]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'phy-for-4.15-rc_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kisho...
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN3_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 #define GEN2_IRQ_RESET(type) do { \
140         I915_WRITE16(type##IMR, 0xffff); \
141         POSTING_READ16(type##IMR); \
142         I915_WRITE16(type##IER, 0); \
143         I915_WRITE16(type##IIR, 0xffff); \
144         POSTING_READ16(type##IIR); \
145         I915_WRITE16(type##IIR, 0xffff); \
146         POSTING_READ16(type##IIR); \
147 } while (0)
148
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153                                     i915_reg_t reg)
154 {
155         u32 val = I915_READ(reg);
156
157         if (val == 0)
158                 return;
159
160         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161              i915_mmio_reg_offset(reg), val);
162         I915_WRITE(reg, 0xffffffff);
163         POSTING_READ(reg);
164         I915_WRITE(reg, 0xffffffff);
165         POSTING_READ(reg);
166 }
167
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u16 val = I915_READ16(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE16(reg, 0xffff);
179         POSTING_READ16(reg);
180         I915_WRITE16(reg, 0xffff);
181         POSTING_READ16(reg);
182 }
183
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188         POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193         I915_WRITE(type##IER, (ier_val)); \
194         I915_WRITE(type##IMR, (imr_val)); \
195         POSTING_READ(type##IMR); \
196 } while (0)
197
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200         I915_WRITE16(type##IER, (ier_val)); \
201         I915_WRITE16(type##IMR, (imr_val)); \
202         POSTING_READ16(type##IMR); \
203 } while (0)
204
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211                                      uint32_t mask,
212                                      uint32_t bits)
213 {
214         uint32_t val;
215
216         lockdep_assert_held(&dev_priv->irq_lock);
217         WARN_ON(bits & ~mask);
218
219         val = I915_READ(PORT_HOTPLUG_EN);
220         val &= ~mask;
221         val |= bits;
222         I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238                                    uint32_t mask,
239                                    uint32_t bits)
240 {
241         spin_lock_irq(&dev_priv->irq_lock);
242         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243         spin_unlock_irq(&dev_priv->irq_lock);
244 }
245
246 /**
247  * ilk_update_display_irq - update DEIMR
248  * @dev_priv: driver private
249  * @interrupt_mask: mask of interrupt bits to update
250  * @enabled_irq_mask: mask of interrupt bits to enable
251  */
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253                             uint32_t interrupt_mask,
254                             uint32_t enabled_irq_mask)
255 {
256         uint32_t new_val;
257
258         lockdep_assert_held(&dev_priv->irq_lock);
259
260         WARN_ON(enabled_irq_mask & ~interrupt_mask);
261
262         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263                 return;
264
265         new_val = dev_priv->irq_mask;
266         new_val &= ~interrupt_mask;
267         new_val |= (~enabled_irq_mask & interrupt_mask);
268
269         if (new_val != dev_priv->irq_mask) {
270                 dev_priv->irq_mask = new_val;
271                 I915_WRITE(DEIMR, dev_priv->irq_mask);
272                 POSTING_READ(DEIMR);
273         }
274 }
275
276 /**
277  * ilk_update_gt_irq - update GTIMR
278  * @dev_priv: driver private
279  * @interrupt_mask: mask of interrupt bits to update
280  * @enabled_irq_mask: mask of interrupt bits to enable
281  */
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283                               uint32_t interrupt_mask,
284                               uint32_t enabled_irq_mask)
285 {
286         lockdep_assert_held(&dev_priv->irq_lock);
287
288         WARN_ON(enabled_irq_mask & ~interrupt_mask);
289
290         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291                 return;
292
293         dev_priv->gt_irq_mask &= ~interrupt_mask;
294         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
296 }
297
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
299 {
300         ilk_update_gt_irq(dev_priv, mask, mask);
301         POSTING_READ_FW(GTIMR);
302 }
303
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
305 {
306         ilk_update_gt_irq(dev_priv, mask, 0);
307 }
308
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
310 {
311         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
312 }
313
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
315 {
316         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
317 }
318
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
320 {
321         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
322 }
323
324 /**
325  * snb_update_pm_irq - update GEN6_PMIMR
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331                               uint32_t interrupt_mask,
332                               uint32_t enabled_irq_mask)
333 {
334         uint32_t new_val;
335
336         WARN_ON(enabled_irq_mask & ~interrupt_mask);
337
338         lockdep_assert_held(&dev_priv->irq_lock);
339
340         new_val = dev_priv->pm_imr;
341         new_val &= ~interrupt_mask;
342         new_val |= (~enabled_irq_mask & interrupt_mask);
343
344         if (new_val != dev_priv->pm_imr) {
345                 dev_priv->pm_imr = new_val;
346                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347                 POSTING_READ(gen6_pm_imr(dev_priv));
348         }
349 }
350
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
352 {
353         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354                 return;
355
356         snb_update_pm_irq(dev_priv, mask, mask);
357 }
358
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
360 {
361         snb_update_pm_irq(dev_priv, mask, 0);
362 }
363
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367                 return;
368
369         __gen6_mask_pm_irq(dev_priv, mask);
370 }
371
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
373 {
374         i915_reg_t reg = gen6_pm_iir(dev_priv);
375
376         lockdep_assert_held(&dev_priv->irq_lock);
377
378         I915_WRITE(reg, reset_mask);
379         I915_WRITE(reg, reset_mask);
380         POSTING_READ(reg);
381 }
382
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
384 {
385         lockdep_assert_held(&dev_priv->irq_lock);
386
387         dev_priv->pm_ier |= enable_mask;
388         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389         gen6_unmask_pm_irq(dev_priv, enable_mask);
390         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
391 }
392
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
394 {
395         lockdep_assert_held(&dev_priv->irq_lock);
396
397         dev_priv->pm_ier &= ~disable_mask;
398         __gen6_mask_pm_irq(dev_priv, disable_mask);
399         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400         /* though a barrier is missing here, but don't really need a one */
401 }
402
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
404 {
405         spin_lock_irq(&dev_priv->irq_lock);
406         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407         dev_priv->gt_pm.rps.pm_iir = 0;
408         spin_unlock_irq(&dev_priv->irq_lock);
409 }
410
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
412 {
413         struct intel_rps *rps = &dev_priv->gt_pm.rps;
414
415         if (READ_ONCE(rps->interrupts_enabled))
416                 return;
417
418         spin_lock_irq(&dev_priv->irq_lock);
419         WARN_ON_ONCE(rps->pm_iir);
420         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
421         rps->interrupts_enabled = true;
422         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
423
424         spin_unlock_irq(&dev_priv->irq_lock);
425 }
426
427 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
428 {
429         struct intel_rps *rps = &dev_priv->gt_pm.rps;
430
431         if (!READ_ONCE(rps->interrupts_enabled))
432                 return;
433
434         spin_lock_irq(&dev_priv->irq_lock);
435         rps->interrupts_enabled = false;
436
437         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
438
439         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
440
441         spin_unlock_irq(&dev_priv->irq_lock);
442         synchronize_irq(dev_priv->drm.irq);
443
444         /* Now that we will not be generating any more work, flush any
445          * outstanding tasks. As we are called on the RPS idle path,
446          * we will reset the GPU to minimum frequencies, so the current
447          * state of the worker can be discarded.
448          */
449         cancel_work_sync(&rps->work);
450         gen6_reset_rps_interrupts(dev_priv);
451 }
452
453 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
454 {
455         spin_lock_irq(&dev_priv->irq_lock);
456         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
457         spin_unlock_irq(&dev_priv->irq_lock);
458 }
459
460 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
461 {
462         spin_lock_irq(&dev_priv->irq_lock);
463         if (!dev_priv->guc.interrupts_enabled) {
464                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
465                                        dev_priv->pm_guc_events);
466                 dev_priv->guc.interrupts_enabled = true;
467                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
468         }
469         spin_unlock_irq(&dev_priv->irq_lock);
470 }
471
472 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
473 {
474         spin_lock_irq(&dev_priv->irq_lock);
475         dev_priv->guc.interrupts_enabled = false;
476
477         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
478
479         spin_unlock_irq(&dev_priv->irq_lock);
480         synchronize_irq(dev_priv->drm.irq);
481
482         gen9_reset_guc_interrupts(dev_priv);
483 }
484
485 /**
486  * bdw_update_port_irq - update DE port interrupt
487  * @dev_priv: driver private
488  * @interrupt_mask: mask of interrupt bits to update
489  * @enabled_irq_mask: mask of interrupt bits to enable
490  */
491 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
492                                 uint32_t interrupt_mask,
493                                 uint32_t enabled_irq_mask)
494 {
495         uint32_t new_val;
496         uint32_t old_val;
497
498         lockdep_assert_held(&dev_priv->irq_lock);
499
500         WARN_ON(enabled_irq_mask & ~interrupt_mask);
501
502         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
503                 return;
504
505         old_val = I915_READ(GEN8_DE_PORT_IMR);
506
507         new_val = old_val;
508         new_val &= ~interrupt_mask;
509         new_val |= (~enabled_irq_mask & interrupt_mask);
510
511         if (new_val != old_val) {
512                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
513                 POSTING_READ(GEN8_DE_PORT_IMR);
514         }
515 }
516
517 /**
518  * bdw_update_pipe_irq - update DE pipe interrupt
519  * @dev_priv: driver private
520  * @pipe: pipe whose interrupt to update
521  * @interrupt_mask: mask of interrupt bits to update
522  * @enabled_irq_mask: mask of interrupt bits to enable
523  */
524 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
525                          enum pipe pipe,
526                          uint32_t interrupt_mask,
527                          uint32_t enabled_irq_mask)
528 {
529         uint32_t new_val;
530
531         lockdep_assert_held(&dev_priv->irq_lock);
532
533         WARN_ON(enabled_irq_mask & ~interrupt_mask);
534
535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536                 return;
537
538         new_val = dev_priv->de_irq_mask[pipe];
539         new_val &= ~interrupt_mask;
540         new_val |= (~enabled_irq_mask & interrupt_mask);
541
542         if (new_val != dev_priv->de_irq_mask[pipe]) {
543                 dev_priv->de_irq_mask[pipe] = new_val;
544                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
545                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
546         }
547 }
548
549 /**
550  * ibx_display_interrupt_update - update SDEIMR
551  * @dev_priv: driver private
552  * @interrupt_mask: mask of interrupt bits to update
553  * @enabled_irq_mask: mask of interrupt bits to enable
554  */
555 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
556                                   uint32_t interrupt_mask,
557                                   uint32_t enabled_irq_mask)
558 {
559         uint32_t sdeimr = I915_READ(SDEIMR);
560         sdeimr &= ~interrupt_mask;
561         sdeimr |= (~enabled_irq_mask & interrupt_mask);
562
563         WARN_ON(enabled_irq_mask & ~interrupt_mask);
564
565         lockdep_assert_held(&dev_priv->irq_lock);
566
567         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
568                 return;
569
570         I915_WRITE(SDEIMR, sdeimr);
571         POSTING_READ(SDEIMR);
572 }
573
574 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
575                               enum pipe pipe)
576 {
577         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
578         u32 enable_mask = status_mask << 16;
579
580         lockdep_assert_held(&dev_priv->irq_lock);
581
582         if (INTEL_GEN(dev_priv) < 5)
583                 goto out;
584
585         /*
586          * On pipe A we don't support the PSR interrupt yet,
587          * on pipe B and C the same bit MBZ.
588          */
589         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
590                 return 0;
591         /*
592          * On pipe B and C we don't support the PSR interrupt yet, on pipe
593          * A the same bit is for perf counters which we don't use either.
594          */
595         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
596                 return 0;
597
598         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
599                          SPRITE0_FLIP_DONE_INT_EN_VLV |
600                          SPRITE1_FLIP_DONE_INT_EN_VLV);
601         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
602                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
603         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
604                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
605
606 out:
607         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
608                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
609                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610                   pipe_name(pipe), enable_mask, status_mask);
611
612         return enable_mask;
613 }
614
615 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
616                           enum pipe pipe, u32 status_mask)
617 {
618         i915_reg_t reg = PIPESTAT(pipe);
619         u32 enable_mask;
620
621         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
622                   "pipe %c: status_mask=0x%x\n",
623                   pipe_name(pipe), status_mask);
624
625         lockdep_assert_held(&dev_priv->irq_lock);
626         WARN_ON(!intel_irqs_enabled(dev_priv));
627
628         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
629                 return;
630
631         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
632         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
633
634         I915_WRITE(reg, enable_mask | status_mask);
635         POSTING_READ(reg);
636 }
637
638 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
639                            enum pipe pipe, u32 status_mask)
640 {
641         i915_reg_t reg = PIPESTAT(pipe);
642         u32 enable_mask;
643
644         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
645                   "pipe %c: status_mask=0x%x\n",
646                   pipe_name(pipe), status_mask);
647
648         lockdep_assert_held(&dev_priv->irq_lock);
649         WARN_ON(!intel_irqs_enabled(dev_priv));
650
651         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
652                 return;
653
654         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
655         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
656
657         I915_WRITE(reg, enable_mask | status_mask);
658         POSTING_READ(reg);
659 }
660
661 /**
662  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663  * @dev_priv: i915 device private
664  */
665 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
666 {
667         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
668                 return;
669
670         spin_lock_irq(&dev_priv->irq_lock);
671
672         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
673         if (INTEL_GEN(dev_priv) >= 4)
674                 i915_enable_pipestat(dev_priv, PIPE_A,
675                                      PIPE_LEGACY_BLC_EVENT_STATUS);
676
677         spin_unlock_irq(&dev_priv->irq_lock);
678 }
679
680 /*
681  * This timing diagram depicts the video signal in and
682  * around the vertical blanking period.
683  *
684  * Assumptions about the fictitious mode used in this example:
685  *  vblank_start >= 3
686  *  vsync_start = vblank_start + 1
687  *  vsync_end = vblank_start + 2
688  *  vtotal = vblank_start + 3
689  *
690  *           start of vblank:
691  *           latch double buffered registers
692  *           increment frame counter (ctg+)
693  *           generate start of vblank interrupt (gen4+)
694  *           |
695  *           |          frame start:
696  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
697  *           |          may be shifted forward 1-3 extra lines via PIPECONF
698  *           |          |
699  *           |          |  start of vsync:
700  *           |          |  generate vsync interrupt
701  *           |          |  |
702  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
703  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
704  * ----va---> <-----------------vb--------------------> <--------va-------------
705  *       |          |       <----vs----->                     |
706  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
709  *       |          |                                         |
710  *       last visible pixel                                   first visible pixel
711  *                  |                                         increment frame counter (gen3/4)
712  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
713  *
714  * x  = horizontal active
715  * _  = horizontal blanking
716  * hs = horizontal sync
717  * va = vertical active
718  * vb = vertical blanking
719  * vs = vertical sync
720  * vbs = vblank_start (number)
721  *
722  * Summary:
723  * - most events happen at the start of horizontal sync
724  * - frame start happens at the start of horizontal blank, 1-4 lines
725  *   (depending on PIPECONF settings) after the start of vblank
726  * - gen3/4 pixel and frame counter are synchronized with the start
727  *   of horizontal active on the first line of vertical active
728  */
729
730 /* Called from drm generic code, passed a 'crtc', which
731  * we use as a pipe index
732  */
733 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735         struct drm_i915_private *dev_priv = to_i915(dev);
736         i915_reg_t high_frame, low_frame;
737         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
738         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
739         unsigned long irqflags;
740
741         htotal = mode->crtc_htotal;
742         hsync_start = mode->crtc_hsync_start;
743         vbl_start = mode->crtc_vblank_start;
744         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
746
747         /* Convert to pixel count */
748         vbl_start *= htotal;
749
750         /* Start of vblank event occurs at start of hsync */
751         vbl_start -= htotal - hsync_start;
752
753         high_frame = PIPEFRAME(pipe);
754         low_frame = PIPEFRAMEPIXEL(pipe);
755
756         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
757
758         /*
759          * High & low register fields aren't synchronized, so make sure
760          * we get a low value that's stable across two reads of the high
761          * register.
762          */
763         do {
764                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
765                 low   = I915_READ_FW(low_frame);
766                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
767         } while (high1 != high2);
768
769         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771         high1 >>= PIPE_FRAME_HIGH_SHIFT;
772         pixel = low & PIPE_PIXEL_MASK;
773         low >>= PIPE_FRAME_LOW_SHIFT;
774
775         /*
776          * The frame counter increments at beginning of active.
777          * Cook up a vblank counter by also checking the pixel
778          * counter against vblank start.
779          */
780         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
781 }
782
783 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
784 {
785         struct drm_i915_private *dev_priv = to_i915(dev);
786
787         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
788 }
789
790 /*
791  * On certain encoders on certain platforms, pipe
792  * scanline register will not work to get the scanline,
793  * since the timings are driven from the PORT or issues
794  * with scanline register updates.
795  * This function will use Framestamp and current
796  * timestamp registers to calculate the scanline.
797  */
798 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
799 {
800         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801         struct drm_vblank_crtc *vblank =
802                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
803         const struct drm_display_mode *mode = &vblank->hwmode;
804         u32 vblank_start = mode->crtc_vblank_start;
805         u32 vtotal = mode->crtc_vtotal;
806         u32 htotal = mode->crtc_htotal;
807         u32 clock = mode->crtc_clock;
808         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
809
810         /*
811          * To avoid the race condition where we might cross into the
812          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814          * during the same frame.
815          */
816         do {
817                 /*
818                  * This field provides read back of the display
819                  * pipe frame time stamp. The time stamp value
820                  * is sampled at every start of vertical blank.
821                  */
822                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
823
824                 /*
825                  * The TIMESTAMP_CTR register has the current
826                  * time stamp value.
827                  */
828                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
829
830                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
831         } while (scan_post_time != scan_prev_time);
832
833         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
834                                         clock), 1000 * htotal);
835         scanline = min(scanline, vtotal - 1);
836         scanline = (scanline + vblank_start) % vtotal;
837
838         return scanline;
839 }
840
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
843 {
844         struct drm_device *dev = crtc->base.dev;
845         struct drm_i915_private *dev_priv = to_i915(dev);
846         const struct drm_display_mode *mode;
847         struct drm_vblank_crtc *vblank;
848         enum pipe pipe = crtc->pipe;
849         int position, vtotal;
850
851         if (!crtc->active)
852                 return -1;
853
854         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
855         mode = &vblank->hwmode;
856
857         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
858                 return __intel_get_crtc_scanline_from_timestamp(crtc);
859
860         vtotal = mode->crtc_vtotal;
861         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
862                 vtotal /= 2;
863
864         if (IS_GEN2(dev_priv))
865                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
866         else
867                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
868
869         /*
870          * On HSW, the DSL reg (0x70000) appears to return 0 if we
871          * read it just before the start of vblank.  So try it again
872          * so we don't accidentally end up spanning a vblank frame
873          * increment, causing the pipe_update_end() code to squak at us.
874          *
875          * The nature of this problem means we can't simply check the ISR
876          * bit and return the vblank start value; nor can we use the scanline
877          * debug register in the transcoder as it appears to have the same
878          * problem.  We may need to extend this to include other platforms,
879          * but so far testing only shows the problem on HSW.
880          */
881         if (HAS_DDI(dev_priv) && !position) {
882                 int i, temp;
883
884                 for (i = 0; i < 100; i++) {
885                         udelay(1);
886                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
887                         if (temp != position) {
888                                 position = temp;
889                                 break;
890                         }
891                 }
892         }
893
894         /*
895          * See update_scanline_offset() for the details on the
896          * scanline_offset adjustment.
897          */
898         return (position + crtc->scanline_offset) % vtotal;
899 }
900
901 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
902                                      bool in_vblank_irq, int *vpos, int *hpos,
903                                      ktime_t *stime, ktime_t *etime,
904                                      const struct drm_display_mode *mode)
905 {
906         struct drm_i915_private *dev_priv = to_i915(dev);
907         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
908                                                                 pipe);
909         int position;
910         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
911         unsigned long irqflags;
912
913         if (WARN_ON(!mode->crtc_clock)) {
914                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915                                  "pipe %c\n", pipe_name(pipe));
916                 return false;
917         }
918
919         htotal = mode->crtc_htotal;
920         hsync_start = mode->crtc_hsync_start;
921         vtotal = mode->crtc_vtotal;
922         vbl_start = mode->crtc_vblank_start;
923         vbl_end = mode->crtc_vblank_end;
924
925         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
926                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
927                 vbl_end /= 2;
928                 vtotal /= 2;
929         }
930
931         /*
932          * Lock uncore.lock, as we will do multiple timing critical raw
933          * register reads, potentially with preemption disabled, so the
934          * following code must not block on uncore.lock.
935          */
936         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
937
938         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
939
940         /* Get optional system timestamp before query. */
941         if (stime)
942                 *stime = ktime_get();
943
944         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
945                 /* No obvious pixelcount register. Only query vertical
946                  * scanout position from Display scan line register.
947                  */
948                 position = __intel_get_crtc_scanline(intel_crtc);
949         } else {
950                 /* Have access to pixelcount since start of frame.
951                  * We can split this into vertical and horizontal
952                  * scanout position.
953                  */
954                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
955
956                 /* convert to pixel counts */
957                 vbl_start *= htotal;
958                 vbl_end *= htotal;
959                 vtotal *= htotal;
960
961                 /*
962                  * In interlaced modes, the pixel counter counts all pixels,
963                  * so one field will have htotal more pixels. In order to avoid
964                  * the reported position from jumping backwards when the pixel
965                  * counter is beyond the length of the shorter field, just
966                  * clamp the position the length of the shorter field. This
967                  * matches how the scanline counter based position works since
968                  * the scanline counter doesn't count the two half lines.
969                  */
970                 if (position >= vtotal)
971                         position = vtotal - 1;
972
973                 /*
974                  * Start of vblank interrupt is triggered at start of hsync,
975                  * just prior to the first active line of vblank. However we
976                  * consider lines to start at the leading edge of horizontal
977                  * active. So, should we get here before we've crossed into
978                  * the horizontal active of the first line in vblank, we would
979                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980                  * always add htotal-hsync_start to the current pixel position.
981                  */
982                 position = (position + htotal - hsync_start) % vtotal;
983         }
984
985         /* Get optional system timestamp after query. */
986         if (etime)
987                 *etime = ktime_get();
988
989         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
990
991         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
992
993         /*
994          * While in vblank, position will be negative
995          * counting up towards 0 at vbl_end. And outside
996          * vblank, position will be positive counting
997          * up since vbl_end.
998          */
999         if (position >= vbl_start)
1000                 position -= vbl_end;
1001         else
1002                 position += vtotal - vbl_end;
1003
1004         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1005                 *vpos = position;
1006                 *hpos = 0;
1007         } else {
1008                 *vpos = position / htotal;
1009                 *hpos = position - (*vpos * htotal);
1010         }
1011
1012         return true;
1013 }
1014
1015 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1016 {
1017         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1018         unsigned long irqflags;
1019         int position;
1020
1021         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1022         position = __intel_get_crtc_scanline(crtc);
1023         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1024
1025         return position;
1026 }
1027
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1029 {
1030         u32 busy_up, busy_down, max_avg, min_avg;
1031         u8 new_delay;
1032
1033         spin_lock(&mchdev_lock);
1034
1035         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1036
1037         new_delay = dev_priv->ips.cur_delay;
1038
1039         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1040         busy_up = I915_READ(RCPREVBSYTUPAVG);
1041         busy_down = I915_READ(RCPREVBSYTDNAVG);
1042         max_avg = I915_READ(RCBMAXAVG);
1043         min_avg = I915_READ(RCBMINAVG);
1044
1045         /* Handle RCS change request from hw */
1046         if (busy_up > max_avg) {
1047                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1048                         new_delay = dev_priv->ips.cur_delay - 1;
1049                 if (new_delay < dev_priv->ips.max_delay)
1050                         new_delay = dev_priv->ips.max_delay;
1051         } else if (busy_down < min_avg) {
1052                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1053                         new_delay = dev_priv->ips.cur_delay + 1;
1054                 if (new_delay > dev_priv->ips.min_delay)
1055                         new_delay = dev_priv->ips.min_delay;
1056         }
1057
1058         if (ironlake_set_drps(dev_priv, new_delay))
1059                 dev_priv->ips.cur_delay = new_delay;
1060
1061         spin_unlock(&mchdev_lock);
1062
1063         return;
1064 }
1065
1066 static void notify_ring(struct intel_engine_cs *engine)
1067 {
1068         struct drm_i915_gem_request *rq = NULL;
1069         struct intel_wait *wait;
1070
1071         atomic_inc(&engine->irq_count);
1072         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1073
1074         spin_lock(&engine->breadcrumbs.irq_lock);
1075         wait = engine->breadcrumbs.irq_wait;
1076         if (wait) {
1077                 bool wakeup = engine->irq_seqno_barrier;
1078
1079                 /* We use a callback from the dma-fence to submit
1080                  * requests after waiting on our own requests. To
1081                  * ensure minimum delay in queuing the next request to
1082                  * hardware, signal the fence now rather than wait for
1083                  * the signaler to be woken up. We still wake up the
1084                  * waiter in order to handle the irq-seqno coherency
1085                  * issues (we may receive the interrupt before the
1086                  * seqno is written, see __i915_request_irq_complete())
1087                  * and to handle coalescing of multiple seqno updates
1088                  * and many waiters.
1089                  */
1090                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1091                                       wait->seqno)) {
1092                         struct drm_i915_gem_request *waiter = wait->request;
1093
1094                         wakeup = true;
1095                         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1096                                       &waiter->fence.flags) &&
1097                             intel_wait_check_request(wait, waiter))
1098                                 rq = i915_gem_request_get(waiter);
1099                 }
1100
1101                 if (wakeup)
1102                         wake_up_process(wait->tsk);
1103         } else {
1104                 __intel_engine_disarm_breadcrumbs(engine);
1105         }
1106         spin_unlock(&engine->breadcrumbs.irq_lock);
1107
1108         if (rq) {
1109                 dma_fence_signal(&rq->fence);
1110                 i915_gem_request_put(rq);
1111         }
1112
1113         trace_intel_engine_notify(engine, wait);
1114 }
1115
1116 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117                         struct intel_rps_ei *ei)
1118 {
1119         ei->ktime = ktime_get_raw();
1120         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122 }
1123
1124 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125 {
1126         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127 }
1128
1129 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130 {
1131         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132         const struct intel_rps_ei *prev = &rps->ei;
1133         struct intel_rps_ei now;
1134         u32 events = 0;
1135
1136         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137                 return 0;
1138
1139         vlv_c0_read(dev_priv, &now);
1140
1141         if (prev->ktime) {
1142                 u64 time, c0;
1143                 u32 render, media;
1144
1145                 time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147                 time *= dev_priv->czclk_freq;
1148
1149                 /* Workload can be split between render + media,
1150                  * e.g. SwapBuffers being blitted in X after being rendered in
1151                  * mesa. To account for this we need to combine both engines
1152                  * into our activity counter.
1153                  */
1154                 render = now.render_c0 - prev->render_c0;
1155                 media = now.media_c0 - prev->media_c0;
1156                 c0 = max(render, media);
1157                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159                 if (c0 > time * rps->up_threshold)
1160                         events = GEN6_PM_RP_UP_THRESHOLD;
1161                 else if (c0 < time * rps->down_threshold)
1162                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1163         }
1164
1165         rps->ei = now;
1166         return events;
1167 }
1168
1169 static void gen6_pm_rps_work(struct work_struct *work)
1170 {
1171         struct drm_i915_private *dev_priv =
1172                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1174         bool client_boost = false;
1175         int new_delay, adj, min, max;
1176         u32 pm_iir = 0;
1177
1178         spin_lock_irq(&dev_priv->irq_lock);
1179         if (rps->interrupts_enabled) {
1180                 pm_iir = fetch_and_zero(&rps->pm_iir);
1181                 client_boost = atomic_read(&rps->num_waiters);
1182         }
1183         spin_unlock_irq(&dev_priv->irq_lock);
1184
1185         /* Make sure we didn't queue anything we're not going to process. */
1186         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1187         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1188                 goto out;
1189
1190         mutex_lock(&dev_priv->pcu_lock);
1191
1192         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1193
1194         adj = rps->last_adj;
1195         new_delay = rps->cur_freq;
1196         min = rps->min_freq_softlimit;
1197         max = rps->max_freq_softlimit;
1198         if (client_boost)
1199                 max = rps->max_freq;
1200         if (client_boost && new_delay < rps->boost_freq) {
1201                 new_delay = rps->boost_freq;
1202                 adj = 0;
1203         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1204                 if (adj > 0)
1205                         adj *= 2;
1206                 else /* CHV needs even encode values */
1207                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1208
1209                 if (new_delay >= rps->max_freq_softlimit)
1210                         adj = 0;
1211         } else if (client_boost) {
1212                 adj = 0;
1213         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1214                 if (rps->cur_freq > rps->efficient_freq)
1215                         new_delay = rps->efficient_freq;
1216                 else if (rps->cur_freq > rps->min_freq_softlimit)
1217                         new_delay = rps->min_freq_softlimit;
1218                 adj = 0;
1219         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1220                 if (adj < 0)
1221                         adj *= 2;
1222                 else /* CHV needs even encode values */
1223                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1224
1225                 if (new_delay <= rps->min_freq_softlimit)
1226                         adj = 0;
1227         } else { /* unknown event */
1228                 adj = 0;
1229         }
1230
1231         rps->last_adj = adj;
1232
1233         /* sysfs frequency interfaces may have snuck in while servicing the
1234          * interrupt
1235          */
1236         new_delay += adj;
1237         new_delay = clamp_t(int, new_delay, min, max);
1238
1239         if (intel_set_rps(dev_priv, new_delay)) {
1240                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1241                 rps->last_adj = 0;
1242         }
1243
1244         mutex_unlock(&dev_priv->pcu_lock);
1245
1246 out:
1247         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1248         spin_lock_irq(&dev_priv->irq_lock);
1249         if (rps->interrupts_enabled)
1250                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1251         spin_unlock_irq(&dev_priv->irq_lock);
1252 }
1253
1254
1255 /**
1256  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1257  * occurred.
1258  * @work: workqueue struct
1259  *
1260  * Doesn't actually do anything except notify userspace. As a consequence of
1261  * this event, userspace should try to remap the bad rows since statistically
1262  * it is likely the same row is more likely to go bad again.
1263  */
1264 static void ivybridge_parity_work(struct work_struct *work)
1265 {
1266         struct drm_i915_private *dev_priv =
1267                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1268         u32 error_status, row, bank, subbank;
1269         char *parity_event[6];
1270         uint32_t misccpctl;
1271         uint8_t slice = 0;
1272
1273         /* We must turn off DOP level clock gating to access the L3 registers.
1274          * In order to prevent a get/put style interface, acquire struct mutex
1275          * any time we access those registers.
1276          */
1277         mutex_lock(&dev_priv->drm.struct_mutex);
1278
1279         /* If we've screwed up tracking, just let the interrupt fire again */
1280         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1281                 goto out;
1282
1283         misccpctl = I915_READ(GEN7_MISCCPCTL);
1284         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1285         POSTING_READ(GEN7_MISCCPCTL);
1286
1287         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1288                 i915_reg_t reg;
1289
1290                 slice--;
1291                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1292                         break;
1293
1294                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1295
1296                 reg = GEN7_L3CDERRST1(slice);
1297
1298                 error_status = I915_READ(reg);
1299                 row = GEN7_PARITY_ERROR_ROW(error_status);
1300                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1301                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1302
1303                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1304                 POSTING_READ(reg);
1305
1306                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1307                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1308                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1309                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1310                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1311                 parity_event[5] = NULL;
1312
1313                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1314                                    KOBJ_CHANGE, parity_event);
1315
1316                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1317                           slice, row, bank, subbank);
1318
1319                 kfree(parity_event[4]);
1320                 kfree(parity_event[3]);
1321                 kfree(parity_event[2]);
1322                 kfree(parity_event[1]);
1323         }
1324
1325         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1326
1327 out:
1328         WARN_ON(dev_priv->l3_parity.which_slice);
1329         spin_lock_irq(&dev_priv->irq_lock);
1330         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1331         spin_unlock_irq(&dev_priv->irq_lock);
1332
1333         mutex_unlock(&dev_priv->drm.struct_mutex);
1334 }
1335
1336 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1337                                                u32 iir)
1338 {
1339         if (!HAS_L3_DPF(dev_priv))
1340                 return;
1341
1342         spin_lock(&dev_priv->irq_lock);
1343         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1344         spin_unlock(&dev_priv->irq_lock);
1345
1346         iir &= GT_PARITY_ERROR(dev_priv);
1347         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1348                 dev_priv->l3_parity.which_slice |= 1 << 1;
1349
1350         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1351                 dev_priv->l3_parity.which_slice |= 1 << 0;
1352
1353         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1354 }
1355
1356 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1357                                u32 gt_iir)
1358 {
1359         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1360                 notify_ring(dev_priv->engine[RCS]);
1361         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1362                 notify_ring(dev_priv->engine[VCS]);
1363 }
1364
1365 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1366                                u32 gt_iir)
1367 {
1368         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1369                 notify_ring(dev_priv->engine[RCS]);
1370         if (gt_iir & GT_BSD_USER_INTERRUPT)
1371                 notify_ring(dev_priv->engine[VCS]);
1372         if (gt_iir & GT_BLT_USER_INTERRUPT)
1373                 notify_ring(dev_priv->engine[BCS]);
1374
1375         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1376                       GT_BSD_CS_ERROR_INTERRUPT |
1377                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1378                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1379
1380         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1381                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1382 }
1383
1384 static void
1385 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1386 {
1387         struct intel_engine_execlists * const execlists = &engine->execlists;
1388         bool tasklet = false;
1389
1390         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1391                 if (READ_ONCE(engine->execlists.active)) {
1392                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1393                         tasklet = true;
1394                 }
1395         }
1396
1397         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1398                 notify_ring(engine);
1399                 tasklet |= i915_modparams.enable_guc_submission;
1400         }
1401
1402         if (tasklet)
1403                 tasklet_hi_schedule(&execlists->irq_tasklet);
1404 }
1405
1406 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1407                                    u32 master_ctl,
1408                                    u32 gt_iir[4])
1409 {
1410         irqreturn_t ret = IRQ_NONE;
1411
1412         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1413                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1414                 if (gt_iir[0]) {
1415                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1416                         ret = IRQ_HANDLED;
1417                 } else
1418                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1419         }
1420
1421         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1422                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1423                 if (gt_iir[1]) {
1424                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1425                         ret = IRQ_HANDLED;
1426                 } else
1427                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1428         }
1429
1430         if (master_ctl & GEN8_GT_VECS_IRQ) {
1431                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1432                 if (gt_iir[3]) {
1433                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1434                         ret = IRQ_HANDLED;
1435                 } else
1436                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1437         }
1438
1439         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1440                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1441                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1442                                  dev_priv->pm_guc_events)) {
1443                         I915_WRITE_FW(GEN8_GT_IIR(2),
1444                                       gt_iir[2] & (dev_priv->pm_rps_events |
1445                                                    dev_priv->pm_guc_events));
1446                         ret = IRQ_HANDLED;
1447                 } else
1448                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1449         }
1450
1451         return ret;
1452 }
1453
1454 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1455                                 u32 gt_iir[4])
1456 {
1457         if (gt_iir[0]) {
1458                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1459                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1460                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1461                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1462         }
1463
1464         if (gt_iir[1]) {
1465                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1466                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1467                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1468                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1469         }
1470
1471         if (gt_iir[3])
1472                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1473                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1474
1475         if (gt_iir[2] & dev_priv->pm_rps_events)
1476                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1477
1478         if (gt_iir[2] & dev_priv->pm_guc_events)
1479                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1480 }
1481
1482 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1483 {
1484         switch (port) {
1485         case PORT_A:
1486                 return val & PORTA_HOTPLUG_LONG_DETECT;
1487         case PORT_B:
1488                 return val & PORTB_HOTPLUG_LONG_DETECT;
1489         case PORT_C:
1490                 return val & PORTC_HOTPLUG_LONG_DETECT;
1491         default:
1492                 return false;
1493         }
1494 }
1495
1496 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1497 {
1498         switch (port) {
1499         case PORT_E:
1500                 return val & PORTE_HOTPLUG_LONG_DETECT;
1501         default:
1502                 return false;
1503         }
1504 }
1505
1506 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1507 {
1508         switch (port) {
1509         case PORT_A:
1510                 return val & PORTA_HOTPLUG_LONG_DETECT;
1511         case PORT_B:
1512                 return val & PORTB_HOTPLUG_LONG_DETECT;
1513         case PORT_C:
1514                 return val & PORTC_HOTPLUG_LONG_DETECT;
1515         case PORT_D:
1516                 return val & PORTD_HOTPLUG_LONG_DETECT;
1517         default:
1518                 return false;
1519         }
1520 }
1521
1522 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1523 {
1524         switch (port) {
1525         case PORT_A:
1526                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1527         default:
1528                 return false;
1529         }
1530 }
1531
1532 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1533 {
1534         switch (port) {
1535         case PORT_B:
1536                 return val & PORTB_HOTPLUG_LONG_DETECT;
1537         case PORT_C:
1538                 return val & PORTC_HOTPLUG_LONG_DETECT;
1539         case PORT_D:
1540                 return val & PORTD_HOTPLUG_LONG_DETECT;
1541         default:
1542                 return false;
1543         }
1544 }
1545
1546 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1547 {
1548         switch (port) {
1549         case PORT_B:
1550                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1551         case PORT_C:
1552                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1553         case PORT_D:
1554                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1555         default:
1556                 return false;
1557         }
1558 }
1559
1560 /*
1561  * Get a bit mask of pins that have triggered, and which ones may be long.
1562  * This can be called multiple times with the same masks to accumulate
1563  * hotplug detection results from several registers.
1564  *
1565  * Note that the caller is expected to zero out the masks initially.
1566  */
1567 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1568                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1569                              const u32 hpd[HPD_NUM_PINS],
1570                              bool long_pulse_detect(enum port port, u32 val))
1571 {
1572         enum port port;
1573         int i;
1574
1575         for_each_hpd_pin(i) {
1576                 if ((hpd[i] & hotplug_trigger) == 0)
1577                         continue;
1578
1579                 *pin_mask |= BIT(i);
1580
1581                 port = intel_hpd_pin_to_port(i);
1582                 if (port == PORT_NONE)
1583                         continue;
1584
1585                 if (long_pulse_detect(port, dig_hotplug_reg))
1586                         *long_mask |= BIT(i);
1587         }
1588
1589         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1590                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1591
1592 }
1593
1594 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1595 {
1596         wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598
1599 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1600 {
1601         wake_up_all(&dev_priv->gmbus_wait_queue);
1602 }
1603
1604 #if defined(CONFIG_DEBUG_FS)
1605 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1606                                          enum pipe pipe,
1607                                          uint32_t crc0, uint32_t crc1,
1608                                          uint32_t crc2, uint32_t crc3,
1609                                          uint32_t crc4)
1610 {
1611         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1612         struct intel_pipe_crc_entry *entry;
1613         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1614         struct drm_driver *driver = dev_priv->drm.driver;
1615         uint32_t crcs[5];
1616         int head, tail;
1617
1618         spin_lock(&pipe_crc->lock);
1619         if (pipe_crc->source) {
1620                 if (!pipe_crc->entries) {
1621                         spin_unlock(&pipe_crc->lock);
1622                         DRM_DEBUG_KMS("spurious interrupt\n");
1623                         return;
1624                 }
1625
1626                 head = pipe_crc->head;
1627                 tail = pipe_crc->tail;
1628
1629                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1630                         spin_unlock(&pipe_crc->lock);
1631                         DRM_ERROR("CRC buffer overflowing\n");
1632                         return;
1633                 }
1634
1635                 entry = &pipe_crc->entries[head];
1636
1637                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1638                 entry->crc[0] = crc0;
1639                 entry->crc[1] = crc1;
1640                 entry->crc[2] = crc2;
1641                 entry->crc[3] = crc3;
1642                 entry->crc[4] = crc4;
1643
1644                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1645                 pipe_crc->head = head;
1646
1647                 spin_unlock(&pipe_crc->lock);
1648
1649                 wake_up_interruptible(&pipe_crc->wq);
1650         } else {
1651                 /*
1652                  * For some not yet identified reason, the first CRC is
1653                  * bonkers. So let's just wait for the next vblank and read
1654                  * out the buggy result.
1655                  *
1656                  * On GEN8+ sometimes the second CRC is bonkers as well, so
1657                  * don't trust that one either.
1658                  */
1659                 if (pipe_crc->skipped == 0 ||
1660                     (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1661                         pipe_crc->skipped++;
1662                         spin_unlock(&pipe_crc->lock);
1663                         return;
1664                 }
1665                 spin_unlock(&pipe_crc->lock);
1666                 crcs[0] = crc0;
1667                 crcs[1] = crc1;
1668                 crcs[2] = crc2;
1669                 crcs[3] = crc3;
1670                 crcs[4] = crc4;
1671                 drm_crtc_add_crc_entry(&crtc->base, true,
1672                                        drm_crtc_accurate_vblank_count(&crtc->base),
1673                                        crcs);
1674         }
1675 }
1676 #else
1677 static inline void
1678 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1679                              enum pipe pipe,
1680                              uint32_t crc0, uint32_t crc1,
1681                              uint32_t crc2, uint32_t crc3,
1682                              uint32_t crc4) {}
1683 #endif
1684
1685
1686 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1687                                      enum pipe pipe)
1688 {
1689         display_pipe_crc_irq_handler(dev_priv, pipe,
1690                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1691                                      0, 0, 0, 0);
1692 }
1693
1694 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1695                                      enum pipe pipe)
1696 {
1697         display_pipe_crc_irq_handler(dev_priv, pipe,
1698                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1699                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1700                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1701                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1702                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1703 }
1704
1705 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1706                                       enum pipe pipe)
1707 {
1708         uint32_t res1, res2;
1709
1710         if (INTEL_GEN(dev_priv) >= 3)
1711                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1712         else
1713                 res1 = 0;
1714
1715         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1716                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1717         else
1718                 res2 = 0;
1719
1720         display_pipe_crc_irq_handler(dev_priv, pipe,
1721                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1722                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1723                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1724                                      res1, res2);
1725 }
1726
1727 /* The RPS events need forcewake, so we add them to a work queue and mask their
1728  * IMR bits until the work is done. Other interrupts can be processed without
1729  * the work queue. */
1730 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1731 {
1732         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1733
1734         if (pm_iir & dev_priv->pm_rps_events) {
1735                 spin_lock(&dev_priv->irq_lock);
1736                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1737                 if (rps->interrupts_enabled) {
1738                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1739                         schedule_work(&rps->work);
1740                 }
1741                 spin_unlock(&dev_priv->irq_lock);
1742         }
1743
1744         if (INTEL_GEN(dev_priv) >= 8)
1745                 return;
1746
1747         if (HAS_VEBOX(dev_priv)) {
1748                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1749                         notify_ring(dev_priv->engine[VECS]);
1750
1751                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1752                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1753         }
1754 }
1755
1756 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1757 {
1758         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1759                 /* Sample the log buffer flush related bits & clear them out now
1760                  * itself from the message identity register to minimize the
1761                  * probability of losing a flush interrupt, when there are back
1762                  * to back flush interrupts.
1763                  * There can be a new flush interrupt, for different log buffer
1764                  * type (like for ISR), whilst Host is handling one (for DPC).
1765                  * Since same bit is used in message register for ISR & DPC, it
1766                  * could happen that GuC sets the bit for 2nd interrupt but Host
1767                  * clears out the bit on handling the 1st interrupt.
1768                  */
1769                 u32 msg, flush;
1770
1771                 msg = I915_READ(SOFT_SCRATCH(15));
1772                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1773                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1774                 if (flush) {
1775                         /* Clear the message bits that are handled */
1776                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1777
1778                         /* Handle flush interrupt in bottom half */
1779                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1780                                    &dev_priv->guc.log.runtime.flush_work);
1781
1782                         dev_priv->guc.log.flush_interrupt_count++;
1783                 } else {
1784                         /* Not clearing of unhandled event bits won't result in
1785                          * re-triggering of the interrupt.
1786                          */
1787                 }
1788         }
1789 }
1790
1791 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1792 {
1793         enum pipe pipe;
1794
1795         for_each_pipe(dev_priv, pipe) {
1796                 I915_WRITE(PIPESTAT(pipe),
1797                            PIPESTAT_INT_STATUS_MASK |
1798                            PIPE_FIFO_UNDERRUN_STATUS);
1799
1800                 dev_priv->pipestat_irq_mask[pipe] = 0;
1801         }
1802 }
1803
1804 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1805                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1806 {
1807         int pipe;
1808
1809         spin_lock(&dev_priv->irq_lock);
1810
1811         if (!dev_priv->display_irqs_enabled) {
1812                 spin_unlock(&dev_priv->irq_lock);
1813                 return;
1814         }
1815
1816         for_each_pipe(dev_priv, pipe) {
1817                 i915_reg_t reg;
1818                 u32 status_mask, enable_mask, iir_bit = 0;
1819
1820                 /*
1821                  * PIPESTAT bits get signalled even when the interrupt is
1822                  * disabled with the mask bits, and some of the status bits do
1823                  * not generate interrupts at all (like the underrun bit). Hence
1824                  * we need to be careful that we only handle what we want to
1825                  * handle.
1826                  */
1827
1828                 /* fifo underruns are filterered in the underrun handler. */
1829                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1830
1831                 switch (pipe) {
1832                 case PIPE_A:
1833                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1834                         break;
1835                 case PIPE_B:
1836                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1837                         break;
1838                 case PIPE_C:
1839                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1840                         break;
1841                 }
1842                 if (iir & iir_bit)
1843                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1844
1845                 if (!status_mask)
1846                         continue;
1847
1848                 reg = PIPESTAT(pipe);
1849                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1850                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1851
1852                 /*
1853                  * Clear the PIPE*STAT regs before the IIR
1854                  */
1855                 if (pipe_stats[pipe])
1856                         I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1857         }
1858         spin_unlock(&dev_priv->irq_lock);
1859 }
1860
1861 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1862                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1863 {
1864         enum pipe pipe;
1865
1866         for_each_pipe(dev_priv, pipe) {
1867                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1868                         drm_handle_vblank(&dev_priv->drm, pipe);
1869
1870                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1871                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1872
1873                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1874                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1875         }
1876 }
1877
1878 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1879                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1880 {
1881         bool blc_event = false;
1882         enum pipe pipe;
1883
1884         for_each_pipe(dev_priv, pipe) {
1885                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1886                         drm_handle_vblank(&dev_priv->drm, pipe);
1887
1888                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1889                         blc_event = true;
1890
1891                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1892                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1893
1894                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1895                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1896         }
1897
1898         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1899                 intel_opregion_asle_intr(dev_priv);
1900 }
1901
1902 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1903                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1904 {
1905         bool blc_event = false;
1906         enum pipe pipe;
1907
1908         for_each_pipe(dev_priv, pipe) {
1909                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1910                         drm_handle_vblank(&dev_priv->drm, pipe);
1911
1912                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1913                         blc_event = true;
1914
1915                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1916                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1917
1918                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1919                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1920         }
1921
1922         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1923                 intel_opregion_asle_intr(dev_priv);
1924
1925         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1926                 gmbus_irq_handler(dev_priv);
1927 }
1928
1929 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1930                                             u32 pipe_stats[I915_MAX_PIPES])
1931 {
1932         enum pipe pipe;
1933
1934         for_each_pipe(dev_priv, pipe) {
1935                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1936                         drm_handle_vblank(&dev_priv->drm, pipe);
1937
1938                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1939                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1940
1941                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1942                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1943         }
1944
1945         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1946                 gmbus_irq_handler(dev_priv);
1947 }
1948
1949 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1950 {
1951         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1952
1953         if (hotplug_status)
1954                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1955
1956         return hotplug_status;
1957 }
1958
1959 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1960                                  u32 hotplug_status)
1961 {
1962         u32 pin_mask = 0, long_mask = 0;
1963
1964         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1965             IS_CHERRYVIEW(dev_priv)) {
1966                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1967
1968                 if (hotplug_trigger) {
1969                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1970                                            hotplug_trigger, hpd_status_g4x,
1971                                            i9xx_port_hotplug_long_detect);
1972
1973                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1974                 }
1975
1976                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1977                         dp_aux_irq_handler(dev_priv);
1978         } else {
1979                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1980
1981                 if (hotplug_trigger) {
1982                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1983                                            hotplug_trigger, hpd_status_i915,
1984                                            i9xx_port_hotplug_long_detect);
1985                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1986                 }
1987         }
1988 }
1989
1990 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1991 {
1992         struct drm_device *dev = arg;
1993         struct drm_i915_private *dev_priv = to_i915(dev);
1994         irqreturn_t ret = IRQ_NONE;
1995
1996         if (!intel_irqs_enabled(dev_priv))
1997                 return IRQ_NONE;
1998
1999         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2000         disable_rpm_wakeref_asserts(dev_priv);
2001
2002         do {
2003                 u32 iir, gt_iir, pm_iir;
2004                 u32 pipe_stats[I915_MAX_PIPES] = {};
2005                 u32 hotplug_status = 0;
2006                 u32 ier = 0;
2007
2008                 gt_iir = I915_READ(GTIIR);
2009                 pm_iir = I915_READ(GEN6_PMIIR);
2010                 iir = I915_READ(VLV_IIR);
2011
2012                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2013                         break;
2014
2015                 ret = IRQ_HANDLED;
2016
2017                 /*
2018                  * Theory on interrupt generation, based on empirical evidence:
2019                  *
2020                  * x = ((VLV_IIR & VLV_IER) ||
2021                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2022                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2023                  *
2024                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2025                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2026                  * guarantee the CPU interrupt will be raised again even if we
2027                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2028                  * bits this time around.
2029                  */
2030                 I915_WRITE(VLV_MASTER_IER, 0);
2031                 ier = I915_READ(VLV_IER);
2032                 I915_WRITE(VLV_IER, 0);
2033
2034                 if (gt_iir)
2035                         I915_WRITE(GTIIR, gt_iir);
2036                 if (pm_iir)
2037                         I915_WRITE(GEN6_PMIIR, pm_iir);
2038
2039                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2040                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2041
2042                 /* Call regardless, as some status bits might not be
2043                  * signalled in iir */
2044                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2045
2046                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2047                            I915_LPE_PIPE_B_INTERRUPT))
2048                         intel_lpe_audio_irq_handler(dev_priv);
2049
2050                 /*
2051                  * VLV_IIR is single buffered, and reflects the level
2052                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2053                  */
2054                 if (iir)
2055                         I915_WRITE(VLV_IIR, iir);
2056
2057                 I915_WRITE(VLV_IER, ier);
2058                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2059                 POSTING_READ(VLV_MASTER_IER);
2060
2061                 if (gt_iir)
2062                         snb_gt_irq_handler(dev_priv, gt_iir);
2063                 if (pm_iir)
2064                         gen6_rps_irq_handler(dev_priv, pm_iir);
2065
2066                 if (hotplug_status)
2067                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2068
2069                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2070         } while (0);
2071
2072         enable_rpm_wakeref_asserts(dev_priv);
2073
2074         return ret;
2075 }
2076
2077 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2078 {
2079         struct drm_device *dev = arg;
2080         struct drm_i915_private *dev_priv = to_i915(dev);
2081         irqreturn_t ret = IRQ_NONE;
2082
2083         if (!intel_irqs_enabled(dev_priv))
2084                 return IRQ_NONE;
2085
2086         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2087         disable_rpm_wakeref_asserts(dev_priv);
2088
2089         do {
2090                 u32 master_ctl, iir;
2091                 u32 gt_iir[4] = {};
2092                 u32 pipe_stats[I915_MAX_PIPES] = {};
2093                 u32 hotplug_status = 0;
2094                 u32 ier = 0;
2095
2096                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2097                 iir = I915_READ(VLV_IIR);
2098
2099                 if (master_ctl == 0 && iir == 0)
2100                         break;
2101
2102                 ret = IRQ_HANDLED;
2103
2104                 /*
2105                  * Theory on interrupt generation, based on empirical evidence:
2106                  *
2107                  * x = ((VLV_IIR & VLV_IER) ||
2108                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2109                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2110                  *
2111                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2112                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2113                  * guarantee the CPU interrupt will be raised again even if we
2114                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2115                  * bits this time around.
2116                  */
2117                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2118                 ier = I915_READ(VLV_IER);
2119                 I915_WRITE(VLV_IER, 0);
2120
2121                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2122
2123                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2124                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2125
2126                 /* Call regardless, as some status bits might not be
2127                  * signalled in iir */
2128                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2129
2130                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2131                            I915_LPE_PIPE_B_INTERRUPT |
2132                            I915_LPE_PIPE_C_INTERRUPT))
2133                         intel_lpe_audio_irq_handler(dev_priv);
2134
2135                 /*
2136                  * VLV_IIR is single buffered, and reflects the level
2137                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2138                  */
2139                 if (iir)
2140                         I915_WRITE(VLV_IIR, iir);
2141
2142                 I915_WRITE(VLV_IER, ier);
2143                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2144                 POSTING_READ(GEN8_MASTER_IRQ);
2145
2146                 gen8_gt_irq_handler(dev_priv, gt_iir);
2147
2148                 if (hotplug_status)
2149                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2150
2151                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2152         } while (0);
2153
2154         enable_rpm_wakeref_asserts(dev_priv);
2155
2156         return ret;
2157 }
2158
2159 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2160                                 u32 hotplug_trigger,
2161                                 const u32 hpd[HPD_NUM_PINS])
2162 {
2163         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2164
2165         /*
2166          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2167          * unless we touch the hotplug register, even if hotplug_trigger is
2168          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2169          * errors.
2170          */
2171         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172         if (!hotplug_trigger) {
2173                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2174                         PORTD_HOTPLUG_STATUS_MASK |
2175                         PORTC_HOTPLUG_STATUS_MASK |
2176                         PORTB_HOTPLUG_STATUS_MASK;
2177                 dig_hotplug_reg &= ~mask;
2178         }
2179
2180         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2181         if (!hotplug_trigger)
2182                 return;
2183
2184         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2185                            dig_hotplug_reg, hpd,
2186                            pch_port_hotplug_long_detect);
2187
2188         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2189 }
2190
2191 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2192 {
2193         int pipe;
2194         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2195
2196         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2197
2198         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2199                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2200                                SDE_AUDIO_POWER_SHIFT);
2201                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2202                                  port_name(port));
2203         }
2204
2205         if (pch_iir & SDE_AUX_MASK)
2206                 dp_aux_irq_handler(dev_priv);
2207
2208         if (pch_iir & SDE_GMBUS)
2209                 gmbus_irq_handler(dev_priv);
2210
2211         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2212                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2213
2214         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2215                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2216
2217         if (pch_iir & SDE_POISON)
2218                 DRM_ERROR("PCH poison interrupt\n");
2219
2220         if (pch_iir & SDE_FDI_MASK)
2221                 for_each_pipe(dev_priv, pipe)
2222                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2223                                          pipe_name(pipe),
2224                                          I915_READ(FDI_RX_IIR(pipe)));
2225
2226         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2227                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2228
2229         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2230                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2231
2232         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2233                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2234
2235         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2236                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2237 }
2238
2239 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2240 {
2241         u32 err_int = I915_READ(GEN7_ERR_INT);
2242         enum pipe pipe;
2243
2244         if (err_int & ERR_INT_POISON)
2245                 DRM_ERROR("Poison interrupt\n");
2246
2247         for_each_pipe(dev_priv, pipe) {
2248                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2249                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2250
2251                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2252                         if (IS_IVYBRIDGE(dev_priv))
2253                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2254                         else
2255                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2256                 }
2257         }
2258
2259         I915_WRITE(GEN7_ERR_INT, err_int);
2260 }
2261
2262 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2263 {
2264         u32 serr_int = I915_READ(SERR_INT);
2265         enum pipe pipe;
2266
2267         if (serr_int & SERR_INT_POISON)
2268                 DRM_ERROR("PCH poison interrupt\n");
2269
2270         for_each_pipe(dev_priv, pipe)
2271                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2272                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2273
2274         I915_WRITE(SERR_INT, serr_int);
2275 }
2276
2277 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2278 {
2279         int pipe;
2280         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2281
2282         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2283
2284         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2285                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2286                                SDE_AUDIO_POWER_SHIFT_CPT);
2287                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2288                                  port_name(port));
2289         }
2290
2291         if (pch_iir & SDE_AUX_MASK_CPT)
2292                 dp_aux_irq_handler(dev_priv);
2293
2294         if (pch_iir & SDE_GMBUS_CPT)
2295                 gmbus_irq_handler(dev_priv);
2296
2297         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2298                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2299
2300         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2301                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2302
2303         if (pch_iir & SDE_FDI_MASK_CPT)
2304                 for_each_pipe(dev_priv, pipe)
2305                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2306                                          pipe_name(pipe),
2307                                          I915_READ(FDI_RX_IIR(pipe)));
2308
2309         if (pch_iir & SDE_ERROR_CPT)
2310                 cpt_serr_int_handler(dev_priv);
2311 }
2312
2313 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2314 {
2315         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2316                 ~SDE_PORTE_HOTPLUG_SPT;
2317         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2318         u32 pin_mask = 0, long_mask = 0;
2319
2320         if (hotplug_trigger) {
2321                 u32 dig_hotplug_reg;
2322
2323                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2324                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2325
2326                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2327                                    dig_hotplug_reg, hpd_spt,
2328                                    spt_port_hotplug_long_detect);
2329         }
2330
2331         if (hotplug2_trigger) {
2332                 u32 dig_hotplug_reg;
2333
2334                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2335                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2336
2337                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2338                                    dig_hotplug_reg, hpd_spt,
2339                                    spt_port_hotplug2_long_detect);
2340         }
2341
2342         if (pin_mask)
2343                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2344
2345         if (pch_iir & SDE_GMBUS_CPT)
2346                 gmbus_irq_handler(dev_priv);
2347 }
2348
2349 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2350                                 u32 hotplug_trigger,
2351                                 const u32 hpd[HPD_NUM_PINS])
2352 {
2353         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2354
2355         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2356         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2357
2358         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2359                            dig_hotplug_reg, hpd,
2360                            ilk_port_hotplug_long_detect);
2361
2362         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2363 }
2364
2365 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2366                                     u32 de_iir)
2367 {
2368         enum pipe pipe;
2369         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2370
2371         if (hotplug_trigger)
2372                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2373
2374         if (de_iir & DE_AUX_CHANNEL_A)
2375                 dp_aux_irq_handler(dev_priv);
2376
2377         if (de_iir & DE_GSE)
2378                 intel_opregion_asle_intr(dev_priv);
2379
2380         if (de_iir & DE_POISON)
2381                 DRM_ERROR("Poison interrupt\n");
2382
2383         for_each_pipe(dev_priv, pipe) {
2384                 if (de_iir & DE_PIPE_VBLANK(pipe))
2385                         drm_handle_vblank(&dev_priv->drm, pipe);
2386
2387                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2388                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2389
2390                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2391                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2392         }
2393
2394         /* check event from PCH */
2395         if (de_iir & DE_PCH_EVENT) {
2396                 u32 pch_iir = I915_READ(SDEIIR);
2397
2398                 if (HAS_PCH_CPT(dev_priv))
2399                         cpt_irq_handler(dev_priv, pch_iir);
2400                 else
2401                         ibx_irq_handler(dev_priv, pch_iir);
2402
2403                 /* should clear PCH hotplug event before clear CPU irq */
2404                 I915_WRITE(SDEIIR, pch_iir);
2405         }
2406
2407         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2408                 ironlake_rps_change_irq_handler(dev_priv);
2409 }
2410
2411 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2412                                     u32 de_iir)
2413 {
2414         enum pipe pipe;
2415         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2416
2417         if (hotplug_trigger)
2418                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2419
2420         if (de_iir & DE_ERR_INT_IVB)
2421                 ivb_err_int_handler(dev_priv);
2422
2423         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2424                 dp_aux_irq_handler(dev_priv);
2425
2426         if (de_iir & DE_GSE_IVB)
2427                 intel_opregion_asle_intr(dev_priv);
2428
2429         for_each_pipe(dev_priv, pipe) {
2430                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2431                         drm_handle_vblank(&dev_priv->drm, pipe);
2432         }
2433
2434         /* check event from PCH */
2435         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2436                 u32 pch_iir = I915_READ(SDEIIR);
2437
2438                 cpt_irq_handler(dev_priv, pch_iir);
2439
2440                 /* clear PCH hotplug event before clear CPU irq */
2441                 I915_WRITE(SDEIIR, pch_iir);
2442         }
2443 }
2444
2445 /*
2446  * To handle irqs with the minimum potential races with fresh interrupts, we:
2447  * 1 - Disable Master Interrupt Control.
2448  * 2 - Find the source(s) of the interrupt.
2449  * 3 - Clear the Interrupt Identity bits (IIR).
2450  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2451  * 5 - Re-enable Master Interrupt Control.
2452  */
2453 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2454 {
2455         struct drm_device *dev = arg;
2456         struct drm_i915_private *dev_priv = to_i915(dev);
2457         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2458         irqreturn_t ret = IRQ_NONE;
2459
2460         if (!intel_irqs_enabled(dev_priv))
2461                 return IRQ_NONE;
2462
2463         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2464         disable_rpm_wakeref_asserts(dev_priv);
2465
2466         /* disable master interrupt before clearing iir  */
2467         de_ier = I915_READ(DEIER);
2468         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2469         POSTING_READ(DEIER);
2470
2471         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2472          * interrupts will will be stored on its back queue, and then we'll be
2473          * able to process them after we restore SDEIER (as soon as we restore
2474          * it, we'll get an interrupt if SDEIIR still has something to process
2475          * due to its back queue). */
2476         if (!HAS_PCH_NOP(dev_priv)) {
2477                 sde_ier = I915_READ(SDEIER);
2478                 I915_WRITE(SDEIER, 0);
2479                 POSTING_READ(SDEIER);
2480         }
2481
2482         /* Find, clear, then process each source of interrupt */
2483
2484         gt_iir = I915_READ(GTIIR);
2485         if (gt_iir) {
2486                 I915_WRITE(GTIIR, gt_iir);
2487                 ret = IRQ_HANDLED;
2488                 if (INTEL_GEN(dev_priv) >= 6)
2489                         snb_gt_irq_handler(dev_priv, gt_iir);
2490                 else
2491                         ilk_gt_irq_handler(dev_priv, gt_iir);
2492         }
2493
2494         de_iir = I915_READ(DEIIR);
2495         if (de_iir) {
2496                 I915_WRITE(DEIIR, de_iir);
2497                 ret = IRQ_HANDLED;
2498                 if (INTEL_GEN(dev_priv) >= 7)
2499                         ivb_display_irq_handler(dev_priv, de_iir);
2500                 else
2501                         ilk_display_irq_handler(dev_priv, de_iir);
2502         }
2503
2504         if (INTEL_GEN(dev_priv) >= 6) {
2505                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2506                 if (pm_iir) {
2507                         I915_WRITE(GEN6_PMIIR, pm_iir);
2508                         ret = IRQ_HANDLED;
2509                         gen6_rps_irq_handler(dev_priv, pm_iir);
2510                 }
2511         }
2512
2513         I915_WRITE(DEIER, de_ier);
2514         POSTING_READ(DEIER);
2515         if (!HAS_PCH_NOP(dev_priv)) {
2516                 I915_WRITE(SDEIER, sde_ier);
2517                 POSTING_READ(SDEIER);
2518         }
2519
2520         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2521         enable_rpm_wakeref_asserts(dev_priv);
2522
2523         return ret;
2524 }
2525
2526 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2527                                 u32 hotplug_trigger,
2528                                 const u32 hpd[HPD_NUM_PINS])
2529 {
2530         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2531
2532         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2533         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2534
2535         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2536                            dig_hotplug_reg, hpd,
2537                            bxt_port_hotplug_long_detect);
2538
2539         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2540 }
2541
2542 static irqreturn_t
2543 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2544 {
2545         irqreturn_t ret = IRQ_NONE;
2546         u32 iir;
2547         enum pipe pipe;
2548
2549         if (master_ctl & GEN8_DE_MISC_IRQ) {
2550                 iir = I915_READ(GEN8_DE_MISC_IIR);
2551                 if (iir) {
2552                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2553                         ret = IRQ_HANDLED;
2554                         if (iir & GEN8_DE_MISC_GSE)
2555                                 intel_opregion_asle_intr(dev_priv);
2556                         else
2557                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2558                 }
2559                 else
2560                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2561         }
2562
2563         if (master_ctl & GEN8_DE_PORT_IRQ) {
2564                 iir = I915_READ(GEN8_DE_PORT_IIR);
2565                 if (iir) {
2566                         u32 tmp_mask;
2567                         bool found = false;
2568
2569                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2570                         ret = IRQ_HANDLED;
2571
2572                         tmp_mask = GEN8_AUX_CHANNEL_A;
2573                         if (INTEL_GEN(dev_priv) >= 9)
2574                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2575                                             GEN9_AUX_CHANNEL_C |
2576                                             GEN9_AUX_CHANNEL_D;
2577
2578                         if (iir & tmp_mask) {
2579                                 dp_aux_irq_handler(dev_priv);
2580                                 found = true;
2581                         }
2582
2583                         if (IS_GEN9_LP(dev_priv)) {
2584                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2585                                 if (tmp_mask) {
2586                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2587                                                             hpd_bxt);
2588                                         found = true;
2589                                 }
2590                         } else if (IS_BROADWELL(dev_priv)) {
2591                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2592                                 if (tmp_mask) {
2593                                         ilk_hpd_irq_handler(dev_priv,
2594                                                             tmp_mask, hpd_bdw);
2595                                         found = true;
2596                                 }
2597                         }
2598
2599                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2600                                 gmbus_irq_handler(dev_priv);
2601                                 found = true;
2602                         }
2603
2604                         if (!found)
2605                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2606                 }
2607                 else
2608                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2609         }
2610
2611         for_each_pipe(dev_priv, pipe) {
2612                 u32 fault_errors;
2613
2614                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2615                         continue;
2616
2617                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2618                 if (!iir) {
2619                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2620                         continue;
2621                 }
2622
2623                 ret = IRQ_HANDLED;
2624                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2625
2626                 if (iir & GEN8_PIPE_VBLANK)
2627                         drm_handle_vblank(&dev_priv->drm, pipe);
2628
2629                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2630                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2631
2632                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2633                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2634
2635                 fault_errors = iir;
2636                 if (INTEL_GEN(dev_priv) >= 9)
2637                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2638                 else
2639                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2640
2641                 if (fault_errors)
2642                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2643                                   pipe_name(pipe),
2644                                   fault_errors);
2645         }
2646
2647         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2648             master_ctl & GEN8_DE_PCH_IRQ) {
2649                 /*
2650                  * FIXME(BDW): Assume for now that the new interrupt handling
2651                  * scheme also closed the SDE interrupt handling race we've seen
2652                  * on older pch-split platforms. But this needs testing.
2653                  */
2654                 iir = I915_READ(SDEIIR);
2655                 if (iir) {
2656                         I915_WRITE(SDEIIR, iir);
2657                         ret = IRQ_HANDLED;
2658
2659                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2660                             HAS_PCH_CNP(dev_priv))
2661                                 spt_irq_handler(dev_priv, iir);
2662                         else
2663                                 cpt_irq_handler(dev_priv, iir);
2664                 } else {
2665                         /*
2666                          * Like on previous PCH there seems to be something
2667                          * fishy going on with forwarding PCH interrupts.
2668                          */
2669                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2670                 }
2671         }
2672
2673         return ret;
2674 }
2675
2676 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2677 {
2678         struct drm_device *dev = arg;
2679         struct drm_i915_private *dev_priv = to_i915(dev);
2680         u32 master_ctl;
2681         u32 gt_iir[4] = {};
2682         irqreturn_t ret;
2683
2684         if (!intel_irqs_enabled(dev_priv))
2685                 return IRQ_NONE;
2686
2687         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2688         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2689         if (!master_ctl)
2690                 return IRQ_NONE;
2691
2692         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2693
2694         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2695         disable_rpm_wakeref_asserts(dev_priv);
2696
2697         /* Find, clear, then process each source of interrupt */
2698         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2699         gen8_gt_irq_handler(dev_priv, gt_iir);
2700         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2701
2702         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2703         POSTING_READ_FW(GEN8_MASTER_IRQ);
2704
2705         enable_rpm_wakeref_asserts(dev_priv);
2706
2707         return ret;
2708 }
2709
2710 struct wedge_me {
2711         struct delayed_work work;
2712         struct drm_i915_private *i915;
2713         const char *name;
2714 };
2715
2716 static void wedge_me(struct work_struct *work)
2717 {
2718         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2719
2720         dev_err(w->i915->drm.dev,
2721                 "%s timed out, cancelling all in-flight rendering.\n",
2722                 w->name);
2723         i915_gem_set_wedged(w->i915);
2724 }
2725
2726 static void __init_wedge(struct wedge_me *w,
2727                          struct drm_i915_private *i915,
2728                          long timeout,
2729                          const char *name)
2730 {
2731         w->i915 = i915;
2732         w->name = name;
2733
2734         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2735         schedule_delayed_work(&w->work, timeout);
2736 }
2737
2738 static void __fini_wedge(struct wedge_me *w)
2739 {
2740         cancel_delayed_work_sync(&w->work);
2741         destroy_delayed_work_on_stack(&w->work);
2742         w->i915 = NULL;
2743 }
2744
2745 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2746         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2747              (W)->i915;                                                 \
2748              __fini_wedge((W)))
2749
2750 /**
2751  * i915_reset_device - do process context error handling work
2752  * @dev_priv: i915 device private
2753  *
2754  * Fire an error uevent so userspace can see that a hang or error
2755  * was detected.
2756  */
2757 static void i915_reset_device(struct drm_i915_private *dev_priv)
2758 {
2759         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2760         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2761         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2762         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2763         struct wedge_me w;
2764
2765         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2766
2767         DRM_DEBUG_DRIVER("resetting chip\n");
2768         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2769
2770         /* Use a watchdog to ensure that our reset completes */
2771         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2772                 intel_prepare_reset(dev_priv);
2773
2774                 /* Signal that locked waiters should reset the GPU */
2775                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2776                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2777
2778                 /* Wait for anyone holding the lock to wakeup, without
2779                  * blocking indefinitely on struct_mutex.
2780                  */
2781                 do {
2782                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2783                                 i915_reset(dev_priv, 0);
2784                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2785                         }
2786                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2787                                              I915_RESET_HANDOFF,
2788                                              TASK_UNINTERRUPTIBLE,
2789                                              1));
2790
2791                 intel_finish_reset(dev_priv);
2792         }
2793
2794         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2795                 kobject_uevent_env(kobj,
2796                                    KOBJ_CHANGE, reset_done_event);
2797 }
2798
2799 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2800 {
2801         u32 eir;
2802
2803         if (!IS_GEN2(dev_priv))
2804                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2805
2806         if (INTEL_GEN(dev_priv) < 4)
2807                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2808         else
2809                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2810
2811         I915_WRITE(EIR, I915_READ(EIR));
2812         eir = I915_READ(EIR);
2813         if (eir) {
2814                 /*
2815                  * some errors might have become stuck,
2816                  * mask them.
2817                  */
2818                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2819                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2820                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2821         }
2822 }
2823
2824 /**
2825  * i915_handle_error - handle a gpu error
2826  * @dev_priv: i915 device private
2827  * @engine_mask: mask representing engines that are hung
2828  * @fmt: Error message format string
2829  *
2830  * Do some basic checking of register state at error time and
2831  * dump it to the syslog.  Also call i915_capture_error_state() to make
2832  * sure we get a record and make it available in debugfs.  Fire a uevent
2833  * so userspace knows something bad happened (should trigger collection
2834  * of a ring dump etc.).
2835  */
2836 void i915_handle_error(struct drm_i915_private *dev_priv,
2837                        u32 engine_mask,
2838                        const char *fmt, ...)
2839 {
2840         struct intel_engine_cs *engine;
2841         unsigned int tmp;
2842         va_list args;
2843         char error_msg[80];
2844
2845         va_start(args, fmt);
2846         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2847         va_end(args);
2848
2849         /*
2850          * In most cases it's guaranteed that we get here with an RPM
2851          * reference held, for example because there is a pending GPU
2852          * request that won't finish until the reset is done. This
2853          * isn't the case at least when we get here by doing a
2854          * simulated reset via debugfs, so get an RPM reference.
2855          */
2856         intel_runtime_pm_get(dev_priv);
2857
2858         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2859         i915_clear_error_registers(dev_priv);
2860
2861         /*
2862          * Try engine reset when available. We fall back to full reset if
2863          * single reset fails.
2864          */
2865         if (intel_has_reset_engine(dev_priv)) {
2866                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2867                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2868                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2869                                              &dev_priv->gpu_error.flags))
2870                                 continue;
2871
2872                         if (i915_reset_engine(engine, 0) == 0)
2873                                 engine_mask &= ~intel_engine_flag(engine);
2874
2875                         clear_bit(I915_RESET_ENGINE + engine->id,
2876                                   &dev_priv->gpu_error.flags);
2877                         wake_up_bit(&dev_priv->gpu_error.flags,
2878                                     I915_RESET_ENGINE + engine->id);
2879                 }
2880         }
2881
2882         if (!engine_mask)
2883                 goto out;
2884
2885         /* Full reset needs the mutex, stop any other user trying to do so. */
2886         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2887                 wait_event(dev_priv->gpu_error.reset_queue,
2888                            !test_bit(I915_RESET_BACKOFF,
2889                                      &dev_priv->gpu_error.flags));
2890                 goto out;
2891         }
2892
2893         /* Prevent any other reset-engine attempt. */
2894         for_each_engine(engine, dev_priv, tmp) {
2895                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2896                                         &dev_priv->gpu_error.flags))
2897                         wait_on_bit(&dev_priv->gpu_error.flags,
2898                                     I915_RESET_ENGINE + engine->id,
2899                                     TASK_UNINTERRUPTIBLE);
2900         }
2901
2902         i915_reset_device(dev_priv);
2903
2904         for_each_engine(engine, dev_priv, tmp) {
2905                 clear_bit(I915_RESET_ENGINE + engine->id,
2906                           &dev_priv->gpu_error.flags);
2907         }
2908
2909         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2910         wake_up_all(&dev_priv->gpu_error.reset_queue);
2911
2912 out:
2913         intel_runtime_pm_put(dev_priv);
2914 }
2915
2916 /* Called from drm generic code, passed 'crtc' which
2917  * we use as a pipe index
2918  */
2919 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2920 {
2921         struct drm_i915_private *dev_priv = to_i915(dev);
2922         unsigned long irqflags;
2923
2924         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2925         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2926         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927
2928         return 0;
2929 }
2930
2931 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2932 {
2933         struct drm_i915_private *dev_priv = to_i915(dev);
2934         unsigned long irqflags;
2935
2936         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2937         i915_enable_pipestat(dev_priv, pipe,
2938                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2939         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2940
2941         return 0;
2942 }
2943
2944 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2945 {
2946         struct drm_i915_private *dev_priv = to_i915(dev);
2947         unsigned long irqflags;
2948         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2949                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2950
2951         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2952         ilk_enable_display_irq(dev_priv, bit);
2953         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2954
2955         return 0;
2956 }
2957
2958 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2959 {
2960         struct drm_i915_private *dev_priv = to_i915(dev);
2961         unsigned long irqflags;
2962
2963         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2964         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2965         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966
2967         return 0;
2968 }
2969
2970 /* Called from drm generic code, passed 'crtc' which
2971  * we use as a pipe index
2972  */
2973 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2974 {
2975         struct drm_i915_private *dev_priv = to_i915(dev);
2976         unsigned long irqflags;
2977
2978         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2979         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2980         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2981 }
2982
2983 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2984 {
2985         struct drm_i915_private *dev_priv = to_i915(dev);
2986         unsigned long irqflags;
2987
2988         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2989         i915_disable_pipestat(dev_priv, pipe,
2990                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2991         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2992 }
2993
2994 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2995 {
2996         struct drm_i915_private *dev_priv = to_i915(dev);
2997         unsigned long irqflags;
2998         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2999                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3000
3001         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3002         ilk_disable_display_irq(dev_priv, bit);
3003         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3004 }
3005
3006 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3007 {
3008         struct drm_i915_private *dev_priv = to_i915(dev);
3009         unsigned long irqflags;
3010
3011         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3012         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3013         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3014 }
3015
3016 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3017 {
3018         if (HAS_PCH_NOP(dev_priv))
3019                 return;
3020
3021         GEN3_IRQ_RESET(SDE);
3022
3023         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3024                 I915_WRITE(SERR_INT, 0xffffffff);
3025 }
3026
3027 /*
3028  * SDEIER is also touched by the interrupt handler to work around missed PCH
3029  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3030  * instead we unconditionally enable all PCH interrupt sources here, but then
3031  * only unmask them as needed with SDEIMR.
3032  *
3033  * This function needs to be called before interrupts are enabled.
3034  */
3035 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3036 {
3037         struct drm_i915_private *dev_priv = to_i915(dev);
3038
3039         if (HAS_PCH_NOP(dev_priv))
3040                 return;
3041
3042         WARN_ON(I915_READ(SDEIER) != 0);
3043         I915_WRITE(SDEIER, 0xffffffff);
3044         POSTING_READ(SDEIER);
3045 }
3046
3047 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3048 {
3049         GEN3_IRQ_RESET(GT);
3050         if (INTEL_GEN(dev_priv) >= 6)
3051                 GEN3_IRQ_RESET(GEN6_PM);
3052 }
3053
3054 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3055 {
3056         if (IS_CHERRYVIEW(dev_priv))
3057                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3058         else
3059                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3060
3061         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3062         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3063
3064         i9xx_pipestat_irq_reset(dev_priv);
3065
3066         GEN3_IRQ_RESET(VLV_);
3067         dev_priv->irq_mask = ~0;
3068 }
3069
3070 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3071 {
3072         u32 pipestat_mask;
3073         u32 enable_mask;
3074         enum pipe pipe;
3075
3076         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3077
3078         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3079         for_each_pipe(dev_priv, pipe)
3080                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3081
3082         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3083                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3084                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3085                 I915_LPE_PIPE_A_INTERRUPT |
3086                 I915_LPE_PIPE_B_INTERRUPT;
3087
3088         if (IS_CHERRYVIEW(dev_priv))
3089                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3090                         I915_LPE_PIPE_C_INTERRUPT;
3091
3092         WARN_ON(dev_priv->irq_mask != ~0);
3093
3094         dev_priv->irq_mask = ~enable_mask;
3095
3096         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3097 }
3098
3099 /* drm_dma.h hooks
3100 */
3101 static void ironlake_irq_reset(struct drm_device *dev)
3102 {
3103         struct drm_i915_private *dev_priv = to_i915(dev);
3104
3105         if (IS_GEN5(dev_priv))
3106                 I915_WRITE(HWSTAM, 0xffffffff);
3107
3108         GEN3_IRQ_RESET(DE);
3109         if (IS_GEN7(dev_priv))
3110                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3111
3112         gen5_gt_irq_reset(dev_priv);
3113
3114         ibx_irq_reset(dev_priv);
3115 }
3116
3117 static void valleyview_irq_reset(struct drm_device *dev)
3118 {
3119         struct drm_i915_private *dev_priv = to_i915(dev);
3120
3121         I915_WRITE(VLV_MASTER_IER, 0);
3122         POSTING_READ(VLV_MASTER_IER);
3123
3124         gen5_gt_irq_reset(dev_priv);
3125
3126         spin_lock_irq(&dev_priv->irq_lock);
3127         if (dev_priv->display_irqs_enabled)
3128                 vlv_display_irq_reset(dev_priv);
3129         spin_unlock_irq(&dev_priv->irq_lock);
3130 }
3131
3132 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3133 {
3134         GEN8_IRQ_RESET_NDX(GT, 0);
3135         GEN8_IRQ_RESET_NDX(GT, 1);
3136         GEN8_IRQ_RESET_NDX(GT, 2);
3137         GEN8_IRQ_RESET_NDX(GT, 3);
3138 }
3139
3140 static void gen8_irq_reset(struct drm_device *dev)
3141 {
3142         struct drm_i915_private *dev_priv = to_i915(dev);
3143         int pipe;
3144
3145         I915_WRITE(GEN8_MASTER_IRQ, 0);
3146         POSTING_READ(GEN8_MASTER_IRQ);
3147
3148         gen8_gt_irq_reset(dev_priv);
3149
3150         for_each_pipe(dev_priv, pipe)
3151                 if (intel_display_power_is_enabled(dev_priv,
3152                                                    POWER_DOMAIN_PIPE(pipe)))
3153                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3154
3155         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3156         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3157         GEN3_IRQ_RESET(GEN8_PCU_);
3158
3159         if (HAS_PCH_SPLIT(dev_priv))
3160                 ibx_irq_reset(dev_priv);
3161 }
3162
3163 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3164                                      u8 pipe_mask)
3165 {
3166         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3167         enum pipe pipe;
3168
3169         spin_lock_irq(&dev_priv->irq_lock);
3170
3171         if (!intel_irqs_enabled(dev_priv)) {
3172                 spin_unlock_irq(&dev_priv->irq_lock);
3173                 return;
3174         }
3175
3176         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3177                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3178                                   dev_priv->de_irq_mask[pipe],
3179                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3180
3181         spin_unlock_irq(&dev_priv->irq_lock);
3182 }
3183
3184 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3185                                      u8 pipe_mask)
3186 {
3187         enum pipe pipe;
3188
3189         spin_lock_irq(&dev_priv->irq_lock);
3190
3191         if (!intel_irqs_enabled(dev_priv)) {
3192                 spin_unlock_irq(&dev_priv->irq_lock);
3193                 return;
3194         }
3195
3196         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3197                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3198
3199         spin_unlock_irq(&dev_priv->irq_lock);
3200
3201         /* make sure we're done processing display irqs */
3202         synchronize_irq(dev_priv->drm.irq);
3203 }
3204
3205 static void cherryview_irq_reset(struct drm_device *dev)
3206 {
3207         struct drm_i915_private *dev_priv = to_i915(dev);
3208
3209         I915_WRITE(GEN8_MASTER_IRQ, 0);
3210         POSTING_READ(GEN8_MASTER_IRQ);
3211
3212         gen8_gt_irq_reset(dev_priv);
3213
3214         GEN3_IRQ_RESET(GEN8_PCU_);
3215
3216         spin_lock_irq(&dev_priv->irq_lock);
3217         if (dev_priv->display_irqs_enabled)
3218                 vlv_display_irq_reset(dev_priv);
3219         spin_unlock_irq(&dev_priv->irq_lock);
3220 }
3221
3222 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3223                                   const u32 hpd[HPD_NUM_PINS])
3224 {
3225         struct intel_encoder *encoder;
3226         u32 enabled_irqs = 0;
3227
3228         for_each_intel_encoder(&dev_priv->drm, encoder)
3229                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3230                         enabled_irqs |= hpd[encoder->hpd_pin];
3231
3232         return enabled_irqs;
3233 }
3234
3235 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3236 {
3237         u32 hotplug;
3238
3239         /*
3240          * Enable digital hotplug on the PCH, and configure the DP short pulse
3241          * duration to 2ms (which is the minimum in the Display Port spec).
3242          * The pulse duration bits are reserved on LPT+.
3243          */
3244         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3245         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3246                      PORTC_PULSE_DURATION_MASK |
3247                      PORTD_PULSE_DURATION_MASK);
3248         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3249         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3250         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3251         /*
3252          * When CPU and PCH are on the same package, port A
3253          * HPD must be enabled in both north and south.
3254          */
3255         if (HAS_PCH_LPT_LP(dev_priv))
3256                 hotplug |= PORTA_HOTPLUG_ENABLE;
3257         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3258 }
3259
3260 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3261 {
3262         u32 hotplug_irqs, enabled_irqs;
3263
3264         if (HAS_PCH_IBX(dev_priv)) {
3265                 hotplug_irqs = SDE_HOTPLUG_MASK;
3266                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3267         } else {
3268                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3269                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3270         }
3271
3272         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3273
3274         ibx_hpd_detection_setup(dev_priv);
3275 }
3276
3277 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3278 {
3279         u32 val, hotplug;
3280
3281         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3282         if (HAS_PCH_CNP(dev_priv)) {
3283                 val = I915_READ(SOUTH_CHICKEN1);
3284                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3285                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3286                 I915_WRITE(SOUTH_CHICKEN1, val);
3287         }
3288
3289         /* Enable digital hotplug on the PCH */
3290         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3291         hotplug |= PORTA_HOTPLUG_ENABLE |
3292                    PORTB_HOTPLUG_ENABLE |
3293                    PORTC_HOTPLUG_ENABLE |
3294                    PORTD_HOTPLUG_ENABLE;
3295         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3296
3297         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3298         hotplug |= PORTE_HOTPLUG_ENABLE;
3299         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3300 }
3301
3302 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3303 {
3304         u32 hotplug_irqs, enabled_irqs;
3305
3306         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3307         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3308
3309         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3310
3311         spt_hpd_detection_setup(dev_priv);
3312 }
3313
3314 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3315 {
3316         u32 hotplug;
3317
3318         /*
3319          * Enable digital hotplug on the CPU, and configure the DP short pulse
3320          * duration to 2ms (which is the minimum in the Display Port spec)
3321          * The pulse duration bits are reserved on HSW+.
3322          */
3323         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3324         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3325         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3326                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3327         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3328 }
3329
3330 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3331 {
3332         u32 hotplug_irqs, enabled_irqs;
3333
3334         if (INTEL_GEN(dev_priv) >= 8) {
3335                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3336                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3337
3338                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3339         } else if (INTEL_GEN(dev_priv) >= 7) {
3340                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3341                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3342
3343                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3344         } else {
3345                 hotplug_irqs = DE_DP_A_HOTPLUG;
3346                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3347
3348                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3349         }
3350
3351         ilk_hpd_detection_setup(dev_priv);
3352
3353         ibx_hpd_irq_setup(dev_priv);
3354 }
3355
3356 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3357                                       u32 enabled_irqs)
3358 {
3359         u32 hotplug;
3360
3361         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3362         hotplug |= PORTA_HOTPLUG_ENABLE |
3363                    PORTB_HOTPLUG_ENABLE |
3364                    PORTC_HOTPLUG_ENABLE;
3365
3366         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3367                       hotplug, enabled_irqs);
3368         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3369
3370         /*
3371          * For BXT invert bit has to be set based on AOB design
3372          * for HPD detection logic, update it based on VBT fields.
3373          */
3374         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3375             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3376                 hotplug |= BXT_DDIA_HPD_INVERT;
3377         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3378             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3379                 hotplug |= BXT_DDIB_HPD_INVERT;
3380         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3381             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3382                 hotplug |= BXT_DDIC_HPD_INVERT;
3383
3384         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3385 }
3386
3387 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3388 {
3389         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3390 }
3391
3392 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3393 {
3394         u32 hotplug_irqs, enabled_irqs;
3395
3396         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3397         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3398
3399         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3400
3401         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3402 }
3403
3404 static void ibx_irq_postinstall(struct drm_device *dev)
3405 {
3406         struct drm_i915_private *dev_priv = to_i915(dev);
3407         u32 mask;
3408
3409         if (HAS_PCH_NOP(dev_priv))
3410                 return;
3411
3412         if (HAS_PCH_IBX(dev_priv))
3413                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3414         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3415                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3416         else
3417                 mask = SDE_GMBUS_CPT;
3418
3419         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3420         I915_WRITE(SDEIMR, ~mask);
3421
3422         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3423             HAS_PCH_LPT(dev_priv))
3424                 ibx_hpd_detection_setup(dev_priv);
3425         else
3426                 spt_hpd_detection_setup(dev_priv);
3427 }
3428
3429 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3430 {
3431         struct drm_i915_private *dev_priv = to_i915(dev);
3432         u32 pm_irqs, gt_irqs;
3433
3434         pm_irqs = gt_irqs = 0;
3435
3436         dev_priv->gt_irq_mask = ~0;
3437         if (HAS_L3_DPF(dev_priv)) {
3438                 /* L3 parity interrupt is always unmasked. */
3439                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3440                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3441         }
3442
3443         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3444         if (IS_GEN5(dev_priv)) {
3445                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3446         } else {
3447                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3448         }
3449
3450         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3451
3452         if (INTEL_GEN(dev_priv) >= 6) {
3453                 /*
3454                  * RPS interrupts will get enabled/disabled on demand when RPS
3455                  * itself is enabled/disabled.
3456                  */
3457                 if (HAS_VEBOX(dev_priv)) {
3458                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3459                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3460                 }
3461
3462                 dev_priv->pm_imr = 0xffffffff;
3463                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3464         }
3465 }
3466
3467 static int ironlake_irq_postinstall(struct drm_device *dev)
3468 {
3469         struct drm_i915_private *dev_priv = to_i915(dev);
3470         u32 display_mask, extra_mask;
3471
3472         if (INTEL_GEN(dev_priv) >= 7) {
3473                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3474                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3475                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3476                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3477                               DE_DP_A_HOTPLUG_IVB);
3478         } else {
3479                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3480                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3481                                 DE_PIPEA_CRC_DONE | DE_POISON);
3482                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3483                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3484                               DE_DP_A_HOTPLUG);
3485         }
3486
3487         dev_priv->irq_mask = ~display_mask;
3488
3489         ibx_irq_pre_postinstall(dev);
3490
3491         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3492
3493         gen5_gt_irq_postinstall(dev);
3494
3495         ilk_hpd_detection_setup(dev_priv);
3496
3497         ibx_irq_postinstall(dev);
3498
3499         if (IS_IRONLAKE_M(dev_priv)) {
3500                 /* Enable PCU event interrupts
3501                  *
3502                  * spinlocking not required here for correctness since interrupt
3503                  * setup is guaranteed to run in single-threaded context. But we
3504                  * need it to make the assert_spin_locked happy. */
3505                 spin_lock_irq(&dev_priv->irq_lock);
3506                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3507                 spin_unlock_irq(&dev_priv->irq_lock);
3508         }
3509
3510         return 0;
3511 }
3512
3513 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3514 {
3515         lockdep_assert_held(&dev_priv->irq_lock);
3516
3517         if (dev_priv->display_irqs_enabled)
3518                 return;
3519
3520         dev_priv->display_irqs_enabled = true;
3521
3522         if (intel_irqs_enabled(dev_priv)) {
3523                 vlv_display_irq_reset(dev_priv);
3524                 vlv_display_irq_postinstall(dev_priv);
3525         }
3526 }
3527
3528 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3529 {
3530         lockdep_assert_held(&dev_priv->irq_lock);
3531
3532         if (!dev_priv->display_irqs_enabled)
3533                 return;
3534
3535         dev_priv->display_irqs_enabled = false;
3536
3537         if (intel_irqs_enabled(dev_priv))
3538                 vlv_display_irq_reset(dev_priv);
3539 }
3540
3541
3542 static int valleyview_irq_postinstall(struct drm_device *dev)
3543 {
3544         struct drm_i915_private *dev_priv = to_i915(dev);
3545
3546         gen5_gt_irq_postinstall(dev);
3547
3548         spin_lock_irq(&dev_priv->irq_lock);
3549         if (dev_priv->display_irqs_enabled)
3550                 vlv_display_irq_postinstall(dev_priv);
3551         spin_unlock_irq(&dev_priv->irq_lock);
3552
3553         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3554         POSTING_READ(VLV_MASTER_IER);
3555
3556         return 0;
3557 }
3558
3559 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561         /* These are interrupts we'll toggle with the ring mask register */
3562         uint32_t gt_interrupts[] = {
3563                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3564                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3565                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3566                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3567                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3568                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3569                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3570                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3571                 0,
3572                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3573                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3574                 };
3575
3576         if (HAS_L3_DPF(dev_priv))
3577                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3578
3579         dev_priv->pm_ier = 0x0;
3580         dev_priv->pm_imr = ~dev_priv->pm_ier;
3581         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3582         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3583         /*
3584          * RPS interrupts will get enabled/disabled on demand when RPS itself
3585          * is enabled/disabled. Same wil be the case for GuC interrupts.
3586          */
3587         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3588         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3589 }
3590
3591 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3592 {
3593         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3594         uint32_t de_pipe_enables;
3595         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3596         u32 de_port_enables;
3597         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3598         enum pipe pipe;
3599
3600         if (INTEL_GEN(dev_priv) >= 9) {
3601                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3602                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3603                                   GEN9_AUX_CHANNEL_D;
3604                 if (IS_GEN9_LP(dev_priv))
3605                         de_port_masked |= BXT_DE_PORT_GMBUS;
3606         } else {
3607                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3608         }
3609
3610         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3611                                            GEN8_PIPE_FIFO_UNDERRUN;
3612
3613         de_port_enables = de_port_masked;
3614         if (IS_GEN9_LP(dev_priv))
3615                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3616         else if (IS_BROADWELL(dev_priv))
3617                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3618
3619         for_each_pipe(dev_priv, pipe) {
3620                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3621
3622                 if (intel_display_power_is_enabled(dev_priv,
3623                                 POWER_DOMAIN_PIPE(pipe)))
3624                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3625                                           dev_priv->de_irq_mask[pipe],
3626                                           de_pipe_enables);
3627         }
3628
3629         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3630         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3631
3632         if (IS_GEN9_LP(dev_priv))
3633                 bxt_hpd_detection_setup(dev_priv);
3634         else if (IS_BROADWELL(dev_priv))
3635                 ilk_hpd_detection_setup(dev_priv);
3636 }
3637
3638 static int gen8_irq_postinstall(struct drm_device *dev)
3639 {
3640         struct drm_i915_private *dev_priv = to_i915(dev);
3641
3642         if (HAS_PCH_SPLIT(dev_priv))
3643                 ibx_irq_pre_postinstall(dev);
3644
3645         gen8_gt_irq_postinstall(dev_priv);
3646         gen8_de_irq_postinstall(dev_priv);
3647
3648         if (HAS_PCH_SPLIT(dev_priv))
3649                 ibx_irq_postinstall(dev);
3650
3651         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3652         POSTING_READ(GEN8_MASTER_IRQ);
3653
3654         return 0;
3655 }
3656
3657 static int cherryview_irq_postinstall(struct drm_device *dev)
3658 {
3659         struct drm_i915_private *dev_priv = to_i915(dev);
3660
3661         gen8_gt_irq_postinstall(dev_priv);
3662
3663         spin_lock_irq(&dev_priv->irq_lock);
3664         if (dev_priv->display_irqs_enabled)
3665                 vlv_display_irq_postinstall(dev_priv);
3666         spin_unlock_irq(&dev_priv->irq_lock);
3667
3668         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3669         POSTING_READ(GEN8_MASTER_IRQ);
3670
3671         return 0;
3672 }
3673
3674 static void i8xx_irq_reset(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = to_i915(dev);
3677
3678         i9xx_pipestat_irq_reset(dev_priv);
3679
3680         I915_WRITE16(HWSTAM, 0xffff);
3681
3682         GEN2_IRQ_RESET();
3683 }
3684
3685 static int i8xx_irq_postinstall(struct drm_device *dev)
3686 {
3687         struct drm_i915_private *dev_priv = to_i915(dev);
3688         u16 enable_mask;
3689
3690         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3691                             I915_ERROR_MEMORY_REFRESH));
3692
3693         /* Unmask the interrupts that we always want on. */
3694         dev_priv->irq_mask =
3695                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3697
3698         enable_mask =
3699                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3700                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3701                 I915_USER_INTERRUPT;
3702
3703         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3704
3705         /* Interrupt setup is already guaranteed to be single-threaded, this is
3706          * just to make the assert_spin_locked check happy. */
3707         spin_lock_irq(&dev_priv->irq_lock);
3708         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3709         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3710         spin_unlock_irq(&dev_priv->irq_lock);
3711
3712         return 0;
3713 }
3714
3715 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3716 {
3717         struct drm_device *dev = arg;
3718         struct drm_i915_private *dev_priv = to_i915(dev);
3719         irqreturn_t ret = IRQ_NONE;
3720
3721         if (!intel_irqs_enabled(dev_priv))
3722                 return IRQ_NONE;
3723
3724         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3725         disable_rpm_wakeref_asserts(dev_priv);
3726
3727         do {
3728                 u32 pipe_stats[I915_MAX_PIPES] = {};
3729                 u16 iir;
3730
3731                 iir = I915_READ16(IIR);
3732                 if (iir == 0)
3733                         break;
3734
3735                 ret = IRQ_HANDLED;
3736
3737                 /* Call regardless, as some status bits might not be
3738                  * signalled in iir */
3739                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3740
3741                 I915_WRITE16(IIR, iir);
3742
3743                 if (iir & I915_USER_INTERRUPT)
3744                         notify_ring(dev_priv->engine[RCS]);
3745
3746                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3747                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3748
3749                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3750         } while (0);
3751
3752         enable_rpm_wakeref_asserts(dev_priv);
3753
3754         return ret;
3755 }
3756
3757 static void i915_irq_reset(struct drm_device *dev)
3758 {
3759         struct drm_i915_private *dev_priv = to_i915(dev);
3760
3761         if (I915_HAS_HOTPLUG(dev_priv)) {
3762                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3763                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3764         }
3765
3766         i9xx_pipestat_irq_reset(dev_priv);
3767
3768         I915_WRITE(HWSTAM, 0xffffffff);
3769
3770         GEN3_IRQ_RESET();
3771 }
3772
3773 static int i915_irq_postinstall(struct drm_device *dev)
3774 {
3775         struct drm_i915_private *dev_priv = to_i915(dev);
3776         u32 enable_mask;
3777
3778         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3779                           I915_ERROR_MEMORY_REFRESH));
3780
3781         /* Unmask the interrupts that we always want on. */
3782         dev_priv->irq_mask =
3783                 ~(I915_ASLE_INTERRUPT |
3784                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3785                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3786
3787         enable_mask =
3788                 I915_ASLE_INTERRUPT |
3789                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3790                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3791                 I915_USER_INTERRUPT;
3792
3793         if (I915_HAS_HOTPLUG(dev_priv)) {
3794                 /* Enable in IER... */
3795                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3796                 /* and unmask in IMR */
3797                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3798         }
3799
3800         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3801
3802         /* Interrupt setup is already guaranteed to be single-threaded, this is
3803          * just to make the assert_spin_locked check happy. */
3804         spin_lock_irq(&dev_priv->irq_lock);
3805         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3806         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3807         spin_unlock_irq(&dev_priv->irq_lock);
3808
3809         i915_enable_asle_pipestat(dev_priv);
3810
3811         return 0;
3812 }
3813
3814 static irqreturn_t i915_irq_handler(int irq, void *arg)
3815 {
3816         struct drm_device *dev = arg;
3817         struct drm_i915_private *dev_priv = to_i915(dev);
3818         irqreturn_t ret = IRQ_NONE;
3819
3820         if (!intel_irqs_enabled(dev_priv))
3821                 return IRQ_NONE;
3822
3823         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3824         disable_rpm_wakeref_asserts(dev_priv);
3825
3826         do {
3827                 u32 pipe_stats[I915_MAX_PIPES] = {};
3828                 u32 hotplug_status = 0;
3829                 u32 iir;
3830
3831                 iir = I915_READ(IIR);
3832                 if (iir == 0)
3833                         break;
3834
3835                 ret = IRQ_HANDLED;
3836
3837                 if (I915_HAS_HOTPLUG(dev_priv) &&
3838                     iir & I915_DISPLAY_PORT_INTERRUPT)
3839                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3840
3841                 /* Call regardless, as some status bits might not be
3842                  * signalled in iir */
3843                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3844
3845                 I915_WRITE(IIR, iir);
3846
3847                 if (iir & I915_USER_INTERRUPT)
3848                         notify_ring(dev_priv->engine[RCS]);
3849
3850                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3851                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3852
3853                 if (hotplug_status)
3854                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3855
3856                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3857         } while (0);
3858
3859         enable_rpm_wakeref_asserts(dev_priv);
3860
3861         return ret;
3862 }
3863
3864 static void i965_irq_reset(struct drm_device *dev)
3865 {
3866         struct drm_i915_private *dev_priv = to_i915(dev);
3867
3868         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3869         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3870
3871         i9xx_pipestat_irq_reset(dev_priv);
3872
3873         I915_WRITE(HWSTAM, 0xffffffff);
3874
3875         GEN3_IRQ_RESET();
3876 }
3877
3878 static int i965_irq_postinstall(struct drm_device *dev)
3879 {
3880         struct drm_i915_private *dev_priv = to_i915(dev);
3881         u32 enable_mask;
3882         u32 error_mask;
3883
3884         /*
3885          * Enable some error detection, note the instruction error mask
3886          * bit is reserved, so we leave it masked.
3887          */
3888         if (IS_G4X(dev_priv)) {
3889                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3890                                GM45_ERROR_MEM_PRIV |
3891                                GM45_ERROR_CP_PRIV |
3892                                I915_ERROR_MEMORY_REFRESH);
3893         } else {
3894                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3895                                I915_ERROR_MEMORY_REFRESH);
3896         }
3897         I915_WRITE(EMR, error_mask);
3898
3899         /* Unmask the interrupts that we always want on. */
3900         dev_priv->irq_mask =
3901                 ~(I915_ASLE_INTERRUPT |
3902                   I915_DISPLAY_PORT_INTERRUPT |
3903                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3904                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3905                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3906
3907         enable_mask =
3908                 I915_ASLE_INTERRUPT |
3909                 I915_DISPLAY_PORT_INTERRUPT |
3910                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3911                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3912                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3913                 I915_USER_INTERRUPT;
3914
3915         if (IS_G4X(dev_priv))
3916                 enable_mask |= I915_BSD_USER_INTERRUPT;
3917
3918         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3919
3920         /* Interrupt setup is already guaranteed to be single-threaded, this is
3921          * just to make the assert_spin_locked check happy. */
3922         spin_lock_irq(&dev_priv->irq_lock);
3923         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3924         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3925         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3926         spin_unlock_irq(&dev_priv->irq_lock);
3927
3928         i915_enable_asle_pipestat(dev_priv);
3929
3930         return 0;
3931 }
3932
3933 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3934 {
3935         u32 hotplug_en;
3936
3937         lockdep_assert_held(&dev_priv->irq_lock);
3938
3939         /* Note HDMI and DP share hotplug bits */
3940         /* enable bits are the same for all generations */
3941         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3942         /* Programming the CRT detection parameters tends
3943            to generate a spurious hotplug event about three
3944            seconds later.  So just do it once.
3945         */
3946         if (IS_G4X(dev_priv))
3947                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3948         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3949
3950         /* Ignore TV since it's buggy */
3951         i915_hotplug_interrupt_update_locked(dev_priv,
3952                                              HOTPLUG_INT_EN_MASK |
3953                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3954                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3955                                              hotplug_en);
3956 }
3957
3958 static irqreturn_t i965_irq_handler(int irq, void *arg)
3959 {
3960         struct drm_device *dev = arg;
3961         struct drm_i915_private *dev_priv = to_i915(dev);
3962         irqreturn_t ret = IRQ_NONE;
3963
3964         if (!intel_irqs_enabled(dev_priv))
3965                 return IRQ_NONE;
3966
3967         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3968         disable_rpm_wakeref_asserts(dev_priv);
3969
3970         do {
3971                 u32 pipe_stats[I915_MAX_PIPES] = {};
3972                 u32 hotplug_status = 0;
3973                 u32 iir;
3974
3975                 iir = I915_READ(IIR);
3976                 if (iir == 0)
3977                         break;
3978
3979                 ret = IRQ_HANDLED;
3980
3981                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3982                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3983
3984                 /* Call regardless, as some status bits might not be
3985                  * signalled in iir */
3986                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3987
3988                 I915_WRITE(IIR, iir);
3989
3990                 if (iir & I915_USER_INTERRUPT)
3991                         notify_ring(dev_priv->engine[RCS]);
3992
3993                 if (iir & I915_BSD_USER_INTERRUPT)
3994                         notify_ring(dev_priv->engine[VCS]);
3995
3996                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3997                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3998
3999                 if (hotplug_status)
4000                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4001
4002                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4003         } while (0);
4004
4005         enable_rpm_wakeref_asserts(dev_priv);
4006
4007         return ret;
4008 }
4009
4010 /**
4011  * intel_irq_init - initializes irq support
4012  * @dev_priv: i915 device instance
4013  *
4014  * This function initializes all the irq support including work items, timers
4015  * and all the vtables. It does not setup the interrupt itself though.
4016  */
4017 void intel_irq_init(struct drm_i915_private *dev_priv)
4018 {
4019         struct drm_device *dev = &dev_priv->drm;
4020         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4021         int i;
4022
4023         intel_hpd_init_work(dev_priv);
4024
4025         INIT_WORK(&rps->work, gen6_pm_rps_work);
4026
4027         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4028         for (i = 0; i < MAX_L3_SLICES; ++i)
4029                 dev_priv->l3_parity.remap_info[i] = NULL;
4030
4031         if (HAS_GUC_SCHED(dev_priv))
4032                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4033
4034         /* Let's track the enabled rps events */
4035         if (IS_VALLEYVIEW(dev_priv))
4036                 /* WaGsvRC0ResidencyMethod:vlv */
4037                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4038         else
4039                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4040
4041         rps->pm_intrmsk_mbz = 0;
4042
4043         /*
4044          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4045          * if GEN6_PM_UP_EI_EXPIRED is masked.
4046          *
4047          * TODO: verify if this can be reproduced on VLV,CHV.
4048          */
4049         if (INTEL_GEN(dev_priv) <= 7)
4050                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4051
4052         if (INTEL_GEN(dev_priv) >= 8)
4053                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4054
4055         if (IS_GEN2(dev_priv)) {
4056                 /* Gen2 doesn't have a hardware frame counter */
4057                 dev->max_vblank_count = 0;
4058         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4059                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4060                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4061         } else {
4062                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4063                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4064         }
4065
4066         /*
4067          * Opt out of the vblank disable timer on everything except gen2.
4068          * Gen2 doesn't have a hardware frame counter and so depends on
4069          * vblank interrupts to produce sane vblank seuquence numbers.
4070          */
4071         if (!IS_GEN2(dev_priv))
4072                 dev->vblank_disable_immediate = true;
4073
4074         /* Most platforms treat the display irq block as an always-on
4075          * power domain. vlv/chv can disable it at runtime and need
4076          * special care to avoid writing any of the display block registers
4077          * outside of the power domain. We defer setting up the display irqs
4078          * in this case to the runtime pm.
4079          */
4080         dev_priv->display_irqs_enabled = true;
4081         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4082                 dev_priv->display_irqs_enabled = false;
4083
4084         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4085
4086         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4087         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4088
4089         if (IS_CHERRYVIEW(dev_priv)) {
4090                 dev->driver->irq_handler = cherryview_irq_handler;
4091                 dev->driver->irq_preinstall = cherryview_irq_reset;
4092                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4093                 dev->driver->irq_uninstall = cherryview_irq_reset;
4094                 dev->driver->enable_vblank = i965_enable_vblank;
4095                 dev->driver->disable_vblank = i965_disable_vblank;
4096                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4097         } else if (IS_VALLEYVIEW(dev_priv)) {
4098                 dev->driver->irq_handler = valleyview_irq_handler;
4099                 dev->driver->irq_preinstall = valleyview_irq_reset;
4100                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4101                 dev->driver->irq_uninstall = valleyview_irq_reset;
4102                 dev->driver->enable_vblank = i965_enable_vblank;
4103                 dev->driver->disable_vblank = i965_disable_vblank;
4104                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4105         } else if (INTEL_GEN(dev_priv) >= 8) {
4106                 dev->driver->irq_handler = gen8_irq_handler;
4107                 dev->driver->irq_preinstall = gen8_irq_reset;
4108                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4109                 dev->driver->irq_uninstall = gen8_irq_reset;
4110                 dev->driver->enable_vblank = gen8_enable_vblank;
4111                 dev->driver->disable_vblank = gen8_disable_vblank;
4112                 if (IS_GEN9_LP(dev_priv))
4113                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4114                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4115                          HAS_PCH_CNP(dev_priv))
4116                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4117                 else
4118                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4119         } else if (HAS_PCH_SPLIT(dev_priv)) {
4120                 dev->driver->irq_handler = ironlake_irq_handler;
4121                 dev->driver->irq_preinstall = ironlake_irq_reset;
4122                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4123                 dev->driver->irq_uninstall = ironlake_irq_reset;
4124                 dev->driver->enable_vblank = ironlake_enable_vblank;
4125                 dev->driver->disable_vblank = ironlake_disable_vblank;
4126                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4127         } else {
4128                 if (IS_GEN2(dev_priv)) {
4129                         dev->driver->irq_preinstall = i8xx_irq_reset;
4130                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4131                         dev->driver->irq_handler = i8xx_irq_handler;
4132                         dev->driver->irq_uninstall = i8xx_irq_reset;
4133                         dev->driver->enable_vblank = i8xx_enable_vblank;
4134                         dev->driver->disable_vblank = i8xx_disable_vblank;
4135                 } else if (IS_GEN3(dev_priv)) {
4136                         dev->driver->irq_preinstall = i915_irq_reset;
4137                         dev->driver->irq_postinstall = i915_irq_postinstall;
4138                         dev->driver->irq_uninstall = i915_irq_reset;
4139                         dev->driver->irq_handler = i915_irq_handler;
4140                         dev->driver->enable_vblank = i8xx_enable_vblank;
4141                         dev->driver->disable_vblank = i8xx_disable_vblank;
4142                 } else {
4143                         dev->driver->irq_preinstall = i965_irq_reset;
4144                         dev->driver->irq_postinstall = i965_irq_postinstall;
4145                         dev->driver->irq_uninstall = i965_irq_reset;
4146                         dev->driver->irq_handler = i965_irq_handler;
4147                         dev->driver->enable_vblank = i965_enable_vblank;
4148                         dev->driver->disable_vblank = i965_disable_vblank;
4149                 }
4150                 if (I915_HAS_HOTPLUG(dev_priv))
4151                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4152         }
4153 }
4154
4155 /**
4156  * intel_irq_fini - deinitializes IRQ support
4157  * @i915: i915 device instance
4158  *
4159  * This function deinitializes all the IRQ support.
4160  */
4161 void intel_irq_fini(struct drm_i915_private *i915)
4162 {
4163         int i;
4164
4165         for (i = 0; i < MAX_L3_SLICES; ++i)
4166                 kfree(i915->l3_parity.remap_info[i]);
4167 }
4168
4169 /**
4170  * intel_irq_install - enables the hardware interrupt
4171  * @dev_priv: i915 device instance
4172  *
4173  * This function enables the hardware interrupt handling, but leaves the hotplug
4174  * handling still disabled. It is called after intel_irq_init().
4175  *
4176  * In the driver load and resume code we need working interrupts in a few places
4177  * but don't want to deal with the hassle of concurrent probe and hotplug
4178  * workers. Hence the split into this two-stage approach.
4179  */
4180 int intel_irq_install(struct drm_i915_private *dev_priv)
4181 {
4182         /*
4183          * We enable some interrupt sources in our postinstall hooks, so mark
4184          * interrupts as enabled _before_ actually enabling them to avoid
4185          * special cases in our ordering checks.
4186          */
4187         dev_priv->runtime_pm.irqs_enabled = true;
4188
4189         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4190 }
4191
4192 /**
4193  * intel_irq_uninstall - finilizes all irq handling
4194  * @dev_priv: i915 device instance
4195  *
4196  * This stops interrupt and hotplug handling and unregisters and frees all
4197  * resources acquired in the init functions.
4198  */
4199 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4200 {
4201         drm_irq_uninstall(&dev_priv->drm);
4202         intel_hpd_cancel_work(dev_priv);
4203         dev_priv->runtime_pm.irqs_enabled = false;
4204 }
4205
4206 /**
4207  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4208  * @dev_priv: i915 device instance
4209  *
4210  * This function is used to disable interrupts at runtime, both in the runtime
4211  * pm and the system suspend/resume code.
4212  */
4213 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4214 {
4215         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4216         dev_priv->runtime_pm.irqs_enabled = false;
4217         synchronize_irq(dev_priv->drm.irq);
4218 }
4219
4220 /**
4221  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4222  * @dev_priv: i915 device instance
4223  *
4224  * This function is used to enable interrupts at runtime, both in the runtime
4225  * pm and the system suspend/resume code.
4226  */
4227 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4228 {
4229         dev_priv->runtime_pm.irqs_enabled = true;
4230         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4231         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4232 }
This page took 0.295149 seconds and 4 git commands to generate.