1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
129 if (flags & FOLL_GET)
130 return try_get_folio(page, refs);
131 else if (flags & FOLL_PIN) {
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
139 if (unlikely((flags & FOLL_LONGTERM) &&
140 !is_longterm_pinnable_page(page)))
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
147 folio = try_get_folio(page, refs);
152 * When pinning a large folio, use an exact count to track it.
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
156 * is pinned. That's why the refcount from the earlier
157 * try_get_folio() is left intact.
159 if (folio_test_large(folio))
160 atomic_add(refs, folio_pincount_ptr(folio));
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
169 smp_mb__after_atomic();
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
182 if (flags & FOLL_PIN) {
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
185 atomic_sub(refs, folio_pincount_ptr(folio));
187 refs *= GUP_PIN_COUNTING_BIAS;
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
199 * This might not do anything at all, depending on the flags argument.
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205 * time. Cases: please see the try_grab_folio() documentation, with
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
216 struct folio *folio = page_folio(page);
218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
225 if (flags & FOLL_GET)
226 folio_ref_inc(folio);
227 else if (flags & FOLL_PIN) {
229 * Similar to try_grab_folio(): be sure to *also*
230 * increment the normal page refcount field at least once,
231 * so that the page really is pinned.
233 if (folio_test_large(folio)) {
234 folio_ref_add(folio, 1);
235 atomic_add(1, folio_pincount_ptr(folio));
237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
247 * unpin_user_page() - release a dma-pinned page
248 * @page: pointer to page to be released
250 * Pages that were pinned via pin_user_pages*() must be released via either
251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252 * that such pages can be separately tracked and uniquely handled. In
253 * particular, interactions with RDMA and filesystems need special handling.
255 void unpin_user_page(struct page *page)
257 sanity_check_pinned_pages(&page, 1);
258 gup_put_folio(page_folio(page), 1, FOLL_PIN);
260 EXPORT_SYMBOL(unpin_user_page);
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct page *next = nth_page(start, i);
266 struct folio *folio = page_folio(next);
269 if (folio_test_large(folio))
270 nr = min_t(unsigned int, npages - i,
271 folio_nr_pages(folio) - folio_page_idx(folio, next));
277 static inline struct folio *gup_folio_next(struct page **list,
278 unsigned long npages, unsigned long i, unsigned int *ntails)
280 struct folio *folio = page_folio(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (page_folio(list[nr]) != folio)
293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294 * @pages: array of pages to be maybe marked dirty, and definitely released.
295 * @npages: number of pages in the @pages array.
296 * @make_dirty: whether to mark the pages dirty
298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299 * variants called on that page.
301 * For each page in the @pages array, make that page (or its head page, if a
302 * compound page) dirty, if @make_dirty is true, and if the page was previously
303 * listed as clean. In any case, releases all pages using unpin_user_page(),
304 * possibly via unpin_user_pages(), for the non-dirty case.
306 * Please see the unpin_user_page() documentation for details.
308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309 * required, then the caller should a) verify that this is really correct,
310 * because _lock() is usually required, and b) hand code it:
311 * set_page_dirty_lock(), unpin_user_page().
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
322 unpin_user_pages(pages, npages);
326 sanity_check_pinned_pages(pages, npages);
327 for (i = 0; i < npages; i += nr) {
328 folio = gup_folio_next(pages, npages, i, &nr);
330 * Checking PageDirty at this point may race with
331 * clear_page_dirty_for_io(), but that's OK. Two key
334 * 1) This code sees the page as already dirty, so it
335 * skips the call to set_page_dirty(). That could happen
336 * because clear_page_dirty_for_io() called
337 * page_mkclean(), followed by set_page_dirty().
338 * However, now the page is going to get written back,
339 * which meets the original intention of setting it
340 * dirty, so all is well: clear_page_dirty_for_io() goes
341 * on to call TestClearPageDirty(), and write the page
344 * 2) This code sees the page as clean, so it calls
345 * set_page_dirty(). The page stays dirty, despite being
346 * written back, so it gets written back again in the
347 * next writeback cycle. This is harmless.
349 if (!folio_test_dirty(folio)) {
351 folio_mark_dirty(folio);
354 gup_put_folio(folio, nr, FOLL_PIN);
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
387 for (i = 0; i < npages; i += nr) {
388 folio = gup_folio_range_next(page, npages, i, &nr);
389 if (make_dirty && !folio_test_dirty(folio)) {
391 folio_mark_dirty(folio);
394 gup_put_folio(folio, nr, FOLL_PIN);
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
406 * Don't perform any sanity checks because we might have raced with
407 * fork() and some anonymous pages might now actually be shared --
408 * which is why we're unpinning after all.
410 for (i = 0; i < npages; i += nr) {
411 folio = gup_folio_next(pages, npages, i, &nr);
412 gup_put_folio(folio, nr, FOLL_PIN);
417 * unpin_user_pages() - release an array of gup-pinned pages.
418 * @pages: array of pages to be marked dirty and released.
419 * @npages: number of pages in the @pages array.
421 * For each page in the @pages array, release the page using unpin_user_page().
423 * Please see the unpin_user_page() documentation for details.
425 void unpin_user_pages(struct page **pages, unsigned long npages)
432 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 * leaving them pinned), but probably not. More likely, gup/pup returned
434 * a hard -ERRNO error to the caller, who erroneously passed it here.
436 if (WARN_ON(IS_ERR_VALUE(npages)))
439 sanity_check_pinned_pages(pages, npages);
440 for (i = 0; i < npages; i += nr) {
441 folio = gup_folio_next(pages, npages, i, &nr);
442 gup_put_folio(folio, nr, FOLL_PIN);
445 EXPORT_SYMBOL(unpin_user_pages);
448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
450 * cache bouncing on large SMP machines for concurrent pinned gups.
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
454 if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 set_bit(MMF_HAS_PINNED, mm_flags);
459 static struct page *no_page_table(struct vm_area_struct *vma,
463 * When core dumping an enormous anonymous area that nobody
464 * has touched so far, we don't want to allocate unnecessary pages or
465 * page tables. Return error instead of NULL to skip handle_mm_fault,
466 * then get_dump_page() will return NULL to leave a hole in the dump.
467 * But we can only make this optimization where a hole would surely
468 * be zero-filled if handle_mm_fault() actually did handle it.
470 if ((flags & FOLL_DUMP) &&
471 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 return ERR_PTR(-EFAULT);
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 pte_t *pte, unsigned int flags)
479 if (flags & FOLL_TOUCH) {
482 if (flags & FOLL_WRITE)
483 entry = pte_mkdirty(entry);
484 entry = pte_mkyoung(entry);
486 if (!pte_same(*pte, entry)) {
487 set_pte_at(vma->vm_mm, address, pte, entry);
488 update_mmu_cache(vma, address, pte);
492 /* Proper page table entry exists, but no corresponding struct page */
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 struct vm_area_struct *vma,
501 /* If the pte is writable, we can write to the page. */
505 /* Maybe FOLL_FORCE is set to override it? */
506 if (!(flags & FOLL_FORCE))
509 /* But FOLL_FORCE has no effect on shared mappings */
510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
513 /* ... or read-only private ones */
514 if (!(vma->vm_flags & VM_MAYWRITE))
517 /* ... or already writable ones that just need to take a write fault */
518 if (vma->vm_flags & VM_WRITE)
522 * See can_change_pte_writable(): we broke COW and could map the page
523 * writable if we have an exclusive anonymous page ...
525 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
528 /* ... and a write-fault isn't required for other reasons. */
529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
531 return !userfaultfd_pte_wp(vma, pte);
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 unsigned long address, pmd_t *pmd, unsigned int flags,
536 struct dev_pagemap **pgmap)
538 struct mm_struct *mm = vma->vm_mm;
544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 (FOLL_PIN | FOLL_GET)))
547 return ERR_PTR(-EINVAL);
548 if (unlikely(pmd_bad(*pmd)))
549 return no_page_table(vma, flags);
551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
553 if (!pte_present(pte))
555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
558 page = vm_normal_page(vma, address, pte);
561 * We only care about anon pages in can_follow_write_pte() and don't
562 * have to worry about pte_devmap() because they are never anon.
564 if ((flags & FOLL_WRITE) &&
565 !can_follow_write_pte(pte, page, vma, flags)) {
570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 * case since they are only valid while holding the pgmap
576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
578 page = pte_page(pte);
581 } else if (unlikely(!page)) {
582 if (flags & FOLL_DUMP) {
583 /* Avoid special (like zero) pages in core dumps */
584 page = ERR_PTR(-EFAULT);
588 if (is_zero_pfn(pte_pfn(pte))) {
589 page = pte_page(pte);
591 ret = follow_pfn_pte(vma, address, ptep, flags);
597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 page = ERR_PTR(-EMLINK);
602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 !PageAnonExclusive(page), page);
605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 ret = try_grab_page(page, flags);
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
620 unpin_user_page(page);
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
634 mark_page_accessed(page);
637 pte_unmap_unlock(ptep, ptl);
640 pte_unmap_unlock(ptep, ptl);
643 return no_page_table(vma, flags);
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
649 struct follow_page_context *ctx)
654 struct mm_struct *mm = vma->vm_mm;
656 pmd = pmd_offset(pudp, address);
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
663 return no_page_table(vma, flags);
664 if (!pmd_present(pmdval))
665 return no_page_table(vma, flags);
666 if (pmd_devmap(pmdval)) {
667 ptl = pmd_lock(mm, pmd);
668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
673 if (likely(!pmd_trans_huge(pmdval)))
674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 return no_page_table(vma, flags);
679 ptl = pmd_lock(mm, pmd);
680 if (unlikely(!pmd_present(*pmd))) {
682 return no_page_table(vma, flags);
684 if (unlikely(!pmd_trans_huge(*pmd))) {
686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
688 if (flags & FOLL_SPLIT_PMD) {
690 page = pmd_page(*pmd);
691 if (is_huge_zero_page(page)) {
694 split_huge_pmd(vma, pmd, address);
695 if (pmd_trans_unstable(pmd))
699 split_huge_pmd(vma, pmd, address);
700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 return ret ? ERR_PTR(ret) :
704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
706 page = follow_trans_huge_pmd(vma, address, pmd, flags);
708 ctx->page_mask = HPAGE_PMD_NR - 1;
712 static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 unsigned long address, p4d_t *p4dp,
715 struct follow_page_context *ctx)
720 struct mm_struct *mm = vma->vm_mm;
722 pud = pud_offset(p4dp, address);
724 return no_page_table(vma, flags);
725 if (pud_devmap(*pud)) {
726 ptl = pud_lock(mm, pud);
727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
732 if (unlikely(pud_bad(*pud)))
733 return no_page_table(vma, flags);
735 return follow_pmd_mask(vma, address, pud, flags, ctx);
738 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 unsigned long address, pgd_t *pgdp,
741 struct follow_page_context *ctx)
745 p4d = p4d_offset(pgdp, address);
747 return no_page_table(vma, flags);
748 BUILD_BUG_ON(p4d_huge(*p4d));
749 if (unlikely(p4d_bad(*p4d)))
750 return no_page_table(vma, flags);
752 return follow_pud_mask(vma, address, p4d, flags, ctx);
756 * follow_page_mask - look up a page descriptor from a user-virtual address
757 * @vma: vm_area_struct mapping @address
758 * @address: virtual address to look up
759 * @flags: flags modifying lookup behaviour
760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761 * pointer to output page_mask
763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
768 * When getting an anonymous page and the caller has to trigger unsharing
769 * of a shared anonymous page first, -EMLINK is returned. The caller should
770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771 * relevant with FOLL_PIN and !FOLL_WRITE.
773 * On output, the @ctx->page_mask is set according to the size of the page.
775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
776 * an error pointer if there is a mapping to something not represented
777 * by a page descriptor (see also vm_normal_page()).
779 static struct page *follow_page_mask(struct vm_area_struct *vma,
780 unsigned long address, unsigned int flags,
781 struct follow_page_context *ctx)
785 struct mm_struct *mm = vma->vm_mm;
790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 * special hugetlb page table walking code. This eliminates the
792 * need to check for hugetlb entries in the general walking code.
794 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
797 if (is_vm_hugetlb_page(vma)) {
798 page = hugetlb_follow_page_mask(vma, address, flags);
800 page = no_page_table(vma, flags);
804 pgd = pgd_offset(mm, address);
806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 return no_page_table(vma, flags);
809 return follow_p4d_mask(vma, address, pgd, flags, ctx);
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 unsigned int foll_flags)
815 struct follow_page_context ctx = { NULL };
818 if (vma_is_secretmem(vma))
821 if (foll_flags & FOLL_PIN)
824 page = follow_page_mask(vma, address, foll_flags, &ctx);
826 put_dev_pagemap(ctx.pgmap);
830 static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 unsigned int gup_flags, struct vm_area_struct **vma,
841 /* user gate pages are read-only */
842 if (gup_flags & FOLL_WRITE)
844 if (address > TASK_SIZE)
845 pgd = pgd_offset_k(address);
847 pgd = pgd_offset_gate(mm, address);
850 p4d = p4d_offset(pgd, address);
853 pud = pud_offset(p4d, address);
856 pmd = pmd_offset(pud, address);
857 if (!pmd_present(*pmd))
859 VM_BUG_ON(pmd_trans_huge(*pmd));
860 pte = pte_offset_map(pmd, address);
863 *vma = get_gate_vma(mm);
866 *page = vm_normal_page(*vma, address, *pte);
868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
870 *page = pte_page(*pte);
872 ret = try_grab_page(*page, gup_flags);
883 * mmap_lock must be held on entry. If @locked != NULL and *@flags
884 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
885 * is, *@locked will be set to 0 and -EBUSY returned.
887 static int faultin_page(struct vm_area_struct *vma,
888 unsigned long address, unsigned int *flags, bool unshare,
891 unsigned int fault_flags = 0;
894 if (*flags & FOLL_NOFAULT)
896 if (*flags & FOLL_WRITE)
897 fault_flags |= FAULT_FLAG_WRITE;
898 if (*flags & FOLL_REMOTE)
899 fault_flags |= FAULT_FLAG_REMOTE;
901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
902 if (*flags & FOLL_NOWAIT)
903 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
904 if (*flags & FOLL_TRIED) {
906 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
909 fault_flags |= FAULT_FLAG_TRIED;
912 fault_flags |= FAULT_FLAG_UNSHARE;
913 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
914 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
917 ret = handle_mm_fault(vma, address, fault_flags, NULL);
919 if (ret & VM_FAULT_COMPLETED) {
921 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
922 * mmap lock in the page fault handler. Sanity check this.
924 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
928 * We should do the same as VM_FAULT_RETRY, but let's not
929 * return -EBUSY since that's not reflecting the reality of
930 * what has happened - we've just fully completed a page
931 * fault, with the mmap lock released. Use -EAGAIN to show
932 * that we want to take the mmap lock _again_.
937 if (ret & VM_FAULT_ERROR) {
938 int err = vm_fault_to_errno(ret, *flags);
945 if (ret & VM_FAULT_RETRY) {
946 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
954 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
956 vm_flags_t vm_flags = vma->vm_flags;
957 int write = (gup_flags & FOLL_WRITE);
958 int foreign = (gup_flags & FOLL_REMOTE);
960 if (vm_flags & (VM_IO | VM_PFNMAP))
963 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
966 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
969 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
972 if (vma_is_secretmem(vma))
976 if (!(vm_flags & VM_WRITE)) {
977 if (!(gup_flags & FOLL_FORCE))
979 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
980 if (is_vm_hugetlb_page(vma))
983 * We used to let the write,force case do COW in a
984 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
985 * set a breakpoint in a read-only mapping of an
986 * executable, without corrupting the file (yet only
987 * when that file had been opened for writing!).
988 * Anon pages in shared mappings are surprising: now
991 if (!is_cow_mapping(vm_flags))
994 } else if (!(vm_flags & VM_READ)) {
995 if (!(gup_flags & FOLL_FORCE))
998 * Is there actually any vma we can reach here which does not
999 * have VM_MAYREAD set?
1001 if (!(vm_flags & VM_MAYREAD))
1005 * gups are always data accesses, not instruction
1006 * fetches, so execute=false here
1008 if (!arch_vma_access_permitted(vma, write, false, foreign))
1014 * __get_user_pages() - pin user pages in memory
1015 * @mm: mm_struct of target mm
1016 * @start: starting user address
1017 * @nr_pages: number of pages from start to pin
1018 * @gup_flags: flags modifying pin behaviour
1019 * @pages: array that receives pointers to the pages pinned.
1020 * Should be at least nr_pages long. Or NULL, if caller
1021 * only intends to ensure the pages are faulted in.
1022 * @vmas: array of pointers to vmas corresponding to each page.
1023 * Or NULL if the caller does not require them.
1024 * @locked: whether we're still with the mmap_lock held
1026 * Returns either number of pages pinned (which may be less than the
1027 * number requested), or an error. Details about the return value:
1029 * -- If nr_pages is 0, returns 0.
1030 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1031 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1032 * pages pinned. Again, this may be less than nr_pages.
1033 * -- 0 return value is possible when the fault would need to be retried.
1035 * The caller is responsible for releasing returned @pages, via put_page().
1037 * @vmas are valid only as long as mmap_lock is held.
1039 * Must be called with mmap_lock held. It may be released. See below.
1041 * __get_user_pages walks a process's page tables and takes a reference to
1042 * each struct page that each user address corresponds to at a given
1043 * instant. That is, it takes the page that would be accessed if a user
1044 * thread accesses the given user virtual address at that instant.
1046 * This does not guarantee that the page exists in the user mappings when
1047 * __get_user_pages returns, and there may even be a completely different
1048 * page there in some cases (eg. if mmapped pagecache has been invalidated
1049 * and subsequently re faulted). However it does guarantee that the page
1050 * won't be freed completely. And mostly callers simply care that the page
1051 * contains data that was valid *at some point in time*. Typically, an IO
1052 * or similar operation cannot guarantee anything stronger anyway because
1053 * locks can't be held over the syscall boundary.
1055 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1056 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1057 * appropriate) must be called after the page is finished with, and
1058 * before put_page is called.
1060 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1061 * released by an up_read(). That can happen if @gup_flags does not
1064 * A caller using such a combination of @locked and @gup_flags
1065 * must therefore hold the mmap_lock for reading only, and recognize
1066 * when it's been released. Otherwise, it must be held for either
1067 * reading or writing and will not be released.
1069 * In most cases, get_user_pages or get_user_pages_fast should be used
1070 * instead of __get_user_pages. __get_user_pages should be used only if
1071 * you need some special @gup_flags.
1073 static long __get_user_pages(struct mm_struct *mm,
1074 unsigned long start, unsigned long nr_pages,
1075 unsigned int gup_flags, struct page **pages,
1076 struct vm_area_struct **vmas, int *locked)
1078 long ret = 0, i = 0;
1079 struct vm_area_struct *vma = NULL;
1080 struct follow_page_context ctx = { NULL };
1085 start = untagged_addr(start);
1087 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1091 unsigned int foll_flags = gup_flags;
1092 unsigned int page_increm;
1094 /* first iteration or cross vma bound */
1095 if (!vma || start >= vma->vm_end) {
1096 vma = find_extend_vma(mm, start);
1097 if (!vma && in_gate_area(mm, start)) {
1098 ret = get_gate_page(mm, start & PAGE_MASK,
1100 pages ? &pages[i] : NULL);
1111 ret = check_vma_flags(vma, gup_flags);
1115 if (is_vm_hugetlb_page(vma)) {
1116 i = follow_hugetlb_page(mm, vma, pages, vmas,
1117 &start, &nr_pages, i,
1119 if (locked && *locked == 0) {
1121 * We've got a VM_FAULT_RETRY
1122 * and we've lost mmap_lock.
1123 * We must stop here.
1125 BUG_ON(gup_flags & FOLL_NOWAIT);
1133 * If we have a pending SIGKILL, don't keep faulting pages and
1134 * potentially allocating memory.
1136 if (fatal_signal_pending(current)) {
1142 page = follow_page_mask(vma, start, foll_flags, &ctx);
1143 if (!page || PTR_ERR(page) == -EMLINK) {
1144 ret = faultin_page(vma, start, &foll_flags,
1145 PTR_ERR(page) == -EMLINK, locked);
1159 } else if (PTR_ERR(page) == -EEXIST) {
1161 * Proper page table entry exists, but no corresponding
1162 * struct page. If the caller expects **pages to be
1163 * filled in, bail out now, because that can't be done
1167 ret = PTR_ERR(page);
1172 } else if (IS_ERR(page)) {
1173 ret = PTR_ERR(page);
1178 flush_anon_page(vma, page, start);
1179 flush_dcache_page(page);
1187 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1188 if (page_increm > nr_pages)
1189 page_increm = nr_pages;
1191 start += page_increm * PAGE_SIZE;
1192 nr_pages -= page_increm;
1196 put_dev_pagemap(ctx.pgmap);
1200 static bool vma_permits_fault(struct vm_area_struct *vma,
1201 unsigned int fault_flags)
1203 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1204 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1205 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1207 if (!(vm_flags & vma->vm_flags))
1211 * The architecture might have a hardware protection
1212 * mechanism other than read/write that can deny access.
1214 * gup always represents data access, not instruction
1215 * fetches, so execute=false here:
1217 if (!arch_vma_access_permitted(vma, write, false, foreign))
1224 * fixup_user_fault() - manually resolve a user page fault
1225 * @mm: mm_struct of target mm
1226 * @address: user address
1227 * @fault_flags:flags to pass down to handle_mm_fault()
1228 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1229 * does not allow retry. If NULL, the caller must guarantee
1230 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1232 * This is meant to be called in the specific scenario where for locking reasons
1233 * we try to access user memory in atomic context (within a pagefault_disable()
1234 * section), this returns -EFAULT, and we want to resolve the user fault before
1237 * Typically this is meant to be used by the futex code.
1239 * The main difference with get_user_pages() is that this function will
1240 * unconditionally call handle_mm_fault() which will in turn perform all the
1241 * necessary SW fixup of the dirty and young bits in the PTE, while
1242 * get_user_pages() only guarantees to update these in the struct page.
1244 * This is important for some architectures where those bits also gate the
1245 * access permission to the page because they are maintained in software. On
1246 * such architectures, gup() will not be enough to make a subsequent access
1249 * This function will not return with an unlocked mmap_lock. So it has not the
1250 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1252 int fixup_user_fault(struct mm_struct *mm,
1253 unsigned long address, unsigned int fault_flags,
1256 struct vm_area_struct *vma;
1259 address = untagged_addr(address);
1262 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1265 vma = find_extend_vma(mm, address);
1266 if (!vma || address < vma->vm_start)
1269 if (!vma_permits_fault(vma, fault_flags))
1272 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1273 fatal_signal_pending(current))
1276 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1278 if (ret & VM_FAULT_COMPLETED) {
1280 * NOTE: it's a pity that we need to retake the lock here
1281 * to pair with the unlock() in the callers. Ideally we
1282 * could tell the callers so they do not need to unlock.
1289 if (ret & VM_FAULT_ERROR) {
1290 int err = vm_fault_to_errno(ret, 0);
1297 if (ret & VM_FAULT_RETRY) {
1300 fault_flags |= FAULT_FLAG_TRIED;
1306 EXPORT_SYMBOL_GPL(fixup_user_fault);
1309 * Please note that this function, unlike __get_user_pages will not
1310 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1312 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1313 unsigned long start,
1314 unsigned long nr_pages,
1315 struct page **pages,
1316 struct vm_area_struct **vmas,
1320 long ret, pages_done;
1324 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1326 /* check caller initialized locked */
1327 BUG_ON(*locked != 1);
1330 if (flags & FOLL_PIN)
1331 mm_set_has_pinned_flag(&mm->flags);
1334 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1335 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1336 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1337 * for FOLL_GET, not for the newer FOLL_PIN.
1339 * FOLL_PIN always expects pages to be non-null, but no need to assert
1340 * that here, as any failures will be obvious enough.
1342 if (pages && !(flags & FOLL_PIN))
1346 lock_dropped = false;
1348 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1351 /* VM_FAULT_RETRY couldn't trigger, bypass */
1354 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1357 BUG_ON(ret >= nr_pages);
1368 * VM_FAULT_RETRY didn't trigger or it was a
1376 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1377 * For the prefault case (!pages) we only update counts.
1381 start += ret << PAGE_SHIFT;
1382 lock_dropped = true;
1386 * Repeat on the address that fired VM_FAULT_RETRY
1387 * with both FAULT_FLAG_ALLOW_RETRY and
1388 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1389 * by fatal signals, so we need to check it before we
1390 * start trying again otherwise it can loop forever.
1393 if (fatal_signal_pending(current)) {
1395 pages_done = -EINTR;
1399 ret = mmap_read_lock_killable(mm);
1408 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1409 pages, NULL, locked);
1411 /* Continue to retry until we succeeded */
1429 if (lock_dropped && *locked) {
1431 * We must let the caller know we temporarily dropped the lock
1432 * and so the critical section protected by it was lost.
1434 mmap_read_unlock(mm);
1441 * populate_vma_page_range() - populate a range of pages in the vma.
1443 * @start: start address
1445 * @locked: whether the mmap_lock is still held
1447 * This takes care of mlocking the pages too if VM_LOCKED is set.
1449 * Return either number of pages pinned in the vma, or a negative error
1452 * vma->vm_mm->mmap_lock must be held.
1454 * If @locked is NULL, it may be held for read or write and will
1457 * If @locked is non-NULL, it must held for read only and may be
1458 * released. If it's released, *@locked will be set to 0.
1460 long populate_vma_page_range(struct vm_area_struct *vma,
1461 unsigned long start, unsigned long end, int *locked)
1463 struct mm_struct *mm = vma->vm_mm;
1464 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1468 VM_BUG_ON(!PAGE_ALIGNED(start));
1469 VM_BUG_ON(!PAGE_ALIGNED(end));
1470 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1471 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1472 mmap_assert_locked(mm);
1475 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1476 * faultin_page() to break COW, so it has no work to do here.
1478 if (vma->vm_flags & VM_LOCKONFAULT)
1481 gup_flags = FOLL_TOUCH;
1483 * We want to touch writable mappings with a write fault in order
1484 * to break COW, except for shared mappings because these don't COW
1485 * and we would not want to dirty them for nothing.
1487 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1488 gup_flags |= FOLL_WRITE;
1491 * We want mlock to succeed for regions that have any permissions
1492 * other than PROT_NONE.
1494 if (vma_is_accessible(vma))
1495 gup_flags |= FOLL_FORCE;
1498 * We made sure addr is within a VMA, so the following will
1499 * not result in a stack expansion that recurses back here.
1501 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1502 NULL, NULL, locked);
1508 * faultin_vma_page_range() - populate (prefault) page tables inside the
1509 * given VMA range readable/writable
1511 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1514 * @start: start address
1516 * @write: whether to prefault readable or writable
1517 * @locked: whether the mmap_lock is still held
1519 * Returns either number of processed pages in the vma, or a negative error
1520 * code on error (see __get_user_pages()).
1522 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1523 * covered by the VMA.
1525 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1527 * If @locked is non-NULL, it must held for read only and may be released. If
1528 * it's released, *@locked will be set to 0.
1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1531 unsigned long end, bool write, int *locked)
1533 struct mm_struct *mm = vma->vm_mm;
1534 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1538 VM_BUG_ON(!PAGE_ALIGNED(start));
1539 VM_BUG_ON(!PAGE_ALIGNED(end));
1540 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1541 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1542 mmap_assert_locked(mm);
1545 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1546 * the page dirty with FOLL_WRITE -- which doesn't make a
1547 * difference with !FOLL_FORCE, because the page is writable
1548 * in the page table.
1549 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1551 * !FOLL_FORCE: Require proper access permissions.
1553 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1555 gup_flags |= FOLL_WRITE;
1558 * We want to report -EINVAL instead of -EFAULT for any permission
1559 * problems or incompatible mappings.
1561 if (check_vma_flags(vma, gup_flags))
1564 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1565 NULL, NULL, locked);
1571 * __mm_populate - populate and/or mlock pages within a range of address space.
1573 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1574 * flags. VMAs must be already marked with the desired vm_flags, and
1575 * mmap_lock must not be held.
1577 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1579 struct mm_struct *mm = current->mm;
1580 unsigned long end, nstart, nend;
1581 struct vm_area_struct *vma = NULL;
1587 for (nstart = start; nstart < end; nstart = nend) {
1589 * We want to fault in pages for [nstart; end) address range.
1590 * Find first corresponding VMA.
1595 vma = find_vma_intersection(mm, nstart, end);
1596 } else if (nstart >= vma->vm_end)
1597 vma = find_vma_intersection(mm, vma->vm_end, end);
1602 * Set [nstart; nend) to intersection of desired address
1603 * range with the first VMA. Also, skip undesirable VMA types.
1605 nend = min(end, vma->vm_end);
1606 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1608 if (nstart < vma->vm_start)
1609 nstart = vma->vm_start;
1611 * Now fault in a range of pages. populate_vma_page_range()
1612 * double checks the vma flags, so that it won't mlock pages
1613 * if the vma was already munlocked.
1615 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1617 if (ignore_errors) {
1619 continue; /* continue at next VMA */
1623 nend = nstart + ret * PAGE_SIZE;
1627 mmap_read_unlock(mm);
1628 return ret; /* 0 or negative error code */
1630 #else /* CONFIG_MMU */
1631 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1632 unsigned long nr_pages, struct page **pages,
1633 struct vm_area_struct **vmas, int *locked,
1634 unsigned int foll_flags)
1636 struct vm_area_struct *vma;
1637 unsigned long vm_flags;
1640 /* calculate required read or write permissions.
1641 * If FOLL_FORCE is set, we only require the "MAY" flags.
1643 vm_flags = (foll_flags & FOLL_WRITE) ?
1644 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1645 vm_flags &= (foll_flags & FOLL_FORCE) ?
1646 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1648 for (i = 0; i < nr_pages; i++) {
1649 vma = find_vma(mm, start);
1651 goto finish_or_fault;
1653 /* protect what we can, including chardevs */
1654 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1655 !(vm_flags & vma->vm_flags))
1656 goto finish_or_fault;
1659 pages[i] = virt_to_page((void *)start);
1665 start = (start + PAGE_SIZE) & PAGE_MASK;
1671 return i ? : -EFAULT;
1673 #endif /* !CONFIG_MMU */
1676 * fault_in_writeable - fault in userspace address range for writing
1677 * @uaddr: start of address range
1678 * @size: size of address range
1680 * Returns the number of bytes not faulted in (like copy_to_user() and
1681 * copy_from_user()).
1683 size_t fault_in_writeable(char __user *uaddr, size_t size)
1685 char __user *start = uaddr, *end;
1687 if (unlikely(size == 0))
1689 if (!user_write_access_begin(uaddr, size))
1691 if (!PAGE_ALIGNED(uaddr)) {
1692 unsafe_put_user(0, uaddr, out);
1693 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1695 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1696 if (unlikely(end < start))
1698 while (uaddr != end) {
1699 unsafe_put_user(0, uaddr, out);
1704 user_write_access_end();
1705 if (size > uaddr - start)
1706 return size - (uaddr - start);
1709 EXPORT_SYMBOL(fault_in_writeable);
1712 * fault_in_subpage_writeable - fault in an address range for writing
1713 * @uaddr: start of address range
1714 * @size: size of address range
1716 * Fault in a user address range for writing while checking for permissions at
1717 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1718 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1720 * Returns the number of bytes not faulted in (like copy_to_user() and
1721 * copy_from_user()).
1723 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1728 * Attempt faulting in at page granularity first for page table
1729 * permission checking. The arch-specific probe_subpage_writeable()
1730 * functions may not check for this.
1732 faulted_in = size - fault_in_writeable(uaddr, size);
1734 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1736 return size - faulted_in;
1738 EXPORT_SYMBOL(fault_in_subpage_writeable);
1741 * fault_in_safe_writeable - fault in an address range for writing
1742 * @uaddr: start of address range
1743 * @size: length of address range
1745 * Faults in an address range for writing. This is primarily useful when we
1746 * already know that some or all of the pages in the address range aren't in
1749 * Unlike fault_in_writeable(), this function is non-destructive.
1751 * Note that we don't pin or otherwise hold the pages referenced that we fault
1752 * in. There's no guarantee that they'll stay in memory for any duration of
1755 * Returns the number of bytes not faulted in, like copy_to_user() and
1758 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1760 unsigned long start = (unsigned long)uaddr, end;
1761 struct mm_struct *mm = current->mm;
1762 bool unlocked = false;
1764 if (unlikely(size == 0))
1766 end = PAGE_ALIGN(start + size);
1772 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1774 start = (start + PAGE_SIZE) & PAGE_MASK;
1775 } while (start != end);
1776 mmap_read_unlock(mm);
1778 if (size > (unsigned long)uaddr - start)
1779 return size - ((unsigned long)uaddr - start);
1782 EXPORT_SYMBOL(fault_in_safe_writeable);
1785 * fault_in_readable - fault in userspace address range for reading
1786 * @uaddr: start of user address range
1787 * @size: size of user address range
1789 * Returns the number of bytes not faulted in (like copy_to_user() and
1790 * copy_from_user()).
1792 size_t fault_in_readable(const char __user *uaddr, size_t size)
1794 const char __user *start = uaddr, *end;
1797 if (unlikely(size == 0))
1799 if (!user_read_access_begin(uaddr, size))
1801 if (!PAGE_ALIGNED(uaddr)) {
1802 unsafe_get_user(c, uaddr, out);
1803 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1805 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1806 if (unlikely(end < start))
1808 while (uaddr != end) {
1809 unsafe_get_user(c, uaddr, out);
1814 user_read_access_end();
1816 if (size > uaddr - start)
1817 return size - (uaddr - start);
1820 EXPORT_SYMBOL(fault_in_readable);
1823 * get_dump_page() - pin user page in memory while writing it to core dump
1824 * @addr: user address
1826 * Returns struct page pointer of user page pinned for dump,
1827 * to be freed afterwards by put_page().
1829 * Returns NULL on any kind of failure - a hole must then be inserted into
1830 * the corefile, to preserve alignment with its headers; and also returns
1831 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1832 * allowing a hole to be left in the corefile to save disk space.
1834 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1836 #ifdef CONFIG_ELF_CORE
1837 struct page *get_dump_page(unsigned long addr)
1839 struct mm_struct *mm = current->mm;
1844 if (mmap_read_lock_killable(mm))
1846 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1847 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1849 mmap_read_unlock(mm);
1850 return (ret == 1) ? page : NULL;
1852 #endif /* CONFIG_ELF_CORE */
1854 #ifdef CONFIG_MIGRATION
1856 * Returns the number of collected pages. Return value is always >= 0.
1858 static unsigned long collect_longterm_unpinnable_pages(
1859 struct list_head *movable_page_list,
1860 unsigned long nr_pages,
1861 struct page **pages)
1863 unsigned long i, collected = 0;
1864 struct folio *prev_folio = NULL;
1865 bool drain_allow = true;
1867 for (i = 0; i < nr_pages; i++) {
1868 struct folio *folio = page_folio(pages[i]);
1870 if (folio == prev_folio)
1874 if (folio_is_longterm_pinnable(folio))
1879 if (folio_is_device_coherent(folio))
1882 if (folio_test_hugetlb(folio)) {
1883 isolate_hugetlb(&folio->page, movable_page_list);
1887 if (!folio_test_lru(folio) && drain_allow) {
1888 lru_add_drain_all();
1889 drain_allow = false;
1892 if (!folio_isolate_lru(folio))
1895 list_add_tail(&folio->lru, movable_page_list);
1896 node_stat_mod_folio(folio,
1897 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1898 folio_nr_pages(folio));
1905 * Unpins all pages and migrates device coherent pages and movable_page_list.
1906 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1907 * (or partial success).
1909 static int migrate_longterm_unpinnable_pages(
1910 struct list_head *movable_page_list,
1911 unsigned long nr_pages,
1912 struct page **pages)
1917 for (i = 0; i < nr_pages; i++) {
1918 struct folio *folio = page_folio(pages[i]);
1920 if (folio_is_device_coherent(folio)) {
1922 * Migration will fail if the page is pinned, so convert
1923 * the pin on the source page to a normal reference.
1927 gup_put_folio(folio, 1, FOLL_PIN);
1929 if (migrate_device_coherent_page(&folio->page)) {
1938 * We can't migrate pages with unexpected references, so drop
1939 * the reference obtained by __get_user_pages_locked().
1940 * Migrating pages have been added to movable_page_list after
1941 * calling folio_isolate_lru() which takes a reference so the
1942 * page won't be freed if it's migrating.
1944 unpin_user_page(pages[i]);
1948 if (!list_empty(movable_page_list)) {
1949 struct migration_target_control mtc = {
1950 .nid = NUMA_NO_NODE,
1951 .gfp_mask = GFP_USER | __GFP_NOWARN,
1954 if (migrate_pages(movable_page_list, alloc_migration_target,
1955 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1956 MR_LONGTERM_PIN, NULL)) {
1962 putback_movable_pages(movable_page_list);
1967 for (i = 0; i < nr_pages; i++)
1969 unpin_user_page(pages[i]);
1970 putback_movable_pages(movable_page_list);
1976 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
1977 * pages in the range are required to be pinned via FOLL_PIN, before calling
1980 * If any pages in the range are not allowed to be pinned, then this routine
1981 * will migrate those pages away, unpin all the pages in the range and return
1982 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
1983 * call this routine again.
1985 * If an error other than -EAGAIN occurs, this indicates a migration failure.
1986 * The caller should give up, and propagate the error back up the call stack.
1988 * If everything is OK and all pages in the range are allowed to be pinned, then
1989 * this routine leaves all pages pinned and returns zero for success.
1991 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1992 struct page **pages)
1994 unsigned long collected;
1995 LIST_HEAD(movable_page_list);
1997 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2002 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2006 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2007 struct page **pages)
2011 #endif /* CONFIG_MIGRATION */
2014 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2015 * allows us to process the FOLL_LONGTERM flag.
2017 static long __gup_longterm_locked(struct mm_struct *mm,
2018 unsigned long start,
2019 unsigned long nr_pages,
2020 struct page **pages,
2021 struct vm_area_struct **vmas,
2023 unsigned int gup_flags)
2025 bool must_unlock = false;
2027 long rc, nr_pinned_pages;
2029 if (locked && WARN_ON_ONCE(!*locked))
2032 if (!(gup_flags & FOLL_LONGTERM))
2033 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2037 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2038 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2039 * correct to unconditionally call check_and_migrate_movable_pages()
2040 * which assumes pages have been pinned via FOLL_PIN.
2042 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2044 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2046 flags = memalloc_pin_save();
2048 if (locked && !*locked) {
2053 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2054 pages, vmas, locked,
2056 if (nr_pinned_pages <= 0) {
2057 rc = nr_pinned_pages;
2060 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2061 } while (rc == -EAGAIN);
2062 memalloc_pin_restore(flags);
2064 if (locked && *locked && must_unlock) {
2065 mmap_read_unlock(mm);
2068 return rc ? rc : nr_pinned_pages;
2071 static bool is_valid_gup_flags(unsigned int gup_flags)
2074 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2075 * never directly by the caller, so enforce that with an assertion:
2077 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2080 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2081 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2084 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2092 * get_user_pages_remote() - pin user pages in memory
2093 * @mm: mm_struct of target mm
2094 * @start: starting user address
2095 * @nr_pages: number of pages from start to pin
2096 * @gup_flags: flags modifying lookup behaviour
2097 * @pages: array that receives pointers to the pages pinned.
2098 * Should be at least nr_pages long. Or NULL, if caller
2099 * only intends to ensure the pages are faulted in.
2100 * @vmas: array of pointers to vmas corresponding to each page.
2101 * Or NULL if the caller does not require them.
2102 * @locked: pointer to lock flag indicating whether lock is held and
2103 * subsequently whether VM_FAULT_RETRY functionality can be
2104 * utilised. Lock must initially be held.
2106 * Returns either number of pages pinned (which may be less than the
2107 * number requested), or an error. Details about the return value:
2109 * -- If nr_pages is 0, returns 0.
2110 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2111 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2112 * pages pinned. Again, this may be less than nr_pages.
2114 * The caller is responsible for releasing returned @pages, via put_page().
2116 * @vmas are valid only as long as mmap_lock is held.
2118 * Must be called with mmap_lock held for read or write.
2120 * get_user_pages_remote walks a process's page tables and takes a reference
2121 * to each struct page that each user address corresponds to at a given
2122 * instant. That is, it takes the page that would be accessed if a user
2123 * thread accesses the given user virtual address at that instant.
2125 * This does not guarantee that the page exists in the user mappings when
2126 * get_user_pages_remote returns, and there may even be a completely different
2127 * page there in some cases (eg. if mmapped pagecache has been invalidated
2128 * and subsequently re faulted). However it does guarantee that the page
2129 * won't be freed completely. And mostly callers simply care that the page
2130 * contains data that was valid *at some point in time*. Typically, an IO
2131 * or similar operation cannot guarantee anything stronger anyway because
2132 * locks can't be held over the syscall boundary.
2134 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2135 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2136 * be called after the page is finished with, and before put_page is called.
2138 * get_user_pages_remote is typically used for fewer-copy IO operations,
2139 * to get a handle on the memory by some means other than accesses
2140 * via the user virtual addresses. The pages may be submitted for
2141 * DMA to devices or accessed via their kernel linear mapping (via the
2142 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2144 * See also get_user_pages_fast, for performance critical applications.
2146 * get_user_pages_remote should be phased out in favor of
2147 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2148 * should use get_user_pages_remote because it cannot pass
2149 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2151 long get_user_pages_remote(struct mm_struct *mm,
2152 unsigned long start, unsigned long nr_pages,
2153 unsigned int gup_flags, struct page **pages,
2154 struct vm_area_struct **vmas, int *locked)
2156 if (!is_valid_gup_flags(gup_flags))
2159 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2160 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2162 EXPORT_SYMBOL(get_user_pages_remote);
2164 #else /* CONFIG_MMU */
2165 long get_user_pages_remote(struct mm_struct *mm,
2166 unsigned long start, unsigned long nr_pages,
2167 unsigned int gup_flags, struct page **pages,
2168 struct vm_area_struct **vmas, int *locked)
2172 #endif /* !CONFIG_MMU */
2175 * get_user_pages() - pin user pages in memory
2176 * @start: starting user address
2177 * @nr_pages: number of pages from start to pin
2178 * @gup_flags: flags modifying lookup behaviour
2179 * @pages: array that receives pointers to the pages pinned.
2180 * Should be at least nr_pages long. Or NULL, if caller
2181 * only intends to ensure the pages are faulted in.
2182 * @vmas: array of pointers to vmas corresponding to each page.
2183 * Or NULL if the caller does not require them.
2185 * This is the same as get_user_pages_remote(), just with a less-flexible
2186 * calling convention where we assume that the mm being operated on belongs to
2187 * the current task, and doesn't allow passing of a locked parameter. We also
2188 * obviously don't pass FOLL_REMOTE in here.
2190 long get_user_pages(unsigned long start, unsigned long nr_pages,
2191 unsigned int gup_flags, struct page **pages,
2192 struct vm_area_struct **vmas)
2194 if (!is_valid_gup_flags(gup_flags))
2197 return __gup_longterm_locked(current->mm, start, nr_pages,
2198 pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2200 EXPORT_SYMBOL(get_user_pages);
2203 * get_user_pages_unlocked() is suitable to replace the form:
2205 * mmap_read_lock(mm);
2206 * get_user_pages(mm, ..., pages, NULL);
2207 * mmap_read_unlock(mm);
2211 * get_user_pages_unlocked(mm, ..., pages);
2213 * It is functionally equivalent to get_user_pages_fast so
2214 * get_user_pages_fast should be used instead if specific gup_flags
2215 * (e.g. FOLL_FORCE) are not required.
2217 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2218 struct page **pages, unsigned int gup_flags)
2220 struct mm_struct *mm = current->mm;
2225 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2226 gup_flags | FOLL_TOUCH);
2228 mmap_read_unlock(mm);
2231 EXPORT_SYMBOL(get_user_pages_unlocked);
2236 * get_user_pages_fast attempts to pin user pages by walking the page
2237 * tables directly and avoids taking locks. Thus the walker needs to be
2238 * protected from page table pages being freed from under it, and should
2239 * block any THP splits.
2241 * One way to achieve this is to have the walker disable interrupts, and
2242 * rely on IPIs from the TLB flushing code blocking before the page table
2243 * pages are freed. This is unsuitable for architectures that do not need
2244 * to broadcast an IPI when invalidating TLBs.
2246 * Another way to achieve this is to batch up page table containing pages
2247 * belonging to more than one mm_user, then rcu_sched a callback to free those
2248 * pages. Disabling interrupts will allow the fast_gup walker to both block
2249 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2250 * (which is a relatively rare event). The code below adopts this strategy.
2252 * Before activating this code, please be aware that the following assumptions
2253 * are currently made:
2255 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2256 * free pages containing page tables or TLB flushing requires IPI broadcast.
2258 * *) ptes can be read atomically by the architecture.
2260 * *) access_ok is sufficient to validate userspace address ranges.
2262 * The last two assumptions can be relaxed by the addition of helper functions.
2264 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2266 #ifdef CONFIG_HAVE_FAST_GUP
2268 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2270 struct page **pages)
2272 while ((*nr) - nr_start) {
2273 struct page *page = pages[--(*nr)];
2275 ClearPageReferenced(page);
2276 if (flags & FOLL_PIN)
2277 unpin_user_page(page);
2283 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2285 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2288 * To pin the page, fast-gup needs to do below in order:
2289 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2291 * For the rest of pgtable operations where pgtable updates can be racy
2292 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2295 * Above will work for all pte-level operations, including THP split.
2297 * For THP collapse, it's a bit more complicated because fast-gup may be
2298 * walking a pgtable page that is being freed (pte is still valid but pmd
2299 * can be cleared already). To avoid race in such condition, we need to
2300 * also check pmd here to make sure pmd doesn't change (corresponds to
2301 * pmdp_collapse_flush() in the THP collapse code path).
2303 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2304 unsigned long end, unsigned int flags,
2305 struct page **pages, int *nr)
2307 struct dev_pagemap *pgmap = NULL;
2308 int nr_start = *nr, ret = 0;
2311 ptem = ptep = pte_offset_map(&pmd, addr);
2313 pte_t pte = ptep_get_lockless(ptep);
2315 struct folio *folio;
2317 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2320 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2323 if (pte_devmap(pte)) {
2324 if (unlikely(flags & FOLL_LONGTERM))
2327 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2328 if (unlikely(!pgmap)) {
2329 undo_dev_pagemap(nr, nr_start, flags, pages);
2332 } else if (pte_special(pte))
2335 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2336 page = pte_page(pte);
2338 folio = try_grab_folio(page, 1, flags);
2342 if (unlikely(page_is_secretmem(page))) {
2343 gup_put_folio(folio, 1, flags);
2347 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2348 unlikely(pte_val(pte) != pte_val(*ptep))) {
2349 gup_put_folio(folio, 1, flags);
2353 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2354 gup_put_folio(folio, 1, flags);
2359 * We need to make the page accessible if and only if we are
2360 * going to access its content (the FOLL_PIN case). Please
2361 * see Documentation/core-api/pin_user_pages.rst for
2364 if (flags & FOLL_PIN) {
2365 ret = arch_make_page_accessible(page);
2367 gup_put_folio(folio, 1, flags);
2371 folio_set_referenced(folio);
2374 } while (ptep++, addr += PAGE_SIZE, addr != end);
2380 put_dev_pagemap(pgmap);
2387 * If we can't determine whether or not a pte is special, then fail immediately
2388 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2391 * For a futex to be placed on a THP tail page, get_futex_key requires a
2392 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2393 * useful to have gup_huge_pmd even if we can't operate on ptes.
2395 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2396 unsigned long end, unsigned int flags,
2397 struct page **pages, int *nr)
2401 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2403 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2404 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2405 unsigned long end, unsigned int flags,
2406 struct page **pages, int *nr)
2409 struct dev_pagemap *pgmap = NULL;
2412 struct page *page = pfn_to_page(pfn);
2414 pgmap = get_dev_pagemap(pfn, pgmap);
2415 if (unlikely(!pgmap)) {
2416 undo_dev_pagemap(nr, nr_start, flags, pages);
2420 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2421 undo_dev_pagemap(nr, nr_start, flags, pages);
2425 SetPageReferenced(page);
2427 if (unlikely(try_grab_page(page, flags))) {
2428 undo_dev_pagemap(nr, nr_start, flags, pages);
2433 } while (addr += PAGE_SIZE, addr != end);
2435 put_dev_pagemap(pgmap);
2439 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2440 unsigned long end, unsigned int flags,
2441 struct page **pages, int *nr)
2443 unsigned long fault_pfn;
2446 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2447 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2450 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2451 undo_dev_pagemap(nr, nr_start, flags, pages);
2457 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2458 unsigned long end, unsigned int flags,
2459 struct page **pages, int *nr)
2461 unsigned long fault_pfn;
2464 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2465 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2468 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2469 undo_dev_pagemap(nr, nr_start, flags, pages);
2475 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2476 unsigned long end, unsigned int flags,
2477 struct page **pages, int *nr)
2483 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2484 unsigned long end, unsigned int flags,
2485 struct page **pages, int *nr)
2492 static int record_subpages(struct page *page, unsigned long addr,
2493 unsigned long end, struct page **pages)
2497 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2498 pages[nr] = nth_page(page, nr);
2503 #ifdef CONFIG_ARCH_HAS_HUGEPD
2504 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2507 unsigned long __boundary = (addr + sz) & ~(sz-1);
2508 return (__boundary - 1 < end - 1) ? __boundary : end;
2511 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2512 unsigned long end, unsigned int flags,
2513 struct page **pages, int *nr)
2515 unsigned long pte_end;
2517 struct folio *folio;
2521 pte_end = (addr + sz) & ~(sz-1);
2525 pte = huge_ptep_get(ptep);
2527 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2530 /* hugepages are never "special" */
2531 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2533 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2534 refs = record_subpages(page, addr, end, pages + *nr);
2536 folio = try_grab_folio(page, refs, flags);
2540 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2541 gup_put_folio(folio, refs, flags);
2545 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2546 gup_put_folio(folio, refs, flags);
2551 folio_set_referenced(folio);
2555 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2556 unsigned int pdshift, unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
2560 unsigned long sz = 1UL << hugepd_shift(hugepd);
2563 ptep = hugepte_offset(hugepd, addr, pdshift);
2565 next = hugepte_addr_end(addr, end, sz);
2566 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2568 } while (ptep++, addr = next, addr != end);
2573 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2574 unsigned int pdshift, unsigned long end, unsigned int flags,
2575 struct page **pages, int *nr)
2579 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2581 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2582 unsigned long end, unsigned int flags,
2583 struct page **pages, int *nr)
2586 struct folio *folio;
2589 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2592 if (pmd_devmap(orig)) {
2593 if (unlikely(flags & FOLL_LONGTERM))
2595 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2599 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2600 refs = record_subpages(page, addr, end, pages + *nr);
2602 folio = try_grab_folio(page, refs, flags);
2606 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2607 gup_put_folio(folio, refs, flags);
2611 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2612 gup_put_folio(folio, refs, flags);
2617 folio_set_referenced(folio);
2621 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2622 unsigned long end, unsigned int flags,
2623 struct page **pages, int *nr)
2626 struct folio *folio;
2629 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2632 if (pud_devmap(orig)) {
2633 if (unlikely(flags & FOLL_LONGTERM))
2635 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2639 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2640 refs = record_subpages(page, addr, end, pages + *nr);
2642 folio = try_grab_folio(page, refs, flags);
2646 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2647 gup_put_folio(folio, refs, flags);
2651 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2652 gup_put_folio(folio, refs, flags);
2657 folio_set_referenced(folio);
2661 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2662 unsigned long end, unsigned int flags,
2663 struct page **pages, int *nr)
2667 struct folio *folio;
2669 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2672 BUILD_BUG_ON(pgd_devmap(orig));
2674 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2675 refs = record_subpages(page, addr, end, pages + *nr);
2677 folio = try_grab_folio(page, refs, flags);
2681 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2682 gup_put_folio(folio, refs, flags);
2687 folio_set_referenced(folio);
2691 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2692 unsigned int flags, struct page **pages, int *nr)
2697 pmdp = pmd_offset_lockless(pudp, pud, addr);
2699 pmd_t pmd = READ_ONCE(*pmdp);
2701 next = pmd_addr_end(addr, end);
2702 if (!pmd_present(pmd))
2705 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2707 if (pmd_protnone(pmd) &&
2708 !gup_can_follow_protnone(flags))
2711 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2715 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2717 * architecture have different format for hugetlbfs
2718 * pmd format and THP pmd format
2720 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2721 PMD_SHIFT, next, flags, pages, nr))
2723 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2725 } while (pmdp++, addr = next, addr != end);
2730 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2731 unsigned int flags, struct page **pages, int *nr)
2736 pudp = pud_offset_lockless(p4dp, p4d, addr);
2738 pud_t pud = READ_ONCE(*pudp);
2740 next = pud_addr_end(addr, end);
2741 if (unlikely(!pud_present(pud)))
2743 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2744 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2747 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2748 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2749 PUD_SHIFT, next, flags, pages, nr))
2751 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2753 } while (pudp++, addr = next, addr != end);
2758 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2759 unsigned int flags, struct page **pages, int *nr)
2764 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2766 p4d_t p4d = READ_ONCE(*p4dp);
2768 next = p4d_addr_end(addr, end);
2771 BUILD_BUG_ON(p4d_huge(p4d));
2772 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2773 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2774 P4D_SHIFT, next, flags, pages, nr))
2776 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2778 } while (p4dp++, addr = next, addr != end);
2783 static void gup_pgd_range(unsigned long addr, unsigned long end,
2784 unsigned int flags, struct page **pages, int *nr)
2789 pgdp = pgd_offset(current->mm, addr);
2791 pgd_t pgd = READ_ONCE(*pgdp);
2793 next = pgd_addr_end(addr, end);
2796 if (unlikely(pgd_huge(pgd))) {
2797 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2800 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2801 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2802 PGDIR_SHIFT, next, flags, pages, nr))
2804 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2806 } while (pgdp++, addr = next, addr != end);
2809 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2810 unsigned int flags, struct page **pages, int *nr)
2813 #endif /* CONFIG_HAVE_FAST_GUP */
2815 #ifndef gup_fast_permitted
2817 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2818 * we need to fall back to the slow version:
2820 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2826 static unsigned long lockless_pages_from_mm(unsigned long start,
2828 unsigned int gup_flags,
2829 struct page **pages)
2831 unsigned long flags;
2835 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2836 !gup_fast_permitted(start, end))
2839 if (gup_flags & FOLL_PIN) {
2840 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2846 * Disable interrupts. The nested form is used, in order to allow full,
2847 * general purpose use of this routine.
2849 * With interrupts disabled, we block page table pages from being freed
2850 * from under us. See struct mmu_table_batch comments in
2851 * include/asm-generic/tlb.h for more details.
2853 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2854 * that come from THPs splitting.
2856 local_irq_save(flags);
2857 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2858 local_irq_restore(flags);
2861 * When pinning pages for DMA there could be a concurrent write protect
2862 * from fork() via copy_page_range(), in this case always fail fast GUP.
2864 if (gup_flags & FOLL_PIN) {
2865 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2866 unpin_user_pages_lockless(pages, nr_pinned);
2869 sanity_check_pinned_pages(pages, nr_pinned);
2875 static int internal_get_user_pages_fast(unsigned long start,
2876 unsigned long nr_pages,
2877 unsigned int gup_flags,
2878 struct page **pages)
2880 unsigned long len, end;
2881 unsigned long nr_pinned;
2884 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2885 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2886 FOLL_FAST_ONLY | FOLL_NOFAULT |
2890 if (gup_flags & FOLL_PIN)
2891 mm_set_has_pinned_flag(¤t->mm->flags);
2893 if (!(gup_flags & FOLL_FAST_ONLY))
2894 might_lock_read(¤t->mm->mmap_lock);
2896 start = untagged_addr(start) & PAGE_MASK;
2897 len = nr_pages << PAGE_SHIFT;
2898 if (check_add_overflow(start, len, &end))
2900 if (unlikely(!access_ok((void __user *)start, len)))
2903 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2904 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2907 /* Slow path: try to get the remaining pages with get_user_pages */
2908 start += nr_pinned << PAGE_SHIFT;
2910 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2914 * The caller has to unpin the pages we already pinned so
2915 * returning -errno is not an option
2921 return ret + nr_pinned;
2925 * get_user_pages_fast_only() - pin user pages in memory
2926 * @start: starting user address
2927 * @nr_pages: number of pages from start to pin
2928 * @gup_flags: flags modifying pin behaviour
2929 * @pages: array that receives pointers to the pages pinned.
2930 * Should be at least nr_pages long.
2932 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2934 * Note a difference with get_user_pages_fast: this always returns the
2935 * number of pages pinned, 0 if no pages were pinned.
2937 * If the architecture does not support this function, simply return with no
2940 * Careful, careful! COW breaking can go either way, so a non-write
2941 * access can get ambiguous page results. If you call this function without
2942 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2944 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2945 unsigned int gup_flags, struct page **pages)
2949 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2950 * because gup fast is always a "pin with a +1 page refcount" request.
2952 * FOLL_FAST_ONLY is required in order to match the API description of
2953 * this routine: no fall back to regular ("slow") GUP.
2955 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2957 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2961 * As specified in the API description above, this routine is not
2962 * allowed to return negative values. However, the common core
2963 * routine internal_get_user_pages_fast() *can* return -errno.
2964 * Therefore, correct for that here:
2971 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2974 * get_user_pages_fast() - pin user pages in memory
2975 * @start: starting user address
2976 * @nr_pages: number of pages from start to pin
2977 * @gup_flags: flags modifying pin behaviour
2978 * @pages: array that receives pointers to the pages pinned.
2979 * Should be at least nr_pages long.
2981 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2982 * If not successful, it will fall back to taking the lock and
2983 * calling get_user_pages().
2985 * Returns number of pages pinned. This may be fewer than the number requested.
2986 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2989 int get_user_pages_fast(unsigned long start, int nr_pages,
2990 unsigned int gup_flags, struct page **pages)
2992 if (!is_valid_gup_flags(gup_flags))
2996 * The caller may or may not have explicitly set FOLL_GET; either way is
2997 * OK. However, internally (within mm/gup.c), gup fast variants must set
2998 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3001 gup_flags |= FOLL_GET;
3002 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3004 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3007 * pin_user_pages_fast() - pin user pages in memory without taking locks
3009 * @start: starting user address
3010 * @nr_pages: number of pages from start to pin
3011 * @gup_flags: flags modifying pin behaviour
3012 * @pages: array that receives pointers to the pages pinned.
3013 * Should be at least nr_pages long.
3015 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3016 * get_user_pages_fast() for documentation on the function arguments, because
3017 * the arguments here are identical.
3019 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3020 * see Documentation/core-api/pin_user_pages.rst for further details.
3022 int pin_user_pages_fast(unsigned long start, int nr_pages,
3023 unsigned int gup_flags, struct page **pages)
3025 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3026 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3029 if (WARN_ON_ONCE(!pages))
3032 gup_flags |= FOLL_PIN;
3033 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3035 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3038 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3039 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3041 * The API rules are the same, too: no negative values may be returned.
3043 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3044 unsigned int gup_flags, struct page **pages)
3049 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3050 * rules require returning 0, rather than -errno:
3052 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3055 if (WARN_ON_ONCE(!pages))
3058 * FOLL_FAST_ONLY is required in order to match the API description of
3059 * this routine: no fall back to regular ("slow") GUP.
3061 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3062 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3065 * This routine is not allowed to return negative values. However,
3066 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3067 * correct for that here:
3074 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3077 * pin_user_pages_remote() - pin pages of a remote process
3079 * @mm: mm_struct of target mm
3080 * @start: starting user address
3081 * @nr_pages: number of pages from start to pin
3082 * @gup_flags: flags modifying lookup behaviour
3083 * @pages: array that receives pointers to the pages pinned.
3084 * Should be at least nr_pages long.
3085 * @vmas: array of pointers to vmas corresponding to each page.
3086 * Or NULL if the caller does not require them.
3087 * @locked: pointer to lock flag indicating whether lock is held and
3088 * subsequently whether VM_FAULT_RETRY functionality can be
3089 * utilised. Lock must initially be held.
3091 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3092 * get_user_pages_remote() for documentation on the function arguments, because
3093 * the arguments here are identical.
3095 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3096 * see Documentation/core-api/pin_user_pages.rst for details.
3098 long pin_user_pages_remote(struct mm_struct *mm,
3099 unsigned long start, unsigned long nr_pages,
3100 unsigned int gup_flags, struct page **pages,
3101 struct vm_area_struct **vmas, int *locked)
3103 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3104 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3107 if (WARN_ON_ONCE(!pages))
3110 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3111 gup_flags | FOLL_PIN | FOLL_TOUCH |
3114 EXPORT_SYMBOL(pin_user_pages_remote);
3117 * pin_user_pages() - pin user pages in memory for use by other devices
3119 * @start: starting user address
3120 * @nr_pages: number of pages from start to pin
3121 * @gup_flags: flags modifying lookup behaviour
3122 * @pages: array that receives pointers to the pages pinned.
3123 * Should be at least nr_pages long.
3124 * @vmas: array of pointers to vmas corresponding to each page.
3125 * Or NULL if the caller does not require them.
3127 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3130 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3131 * see Documentation/core-api/pin_user_pages.rst for details.
3133 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3134 unsigned int gup_flags, struct page **pages,
3135 struct vm_area_struct **vmas)
3137 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3138 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3141 if (WARN_ON_ONCE(!pages))
3144 gup_flags |= FOLL_PIN;
3145 return __gup_longterm_locked(current->mm, start, nr_pages,
3146 pages, vmas, NULL, gup_flags);
3148 EXPORT_SYMBOL(pin_user_pages);
3151 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3152 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3153 * FOLL_PIN and rejects FOLL_GET.
3155 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3156 struct page **pages, unsigned int gup_flags)
3158 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3159 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3162 if (WARN_ON_ONCE(!pages))
3165 gup_flags |= FOLL_PIN;
3166 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3168 EXPORT_SYMBOL(pin_user_pages_unlocked);