgs);
1253 case AUDIT_MQ_SENDRECV: {
1254 audit_log_format(ab,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 context->mq_sendrecv.mqdes,
1258 context->mq_sendrecv.msg_len,
1259 context->mq_sendrecv.msg_prio,
1260 context->mq_sendrecv.abs_timeout.tv_sec,
1261 context->mq_sendrecv.abs_timeout.tv_nsec);
1263 case AUDIT_MQ_NOTIFY: {
1264 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1265 context->mq_notify.mqdes,
1266 context->mq_notify.sigev_signo);
1268 case AUDIT_MQ_GETSETATTR: {
1269 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1270 audit_log_format(ab,
1271 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1273 context->mq_getsetattr.mqdes,
1274 attr->mq_flags, attr->mq_maxmsg,
1275 attr->mq_msgsize, attr->mq_curmsgs);
1277 case AUDIT_CAPSET: {
1278 audit_log_format(ab, "pid=%d", context->capset.pid);
1279 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1280 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1281 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1284 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1285 context->mmap.flags);
1287 case AUDIT_EXECVE: {
1288 audit_log_execve_info(context, &ab);
1294 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1296 char *end = proctitle + len - 1;
1297 while (end > proctitle && !isprint(*end))
1300 /* catch the case where proctitle is only 1 non-print character */
1301 len = end - proctitle + 1;
1302 len -= isprint(proctitle[len-1]) == 0;
1306 static void audit_log_proctitle(struct task_struct *tsk,
1307 struct audit_context *context)
1311 char *msg = "(null)";
1312 int len = strlen(msg);
1313 struct audit_buffer *ab;
1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1317 return; /* audit_panic or being filtered */
1319 audit_log_format(ab, "proctitle=");
1322 if (!context->proctitle.value) {
1323 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1326 /* Historically called this from procfs naming */
1327 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1332 res = audit_proctitle_rtrim(buf, res);
1337 context->proctitle.value = buf;
1338 context->proctitle.len = res;
1340 msg = context->proctitle.value;
1341 len = context->proctitle.len;
1343 audit_log_n_untrustedstring(ab, msg, len);
1347 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1349 int i, call_panic = 0;
1350 struct audit_buffer *ab;
1351 struct audit_aux_data *aux;
1352 struct audit_names *n;
1354 /* tsk == current */
1355 context->personality = tsk->personality;
1357 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1359 return; /* audit_panic has been called */
1360 audit_log_format(ab, "arch=%x syscall=%d",
1361 context->arch, context->major);
1362 if (context->personality != PER_LINUX)
1363 audit_log_format(ab, " per=%lx", context->personality);
1364 if (context->return_valid)
1365 audit_log_format(ab, " success=%s exit=%ld",
1366 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1367 context->return_code);
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1375 context->name_count);
1377 audit_log_task_info(ab, tsk);
1378 audit_log_key(ab, context->filterkey);
1381 for (aux = context->aux; aux; aux = aux->next) {
1383 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1385 continue; /* audit_panic has been called */
1387 switch (aux->type) {
1389 case AUDIT_BPRM_FCAPS: {
1390 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1391 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1392 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1393 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1394 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1395 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1396 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1397 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1398 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1399 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1400 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1408 show_special(context, &call_panic);
1410 if (context->fds[0] >= 0) {
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1413 audit_log_format(ab, "fd0=%d fd1=%d",
1414 context->fds[0], context->fds[1]);
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
1434 axs->target_auid[i],
1436 axs->target_sessionid[i],
1438 axs->target_comm[i]))
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
1444 context->target_auid, context->target_uid,
1445 context->target_sessionid,
1446 context->target_sid, context->target_comm))
1449 if (context->pwd.dentry && context->pwd.mnt) {
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 audit_log_d_path(ab, " cwd=", &context->pwd);
1458 list_for_each_entry(n, &context->names_list, list) {
1461 audit_log_name(context, n, NULL, i++, &call_panic);
1464 audit_log_proctitle(tsk, context);
1466 /* Send end of event record to help user space know we are finished */
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1471 audit_panic("error converting sid to string");
1475 * audit_free - free a per-task audit context
1476 * @tsk: task whose audit context block to free
1478 * Called from copy_process and do_exit
1480 void __audit_free(struct task_struct *tsk)
1482 struct audit_context *context;
1484 context = audit_take_context(tsk, 0, 0);
1488 /* Check for system calls that do not go through the exit
1489 * function (e.g., exit_group), then free context block.
1490 * We use GFP_ATOMIC here because we might be doing this
1491 * in the context of the idle thread */
1492 /* that can happen only if we are called from do_exit() */
1493 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1494 audit_log_exit(context, tsk);
1495 if (!list_empty(&context->killed_trees))
1496 audit_kill_trees(&context->killed_trees);
1498 audit_free_context(context);
1502 * audit_syscall_entry - fill in an audit record at syscall entry
1503 * @major: major syscall type (function)
1504 * @a1: additional syscall register 1
1505 * @a2: additional syscall register 2
1506 * @a3: additional syscall register 3
1507 * @a4: additional syscall register 4
1509 * Fill in audit context at syscall entry. This only happens if the
1510 * audit context was created when the task was created and the state or
1511 * filters demand the audit context be built. If the state from the
1512 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1513 * then the record will be written at syscall exit time (otherwise, it
1514 * will only be written if another part of the kernel requests that it
1517 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1518 unsigned long a3, unsigned long a4)
1520 struct task_struct *tsk = current;
1521 struct audit_context *context = tsk->audit_context;
1522 enum audit_state state;
1527 BUG_ON(context->in_syscall || context->name_count);
1532 context->arch = syscall_get_arch();
1533 context->major = major;
1534 context->argv[0] = a1;
1535 context->argv[1] = a2;
1536 context->argv[2] = a3;
1537 context->argv[3] = a4;
1539 state = context->state;
1540 context->dummy = !audit_n_rules;
1541 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1543 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1545 if (state == AUDIT_DISABLED)
1548 context->serial = 0;
1549 context->ctime = CURRENT_TIME;
1550 context->in_syscall = 1;
1551 context->current_state = state;
1556 * audit_syscall_exit - deallocate audit context after a system call
1557 * @success: success value of the syscall
1558 * @return_code: return value of the syscall
1560 * Tear down after system call. If the audit context has been marked as
1561 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1562 * filtering, or because some other part of the kernel wrote an audit
1563 * message), then write out the syscall information. In call cases,
1564 * free the names stored from getname().
1566 void __audit_syscall_exit(int success, long return_code)
1568 struct task_struct *tsk = current;
1569 struct audit_context *context;
1572 success = AUDITSC_SUCCESS;
1574 success = AUDITSC_FAILURE;
1576 context = audit_take_context(tsk, success, return_code);
1580 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1581 audit_log_exit(context, tsk);
1583 context->in_syscall = 0;
1584 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1586 if (!list_empty(&context->killed_trees))
1587 audit_kill_trees(&context->killed_trees);
1589 audit_free_names(context);
1590 unroll_tree_refs(context, NULL, 0);
1591 audit_free_aux(context);
1592 context->aux = NULL;
1593 context->aux_pids = NULL;
1594 context->target_pid = 0;
1595 context->target_sid = 0;
1596 context->sockaddr_len = 0;
1598 context->fds[0] = -1;
1599 if (context->state != AUDIT_RECORD_CONTEXT) {
1600 kfree(context->filterkey);
1601 context->filterkey = NULL;
1603 tsk->audit_context = context;
1606 static inline void handle_one(const struct inode *inode)
1608 #ifdef CONFIG_AUDIT_TREE
1609 struct audit_context *context;
1610 struct audit_tree_refs *p;
1611 struct audit_chunk *chunk;
1613 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1615 context = current->audit_context;
1617 count = context->tree_count;
1619 chunk = audit_tree_lookup(inode);
1623 if (likely(put_tree_ref(context, chunk)))
1625 if (unlikely(!grow_tree_refs(context))) {
1626 pr_warn("out of memory, audit has lost a tree reference\n");
1627 audit_set_auditable(context);
1628 audit_put_chunk(chunk);
1629 unroll_tree_refs(context, p, count);
1632 put_tree_ref(context, chunk);
1636 static void handle_path(const struct dentry *dentry)
1638 #ifdef CONFIG_AUDIT_TREE
1639 struct audit_context *context;
1640 struct audit_tree_refs *p;
1641 const struct dentry *d, *parent;
1642 struct audit_chunk *drop;
1646 context = current->audit_context;
1648 count = context->tree_count;
1653 seq = read_seqbegin(&rename_lock);
1655 struct inode *inode = d->d_inode;
1656 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1657 struct audit_chunk *chunk;
1658 chunk = audit_tree_lookup(inode);
1660 if (unlikely(!put_tree_ref(context, chunk))) {
1666 parent = d->d_parent;
1671 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1674 /* just a race with rename */
1675 unroll_tree_refs(context, p, count);
1678 audit_put_chunk(drop);
1679 if (grow_tree_refs(context)) {
1680 /* OK, got more space */
1681 unroll_tree_refs(context, p, count);
1685 pr_warn("out of memory, audit has lost a tree reference\n");
1686 unroll_tree_refs(context, p, count);
1687 audit_set_auditable(context);
1694 static struct audit_names *audit_alloc_name(struct audit_context *context,
1697 struct audit_names *aname;
1699 if (context->name_count < AUDIT_NAMES) {
1700 aname = &context->preallocated_names[context->name_count];
1701 memset(aname, 0, sizeof(*aname));
1703 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1706 aname->should_free = true;
1709 aname->ino = (unsigned long)-1;
1711 list_add_tail(&aname->list, &context->names_list);
1713 context->name_count++;
1715 context->ino_count++;
1721 * audit_reusename - fill out filename with info from existing entry
1722 * @uptr: userland ptr to pathname
1724 * Search the audit_names list for the current audit context. If there is an
1725 * existing entry with a matching "uptr" then return the filename
1726 * associated with that audit_name. If not, return NULL.
1729 __audit_reusename(const __user char *uptr)
1731 struct audit_context *context = current->audit_context;
1732 struct audit_names *n;
1734 list_for_each_entry(n, &context->names_list, list) {
1737 if (n->name->uptr == uptr)
1744 * audit_getname - add a name to the list
1745 * @name: name to add
1747 * Add a name to the list of audit names for this context.
1748 * Called from fs/namei.c:getname().
1750 void __audit_getname(struct filename *name)
1752 struct audit_context *context = current->audit_context;
1753 struct audit_names *n;
1755 if (!context->in_syscall) {
1756 #if AUDIT_DEBUG == 2
1757 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1758 __FILE__, __LINE__, context->serial, name);
1765 /* The filename _must_ have a populated ->name */
1766 BUG_ON(!name->name);
1769 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1774 n->name_len = AUDIT_NAME_FULL;
1778 if (!context->pwd.dentry)
1779 get_fs_pwd(current->fs, &context->pwd);
1782 /* audit_putname - intercept a putname request
1783 * @name: name to intercept and delay for putname
1785 * If we have stored the name from getname in the audit context,
1786 * then we delay the putname until syscall exit.
1787 * Called from include/linux/fs.h:putname().
1789 void audit_putname(struct filename *name)
1791 struct audit_context *context = current->audit_context;
1794 if (!name->aname || !context->in_syscall) {
1795 #if AUDIT_DEBUG == 2
1796 pr_err("%s:%d(:%d): final_putname(%p)\n",
1797 __FILE__, __LINE__, context->serial, name);
1798 if (context->name_count) {
1799 struct audit_names *n;
1802 list_for_each_entry(n, &context->names_list, list)
1803 pr_err("name[%d] = %p = %s\n", i++, n->name,
1804 n->name->name ?: "(null)");
1807 final_putname(name);
1811 ++context->put_count;
1812 if (context->put_count > context->name_count) {
1813 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1814 " name_count=%d put_count=%d\n",
1816 context->serial, context->major,
1817 context->in_syscall, name->name,
1818 context->name_count, context->put_count);
1826 * __audit_inode - store the inode and device from a lookup
1827 * @name: name being audited
1828 * @dentry: dentry being audited
1829 * @flags: attributes for this particular entry
1831 void __audit_inode(struct filename *name, const struct dentry *dentry,
1834 struct audit_context *context = current->audit_context;
1835 const struct inode *inode = dentry->d_inode;
1836 struct audit_names *n;
1837 bool parent = flags & AUDIT_INODE_PARENT;
1839 if (!context->in_syscall)
1846 /* The struct filename _must_ have a populated ->name */
1847 BUG_ON(!name->name);
1850 * If we have a pointer to an audit_names entry already, then we can
1851 * just use it directly if the type is correct.
1856 if (n->type == AUDIT_TYPE_PARENT ||
1857 n->type == AUDIT_TYPE_UNKNOWN)
1860 if (n->type != AUDIT_TYPE_PARENT)
1865 list_for_each_entry_reverse(n, &context->names_list, list) {
1866 if (!n->name || strcmp(n->name->name, name->name))
1869 /* match the correct record type */
1871 if (n->type == AUDIT_TYPE_PARENT ||
1872 n->type == AUDIT_TYPE_UNKNOWN)
1875 if (n->type != AUDIT_TYPE_PARENT)
1881 /* unable to find an entry with both a matching name and type */
1882 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1885 /* unfortunately, while we may have a path name to record with the
1886 * inode, we can't always rely on the string lasting until the end of
1887 * the syscall so we need to create our own copy, it may fail due to
1888 * memory allocation issues, but we do our best */
1890 /* we can't use getname_kernel() due to size limits */
1891 size_t len = strlen(name->name) + 1;
1892 struct filename *new = __getname();
1897 if (len <= (PATH_MAX - sizeof(*new))) {
1898 new->name = (char *)(new) + sizeof(*new);
1899 new->separate = false;
1900 } else if (len <= PATH_MAX) {
1901 /* this looks odd, but is due to final_putname() */
1902 struct filename *new2;
1904 new2 = kmalloc(sizeof(*new2), GFP_KERNEL);
1905 if (unlikely(!new2)) {
1909 new2->name = (char *)new;
1910 new2->separate = true;
1913 /* we should never get here, but let's be safe */
1917 strlcpy((char *)new->name, name->name, len);
1925 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1926 n->type = AUDIT_TYPE_PARENT;
1927 if (flags & AUDIT_INODE_HIDDEN)
1930 n->name_len = AUDIT_NAME_FULL;
1931 n->type = AUDIT_TYPE_NORMAL;
1933 handle_path(dentry);
1934 audit_copy_inode(n, dentry, inode);
1937 void __audit_file(const struct file *file)
1939 __audit_inode(NULL, file->f_path.dentry, 0);
1943 * __audit_inode_child - collect inode info for created/removed objects
1944 * @parent: inode of dentry parent
1945 * @dentry: dentry being audited
1946 * @type: AUDIT_TYPE_* value that we're looking for
1948 * For syscalls that create or remove filesystem objects, audit_inode
1949 * can only collect information for the filesystem object's parent.
1950 * This call updates the audit context with the child's information.
1951 * Syscalls that create a new filesystem object must be hooked after
1952 * the object is created. Syscalls that remove a filesystem object
1953 * must be hooked prior, in order to capture the target inode during
1954 * unsuccessful attempts.
1956 void __audit_inode_child(const struct inode *parent,
1957 const struct dentry *dentry,
1958 const unsigned char type)
1960 struct audit_context *context = current->audit_context;
1961 const struct inode *inode = dentry->d_inode;
1962 const char *dname = dentry->d_name.name;
1963 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1965 if (!context->in_syscall)
1971 /* look for a parent entry first */
1972 list_for_each_entry(n, &context->names_list, list) {
1973 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1976 if (n->ino == parent->i_ino &&
1977 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1983 /* is there a matching child entry? */
1984 list_for_each_entry(n, &context->names_list, list) {
1985 /* can only match entries that have a name */
1986 if (!n->name || n->type != type)
1989 /* if we found a parent, make sure this one is a child of it */
1990 if (found_parent && (n->name != found_parent->name))
1993 if (!strcmp(dname, n->name->name) ||
1994 !audit_compare_dname_path(dname, n->name->name,
1996 found_parent->name_len :
2003 if (!found_parent) {
2004 /* create a new, "anonymous" parent record */
2005 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2008 audit_copy_inode(n, NULL, parent);
2012 found_child = audit_alloc_name(context, type);
2016 /* Re-use the name belonging to the slot for a matching parent
2017 * directory. All names for this context are relinquished in
2018 * audit_free_names() */
2020 found_child->name = found_parent->name;
2021 found_child->name_len = AUDIT_NAME_FULL;
2022 /* don't call __putname() */
2023 found_child->name_put = false;
2027 audit_copy_inode(found_child, dentry, inode);
2029 found_child->ino = (unsigned long)-1;
2031 EXPORT_SYMBOL_GPL(__audit_inode_child);
2034 * auditsc_get_stamp - get local copies of audit_context values
2035 * @ctx: audit_context for the task
2036 * @t: timespec to store time recorded in the audit_context
2037 * @serial: serial value that is recorded in the audit_context
2039 * Also sets the context as auditable.
2041 int auditsc_get_stamp(struct audit_context *ctx,
2042 struct timespec *t, unsigned int *serial)
2044 if (!ctx->in_syscall)
2047 ctx->serial = audit_serial();
2048 t->tv_sec = ctx->ctime.tv_sec;
2049 t->tv_nsec = ctx->ctime.tv_nsec;
2050 *serial = ctx->serial;
2053 ctx->current_state = AUDIT_RECORD_CONTEXT;
2058 /* global counter which is incremented every time something logs in */
2059 static atomic_t session_id = ATOMIC_INIT(0);
2061 static int audit_set_loginuid_perm(kuid_t loginuid)
2063 /* if we are unset, we don't need privs */
2064 if (!audit_loginuid_set(current))
2066 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2067 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2069 /* it is set, you need permission */
2070 if (!capable(CAP_AUDIT_CONTROL))
2072 /* reject if this is not an unset and we don't allow that */
2073 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2078 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2079 unsigned int oldsessionid, unsigned int sessionid,
2082 struct audit_buffer *ab;
2083 uid_t uid, oldloginuid, loginuid;
2088 uid = from_kuid(&init_user_ns, task_uid(current));
2089 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2090 loginuid = from_kuid(&init_user_ns, kloginuid),
2092 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2095 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2096 audit_log_task_context(ab);
2097 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2098 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2103 * audit_set_loginuid - set current task's audit_context loginuid
2104 * @loginuid: loginuid value
2108 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2110 int audit_set_loginuid(kuid_t loginuid)
2112 struct task_struct *task = current;
2113 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2117 oldloginuid = audit_get_loginuid(current);
2118 oldsessionid = audit_get_sessionid(current);
2120 rc = audit_set_loginuid_perm(loginuid);
2124 /* are we setting or clearing? */
2125 if (uid_valid(loginuid))
2126 sessionid = (unsigned int)atomic_inc_return(&session_id);
2128 task->sessionid = sessionid;
2129 task->loginuid = loginuid;
2131 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2136 * __audit_mq_open - record audit data for a POSIX MQ open
2139 * @attr: queue attributes
2142 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2144 struct audit_context *context = current->audit_context;
2147 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2149 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2151 context->mq_open.oflag = oflag;
2152 context->mq_open.mode = mode;
2154 context->type = AUDIT_MQ_OPEN;
2158 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2159 * @mqdes: MQ descriptor
2160 * @msg_len: Message length
2161 * @msg_prio: Message priority
2162 * @abs_timeout: Message timeout in absolute time
2165 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2166 const struct timespec *abs_timeout)
2168 struct audit_context *context = current->audit_context;
2169 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2172 memcpy(p, abs_timeout, sizeof(struct timespec));
2174 memset(p, 0, sizeof(struct timespec));
2176 context->mq_sendrecv.mqdes = mqdes;
2177 context->mq_sendrecv.msg_len = msg_len;
2178 context->mq_sendrecv.msg_prio = msg_prio;
2180 context->type = AUDIT_MQ_SENDRECV;
2184 * __audit_mq_notify - record audit data for a POSIX MQ notify
2185 * @mqdes: MQ descriptor
2186 * @notification: Notification event
2190 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2192 struct audit_context *context = current->audit_context;
2195 context->mq_notify.sigev_signo = notification->sigev_signo;
2197 context->mq_notify.sigev_signo = 0;
2199 context->mq_notify.mqdes = mqdes;
2200 context->type = AUDIT_MQ_NOTIFY;
2204 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2205 * @mqdes: MQ descriptor
2209 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2211 struct audit_context *context = current->audit_context;
2212 context->mq_getsetattr.mqdes = mqdes;
2213 context->mq_getsetattr.mqstat = *mqstat;
2214 context->type = AUDIT_MQ_GETSETATTR;
2218 * audit_ipc_obj - record audit data for ipc object
2219 * @ipcp: ipc permissions
2222 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2224 struct audit_context *context = current->audit_context;
2225 context->ipc.uid = ipcp->uid;
2226 context->ipc.gid = ipcp->gid;
2227 context->ipc.mode = ipcp->mode;
2228 context->ipc.has_perm = 0;
2229 security_ipc_getsecid(ipcp, &context->ipc.osid);
2230 context->type = AUDIT_IPC;
2234 * audit_ipc_set_perm - record audit data for new ipc permissions
2235 * @qbytes: msgq bytes
2236 * @uid: msgq user id
2237 * @gid: msgq group id
2238 * @mode: msgq mode (permissions)
2240 * Called only after audit_ipc_obj().
2242 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2244 struct audit_context *context = current->audit_context;
2246 context->ipc.qbytes = qbytes;
2247 context->ipc.perm_uid = uid;
2248 context->ipc.perm_gid = gid;
2249 context->ipc.perm_mode = mode;
2250 context->ipc.has_perm = 1;
2253 void __audit_bprm(struct linux_binprm *bprm)
2255 struct audit_context *context = current->audit_context;
2257 context->type = AUDIT_EXECVE;
2258 context->execve.argc = bprm->argc;
2263 * audit_socketcall - record audit data for sys_socketcall
2264 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2268 int __audit_socketcall(int nargs, unsigned long *args)
2270 struct audit_context *context = current->audit_context;
2272 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2274 context->type = AUDIT_SOCKETCALL;
2275 context->socketcall.nargs = nargs;
2276 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2281 * __audit_fd_pair - record audit data for pipe and socketpair
2282 * @fd1: the first file descriptor
2283 * @fd2: the second file descriptor
2286 void __audit_fd_pair(int fd1, int fd2)
2288 struct audit_context *context = current->audit_context;
2289 context->fds[0] = fd1;
2290 context->fds[1] = fd2;
2294 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2295 * @len: data length in user space
2296 * @a: data address in kernel space
2298 * Returns 0 for success or NULL context or < 0 on error.
2300 int __audit_sockaddr(int len, void *a)
2302 struct audit_context *context = current->audit_context;
2304 if (!context->sockaddr) {
2305 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2308 context->sockaddr = p;
2311 context->sockaddr_len = len;
2312 memcpy(context->sockaddr, a, len);
2316 void __audit_ptrace(struct task_struct *t)
2318 struct audit_context *context = current->audit_context;
2320 context->target_pid = task_pid_nr(t);
2321 context->target_auid = audit_get_loginuid(t);
2322 context->target_uid = task_uid(t);
2323 context->target_sessionid = audit_get_sessionid(t);
2324 security_task_getsecid(t, &context->target_sid);
2325 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2329 * audit_signal_info - record signal info for shutting down audit subsystem
2330 * @sig: signal value
2331 * @t: task being signaled
2333 * If the audit subsystem is being terminated, record the task (pid)
2334 * and uid that is doing that.
2336 int __audit_signal_info(int sig, struct task_struct *t)
2338 struct audit_aux_data_pids *axp;
2339 struct task_struct *tsk = current;
2340 struct audit_context *ctx = tsk->audit_context;
2341 kuid_t uid = current_uid(), t_uid = task_uid(t);
2343 if (audit_pid && t->tgid == audit_pid) {
2344 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2345 audit_sig_pid = task_pid_nr(tsk);
2346 if (uid_valid(tsk->loginuid))
2347 audit_sig_uid = tsk->loginuid;
2349 audit_sig_uid = uid;
2350 security_task_getsecid(tsk, &audit_sig_sid);
2352 if (!audit_signals || audit_dummy_context())
2356 /* optimize the common case by putting first signal recipient directly
2357 * in audit_context */
2358 if (!ctx->target_pid) {
2359 ctx->target_pid = task_tgid_nr(t);
2360 ctx->target_auid = audit_get_loginuid(t);
2361 ctx->target_uid = t_uid;
2362 ctx->target_sessionid = audit_get_sessionid(t);
2363 security_task_getsecid(t, &ctx->target_sid);
2364 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2368 axp = (void *)ctx->aux_pids;
2369 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2370 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2374 axp->d.type = AUDIT_OBJ_PID;
2375 axp->d.next = ctx->aux_pids;
2376 ctx->aux_pids = (void *)axp;
2378 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2380 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2381 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2382 axp->target_uid[axp->pid_count] = t_uid;
2383 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2384 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2385 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2392 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2393 * @bprm: pointer to the bprm being processed
2394 * @new: the proposed new credentials
2395 * @old: the old credentials
2397 * Simply check if the proc already has the caps given by the file and if not
2398 * store the priv escalation info for later auditing at the end of the syscall
2402 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2403 const struct cred *new, const struct cred *old)
2405 struct audit_aux_data_bprm_fcaps *ax;
2406 struct audit_context *context = current->audit_context;
2407 struct cpu_vfs_cap_data vcaps;
2408 struct dentry *dentry;
2410 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2414 ax->d.type = AUDIT_BPRM_FCAPS;
2415 ax->d.next = context->aux;
2416 context->aux = (void *)ax;
2418 dentry = dget(bprm->file->f_path.dentry);
2419 get_vfs_caps_from_disk(dentry, &vcaps);
2422 ax->fcap.permitted = vcaps.permitted;
2423 ax->fcap.inheritable = vcaps.inheritable;
2424 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2425 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2427 ax->old_pcap.permitted = old->cap_permitted;
2428 ax->old_pcap.inheritable = old->cap_inheritable;
2429 ax->old_pcap.effective = old->cap_effective;
2431 ax->new_pcap.permitted = new->cap_permitted;
2432 ax->new_pcap.inheritable = new->cap_inheritable;
2433 ax->new_pcap.effective = new->cap_effective;
2438 * __audit_log_capset - store information about the arguments to the capset syscall
2439 * @new: the new credentials
2440 * @old: the old (current) credentials
2442 * Record the arguments userspace sent to sys_capset for later printing by the
2443 * audit system if applicable
2445 void __audit_log_capset(const struct cred *new, const struct cred *old)
2447 struct audit_context *context = current->audit_context;
2448 context->capset.pid = task_pid_nr(current);
2449 context->capset.cap.effective = new->cap_effective;
2450 context->capset.cap.inheritable = new->cap_effective;
2451 context->capset.cap.permitted = new->cap_permitted;
2452 context->type = AUDIT_CAPSET;
2455 void __audit_mmap_fd(int fd, int flags)
2457 struct audit_context *context = current->audit_context;
2458 context->mmap.fd = fd;
2459 context->mmap.flags = flags;
2460 context->type = AUDIT_MMAP;
2463 static void audit_log_task(struct audit_buffer *ab)
2467 unsigned int sessionid;
2468 struct mm_struct *mm = current->mm;
2469 char comm[sizeof(current->comm)];
2471 auid = audit_get_loginuid(current);
2472 sessionid = audit_get_sessionid(current);
2473 current_uid_gid(&uid, &gid);
2475 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2476 from_kuid(&init_user_ns, auid),
2477 from_kuid(&init_user_ns, uid),
2478 from_kgid(&init_user_ns, gid),
2480 audit_log_task_context(ab);
2481 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2482 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2484 down_read(&mm->mmap_sem);
2486 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2487 up_read(&mm->mmap_sem);
2489 audit_log_format(ab, " exe=(null)");
2493 * audit_core_dumps - record information about processes that end abnormally
2494 * @signr: signal value
2496 * If a process ends with a core dump, something fishy is going on and we
2497 * should record the event for investigation.
2499 void audit_core_dumps(long signr)
2501 struct audit_buffer *ab;
2506 if (signr == SIGQUIT) /* don't care for those */
2509 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2513 audit_log_format(ab, " sig=%ld", signr);
2517 void __audit_seccomp(unsigned long syscall, long signr, int code)
2519 struct audit_buffer *ab;
2521 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2525 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2526 signr, syscall_get_arch(), syscall, is_compat_task(),
2527 KSTK_EIP(current), code);
2531 struct list_head *audit_killed_trees(void)
2533 struct audit_context *ctx = current->audit_context;
2534 if (likely(!ctx || !ctx->in_syscall))
2536 return &ctx->killed_trees;