1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
19 * mark a page as having been made dirty and thus needing writeback
21 int afs_set_page_dirty(struct page *page)
24 return __set_page_dirty_nobuffers(page);
28 * prepare to perform part of a write to a page
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31 loff_t pos, unsigned len, unsigned flags,
32 struct page **_page, void **fsdata)
34 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
42 _enter("{%llx:%llu},%llx,%x",
43 vnode->fid.vid, vnode->fid.vnode, pos, len);
45 /* Prefetch area to be written into the cache if we're caching this
46 * file. We need to do this before we get a lock on the page in case
47 * there's more than one writer competing for the same cache block.
49 ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
55 from = pos - index * PAGE_SIZE;
59 /* See if this page is already partially written in a way that we can
60 * merge the new write with.
62 if (PagePrivate(page)) {
63 priv = page_private(page);
64 f = afs_page_dirty_from(page, priv);
65 t = afs_page_dirty_to(page, priv);
68 if (PageWriteback(page)) {
69 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70 goto flush_conflicting_write;
72 /* If the file is being filled locally, allow inter-write
73 * spaces to be merged into writes. If it's not, only write
74 * back what the user gives us.
76 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
78 goto flush_conflicting_write;
85 /* The previous write and this write aren't adjacent or overlapping, so
88 flush_conflicting_write:
89 _debug("flush conflict");
90 ret = write_one_page(page);
94 ret = lock_page_killable(page);
101 _leave(" = %d", ret);
106 * finalise part of a write to a page
108 int afs_write_end(struct file *file, struct address_space *mapping,
109 loff_t pos, unsigned len, unsigned copied,
110 struct page *page, void *fsdata)
112 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
114 unsigned int f, from = pos & (thp_size(page) - 1);
115 unsigned int t, to = from + copied;
116 loff_t i_size, maybe_i_size;
118 _enter("{%llx:%llu},{%lx}",
119 vnode->fid.vid, vnode->fid.vnode, page->index);
121 if (!PageUptodate(page)) {
127 SetPageUptodate(page);
133 maybe_i_size = pos + copied;
135 i_size = i_size_read(&vnode->vfs_inode);
136 if (maybe_i_size > i_size) {
137 write_seqlock(&vnode->cb_lock);
138 i_size = i_size_read(&vnode->vfs_inode);
139 if (maybe_i_size > i_size)
140 afs_set_i_size(vnode, maybe_i_size);
141 write_sequnlock(&vnode->cb_lock);
144 if (PagePrivate(page)) {
145 priv = page_private(page);
146 f = afs_page_dirty_from(page, priv);
147 t = afs_page_dirty_to(page, priv);
152 priv = afs_page_dirty(page, f, t);
153 set_page_private(page, priv);
154 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
156 priv = afs_page_dirty(page, from, to);
157 attach_page_private(page, (void *)priv);
158 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
161 if (set_page_dirty(page))
162 _debug("dirtied %lx", page->index);
171 * kill all the pages in the given range
173 static void afs_kill_pages(struct address_space *mapping,
174 loff_t start, loff_t len)
176 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
178 unsigned int loop, psize;
180 _enter("{%llx:%llu},%llx @%llx",
181 vnode->fid.vid, vnode->fid.vnode, len, start);
186 _debug("kill %llx @%llx", len, start);
188 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189 PAGEVEC_SIZE, pv.pages);
193 for (loop = 0; loop < pv.nr; loop++) {
194 struct page *page = pv.pages[loop];
196 if (page->index * PAGE_SIZE >= start + len)
199 psize = thp_size(page);
202 ClearPageUptodate(page);
203 end_page_writeback(page);
205 generic_error_remove_page(mapping, page);
209 __pagevec_release(&pv);
216 * Redirty all the pages in a given range.
218 static void afs_redirty_pages(struct writeback_control *wbc,
219 struct address_space *mapping,
220 loff_t start, loff_t len)
222 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
224 unsigned int loop, psize;
226 _enter("{%llx:%llu},%llx @%llx",
227 vnode->fid.vid, vnode->fid.vnode, len, start);
232 _debug("redirty %llx @%llx", len, start);
234 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235 PAGEVEC_SIZE, pv.pages);
239 for (loop = 0; loop < pv.nr; loop++) {
240 struct page *page = pv.pages[loop];
242 if (page->index * PAGE_SIZE >= start + len)
245 psize = thp_size(page);
248 redirty_page_for_writepage(wbc, page);
249 end_page_writeback(page);
252 __pagevec_release(&pv);
259 * completion of write to server
261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
263 struct address_space *mapping = vnode->vfs_inode.i_mapping;
267 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
269 _enter("{%llx:%llu},{%x @%llx}",
270 vnode->fid.vid, vnode->fid.vnode, len, start);
274 end = (start + len - 1) / PAGE_SIZE;
275 xas_for_each(&xas, page, end) {
276 if (!PageWriteback(page)) {
277 kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278 ASSERT(PageWriteback(page));
281 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282 detach_page_private(page);
283 page_endio(page, true, 0);
288 afs_prune_wb_keys(vnode);
293 * Find a key to use for the writeback. We cached the keys used to author the
294 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
295 * and we need to start from there if it's set.
297 static int afs_get_writeback_key(struct afs_vnode *vnode,
298 struct afs_wb_key **_wbk)
300 struct afs_wb_key *wbk = NULL;
302 int ret = -ENOKEY, ret2;
304 spin_lock(&vnode->wb_lock);
306 p = (*_wbk)->vnode_link.next;
308 p = vnode->wb_keys.next;
310 while (p != &vnode->wb_keys) {
311 wbk = list_entry(p, struct afs_wb_key, vnode_link);
312 _debug("wbk %u", key_serial(wbk->key));
313 ret2 = key_validate(wbk->key);
315 refcount_inc(&wbk->usage);
316 _debug("USE WB KEY %u", key_serial(wbk->key));
326 spin_unlock(&vnode->wb_lock);
328 afs_put_wb_key(*_wbk);
333 static void afs_store_data_success(struct afs_operation *op)
335 struct afs_vnode *vnode = op->file[0].vnode;
337 op->ctime = op->file[0].scb.status.mtime_client;
338 afs_vnode_commit_status(op, &op->file[0]);
339 if (op->error == 0) {
340 if (!op->store.laundering)
341 afs_pages_written_back(vnode, op->store.pos, op->store.size);
342 afs_stat_v(vnode, n_stores);
343 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
347 static const struct afs_operation_ops afs_store_data_operation = {
348 .issue_afs_rpc = afs_fs_store_data,
349 .issue_yfs_rpc = yfs_fs_store_data,
350 .success = afs_store_data_success,
356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
359 struct afs_operation *op;
360 struct afs_wb_key *wbk = NULL;
361 loff_t size = iov_iter_count(iter), i_size;
364 _enter("%s{%llx:%llu.%u},%llx,%llx",
371 ret = afs_get_writeback_key(vnode, &wbk);
373 _leave(" = %d [no keys]", ret);
377 op = afs_alloc_operation(wbk->key, vnode->volume);
383 i_size = i_size_read(&vnode->vfs_inode);
385 afs_op_set_vnode(op, 0, vnode);
386 op->file[0].dv_delta = 1;
387 op->file[0].modification = true;
388 op->store.write_iter = iter;
390 op->store.size = size;
391 op->store.i_size = max(pos + size, i_size);
392 op->store.laundering = laundering;
393 op->mtime = vnode->vfs_inode.i_mtime;
394 op->flags |= AFS_OPERATION_UNINTR;
395 op->ops = &afs_store_data_operation;
398 afs_begin_vnode_operation(op);
399 afs_wait_for_operation(op);
410 ret = afs_get_writeback_key(vnode, &wbk);
413 op->key = key_get(wbk->key);
420 _leave(" = %d", op->error);
421 return afs_put_operation(op);
425 * Extend the region to be written back to include subsequent contiguously
426 * dirty pages if possible, but don't sleep while doing so.
428 * If this page holds new content, then we can include filler zeros in the
431 static void afs_extend_writeback(struct address_space *mapping,
432 struct afs_vnode *vnode,
442 unsigned int psize, filler = 0;
445 pgoff_t index = (start + len) / PAGE_SIZE;
449 XA_STATE(xas, &mapping->i_pages, index);
453 /* Firstly, we gather up a batch of contiguous dirty pages
454 * under the RCU read lock - but we can't clear the dirty flags
455 * there if any of those pages are mapped.
459 xas_for_each(&xas, page, ULONG_MAX) {
461 if (xas_retry(&xas, page))
463 if (xa_is_value(page))
465 if (page->index != index)
468 if (!page_cache_get_speculative(page)) {
473 /* Has the page moved or been split? */
474 if (unlikely(page != xas_reload(&xas))) {
479 if (!trylock_page(page)) {
483 if (!PageDirty(page) || PageWriteback(page)) {
489 psize = thp_size(page);
490 priv = page_private(page);
491 f = afs_page_dirty_from(page, priv);
492 t = afs_page_dirty_to(page, priv);
493 if (f != 0 && !new_content) {
501 if (len >= max_len || *_count <= 0)
503 else if (t == psize || new_content)
506 index += thp_nr_pages(page);
507 if (!pagevec_add(&pvec, page))
517 /* Now, if we obtained any pages, we can shift them to being
518 * writable and mark them for caching.
520 if (!pagevec_count(&pvec))
523 for (i = 0; i < pagevec_count(&pvec); i++) {
524 page = pvec.pages[i];
525 trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
527 if (!clear_page_dirty_for_io(page))
529 if (test_set_page_writeback(page))
532 *_count -= thp_nr_pages(page);
536 pagevec_release(&pvec);
544 * Synchronously write back the locked page and any subsequent non-locked dirty
547 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548 struct writeback_control *wbc,
550 loff_t start, loff_t end)
552 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553 struct iov_iter iter;
555 unsigned int offset, to, len, max_len;
556 loff_t i_size = i_size_read(&vnode->vfs_inode);
557 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558 long count = wbc->nr_to_write;
561 _enter(",%lx,%llx-%llx", page->index, start, end);
563 if (test_set_page_writeback(page))
566 count -= thp_nr_pages(page);
568 /* Find all consecutive lockable dirty pages that have contiguous
569 * written regions, stopping when we find a page that is not
570 * immediately lockable, is not dirty or is missing, or we reach the
573 priv = page_private(page);
574 offset = afs_page_dirty_from(page, priv);
575 to = afs_page_dirty_to(page, priv);
576 trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
580 if (start < i_size) {
581 /* Trim the write to the EOF; the extra data is ignored. Also
582 * put an upper limit on the size of a single storedata op.
584 max_len = 65536 * 4096;
585 max_len = min_t(unsigned long long, max_len, end - start + 1);
586 max_len = min_t(unsigned long long, max_len, i_size - start);
589 (to == thp_size(page) || new_content))
590 afs_extend_writeback(mapping, vnode, &count,
591 start, max_len, new_content, &len);
592 len = min_t(loff_t, len, max_len);
595 /* We now have a contiguous set of dirty pages, each with writeback
596 * set; the first page is still locked at this point, but all the rest
597 * have been unlocked.
601 if (start < i_size) {
602 _debug("write back %x @%llx [%llx]", len, start, i_size);
604 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605 ret = afs_store_data(vnode, &iter, start, false);
607 _debug("write discard %x @%llx [%llx]", len, start, i_size);
609 /* The dirty region was entirely beyond the EOF. */
610 afs_pages_written_back(vnode, start, len);
616 wbc->nr_to_write = count;
621 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
629 afs_redirty_pages(wbc, mapping, start, len);
630 mapping_set_error(mapping, ret);
635 afs_redirty_pages(wbc, mapping, start, len);
636 mapping_set_error(mapping, -ENOSPC);
646 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
647 afs_kill_pages(mapping, start, len);
648 mapping_set_error(mapping, ret);
652 _leave(" = %d", ret);
657 * write a page back to the server
658 * - the caller locked the page for us
660 int afs_writepage(struct page *page, struct writeback_control *wbc)
665 _enter("{%lx},", page->index);
667 start = page->index * PAGE_SIZE;
668 ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
669 start, LLONG_MAX - start);
671 _leave(" = %zd", ret);
680 * write a region of pages back to the server
682 static int afs_writepages_region(struct address_space *mapping,
683 struct writeback_control *wbc,
684 loff_t start, loff_t end, loff_t *_next)
690 _enter("%llx,%llx,", start, end);
693 pgoff_t index = start / PAGE_SIZE;
695 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
696 PAGECACHE_TAG_DIRTY, 1, &page);
700 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
702 _debug("wback %lx", page->index);
704 /* At this point we hold neither the i_pages lock nor the
705 * page lock: the page may be truncated or invalidated
706 * (changing page->mapping to NULL), or even swizzled
707 * back from swapper_space to tmpfs file mapping
709 if (wbc->sync_mode != WB_SYNC_NONE) {
710 ret = lock_page_killable(page);
716 if (!trylock_page(page)) {
722 if (page->mapping != mapping || !PageDirty(page)) {
723 start += thp_size(page);
729 if (PageWriteback(page)) {
731 if (wbc->sync_mode != WB_SYNC_NONE)
732 wait_on_page_writeback(page);
737 if (!clear_page_dirty_for_io(page))
739 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
742 _leave(" = %zd", ret);
749 } while (wbc->nr_to_write > 0);
752 _leave(" = 0 [%llx]", *_next);
757 * write some of the pending data back to the server
759 int afs_writepages(struct address_space *mapping,
760 struct writeback_control *wbc)
762 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
768 /* We have to be careful as we can end up racing with setattr()
769 * truncating the pagecache since the caller doesn't take a lock here
772 if (wbc->sync_mode == WB_SYNC_ALL)
773 down_read(&vnode->validate_lock);
774 else if (!down_read_trylock(&vnode->validate_lock))
777 if (wbc->range_cyclic) {
778 start = mapping->writeback_index * PAGE_SIZE;
779 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
781 mapping->writeback_index = next / PAGE_SIZE;
782 if (start > 0 && wbc->nr_to_write > 0) {
783 ret = afs_writepages_region(mapping, wbc, 0,
786 mapping->writeback_index =
790 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
791 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
792 if (wbc->nr_to_write > 0 && ret == 0)
793 mapping->writeback_index = next / PAGE_SIZE;
795 ret = afs_writepages_region(mapping, wbc,
796 wbc->range_start, wbc->range_end, &next);
799 up_read(&vnode->validate_lock);
800 _leave(" = %d", ret);
805 * write to an AFS file
807 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
809 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
810 struct afs_file *af = iocb->ki_filp->private_data;
812 size_t count = iov_iter_count(from);
814 _enter("{%llx:%llu},{%zu},",
815 vnode->fid.vid, vnode->fid.vnode, count);
817 if (IS_SWAPFILE(&vnode->vfs_inode)) {
819 "AFS: Attempt to write to active swap file!\n");
826 result = afs_validate(vnode, af->key);
830 result = generic_file_write_iter(iocb, from);
832 _leave(" = %zd", result);
837 * flush any dirty pages for this process, and check for write errors.
838 * - the return status from this call provides a reliable indication of
839 * whether any write errors occurred for this process.
841 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
843 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
844 struct afs_file *af = file->private_data;
847 _enter("{%llx:%llu},{n=%pD},%d",
848 vnode->fid.vid, vnode->fid.vnode, file,
851 ret = afs_validate(vnode, af->key);
855 return file_write_and_wait_range(file, start, end);
859 * notification that a previously read-only page is about to become writable
860 * - if it returns an error, the caller will deliver a bus error signal
862 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
864 struct folio *folio = page_folio(vmf->page);
865 struct page *page = &folio->page;
866 struct file *file = vmf->vma->vm_file;
867 struct inode *inode = file_inode(file);
868 struct afs_vnode *vnode = AFS_FS_I(inode);
869 struct afs_file *af = file->private_data;
871 vm_fault_t ret = VM_FAULT_RETRY;
873 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
875 afs_validate(vnode, af->key);
877 sb_start_pagefault(inode->i_sb);
879 /* Wait for the page to be written to the cache before we allow it to
880 * be modified. We then assume the entire page will need writing back.
882 #ifdef CONFIG_AFS_FSCACHE
883 if (PageFsCache(page) &&
884 wait_on_page_fscache_killable(page) < 0)
888 if (folio_wait_writeback_killable(folio))
891 if (lock_page_killable(page) < 0)
894 /* We mustn't change page->private until writeback is complete as that
895 * details the portion of the page we need to write back and we might
896 * need to redirty the page if there's a problem.
898 if (folio_wait_writeback_killable(folio) < 0) {
903 priv = afs_page_dirty(page, 0, thp_size(page));
904 priv = afs_page_dirty_mmapped(priv);
905 if (PagePrivate(page)) {
906 set_page_private(page, priv);
907 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
909 attach_page_private(page, (void *)priv);
910 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
912 file_update_time(file);
914 ret = VM_FAULT_LOCKED;
916 sb_end_pagefault(inode->i_sb);
921 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
923 void afs_prune_wb_keys(struct afs_vnode *vnode)
925 LIST_HEAD(graveyard);
926 struct afs_wb_key *wbk, *tmp;
928 /* Discard unused keys */
929 spin_lock(&vnode->wb_lock);
931 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
932 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
933 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
934 if (refcount_read(&wbk->usage) == 1)
935 list_move(&wbk->vnode_link, &graveyard);
939 spin_unlock(&vnode->wb_lock);
941 while (!list_empty(&graveyard)) {
942 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
943 list_del(&wbk->vnode_link);
949 * Clean up a page during invalidation.
951 int afs_launder_page(struct page *page)
953 struct address_space *mapping = page->mapping;
954 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
955 struct iov_iter iter;
956 struct bio_vec bv[1];
961 _enter("{%lx}", page->index);
963 priv = page_private(page);
964 if (clear_page_dirty_for_io(page)) {
967 if (PagePrivate(page)) {
968 f = afs_page_dirty_from(page, priv);
969 t = afs_page_dirty_to(page, priv);
972 bv[0].bv_page = page;
974 bv[0].bv_len = t - f;
975 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
977 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
978 ret = afs_store_data(vnode, &iter, page_offset(page) + f, true);
981 trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
982 detach_page_private(page);
983 wait_on_page_fscache(page);