]> Git Repo - linux.git/blob - fs/ext4/fast_commit.c
Merge branch 'linus' into x86/mm, to pick up fixes
[linux.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <[email protected]>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173         BUFFER_TRACE(bh, "");
174         if (uptodate) {
175                 ext4_debug("%s: Block %lld up-to-date",
176                            __func__, bh->b_blocknr);
177                 set_buffer_uptodate(bh);
178         } else {
179                 ext4_debug("%s: Block %lld not up-to-date",
180                            __func__, bh->b_blocknr);
181                 clear_buffer_uptodate(bh);
182         }
183
184         unlock_buffer(bh);
185 }
186
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189         struct ext4_inode_info *ei = EXT4_I(inode);
190
191         ei->i_fc_lblk_start = 0;
192         ei->i_fc_lblk_len = 0;
193 }
194
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197         struct ext4_inode_info *ei = EXT4_I(inode);
198
199         ext4_fc_reset_inode(inode);
200         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201         INIT_LIST_HEAD(&ei->i_fc_list);
202         INIT_LIST_HEAD(&ei->i_fc_dilist);
203         init_waitqueue_head(&ei->i_fc_wait);
204         atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211         wait_queue_head_t *wq;
212         struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216                         EXT4_STATE_FC_COMMITTING);
217         wq = bit_waitqueue(&ei->i_state_flags,
218                                 EXT4_STATE_FC_COMMITTING);
219 #else
220         DEFINE_WAIT_BIT(wait, &ei->i_flags,
221                         EXT4_STATE_FC_COMMITTING);
222         wq = bit_waitqueue(&ei->i_flags,
223                                 EXT4_STATE_FC_COMMITTING);
224 #endif
225         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228         schedule();
229         finish_wait(wq, &wait.wq_entry);
230 }
231
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234         return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235                 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247         struct ext4_inode_info *ei = EXT4_I(inode);
248
249         if (ext4_fc_disabled(inode->i_sb))
250                 return;
251
252 restart:
253         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254         if (list_empty(&ei->i_fc_list))
255                 goto out;
256
257         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258                 ext4_fc_wait_committing_inode(inode);
259                 goto restart;
260         }
261 out:
262         atomic_inc(&ei->i_fc_updates);
263         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271         struct ext4_inode_info *ei = EXT4_I(inode);
272
273         if (ext4_fc_disabled(inode->i_sb))
274                 return;
275
276         if (atomic_dec_and_test(&ei->i_fc_updates))
277                 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286         struct ext4_inode_info *ei = EXT4_I(inode);
287         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288         struct ext4_fc_dentry_update *fc_dentry;
289
290         if (ext4_fc_disabled(inode->i_sb))
291                 return;
292
293 restart:
294         spin_lock(&sbi->s_fc_lock);
295         if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296                 spin_unlock(&sbi->s_fc_lock);
297                 return;
298         }
299
300         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301                 ext4_fc_wait_committing_inode(inode);
302                 goto restart;
303         }
304
305         if (!list_empty(&ei->i_fc_list))
306                 list_del_init(&ei->i_fc_list);
307
308         /*
309          * Since this inode is getting removed, let's also remove all FC
310          * dentry create references, since it is not needed to log it anyways.
311          */
312         if (list_empty(&ei->i_fc_dilist)) {
313                 spin_unlock(&sbi->s_fc_lock);
314                 return;
315         }
316
317         fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318         WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319         list_del_init(&fc_dentry->fcd_list);
320         list_del_init(&fc_dentry->fcd_dilist);
321
322         WARN_ON(!list_empty(&ei->i_fc_dilist));
323         spin_unlock(&sbi->s_fc_lock);
324
325         if (fc_dentry->fcd_name.name &&
326                 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327                 kfree(fc_dentry->fcd_name.name);
328         kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330         return;
331 }
332
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(sb);
341         tid_t tid;
342         bool has_transaction = true;
343         bool is_ineligible;
344
345         if (ext4_fc_disabled(sb))
346                 return;
347
348         if (handle && !IS_ERR(handle))
349                 tid = handle->h_transaction->t_tid;
350         else {
351                 read_lock(&sbi->s_journal->j_state_lock);
352                 if (sbi->s_journal->j_running_transaction)
353                         tid = sbi->s_journal->j_running_transaction->t_tid;
354                 else
355                         has_transaction = false;
356                 read_unlock(&sbi->s_journal->j_state_lock);
357         }
358         spin_lock(&sbi->s_fc_lock);
359         is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360         if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
361                 sbi->s_fc_ineligible_tid = tid;
362         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
363         spin_unlock(&sbi->s_fc_lock);
364         WARN_ON(reason >= EXT4_FC_REASON_MAX);
365         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
366 }
367
368 /*
369  * Generic fast commit tracking function. If this is the first time this we are
370  * called after a full commit, we initialize fast commit fields and then call
371  * __fc_track_fn() with update = 0. If we have already been called after a full
372  * commit, we pass update = 1. Based on that, the track function can determine
373  * if it needs to track a field for the first time or if it needs to just
374  * update the previously tracked value.
375  *
376  * If enqueue is set, this function enqueues the inode in fast commit list.
377  */
378 static int ext4_fc_track_template(
379         handle_t *handle, struct inode *inode,
380         int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
381         void *args, int enqueue)
382 {
383         bool update = false;
384         struct ext4_inode_info *ei = EXT4_I(inode);
385         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
386         tid_t tid = 0;
387         int ret;
388
389         tid = handle->h_transaction->t_tid;
390         mutex_lock(&ei->i_fc_lock);
391         if (tid == ei->i_sync_tid) {
392                 update = true;
393         } else {
394                 ext4_fc_reset_inode(inode);
395                 ei->i_sync_tid = tid;
396         }
397         ret = __fc_track_fn(handle, inode, args, update);
398         mutex_unlock(&ei->i_fc_lock);
399
400         if (!enqueue)
401                 return ret;
402
403         spin_lock(&sbi->s_fc_lock);
404         if (list_empty(&EXT4_I(inode)->i_fc_list))
405                 list_add_tail(&EXT4_I(inode)->i_fc_list,
406                                 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
407                                  sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
408                                 &sbi->s_fc_q[FC_Q_STAGING] :
409                                 &sbi->s_fc_q[FC_Q_MAIN]);
410         spin_unlock(&sbi->s_fc_lock);
411
412         return ret;
413 }
414
415 struct __track_dentry_update_args {
416         struct dentry *dentry;
417         int op;
418 };
419
420 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
421 static int __track_dentry_update(handle_t *handle, struct inode *inode,
422                                  void *arg, bool update)
423 {
424         struct ext4_fc_dentry_update *node;
425         struct ext4_inode_info *ei = EXT4_I(inode);
426         struct __track_dentry_update_args *dentry_update =
427                 (struct __track_dentry_update_args *)arg;
428         struct dentry *dentry = dentry_update->dentry;
429         struct inode *dir = dentry->d_parent->d_inode;
430         struct super_block *sb = inode->i_sb;
431         struct ext4_sb_info *sbi = EXT4_SB(sb);
432
433         mutex_unlock(&ei->i_fc_lock);
434
435         if (IS_ENCRYPTED(dir)) {
436                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
437                                         handle);
438                 mutex_lock(&ei->i_fc_lock);
439                 return -EOPNOTSUPP;
440         }
441
442         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
443         if (!node) {
444                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
445                 mutex_lock(&ei->i_fc_lock);
446                 return -ENOMEM;
447         }
448
449         node->fcd_op = dentry_update->op;
450         node->fcd_parent = dir->i_ino;
451         node->fcd_ino = inode->i_ino;
452         if (dentry->d_name.len > DNAME_INLINE_LEN) {
453                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
454                 if (!node->fcd_name.name) {
455                         kmem_cache_free(ext4_fc_dentry_cachep, node);
456                         ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
457                         mutex_lock(&ei->i_fc_lock);
458                         return -ENOMEM;
459                 }
460                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
461                         dentry->d_name.len);
462         } else {
463                 memcpy(node->fcd_iname, dentry->d_name.name,
464                         dentry->d_name.len);
465                 node->fcd_name.name = node->fcd_iname;
466         }
467         node->fcd_name.len = dentry->d_name.len;
468         INIT_LIST_HEAD(&node->fcd_dilist);
469         spin_lock(&sbi->s_fc_lock);
470         if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
471                 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
472                 list_add_tail(&node->fcd_list,
473                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
474         else
475                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
476
477         /*
478          * This helps us keep a track of all fc_dentry updates which is part of
479          * this ext4 inode. So in case the inode is getting unlinked, before
480          * even we get a chance to fsync, we could remove all fc_dentry
481          * references while evicting the inode in ext4_fc_del().
482          * Also with this, we don't need to loop over all the inodes in
483          * sbi->s_fc_q to get the corresponding inode in
484          * ext4_fc_commit_dentry_updates().
485          */
486         if (dentry_update->op == EXT4_FC_TAG_CREAT) {
487                 WARN_ON(!list_empty(&ei->i_fc_dilist));
488                 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
489         }
490         spin_unlock(&sbi->s_fc_lock);
491         mutex_lock(&ei->i_fc_lock);
492
493         return 0;
494 }
495
496 void __ext4_fc_track_unlink(handle_t *handle,
497                 struct inode *inode, struct dentry *dentry)
498 {
499         struct __track_dentry_update_args args;
500         int ret;
501
502         args.dentry = dentry;
503         args.op = EXT4_FC_TAG_UNLINK;
504
505         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
506                                         (void *)&args, 0);
507         trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
508 }
509
510 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
511 {
512         struct inode *inode = d_inode(dentry);
513
514         if (ext4_fc_disabled(inode->i_sb))
515                 return;
516
517         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
518                 return;
519
520         __ext4_fc_track_unlink(handle, inode, dentry);
521 }
522
523 void __ext4_fc_track_link(handle_t *handle,
524         struct inode *inode, struct dentry *dentry)
525 {
526         struct __track_dentry_update_args args;
527         int ret;
528
529         args.dentry = dentry;
530         args.op = EXT4_FC_TAG_LINK;
531
532         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
533                                         (void *)&args, 0);
534         trace_ext4_fc_track_link(handle, inode, dentry, ret);
535 }
536
537 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
538 {
539         struct inode *inode = d_inode(dentry);
540
541         if (ext4_fc_disabled(inode->i_sb))
542                 return;
543
544         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
545                 return;
546
547         __ext4_fc_track_link(handle, inode, dentry);
548 }
549
550 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
551                           struct dentry *dentry)
552 {
553         struct __track_dentry_update_args args;
554         int ret;
555
556         args.dentry = dentry;
557         args.op = EXT4_FC_TAG_CREAT;
558
559         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
560                                         (void *)&args, 0);
561         trace_ext4_fc_track_create(handle, inode, dentry, ret);
562 }
563
564 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
565 {
566         struct inode *inode = d_inode(dentry);
567
568         if (ext4_fc_disabled(inode->i_sb))
569                 return;
570
571         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
572                 return;
573
574         __ext4_fc_track_create(handle, inode, dentry);
575 }
576
577 /* __track_fn for inode tracking */
578 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
579                          bool update)
580 {
581         if (update)
582                 return -EEXIST;
583
584         EXT4_I(inode)->i_fc_lblk_len = 0;
585
586         return 0;
587 }
588
589 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
590 {
591         int ret;
592
593         if (S_ISDIR(inode->i_mode))
594                 return;
595
596         if (ext4_fc_disabled(inode->i_sb))
597                 return;
598
599         if (ext4_should_journal_data(inode)) {
600                 ext4_fc_mark_ineligible(inode->i_sb,
601                                         EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
602                 return;
603         }
604
605         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
606                 return;
607
608         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
609         trace_ext4_fc_track_inode(handle, inode, ret);
610 }
611
612 struct __track_range_args {
613         ext4_lblk_t start, end;
614 };
615
616 /* __track_fn for tracking data updates */
617 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
618                          bool update)
619 {
620         struct ext4_inode_info *ei = EXT4_I(inode);
621         ext4_lblk_t oldstart;
622         struct __track_range_args *__arg =
623                 (struct __track_range_args *)arg;
624
625         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
626                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
627                 return -ECANCELED;
628         }
629
630         oldstart = ei->i_fc_lblk_start;
631
632         if (update && ei->i_fc_lblk_len > 0) {
633                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
634                 ei->i_fc_lblk_len =
635                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
636                                 ei->i_fc_lblk_start + 1;
637         } else {
638                 ei->i_fc_lblk_start = __arg->start;
639                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
640         }
641
642         return 0;
643 }
644
645 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
646                          ext4_lblk_t end)
647 {
648         struct __track_range_args args;
649         int ret;
650
651         if (S_ISDIR(inode->i_mode))
652                 return;
653
654         if (ext4_fc_disabled(inode->i_sb))
655                 return;
656
657         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
658                 return;
659
660         if (ext4_has_inline_data(inode)) {
661                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
662                                         handle);
663                 return;
664         }
665
666         args.start = start;
667         args.end = end;
668
669         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
670
671         trace_ext4_fc_track_range(handle, inode, start, end, ret);
672 }
673
674 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
675 {
676         blk_opf_t write_flags = REQ_SYNC;
677         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
678
679         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
680         if (test_opt(sb, BARRIER) && is_tail)
681                 write_flags |= REQ_FUA | REQ_PREFLUSH;
682         lock_buffer(bh);
683         set_buffer_dirty(bh);
684         set_buffer_uptodate(bh);
685         bh->b_end_io = ext4_end_buffer_io_sync;
686         submit_bh(REQ_OP_WRITE | write_flags, bh);
687         EXT4_SB(sb)->s_fc_bh = NULL;
688 }
689
690 /* Ext4 commit path routines */
691
692 /*
693  * Allocate len bytes on a fast commit buffer.
694  *
695  * During the commit time this function is used to manage fast commit
696  * block space. We don't split a fast commit log onto different
697  * blocks. So this function makes sure that if there's not enough space
698  * on the current block, the remaining space in the current block is
699  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
700  * new block is from jbd2 and CRC is updated to reflect the padding
701  * we added.
702  */
703 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
704 {
705         struct ext4_fc_tl tl;
706         struct ext4_sb_info *sbi = EXT4_SB(sb);
707         struct buffer_head *bh;
708         int bsize = sbi->s_journal->j_blocksize;
709         int ret, off = sbi->s_fc_bytes % bsize;
710         int remaining;
711         u8 *dst;
712
713         /*
714          * If 'len' is too long to fit in any block alongside a PAD tlv, then we
715          * cannot fulfill the request.
716          */
717         if (len > bsize - EXT4_FC_TAG_BASE_LEN)
718                 return NULL;
719
720         if (!sbi->s_fc_bh) {
721                 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
722                 if (ret)
723                         return NULL;
724                 sbi->s_fc_bh = bh;
725         }
726         dst = sbi->s_fc_bh->b_data + off;
727
728         /*
729          * Allocate the bytes in the current block if we can do so while still
730          * leaving enough space for a PAD tlv.
731          */
732         remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
733         if (len <= remaining) {
734                 sbi->s_fc_bytes += len;
735                 return dst;
736         }
737
738         /*
739          * Else, terminate the current block with a PAD tlv, then allocate a new
740          * block and allocate the bytes at the start of that new block.
741          */
742
743         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
744         tl.fc_len = cpu_to_le16(remaining);
745         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
746         memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
747         *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
748
749         ext4_fc_submit_bh(sb, false);
750
751         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
752         if (ret)
753                 return NULL;
754         sbi->s_fc_bh = bh;
755         sbi->s_fc_bytes += bsize - off + len;
756         return sbi->s_fc_bh->b_data;
757 }
758
759 /*
760  * Complete a fast commit by writing tail tag.
761  *
762  * Writing tail tag marks the end of a fast commit. In order to guarantee
763  * atomicity, after writing tail tag, even if there's space remaining
764  * in the block, next commit shouldn't use it. That's why tail tag
765  * has the length as that of the remaining space on the block.
766  */
767 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
768 {
769         struct ext4_sb_info *sbi = EXT4_SB(sb);
770         struct ext4_fc_tl tl;
771         struct ext4_fc_tail tail;
772         int off, bsize = sbi->s_journal->j_blocksize;
773         u8 *dst;
774
775         /*
776          * ext4_fc_reserve_space takes care of allocating an extra block if
777          * there's no enough space on this block for accommodating this tail.
778          */
779         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
780         if (!dst)
781                 return -ENOSPC;
782
783         off = sbi->s_fc_bytes % bsize;
784
785         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
786         tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
787         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
788
789         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
790         dst += EXT4_FC_TAG_BASE_LEN;
791         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
792         memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
793         dst += sizeof(tail.fc_tid);
794         crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
795                           dst - (u8 *)sbi->s_fc_bh->b_data);
796         tail.fc_crc = cpu_to_le32(crc);
797         memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
798         dst += sizeof(tail.fc_crc);
799         memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
800
801         ext4_fc_submit_bh(sb, true);
802
803         return 0;
804 }
805
806 /*
807  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
808  * Returns false if there's not enough space.
809  */
810 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
811                            u32 *crc)
812 {
813         struct ext4_fc_tl tl;
814         u8 *dst;
815
816         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
817         if (!dst)
818                 return false;
819
820         tl.fc_tag = cpu_to_le16(tag);
821         tl.fc_len = cpu_to_le16(len);
822
823         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
824         memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
825
826         return true;
827 }
828
829 /* Same as above, but adds dentry tlv. */
830 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
831                                    struct ext4_fc_dentry_update *fc_dentry)
832 {
833         struct ext4_fc_dentry_info fcd;
834         struct ext4_fc_tl tl;
835         int dlen = fc_dentry->fcd_name.len;
836         u8 *dst = ext4_fc_reserve_space(sb,
837                         EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
838
839         if (!dst)
840                 return false;
841
842         fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
843         fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
844         tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
845         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
846         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
847         dst += EXT4_FC_TAG_BASE_LEN;
848         memcpy(dst, &fcd, sizeof(fcd));
849         dst += sizeof(fcd);
850         memcpy(dst, fc_dentry->fcd_name.name, dlen);
851
852         return true;
853 }
854
855 /*
856  * Writes inode in the fast commit space under TLV with tag @tag.
857  * Returns 0 on success, error on failure.
858  */
859 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
860 {
861         struct ext4_inode_info *ei = EXT4_I(inode);
862         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
863         int ret;
864         struct ext4_iloc iloc;
865         struct ext4_fc_inode fc_inode;
866         struct ext4_fc_tl tl;
867         u8 *dst;
868
869         ret = ext4_get_inode_loc(inode, &iloc);
870         if (ret)
871                 return ret;
872
873         if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
874                 inode_len = EXT4_INODE_SIZE(inode->i_sb);
875         else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
876                 inode_len += ei->i_extra_isize;
877
878         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
879         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
880         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
881
882         ret = -ECANCELED;
883         dst = ext4_fc_reserve_space(inode->i_sb,
884                 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
885         if (!dst)
886                 goto err;
887
888         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
889         dst += EXT4_FC_TAG_BASE_LEN;
890         memcpy(dst, &fc_inode, sizeof(fc_inode));
891         dst += sizeof(fc_inode);
892         memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
893         ret = 0;
894 err:
895         brelse(iloc.bh);
896         return ret;
897 }
898
899 /*
900  * Writes updated data ranges for the inode in question. Updates CRC.
901  * Returns 0 on success, error otherwise.
902  */
903 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
904 {
905         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
906         struct ext4_inode_info *ei = EXT4_I(inode);
907         struct ext4_map_blocks map;
908         struct ext4_fc_add_range fc_ext;
909         struct ext4_fc_del_range lrange;
910         struct ext4_extent *ex;
911         int ret;
912
913         mutex_lock(&ei->i_fc_lock);
914         if (ei->i_fc_lblk_len == 0) {
915                 mutex_unlock(&ei->i_fc_lock);
916                 return 0;
917         }
918         old_blk_size = ei->i_fc_lblk_start;
919         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
920         ei->i_fc_lblk_len = 0;
921         mutex_unlock(&ei->i_fc_lock);
922
923         cur_lblk_off = old_blk_size;
924         ext4_debug("will try writing %d to %d for inode %ld\n",
925                    cur_lblk_off, new_blk_size, inode->i_ino);
926
927         while (cur_lblk_off <= new_blk_size) {
928                 map.m_lblk = cur_lblk_off;
929                 map.m_len = new_blk_size - cur_lblk_off + 1;
930                 ret = ext4_map_blocks(NULL, inode, &map, 0);
931                 if (ret < 0)
932                         return -ECANCELED;
933
934                 if (map.m_len == 0) {
935                         cur_lblk_off++;
936                         continue;
937                 }
938
939                 if (ret == 0) {
940                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
941                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
942                         lrange.fc_len = cpu_to_le32(map.m_len);
943                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
944                                             sizeof(lrange), (u8 *)&lrange, crc))
945                                 return -ENOSPC;
946                 } else {
947                         unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
948                                 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
949
950                         /* Limit the number of blocks in one extent */
951                         map.m_len = min(max, map.m_len);
952
953                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
954                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
955                         ex->ee_block = cpu_to_le32(map.m_lblk);
956                         ex->ee_len = cpu_to_le16(map.m_len);
957                         ext4_ext_store_pblock(ex, map.m_pblk);
958                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
959                                 ext4_ext_mark_unwritten(ex);
960                         else
961                                 ext4_ext_mark_initialized(ex);
962                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
963                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
964                                 return -ENOSPC;
965                 }
966
967                 cur_lblk_off += map.m_len;
968         }
969
970         return 0;
971 }
972
973
974 /* Submit data for all the fast commit inodes */
975 static int ext4_fc_submit_inode_data_all(journal_t *journal)
976 {
977         struct super_block *sb = journal->j_private;
978         struct ext4_sb_info *sbi = EXT4_SB(sb);
979         struct ext4_inode_info *ei;
980         int ret = 0;
981
982         spin_lock(&sbi->s_fc_lock);
983         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
984                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
985                 while (atomic_read(&ei->i_fc_updates)) {
986                         DEFINE_WAIT(wait);
987
988                         prepare_to_wait(&ei->i_fc_wait, &wait,
989                                                 TASK_UNINTERRUPTIBLE);
990                         if (atomic_read(&ei->i_fc_updates)) {
991                                 spin_unlock(&sbi->s_fc_lock);
992                                 schedule();
993                                 spin_lock(&sbi->s_fc_lock);
994                         }
995                         finish_wait(&ei->i_fc_wait, &wait);
996                 }
997                 spin_unlock(&sbi->s_fc_lock);
998                 ret = jbd2_submit_inode_data(journal, ei->jinode);
999                 if (ret)
1000                         return ret;
1001                 spin_lock(&sbi->s_fc_lock);
1002         }
1003         spin_unlock(&sbi->s_fc_lock);
1004
1005         return ret;
1006 }
1007
1008 /* Wait for completion of data for all the fast commit inodes */
1009 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1010 {
1011         struct super_block *sb = journal->j_private;
1012         struct ext4_sb_info *sbi = EXT4_SB(sb);
1013         struct ext4_inode_info *pos, *n;
1014         int ret = 0;
1015
1016         spin_lock(&sbi->s_fc_lock);
1017         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1018                 if (!ext4_test_inode_state(&pos->vfs_inode,
1019                                            EXT4_STATE_FC_COMMITTING))
1020                         continue;
1021                 spin_unlock(&sbi->s_fc_lock);
1022
1023                 ret = jbd2_wait_inode_data(journal, pos->jinode);
1024                 if (ret)
1025                         return ret;
1026                 spin_lock(&sbi->s_fc_lock);
1027         }
1028         spin_unlock(&sbi->s_fc_lock);
1029
1030         return 0;
1031 }
1032
1033 /* Commit all the directory entry updates */
1034 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1035 __acquires(&sbi->s_fc_lock)
1036 __releases(&sbi->s_fc_lock)
1037 {
1038         struct super_block *sb = journal->j_private;
1039         struct ext4_sb_info *sbi = EXT4_SB(sb);
1040         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1041         struct inode *inode;
1042         struct ext4_inode_info *ei;
1043         int ret;
1044
1045         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1046                 return 0;
1047         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1048                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1049                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1050                         spin_unlock(&sbi->s_fc_lock);
1051                         if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1052                                 ret = -ENOSPC;
1053                                 goto lock_and_exit;
1054                         }
1055                         spin_lock(&sbi->s_fc_lock);
1056                         continue;
1057                 }
1058                 /*
1059                  * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1060                  * corresponding inode pointer
1061                  */
1062                 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1063                 ei = list_first_entry(&fc_dentry->fcd_dilist,
1064                                 struct ext4_inode_info, i_fc_dilist);
1065                 inode = &ei->vfs_inode;
1066                 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1067
1068                 spin_unlock(&sbi->s_fc_lock);
1069
1070                 /*
1071                  * We first write the inode and then the create dirent. This
1072                  * allows the recovery code to create an unnamed inode first
1073                  * and then link it to a directory entry. This allows us
1074                  * to use namei.c routines almost as is and simplifies
1075                  * the recovery code.
1076                  */
1077                 ret = ext4_fc_write_inode(inode, crc);
1078                 if (ret)
1079                         goto lock_and_exit;
1080
1081                 ret = ext4_fc_write_inode_data(inode, crc);
1082                 if (ret)
1083                         goto lock_and_exit;
1084
1085                 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086                         ret = -ENOSPC;
1087                         goto lock_and_exit;
1088                 }
1089
1090                 spin_lock(&sbi->s_fc_lock);
1091         }
1092         return 0;
1093 lock_and_exit:
1094         spin_lock(&sbi->s_fc_lock);
1095         return ret;
1096 }
1097
1098 static int ext4_fc_perform_commit(journal_t *journal)
1099 {
1100         struct super_block *sb = journal->j_private;
1101         struct ext4_sb_info *sbi = EXT4_SB(sb);
1102         struct ext4_inode_info *iter;
1103         struct ext4_fc_head head;
1104         struct inode *inode;
1105         struct blk_plug plug;
1106         int ret = 0;
1107         u32 crc = 0;
1108
1109         ret = ext4_fc_submit_inode_data_all(journal);
1110         if (ret)
1111                 return ret;
1112
1113         ret = ext4_fc_wait_inode_data_all(journal);
1114         if (ret)
1115                 return ret;
1116
1117         /*
1118          * If file system device is different from journal device, issue a cache
1119          * flush before we start writing fast commit blocks.
1120          */
1121         if (journal->j_fs_dev != journal->j_dev)
1122                 blkdev_issue_flush(journal->j_fs_dev);
1123
1124         blk_start_plug(&plug);
1125         if (sbi->s_fc_bytes == 0) {
1126                 /*
1127                  * Add a head tag only if this is the first fast commit
1128                  * in this TID.
1129                  */
1130                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1131                 head.fc_tid = cpu_to_le32(
1132                         sbi->s_journal->j_running_transaction->t_tid);
1133                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1134                         (u8 *)&head, &crc)) {
1135                         ret = -ENOSPC;
1136                         goto out;
1137                 }
1138         }
1139
1140         spin_lock(&sbi->s_fc_lock);
1141         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1142         if (ret) {
1143                 spin_unlock(&sbi->s_fc_lock);
1144                 goto out;
1145         }
1146
1147         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148                 inode = &iter->vfs_inode;
1149                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150                         continue;
1151
1152                 spin_unlock(&sbi->s_fc_lock);
1153                 ret = ext4_fc_write_inode_data(inode, &crc);
1154                 if (ret)
1155                         goto out;
1156                 ret = ext4_fc_write_inode(inode, &crc);
1157                 if (ret)
1158                         goto out;
1159                 spin_lock(&sbi->s_fc_lock);
1160         }
1161         spin_unlock(&sbi->s_fc_lock);
1162
1163         ret = ext4_fc_write_tail(sb, crc);
1164
1165 out:
1166         blk_finish_plug(&plug);
1167         return ret;
1168 }
1169
1170 static void ext4_fc_update_stats(struct super_block *sb, int status,
1171                                  u64 commit_time, int nblks, tid_t commit_tid)
1172 {
1173         struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1174
1175         ext4_debug("Fast commit ended with status = %d for tid %u",
1176                         status, commit_tid);
1177         if (status == EXT4_FC_STATUS_OK) {
1178                 stats->fc_num_commits++;
1179                 stats->fc_numblks += nblks;
1180                 if (likely(stats->s_fc_avg_commit_time))
1181                         stats->s_fc_avg_commit_time =
1182                                 (commit_time +
1183                                  stats->s_fc_avg_commit_time * 3) / 4;
1184                 else
1185                         stats->s_fc_avg_commit_time = commit_time;
1186         } else if (status == EXT4_FC_STATUS_FAILED ||
1187                    status == EXT4_FC_STATUS_INELIGIBLE) {
1188                 if (status == EXT4_FC_STATUS_FAILED)
1189                         stats->fc_failed_commits++;
1190                 stats->fc_ineligible_commits++;
1191         } else {
1192                 stats->fc_skipped_commits++;
1193         }
1194         trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1195 }
1196
1197 /*
1198  * The main commit entry point. Performs a fast commit for transaction
1199  * commit_tid if needed. If it's not possible to perform a fast commit
1200  * due to various reasons, we fall back to full commit. Returns 0
1201  * on success, error otherwise.
1202  */
1203 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1204 {
1205         struct super_block *sb = journal->j_private;
1206         struct ext4_sb_info *sbi = EXT4_SB(sb);
1207         int nblks = 0, ret, bsize = journal->j_blocksize;
1208         int subtid = atomic_read(&sbi->s_fc_subtid);
1209         int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1210         ktime_t start_time, commit_time;
1211
1212         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1213                 return jbd2_complete_transaction(journal, commit_tid);
1214
1215         trace_ext4_fc_commit_start(sb, commit_tid);
1216
1217         start_time = ktime_get();
1218
1219 restart_fc:
1220         ret = jbd2_fc_begin_commit(journal, commit_tid);
1221         if (ret == -EALREADY) {
1222                 /* There was an ongoing commit, check if we need to restart */
1223                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224                     tid_gt(commit_tid, journal->j_commit_sequence))
1225                         goto restart_fc;
1226                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227                                 commit_tid);
1228                 return 0;
1229         } else if (ret) {
1230                 /*
1231                  * Commit couldn't start. Just update stats and perform a
1232                  * full commit.
1233                  */
1234                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235                                 commit_tid);
1236                 return jbd2_complete_transaction(journal, commit_tid);
1237         }
1238
1239         /*
1240          * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241          * if we are fast commit ineligible.
1242          */
1243         if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244                 status = EXT4_FC_STATUS_INELIGIBLE;
1245                 goto fallback;
1246         }
1247
1248         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1249         ret = ext4_fc_perform_commit(journal);
1250         if (ret < 0) {
1251                 status = EXT4_FC_STATUS_FAILED;
1252                 goto fallback;
1253         }
1254         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1255         ret = jbd2_fc_wait_bufs(journal, nblks);
1256         if (ret < 0) {
1257                 status = EXT4_FC_STATUS_FAILED;
1258                 goto fallback;
1259         }
1260         atomic_inc(&sbi->s_fc_subtid);
1261         ret = jbd2_fc_end_commit(journal);
1262         /*
1263          * weight the commit time higher than the average time so we
1264          * don't react too strongly to vast changes in the commit time
1265          */
1266         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1267         ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1268         return ret;
1269
1270 fallback:
1271         ret = jbd2_fc_end_commit_fallback(journal);
1272         ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273         return ret;
1274 }
1275
1276 /*
1277  * Fast commit cleanup routine. This is called after every fast commit and
1278  * full commit. full is true if we are called after a full commit.
1279  */
1280 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1281 {
1282         struct super_block *sb = journal->j_private;
1283         struct ext4_sb_info *sbi = EXT4_SB(sb);
1284         struct ext4_inode_info *iter, *iter_n;
1285         struct ext4_fc_dentry_update *fc_dentry;
1286
1287         if (full && sbi->s_fc_bh)
1288                 sbi->s_fc_bh = NULL;
1289
1290         trace_ext4_fc_cleanup(journal, full, tid);
1291         jbd2_fc_release_bufs(journal);
1292
1293         spin_lock(&sbi->s_fc_lock);
1294         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1295                                  i_fc_list) {
1296                 list_del_init(&iter->i_fc_list);
1297                 ext4_clear_inode_state(&iter->vfs_inode,
1298                                        EXT4_STATE_FC_COMMITTING);
1299                 if (tid_geq(tid, iter->i_sync_tid)) {
1300                         ext4_fc_reset_inode(&iter->vfs_inode);
1301                 } else if (full) {
1302                         /*
1303                          * We are called after a full commit, inode has been
1304                          * modified while the commit was running. Re-enqueue
1305                          * the inode into STAGING, which will then be splice
1306                          * back into MAIN. This cannot happen during
1307                          * fastcommit because the journal is locked all the
1308                          * time in that case (and tid doesn't increase so
1309                          * tid check above isn't reliable).
1310                          */
1311                         list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1312                                       &sbi->s_fc_q[FC_Q_STAGING]);
1313                 }
1314                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1315                 smp_mb();
1316 #if (BITS_PER_LONG < 64)
1317                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1318 #else
1319                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1320 #endif
1321         }
1322
1323         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1324                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1325                                              struct ext4_fc_dentry_update,
1326                                              fcd_list);
1327                 list_del_init(&fc_dentry->fcd_list);
1328                 list_del_init(&fc_dentry->fcd_dilist);
1329                 spin_unlock(&sbi->s_fc_lock);
1330
1331                 if (fc_dentry->fcd_name.name &&
1332                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1333                         kfree(fc_dentry->fcd_name.name);
1334                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1335                 spin_lock(&sbi->s_fc_lock);
1336         }
1337
1338         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1339                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1340         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1341                                 &sbi->s_fc_q[FC_Q_MAIN]);
1342
1343         if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1344                 sbi->s_fc_ineligible_tid = 0;
1345                 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1346         }
1347
1348         if (full)
1349                 sbi->s_fc_bytes = 0;
1350         spin_unlock(&sbi->s_fc_lock);
1351         trace_ext4_fc_stats(sb);
1352 }
1353
1354 /* Ext4 Replay Path Routines */
1355
1356 /* Helper struct for dentry replay routines */
1357 struct dentry_info_args {
1358         int parent_ino, dname_len, ino, inode_len;
1359         char *dname;
1360 };
1361
1362 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1363 struct ext4_fc_tl_mem {
1364         u16 fc_tag;
1365         u16 fc_len;
1366 };
1367
1368 static inline void tl_to_darg(struct dentry_info_args *darg,
1369                               struct ext4_fc_tl_mem *tl, u8 *val)
1370 {
1371         struct ext4_fc_dentry_info fcd;
1372
1373         memcpy(&fcd, val, sizeof(fcd));
1374
1375         darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1376         darg->ino = le32_to_cpu(fcd.fc_ino);
1377         darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1378         darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1379 }
1380
1381 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1382 {
1383         struct ext4_fc_tl tl_disk;
1384
1385         memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1386         tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1387         tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1388 }
1389
1390 /* Unlink replay function */
1391 static int ext4_fc_replay_unlink(struct super_block *sb,
1392                                  struct ext4_fc_tl_mem *tl, u8 *val)
1393 {
1394         struct inode *inode, *old_parent;
1395         struct qstr entry;
1396         struct dentry_info_args darg;
1397         int ret = 0;
1398
1399         tl_to_darg(&darg, tl, val);
1400
1401         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1402                         darg.parent_ino, darg.dname_len);
1403
1404         entry.name = darg.dname;
1405         entry.len = darg.dname_len;
1406         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1407
1408         if (IS_ERR(inode)) {
1409                 ext4_debug("Inode %d not found", darg.ino);
1410                 return 0;
1411         }
1412
1413         old_parent = ext4_iget(sb, darg.parent_ino,
1414                                 EXT4_IGET_NORMAL);
1415         if (IS_ERR(old_parent)) {
1416                 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1417                 iput(inode);
1418                 return 0;
1419         }
1420
1421         ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1422         /* -ENOENT ok coz it might not exist anymore. */
1423         if (ret == -ENOENT)
1424                 ret = 0;
1425         iput(old_parent);
1426         iput(inode);
1427         return ret;
1428 }
1429
1430 static int ext4_fc_replay_link_internal(struct super_block *sb,
1431                                 struct dentry_info_args *darg,
1432                                 struct inode *inode)
1433 {
1434         struct inode *dir = NULL;
1435         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1436         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1437         int ret = 0;
1438
1439         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1440         if (IS_ERR(dir)) {
1441                 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1442                 dir = NULL;
1443                 goto out;
1444         }
1445
1446         dentry_dir = d_obtain_alias(dir);
1447         if (IS_ERR(dentry_dir)) {
1448                 ext4_debug("Failed to obtain dentry");
1449                 dentry_dir = NULL;
1450                 goto out;
1451         }
1452
1453         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1454         if (!dentry_inode) {
1455                 ext4_debug("Inode dentry not created.");
1456                 ret = -ENOMEM;
1457                 goto out;
1458         }
1459
1460         ret = __ext4_link(dir, inode, dentry_inode);
1461         /*
1462          * It's possible that link already existed since data blocks
1463          * for the dir in question got persisted before we crashed OR
1464          * we replayed this tag and crashed before the entire replay
1465          * could complete.
1466          */
1467         if (ret && ret != -EEXIST) {
1468                 ext4_debug("Failed to link\n");
1469                 goto out;
1470         }
1471
1472         ret = 0;
1473 out:
1474         if (dentry_dir) {
1475                 d_drop(dentry_dir);
1476                 dput(dentry_dir);
1477         } else if (dir) {
1478                 iput(dir);
1479         }
1480         if (dentry_inode) {
1481                 d_drop(dentry_inode);
1482                 dput(dentry_inode);
1483         }
1484
1485         return ret;
1486 }
1487
1488 /* Link replay function */
1489 static int ext4_fc_replay_link(struct super_block *sb,
1490                                struct ext4_fc_tl_mem *tl, u8 *val)
1491 {
1492         struct inode *inode;
1493         struct dentry_info_args darg;
1494         int ret = 0;
1495
1496         tl_to_darg(&darg, tl, val);
1497         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1498                         darg.parent_ino, darg.dname_len);
1499
1500         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1501         if (IS_ERR(inode)) {
1502                 ext4_debug("Inode not found.");
1503                 return 0;
1504         }
1505
1506         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1507         iput(inode);
1508         return ret;
1509 }
1510
1511 /*
1512  * Record all the modified inodes during replay. We use this later to setup
1513  * block bitmaps correctly.
1514  */
1515 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1516 {
1517         struct ext4_fc_replay_state *state;
1518         int i;
1519
1520         state = &EXT4_SB(sb)->s_fc_replay_state;
1521         for (i = 0; i < state->fc_modified_inodes_used; i++)
1522                 if (state->fc_modified_inodes[i] == ino)
1523                         return 0;
1524         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1525                 int *fc_modified_inodes;
1526
1527                 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1528                                 sizeof(int) * (state->fc_modified_inodes_size +
1529                                 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1530                                 GFP_KERNEL);
1531                 if (!fc_modified_inodes)
1532                         return -ENOMEM;
1533                 state->fc_modified_inodes = fc_modified_inodes;
1534                 state->fc_modified_inodes_size +=
1535                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1536         }
1537         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1538         return 0;
1539 }
1540
1541 /*
1542  * Inode replay function
1543  */
1544 static int ext4_fc_replay_inode(struct super_block *sb,
1545                                 struct ext4_fc_tl_mem *tl, u8 *val)
1546 {
1547         struct ext4_fc_inode fc_inode;
1548         struct ext4_inode *raw_inode;
1549         struct ext4_inode *raw_fc_inode;
1550         struct inode *inode = NULL;
1551         struct ext4_iloc iloc;
1552         int inode_len, ino, ret, tag = tl->fc_tag;
1553         struct ext4_extent_header *eh;
1554         size_t off_gen = offsetof(struct ext4_inode, i_generation);
1555
1556         memcpy(&fc_inode, val, sizeof(fc_inode));
1557
1558         ino = le32_to_cpu(fc_inode.fc_ino);
1559         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1560
1561         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1562         if (!IS_ERR(inode)) {
1563                 ext4_ext_clear_bb(inode);
1564                 iput(inode);
1565         }
1566         inode = NULL;
1567
1568         ret = ext4_fc_record_modified_inode(sb, ino);
1569         if (ret)
1570                 goto out;
1571
1572         raw_fc_inode = (struct ext4_inode *)
1573                 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1574         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1575         if (ret)
1576                 goto out;
1577
1578         inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1579         raw_inode = ext4_raw_inode(&iloc);
1580
1581         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1582         memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1583                inode_len - off_gen);
1584         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1585                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1586                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1587                         memset(eh, 0, sizeof(*eh));
1588                         eh->eh_magic = EXT4_EXT_MAGIC;
1589                         eh->eh_max = cpu_to_le16(
1590                                 (sizeof(raw_inode->i_block) -
1591                                  sizeof(struct ext4_extent_header))
1592                                  / sizeof(struct ext4_extent));
1593                 }
1594         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1595                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1596                         sizeof(raw_inode->i_block));
1597         }
1598
1599         /* Immediately update the inode on disk. */
1600         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1601         if (ret)
1602                 goto out;
1603         ret = sync_dirty_buffer(iloc.bh);
1604         if (ret)
1605                 goto out;
1606         ret = ext4_mark_inode_used(sb, ino);
1607         if (ret)
1608                 goto out;
1609
1610         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1611         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1612         if (IS_ERR(inode)) {
1613                 ext4_debug("Inode not found.");
1614                 return -EFSCORRUPTED;
1615         }
1616
1617         /*
1618          * Our allocator could have made different decisions than before
1619          * crashing. This should be fixed but until then, we calculate
1620          * the number of blocks the inode.
1621          */
1622         if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1623                 ext4_ext_replay_set_iblocks(inode);
1624
1625         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1626         ext4_reset_inode_seed(inode);
1627
1628         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1629         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1630         sync_dirty_buffer(iloc.bh);
1631         brelse(iloc.bh);
1632 out:
1633         iput(inode);
1634         if (!ret)
1635                 blkdev_issue_flush(sb->s_bdev);
1636
1637         return 0;
1638 }
1639
1640 /*
1641  * Dentry create replay function.
1642  *
1643  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1644  * inode for which we are trying to create a dentry here, should already have
1645  * been replayed before we start here.
1646  */
1647 static int ext4_fc_replay_create(struct super_block *sb,
1648                                  struct ext4_fc_tl_mem *tl, u8 *val)
1649 {
1650         int ret = 0;
1651         struct inode *inode = NULL;
1652         struct inode *dir = NULL;
1653         struct dentry_info_args darg;
1654
1655         tl_to_darg(&darg, tl, val);
1656
1657         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1658                         darg.parent_ino, darg.dname_len);
1659
1660         /* This takes care of update group descriptor and other metadata */
1661         ret = ext4_mark_inode_used(sb, darg.ino);
1662         if (ret)
1663                 goto out;
1664
1665         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1666         if (IS_ERR(inode)) {
1667                 ext4_debug("inode %d not found.", darg.ino);
1668                 inode = NULL;
1669                 ret = -EINVAL;
1670                 goto out;
1671         }
1672
1673         if (S_ISDIR(inode->i_mode)) {
1674                 /*
1675                  * If we are creating a directory, we need to make sure that the
1676                  * dot and dot dot dirents are setup properly.
1677                  */
1678                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1679                 if (IS_ERR(dir)) {
1680                         ext4_debug("Dir %d not found.", darg.ino);
1681                         goto out;
1682                 }
1683                 ret = ext4_init_new_dir(NULL, dir, inode);
1684                 iput(dir);
1685                 if (ret) {
1686                         ret = 0;
1687                         goto out;
1688                 }
1689         }
1690         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1691         if (ret)
1692                 goto out;
1693         set_nlink(inode, 1);
1694         ext4_mark_inode_dirty(NULL, inode);
1695 out:
1696         iput(inode);
1697         return ret;
1698 }
1699
1700 /*
1701  * Record physical disk regions which are in use as per fast commit area,
1702  * and used by inodes during replay phase. Our simple replay phase
1703  * allocator excludes these regions from allocation.
1704  */
1705 int ext4_fc_record_regions(struct super_block *sb, int ino,
1706                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1707 {
1708         struct ext4_fc_replay_state *state;
1709         struct ext4_fc_alloc_region *region;
1710
1711         state = &EXT4_SB(sb)->s_fc_replay_state;
1712         /*
1713          * during replay phase, the fc_regions_valid may not same as
1714          * fc_regions_used, update it when do new additions.
1715          */
1716         if (replay && state->fc_regions_used != state->fc_regions_valid)
1717                 state->fc_regions_used = state->fc_regions_valid;
1718         if (state->fc_regions_used == state->fc_regions_size) {
1719                 struct ext4_fc_alloc_region *fc_regions;
1720
1721                 fc_regions = krealloc(state->fc_regions,
1722                                       sizeof(struct ext4_fc_alloc_region) *
1723                                       (state->fc_regions_size +
1724                                        EXT4_FC_REPLAY_REALLOC_INCREMENT),
1725                                       GFP_KERNEL);
1726                 if (!fc_regions)
1727                         return -ENOMEM;
1728                 state->fc_regions_size +=
1729                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1730                 state->fc_regions = fc_regions;
1731         }
1732         region = &state->fc_regions[state->fc_regions_used++];
1733         region->ino = ino;
1734         region->lblk = lblk;
1735         region->pblk = pblk;
1736         region->len = len;
1737
1738         if (replay)
1739                 state->fc_regions_valid++;
1740
1741         return 0;
1742 }
1743
1744 /* Replay add range tag */
1745 static int ext4_fc_replay_add_range(struct super_block *sb,
1746                                     struct ext4_fc_tl_mem *tl, u8 *val)
1747 {
1748         struct ext4_fc_add_range fc_add_ex;
1749         struct ext4_extent newex, *ex;
1750         struct inode *inode;
1751         ext4_lblk_t start, cur;
1752         int remaining, len;
1753         ext4_fsblk_t start_pblk;
1754         struct ext4_map_blocks map;
1755         struct ext4_ext_path *path = NULL;
1756         int ret;
1757
1758         memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1759         ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1760
1761         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1762                 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1763                 ext4_ext_get_actual_len(ex));
1764
1765         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1766         if (IS_ERR(inode)) {
1767                 ext4_debug("Inode not found.");
1768                 return 0;
1769         }
1770
1771         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1772         if (ret)
1773                 goto out;
1774
1775         start = le32_to_cpu(ex->ee_block);
1776         start_pblk = ext4_ext_pblock(ex);
1777         len = ext4_ext_get_actual_len(ex);
1778
1779         cur = start;
1780         remaining = len;
1781         ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1782                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1783                   inode->i_ino);
1784
1785         while (remaining > 0) {
1786                 map.m_lblk = cur;
1787                 map.m_len = remaining;
1788                 map.m_pblk = 0;
1789                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1790
1791                 if (ret < 0)
1792                         goto out;
1793
1794                 if (ret == 0) {
1795                         /* Range is not mapped */
1796                         path = ext4_find_extent(inode, cur, path, 0);
1797                         if (IS_ERR(path))
1798                                 goto out;
1799                         memset(&newex, 0, sizeof(newex));
1800                         newex.ee_block = cpu_to_le32(cur);
1801                         ext4_ext_store_pblock(
1802                                 &newex, start_pblk + cur - start);
1803                         newex.ee_len = cpu_to_le16(map.m_len);
1804                         if (ext4_ext_is_unwritten(ex))
1805                                 ext4_ext_mark_unwritten(&newex);
1806                         down_write(&EXT4_I(inode)->i_data_sem);
1807                         path = ext4_ext_insert_extent(NULL, inode,
1808                                                       path, &newex, 0);
1809                         up_write((&EXT4_I(inode)->i_data_sem));
1810                         if (IS_ERR(path))
1811                                 goto out;
1812                         goto next;
1813                 }
1814
1815                 if (start_pblk + cur - start != map.m_pblk) {
1816                         /*
1817                          * Logical to physical mapping changed. This can happen
1818                          * if this range was removed and then reallocated to
1819                          * map to new physical blocks during a fast commit.
1820                          */
1821                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1822                                         ext4_ext_is_unwritten(ex),
1823                                         start_pblk + cur - start);
1824                         if (ret)
1825                                 goto out;
1826                         /*
1827                          * Mark the old blocks as free since they aren't used
1828                          * anymore. We maintain an array of all the modified
1829                          * inodes. In case these blocks are still used at either
1830                          * a different logical range in the same inode or in
1831                          * some different inode, we will mark them as allocated
1832                          * at the end of the FC replay using our array of
1833                          * modified inodes.
1834                          */
1835                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1836                         goto next;
1837                 }
1838
1839                 /* Range is mapped and needs a state change */
1840                 ext4_debug("Converting from %ld to %d %lld",
1841                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1842                         ext4_ext_is_unwritten(ex), map.m_pblk);
1843                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1844                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1845                 if (ret)
1846                         goto out;
1847                 /*
1848                  * We may have split the extent tree while toggling the state.
1849                  * Try to shrink the extent tree now.
1850                  */
1851                 ext4_ext_replay_shrink_inode(inode, start + len);
1852 next:
1853                 cur += map.m_len;
1854                 remaining -= map.m_len;
1855         }
1856         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1857                                         sb->s_blocksize_bits);
1858 out:
1859         ext4_free_ext_path(path);
1860         iput(inode);
1861         return 0;
1862 }
1863
1864 /* Replay DEL_RANGE tag */
1865 static int
1866 ext4_fc_replay_del_range(struct super_block *sb,
1867                          struct ext4_fc_tl_mem *tl, u8 *val)
1868 {
1869         struct inode *inode;
1870         struct ext4_fc_del_range lrange;
1871         struct ext4_map_blocks map;
1872         ext4_lblk_t cur, remaining;
1873         int ret;
1874
1875         memcpy(&lrange, val, sizeof(lrange));
1876         cur = le32_to_cpu(lrange.fc_lblk);
1877         remaining = le32_to_cpu(lrange.fc_len);
1878
1879         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1880                 le32_to_cpu(lrange.fc_ino), cur, remaining);
1881
1882         inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1883         if (IS_ERR(inode)) {
1884                 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1885                 return 0;
1886         }
1887
1888         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1889         if (ret)
1890                 goto out;
1891
1892         ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1893                         inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1894                         le32_to_cpu(lrange.fc_len));
1895         while (remaining > 0) {
1896                 map.m_lblk = cur;
1897                 map.m_len = remaining;
1898
1899                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1900                 if (ret < 0)
1901                         goto out;
1902                 if (ret > 0) {
1903                         remaining -= ret;
1904                         cur += ret;
1905                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1906                 } else {
1907                         remaining -= map.m_len;
1908                         cur += map.m_len;
1909                 }
1910         }
1911
1912         down_write(&EXT4_I(inode)->i_data_sem);
1913         ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1914                                 le32_to_cpu(lrange.fc_lblk) +
1915                                 le32_to_cpu(lrange.fc_len) - 1);
1916         up_write(&EXT4_I(inode)->i_data_sem);
1917         if (ret)
1918                 goto out;
1919         ext4_ext_replay_shrink_inode(inode,
1920                 i_size_read(inode) >> sb->s_blocksize_bits);
1921         ext4_mark_inode_dirty(NULL, inode);
1922 out:
1923         iput(inode);
1924         return 0;
1925 }
1926
1927 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1928 {
1929         struct ext4_fc_replay_state *state;
1930         struct inode *inode;
1931         struct ext4_ext_path *path = NULL;
1932         struct ext4_map_blocks map;
1933         int i, ret, j;
1934         ext4_lblk_t cur, end;
1935
1936         state = &EXT4_SB(sb)->s_fc_replay_state;
1937         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1938                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1939                         EXT4_IGET_NORMAL);
1940                 if (IS_ERR(inode)) {
1941                         ext4_debug("Inode %d not found.",
1942                                 state->fc_modified_inodes[i]);
1943                         continue;
1944                 }
1945                 cur = 0;
1946                 end = EXT_MAX_BLOCKS;
1947                 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1948                         iput(inode);
1949                         continue;
1950                 }
1951                 while (cur < end) {
1952                         map.m_lblk = cur;
1953                         map.m_len = end - cur;
1954
1955                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1956                         if (ret < 0)
1957                                 break;
1958
1959                         if (ret > 0) {
1960                                 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1961                                 if (!IS_ERR(path)) {
1962                                         for (j = 0; j < path->p_depth; j++)
1963                                                 ext4_mb_mark_bb(inode->i_sb,
1964                                                         path[j].p_block, 1, true);
1965                                 } else {
1966                                         path = NULL;
1967                                 }
1968                                 cur += ret;
1969                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1970                                                         map.m_len, true);
1971                         } else {
1972                                 cur = cur + (map.m_len ? map.m_len : 1);
1973                         }
1974                 }
1975                 iput(inode);
1976         }
1977
1978         ext4_free_ext_path(path);
1979 }
1980
1981 /*
1982  * Check if block is in excluded regions for block allocation. The simple
1983  * allocator that runs during replay phase is calls this function to see
1984  * if it is okay to use a block.
1985  */
1986 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1987 {
1988         int i;
1989         struct ext4_fc_replay_state *state;
1990
1991         state = &EXT4_SB(sb)->s_fc_replay_state;
1992         for (i = 0; i < state->fc_regions_valid; i++) {
1993                 if (state->fc_regions[i].ino == 0 ||
1994                         state->fc_regions[i].len == 0)
1995                         continue;
1996                 if (in_range(blk, state->fc_regions[i].pblk,
1997                                         state->fc_regions[i].len))
1998                         return true;
1999         }
2000         return false;
2001 }
2002
2003 /* Cleanup function called after replay */
2004 void ext4_fc_replay_cleanup(struct super_block *sb)
2005 {
2006         struct ext4_sb_info *sbi = EXT4_SB(sb);
2007
2008         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2009         kfree(sbi->s_fc_replay_state.fc_regions);
2010         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2011 }
2012
2013 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2014                                       int tag, int len)
2015 {
2016         switch (tag) {
2017         case EXT4_FC_TAG_ADD_RANGE:
2018                 return len == sizeof(struct ext4_fc_add_range);
2019         case EXT4_FC_TAG_DEL_RANGE:
2020                 return len == sizeof(struct ext4_fc_del_range);
2021         case EXT4_FC_TAG_CREAT:
2022         case EXT4_FC_TAG_LINK:
2023         case EXT4_FC_TAG_UNLINK:
2024                 len -= sizeof(struct ext4_fc_dentry_info);
2025                 return len >= 1 && len <= EXT4_NAME_LEN;
2026         case EXT4_FC_TAG_INODE:
2027                 len -= sizeof(struct ext4_fc_inode);
2028                 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2029                         len <= sbi->s_inode_size;
2030         case EXT4_FC_TAG_PAD:
2031                 return true; /* padding can have any length */
2032         case EXT4_FC_TAG_TAIL:
2033                 return len >= sizeof(struct ext4_fc_tail);
2034         case EXT4_FC_TAG_HEAD:
2035                 return len == sizeof(struct ext4_fc_head);
2036         }
2037         return false;
2038 }
2039
2040 /*
2041  * Recovery Scan phase handler
2042  *
2043  * This function is called during the scan phase and is responsible
2044  * for doing following things:
2045  * - Make sure the fast commit area has valid tags for replay
2046  * - Count number of tags that need to be replayed by the replay handler
2047  * - Verify CRC
2048  * - Create a list of excluded blocks for allocation during replay phase
2049  *
2050  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2051  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2052  * to indicate that scan has finished and JBD2 can now start replay phase.
2053  * It returns a negative error to indicate that there was an error. At the end
2054  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2055  * to indicate the number of tags that need to replayed during the replay phase.
2056  */
2057 static int ext4_fc_replay_scan(journal_t *journal,
2058                                 struct buffer_head *bh, int off,
2059                                 tid_t expected_tid)
2060 {
2061         struct super_block *sb = journal->j_private;
2062         struct ext4_sb_info *sbi = EXT4_SB(sb);
2063         struct ext4_fc_replay_state *state;
2064         int ret = JBD2_FC_REPLAY_CONTINUE;
2065         struct ext4_fc_add_range ext;
2066         struct ext4_fc_tl_mem tl;
2067         struct ext4_fc_tail tail;
2068         __u8 *start, *end, *cur, *val;
2069         struct ext4_fc_head head;
2070         struct ext4_extent *ex;
2071
2072         state = &sbi->s_fc_replay_state;
2073
2074         start = (u8 *)bh->b_data;
2075         end = start + journal->j_blocksize;
2076
2077         if (state->fc_replay_expected_off == 0) {
2078                 state->fc_cur_tag = 0;
2079                 state->fc_replay_num_tags = 0;
2080                 state->fc_crc = 0;
2081                 state->fc_regions = NULL;
2082                 state->fc_regions_valid = state->fc_regions_used =
2083                         state->fc_regions_size = 0;
2084                 /* Check if we can stop early */
2085                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2086                         != EXT4_FC_TAG_HEAD)
2087                         return 0;
2088         }
2089
2090         if (off != state->fc_replay_expected_off) {
2091                 ret = -EFSCORRUPTED;
2092                 goto out_err;
2093         }
2094
2095         state->fc_replay_expected_off++;
2096         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2097              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2098                 ext4_fc_get_tl(&tl, cur);
2099                 val = cur + EXT4_FC_TAG_BASE_LEN;
2100                 if (tl.fc_len > end - val ||
2101                     !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2102                         ret = state->fc_replay_num_tags ?
2103                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2104                         goto out_err;
2105                 }
2106                 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2107                            tag2str(tl.fc_tag), bh->b_blocknr);
2108                 switch (tl.fc_tag) {
2109                 case EXT4_FC_TAG_ADD_RANGE:
2110                         memcpy(&ext, val, sizeof(ext));
2111                         ex = (struct ext4_extent *)&ext.fc_ex;
2112                         ret = ext4_fc_record_regions(sb,
2113                                 le32_to_cpu(ext.fc_ino),
2114                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2115                                 ext4_ext_get_actual_len(ex), 0);
2116                         if (ret < 0)
2117                                 break;
2118                         ret = JBD2_FC_REPLAY_CONTINUE;
2119                         fallthrough;
2120                 case EXT4_FC_TAG_DEL_RANGE:
2121                 case EXT4_FC_TAG_LINK:
2122                 case EXT4_FC_TAG_UNLINK:
2123                 case EXT4_FC_TAG_CREAT:
2124                 case EXT4_FC_TAG_INODE:
2125                 case EXT4_FC_TAG_PAD:
2126                         state->fc_cur_tag++;
2127                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2128                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2129                         break;
2130                 case EXT4_FC_TAG_TAIL:
2131                         state->fc_cur_tag++;
2132                         memcpy(&tail, val, sizeof(tail));
2133                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2134                                                 EXT4_FC_TAG_BASE_LEN +
2135                                                 offsetof(struct ext4_fc_tail,
2136                                                 fc_crc));
2137                         if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2138                                 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2139                                 state->fc_replay_num_tags = state->fc_cur_tag;
2140                                 state->fc_regions_valid =
2141                                         state->fc_regions_used;
2142                         } else {
2143                                 ret = state->fc_replay_num_tags ?
2144                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2145                         }
2146                         state->fc_crc = 0;
2147                         break;
2148                 case EXT4_FC_TAG_HEAD:
2149                         memcpy(&head, val, sizeof(head));
2150                         if (le32_to_cpu(head.fc_features) &
2151                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2152                                 ret = -EOPNOTSUPP;
2153                                 break;
2154                         }
2155                         if (le32_to_cpu(head.fc_tid) != expected_tid) {
2156                                 ret = JBD2_FC_REPLAY_STOP;
2157                                 break;
2158                         }
2159                         state->fc_cur_tag++;
2160                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2161                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2162                         break;
2163                 default:
2164                         ret = state->fc_replay_num_tags ?
2165                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2166                 }
2167                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2168                         break;
2169         }
2170
2171 out_err:
2172         trace_ext4_fc_replay_scan(sb, ret, off);
2173         return ret;
2174 }
2175
2176 /*
2177  * Main recovery path entry point.
2178  * The meaning of return codes is similar as above.
2179  */
2180 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2181                                 enum passtype pass, int off, tid_t expected_tid)
2182 {
2183         struct super_block *sb = journal->j_private;
2184         struct ext4_sb_info *sbi = EXT4_SB(sb);
2185         struct ext4_fc_tl_mem tl;
2186         __u8 *start, *end, *cur, *val;
2187         int ret = JBD2_FC_REPLAY_CONTINUE;
2188         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2189         struct ext4_fc_tail tail;
2190
2191         if (pass == PASS_SCAN) {
2192                 state->fc_current_pass = PASS_SCAN;
2193                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2194         }
2195
2196         if (state->fc_current_pass != pass) {
2197                 state->fc_current_pass = pass;
2198                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2199         }
2200         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2201                 ext4_debug("Replay stops\n");
2202                 ext4_fc_set_bitmaps_and_counters(sb);
2203                 return 0;
2204         }
2205
2206 #ifdef CONFIG_EXT4_DEBUG
2207         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2208                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2209                 return JBD2_FC_REPLAY_STOP;
2210         }
2211 #endif
2212
2213         start = (u8 *)bh->b_data;
2214         end = start + journal->j_blocksize;
2215
2216         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2217              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2218                 ext4_fc_get_tl(&tl, cur);
2219                 val = cur + EXT4_FC_TAG_BASE_LEN;
2220
2221                 if (state->fc_replay_num_tags == 0) {
2222                         ret = JBD2_FC_REPLAY_STOP;
2223                         ext4_fc_set_bitmaps_and_counters(sb);
2224                         break;
2225                 }
2226
2227                 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2228                 state->fc_replay_num_tags--;
2229                 switch (tl.fc_tag) {
2230                 case EXT4_FC_TAG_LINK:
2231                         ret = ext4_fc_replay_link(sb, &tl, val);
2232                         break;
2233                 case EXT4_FC_TAG_UNLINK:
2234                         ret = ext4_fc_replay_unlink(sb, &tl, val);
2235                         break;
2236                 case EXT4_FC_TAG_ADD_RANGE:
2237                         ret = ext4_fc_replay_add_range(sb, &tl, val);
2238                         break;
2239                 case EXT4_FC_TAG_CREAT:
2240                         ret = ext4_fc_replay_create(sb, &tl, val);
2241                         break;
2242                 case EXT4_FC_TAG_DEL_RANGE:
2243                         ret = ext4_fc_replay_del_range(sb, &tl, val);
2244                         break;
2245                 case EXT4_FC_TAG_INODE:
2246                         ret = ext4_fc_replay_inode(sb, &tl, val);
2247                         break;
2248                 case EXT4_FC_TAG_PAD:
2249                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2250                                              tl.fc_len, 0);
2251                         break;
2252                 case EXT4_FC_TAG_TAIL:
2253                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2254                                              0, tl.fc_len, 0);
2255                         memcpy(&tail, val, sizeof(tail));
2256                         WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2257                         break;
2258                 case EXT4_FC_TAG_HEAD:
2259                         break;
2260                 default:
2261                         trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2262                         ret = -ECANCELED;
2263                         break;
2264                 }
2265                 if (ret < 0)
2266                         break;
2267                 ret = JBD2_FC_REPLAY_CONTINUE;
2268         }
2269         return ret;
2270 }
2271
2272 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2273 {
2274         /*
2275          * We set replay callback even if fast commit disabled because we may
2276          * could still have fast commit blocks that need to be replayed even if
2277          * fast commit has now been turned off.
2278          */
2279         journal->j_fc_replay_callback = ext4_fc_replay;
2280         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2281                 return;
2282         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2283 }
2284
2285 static const char * const fc_ineligible_reasons[] = {
2286         [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2287         [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2288         [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2289         [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2290         [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2291         [EXT4_FC_REASON_RESIZE] = "Resize",
2292         [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2293         [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2294         [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2295         [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2296 };
2297
2298 int ext4_fc_info_show(struct seq_file *seq, void *v)
2299 {
2300         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2301         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2302         int i;
2303
2304         if (v != SEQ_START_TOKEN)
2305                 return 0;
2306
2307         seq_printf(seq,
2308                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2309                    stats->fc_num_commits, stats->fc_ineligible_commits,
2310                    stats->fc_numblks,
2311                    div_u64(stats->s_fc_avg_commit_time, 1000));
2312         seq_puts(seq, "Ineligible reasons:\n");
2313         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2314                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2315                         stats->fc_ineligible_reason_count[i]);
2316
2317         return 0;
2318 }
2319
2320 int __init ext4_fc_init_dentry_cache(void)
2321 {
2322         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2323                                            SLAB_RECLAIM_ACCOUNT);
2324
2325         if (ext4_fc_dentry_cachep == NULL)
2326                 return -ENOMEM;
2327
2328         return 0;
2329 }
2330
2331 void ext4_fc_destroy_dentry_cache(void)
2332 {
2333         kmem_cache_destroy(ext4_fc_dentry_cachep);
2334 }
This page took 0.175231 seconds and 4 git commands to generate.