1 // SPDX-License-Identifier: GPL-2.0
3 * Shared Memory Communications over RDMA (SMC-R) and RoCE
5 * Work Requests exploiting Infiniband API
7 * Work requests (WR) of type ib_post_send or ib_post_recv respectively
8 * are submitted to either RC SQ or RC RQ respectively
9 * (reliably connected send/receive queue)
10 * and become work queue entries (WQEs).
11 * While an SQ WR/WQE is pending, we track it until transmission completion.
12 * Through a send or receive completion queue (CQ) respectively,
13 * we get completion queue entries (CQEs) [aka work completions (WCs)].
14 * Since the CQ callback is called from IRQ context, we split work by using
15 * bottom halves implemented by tasklets.
17 * SMC uses this to exchange LLC (link layer control)
18 * and CDC (connection data control) messages.
20 * Copyright IBM Corp. 2016
25 #include <linux/atomic.h>
26 #include <linux/hashtable.h>
27 #include <linux/wait.h>
28 #include <rdma/ib_verbs.h>
29 #include <asm/div64.h>
34 #define SMC_WR_MAX_POLL_CQE 10 /* max. # of compl. queue elements in 1 poll */
36 #define SMC_WR_RX_HASH_BITS 4
37 static DEFINE_HASHTABLE(smc_wr_rx_hash, SMC_WR_RX_HASH_BITS);
38 static DEFINE_SPINLOCK(smc_wr_rx_hash_lock);
40 struct smc_wr_tx_pend { /* control data for a pending send request */
41 u64 wr_id; /* work request id sent */
42 smc_wr_tx_handler handler;
43 enum ib_wc_status wc_status; /* CQE status */
44 struct smc_link *link;
46 struct smc_wr_tx_pend_priv priv;
50 /******************************** send queue *********************************/
52 /*------------------------------- completion --------------------------------*/
54 /* returns true if at least one tx work request is pending on the given link */
55 static inline bool smc_wr_is_tx_pend(struct smc_link *link)
57 if (find_first_bit(link->wr_tx_mask, link->wr_tx_cnt) !=
64 /* wait till all pending tx work requests on the given link are completed */
65 int smc_wr_tx_wait_no_pending_sends(struct smc_link *link)
67 if (wait_event_timeout(link->wr_tx_wait, !smc_wr_is_tx_pend(link),
68 SMC_WR_TX_WAIT_PENDING_TIME))
74 static inline int smc_wr_tx_find_pending_index(struct smc_link *link, u64 wr_id)
78 for (i = 0; i < link->wr_tx_cnt; i++) {
79 if (link->wr_tx_pends[i].wr_id == wr_id)
82 return link->wr_tx_cnt;
85 static inline void smc_wr_tx_process_cqe(struct ib_wc *wc)
87 struct smc_wr_tx_pend pnd_snd;
88 struct smc_link *link;
92 link = wc->qp->qp_context;
94 if (wc->opcode == IB_WC_REG_MR) {
96 link->wr_reg_state = FAILED;
98 link->wr_reg_state = CONFIRMED;
99 smc_wr_wakeup_reg_wait(link);
103 pnd_snd_idx = smc_wr_tx_find_pending_index(link, wc->wr_id);
104 if (pnd_snd_idx == link->wr_tx_cnt) {
105 if (link->lgr->smc_version != SMC_V2 ||
106 link->wr_tx_v2_pend->wr_id != wc->wr_id)
108 link->wr_tx_v2_pend->wc_status = wc->status;
109 memcpy(&pnd_snd, link->wr_tx_v2_pend, sizeof(pnd_snd));
110 /* clear the full struct smc_wr_tx_pend including .priv */
111 memset(link->wr_tx_v2_pend, 0,
112 sizeof(*link->wr_tx_v2_pend));
113 memset(link->lgr->wr_tx_buf_v2, 0,
114 sizeof(*link->lgr->wr_tx_buf_v2));
116 link->wr_tx_pends[pnd_snd_idx].wc_status = wc->status;
117 if (link->wr_tx_pends[pnd_snd_idx].compl_requested)
118 complete(&link->wr_tx_compl[pnd_snd_idx]);
119 memcpy(&pnd_snd, &link->wr_tx_pends[pnd_snd_idx],
121 /* clear the full struct smc_wr_tx_pend including .priv */
122 memset(&link->wr_tx_pends[pnd_snd_idx], 0,
123 sizeof(link->wr_tx_pends[pnd_snd_idx]));
124 memset(&link->wr_tx_bufs[pnd_snd_idx], 0,
125 sizeof(link->wr_tx_bufs[pnd_snd_idx]));
126 if (!test_and_clear_bit(pnd_snd_idx, link->wr_tx_mask))
131 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
132 /* clear full struct smc_wr_tx_pend including .priv */
133 memset(&link->wr_tx_pends[i], 0,
134 sizeof(link->wr_tx_pends[i]));
135 memset(&link->wr_tx_bufs[i], 0,
136 sizeof(link->wr_tx_bufs[i]));
137 clear_bit(i, link->wr_tx_mask);
139 if (link->lgr->smc_version == SMC_V2) {
140 memset(link->wr_tx_v2_pend, 0,
141 sizeof(*link->wr_tx_v2_pend));
142 memset(link->lgr->wr_tx_buf_v2, 0,
143 sizeof(*link->lgr->wr_tx_buf_v2));
146 smcr_link_down_cond_sched(link);
149 pnd_snd.handler(&pnd_snd.priv, link, wc->status);
150 wake_up(&link->wr_tx_wait);
153 static void smc_wr_tx_tasklet_fn(struct tasklet_struct *t)
155 struct smc_ib_device *dev = from_tasklet(dev, t, send_tasklet);
156 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
163 memset(&wc, 0, sizeof(wc));
164 rc = ib_poll_cq(dev->roce_cq_send, SMC_WR_MAX_POLL_CQE, wc);
166 ib_req_notify_cq(dev->roce_cq_send,
168 IB_CQ_REPORT_MISSED_EVENTS);
172 for (i = 0; i < rc; i++)
173 smc_wr_tx_process_cqe(&wc[i]);
179 void smc_wr_tx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
181 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
183 tasklet_schedule(&dev->send_tasklet);
186 /*---------------------------- request submission ---------------------------*/
188 static inline int smc_wr_tx_get_free_slot_index(struct smc_link *link, u32 *idx)
190 *idx = link->wr_tx_cnt;
191 if (!smc_link_usable(link))
193 for_each_clear_bit(*idx, link->wr_tx_mask, link->wr_tx_cnt) {
194 if (!test_and_set_bit(*idx, link->wr_tx_mask))
197 *idx = link->wr_tx_cnt;
202 * smc_wr_tx_get_free_slot() - returns buffer for message assembly,
203 * and sets info for pending transmit tracking
204 * @link: Pointer to smc_link used to later send the message.
205 * @handler: Send completion handler function pointer.
206 * @wr_buf: Out value returns pointer to message buffer.
207 * @wr_rdma_buf: Out value returns pointer to rdma work request.
208 * @wr_pend_priv: Out value returns pointer serving as handler context.
210 * Return: 0 on success, or -errno on error.
212 int smc_wr_tx_get_free_slot(struct smc_link *link,
213 smc_wr_tx_handler handler,
214 struct smc_wr_buf **wr_buf,
215 struct smc_rdma_wr **wr_rdma_buf,
216 struct smc_wr_tx_pend_priv **wr_pend_priv)
218 struct smc_link_group *lgr = smc_get_lgr(link);
219 struct smc_wr_tx_pend *wr_pend;
220 u32 idx = link->wr_tx_cnt;
221 struct ib_send_wr *wr_ib;
226 *wr_pend_priv = NULL;
227 if (in_softirq() || lgr->terminating) {
228 rc = smc_wr_tx_get_free_slot_index(link, &idx);
232 rc = wait_event_interruptible_timeout(
234 !smc_link_usable(link) ||
236 (smc_wr_tx_get_free_slot_index(link, &idx) != -EBUSY),
237 SMC_WR_TX_WAIT_FREE_SLOT_TIME);
239 /* timeout - terminate link */
240 smcr_link_down_cond_sched(link);
243 if (idx == link->wr_tx_cnt)
246 wr_id = smc_wr_tx_get_next_wr_id(link);
247 wr_pend = &link->wr_tx_pends[idx];
248 wr_pend->wr_id = wr_id;
249 wr_pend->handler = handler;
250 wr_pend->link = link;
252 wr_ib = &link->wr_tx_ibs[idx];
253 wr_ib->wr_id = wr_id;
254 *wr_buf = &link->wr_tx_bufs[idx];
256 *wr_rdma_buf = &link->wr_tx_rdmas[idx];
257 *wr_pend_priv = &wr_pend->priv;
261 int smc_wr_tx_get_v2_slot(struct smc_link *link,
262 smc_wr_tx_handler handler,
263 struct smc_wr_v2_buf **wr_buf,
264 struct smc_wr_tx_pend_priv **wr_pend_priv)
266 struct smc_wr_tx_pend *wr_pend;
267 struct ib_send_wr *wr_ib;
270 if (link->wr_tx_v2_pend->idx == link->wr_tx_cnt)
274 *wr_pend_priv = NULL;
275 wr_id = smc_wr_tx_get_next_wr_id(link);
276 wr_pend = link->wr_tx_v2_pend;
277 wr_pend->wr_id = wr_id;
278 wr_pend->handler = handler;
279 wr_pend->link = link;
280 wr_pend->idx = link->wr_tx_cnt;
281 wr_ib = link->wr_tx_v2_ib;
282 wr_ib->wr_id = wr_id;
283 *wr_buf = link->lgr->wr_tx_buf_v2;
284 *wr_pend_priv = &wr_pend->priv;
288 int smc_wr_tx_put_slot(struct smc_link *link,
289 struct smc_wr_tx_pend_priv *wr_pend_priv)
291 struct smc_wr_tx_pend *pend;
293 pend = container_of(wr_pend_priv, struct smc_wr_tx_pend, priv);
294 if (pend->idx < link->wr_tx_cnt) {
297 /* clear the full struct smc_wr_tx_pend including .priv */
298 memset(&link->wr_tx_pends[idx], 0,
299 sizeof(link->wr_tx_pends[idx]));
300 memset(&link->wr_tx_bufs[idx], 0,
301 sizeof(link->wr_tx_bufs[idx]));
302 test_and_clear_bit(idx, link->wr_tx_mask);
303 wake_up(&link->wr_tx_wait);
305 } else if (link->lgr->smc_version == SMC_V2 &&
306 pend->idx == link->wr_tx_cnt) {
307 /* Large v2 buffer */
308 memset(&link->wr_tx_v2_pend, 0,
309 sizeof(link->wr_tx_v2_pend));
310 memset(&link->lgr->wr_tx_buf_v2, 0,
311 sizeof(link->lgr->wr_tx_buf_v2));
318 /* Send prepared WR slot via ib_post_send.
319 * @priv: pointer to smc_wr_tx_pend_priv identifying prepared message buffer
321 int smc_wr_tx_send(struct smc_link *link, struct smc_wr_tx_pend_priv *priv)
323 struct smc_wr_tx_pend *pend;
326 ib_req_notify_cq(link->smcibdev->roce_cq_send,
327 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
328 pend = container_of(priv, struct smc_wr_tx_pend, priv);
329 rc = ib_post_send(link->roce_qp, &link->wr_tx_ibs[pend->idx], NULL);
331 smc_wr_tx_put_slot(link, priv);
332 smcr_link_down_cond_sched(link);
337 int smc_wr_tx_v2_send(struct smc_link *link, struct smc_wr_tx_pend_priv *priv,
342 link->wr_tx_v2_ib->sg_list[0].length = len;
343 ib_req_notify_cq(link->smcibdev->roce_cq_send,
344 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
345 rc = ib_post_send(link->roce_qp, link->wr_tx_v2_ib, NULL);
347 smc_wr_tx_put_slot(link, priv);
348 smcr_link_down_cond_sched(link);
353 /* Send prepared WR slot via ib_post_send and wait for send completion
355 * @priv: pointer to smc_wr_tx_pend_priv identifying prepared message buffer
357 int smc_wr_tx_send_wait(struct smc_link *link, struct smc_wr_tx_pend_priv *priv,
358 unsigned long timeout)
360 struct smc_wr_tx_pend *pend;
363 pend = container_of(priv, struct smc_wr_tx_pend, priv);
364 pend->compl_requested = 1;
365 init_completion(&link->wr_tx_compl[pend->idx]);
367 rc = smc_wr_tx_send(link, priv);
370 /* wait for completion by smc_wr_tx_process_cqe() */
371 rc = wait_for_completion_interruptible_timeout(
372 &link->wr_tx_compl[pend->idx], timeout);
380 /* Register a memory region and wait for result. */
381 int smc_wr_reg_send(struct smc_link *link, struct ib_mr *mr)
385 ib_req_notify_cq(link->smcibdev->roce_cq_send,
386 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
387 link->wr_reg_state = POSTED;
388 link->wr_reg.wr.wr_id = (u64)(uintptr_t)mr;
389 link->wr_reg.mr = mr;
390 link->wr_reg.key = mr->rkey;
391 rc = ib_post_send(link->roce_qp, &link->wr_reg.wr, NULL);
395 atomic_inc(&link->wr_reg_refcnt);
396 rc = wait_event_interruptible_timeout(link->wr_reg_wait,
397 (link->wr_reg_state != POSTED),
398 SMC_WR_REG_MR_WAIT_TIME);
399 if (atomic_dec_and_test(&link->wr_reg_refcnt))
400 wake_up_all(&link->wr_reg_wait);
402 /* timeout - terminate link */
403 smcr_link_down_cond_sched(link);
406 if (rc == -ERESTARTSYS)
408 switch (link->wr_reg_state) {
422 void smc_wr_tx_dismiss_slots(struct smc_link *link, u8 wr_tx_hdr_type,
423 smc_wr_tx_filter filter,
424 smc_wr_tx_dismisser dismisser,
427 struct smc_wr_tx_pend_priv *tx_pend;
428 struct smc_wr_rx_hdr *wr_tx;
431 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
432 wr_tx = (struct smc_wr_rx_hdr *)&link->wr_tx_bufs[i];
433 if (wr_tx->type != wr_tx_hdr_type)
435 tx_pend = &link->wr_tx_pends[i].priv;
436 if (filter(tx_pend, data))
441 /****************************** receive queue ********************************/
443 int smc_wr_rx_register_handler(struct smc_wr_rx_handler *handler)
445 struct smc_wr_rx_handler *h_iter;
448 spin_lock(&smc_wr_rx_hash_lock);
449 hash_for_each_possible(smc_wr_rx_hash, h_iter, list, handler->type) {
450 if (h_iter->type == handler->type) {
455 hash_add(smc_wr_rx_hash, &handler->list, handler->type);
457 spin_unlock(&smc_wr_rx_hash_lock);
461 /* Demultiplex a received work request based on the message type to its handler.
462 * Relies on smc_wr_rx_hash having been completely filled before any IB WRs,
463 * and not being modified any more afterwards so we don't need to lock it.
465 static inline void smc_wr_rx_demultiplex(struct ib_wc *wc)
467 struct smc_link *link = (struct smc_link *)wc->qp->qp_context;
468 struct smc_wr_rx_handler *handler;
469 struct smc_wr_rx_hdr *wr_rx;
473 if (wc->byte_len < sizeof(*wr_rx))
474 return; /* short message */
475 temp_wr_id = wc->wr_id;
476 index = do_div(temp_wr_id, link->wr_rx_cnt);
477 wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[index];
478 hash_for_each_possible(smc_wr_rx_hash, handler, list, wr_rx->type) {
479 if (handler->type == wr_rx->type)
480 handler->handler(wc, wr_rx);
484 static inline void smc_wr_rx_process_cqes(struct ib_wc wc[], int num)
486 struct smc_link *link;
489 for (i = 0; i < num; i++) {
490 link = wc[i].qp->qp_context;
491 if (wc[i].status == IB_WC_SUCCESS) {
492 link->wr_rx_tstamp = jiffies;
493 smc_wr_rx_demultiplex(&wc[i]);
494 smc_wr_rx_post(link); /* refill WR RX */
496 /* handle status errors */
497 switch (wc[i].status) {
498 case IB_WC_RETRY_EXC_ERR:
499 case IB_WC_RNR_RETRY_EXC_ERR:
500 case IB_WC_WR_FLUSH_ERR:
501 smcr_link_down_cond_sched(link);
504 smc_wr_rx_post(link); /* refill WR RX */
511 static void smc_wr_rx_tasklet_fn(struct tasklet_struct *t)
513 struct smc_ib_device *dev = from_tasklet(dev, t, recv_tasklet);
514 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
521 memset(&wc, 0, sizeof(wc));
522 rc = ib_poll_cq(dev->roce_cq_recv, SMC_WR_MAX_POLL_CQE, wc);
524 ib_req_notify_cq(dev->roce_cq_recv,
526 | IB_CQ_REPORT_MISSED_EVENTS);
530 smc_wr_rx_process_cqes(&wc[0], rc);
536 void smc_wr_rx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
538 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
540 tasklet_schedule(&dev->recv_tasklet);
543 int smc_wr_rx_post_init(struct smc_link *link)
548 for (i = 0; i < link->wr_rx_cnt; i++)
549 rc = smc_wr_rx_post(link);
553 /***************************** init, exit, misc ******************************/
555 void smc_wr_remember_qp_attr(struct smc_link *lnk)
557 struct ib_qp_attr *attr = &lnk->qp_attr;
558 struct ib_qp_init_attr init_attr;
560 memset(attr, 0, sizeof(*attr));
561 memset(&init_attr, 0, sizeof(init_attr));
562 ib_query_qp(lnk->roce_qp, attr,
575 IB_QP_MIN_RNR_TIMER |
577 IB_QP_PATH_MIG_STATE |
582 lnk->wr_tx_cnt = min_t(size_t, SMC_WR_BUF_CNT,
583 lnk->qp_attr.cap.max_send_wr);
584 lnk->wr_rx_cnt = min_t(size_t, SMC_WR_BUF_CNT * 3,
585 lnk->qp_attr.cap.max_recv_wr);
588 static void smc_wr_init_sge(struct smc_link *lnk)
590 int sges_per_buf = (lnk->lgr->smc_version == SMC_V2) ? 2 : 1;
593 for (i = 0; i < lnk->wr_tx_cnt; i++) {
594 lnk->wr_tx_sges[i].addr =
595 lnk->wr_tx_dma_addr + i * SMC_WR_BUF_SIZE;
596 lnk->wr_tx_sges[i].length = SMC_WR_TX_SIZE;
597 lnk->wr_tx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
598 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[0].lkey =
599 lnk->roce_pd->local_dma_lkey;
600 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[1].lkey =
601 lnk->roce_pd->local_dma_lkey;
602 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[0].lkey =
603 lnk->roce_pd->local_dma_lkey;
604 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[1].lkey =
605 lnk->roce_pd->local_dma_lkey;
606 lnk->wr_tx_ibs[i].next = NULL;
607 lnk->wr_tx_ibs[i].sg_list = &lnk->wr_tx_sges[i];
608 lnk->wr_tx_ibs[i].num_sge = 1;
609 lnk->wr_tx_ibs[i].opcode = IB_WR_SEND;
610 lnk->wr_tx_ibs[i].send_flags =
611 IB_SEND_SIGNALED | IB_SEND_SOLICITED;
612 lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.opcode = IB_WR_RDMA_WRITE;
613 lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.opcode = IB_WR_RDMA_WRITE;
614 lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.sg_list =
615 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge;
616 lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.sg_list =
617 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge;
620 if (lnk->lgr->smc_version == SMC_V2) {
621 lnk->wr_tx_v2_sge->addr = lnk->wr_tx_v2_dma_addr;
622 lnk->wr_tx_v2_sge->length = SMC_WR_BUF_V2_SIZE;
623 lnk->wr_tx_v2_sge->lkey = lnk->roce_pd->local_dma_lkey;
625 lnk->wr_tx_v2_ib->next = NULL;
626 lnk->wr_tx_v2_ib->sg_list = lnk->wr_tx_v2_sge;
627 lnk->wr_tx_v2_ib->num_sge = 1;
628 lnk->wr_tx_v2_ib->opcode = IB_WR_SEND;
629 lnk->wr_tx_v2_ib->send_flags =
630 IB_SEND_SIGNALED | IB_SEND_SOLICITED;
633 /* With SMC-Rv2 there can be messages larger than SMC_WR_TX_SIZE.
634 * Each ib_recv_wr gets 2 sges, the second one is a spillover buffer
635 * and the same buffer for all sges. When a larger message arrived then
636 * the content of the first small sge is copied to the beginning of
637 * the larger spillover buffer, allowing easy data mapping.
639 for (i = 0; i < lnk->wr_rx_cnt; i++) {
640 int x = i * sges_per_buf;
642 lnk->wr_rx_sges[x].addr =
643 lnk->wr_rx_dma_addr + i * SMC_WR_BUF_SIZE;
644 lnk->wr_rx_sges[x].length = SMC_WR_TX_SIZE;
645 lnk->wr_rx_sges[x].lkey = lnk->roce_pd->local_dma_lkey;
646 if (lnk->lgr->smc_version == SMC_V2) {
647 lnk->wr_rx_sges[x + 1].addr =
648 lnk->wr_rx_v2_dma_addr + SMC_WR_TX_SIZE;
649 lnk->wr_rx_sges[x + 1].length =
650 SMC_WR_BUF_V2_SIZE - SMC_WR_TX_SIZE;
651 lnk->wr_rx_sges[x + 1].lkey =
652 lnk->roce_pd->local_dma_lkey;
654 lnk->wr_rx_ibs[i].next = NULL;
655 lnk->wr_rx_ibs[i].sg_list = &lnk->wr_rx_sges[x];
656 lnk->wr_rx_ibs[i].num_sge = sges_per_buf;
658 lnk->wr_reg.wr.next = NULL;
659 lnk->wr_reg.wr.num_sge = 0;
660 lnk->wr_reg.wr.send_flags = IB_SEND_SIGNALED;
661 lnk->wr_reg.wr.opcode = IB_WR_REG_MR;
662 lnk->wr_reg.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE;
665 void smc_wr_free_link(struct smc_link *lnk)
667 struct ib_device *ibdev;
671 ibdev = lnk->smcibdev->ibdev;
673 smc_wr_wakeup_reg_wait(lnk);
674 smc_wr_wakeup_tx_wait(lnk);
676 if (smc_wr_tx_wait_no_pending_sends(lnk))
677 memset(lnk->wr_tx_mask, 0,
678 BITS_TO_LONGS(SMC_WR_BUF_CNT) *
679 sizeof(*lnk->wr_tx_mask));
680 wait_event(lnk->wr_reg_wait, (!atomic_read(&lnk->wr_reg_refcnt)));
681 wait_event(lnk->wr_tx_wait, (!atomic_read(&lnk->wr_tx_refcnt)));
683 if (lnk->wr_rx_dma_addr) {
684 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
685 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
687 lnk->wr_rx_dma_addr = 0;
689 if (lnk->wr_rx_v2_dma_addr) {
690 ib_dma_unmap_single(ibdev, lnk->wr_rx_v2_dma_addr,
693 lnk->wr_rx_v2_dma_addr = 0;
695 if (lnk->wr_tx_dma_addr) {
696 ib_dma_unmap_single(ibdev, lnk->wr_tx_dma_addr,
697 SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
699 lnk->wr_tx_dma_addr = 0;
701 if (lnk->wr_tx_v2_dma_addr) {
702 ib_dma_unmap_single(ibdev, lnk->wr_tx_v2_dma_addr,
705 lnk->wr_tx_v2_dma_addr = 0;
709 void smc_wr_free_lgr_mem(struct smc_link_group *lgr)
711 if (lgr->smc_version < SMC_V2)
714 kfree(lgr->wr_rx_buf_v2);
715 lgr->wr_rx_buf_v2 = NULL;
716 kfree(lgr->wr_tx_buf_v2);
717 lgr->wr_tx_buf_v2 = NULL;
720 void smc_wr_free_link_mem(struct smc_link *lnk)
722 kfree(lnk->wr_tx_v2_ib);
723 lnk->wr_tx_v2_ib = NULL;
724 kfree(lnk->wr_tx_v2_sge);
725 lnk->wr_tx_v2_sge = NULL;
726 kfree(lnk->wr_tx_v2_pend);
727 lnk->wr_tx_v2_pend = NULL;
728 kfree(lnk->wr_tx_compl);
729 lnk->wr_tx_compl = NULL;
730 kfree(lnk->wr_tx_pends);
731 lnk->wr_tx_pends = NULL;
732 kfree(lnk->wr_tx_mask);
733 lnk->wr_tx_mask = NULL;
734 kfree(lnk->wr_tx_sges);
735 lnk->wr_tx_sges = NULL;
736 kfree(lnk->wr_tx_rdma_sges);
737 lnk->wr_tx_rdma_sges = NULL;
738 kfree(lnk->wr_rx_sges);
739 lnk->wr_rx_sges = NULL;
740 kfree(lnk->wr_tx_rdmas);
741 lnk->wr_tx_rdmas = NULL;
742 kfree(lnk->wr_rx_ibs);
743 lnk->wr_rx_ibs = NULL;
744 kfree(lnk->wr_tx_ibs);
745 lnk->wr_tx_ibs = NULL;
746 kfree(lnk->wr_tx_bufs);
747 lnk->wr_tx_bufs = NULL;
748 kfree(lnk->wr_rx_bufs);
749 lnk->wr_rx_bufs = NULL;
752 int smc_wr_alloc_lgr_mem(struct smc_link_group *lgr)
754 if (lgr->smc_version < SMC_V2)
757 lgr->wr_rx_buf_v2 = kzalloc(SMC_WR_BUF_V2_SIZE, GFP_KERNEL);
758 if (!lgr->wr_rx_buf_v2)
760 lgr->wr_tx_buf_v2 = kzalloc(SMC_WR_BUF_V2_SIZE, GFP_KERNEL);
761 if (!lgr->wr_tx_buf_v2) {
762 kfree(lgr->wr_rx_buf_v2);
768 int smc_wr_alloc_link_mem(struct smc_link *link)
770 int sges_per_buf = link->lgr->smc_version == SMC_V2 ? 2 : 1;
772 /* allocate link related memory */
773 link->wr_tx_bufs = kcalloc(SMC_WR_BUF_CNT, SMC_WR_BUF_SIZE, GFP_KERNEL);
774 if (!link->wr_tx_bufs)
776 link->wr_rx_bufs = kcalloc(SMC_WR_BUF_CNT * 3, SMC_WR_BUF_SIZE,
778 if (!link->wr_rx_bufs)
779 goto no_mem_wr_tx_bufs;
780 link->wr_tx_ibs = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_ibs[0]),
782 if (!link->wr_tx_ibs)
783 goto no_mem_wr_rx_bufs;
784 link->wr_rx_ibs = kcalloc(SMC_WR_BUF_CNT * 3,
785 sizeof(link->wr_rx_ibs[0]),
787 if (!link->wr_rx_ibs)
788 goto no_mem_wr_tx_ibs;
789 link->wr_tx_rdmas = kcalloc(SMC_WR_BUF_CNT,
790 sizeof(link->wr_tx_rdmas[0]),
792 if (!link->wr_tx_rdmas)
793 goto no_mem_wr_rx_ibs;
794 link->wr_tx_rdma_sges = kcalloc(SMC_WR_BUF_CNT,
795 sizeof(link->wr_tx_rdma_sges[0]),
797 if (!link->wr_tx_rdma_sges)
798 goto no_mem_wr_tx_rdmas;
799 link->wr_tx_sges = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_sges[0]),
801 if (!link->wr_tx_sges)
802 goto no_mem_wr_tx_rdma_sges;
803 link->wr_rx_sges = kcalloc(SMC_WR_BUF_CNT * 3,
804 sizeof(link->wr_rx_sges[0]) * sges_per_buf,
806 if (!link->wr_rx_sges)
807 goto no_mem_wr_tx_sges;
808 link->wr_tx_mask = kcalloc(BITS_TO_LONGS(SMC_WR_BUF_CNT),
809 sizeof(*link->wr_tx_mask),
811 if (!link->wr_tx_mask)
812 goto no_mem_wr_rx_sges;
813 link->wr_tx_pends = kcalloc(SMC_WR_BUF_CNT,
814 sizeof(link->wr_tx_pends[0]),
816 if (!link->wr_tx_pends)
817 goto no_mem_wr_tx_mask;
818 link->wr_tx_compl = kcalloc(SMC_WR_BUF_CNT,
819 sizeof(link->wr_tx_compl[0]),
821 if (!link->wr_tx_compl)
822 goto no_mem_wr_tx_pends;
824 if (link->lgr->smc_version == SMC_V2) {
825 link->wr_tx_v2_ib = kzalloc(sizeof(*link->wr_tx_v2_ib),
827 if (!link->wr_tx_v2_ib)
828 goto no_mem_tx_compl;
829 link->wr_tx_v2_sge = kzalloc(sizeof(*link->wr_tx_v2_sge),
831 if (!link->wr_tx_v2_sge)
833 link->wr_tx_v2_pend = kzalloc(sizeof(*link->wr_tx_v2_pend),
835 if (!link->wr_tx_v2_pend)
841 kfree(link->wr_tx_v2_sge);
843 kfree(link->wr_tx_v2_ib);
845 kfree(link->wr_tx_compl);
847 kfree(link->wr_tx_pends);
849 kfree(link->wr_tx_mask);
851 kfree(link->wr_rx_sges);
853 kfree(link->wr_tx_sges);
854 no_mem_wr_tx_rdma_sges:
855 kfree(link->wr_tx_rdma_sges);
857 kfree(link->wr_tx_rdmas);
859 kfree(link->wr_rx_ibs);
861 kfree(link->wr_tx_ibs);
863 kfree(link->wr_rx_bufs);
865 kfree(link->wr_tx_bufs);
870 void smc_wr_remove_dev(struct smc_ib_device *smcibdev)
872 tasklet_kill(&smcibdev->recv_tasklet);
873 tasklet_kill(&smcibdev->send_tasklet);
876 void smc_wr_add_dev(struct smc_ib_device *smcibdev)
878 tasklet_setup(&smcibdev->recv_tasklet, smc_wr_rx_tasklet_fn);
879 tasklet_setup(&smcibdev->send_tasklet, smc_wr_tx_tasklet_fn);
882 int smc_wr_create_link(struct smc_link *lnk)
884 struct ib_device *ibdev = lnk->smcibdev->ibdev;
887 smc_wr_tx_set_wr_id(&lnk->wr_tx_id, 0);
889 lnk->wr_rx_dma_addr = ib_dma_map_single(
890 ibdev, lnk->wr_rx_bufs, SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
892 if (ib_dma_mapping_error(ibdev, lnk->wr_rx_dma_addr)) {
893 lnk->wr_rx_dma_addr = 0;
897 if (lnk->lgr->smc_version == SMC_V2) {
898 lnk->wr_rx_v2_dma_addr = ib_dma_map_single(ibdev,
899 lnk->lgr->wr_rx_buf_v2, SMC_WR_BUF_V2_SIZE,
901 if (ib_dma_mapping_error(ibdev, lnk->wr_rx_v2_dma_addr)) {
902 lnk->wr_rx_v2_dma_addr = 0;
906 lnk->wr_tx_v2_dma_addr = ib_dma_map_single(ibdev,
907 lnk->lgr->wr_tx_buf_v2, SMC_WR_BUF_V2_SIZE,
909 if (ib_dma_mapping_error(ibdev, lnk->wr_tx_v2_dma_addr)) {
910 lnk->wr_tx_v2_dma_addr = 0;
915 lnk->wr_tx_dma_addr = ib_dma_map_single(
916 ibdev, lnk->wr_tx_bufs, SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
918 if (ib_dma_mapping_error(ibdev, lnk->wr_tx_dma_addr)) {
922 smc_wr_init_sge(lnk);
923 memset(lnk->wr_tx_mask, 0,
924 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
925 init_waitqueue_head(&lnk->wr_tx_wait);
926 atomic_set(&lnk->wr_tx_refcnt, 0);
927 init_waitqueue_head(&lnk->wr_reg_wait);
928 atomic_set(&lnk->wr_reg_refcnt, 0);
932 if (lnk->wr_rx_v2_dma_addr) {
933 ib_dma_unmap_single(ibdev, lnk->wr_rx_v2_dma_addr,
936 lnk->wr_rx_v2_dma_addr = 0;
938 if (lnk->wr_tx_v2_dma_addr) {
939 ib_dma_unmap_single(ibdev, lnk->wr_tx_v2_dma_addr,
942 lnk->wr_tx_v2_dma_addr = 0;
944 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
945 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
947 lnk->wr_rx_dma_addr = 0;