1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the TCP module.
9 * Version: @(#)tcp.h 1.0.5 05/23/93
17 #define FASTRETRANS_DEBUG 1
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
42 #include <net/mptcp.h>
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
49 extern struct inet_hashinfo tcp_hashinfo;
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS 48
57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
63 #define MAX_TCP_WINDOW 32767U
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS 1024
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL 600
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD 8
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS 16U
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE 14U
87 #define TCP_URG_VALID 0x0100
88 #define TCP_URG_NOTYET 0x0200
89 #define TCP_URG_READ 0x0400
91 #define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
98 #define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN ((unsigned)(HZ/25))
136 #define TCP_DELACK_MIN 4U
137 #define TCP_ATO_MIN 4U
139 #define TCP_RTO_MAX ((unsigned)(120*HZ))
140 #define TCP_RTO_MIN ((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144 * used as a fallback RTO for the
145 * initial data transmission if no
146 * valid RTT sample has been acquired,
147 * most likely due to retrans in 3WHS.
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 * for local resources.
153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
155 #define TCP_KEEPALIVE_INTVL (75*HZ)
157 #define MAX_TCP_KEEPIDLE 32767
158 #define MAX_TCP_KEEPINTVL 32767
159 #define MAX_TCP_KEEPCNT 127
160 #define MAX_TCP_SYNCNT 127
162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
166 * after this time. It should be equal
167 * (or greater than) TCP_TIMEWAIT_LEN
168 * to provide reliability equal to one
169 * provided by timewait state.
171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
172 * timestamps. It must be less than
173 * minimal timewait lifetime.
179 #define TCPOPT_NOP 1 /* Padding */
180 #define TCPOPT_EOL 0 /* End of options */
181 #define TCPOPT_MSS 2 /* Segment size negotiating */
182 #define TCPOPT_WINDOW 3 /* Window scaling */
183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
184 #define TCPOPT_SACK 5 /* SACK Block */
185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189 #define TCPOPT_EXP 254 /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193 #define TCPOPT_FASTOPEN_MAGIC 0xF989
194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
200 #define TCPOLEN_MSS 4
201 #define TCPOLEN_WINDOW 3
202 #define TCPOLEN_SACK_PERM 2
203 #define TCPOLEN_TIMESTAMP 10
204 #define TCPOLEN_MD5SIG 18
205 #define TCPOLEN_FASTOPEN_BASE 2
206 #define TCPOLEN_EXP_FASTOPEN_BASE 4
207 #define TCPOLEN_EXP_SMC_BASE 6
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED 12
211 #define TCPOLEN_WSCALE_ALIGNED 4
212 #define TCPOLEN_SACKPERM_ALIGNED 4
213 #define TCPOLEN_SACK_BASE 2
214 #define TCPOLEN_SACK_BASE_ALIGNED 4
215 #define TCPOLEN_SACK_PERBLOCK 8
216 #define TCPOLEN_MD5SIG_ALIGNED 20
217 #define TCPOLEN_MSS_ALIGNED 4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK 2 /* Socket is corked */
223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND 10
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define TFO_CLIENT_ENABLE 1
233 #define TFO_SERVER_ENABLE 2
234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
236 /* Accept SYN data w/o any cookie option */
237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
239 /* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
242 #define TFO_SERVER_WO_SOCKOPT1 0x400
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 return READ_ONCE(tcp_memory_pressure);
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
271 static inline bool before(__u32 seq1, __u32 seq2)
273 return (__s32)(seq1-seq2) < 0;
275 #define after(seq2, seq1) before(seq1, seq2)
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
280 return seq3 - seq2 >= seq1 - seq2;
283 static inline bool tcp_out_of_memory(struct sock *sk)
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 void sk_forced_mem_schedule(struct sock *sk, int size);
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
306 bool tcp_check_oom(struct sock *sk, int shift);
309 extern struct proto tcp_prot;
311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 void tcp_tasklet_init(void);
318 int tcp_v4_err(struct sk_buff *skb, u32);
320 void tcp_shutdown(struct sock *sk, int how);
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 struct pipe_inode_info *pipe, size_t len,
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 const unsigned int pkts)
355 struct inet_connection_sock *icsk = inet_csk(sk);
357 if (icsk->icsk_ack.quick) {
358 if (pkts >= icsk->icsk_ack.quick) {
359 icsk->icsk_ack.quick = 0;
360 /* Leaving quickack mode we deflate ATO. */
361 icsk->icsk_ack.ato = TCP_ATO_MIN;
363 icsk->icsk_ack.quick -= pkts;
368 #define TCP_ECN_QUEUE_CWR 2
369 #define TCP_ECN_DEMAND_CWR 4
370 #define TCP_ECN_SEEN 8
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
382 const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 struct request_sock *req, bool fastopen,
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname,
403 char __user *optval, unsigned int optlen);
404 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407 char __user *optval, unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 void tcp_data_ready(struct sock *sk);
415 int tcp_mmap(struct file *file, struct socket *sock,
416 struct vm_area_struct *vma);
418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419 struct tcp_options_received *opt_rx,
420 int estab, struct tcp_fastopen_cookie *foc);
421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424 * BPF SKB-less helpers
426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
427 struct tcphdr *th, u32 *cookie);
428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
429 struct tcphdr *th, u32 *cookie);
430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
431 const struct tcp_request_sock_ops *af_ops,
432 struct sock *sk, struct tcphdr *th);
434 * TCP v4 functions exported for the inet6 API
437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438 void tcp_v4_mtu_reduced(struct sock *sk);
439 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 struct request_sock *req,
443 struct sk_buff *skb);
444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 struct request_sock *req,
447 struct dst_entry *dst,
448 struct request_sock *req_unhash,
450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452 int tcp_connect(struct sock *sk);
453 enum tcp_synack_type {
458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 struct request_sock *req,
460 struct tcp_fastopen_cookie *foc,
461 enum tcp_synack_type synack_type);
462 int tcp_disconnect(struct sock *sk, int flags);
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 /* From syncookies.c */
469 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
470 struct request_sock *req,
471 struct dst_entry *dst, u32 tsoff);
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478 * This counter is used both as a hash input and partially encoded into
479 * the cookie value. A cookie is only validated further if the delta
480 * between the current counter value and the encoded one is less than this,
481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482 * the counter advances immediately after a cookie is generated).
484 #define MAX_SYNCOOKIE_AGE 2
485 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
486 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 /* syncookies: remember time of last synqueue overflow
489 * But do not dirty this field too often (once per second is enough)
490 * It is racy as we do not hold a lock, but race is very minor.
492 static inline void tcp_synq_overflow(const struct sock *sk)
494 unsigned int last_overflow;
495 unsigned int now = jiffies;
497 if (sk->sk_reuseport) {
498 struct sock_reuseport *reuse;
500 reuse = rcu_dereference(sk->sk_reuseport_cb);
502 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 if (!time_between32(now, last_overflow,
505 WRITE_ONCE(reuse->synq_overflow_ts, now);
510 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 if (!time_between32(now, last_overflow, last_overflow + HZ))
512 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
515 /* syncookies: no recent synqueue overflow on this listening socket? */
516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
518 unsigned int last_overflow;
519 unsigned int now = jiffies;
521 if (sk->sk_reuseport) {
522 struct sock_reuseport *reuse;
524 reuse = rcu_dereference(sk->sk_reuseport_cb);
526 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 return !time_between32(now, last_overflow - HZ,
529 TCP_SYNCOOKIE_VALID);
533 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
535 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 * then we're under synflood. However, we have to use
537 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 * which could lead to rejecting a valid syncookie.
542 return !time_between32(now, last_overflow - HZ,
543 last_overflow + TCP_SYNCOOKIE_VALID);
546 static inline u32 tcp_cookie_time(void)
548 u64 val = get_jiffies_64();
550 do_div(val, TCP_SYNCOOKIE_PERIOD);
554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558 bool cookie_timestamp_decode(const struct net *net,
559 struct tcp_options_received *opt);
560 bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 const struct net *net, const struct dst_entry *dst);
563 /* From net/ipv6/syncookies.c */
564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 const struct tcphdr *th, u16 *mssp);
570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 void tcp_retransmit_timer(struct sock *sk);
579 void tcp_xmit_retransmit_queue(struct sock *);
580 void tcp_simple_retransmit(struct sock *);
581 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
584 TCP_FRAG_IN_WRITE_QUEUE,
585 TCP_FRAG_IN_RTX_QUEUE,
587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 struct sk_buff *skb, u32 len,
589 unsigned int mss_now, gfp_t gfp);
591 void tcp_send_probe0(struct sock *);
592 void tcp_send_partial(struct sock *);
593 int tcp_write_wakeup(struct sock *, int mib);
594 void tcp_send_fin(struct sock *sk);
595 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596 int tcp_send_synack(struct sock *);
597 void tcp_push_one(struct sock *, unsigned int mss_now);
598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599 void tcp_send_ack(struct sock *sk);
600 void tcp_send_delayed_ack(struct sock *sk);
601 void tcp_send_loss_probe(struct sock *sk);
602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 const struct sk_buff *next_skb);
607 void tcp_rearm_rto(struct sock *sk);
608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609 void tcp_reset(struct sock *sk);
610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611 void tcp_fin(struct sock *sk);
614 void tcp_init_xmit_timers(struct sock *);
615 static inline void tcp_clear_xmit_timers(struct sock *sk)
617 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
620 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
623 inet_csk_clear_xmit_timers(sk);
626 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
627 unsigned int tcp_current_mss(struct sock *sk);
629 /* Bound MSS / TSO packet size with the half of the window */
630 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
634 /* When peer uses tiny windows, there is no use in packetizing
635 * to sub-MSS pieces for the sake of SWS or making sure there
636 * are enough packets in the pipe for fast recovery.
638 * On the other hand, for extremely large MSS devices, handling
639 * smaller than MSS windows in this way does make sense.
641 if (tp->max_window > TCP_MSS_DEFAULT)
642 cutoff = (tp->max_window >> 1);
644 cutoff = tp->max_window;
646 if (cutoff && pktsize > cutoff)
647 return max_t(int, cutoff, 68U - tp->tcp_header_len);
653 void tcp_get_info(struct sock *, struct tcp_info *);
655 /* Read 'sendfile()'-style from a TCP socket */
656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
657 sk_read_actor_t recv_actor);
659 void tcp_initialize_rcv_mss(struct sock *sk);
661 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
662 int tcp_mss_to_mtu(struct sock *sk, int mss);
663 void tcp_mtup_init(struct sock *sk);
664 void tcp_init_buffer_space(struct sock *sk);
666 static inline void tcp_bound_rto(const struct sock *sk)
668 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
669 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
674 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
677 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
679 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
680 ntohl(TCP_FLAG_ACK) |
684 static inline void tcp_fast_path_on(struct tcp_sock *tp)
686 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
689 static inline void tcp_fast_path_check(struct sock *sk)
691 struct tcp_sock *tp = tcp_sk(sk);
693 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
695 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
697 tcp_fast_path_on(tp);
700 /* Compute the actual rto_min value */
701 static inline u32 tcp_rto_min(struct sock *sk)
703 const struct dst_entry *dst = __sk_dst_get(sk);
704 u32 rto_min = TCP_RTO_MIN;
706 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
707 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
711 static inline u32 tcp_rto_min_us(struct sock *sk)
713 return jiffies_to_usecs(tcp_rto_min(sk));
716 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
718 return dst_metric_locked(dst, RTAX_CC_ALGO);
721 /* Minimum RTT in usec. ~0 means not available. */
722 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
724 return minmax_get(&tp->rtt_min);
727 /* Compute the actual receive window we are currently advertising.
728 * Rcv_nxt can be after the window if our peer push more data
729 * than the offered window.
731 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
733 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740 /* Choose a new window, without checks for shrinking, and without
741 * scaling applied to the result. The caller does these things
742 * if necessary. This is a "raw" window selection.
744 u32 __tcp_select_window(struct sock *sk);
746 void tcp_send_window_probe(struct sock *sk);
748 /* TCP uses 32bit jiffies to save some space.
749 * Note that this is different from tcp_time_stamp, which
750 * historically has been the same until linux-4.13.
752 #define tcp_jiffies32 ((u32)jiffies)
755 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
756 * It is no longer tied to jiffies, but to 1 ms clock.
757 * Note: double check if you want to use tcp_jiffies32 instead of this.
759 #define TCP_TS_HZ 1000
761 static inline u64 tcp_clock_ns(void)
763 return ktime_get_ns();
766 static inline u64 tcp_clock_us(void)
768 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
771 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
772 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
774 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
777 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
778 static inline u32 tcp_ns_to_ts(u64 ns)
780 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
783 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
784 static inline u32 tcp_time_stamp_raw(void)
786 return tcp_ns_to_ts(tcp_clock_ns());
789 void tcp_mstamp_refresh(struct tcp_sock *tp);
791 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
793 return max_t(s64, t1 - t0, 0);
796 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
798 return tcp_ns_to_ts(skb->skb_mstamp_ns);
801 /* provide the departure time in us unit */
802 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
804 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
808 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
810 #define TCPHDR_FIN 0x01
811 #define TCPHDR_SYN 0x02
812 #define TCPHDR_RST 0x04
813 #define TCPHDR_PSH 0x08
814 #define TCPHDR_ACK 0x10
815 #define TCPHDR_URG 0x20
816 #define TCPHDR_ECE 0x40
817 #define TCPHDR_CWR 0x80
819 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
821 /* This is what the send packet queuing engine uses to pass
822 * TCP per-packet control information to the transmission code.
823 * We also store the host-order sequence numbers in here too.
824 * This is 44 bytes if IPV6 is enabled.
825 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
828 __u32 seq; /* Starting sequence number */
829 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
831 /* Note : tcp_tw_isn is used in input path only
832 * (isn chosen by tcp_timewait_state_process())
834 * tcp_gso_segs/size are used in write queue only,
835 * cf tcp_skb_pcount()/tcp_skb_mss()
843 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
845 __u8 sacked; /* State flags for SACK. */
846 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
847 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
848 #define TCPCB_LOST 0x04 /* SKB is lost */
849 #define TCPCB_TAGBITS 0x07 /* All tag bits */
850 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
851 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
852 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
855 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
856 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
857 eor:1, /* Is skb MSG_EOR marked? */
858 has_rxtstamp:1, /* SKB has a RX timestamp */
860 __u32 ack_seq; /* Sequence number ACK'd */
863 /* There is space for up to 24 bytes */
864 __u32 in_flight:30,/* Bytes in flight at transmit */
865 is_app_limited:1, /* cwnd not fully used? */
867 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
869 /* start of send pipeline phase */
871 /* when we reached the "delivered" count */
872 u64 delivered_mstamp;
873 } tx; /* only used for outgoing skbs */
875 struct inet_skb_parm h4;
876 #if IS_ENABLED(CONFIG_IPV6)
877 struct inet6_skb_parm h6;
879 } header; /* For incoming skbs */
882 struct sock *sk_redir;
888 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
890 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
892 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
895 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
897 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
900 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
902 return TCP_SKB_CB(skb)->bpf.sk_redir;
905 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
907 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
910 #if IS_ENABLED(CONFIG_IPV6)
911 /* This is the variant of inet6_iif() that must be used by TCP,
912 * as TCP moves IP6CB into a different location in skb->cb[]
914 static inline int tcp_v6_iif(const struct sk_buff *skb)
916 return TCP_SKB_CB(skb)->header.h6.iif;
919 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
921 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
923 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926 /* TCP_SKB_CB reference means this can not be used from early demux */
927 static inline int tcp_v6_sdif(const struct sk_buff *skb)
929 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
930 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
931 return TCP_SKB_CB(skb)->header.h6.iif;
937 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
939 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
940 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
941 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
947 /* TCP_SKB_CB reference means this can not be used from early demux */
948 static inline int tcp_v4_sdif(struct sk_buff *skb)
950 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
951 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
952 return TCP_SKB_CB(skb)->header.h4.iif;
957 /* Due to TSO, an SKB can be composed of multiple actual
958 * packets. To keep these tracked properly, we use this.
960 static inline int tcp_skb_pcount(const struct sk_buff *skb)
962 return TCP_SKB_CB(skb)->tcp_gso_segs;
965 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
967 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
970 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
972 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
975 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
976 static inline int tcp_skb_mss(const struct sk_buff *skb)
978 return TCP_SKB_CB(skb)->tcp_gso_size;
981 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
983 return likely(!TCP_SKB_CB(skb)->eor);
986 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
987 const struct sk_buff *from)
989 return likely(tcp_skb_can_collapse_to(to) &&
990 mptcp_skb_can_collapse(to, from));
993 /* Events passed to congestion control interface */
995 CA_EVENT_TX_START, /* first transmit when no packets in flight */
996 CA_EVENT_CWND_RESTART, /* congestion window restart */
997 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
998 CA_EVENT_LOSS, /* loss timeout */
999 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1000 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1003 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1004 enum tcp_ca_ack_event_flags {
1005 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1006 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1007 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1011 * Interface for adding new TCP congestion control handlers
1013 #define TCP_CA_NAME_MAX 16
1014 #define TCP_CA_MAX 128
1015 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1017 #define TCP_CA_UNSPEC 0
1019 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1020 #define TCP_CONG_NON_RESTRICTED 0x1
1021 /* Requires ECN/ECT set on all packets */
1022 #define TCP_CONG_NEEDS_ECN 0x2
1023 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1033 /* A rate sample measures the number of (original/retransmitted) data
1034 * packets delivered "delivered" over an interval of time "interval_us".
1035 * The tcp_rate.c code fills in the rate sample, and congestion
1036 * control modules that define a cong_control function to run at the end
1037 * of ACK processing can optionally chose to consult this sample when
1038 * setting cwnd and pacing rate.
1039 * A sample is invalid if "delivered" or "interval_us" is negative.
1041 struct rate_sample {
1042 u64 prior_mstamp; /* starting timestamp for interval */
1043 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1044 s32 delivered; /* number of packets delivered over interval */
1045 long interval_us; /* time for tp->delivered to incr "delivered" */
1046 u32 snd_interval_us; /* snd interval for delivered packets */
1047 u32 rcv_interval_us; /* rcv interval for delivered packets */
1048 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1049 int losses; /* number of packets marked lost upon ACK */
1050 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1051 u32 prior_in_flight; /* in flight before this ACK */
1052 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1053 bool is_retrans; /* is sample from retransmission? */
1054 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1057 struct tcp_congestion_ops {
1058 struct list_head list;
1062 /* initialize private data (optional) */
1063 void (*init)(struct sock *sk);
1064 /* cleanup private data (optional) */
1065 void (*release)(struct sock *sk);
1067 /* return slow start threshold (required) */
1068 u32 (*ssthresh)(struct sock *sk);
1069 /* do new cwnd calculation (required) */
1070 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1071 /* call before changing ca_state (optional) */
1072 void (*set_state)(struct sock *sk, u8 new_state);
1073 /* call when cwnd event occurs (optional) */
1074 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1075 /* call when ack arrives (optional) */
1076 void (*in_ack_event)(struct sock *sk, u32 flags);
1077 /* new value of cwnd after loss (required) */
1078 u32 (*undo_cwnd)(struct sock *sk);
1079 /* hook for packet ack accounting (optional) */
1080 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1081 /* override sysctl_tcp_min_tso_segs */
1082 u32 (*min_tso_segs)(struct sock *sk);
1083 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1084 u32 (*sndbuf_expand)(struct sock *sk);
1085 /* call when packets are delivered to update cwnd and pacing rate,
1086 * after all the ca_state processing. (optional)
1088 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1089 /* get info for inet_diag (optional) */
1090 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1091 union tcp_cc_info *info);
1093 char name[TCP_CA_NAME_MAX];
1094 struct module *owner;
1097 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1100 void tcp_assign_congestion_control(struct sock *sk);
1101 void tcp_init_congestion_control(struct sock *sk);
1102 void tcp_cleanup_congestion_control(struct sock *sk);
1103 int tcp_set_default_congestion_control(struct net *net, const char *name);
1104 void tcp_get_default_congestion_control(struct net *net, char *name);
1105 void tcp_get_available_congestion_control(char *buf, size_t len);
1106 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107 int tcp_set_allowed_congestion_control(char *allowed);
1108 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109 bool reinit, bool cap_net_admin);
1110 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1113 u32 tcp_reno_ssthresh(struct sock *sk);
1114 u32 tcp_reno_undo_cwnd(struct sock *sk);
1115 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116 extern struct tcp_congestion_ops tcp_reno;
1118 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1122 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1124 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1132 const struct inet_connection_sock *icsk = inet_csk(sk);
1134 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1137 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1139 struct inet_connection_sock *icsk = inet_csk(sk);
1141 if (icsk->icsk_ca_ops->set_state)
1142 icsk->icsk_ca_ops->set_state(sk, ca_state);
1143 icsk->icsk_ca_state = ca_state;
1146 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1148 const struct inet_connection_sock *icsk = inet_csk(sk);
1150 if (icsk->icsk_ca_ops->cwnd_event)
1151 icsk->icsk_ca_ops->cwnd_event(sk, event);
1154 /* From tcp_rate.c */
1155 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157 struct rate_sample *rs);
1158 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159 bool is_sack_reneg, struct rate_sample *rs);
1160 void tcp_rate_check_app_limited(struct sock *sk);
1162 /* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1169 static inline int tcp_is_sack(const struct tcp_sock *tp)
1171 return likely(tp->rx_opt.sack_ok);
1174 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1176 return !tcp_is_sack(tp);
1179 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1181 return tp->sacked_out + tp->lost_out;
1184 /* This determines how many packets are "in the network" to the best
1185 * of our knowledge. In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1192 * Read this equation as:
1194 * "Packets sent once on transmission queue" MINUS
1195 * "Packets left network, but not honestly ACKed yet" PLUS
1196 * "Packets fast retransmitted"
1198 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1200 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1203 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1205 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1207 return tp->snd_cwnd < tp->snd_ssthresh;
1210 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1212 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1215 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1217 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218 (1 << inet_csk(sk)->icsk_ca_state);
1221 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1225 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1227 const struct tcp_sock *tp = tcp_sk(sk);
1229 if (tcp_in_cwnd_reduction(sk))
1230 return tp->snd_ssthresh;
1232 return max(tp->snd_ssthresh,
1233 ((tp->snd_cwnd >> 1) +
1234 (tp->snd_cwnd >> 2)));
1237 /* Use define here intentionally to get WARN_ON location shown at the caller */
1238 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1240 void tcp_enter_cwr(struct sock *sk);
1241 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1243 /* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1246 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1251 /* Returns end sequence number of the receiver's advertised window */
1252 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1254 return tp->snd_una + tp->snd_wnd;
1257 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1263 * cwnd is 10 (IW10), but application sends 9 frames.
1264 * We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1270 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1272 const struct tcp_sock *tp = tcp_sk(sk);
1274 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275 if (tcp_in_slow_start(tp))
1276 return tp->snd_cwnd < 2 * tp->max_packets_out;
1278 return tp->is_cwnd_limited;
1281 /* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1287 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1289 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1292 /* Return in jiffies the delay before one skb is sent.
1293 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1295 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1296 const struct sk_buff *skb)
1298 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1300 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1302 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1305 static inline void tcp_reset_xmit_timer(struct sock *sk,
1308 const unsigned long max_when,
1309 const struct sk_buff *skb)
1311 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1315 /* Something is really bad, we could not queue an additional packet,
1316 * because qdisc is full or receiver sent a 0 window, or we are paced.
1317 * We do not want to add fuel to the fire, or abort too early,
1318 * so make sure the timer we arm now is at least 200ms in the future,
1319 * regardless of current icsk_rto value (as it could be ~2ms)
1321 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1323 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1326 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1327 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1328 unsigned long max_when)
1330 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1332 return (unsigned long)min_t(u64, when, max_when);
1335 static inline void tcp_check_probe_timer(struct sock *sk)
1337 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1338 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1339 tcp_probe0_base(sk), TCP_RTO_MAX,
1343 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1348 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1354 * Calculate(/check) TCP checksum
1356 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1357 __be32 daddr, __wsum base)
1359 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1362 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1364 return !skb_csum_unnecessary(skb) &&
1365 __skb_checksum_complete(skb);
1368 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1369 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1370 void tcp_set_state(struct sock *sk, int state);
1371 void tcp_done(struct sock *sk);
1372 int tcp_abort(struct sock *sk, int err);
1374 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1377 rx_opt->num_sacks = 0;
1380 u32 tcp_default_init_rwnd(u32 mss);
1381 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1383 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1385 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1386 struct tcp_sock *tp = tcp_sk(sk);
1389 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1390 ca_ops->cong_control)
1392 delta = tcp_jiffies32 - tp->lsndtime;
1393 if (delta > inet_csk(sk)->icsk_rto)
1394 tcp_cwnd_restart(sk, delta);
1397 /* Determine a window scaling and initial window to offer. */
1398 void tcp_select_initial_window(const struct sock *sk, int __space,
1399 __u32 mss, __u32 *rcv_wnd,
1400 __u32 *window_clamp, int wscale_ok,
1401 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1403 static inline int tcp_win_from_space(const struct sock *sk, int space)
1405 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1407 return tcp_adv_win_scale <= 0 ?
1408 (space>>(-tcp_adv_win_scale)) :
1409 space - (space>>tcp_adv_win_scale);
1412 /* Note: caller must be prepared to deal with negative returns */
1413 static inline int tcp_space(const struct sock *sk)
1415 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1416 READ_ONCE(sk->sk_backlog.len) -
1417 atomic_read(&sk->sk_rmem_alloc));
1420 static inline int tcp_full_space(const struct sock *sk)
1422 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1425 extern void tcp_openreq_init_rwin(struct request_sock *req,
1426 const struct sock *sk_listener,
1427 const struct dst_entry *dst);
1429 void tcp_enter_memory_pressure(struct sock *sk);
1430 void tcp_leave_memory_pressure(struct sock *sk);
1432 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1434 struct net *net = sock_net((struct sock *)tp);
1436 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1439 static inline int keepalive_time_when(const struct tcp_sock *tp)
1441 struct net *net = sock_net((struct sock *)tp);
1443 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1446 static inline int keepalive_probes(const struct tcp_sock *tp)
1448 struct net *net = sock_net((struct sock *)tp);
1450 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1453 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1455 const struct inet_connection_sock *icsk = &tp->inet_conn;
1457 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1458 tcp_jiffies32 - tp->rcv_tstamp);
1461 static inline int tcp_fin_time(const struct sock *sk)
1463 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1464 const int rto = inet_csk(sk)->icsk_rto;
1466 if (fin_timeout < (rto << 2) - (rto >> 1))
1467 fin_timeout = (rto << 2) - (rto >> 1);
1472 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1475 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1477 if (unlikely(!time_before32(ktime_get_seconds(),
1478 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1481 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1482 * then following tcp messages have valid values. Ignore 0 value,
1483 * or else 'negative' tsval might forbid us to accept their packets.
1485 if (!rx_opt->ts_recent)
1490 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1493 if (tcp_paws_check(rx_opt, 0))
1496 /* RST segments are not recommended to carry timestamp,
1497 and, if they do, it is recommended to ignore PAWS because
1498 "their cleanup function should take precedence over timestamps."
1499 Certainly, it is mistake. It is necessary to understand the reasons
1500 of this constraint to relax it: if peer reboots, clock may go
1501 out-of-sync and half-open connections will not be reset.
1502 Actually, the problem would be not existing if all
1503 the implementations followed draft about maintaining clock
1504 via reboots. Linux-2.2 DOES NOT!
1506 However, we can relax time bounds for RST segments to MSL.
1508 if (rst && !time_before32(ktime_get_seconds(),
1509 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1514 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1515 int mib_idx, u32 *last_oow_ack_time);
1517 static inline void tcp_mib_init(struct net *net)
1520 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1521 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1522 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1523 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1527 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1529 tp->lost_skb_hint = NULL;
1532 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1534 tcp_clear_retrans_hints_partial(tp);
1535 tp->retransmit_skb_hint = NULL;
1538 union tcp_md5_addr {
1540 #if IS_ENABLED(CONFIG_IPV6)
1545 /* - key database */
1546 struct tcp_md5sig_key {
1547 struct hlist_node node;
1549 u8 family; /* AF_INET or AF_INET6 */
1551 union tcp_md5_addr addr;
1552 int l3index; /* set if key added with L3 scope */
1553 u8 key[TCP_MD5SIG_MAXKEYLEN];
1554 struct rcu_head rcu;
1558 struct tcp_md5sig_info {
1559 struct hlist_head head;
1560 struct rcu_head rcu;
1563 /* - pseudo header */
1564 struct tcp4_pseudohdr {
1572 struct tcp6_pseudohdr {
1573 struct in6_addr saddr;
1574 struct in6_addr daddr;
1576 __be32 protocol; /* including padding */
1579 union tcp_md5sum_block {
1580 struct tcp4_pseudohdr ip4;
1581 #if IS_ENABLED(CONFIG_IPV6)
1582 struct tcp6_pseudohdr ip6;
1586 /* - pool: digest algorithm, hash description and scratch buffer */
1587 struct tcp_md5sig_pool {
1588 struct ahash_request *md5_req;
1593 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1594 const struct sock *sk, const struct sk_buff *skb);
1595 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1596 int family, u8 prefixlen, int l3index,
1597 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1598 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1599 int family, u8 prefixlen, int l3index);
1600 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1601 const struct sock *addr_sk);
1603 #ifdef CONFIG_TCP_MD5SIG
1604 #include <linux/jump_label.h>
1605 extern struct static_key_false tcp_md5_needed;
1606 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1607 const union tcp_md5_addr *addr,
1609 static inline struct tcp_md5sig_key *
1610 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1611 const union tcp_md5_addr *addr, int family)
1613 if (!static_branch_unlikely(&tcp_md5_needed))
1615 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1618 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1620 static inline struct tcp_md5sig_key *
1621 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1622 const union tcp_md5_addr *addr, int family)
1626 #define tcp_twsk_md5_key(twsk) NULL
1629 bool tcp_alloc_md5sig_pool(void);
1631 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1632 static inline void tcp_put_md5sig_pool(void)
1637 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1638 unsigned int header_len);
1639 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1640 const struct tcp_md5sig_key *key);
1642 /* From tcp_fastopen.c */
1643 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1644 struct tcp_fastopen_cookie *cookie);
1645 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1646 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1648 struct tcp_fastopen_request {
1649 /* Fast Open cookie. Size 0 means a cookie request */
1650 struct tcp_fastopen_cookie cookie;
1651 struct msghdr *data; /* data in MSG_FASTOPEN */
1653 int copied; /* queued in tcp_connect() */
1654 struct ubuf_info *uarg;
1656 void tcp_free_fastopen_req(struct tcp_sock *tp);
1657 void tcp_fastopen_destroy_cipher(struct sock *sk);
1658 void tcp_fastopen_ctx_destroy(struct net *net);
1659 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1660 void *primary_key, void *backup_key);
1661 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1662 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1663 struct request_sock *req,
1664 struct tcp_fastopen_cookie *foc,
1665 const struct dst_entry *dst);
1666 void tcp_fastopen_init_key_once(struct net *net);
1667 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1668 struct tcp_fastopen_cookie *cookie);
1669 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1670 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1671 #define TCP_FASTOPEN_KEY_MAX 2
1672 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1673 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1675 /* Fastopen key context */
1676 struct tcp_fastopen_context {
1677 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1679 struct rcu_head rcu;
1682 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1683 void tcp_fastopen_active_disable(struct sock *sk);
1684 bool tcp_fastopen_active_should_disable(struct sock *sk);
1685 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1686 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1688 /* Caller needs to wrap with rcu_read_(un)lock() */
1690 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1692 struct tcp_fastopen_context *ctx;
1694 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1696 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1701 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1702 const struct tcp_fastopen_cookie *orig)
1704 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1705 orig->len == foc->len &&
1706 !memcmp(orig->val, foc->val, foc->len))
1712 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1717 /* Latencies incurred by various limits for a sender. They are
1718 * chronograph-like stats that are mutually exclusive.
1722 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1723 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1724 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1728 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1729 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1731 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1732 * the same memory storage than skb->destructor/_skb_refdst
1734 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1736 skb->destructor = NULL;
1737 skb->_skb_refdst = 0UL;
1740 #define tcp_skb_tsorted_save(skb) { \
1741 unsigned long _save = skb->_skb_refdst; \
1742 skb->_skb_refdst = 0UL;
1744 #define tcp_skb_tsorted_restore(skb) \
1745 skb->_skb_refdst = _save; \
1748 void tcp_write_queue_purge(struct sock *sk);
1750 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1752 return skb_rb_first(&sk->tcp_rtx_queue);
1755 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1757 return skb_rb_last(&sk->tcp_rtx_queue);
1760 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1762 return skb_peek(&sk->sk_write_queue);
1765 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1767 return skb_peek_tail(&sk->sk_write_queue);
1770 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1771 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1773 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1775 return skb_peek(&sk->sk_write_queue);
1778 static inline bool tcp_skb_is_last(const struct sock *sk,
1779 const struct sk_buff *skb)
1781 return skb_queue_is_last(&sk->sk_write_queue, skb);
1785 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1788 * Since the write queue can have a temporary empty skb in it,
1789 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1791 static inline bool tcp_write_queue_empty(const struct sock *sk)
1793 const struct tcp_sock *tp = tcp_sk(sk);
1795 return tp->write_seq == tp->snd_nxt;
1798 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1800 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1803 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1805 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1808 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1810 __skb_queue_tail(&sk->sk_write_queue, skb);
1812 /* Queue it, remembering where we must start sending. */
1813 if (sk->sk_write_queue.next == skb)
1814 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1817 /* Insert new before skb on the write queue of sk. */
1818 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1819 struct sk_buff *skb,
1822 __skb_queue_before(&sk->sk_write_queue, skb, new);
1825 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1827 tcp_skb_tsorted_anchor_cleanup(skb);
1828 __skb_unlink(skb, &sk->sk_write_queue);
1831 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1833 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1835 tcp_skb_tsorted_anchor_cleanup(skb);
1836 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1839 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1841 list_del(&skb->tcp_tsorted_anchor);
1842 tcp_rtx_queue_unlink(skb, sk);
1843 sk_wmem_free_skb(sk, skb);
1846 static inline void tcp_push_pending_frames(struct sock *sk)
1848 if (tcp_send_head(sk)) {
1849 struct tcp_sock *tp = tcp_sk(sk);
1851 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1855 /* Start sequence of the skb just after the highest skb with SACKed
1856 * bit, valid only if sacked_out > 0 or when the caller has ensured
1857 * validity by itself.
1859 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1861 if (!tp->sacked_out)
1864 if (tp->highest_sack == NULL)
1867 return TCP_SKB_CB(tp->highest_sack)->seq;
1870 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1872 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1875 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1877 return tcp_sk(sk)->highest_sack;
1880 static inline void tcp_highest_sack_reset(struct sock *sk)
1882 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1885 /* Called when old skb is about to be deleted and replaced by new skb */
1886 static inline void tcp_highest_sack_replace(struct sock *sk,
1887 struct sk_buff *old,
1888 struct sk_buff *new)
1890 if (old == tcp_highest_sack(sk))
1891 tcp_sk(sk)->highest_sack = new;
1894 /* This helper checks if socket has IP_TRANSPARENT set */
1895 static inline bool inet_sk_transparent(const struct sock *sk)
1897 switch (sk->sk_state) {
1899 return inet_twsk(sk)->tw_transparent;
1900 case TCP_NEW_SYN_RECV:
1901 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1903 return inet_sk(sk)->transparent;
1906 /* Determines whether this is a thin stream (which may suffer from
1907 * increased latency). Used to trigger latency-reducing mechanisms.
1909 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1911 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1915 enum tcp_seq_states {
1916 TCP_SEQ_STATE_LISTENING,
1917 TCP_SEQ_STATE_ESTABLISHED,
1920 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1921 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1922 void tcp_seq_stop(struct seq_file *seq, void *v);
1924 struct tcp_seq_afinfo {
1928 struct tcp_iter_state {
1929 struct seq_net_private p;
1930 enum tcp_seq_states state;
1931 struct sock *syn_wait_sk;
1932 int bucket, offset, sbucket, num;
1936 extern struct request_sock_ops tcp_request_sock_ops;
1937 extern struct request_sock_ops tcp6_request_sock_ops;
1939 void tcp_v4_destroy_sock(struct sock *sk);
1941 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1942 netdev_features_t features);
1943 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1944 int tcp_gro_complete(struct sk_buff *skb);
1946 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1948 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1950 struct net *net = sock_net((struct sock *)tp);
1951 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1954 /* @wake is one when sk_stream_write_space() calls us.
1955 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1956 * This mimics the strategy used in sock_def_write_space().
1958 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1960 const struct tcp_sock *tp = tcp_sk(sk);
1961 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1962 READ_ONCE(tp->snd_nxt);
1964 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1967 #ifdef CONFIG_PROC_FS
1968 int tcp4_proc_init(void);
1969 void tcp4_proc_exit(void);
1972 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1973 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1974 const struct tcp_request_sock_ops *af_ops,
1975 struct sock *sk, struct sk_buff *skb);
1977 /* TCP af-specific functions */
1978 struct tcp_sock_af_ops {
1979 #ifdef CONFIG_TCP_MD5SIG
1980 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1981 const struct sock *addr_sk);
1982 int (*calc_md5_hash)(char *location,
1983 const struct tcp_md5sig_key *md5,
1984 const struct sock *sk,
1985 const struct sk_buff *skb);
1986 int (*md5_parse)(struct sock *sk,
1988 char __user *optval,
1993 struct tcp_request_sock_ops {
1995 #ifdef CONFIG_TCP_MD5SIG
1996 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1997 const struct sock *addr_sk);
1998 int (*calc_md5_hash) (char *location,
1999 const struct tcp_md5sig_key *md5,
2000 const struct sock *sk,
2001 const struct sk_buff *skb);
2003 void (*init_req)(struct request_sock *req,
2004 const struct sock *sk_listener,
2005 struct sk_buff *skb);
2006 #ifdef CONFIG_SYN_COOKIES
2007 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2010 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2011 const struct request_sock *req);
2012 u32 (*init_seq)(const struct sk_buff *skb);
2013 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2014 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2015 struct flowi *fl, struct request_sock *req,
2016 struct tcp_fastopen_cookie *foc,
2017 enum tcp_synack_type synack_type);
2020 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2021 #if IS_ENABLED(CONFIG_IPV6)
2022 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2025 #ifdef CONFIG_SYN_COOKIES
2026 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2027 const struct sock *sk, struct sk_buff *skb,
2030 tcp_synq_overflow(sk);
2031 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2032 return ops->cookie_init_seq(skb, mss);
2035 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2036 const struct sock *sk, struct sk_buff *skb,
2043 int tcpv4_offload_init(void);
2045 void tcp_v4_init(void);
2046 void tcp_init(void);
2048 /* tcp_recovery.c */
2049 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2050 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2051 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2053 extern void tcp_rack_mark_lost(struct sock *sk);
2054 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2056 extern void tcp_rack_reo_timeout(struct sock *sk);
2057 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2059 /* At how many usecs into the future should the RTO fire? */
2060 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2062 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2063 u32 rto = inet_csk(sk)->icsk_rto;
2064 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2066 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2070 * Save and compile IPv4 options, return a pointer to it
2072 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2073 struct sk_buff *skb)
2075 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2076 struct ip_options_rcu *dopt = NULL;
2079 int opt_size = sizeof(*dopt) + opt->optlen;
2081 dopt = kmalloc(opt_size, GFP_ATOMIC);
2082 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2090 /* locally generated TCP pure ACKs have skb->truesize == 2
2091 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2092 * This is much faster than dissecting the packet to find out.
2093 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2095 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2097 return skb->truesize == 2;
2100 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2105 static inline int tcp_inq(struct sock *sk)
2107 struct tcp_sock *tp = tcp_sk(sk);
2110 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2112 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2114 before(tp->urg_seq, tp->copied_seq) ||
2115 !before(tp->urg_seq, tp->rcv_nxt)) {
2117 answ = tp->rcv_nxt - tp->copied_seq;
2119 /* Subtract 1, if FIN was received */
2120 if (answ && sock_flag(sk, SOCK_DONE))
2123 answ = tp->urg_seq - tp->copied_seq;
2129 int tcp_peek_len(struct socket *sock);
2131 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2135 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2136 tp->segs_in += segs_in;
2137 if (skb->len > tcp_hdrlen(skb))
2138 tp->data_segs_in += segs_in;
2142 * TCP listen path runs lockless.
2143 * We forced "struct sock" to be const qualified to make sure
2144 * we don't modify one of its field by mistake.
2145 * Here, we increment sk_drops which is an atomic_t, so we can safely
2146 * make sock writable again.
2148 static inline void tcp_listendrop(const struct sock *sk)
2150 atomic_inc(&((struct sock *)sk)->sk_drops);
2151 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2154 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2157 * Interface for adding Upper Level Protocols over TCP
2160 #define TCP_ULP_NAME_MAX 16
2161 #define TCP_ULP_MAX 128
2162 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2164 struct tcp_ulp_ops {
2165 struct list_head list;
2167 /* initialize ulp */
2168 int (*init)(struct sock *sk);
2170 void (*update)(struct sock *sk, struct proto *p,
2171 void (*write_space)(struct sock *sk));
2173 void (*release)(struct sock *sk);
2175 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2176 size_t (*get_info_size)(const struct sock *sk);
2178 void (*clone)(const struct request_sock *req, struct sock *newsk,
2179 const gfp_t priority);
2181 char name[TCP_ULP_NAME_MAX];
2182 struct module *owner;
2184 int tcp_register_ulp(struct tcp_ulp_ops *type);
2185 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2186 int tcp_set_ulp(struct sock *sk, const char *name);
2187 void tcp_get_available_ulp(char *buf, size_t len);
2188 void tcp_cleanup_ulp(struct sock *sk);
2189 void tcp_update_ulp(struct sock *sk, struct proto *p,
2190 void (*write_space)(struct sock *sk));
2192 #define MODULE_ALIAS_TCP_ULP(name) \
2193 __MODULE_INFO(alias, alias_userspace, name); \
2194 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2199 #ifdef CONFIG_BPF_STREAM_PARSER
2200 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2201 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2203 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2206 #endif /* CONFIG_BPF_STREAM_PARSER */
2208 #ifdef CONFIG_NET_SOCK_MSG
2209 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2211 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2212 struct msghdr *msg, int len, int flags);
2213 #endif /* CONFIG_NET_SOCK_MSG */
2215 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2216 * is < 0, then the BPF op failed (for example if the loaded BPF
2217 * program does not support the chosen operation or there is no BPF
2221 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2223 struct bpf_sock_ops_kern sock_ops;
2226 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2227 if (sk_fullsock(sk)) {
2228 sock_ops.is_fullsock = 1;
2229 sock_owned_by_me(sk);
2235 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2237 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2239 ret = sock_ops.reply;
2245 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2247 u32 args[2] = {arg1, arg2};
2249 return tcp_call_bpf(sk, op, 2, args);
2252 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2255 u32 args[3] = {arg1, arg2, arg3};
2257 return tcp_call_bpf(sk, op, 3, args);
2261 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2266 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2271 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2279 static inline u32 tcp_timeout_init(struct sock *sk)
2283 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2286 timeout = TCP_TIMEOUT_INIT;
2290 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2294 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2301 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2303 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2306 static inline void tcp_bpf_rtt(struct sock *sk)
2308 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2309 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2312 #if IS_ENABLED(CONFIG_SMC)
2313 extern struct static_key_false tcp_have_smc;
2316 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2317 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2318 void (*cad)(struct sock *sk, u32 ack_seq));
2319 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2320 void clean_acked_data_flush(void);
2323 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2324 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2325 const struct tcp_sock *tp)
2327 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2328 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2331 /* Compute Earliest Departure Time for some control packets
2332 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2334 static inline u64 tcp_transmit_time(const struct sock *sk)
2336 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2337 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2338 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2340 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;