1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
377 ext4_process_freed_data(sb, txn->t_tid);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
388 spin_unlock(&sbi->s_md_lock);
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
406 static void ext4_handle_error(struct super_block *sb)
408 if (test_opt(sb, WARN_ON_ERROR))
414 if (!test_opt(sb, ERRORS_CONT)) {
415 journal_t *journal = EXT4_SB(sb)->s_journal;
417 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
419 jbd2_journal_abort(journal, -EIO);
421 if (test_opt(sb, ERRORS_RO)) {
422 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
424 * Make sure updated value of ->s_mount_flags will be visible
425 * before ->s_flags update
428 sb->s_flags |= SB_RDONLY;
430 if (test_opt(sb, ERRORS_PANIC)) {
431 if (EXT4_SB(sb)->s_journal &&
432 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
434 panic("EXT4-fs (device %s): panic forced after error\n",
439 #define ext4_error_ratelimit(sb) \
440 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
443 void __ext4_error(struct super_block *sb, const char *function,
444 unsigned int line, const char *fmt, ...)
446 struct va_format vaf;
449 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
452 trace_ext4_error(sb, function, line);
453 if (ext4_error_ratelimit(sb)) {
458 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
459 sb->s_id, function, line, current->comm, &vaf);
462 save_error_info(sb, function, line);
463 ext4_handle_error(sb);
466 void __ext4_error_inode(struct inode *inode, const char *function,
467 unsigned int line, ext4_fsblk_t block,
468 const char *fmt, ...)
471 struct va_format vaf;
472 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
474 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
477 trace_ext4_error(inode->i_sb, function, line);
478 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 es->s_last_error_block = cpu_to_le64(block);
480 if (ext4_error_ratelimit(inode->i_sb)) {
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: block %llu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 block, current->comm, &vaf);
490 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
491 "inode #%lu: comm %s: %pV\n",
492 inode->i_sb->s_id, function, line, inode->i_ino,
493 current->comm, &vaf);
496 save_error_info(inode->i_sb, function, line);
497 ext4_handle_error(inode->i_sb);
500 void __ext4_error_file(struct file *file, const char *function,
501 unsigned int line, ext4_fsblk_t block,
502 const char *fmt, ...)
505 struct va_format vaf;
506 struct ext4_super_block *es;
507 struct inode *inode = file_inode(file);
508 char pathname[80], *path;
510 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
513 trace_ext4_error(inode->i_sb, function, line);
514 es = EXT4_SB(inode->i_sb)->s_es;
515 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
516 if (ext4_error_ratelimit(inode->i_sb)) {
517 path = file_path(file, pathname, sizeof(pathname));
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "block %llu: comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 block, current->comm, path, &vaf);
531 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
532 "comm %s: path %s: %pV\n",
533 inode->i_sb->s_id, function, line, inode->i_ino,
534 current->comm, path, &vaf);
537 save_error_info(inode->i_sb, function, line);
538 ext4_handle_error(inode->i_sb);
541 const char *ext4_decode_error(struct super_block *sb, int errno,
548 errstr = "Corrupt filesystem";
551 errstr = "Filesystem failed CRC";
554 errstr = "IO failure";
557 errstr = "Out of memory";
560 if (!sb || (EXT4_SB(sb)->s_journal &&
561 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
562 errstr = "Journal has aborted";
564 errstr = "Readonly filesystem";
567 /* If the caller passed in an extra buffer for unknown
568 * errors, textualise them now. Else we just return
571 /* Check for truncated error codes... */
572 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
581 /* __ext4_std_error decodes expected errors from journaling functions
582 * automatically and invokes the appropriate error response. */
584 void __ext4_std_error(struct super_block *sb, const char *function,
585 unsigned int line, int errno)
590 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
593 /* Special case: if the error is EROFS, and we're not already
594 * inside a transaction, then there's really no point in logging
596 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
599 if (ext4_error_ratelimit(sb)) {
600 errstr = ext4_decode_error(sb, errno, nbuf);
601 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
602 sb->s_id, function, line, errstr);
605 save_error_info(sb, function, line);
606 ext4_handle_error(sb);
610 * ext4_abort is a much stronger failure handler than ext4_error. The
611 * abort function may be used to deal with unrecoverable failures such
612 * as journal IO errors or ENOMEM at a critical moment in log management.
614 * We unconditionally force the filesystem into an ABORT|READONLY state,
615 * unless the error response on the fs has been set to panic in which
616 * case we take the easy way out and panic immediately.
619 void __ext4_abort(struct super_block *sb, const char *function,
620 unsigned int line, const char *fmt, ...)
622 struct va_format vaf;
625 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
628 save_error_info(sb, function, line);
632 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
633 sb->s_id, function, line, &vaf);
636 if (sb_rdonly(sb) == 0) {
637 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
638 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
640 * Make sure updated value of ->s_mount_flags will be visible
641 * before ->s_flags update
644 sb->s_flags |= SB_RDONLY;
645 if (EXT4_SB(sb)->s_journal)
646 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
647 save_error_info(sb, function, line);
649 if (test_opt(sb, ERRORS_PANIC)) {
650 if (EXT4_SB(sb)->s_journal &&
651 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
653 panic("EXT4-fs panic from previous error\n");
657 void __ext4_msg(struct super_block *sb,
658 const char *prefix, const char *fmt, ...)
660 struct va_format vaf;
663 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
669 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
673 #define ext4_warning_ratelimit(sb) \
674 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
677 void __ext4_warning(struct super_block *sb, const char *function,
678 unsigned int line, const char *fmt, ...)
680 struct va_format vaf;
683 if (!ext4_warning_ratelimit(sb))
689 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
690 sb->s_id, function, line, &vaf);
694 void __ext4_warning_inode(const struct inode *inode, const char *function,
695 unsigned int line, const char *fmt, ...)
697 struct va_format vaf;
700 if (!ext4_warning_ratelimit(inode->i_sb))
706 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
707 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
708 function, line, inode->i_ino, current->comm, &vaf);
712 void __ext4_grp_locked_error(const char *function, unsigned int line,
713 struct super_block *sb, ext4_group_t grp,
714 unsigned long ino, ext4_fsblk_t block,
715 const char *fmt, ...)
719 struct va_format vaf;
721 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
723 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
726 trace_ext4_error(sb, function, line);
727 es->s_last_error_ino = cpu_to_le32(ino);
728 es->s_last_error_block = cpu_to_le64(block);
729 __save_error_info(sb, function, line);
731 if (ext4_error_ratelimit(sb)) {
735 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
736 sb->s_id, function, line, grp);
738 printk(KERN_CONT "inode %lu: ", ino);
740 printk(KERN_CONT "block %llu:",
741 (unsigned long long) block);
742 printk(KERN_CONT "%pV\n", &vaf);
746 if (test_opt(sb, WARN_ON_ERROR))
749 if (test_opt(sb, ERRORS_CONT)) {
750 ext4_commit_super(sb, 0);
754 ext4_unlock_group(sb, grp);
755 ext4_commit_super(sb, 1);
756 ext4_handle_error(sb);
758 * We only get here in the ERRORS_RO case; relocking the group
759 * may be dangerous, but nothing bad will happen since the
760 * filesystem will have already been marked read/only and the
761 * journal has been aborted. We return 1 as a hint to callers
762 * who might what to use the return value from
763 * ext4_grp_locked_error() to distinguish between the
764 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
765 * aggressively from the ext4 function in question, with a
766 * more appropriate error code.
768 ext4_lock_group(sb, grp);
772 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
776 struct ext4_sb_info *sbi = EXT4_SB(sb);
777 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
778 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
780 if ((flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) &&
781 !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) {
782 percpu_counter_sub(&sbi->s_freeclusters_counter,
784 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
788 if ((flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) &&
789 !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
793 count = ext4_free_inodes_count(sb, gdp);
794 percpu_counter_sub(&sbi->s_freeinodes_counter,
797 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
802 void ext4_update_dynamic_rev(struct super_block *sb)
804 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
806 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
810 "updating to rev %d because of new feature flag, "
811 "running e2fsck is recommended",
814 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
815 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
816 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
817 /* leave es->s_feature_*compat flags alone */
818 /* es->s_uuid will be set by e2fsck if empty */
821 * The rest of the superblock fields should be zero, and if not it
822 * means they are likely already in use, so leave them alone. We
823 * can leave it up to e2fsck to clean up any inconsistencies there.
828 * Open the external journal device
830 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
832 struct block_device *bdev;
833 char b[BDEVNAME_SIZE];
835 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
841 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
842 __bdevname(dev, b), PTR_ERR(bdev));
847 * Release the journal device
849 static void ext4_blkdev_put(struct block_device *bdev)
851 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
854 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
856 struct block_device *bdev;
857 bdev = sbi->journal_bdev;
859 ext4_blkdev_put(bdev);
860 sbi->journal_bdev = NULL;
864 static inline struct inode *orphan_list_entry(struct list_head *l)
866 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
869 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
873 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
874 le32_to_cpu(sbi->s_es->s_last_orphan));
876 printk(KERN_ERR "sb_info orphan list:\n");
877 list_for_each(l, &sbi->s_orphan) {
878 struct inode *inode = orphan_list_entry(l);
880 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
881 inode->i_sb->s_id, inode->i_ino, inode,
882 inode->i_mode, inode->i_nlink,
888 static int ext4_quota_off(struct super_block *sb, int type);
890 static inline void ext4_quota_off_umount(struct super_block *sb)
894 /* Use our quota_off function to clear inode flags etc. */
895 for (type = 0; type < EXT4_MAXQUOTAS; type++)
896 ext4_quota_off(sb, type);
899 static inline void ext4_quota_off_umount(struct super_block *sb)
904 static void ext4_put_super(struct super_block *sb)
906 struct ext4_sb_info *sbi = EXT4_SB(sb);
907 struct ext4_super_block *es = sbi->s_es;
911 ext4_unregister_li_request(sb);
912 ext4_quota_off_umount(sb);
914 destroy_workqueue(sbi->rsv_conversion_wq);
916 if (sbi->s_journal) {
917 aborted = is_journal_aborted(sbi->s_journal);
918 err = jbd2_journal_destroy(sbi->s_journal);
919 sbi->s_journal = NULL;
920 if ((err < 0) && !aborted)
921 ext4_abort(sb, "Couldn't clean up the journal");
924 ext4_unregister_sysfs(sb);
925 ext4_es_unregister_shrinker(sbi);
926 del_timer_sync(&sbi->s_err_report);
927 ext4_release_system_zone(sb);
929 ext4_ext_release(sb);
931 if (!sb_rdonly(sb) && !aborted) {
932 ext4_clear_feature_journal_needs_recovery(sb);
933 es->s_state = cpu_to_le16(sbi->s_mount_state);
936 ext4_commit_super(sb, 1);
938 for (i = 0; i < sbi->s_gdb_count; i++)
939 brelse(sbi->s_group_desc[i]);
940 kvfree(sbi->s_group_desc);
941 kvfree(sbi->s_flex_groups);
942 percpu_counter_destroy(&sbi->s_freeclusters_counter);
943 percpu_counter_destroy(&sbi->s_freeinodes_counter);
944 percpu_counter_destroy(&sbi->s_dirs_counter);
945 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
946 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
948 for (i = 0; i < EXT4_MAXQUOTAS; i++)
949 kfree(sbi->s_qf_names[i]);
952 /* Debugging code just in case the in-memory inode orphan list
953 * isn't empty. The on-disk one can be non-empty if we've
954 * detected an error and taken the fs readonly, but the
955 * in-memory list had better be clean by this point. */
956 if (!list_empty(&sbi->s_orphan))
957 dump_orphan_list(sb, sbi);
958 J_ASSERT(list_empty(&sbi->s_orphan));
960 sync_blockdev(sb->s_bdev);
961 invalidate_bdev(sb->s_bdev);
962 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
964 * Invalidate the journal device's buffers. We don't want them
965 * floating about in memory - the physical journal device may
966 * hotswapped, and it breaks the `ro-after' testing code.
968 sync_blockdev(sbi->journal_bdev);
969 invalidate_bdev(sbi->journal_bdev);
970 ext4_blkdev_remove(sbi);
972 if (sbi->s_ea_inode_cache) {
973 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
974 sbi->s_ea_inode_cache = NULL;
976 if (sbi->s_ea_block_cache) {
977 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
978 sbi->s_ea_block_cache = NULL;
981 kthread_stop(sbi->s_mmp_tsk);
983 sb->s_fs_info = NULL;
985 * Now that we are completely done shutting down the
986 * superblock, we need to actually destroy the kobject.
988 kobject_put(&sbi->s_kobj);
989 wait_for_completion(&sbi->s_kobj_unregister);
990 if (sbi->s_chksum_driver)
991 crypto_free_shash(sbi->s_chksum_driver);
992 kfree(sbi->s_blockgroup_lock);
993 fs_put_dax(sbi->s_daxdev);
997 static struct kmem_cache *ext4_inode_cachep;
1000 * Called inside transaction, so use GFP_NOFS
1002 static struct inode *ext4_alloc_inode(struct super_block *sb)
1004 struct ext4_inode_info *ei;
1006 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1010 inode_set_iversion(&ei->vfs_inode, 1);
1011 spin_lock_init(&ei->i_raw_lock);
1012 INIT_LIST_HEAD(&ei->i_prealloc_list);
1013 spin_lock_init(&ei->i_prealloc_lock);
1014 ext4_es_init_tree(&ei->i_es_tree);
1015 rwlock_init(&ei->i_es_lock);
1016 INIT_LIST_HEAD(&ei->i_es_list);
1017 ei->i_es_all_nr = 0;
1018 ei->i_es_shk_nr = 0;
1019 ei->i_es_shrink_lblk = 0;
1020 ei->i_reserved_data_blocks = 0;
1021 ei->i_da_metadata_calc_len = 0;
1022 ei->i_da_metadata_calc_last_lblock = 0;
1023 spin_lock_init(&(ei->i_block_reservation_lock));
1025 ei->i_reserved_quota = 0;
1026 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1029 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1030 spin_lock_init(&ei->i_completed_io_lock);
1032 ei->i_datasync_tid = 0;
1033 atomic_set(&ei->i_unwritten, 0);
1034 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1035 return &ei->vfs_inode;
1038 static int ext4_drop_inode(struct inode *inode)
1040 int drop = generic_drop_inode(inode);
1042 trace_ext4_drop_inode(inode, drop);
1046 static void ext4_i_callback(struct rcu_head *head)
1048 struct inode *inode = container_of(head, struct inode, i_rcu);
1049 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1052 static void ext4_destroy_inode(struct inode *inode)
1054 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1055 ext4_msg(inode->i_sb, KERN_ERR,
1056 "Inode %lu (%p): orphan list check failed!",
1057 inode->i_ino, EXT4_I(inode));
1058 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1059 EXT4_I(inode), sizeof(struct ext4_inode_info),
1063 call_rcu(&inode->i_rcu, ext4_i_callback);
1066 static void init_once(void *foo)
1068 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1070 INIT_LIST_HEAD(&ei->i_orphan);
1071 init_rwsem(&ei->xattr_sem);
1072 init_rwsem(&ei->i_data_sem);
1073 init_rwsem(&ei->i_mmap_sem);
1074 inode_init_once(&ei->vfs_inode);
1077 static int __init init_inodecache(void)
1079 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1080 sizeof(struct ext4_inode_info), 0,
1081 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1083 offsetof(struct ext4_inode_info, i_data),
1084 sizeof_field(struct ext4_inode_info, i_data),
1086 if (ext4_inode_cachep == NULL)
1091 static void destroy_inodecache(void)
1094 * Make sure all delayed rcu free inodes are flushed before we
1098 kmem_cache_destroy(ext4_inode_cachep);
1101 void ext4_clear_inode(struct inode *inode)
1103 invalidate_inode_buffers(inode);
1106 ext4_discard_preallocations(inode);
1107 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1108 if (EXT4_I(inode)->jinode) {
1109 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1110 EXT4_I(inode)->jinode);
1111 jbd2_free_inode(EXT4_I(inode)->jinode);
1112 EXT4_I(inode)->jinode = NULL;
1114 fscrypt_put_encryption_info(inode);
1117 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1118 u64 ino, u32 generation)
1120 struct inode *inode;
1122 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1123 return ERR_PTR(-ESTALE);
1124 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1125 return ERR_PTR(-ESTALE);
1127 /* iget isn't really right if the inode is currently unallocated!!
1129 * ext4_read_inode will return a bad_inode if the inode had been
1130 * deleted, so we should be safe.
1132 * Currently we don't know the generation for parent directory, so
1133 * a generation of 0 means "accept any"
1135 inode = ext4_iget_normal(sb, ino);
1137 return ERR_CAST(inode);
1138 if (generation && inode->i_generation != generation) {
1140 return ERR_PTR(-ESTALE);
1146 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1147 int fh_len, int fh_type)
1149 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1150 ext4_nfs_get_inode);
1153 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1154 int fh_len, int fh_type)
1156 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1157 ext4_nfs_get_inode);
1161 * Try to release metadata pages (indirect blocks, directories) which are
1162 * mapped via the block device. Since these pages could have journal heads
1163 * which would prevent try_to_free_buffers() from freeing them, we must use
1164 * jbd2 layer's try_to_free_buffers() function to release them.
1166 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1169 journal_t *journal = EXT4_SB(sb)->s_journal;
1171 WARN_ON(PageChecked(page));
1172 if (!page_has_buffers(page))
1175 return jbd2_journal_try_to_free_buffers(journal, page,
1176 wait & ~__GFP_DIRECT_RECLAIM);
1177 return try_to_free_buffers(page);
1180 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1181 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1183 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1187 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1190 handle_t *handle = fs_data;
1191 int res, res2, credits, retries = 0;
1194 * Encrypting the root directory is not allowed because e2fsck expects
1195 * lost+found to exist and be unencrypted, and encrypting the root
1196 * directory would imply encrypting the lost+found directory as well as
1197 * the filename "lost+found" itself.
1199 if (inode->i_ino == EXT4_ROOT_INO)
1202 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1205 res = ext4_convert_inline_data(inode);
1210 * If a journal handle was specified, then the encryption context is
1211 * being set on a new inode via inheritance and is part of a larger
1212 * transaction to create the inode. Otherwise the encryption context is
1213 * being set on an existing inode in its own transaction. Only in the
1214 * latter case should the "retry on ENOSPC" logic be used.
1218 res = ext4_xattr_set_handle(handle, inode,
1219 EXT4_XATTR_INDEX_ENCRYPTION,
1220 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1223 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1224 ext4_clear_inode_state(inode,
1225 EXT4_STATE_MAY_INLINE_DATA);
1227 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1228 * S_DAX may be disabled
1230 ext4_set_inode_flags(inode);
1235 res = dquot_initialize(inode);
1239 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1244 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1246 return PTR_ERR(handle);
1248 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1249 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1252 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1254 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1255 * S_DAX may be disabled
1257 ext4_set_inode_flags(inode);
1258 res = ext4_mark_inode_dirty(handle, inode);
1260 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1262 res2 = ext4_journal_stop(handle);
1264 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1271 static bool ext4_dummy_context(struct inode *inode)
1273 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1276 static const struct fscrypt_operations ext4_cryptops = {
1277 .key_prefix = "ext4:",
1278 .get_context = ext4_get_context,
1279 .set_context = ext4_set_context,
1280 .dummy_context = ext4_dummy_context,
1281 .empty_dir = ext4_empty_dir,
1282 .max_namelen = EXT4_NAME_LEN,
1287 static const char * const quotatypes[] = INITQFNAMES;
1288 #define QTYPE2NAME(t) (quotatypes[t])
1290 static int ext4_write_dquot(struct dquot *dquot);
1291 static int ext4_acquire_dquot(struct dquot *dquot);
1292 static int ext4_release_dquot(struct dquot *dquot);
1293 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1294 static int ext4_write_info(struct super_block *sb, int type);
1295 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1296 const struct path *path);
1297 static int ext4_quota_on_mount(struct super_block *sb, int type);
1298 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1299 size_t len, loff_t off);
1300 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1301 const char *data, size_t len, loff_t off);
1302 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1303 unsigned int flags);
1304 static int ext4_enable_quotas(struct super_block *sb);
1305 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1307 static struct dquot **ext4_get_dquots(struct inode *inode)
1309 return EXT4_I(inode)->i_dquot;
1312 static const struct dquot_operations ext4_quota_operations = {
1313 .get_reserved_space = ext4_get_reserved_space,
1314 .write_dquot = ext4_write_dquot,
1315 .acquire_dquot = ext4_acquire_dquot,
1316 .release_dquot = ext4_release_dquot,
1317 .mark_dirty = ext4_mark_dquot_dirty,
1318 .write_info = ext4_write_info,
1319 .alloc_dquot = dquot_alloc,
1320 .destroy_dquot = dquot_destroy,
1321 .get_projid = ext4_get_projid,
1322 .get_inode_usage = ext4_get_inode_usage,
1323 .get_next_id = ext4_get_next_id,
1326 static const struct quotactl_ops ext4_qctl_operations = {
1327 .quota_on = ext4_quota_on,
1328 .quota_off = ext4_quota_off,
1329 .quota_sync = dquot_quota_sync,
1330 .get_state = dquot_get_state,
1331 .set_info = dquot_set_dqinfo,
1332 .get_dqblk = dquot_get_dqblk,
1333 .set_dqblk = dquot_set_dqblk,
1334 .get_nextdqblk = dquot_get_next_dqblk,
1338 static const struct super_operations ext4_sops = {
1339 .alloc_inode = ext4_alloc_inode,
1340 .destroy_inode = ext4_destroy_inode,
1341 .write_inode = ext4_write_inode,
1342 .dirty_inode = ext4_dirty_inode,
1343 .drop_inode = ext4_drop_inode,
1344 .evict_inode = ext4_evict_inode,
1345 .put_super = ext4_put_super,
1346 .sync_fs = ext4_sync_fs,
1347 .freeze_fs = ext4_freeze,
1348 .unfreeze_fs = ext4_unfreeze,
1349 .statfs = ext4_statfs,
1350 .remount_fs = ext4_remount,
1351 .show_options = ext4_show_options,
1353 .quota_read = ext4_quota_read,
1354 .quota_write = ext4_quota_write,
1355 .get_dquots = ext4_get_dquots,
1357 .bdev_try_to_free_page = bdev_try_to_free_page,
1360 static const struct export_operations ext4_export_ops = {
1361 .fh_to_dentry = ext4_fh_to_dentry,
1362 .fh_to_parent = ext4_fh_to_parent,
1363 .get_parent = ext4_get_parent,
1367 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1368 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1369 Opt_nouid32, Opt_debug, Opt_removed,
1370 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1371 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1372 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1373 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1374 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1375 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1376 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1377 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1378 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1379 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1380 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1381 Opt_nowarn_on_error, Opt_mblk_io_submit,
1382 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1383 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1384 Opt_inode_readahead_blks, Opt_journal_ioprio,
1385 Opt_dioread_nolock, Opt_dioread_lock,
1386 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1387 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1390 static const match_table_t tokens = {
1391 {Opt_bsd_df, "bsddf"},
1392 {Opt_minix_df, "minixdf"},
1393 {Opt_grpid, "grpid"},
1394 {Opt_grpid, "bsdgroups"},
1395 {Opt_nogrpid, "nogrpid"},
1396 {Opt_nogrpid, "sysvgroups"},
1397 {Opt_resgid, "resgid=%u"},
1398 {Opt_resuid, "resuid=%u"},
1400 {Opt_err_cont, "errors=continue"},
1401 {Opt_err_panic, "errors=panic"},
1402 {Opt_err_ro, "errors=remount-ro"},
1403 {Opt_nouid32, "nouid32"},
1404 {Opt_debug, "debug"},
1405 {Opt_removed, "oldalloc"},
1406 {Opt_removed, "orlov"},
1407 {Opt_user_xattr, "user_xattr"},
1408 {Opt_nouser_xattr, "nouser_xattr"},
1410 {Opt_noacl, "noacl"},
1411 {Opt_noload, "norecovery"},
1412 {Opt_noload, "noload"},
1413 {Opt_removed, "nobh"},
1414 {Opt_removed, "bh"},
1415 {Opt_commit, "commit=%u"},
1416 {Opt_min_batch_time, "min_batch_time=%u"},
1417 {Opt_max_batch_time, "max_batch_time=%u"},
1418 {Opt_journal_dev, "journal_dev=%u"},
1419 {Opt_journal_path, "journal_path=%s"},
1420 {Opt_journal_checksum, "journal_checksum"},
1421 {Opt_nojournal_checksum, "nojournal_checksum"},
1422 {Opt_journal_async_commit, "journal_async_commit"},
1423 {Opt_abort, "abort"},
1424 {Opt_data_journal, "data=journal"},
1425 {Opt_data_ordered, "data=ordered"},
1426 {Opt_data_writeback, "data=writeback"},
1427 {Opt_data_err_abort, "data_err=abort"},
1428 {Opt_data_err_ignore, "data_err=ignore"},
1429 {Opt_offusrjquota, "usrjquota="},
1430 {Opt_usrjquota, "usrjquota=%s"},
1431 {Opt_offgrpjquota, "grpjquota="},
1432 {Opt_grpjquota, "grpjquota=%s"},
1433 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1434 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1435 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1436 {Opt_grpquota, "grpquota"},
1437 {Opt_noquota, "noquota"},
1438 {Opt_quota, "quota"},
1439 {Opt_usrquota, "usrquota"},
1440 {Opt_prjquota, "prjquota"},
1441 {Opt_barrier, "barrier=%u"},
1442 {Opt_barrier, "barrier"},
1443 {Opt_nobarrier, "nobarrier"},
1444 {Opt_i_version, "i_version"},
1446 {Opt_stripe, "stripe=%u"},
1447 {Opt_delalloc, "delalloc"},
1448 {Opt_warn_on_error, "warn_on_error"},
1449 {Opt_nowarn_on_error, "nowarn_on_error"},
1450 {Opt_lazytime, "lazytime"},
1451 {Opt_nolazytime, "nolazytime"},
1452 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1453 {Opt_nodelalloc, "nodelalloc"},
1454 {Opt_removed, "mblk_io_submit"},
1455 {Opt_removed, "nomblk_io_submit"},
1456 {Opt_block_validity, "block_validity"},
1457 {Opt_noblock_validity, "noblock_validity"},
1458 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1459 {Opt_journal_ioprio, "journal_ioprio=%u"},
1460 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1461 {Opt_auto_da_alloc, "auto_da_alloc"},
1462 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1463 {Opt_dioread_nolock, "dioread_nolock"},
1464 {Opt_dioread_lock, "dioread_lock"},
1465 {Opt_discard, "discard"},
1466 {Opt_nodiscard, "nodiscard"},
1467 {Opt_init_itable, "init_itable=%u"},
1468 {Opt_init_itable, "init_itable"},
1469 {Opt_noinit_itable, "noinit_itable"},
1470 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1471 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1472 {Opt_nombcache, "nombcache"},
1473 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1474 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1475 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1476 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1477 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1478 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1482 static ext4_fsblk_t get_sb_block(void **data)
1484 ext4_fsblk_t sb_block;
1485 char *options = (char *) *data;
1487 if (!options || strncmp(options, "sb=", 3) != 0)
1488 return 1; /* Default location */
1491 /* TODO: use simple_strtoll with >32bit ext4 */
1492 sb_block = simple_strtoul(options, &options, 0);
1493 if (*options && *options != ',') {
1494 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1498 if (*options == ',')
1500 *data = (void *) options;
1505 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1506 static const char deprecated_msg[] =
1507 "Mount option \"%s\" will be removed by %s\n"
1511 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1513 struct ext4_sb_info *sbi = EXT4_SB(sb);
1517 if (sb_any_quota_loaded(sb) &&
1518 !sbi->s_qf_names[qtype]) {
1519 ext4_msg(sb, KERN_ERR,
1520 "Cannot change journaled "
1521 "quota options when quota turned on");
1524 if (ext4_has_feature_quota(sb)) {
1525 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1526 "ignored when QUOTA feature is enabled");
1529 qname = match_strdup(args);
1531 ext4_msg(sb, KERN_ERR,
1532 "Not enough memory for storing quotafile name");
1535 if (sbi->s_qf_names[qtype]) {
1536 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1539 ext4_msg(sb, KERN_ERR,
1540 "%s quota file already specified",
1544 if (strchr(qname, '/')) {
1545 ext4_msg(sb, KERN_ERR,
1546 "quotafile must be on filesystem root");
1549 sbi->s_qf_names[qtype] = qname;
1557 static int clear_qf_name(struct super_block *sb, int qtype)
1560 struct ext4_sb_info *sbi = EXT4_SB(sb);
1562 if (sb_any_quota_loaded(sb) &&
1563 sbi->s_qf_names[qtype]) {
1564 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1565 " when quota turned on");
1568 kfree(sbi->s_qf_names[qtype]);
1569 sbi->s_qf_names[qtype] = NULL;
1574 #define MOPT_SET 0x0001
1575 #define MOPT_CLEAR 0x0002
1576 #define MOPT_NOSUPPORT 0x0004
1577 #define MOPT_EXPLICIT 0x0008
1578 #define MOPT_CLEAR_ERR 0x0010
1579 #define MOPT_GTE0 0x0020
1582 #define MOPT_QFMT 0x0040
1584 #define MOPT_Q MOPT_NOSUPPORT
1585 #define MOPT_QFMT MOPT_NOSUPPORT
1587 #define MOPT_DATAJ 0x0080
1588 #define MOPT_NO_EXT2 0x0100
1589 #define MOPT_NO_EXT3 0x0200
1590 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1591 #define MOPT_STRING 0x0400
1593 static const struct mount_opts {
1597 } ext4_mount_opts[] = {
1598 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1599 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1600 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1601 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1602 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1603 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1604 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1605 MOPT_EXT4_ONLY | MOPT_SET},
1606 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1607 MOPT_EXT4_ONLY | MOPT_CLEAR},
1608 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1609 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1610 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1611 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1612 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1613 MOPT_EXT4_ONLY | MOPT_CLEAR},
1614 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1615 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1616 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1617 MOPT_EXT4_ONLY | MOPT_CLEAR},
1618 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1619 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1620 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1621 EXT4_MOUNT_JOURNAL_CHECKSUM),
1622 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1623 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1624 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1625 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1626 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1627 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1629 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1631 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1632 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1633 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1634 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1635 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1636 {Opt_commit, 0, MOPT_GTE0},
1637 {Opt_max_batch_time, 0, MOPT_GTE0},
1638 {Opt_min_batch_time, 0, MOPT_GTE0},
1639 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1640 {Opt_init_itable, 0, MOPT_GTE0},
1641 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1642 {Opt_stripe, 0, MOPT_GTE0},
1643 {Opt_resuid, 0, MOPT_GTE0},
1644 {Opt_resgid, 0, MOPT_GTE0},
1645 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1646 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1647 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1648 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1649 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1650 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1651 MOPT_NO_EXT2 | MOPT_DATAJ},
1652 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1653 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1654 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1655 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1656 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1658 {Opt_acl, 0, MOPT_NOSUPPORT},
1659 {Opt_noacl, 0, MOPT_NOSUPPORT},
1661 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1662 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1663 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1664 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1665 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1667 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1669 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1671 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1672 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1673 MOPT_CLEAR | MOPT_Q},
1674 {Opt_usrjquota, 0, MOPT_Q},
1675 {Opt_grpjquota, 0, MOPT_Q},
1676 {Opt_offusrjquota, 0, MOPT_Q},
1677 {Opt_offgrpjquota, 0, MOPT_Q},
1678 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1679 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1680 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1681 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1682 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1683 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1687 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1688 substring_t *args, unsigned long *journal_devnum,
1689 unsigned int *journal_ioprio, int is_remount)
1691 struct ext4_sb_info *sbi = EXT4_SB(sb);
1692 const struct mount_opts *m;
1698 if (token == Opt_usrjquota)
1699 return set_qf_name(sb, USRQUOTA, &args[0]);
1700 else if (token == Opt_grpjquota)
1701 return set_qf_name(sb, GRPQUOTA, &args[0]);
1702 else if (token == Opt_offusrjquota)
1703 return clear_qf_name(sb, USRQUOTA);
1704 else if (token == Opt_offgrpjquota)
1705 return clear_qf_name(sb, GRPQUOTA);
1709 case Opt_nouser_xattr:
1710 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1713 return 1; /* handled by get_sb_block() */
1715 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1718 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1721 sb->s_flags |= SB_I_VERSION;
1724 sb->s_flags |= SB_LAZYTIME;
1726 case Opt_nolazytime:
1727 sb->s_flags &= ~SB_LAZYTIME;
1731 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1732 if (token == m->token)
1735 if (m->token == Opt_err) {
1736 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1737 "or missing value", opt);
1741 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1742 ext4_msg(sb, KERN_ERR,
1743 "Mount option \"%s\" incompatible with ext2", opt);
1746 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1747 ext4_msg(sb, KERN_ERR,
1748 "Mount option \"%s\" incompatible with ext3", opt);
1752 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1754 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1756 if (m->flags & MOPT_EXPLICIT) {
1757 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1758 set_opt2(sb, EXPLICIT_DELALLOC);
1759 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1760 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1764 if (m->flags & MOPT_CLEAR_ERR)
1765 clear_opt(sb, ERRORS_MASK);
1766 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1767 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1768 "options when quota turned on");
1772 if (m->flags & MOPT_NOSUPPORT) {
1773 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1774 } else if (token == Opt_commit) {
1776 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1777 sbi->s_commit_interval = HZ * arg;
1778 } else if (token == Opt_debug_want_extra_isize) {
1779 sbi->s_want_extra_isize = arg;
1780 } else if (token == Opt_max_batch_time) {
1781 sbi->s_max_batch_time = arg;
1782 } else if (token == Opt_min_batch_time) {
1783 sbi->s_min_batch_time = arg;
1784 } else if (token == Opt_inode_readahead_blks) {
1785 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1786 ext4_msg(sb, KERN_ERR,
1787 "EXT4-fs: inode_readahead_blks must be "
1788 "0 or a power of 2 smaller than 2^31");
1791 sbi->s_inode_readahead_blks = arg;
1792 } else if (token == Opt_init_itable) {
1793 set_opt(sb, INIT_INODE_TABLE);
1795 arg = EXT4_DEF_LI_WAIT_MULT;
1796 sbi->s_li_wait_mult = arg;
1797 } else if (token == Opt_max_dir_size_kb) {
1798 sbi->s_max_dir_size_kb = arg;
1799 } else if (token == Opt_stripe) {
1800 sbi->s_stripe = arg;
1801 } else if (token == Opt_resuid) {
1802 uid = make_kuid(current_user_ns(), arg);
1803 if (!uid_valid(uid)) {
1804 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1807 sbi->s_resuid = uid;
1808 } else if (token == Opt_resgid) {
1809 gid = make_kgid(current_user_ns(), arg);
1810 if (!gid_valid(gid)) {
1811 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1814 sbi->s_resgid = gid;
1815 } else if (token == Opt_journal_dev) {
1817 ext4_msg(sb, KERN_ERR,
1818 "Cannot specify journal on remount");
1821 *journal_devnum = arg;
1822 } else if (token == Opt_journal_path) {
1824 struct inode *journal_inode;
1829 ext4_msg(sb, KERN_ERR,
1830 "Cannot specify journal on remount");
1833 journal_path = match_strdup(&args[0]);
1834 if (!journal_path) {
1835 ext4_msg(sb, KERN_ERR, "error: could not dup "
1836 "journal device string");
1840 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1842 ext4_msg(sb, KERN_ERR, "error: could not find "
1843 "journal device path: error %d", error);
1844 kfree(journal_path);
1848 journal_inode = d_inode(path.dentry);
1849 if (!S_ISBLK(journal_inode->i_mode)) {
1850 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1851 "is not a block device", journal_path);
1853 kfree(journal_path);
1857 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1859 kfree(journal_path);
1860 } else if (token == Opt_journal_ioprio) {
1862 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1867 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1868 } else if (token == Opt_test_dummy_encryption) {
1869 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1870 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1871 ext4_msg(sb, KERN_WARNING,
1872 "Test dummy encryption mode enabled");
1874 ext4_msg(sb, KERN_WARNING,
1875 "Test dummy encryption mount option ignored");
1877 } else if (m->flags & MOPT_DATAJ) {
1879 if (!sbi->s_journal)
1880 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1881 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1882 ext4_msg(sb, KERN_ERR,
1883 "Cannot change data mode on remount");
1887 clear_opt(sb, DATA_FLAGS);
1888 sbi->s_mount_opt |= m->mount_opt;
1891 } else if (m->flags & MOPT_QFMT) {
1892 if (sb_any_quota_loaded(sb) &&
1893 sbi->s_jquota_fmt != m->mount_opt) {
1894 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1895 "quota options when quota turned on");
1898 if (ext4_has_feature_quota(sb)) {
1899 ext4_msg(sb, KERN_INFO,
1900 "Quota format mount options ignored "
1901 "when QUOTA feature is enabled");
1904 sbi->s_jquota_fmt = m->mount_opt;
1906 } else if (token == Opt_dax) {
1907 #ifdef CONFIG_FS_DAX
1908 ext4_msg(sb, KERN_WARNING,
1909 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1910 sbi->s_mount_opt |= m->mount_opt;
1912 ext4_msg(sb, KERN_INFO, "dax option not supported");
1915 } else if (token == Opt_data_err_abort) {
1916 sbi->s_mount_opt |= m->mount_opt;
1917 } else if (token == Opt_data_err_ignore) {
1918 sbi->s_mount_opt &= ~m->mount_opt;
1922 if (m->flags & MOPT_CLEAR)
1924 else if (unlikely(!(m->flags & MOPT_SET))) {
1925 ext4_msg(sb, KERN_WARNING,
1926 "buggy handling of option %s", opt);
1931 sbi->s_mount_opt |= m->mount_opt;
1933 sbi->s_mount_opt &= ~m->mount_opt;
1938 static int parse_options(char *options, struct super_block *sb,
1939 unsigned long *journal_devnum,
1940 unsigned int *journal_ioprio,
1943 struct ext4_sb_info *sbi = EXT4_SB(sb);
1945 substring_t args[MAX_OPT_ARGS];
1951 while ((p = strsep(&options, ",")) != NULL) {
1955 * Initialize args struct so we know whether arg was
1956 * found; some options take optional arguments.
1958 args[0].to = args[0].from = NULL;
1959 token = match_token(p, tokens, args);
1960 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1961 journal_ioprio, is_remount) < 0)
1966 * We do the test below only for project quotas. 'usrquota' and
1967 * 'grpquota' mount options are allowed even without quota feature
1968 * to support legacy quotas in quota files.
1970 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1971 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1972 "Cannot enable project quota enforcement.");
1975 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1976 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1977 clear_opt(sb, USRQUOTA);
1979 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1980 clear_opt(sb, GRPQUOTA);
1982 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1983 ext4_msg(sb, KERN_ERR, "old and new quota "
1988 if (!sbi->s_jquota_fmt) {
1989 ext4_msg(sb, KERN_ERR, "journaled quota format "
1995 if (test_opt(sb, DIOREAD_NOLOCK)) {
1997 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1999 if (blocksize < PAGE_SIZE) {
2000 ext4_msg(sb, KERN_ERR, "can't mount with "
2001 "dioread_nolock if block size != PAGE_SIZE");
2008 static inline void ext4_show_quota_options(struct seq_file *seq,
2009 struct super_block *sb)
2011 #if defined(CONFIG_QUOTA)
2012 struct ext4_sb_info *sbi = EXT4_SB(sb);
2014 if (sbi->s_jquota_fmt) {
2017 switch (sbi->s_jquota_fmt) {
2028 seq_printf(seq, ",jqfmt=%s", fmtname);
2031 if (sbi->s_qf_names[USRQUOTA])
2032 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
2034 if (sbi->s_qf_names[GRPQUOTA])
2035 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2039 static const char *token2str(int token)
2041 const struct match_token *t;
2043 for (t = tokens; t->token != Opt_err; t++)
2044 if (t->token == token && !strchr(t->pattern, '='))
2051 * - it's set to a non-default value OR
2052 * - if the per-sb default is different from the global default
2054 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2057 struct ext4_sb_info *sbi = EXT4_SB(sb);
2058 struct ext4_super_block *es = sbi->s_es;
2059 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2060 const struct mount_opts *m;
2061 char sep = nodefs ? '\n' : ',';
2063 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2064 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2066 if (sbi->s_sb_block != 1)
2067 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2069 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2070 int want_set = m->flags & MOPT_SET;
2071 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2072 (m->flags & MOPT_CLEAR_ERR))
2074 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2075 continue; /* skip if same as the default */
2077 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2078 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2079 continue; /* select Opt_noFoo vs Opt_Foo */
2080 SEQ_OPTS_PRINT("%s", token2str(m->token));
2083 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2084 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2085 SEQ_OPTS_PRINT("resuid=%u",
2086 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2087 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2088 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2089 SEQ_OPTS_PRINT("resgid=%u",
2090 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2091 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2092 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2093 SEQ_OPTS_PUTS("errors=remount-ro");
2094 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2095 SEQ_OPTS_PUTS("errors=continue");
2096 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2097 SEQ_OPTS_PUTS("errors=panic");
2098 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2099 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2100 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2101 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2102 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2103 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2104 if (sb->s_flags & SB_I_VERSION)
2105 SEQ_OPTS_PUTS("i_version");
2106 if (nodefs || sbi->s_stripe)
2107 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2108 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2109 (sbi->s_mount_opt ^ def_mount_opt)) {
2110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2111 SEQ_OPTS_PUTS("data=journal");
2112 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2113 SEQ_OPTS_PUTS("data=ordered");
2114 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2115 SEQ_OPTS_PUTS("data=writeback");
2118 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2119 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2120 sbi->s_inode_readahead_blks);
2122 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2123 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2124 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2125 if (nodefs || sbi->s_max_dir_size_kb)
2126 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2127 if (test_opt(sb, DATA_ERR_ABORT))
2128 SEQ_OPTS_PUTS("data_err=abort");
2130 ext4_show_quota_options(seq, sb);
2134 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2136 return _ext4_show_options(seq, root->d_sb, 0);
2139 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2141 struct super_block *sb = seq->private;
2144 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2145 rc = _ext4_show_options(seq, sb, 1);
2146 seq_puts(seq, "\n");
2150 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2153 struct ext4_sb_info *sbi = EXT4_SB(sb);
2156 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2157 ext4_msg(sb, KERN_ERR, "revision level too high, "
2158 "forcing read-only mode");
2163 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2164 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2165 "running e2fsck is recommended");
2166 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2167 ext4_msg(sb, KERN_WARNING,
2168 "warning: mounting fs with errors, "
2169 "running e2fsck is recommended");
2170 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2171 le16_to_cpu(es->s_mnt_count) >=
2172 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2173 ext4_msg(sb, KERN_WARNING,
2174 "warning: maximal mount count reached, "
2175 "running e2fsck is recommended");
2176 else if (le32_to_cpu(es->s_checkinterval) &&
2177 (le32_to_cpu(es->s_lastcheck) +
2178 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2179 ext4_msg(sb, KERN_WARNING,
2180 "warning: checktime reached, "
2181 "running e2fsck is recommended");
2182 if (!sbi->s_journal)
2183 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2184 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2185 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2186 le16_add_cpu(&es->s_mnt_count, 1);
2187 es->s_mtime = cpu_to_le32(get_seconds());
2188 ext4_update_dynamic_rev(sb);
2190 ext4_set_feature_journal_needs_recovery(sb);
2192 err = ext4_commit_super(sb, 1);
2194 if (test_opt(sb, DEBUG))
2195 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2196 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2198 sbi->s_groups_count,
2199 EXT4_BLOCKS_PER_GROUP(sb),
2200 EXT4_INODES_PER_GROUP(sb),
2201 sbi->s_mount_opt, sbi->s_mount_opt2);
2203 cleancache_init_fs(sb);
2207 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2209 struct ext4_sb_info *sbi = EXT4_SB(sb);
2210 struct flex_groups *new_groups;
2213 if (!sbi->s_log_groups_per_flex)
2216 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2217 if (size <= sbi->s_flex_groups_allocated)
2220 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2221 new_groups = kvzalloc(size, GFP_KERNEL);
2223 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2224 size / (int) sizeof(struct flex_groups));
2228 if (sbi->s_flex_groups) {
2229 memcpy(new_groups, sbi->s_flex_groups,
2230 (sbi->s_flex_groups_allocated *
2231 sizeof(struct flex_groups)));
2232 kvfree(sbi->s_flex_groups);
2234 sbi->s_flex_groups = new_groups;
2235 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2239 static int ext4_fill_flex_info(struct super_block *sb)
2241 struct ext4_sb_info *sbi = EXT4_SB(sb);
2242 struct ext4_group_desc *gdp = NULL;
2243 ext4_group_t flex_group;
2246 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2247 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2248 sbi->s_log_groups_per_flex = 0;
2252 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2256 for (i = 0; i < sbi->s_groups_count; i++) {
2257 gdp = ext4_get_group_desc(sb, i, NULL);
2259 flex_group = ext4_flex_group(sbi, i);
2260 atomic_add(ext4_free_inodes_count(sb, gdp),
2261 &sbi->s_flex_groups[flex_group].free_inodes);
2262 atomic64_add(ext4_free_group_clusters(sb, gdp),
2263 &sbi->s_flex_groups[flex_group].free_clusters);
2264 atomic_add(ext4_used_dirs_count(sb, gdp),
2265 &sbi->s_flex_groups[flex_group].used_dirs);
2273 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2274 struct ext4_group_desc *gdp)
2276 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2278 __le32 le_group = cpu_to_le32(block_group);
2279 struct ext4_sb_info *sbi = EXT4_SB(sb);
2281 if (ext4_has_metadata_csum(sbi->s_sb)) {
2282 /* Use new metadata_csum algorithm */
2284 __u16 dummy_csum = 0;
2286 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2288 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2289 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2290 sizeof(dummy_csum));
2291 offset += sizeof(dummy_csum);
2292 if (offset < sbi->s_desc_size)
2293 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2294 sbi->s_desc_size - offset);
2296 crc = csum32 & 0xFFFF;
2300 /* old crc16 code */
2301 if (!ext4_has_feature_gdt_csum(sb))
2304 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2305 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2306 crc = crc16(crc, (__u8 *)gdp, offset);
2307 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2308 /* for checksum of struct ext4_group_desc do the rest...*/
2309 if (ext4_has_feature_64bit(sb) &&
2310 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2311 crc = crc16(crc, (__u8 *)gdp + offset,
2312 le16_to_cpu(sbi->s_es->s_desc_size) -
2316 return cpu_to_le16(crc);
2319 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2320 struct ext4_group_desc *gdp)
2322 if (ext4_has_group_desc_csum(sb) &&
2323 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2329 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2330 struct ext4_group_desc *gdp)
2332 if (!ext4_has_group_desc_csum(sb))
2334 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2337 /* Called at mount-time, super-block is locked */
2338 static int ext4_check_descriptors(struct super_block *sb,
2339 ext4_fsblk_t sb_block,
2340 ext4_group_t *first_not_zeroed)
2342 struct ext4_sb_info *sbi = EXT4_SB(sb);
2343 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2344 ext4_fsblk_t last_block;
2345 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0) + 1;
2346 ext4_fsblk_t block_bitmap;
2347 ext4_fsblk_t inode_bitmap;
2348 ext4_fsblk_t inode_table;
2349 int flexbg_flag = 0;
2350 ext4_group_t i, grp = sbi->s_groups_count;
2352 if (ext4_has_feature_flex_bg(sb))
2355 ext4_debug("Checking group descriptors");
2357 for (i = 0; i < sbi->s_groups_count; i++) {
2358 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2360 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2361 last_block = ext4_blocks_count(sbi->s_es) - 1;
2363 last_block = first_block +
2364 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2366 if ((grp == sbi->s_groups_count) &&
2367 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2370 block_bitmap = ext4_block_bitmap(sb, gdp);
2371 if (block_bitmap == sb_block) {
2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373 "Block bitmap for group %u overlaps "
2378 if (block_bitmap >= sb_block + 1 &&
2379 block_bitmap <= last_bg_block) {
2380 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2381 "Block bitmap for group %u overlaps "
2382 "block group descriptors", i);
2386 if (block_bitmap < first_block || block_bitmap > last_block) {
2387 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2388 "Block bitmap for group %u not in group "
2389 "(block %llu)!", i, block_bitmap);
2392 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2393 if (inode_bitmap == sb_block) {
2394 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2395 "Inode bitmap for group %u overlaps "
2400 if (inode_bitmap >= sb_block + 1 &&
2401 inode_bitmap <= last_bg_block) {
2402 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2403 "Inode bitmap for group %u overlaps "
2404 "block group descriptors", i);
2408 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2409 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2410 "Inode bitmap for group %u not in group "
2411 "(block %llu)!", i, inode_bitmap);
2414 inode_table = ext4_inode_table(sb, gdp);
2415 if (inode_table == sb_block) {
2416 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2417 "Inode table for group %u overlaps "
2422 if (inode_table >= sb_block + 1 &&
2423 inode_table <= last_bg_block) {
2424 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2425 "Inode table for group %u overlaps "
2426 "block group descriptors", i);
2430 if (inode_table < first_block ||
2431 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2432 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2433 "Inode table for group %u not in group "
2434 "(block %llu)!", i, inode_table);
2437 ext4_lock_group(sb, i);
2438 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2439 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2440 "Checksum for group %u failed (%u!=%u)",
2441 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2442 gdp)), le16_to_cpu(gdp->bg_checksum));
2443 if (!sb_rdonly(sb)) {
2444 ext4_unlock_group(sb, i);
2448 ext4_unlock_group(sb, i);
2450 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2452 if (NULL != first_not_zeroed)
2453 *first_not_zeroed = grp;
2457 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2458 * the superblock) which were deleted from all directories, but held open by
2459 * a process at the time of a crash. We walk the list and try to delete these
2460 * inodes at recovery time (only with a read-write filesystem).
2462 * In order to keep the orphan inode chain consistent during traversal (in
2463 * case of crash during recovery), we link each inode into the superblock
2464 * orphan list_head and handle it the same way as an inode deletion during
2465 * normal operation (which journals the operations for us).
2467 * We only do an iget() and an iput() on each inode, which is very safe if we
2468 * accidentally point at an in-use or already deleted inode. The worst that
2469 * can happen in this case is that we get a "bit already cleared" message from
2470 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2471 * e2fsck was run on this filesystem, and it must have already done the orphan
2472 * inode cleanup for us, so we can safely abort without any further action.
2474 static void ext4_orphan_cleanup(struct super_block *sb,
2475 struct ext4_super_block *es)
2477 unsigned int s_flags = sb->s_flags;
2478 int ret, nr_orphans = 0, nr_truncates = 0;
2480 int quota_update = 0;
2483 if (!es->s_last_orphan) {
2484 jbd_debug(4, "no orphan inodes to clean up\n");
2488 if (bdev_read_only(sb->s_bdev)) {
2489 ext4_msg(sb, KERN_ERR, "write access "
2490 "unavailable, skipping orphan cleanup");
2494 /* Check if feature set would not allow a r/w mount */
2495 if (!ext4_feature_set_ok(sb, 0)) {
2496 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2497 "unknown ROCOMPAT features");
2501 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2502 /* don't clear list on RO mount w/ errors */
2503 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2504 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2505 "clearing orphan list.\n");
2506 es->s_last_orphan = 0;
2508 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2512 if (s_flags & SB_RDONLY) {
2513 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2514 sb->s_flags &= ~SB_RDONLY;
2517 /* Needed for iput() to work correctly and not trash data */
2518 sb->s_flags |= SB_ACTIVE;
2521 * Turn on quotas which were not enabled for read-only mounts if
2522 * filesystem has quota feature, so that they are updated correctly.
2524 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2525 int ret = ext4_enable_quotas(sb);
2530 ext4_msg(sb, KERN_ERR,
2531 "Cannot turn on quotas: error %d", ret);
2534 /* Turn on journaled quotas used for old sytle */
2535 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2536 if (EXT4_SB(sb)->s_qf_names[i]) {
2537 int ret = ext4_quota_on_mount(sb, i);
2542 ext4_msg(sb, KERN_ERR,
2543 "Cannot turn on journaled "
2544 "quota: type %d: error %d", i, ret);
2549 while (es->s_last_orphan) {
2550 struct inode *inode;
2553 * We may have encountered an error during cleanup; if
2554 * so, skip the rest.
2556 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2557 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2558 es->s_last_orphan = 0;
2562 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2563 if (IS_ERR(inode)) {
2564 es->s_last_orphan = 0;
2568 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2569 dquot_initialize(inode);
2570 if (inode->i_nlink) {
2571 if (test_opt(sb, DEBUG))
2572 ext4_msg(sb, KERN_DEBUG,
2573 "%s: truncating inode %lu to %lld bytes",
2574 __func__, inode->i_ino, inode->i_size);
2575 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2576 inode->i_ino, inode->i_size);
2578 truncate_inode_pages(inode->i_mapping, inode->i_size);
2579 ret = ext4_truncate(inode);
2581 ext4_std_error(inode->i_sb, ret);
2582 inode_unlock(inode);
2585 if (test_opt(sb, DEBUG))
2586 ext4_msg(sb, KERN_DEBUG,
2587 "%s: deleting unreferenced inode %lu",
2588 __func__, inode->i_ino);
2589 jbd_debug(2, "deleting unreferenced inode %lu\n",
2593 iput(inode); /* The delete magic happens here! */
2596 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2599 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2600 PLURAL(nr_orphans));
2602 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2603 PLURAL(nr_truncates));
2605 /* Turn off quotas if they were enabled for orphan cleanup */
2607 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2608 if (sb_dqopt(sb)->files[i])
2609 dquot_quota_off(sb, i);
2613 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2617 * Maximal extent format file size.
2618 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2619 * extent format containers, within a sector_t, and within i_blocks
2620 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2621 * so that won't be a limiting factor.
2623 * However there is other limiting factor. We do store extents in the form
2624 * of starting block and length, hence the resulting length of the extent
2625 * covering maximum file size must fit into on-disk format containers as
2626 * well. Given that length is always by 1 unit bigger than max unit (because
2627 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2629 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2631 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2634 loff_t upper_limit = MAX_LFS_FILESIZE;
2636 /* small i_blocks in vfs inode? */
2637 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2639 * CONFIG_LBDAF is not enabled implies the inode
2640 * i_block represent total blocks in 512 bytes
2641 * 32 == size of vfs inode i_blocks * 8
2643 upper_limit = (1LL << 32) - 1;
2645 /* total blocks in file system block size */
2646 upper_limit >>= (blkbits - 9);
2647 upper_limit <<= blkbits;
2651 * 32-bit extent-start container, ee_block. We lower the maxbytes
2652 * by one fs block, so ee_len can cover the extent of maximum file
2655 res = (1LL << 32) - 1;
2658 /* Sanity check against vm- & vfs- imposed limits */
2659 if (res > upper_limit)
2666 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2667 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2668 * We need to be 1 filesystem block less than the 2^48 sector limit.
2670 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2672 loff_t res = EXT4_NDIR_BLOCKS;
2675 /* This is calculated to be the largest file size for a dense, block
2676 * mapped file such that the file's total number of 512-byte sectors,
2677 * including data and all indirect blocks, does not exceed (2^48 - 1).
2679 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2680 * number of 512-byte sectors of the file.
2683 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2685 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2686 * the inode i_block field represents total file blocks in
2687 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2689 upper_limit = (1LL << 32) - 1;
2691 /* total blocks in file system block size */
2692 upper_limit >>= (bits - 9);
2696 * We use 48 bit ext4_inode i_blocks
2697 * With EXT4_HUGE_FILE_FL set the i_blocks
2698 * represent total number of blocks in
2699 * file system block size
2701 upper_limit = (1LL << 48) - 1;
2705 /* indirect blocks */
2707 /* double indirect blocks */
2708 meta_blocks += 1 + (1LL << (bits-2));
2709 /* tripple indirect blocks */
2710 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2712 upper_limit -= meta_blocks;
2713 upper_limit <<= bits;
2715 res += 1LL << (bits-2);
2716 res += 1LL << (2*(bits-2));
2717 res += 1LL << (3*(bits-2));
2719 if (res > upper_limit)
2722 if (res > MAX_LFS_FILESIZE)
2723 res = MAX_LFS_FILESIZE;
2728 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2729 ext4_fsblk_t logical_sb_block, int nr)
2731 struct ext4_sb_info *sbi = EXT4_SB(sb);
2732 ext4_group_t bg, first_meta_bg;
2735 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2737 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2738 return logical_sb_block + nr + 1;
2739 bg = sbi->s_desc_per_block * nr;
2740 if (ext4_bg_has_super(sb, bg))
2744 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2745 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2746 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2749 if (sb->s_blocksize == 1024 && nr == 0 &&
2750 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2753 return (has_super + ext4_group_first_block_no(sb, bg));
2757 * ext4_get_stripe_size: Get the stripe size.
2758 * @sbi: In memory super block info
2760 * If we have specified it via mount option, then
2761 * use the mount option value. If the value specified at mount time is
2762 * greater than the blocks per group use the super block value.
2763 * If the super block value is greater than blocks per group return 0.
2764 * Allocator needs it be less than blocks per group.
2767 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2769 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2770 unsigned long stripe_width =
2771 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2774 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2775 ret = sbi->s_stripe;
2776 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2778 else if (stride && stride <= sbi->s_blocks_per_group)
2784 * If the stripe width is 1, this makes no sense and
2785 * we set it to 0 to turn off stripe handling code.
2794 * Check whether this filesystem can be mounted based on
2795 * the features present and the RDONLY/RDWR mount requested.
2796 * Returns 1 if this filesystem can be mounted as requested,
2797 * 0 if it cannot be.
2799 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2801 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2802 ext4_msg(sb, KERN_ERR,
2803 "Couldn't mount because of "
2804 "unsupported optional features (%x)",
2805 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2806 ~EXT4_FEATURE_INCOMPAT_SUPP));
2813 if (ext4_has_feature_readonly(sb)) {
2814 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2815 sb->s_flags |= SB_RDONLY;
2819 /* Check that feature set is OK for a read-write mount */
2820 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2821 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2822 "unsupported optional features (%x)",
2823 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2824 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2828 * Large file size enabled file system can only be mounted
2829 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2831 if (ext4_has_feature_huge_file(sb)) {
2832 if (sizeof(blkcnt_t) < sizeof(u64)) {
2833 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2834 "cannot be mounted RDWR without "
2839 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2840 ext4_msg(sb, KERN_ERR,
2841 "Can't support bigalloc feature without "
2842 "extents feature\n");
2846 #ifndef CONFIG_QUOTA
2847 if (ext4_has_feature_quota(sb) && !readonly) {
2848 ext4_msg(sb, KERN_ERR,
2849 "Filesystem with quota feature cannot be mounted RDWR "
2850 "without CONFIG_QUOTA");
2853 if (ext4_has_feature_project(sb) && !readonly) {
2854 ext4_msg(sb, KERN_ERR,
2855 "Filesystem with project quota feature cannot be mounted RDWR "
2856 "without CONFIG_QUOTA");
2859 #endif /* CONFIG_QUOTA */
2864 * This function is called once a day if we have errors logged
2865 * on the file system
2867 static void print_daily_error_info(struct timer_list *t)
2869 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2870 struct super_block *sb = sbi->s_sb;
2871 struct ext4_super_block *es = sbi->s_es;
2873 if (es->s_error_count)
2874 /* fsck newer than v1.41.13 is needed to clean this condition. */
2875 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2876 le32_to_cpu(es->s_error_count));
2877 if (es->s_first_error_time) {
2878 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2879 sb->s_id, le32_to_cpu(es->s_first_error_time),
2880 (int) sizeof(es->s_first_error_func),
2881 es->s_first_error_func,
2882 le32_to_cpu(es->s_first_error_line));
2883 if (es->s_first_error_ino)
2884 printk(KERN_CONT ": inode %u",
2885 le32_to_cpu(es->s_first_error_ino));
2886 if (es->s_first_error_block)
2887 printk(KERN_CONT ": block %llu", (unsigned long long)
2888 le64_to_cpu(es->s_first_error_block));
2889 printk(KERN_CONT "\n");
2891 if (es->s_last_error_time) {
2892 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2893 sb->s_id, le32_to_cpu(es->s_last_error_time),
2894 (int) sizeof(es->s_last_error_func),
2895 es->s_last_error_func,
2896 le32_to_cpu(es->s_last_error_line));
2897 if (es->s_last_error_ino)
2898 printk(KERN_CONT ": inode %u",
2899 le32_to_cpu(es->s_last_error_ino));
2900 if (es->s_last_error_block)
2901 printk(KERN_CONT ": block %llu", (unsigned long long)
2902 le64_to_cpu(es->s_last_error_block));
2903 printk(KERN_CONT "\n");
2905 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2908 /* Find next suitable group and run ext4_init_inode_table */
2909 static int ext4_run_li_request(struct ext4_li_request *elr)
2911 struct ext4_group_desc *gdp = NULL;
2912 ext4_group_t group, ngroups;
2913 struct super_block *sb;
2914 unsigned long timeout = 0;
2918 ngroups = EXT4_SB(sb)->s_groups_count;
2920 for (group = elr->lr_next_group; group < ngroups; group++) {
2921 gdp = ext4_get_group_desc(sb, group, NULL);
2927 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2931 if (group >= ngroups)
2936 ret = ext4_init_inode_table(sb, group,
2937 elr->lr_timeout ? 0 : 1);
2938 if (elr->lr_timeout == 0) {
2939 timeout = (jiffies - timeout) *
2940 elr->lr_sbi->s_li_wait_mult;
2941 elr->lr_timeout = timeout;
2943 elr->lr_next_sched = jiffies + elr->lr_timeout;
2944 elr->lr_next_group = group + 1;
2950 * Remove lr_request from the list_request and free the
2951 * request structure. Should be called with li_list_mtx held
2953 static void ext4_remove_li_request(struct ext4_li_request *elr)
2955 struct ext4_sb_info *sbi;
2962 list_del(&elr->lr_request);
2963 sbi->s_li_request = NULL;
2967 static void ext4_unregister_li_request(struct super_block *sb)
2969 mutex_lock(&ext4_li_mtx);
2970 if (!ext4_li_info) {
2971 mutex_unlock(&ext4_li_mtx);
2975 mutex_lock(&ext4_li_info->li_list_mtx);
2976 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2977 mutex_unlock(&ext4_li_info->li_list_mtx);
2978 mutex_unlock(&ext4_li_mtx);
2981 static struct task_struct *ext4_lazyinit_task;
2984 * This is the function where ext4lazyinit thread lives. It walks
2985 * through the request list searching for next scheduled filesystem.
2986 * When such a fs is found, run the lazy initialization request
2987 * (ext4_rn_li_request) and keep track of the time spend in this
2988 * function. Based on that time we compute next schedule time of
2989 * the request. When walking through the list is complete, compute
2990 * next waking time and put itself into sleep.
2992 static int ext4_lazyinit_thread(void *arg)
2994 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2995 struct list_head *pos, *n;
2996 struct ext4_li_request *elr;
2997 unsigned long next_wakeup, cur;
2999 BUG_ON(NULL == eli);
3003 next_wakeup = MAX_JIFFY_OFFSET;
3005 mutex_lock(&eli->li_list_mtx);
3006 if (list_empty(&eli->li_request_list)) {
3007 mutex_unlock(&eli->li_list_mtx);
3010 list_for_each_safe(pos, n, &eli->li_request_list) {
3013 elr = list_entry(pos, struct ext4_li_request,
3016 if (time_before(jiffies, elr->lr_next_sched)) {
3017 if (time_before(elr->lr_next_sched, next_wakeup))
3018 next_wakeup = elr->lr_next_sched;
3021 if (down_read_trylock(&elr->lr_super->s_umount)) {
3022 if (sb_start_write_trylock(elr->lr_super)) {
3025 * We hold sb->s_umount, sb can not
3026 * be removed from the list, it is
3027 * now safe to drop li_list_mtx
3029 mutex_unlock(&eli->li_list_mtx);
3030 err = ext4_run_li_request(elr);
3031 sb_end_write(elr->lr_super);
3032 mutex_lock(&eli->li_list_mtx);
3035 up_read((&elr->lr_super->s_umount));
3037 /* error, remove the lazy_init job */
3039 ext4_remove_li_request(elr);
3043 elr->lr_next_sched = jiffies +
3045 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3047 if (time_before(elr->lr_next_sched, next_wakeup))
3048 next_wakeup = elr->lr_next_sched;
3050 mutex_unlock(&eli->li_list_mtx);
3055 if ((time_after_eq(cur, next_wakeup)) ||
3056 (MAX_JIFFY_OFFSET == next_wakeup)) {
3061 schedule_timeout_interruptible(next_wakeup - cur);
3063 if (kthread_should_stop()) {
3064 ext4_clear_request_list();
3071 * It looks like the request list is empty, but we need
3072 * to check it under the li_list_mtx lock, to prevent any
3073 * additions into it, and of course we should lock ext4_li_mtx
3074 * to atomically free the list and ext4_li_info, because at
3075 * this point another ext4 filesystem could be registering
3078 mutex_lock(&ext4_li_mtx);
3079 mutex_lock(&eli->li_list_mtx);
3080 if (!list_empty(&eli->li_request_list)) {
3081 mutex_unlock(&eli->li_list_mtx);
3082 mutex_unlock(&ext4_li_mtx);
3085 mutex_unlock(&eli->li_list_mtx);
3086 kfree(ext4_li_info);
3087 ext4_li_info = NULL;
3088 mutex_unlock(&ext4_li_mtx);
3093 static void ext4_clear_request_list(void)
3095 struct list_head *pos, *n;
3096 struct ext4_li_request *elr;
3098 mutex_lock(&ext4_li_info->li_list_mtx);
3099 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3100 elr = list_entry(pos, struct ext4_li_request,
3102 ext4_remove_li_request(elr);
3104 mutex_unlock(&ext4_li_info->li_list_mtx);
3107 static int ext4_run_lazyinit_thread(void)
3109 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3110 ext4_li_info, "ext4lazyinit");
3111 if (IS_ERR(ext4_lazyinit_task)) {
3112 int err = PTR_ERR(ext4_lazyinit_task);
3113 ext4_clear_request_list();
3114 kfree(ext4_li_info);
3115 ext4_li_info = NULL;
3116 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3117 "initialization thread\n",
3121 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3126 * Check whether it make sense to run itable init. thread or not.
3127 * If there is at least one uninitialized inode table, return
3128 * corresponding group number, else the loop goes through all
3129 * groups and return total number of groups.
3131 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3133 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3134 struct ext4_group_desc *gdp = NULL;
3136 if (!ext4_has_group_desc_csum(sb))
3139 for (group = 0; group < ngroups; group++) {
3140 gdp = ext4_get_group_desc(sb, group, NULL);
3144 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
3148 ext4_error(sb, "Inode table for bg 0 marked as "
3157 static int ext4_li_info_new(void)
3159 struct ext4_lazy_init *eli = NULL;
3161 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3165 INIT_LIST_HEAD(&eli->li_request_list);
3166 mutex_init(&eli->li_list_mtx);
3168 eli->li_state |= EXT4_LAZYINIT_QUIT;
3175 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3178 struct ext4_sb_info *sbi = EXT4_SB(sb);
3179 struct ext4_li_request *elr;
3181 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3187 elr->lr_next_group = start;
3190 * Randomize first schedule time of the request to
3191 * spread the inode table initialization requests
3194 elr->lr_next_sched = jiffies + (prandom_u32() %
3195 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3199 int ext4_register_li_request(struct super_block *sb,
3200 ext4_group_t first_not_zeroed)
3202 struct ext4_sb_info *sbi = EXT4_SB(sb);
3203 struct ext4_li_request *elr = NULL;
3204 ext4_group_t ngroups = sbi->s_groups_count;
3207 mutex_lock(&ext4_li_mtx);
3208 if (sbi->s_li_request != NULL) {
3210 * Reset timeout so it can be computed again, because
3211 * s_li_wait_mult might have changed.
3213 sbi->s_li_request->lr_timeout = 0;
3217 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3218 !test_opt(sb, INIT_INODE_TABLE))
3221 elr = ext4_li_request_new(sb, first_not_zeroed);
3227 if (NULL == ext4_li_info) {
3228 ret = ext4_li_info_new();
3233 mutex_lock(&ext4_li_info->li_list_mtx);
3234 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3235 mutex_unlock(&ext4_li_info->li_list_mtx);
3237 sbi->s_li_request = elr;
3239 * set elr to NULL here since it has been inserted to
3240 * the request_list and the removal and free of it is
3241 * handled by ext4_clear_request_list from now on.
3245 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3246 ret = ext4_run_lazyinit_thread();
3251 mutex_unlock(&ext4_li_mtx);
3258 * We do not need to lock anything since this is called on
3261 static void ext4_destroy_lazyinit_thread(void)
3264 * If thread exited earlier
3265 * there's nothing to be done.
3267 if (!ext4_li_info || !ext4_lazyinit_task)
3270 kthread_stop(ext4_lazyinit_task);
3273 static int set_journal_csum_feature_set(struct super_block *sb)
3276 int compat, incompat;
3277 struct ext4_sb_info *sbi = EXT4_SB(sb);
3279 if (ext4_has_metadata_csum(sb)) {
3280 /* journal checksum v3 */
3282 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3284 /* journal checksum v1 */
3285 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3289 jbd2_journal_clear_features(sbi->s_journal,
3290 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3291 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3292 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3293 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3294 ret = jbd2_journal_set_features(sbi->s_journal,
3296 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3298 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3299 ret = jbd2_journal_set_features(sbi->s_journal,
3302 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3303 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3305 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3306 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3313 * Note: calculating the overhead so we can be compatible with
3314 * historical BSD practice is quite difficult in the face of
3315 * clusters/bigalloc. This is because multiple metadata blocks from
3316 * different block group can end up in the same allocation cluster.
3317 * Calculating the exact overhead in the face of clustered allocation
3318 * requires either O(all block bitmaps) in memory or O(number of block
3319 * groups**2) in time. We will still calculate the superblock for
3320 * older file systems --- and if we come across with a bigalloc file
3321 * system with zero in s_overhead_clusters the estimate will be close to
3322 * correct especially for very large cluster sizes --- but for newer
3323 * file systems, it's better to calculate this figure once at mkfs
3324 * time, and store it in the superblock. If the superblock value is
3325 * present (even for non-bigalloc file systems), we will use it.
3327 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3330 struct ext4_sb_info *sbi = EXT4_SB(sb);
3331 struct ext4_group_desc *gdp;
3332 ext4_fsblk_t first_block, last_block, b;
3333 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3334 int s, j, count = 0;
3336 if (!ext4_has_feature_bigalloc(sb))
3337 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3338 sbi->s_itb_per_group + 2);
3340 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3341 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3342 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3343 for (i = 0; i < ngroups; i++) {
3344 gdp = ext4_get_group_desc(sb, i, NULL);
3345 b = ext4_block_bitmap(sb, gdp);
3346 if (b >= first_block && b <= last_block) {
3347 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3350 b = ext4_inode_bitmap(sb, gdp);
3351 if (b >= first_block && b <= last_block) {
3352 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3355 b = ext4_inode_table(sb, gdp);
3356 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3357 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3358 int c = EXT4_B2C(sbi, b - first_block);
3359 ext4_set_bit(c, buf);
3365 if (ext4_bg_has_super(sb, grp)) {
3366 ext4_set_bit(s++, buf);
3369 j = ext4_bg_num_gdb(sb, grp);
3370 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3371 ext4_error(sb, "Invalid number of block group "
3372 "descriptor blocks: %d", j);
3373 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3377 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3381 return EXT4_CLUSTERS_PER_GROUP(sb) -
3382 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3386 * Compute the overhead and stash it in sbi->s_overhead
3388 int ext4_calculate_overhead(struct super_block *sb)
3390 struct ext4_sb_info *sbi = EXT4_SB(sb);
3391 struct ext4_super_block *es = sbi->s_es;
3392 struct inode *j_inode;
3393 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3394 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3395 ext4_fsblk_t overhead = 0;
3396 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3402 * Compute the overhead (FS structures). This is constant
3403 * for a given filesystem unless the number of block groups
3404 * changes so we cache the previous value until it does.
3408 * All of the blocks before first_data_block are overhead
3410 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3413 * Add the overhead found in each block group
3415 for (i = 0; i < ngroups; i++) {
3418 blks = count_overhead(sb, i, buf);
3421 memset(buf, 0, PAGE_SIZE);
3426 * Add the internal journal blocks whether the journal has been
3429 if (sbi->s_journal && !sbi->journal_bdev)
3430 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3431 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3432 j_inode = ext4_get_journal_inode(sb, j_inum);
3434 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3435 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3438 ext4_msg(sb, KERN_ERR, "can't get journal size");
3441 sbi->s_overhead = overhead;
3443 free_page((unsigned long) buf);
3447 static void ext4_set_resv_clusters(struct super_block *sb)
3449 ext4_fsblk_t resv_clusters;
3450 struct ext4_sb_info *sbi = EXT4_SB(sb);
3453 * There's no need to reserve anything when we aren't using extents.
3454 * The space estimates are exact, there are no unwritten extents,
3455 * hole punching doesn't need new metadata... This is needed especially
3456 * to keep ext2/3 backward compatibility.
3458 if (!ext4_has_feature_extents(sb))
3461 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3462 * This should cover the situations where we can not afford to run
3463 * out of space like for example punch hole, or converting
3464 * unwritten extents in delalloc path. In most cases such
3465 * allocation would require 1, or 2 blocks, higher numbers are
3468 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3469 sbi->s_cluster_bits);
3471 do_div(resv_clusters, 50);
3472 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3474 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3477 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3479 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3480 char *orig_data = kstrdup(data, GFP_KERNEL);
3481 struct buffer_head *bh;
3482 struct ext4_super_block *es = NULL;
3483 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3485 ext4_fsblk_t sb_block = get_sb_block(&data);
3486 ext4_fsblk_t logical_sb_block;
3487 unsigned long offset = 0;
3488 unsigned long journal_devnum = 0;
3489 unsigned long def_mount_opts;
3493 int blocksize, clustersize;
3494 unsigned int db_count;
3496 int needs_recovery, has_huge_files, has_bigalloc;
3499 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3500 ext4_group_t first_not_zeroed;
3502 if ((data && !orig_data) || !sbi)
3505 sbi->s_daxdev = dax_dev;
3506 sbi->s_blockgroup_lock =
3507 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3508 if (!sbi->s_blockgroup_lock)
3511 sb->s_fs_info = sbi;
3513 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3514 sbi->s_sb_block = sb_block;
3515 if (sb->s_bdev->bd_part)
3516 sbi->s_sectors_written_start =
3517 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3519 /* Cleanup superblock name */
3520 strreplace(sb->s_id, '/', '!');
3522 /* -EINVAL is default */
3524 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3526 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3531 * The ext4 superblock will not be buffer aligned for other than 1kB
3532 * block sizes. We need to calculate the offset from buffer start.
3534 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3535 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3536 offset = do_div(logical_sb_block, blocksize);
3538 logical_sb_block = sb_block;
3541 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3542 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3546 * Note: s_es must be initialized as soon as possible because
3547 * some ext4 macro-instructions depend on its value
3549 es = (struct ext4_super_block *) (bh->b_data + offset);
3551 sb->s_magic = le16_to_cpu(es->s_magic);
3552 if (sb->s_magic != EXT4_SUPER_MAGIC)
3554 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3556 /* Warn if metadata_csum and gdt_csum are both set. */
3557 if (ext4_has_feature_metadata_csum(sb) &&
3558 ext4_has_feature_gdt_csum(sb))
3559 ext4_warning(sb, "metadata_csum and uninit_bg are "
3560 "redundant flags; please run fsck.");
3562 /* Check for a known checksum algorithm */
3563 if (!ext4_verify_csum_type(sb, es)) {
3564 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3565 "unknown checksum algorithm.");
3570 /* Load the checksum driver */
3571 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3572 if (IS_ERR(sbi->s_chksum_driver)) {
3573 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3574 ret = PTR_ERR(sbi->s_chksum_driver);
3575 sbi->s_chksum_driver = NULL;
3579 /* Check superblock checksum */
3580 if (!ext4_superblock_csum_verify(sb, es)) {
3581 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3582 "invalid superblock checksum. Run e2fsck?");
3588 /* Precompute checksum seed for all metadata */
3589 if (ext4_has_feature_csum_seed(sb))
3590 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3591 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3592 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3593 sizeof(es->s_uuid));
3595 /* Set defaults before we parse the mount options */
3596 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3597 set_opt(sb, INIT_INODE_TABLE);
3598 if (def_mount_opts & EXT4_DEFM_DEBUG)
3600 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3602 if (def_mount_opts & EXT4_DEFM_UID16)
3603 set_opt(sb, NO_UID32);
3604 /* xattr user namespace & acls are now defaulted on */
3605 set_opt(sb, XATTR_USER);
3606 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3607 set_opt(sb, POSIX_ACL);
3609 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3610 if (ext4_has_metadata_csum(sb))
3611 set_opt(sb, JOURNAL_CHECKSUM);
3613 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3614 set_opt(sb, JOURNAL_DATA);
3615 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3616 set_opt(sb, ORDERED_DATA);
3617 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3618 set_opt(sb, WRITEBACK_DATA);
3620 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3621 set_opt(sb, ERRORS_PANIC);
3622 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3623 set_opt(sb, ERRORS_CONT);
3625 set_opt(sb, ERRORS_RO);
3626 /* block_validity enabled by default; disable with noblock_validity */
3627 set_opt(sb, BLOCK_VALIDITY);
3628 if (def_mount_opts & EXT4_DEFM_DISCARD)
3629 set_opt(sb, DISCARD);
3631 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3632 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3633 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3634 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3635 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3637 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3638 set_opt(sb, BARRIER);
3641 * enable delayed allocation by default
3642 * Use -o nodelalloc to turn it off
3644 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3645 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3646 set_opt(sb, DELALLOC);
3649 * set default s_li_wait_mult for lazyinit, for the case there is
3650 * no mount option specified.
3652 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3654 if (sbi->s_es->s_mount_opts[0]) {
3655 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3656 sizeof(sbi->s_es->s_mount_opts),
3660 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3661 &journal_ioprio, 0)) {
3662 ext4_msg(sb, KERN_WARNING,
3663 "failed to parse options in superblock: %s",
3666 kfree(s_mount_opts);
3668 sbi->s_def_mount_opt = sbi->s_mount_opt;
3669 if (!parse_options((char *) data, sb, &journal_devnum,
3670 &journal_ioprio, 0))
3673 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3674 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3675 "with data=journal disables delayed "
3676 "allocation and O_DIRECT support!\n");
3677 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3678 ext4_msg(sb, KERN_ERR, "can't mount with "
3679 "both data=journal and delalloc");
3682 if (test_opt(sb, DIOREAD_NOLOCK)) {
3683 ext4_msg(sb, KERN_ERR, "can't mount with "
3684 "both data=journal and dioread_nolock");
3687 if (test_opt(sb, DAX)) {
3688 ext4_msg(sb, KERN_ERR, "can't mount with "
3689 "both data=journal and dax");
3692 if (ext4_has_feature_encrypt(sb)) {
3693 ext4_msg(sb, KERN_WARNING,
3694 "encrypted files will use data=ordered "
3695 "instead of data journaling mode");
3697 if (test_opt(sb, DELALLOC))
3698 clear_opt(sb, DELALLOC);
3700 sb->s_iflags |= SB_I_CGROUPWB;
3703 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3704 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3706 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3707 (ext4_has_compat_features(sb) ||
3708 ext4_has_ro_compat_features(sb) ||
3709 ext4_has_incompat_features(sb)))
3710 ext4_msg(sb, KERN_WARNING,
3711 "feature flags set on rev 0 fs, "
3712 "running e2fsck is recommended");
3714 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3715 set_opt2(sb, HURD_COMPAT);
3716 if (ext4_has_feature_64bit(sb)) {
3717 ext4_msg(sb, KERN_ERR,
3718 "The Hurd can't support 64-bit file systems");
3723 * ea_inode feature uses l_i_version field which is not
3724 * available in HURD_COMPAT mode.
3726 if (ext4_has_feature_ea_inode(sb)) {
3727 ext4_msg(sb, KERN_ERR,
3728 "ea_inode feature is not supported for Hurd");
3733 if (IS_EXT2_SB(sb)) {
3734 if (ext2_feature_set_ok(sb))
3735 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3736 "using the ext4 subsystem");
3739 * If we're probing be silent, if this looks like
3740 * it's actually an ext[34] filesystem.
3742 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3744 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3745 "to feature incompatibilities");
3750 if (IS_EXT3_SB(sb)) {
3751 if (ext3_feature_set_ok(sb))
3752 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3753 "using the ext4 subsystem");
3756 * If we're probing be silent, if this looks like
3757 * it's actually an ext4 filesystem.
3759 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3761 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3762 "to feature incompatibilities");
3768 * Check feature flags regardless of the revision level, since we
3769 * previously didn't change the revision level when setting the flags,
3770 * so there is a chance incompat flags are set on a rev 0 filesystem.
3772 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3775 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3776 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3777 blocksize > EXT4_MAX_BLOCK_SIZE) {
3778 ext4_msg(sb, KERN_ERR,
3779 "Unsupported filesystem blocksize %d (%d log_block_size)",
3780 blocksize, le32_to_cpu(es->s_log_block_size));
3783 if (le32_to_cpu(es->s_log_block_size) >
3784 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3785 ext4_msg(sb, KERN_ERR,
3786 "Invalid log block size: %u",
3787 le32_to_cpu(es->s_log_block_size));
3790 if (le32_to_cpu(es->s_log_cluster_size) >
3791 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3792 ext4_msg(sb, KERN_ERR,
3793 "Invalid log cluster size: %u",
3794 le32_to_cpu(es->s_log_cluster_size));
3798 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3799 ext4_msg(sb, KERN_ERR,
3800 "Number of reserved GDT blocks insanely large: %d",
3801 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3805 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3806 if (ext4_has_feature_inline_data(sb)) {
3807 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3808 " that may contain inline data");
3809 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3811 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3812 ext4_msg(sb, KERN_ERR,
3813 "DAX unsupported by block device. Turning off DAX.");
3814 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3818 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3819 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3820 es->s_encryption_level);
3824 if (sb->s_blocksize != blocksize) {
3825 /* Validate the filesystem blocksize */
3826 if (!sb_set_blocksize(sb, blocksize)) {
3827 ext4_msg(sb, KERN_ERR, "bad block size %d",
3833 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3834 offset = do_div(logical_sb_block, blocksize);
3835 bh = sb_bread_unmovable(sb, logical_sb_block);
3837 ext4_msg(sb, KERN_ERR,
3838 "Can't read superblock on 2nd try");
3841 es = (struct ext4_super_block *)(bh->b_data + offset);
3843 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3844 ext4_msg(sb, KERN_ERR,
3845 "Magic mismatch, very weird!");
3850 has_huge_files = ext4_has_feature_huge_file(sb);
3851 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3853 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3855 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3856 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3857 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3859 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3860 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3861 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3862 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3866 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3867 (!is_power_of_2(sbi->s_inode_size)) ||
3868 (sbi->s_inode_size > blocksize)) {
3869 ext4_msg(sb, KERN_ERR,
3870 "unsupported inode size: %d",
3874 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3875 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3878 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3879 if (ext4_has_feature_64bit(sb)) {
3880 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3881 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3882 !is_power_of_2(sbi->s_desc_size)) {
3883 ext4_msg(sb, KERN_ERR,
3884 "unsupported descriptor size %lu",
3889 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3891 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3892 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3894 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3895 if (sbi->s_inodes_per_block == 0)
3897 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3898 sbi->s_inodes_per_group > blocksize * 8) {
3899 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3900 sbi->s_blocks_per_group);
3903 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3904 sbi->s_inodes_per_block;
3905 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3907 sbi->s_mount_state = le16_to_cpu(es->s_state);
3908 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3909 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3911 for (i = 0; i < 4; i++)
3912 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3913 sbi->s_def_hash_version = es->s_def_hash_version;
3914 if (ext4_has_feature_dir_index(sb)) {
3915 i = le32_to_cpu(es->s_flags);
3916 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3917 sbi->s_hash_unsigned = 3;
3918 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3919 #ifdef __CHAR_UNSIGNED__
3922 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3923 sbi->s_hash_unsigned = 3;
3927 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3932 /* Handle clustersize */
3933 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3934 has_bigalloc = ext4_has_feature_bigalloc(sb);
3936 if (clustersize < blocksize) {
3937 ext4_msg(sb, KERN_ERR,
3938 "cluster size (%d) smaller than "
3939 "block size (%d)", clustersize, blocksize);
3942 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3943 le32_to_cpu(es->s_log_block_size);
3944 sbi->s_clusters_per_group =
3945 le32_to_cpu(es->s_clusters_per_group);
3946 if (sbi->s_clusters_per_group > blocksize * 8) {
3947 ext4_msg(sb, KERN_ERR,
3948 "#clusters per group too big: %lu",
3949 sbi->s_clusters_per_group);
3952 if (sbi->s_blocks_per_group !=
3953 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3954 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3955 "clusters per group (%lu) inconsistent",
3956 sbi->s_blocks_per_group,
3957 sbi->s_clusters_per_group);
3961 if (clustersize != blocksize) {
3962 ext4_msg(sb, KERN_ERR,
3963 "fragment/cluster size (%d) != "
3964 "block size (%d)", clustersize, blocksize);
3967 if (sbi->s_blocks_per_group > blocksize * 8) {
3968 ext4_msg(sb, KERN_ERR,
3969 "#blocks per group too big: %lu",
3970 sbi->s_blocks_per_group);
3973 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3974 sbi->s_cluster_bits = 0;
3976 sbi->s_cluster_ratio = clustersize / blocksize;
3978 /* Do we have standard group size of clustersize * 8 blocks ? */
3979 if (sbi->s_blocks_per_group == clustersize << 3)
3980 set_opt2(sb, STD_GROUP_SIZE);
3983 * Test whether we have more sectors than will fit in sector_t,
3984 * and whether the max offset is addressable by the page cache.
3986 err = generic_check_addressable(sb->s_blocksize_bits,
3987 ext4_blocks_count(es));
3989 ext4_msg(sb, KERN_ERR, "filesystem"
3990 " too large to mount safely on this system");
3991 if (sizeof(sector_t) < 8)
3992 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3996 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3999 /* check blocks count against device size */
4000 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4001 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4002 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4003 "exceeds size of device (%llu blocks)",
4004 ext4_blocks_count(es), blocks_count);
4009 * It makes no sense for the first data block to be beyond the end
4010 * of the filesystem.
4012 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4013 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4014 "block %u is beyond end of filesystem (%llu)",
4015 le32_to_cpu(es->s_first_data_block),
4016 ext4_blocks_count(es));
4019 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4020 (sbi->s_cluster_ratio == 1)) {
4021 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4022 "block is 0 with a 1k block and cluster size");
4026 blocks_count = (ext4_blocks_count(es) -
4027 le32_to_cpu(es->s_first_data_block) +
4028 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4029 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4030 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4031 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4032 "(block count %llu, first data block %u, "
4033 "blocks per group %lu)", sbi->s_groups_count,
4034 ext4_blocks_count(es),
4035 le32_to_cpu(es->s_first_data_block),
4036 EXT4_BLOCKS_PER_GROUP(sb));
4039 sbi->s_groups_count = blocks_count;
4040 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4041 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4042 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4043 EXT4_DESC_PER_BLOCK(sb);
4044 if (ext4_has_feature_meta_bg(sb)) {
4045 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4046 ext4_msg(sb, KERN_WARNING,
4047 "first meta block group too large: %u "
4048 "(group descriptor block count %u)",
4049 le32_to_cpu(es->s_first_meta_bg), db_count);
4053 sbi->s_group_desc = kvmalloc_array(db_count,
4054 sizeof(struct buffer_head *),
4056 if (sbi->s_group_desc == NULL) {
4057 ext4_msg(sb, KERN_ERR, "not enough memory");
4061 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4062 le32_to_cpu(es->s_inodes_count)) {
4063 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4064 le32_to_cpu(es->s_inodes_count),
4065 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4070 bgl_lock_init(sbi->s_blockgroup_lock);
4072 /* Pre-read the descriptors into the buffer cache */
4073 for (i = 0; i < db_count; i++) {
4074 block = descriptor_loc(sb, logical_sb_block, i);
4075 sb_breadahead(sb, block);
4078 for (i = 0; i < db_count; i++) {
4079 block = descriptor_loc(sb, logical_sb_block, i);
4080 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4081 if (!sbi->s_group_desc[i]) {
4082 ext4_msg(sb, KERN_ERR,
4083 "can't read group descriptor %d", i);
4088 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4089 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4090 ret = -EFSCORRUPTED;
4094 sbi->s_gdb_count = db_count;
4096 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4098 /* Register extent status tree shrinker */
4099 if (ext4_es_register_shrinker(sbi))
4102 sbi->s_stripe = ext4_get_stripe_size(sbi);
4103 sbi->s_extent_max_zeroout_kb = 32;
4106 * set up enough so that it can read an inode
4108 sb->s_op = &ext4_sops;
4109 sb->s_export_op = &ext4_export_ops;
4110 sb->s_xattr = ext4_xattr_handlers;
4111 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4112 sb->s_cop = &ext4_cryptops;
4115 sb->dq_op = &ext4_quota_operations;
4116 if (ext4_has_feature_quota(sb))
4117 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4119 sb->s_qcop = &ext4_qctl_operations;
4120 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4122 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4124 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4125 mutex_init(&sbi->s_orphan_lock);
4129 needs_recovery = (es->s_last_orphan != 0 ||
4130 ext4_has_feature_journal_needs_recovery(sb));
4132 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4133 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4134 goto failed_mount3a;
4137 * The first inode we look at is the journal inode. Don't try
4138 * root first: it may be modified in the journal!
4140 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4141 err = ext4_load_journal(sb, es, journal_devnum);
4143 goto failed_mount3a;
4144 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4145 ext4_has_feature_journal_needs_recovery(sb)) {
4146 ext4_msg(sb, KERN_ERR, "required journal recovery "
4147 "suppressed and not mounted read-only");
4148 goto failed_mount_wq;
4150 /* Nojournal mode, all journal mount options are illegal */
4151 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4152 ext4_msg(sb, KERN_ERR, "can't mount with "
4153 "journal_checksum, fs mounted w/o journal");
4154 goto failed_mount_wq;
4156 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4157 ext4_msg(sb, KERN_ERR, "can't mount with "
4158 "journal_async_commit, fs mounted w/o journal");
4159 goto failed_mount_wq;
4161 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4162 ext4_msg(sb, KERN_ERR, "can't mount with "
4163 "commit=%lu, fs mounted w/o journal",
4164 sbi->s_commit_interval / HZ);
4165 goto failed_mount_wq;
4167 if (EXT4_MOUNT_DATA_FLAGS &
4168 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4169 ext4_msg(sb, KERN_ERR, "can't mount with "
4170 "data=, fs mounted w/o journal");
4171 goto failed_mount_wq;
4173 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4174 clear_opt(sb, JOURNAL_CHECKSUM);
4175 clear_opt(sb, DATA_FLAGS);
4176 sbi->s_journal = NULL;
4181 if (ext4_has_feature_64bit(sb) &&
4182 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4183 JBD2_FEATURE_INCOMPAT_64BIT)) {
4184 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4185 goto failed_mount_wq;
4188 if (!set_journal_csum_feature_set(sb)) {
4189 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4191 goto failed_mount_wq;
4194 /* We have now updated the journal if required, so we can
4195 * validate the data journaling mode. */
4196 switch (test_opt(sb, DATA_FLAGS)) {
4198 /* No mode set, assume a default based on the journal
4199 * capabilities: ORDERED_DATA if the journal can
4200 * cope, else JOURNAL_DATA
4202 if (jbd2_journal_check_available_features
4203 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4204 set_opt(sb, ORDERED_DATA);
4205 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4207 set_opt(sb, JOURNAL_DATA);
4208 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4212 case EXT4_MOUNT_ORDERED_DATA:
4213 case EXT4_MOUNT_WRITEBACK_DATA:
4214 if (!jbd2_journal_check_available_features
4215 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4216 ext4_msg(sb, KERN_ERR, "Journal does not support "
4217 "requested data journaling mode");
4218 goto failed_mount_wq;
4224 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4225 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4226 ext4_msg(sb, KERN_ERR, "can't mount with "
4227 "journal_async_commit in data=ordered mode");
4228 goto failed_mount_wq;
4231 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4233 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4236 if (!test_opt(sb, NO_MBCACHE)) {
4237 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4238 if (!sbi->s_ea_block_cache) {
4239 ext4_msg(sb, KERN_ERR,
4240 "Failed to create ea_block_cache");
4241 goto failed_mount_wq;
4244 if (ext4_has_feature_ea_inode(sb)) {
4245 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4246 if (!sbi->s_ea_inode_cache) {
4247 ext4_msg(sb, KERN_ERR,
4248 "Failed to create ea_inode_cache");
4249 goto failed_mount_wq;
4254 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4255 (blocksize != PAGE_SIZE)) {
4256 ext4_msg(sb, KERN_ERR,
4257 "Unsupported blocksize for fs encryption");
4258 goto failed_mount_wq;
4261 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4262 !ext4_has_feature_encrypt(sb)) {
4263 ext4_set_feature_encrypt(sb);
4264 ext4_commit_super(sb, 1);
4268 * Get the # of file system overhead blocks from the
4269 * superblock if present.
4271 if (es->s_overhead_clusters)
4272 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4274 err = ext4_calculate_overhead(sb);
4276 goto failed_mount_wq;
4280 * The maximum number of concurrent works can be high and
4281 * concurrency isn't really necessary. Limit it to 1.
4283 EXT4_SB(sb)->rsv_conversion_wq =
4284 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4285 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4286 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4292 * The jbd2_journal_load will have done any necessary log recovery,
4293 * so we can safely mount the rest of the filesystem now.
4296 root = ext4_iget(sb, EXT4_ROOT_INO);
4298 ext4_msg(sb, KERN_ERR, "get root inode failed");
4299 ret = PTR_ERR(root);
4303 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4304 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4308 sb->s_root = d_make_root(root);
4310 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4315 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4316 if (ret == -EROFS) {
4317 sb->s_flags |= SB_RDONLY;
4320 goto failed_mount4a;
4322 /* determine the minimum size of new large inodes, if present */
4323 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4324 sbi->s_want_extra_isize == 0) {
4325 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4326 EXT4_GOOD_OLD_INODE_SIZE;
4327 if (ext4_has_feature_extra_isize(sb)) {
4328 if (sbi->s_want_extra_isize <
4329 le16_to_cpu(es->s_want_extra_isize))
4330 sbi->s_want_extra_isize =
4331 le16_to_cpu(es->s_want_extra_isize);
4332 if (sbi->s_want_extra_isize <
4333 le16_to_cpu(es->s_min_extra_isize))
4334 sbi->s_want_extra_isize =
4335 le16_to_cpu(es->s_min_extra_isize);
4338 /* Check if enough inode space is available */
4339 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4340 sbi->s_inode_size) {
4341 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4342 EXT4_GOOD_OLD_INODE_SIZE;
4343 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4347 ext4_set_resv_clusters(sb);
4349 err = ext4_setup_system_zone(sb);
4351 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4353 goto failed_mount4a;
4357 err = ext4_mb_init(sb);
4359 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4364 block = ext4_count_free_clusters(sb);
4365 ext4_free_blocks_count_set(sbi->s_es,
4366 EXT4_C2B(sbi, block));
4367 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4370 unsigned long freei = ext4_count_free_inodes(sb);
4371 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4372 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4376 err = percpu_counter_init(&sbi->s_dirs_counter,
4377 ext4_count_dirs(sb), GFP_KERNEL);
4379 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4382 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4385 ext4_msg(sb, KERN_ERR, "insufficient memory");
4389 if (ext4_has_feature_flex_bg(sb))
4390 if (!ext4_fill_flex_info(sb)) {
4391 ext4_msg(sb, KERN_ERR,
4392 "unable to initialize "
4393 "flex_bg meta info!");
4397 err = ext4_register_li_request(sb, first_not_zeroed);
4401 err = ext4_register_sysfs(sb);
4406 /* Enable quota usage during mount. */
4407 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4408 err = ext4_enable_quotas(sb);
4412 #endif /* CONFIG_QUOTA */
4414 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4415 ext4_orphan_cleanup(sb, es);
4416 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4417 if (needs_recovery) {
4418 ext4_msg(sb, KERN_INFO, "recovery complete");
4419 ext4_mark_recovery_complete(sb, es);
4421 if (EXT4_SB(sb)->s_journal) {
4422 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4423 descr = " journalled data mode";
4424 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4425 descr = " ordered data mode";
4427 descr = " writeback data mode";
4429 descr = "out journal";
4431 if (test_opt(sb, DISCARD)) {
4432 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4433 if (!blk_queue_discard(q))
4434 ext4_msg(sb, KERN_WARNING,
4435 "mounting with \"discard\" option, but "
4436 "the device does not support discard");
4439 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4440 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4441 "Opts: %.*s%s%s", descr,
4442 (int) sizeof(sbi->s_es->s_mount_opts),
4443 sbi->s_es->s_mount_opts,
4444 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4446 if (es->s_error_count)
4447 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4449 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4450 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4451 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4452 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4459 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4464 ext4_unregister_sysfs(sb);
4467 ext4_unregister_li_request(sb);
4469 ext4_mb_release(sb);
4470 if (sbi->s_flex_groups)
4471 kvfree(sbi->s_flex_groups);
4472 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4473 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4474 percpu_counter_destroy(&sbi->s_dirs_counter);
4475 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4477 ext4_ext_release(sb);
4478 ext4_release_system_zone(sb);
4483 ext4_msg(sb, KERN_ERR, "mount failed");
4484 if (EXT4_SB(sb)->rsv_conversion_wq)
4485 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4487 if (sbi->s_ea_inode_cache) {
4488 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4489 sbi->s_ea_inode_cache = NULL;
4491 if (sbi->s_ea_block_cache) {
4492 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4493 sbi->s_ea_block_cache = NULL;
4495 if (sbi->s_journal) {
4496 jbd2_journal_destroy(sbi->s_journal);
4497 sbi->s_journal = NULL;
4500 ext4_es_unregister_shrinker(sbi);
4502 del_timer_sync(&sbi->s_err_report);
4504 kthread_stop(sbi->s_mmp_tsk);
4506 for (i = 0; i < db_count; i++)
4507 brelse(sbi->s_group_desc[i]);
4508 kvfree(sbi->s_group_desc);
4510 if (sbi->s_chksum_driver)
4511 crypto_free_shash(sbi->s_chksum_driver);
4513 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4514 kfree(sbi->s_qf_names[i]);
4516 ext4_blkdev_remove(sbi);
4519 sb->s_fs_info = NULL;
4520 kfree(sbi->s_blockgroup_lock);
4524 fs_put_dax(dax_dev);
4525 return err ? err : ret;
4529 * Setup any per-fs journal parameters now. We'll do this both on
4530 * initial mount, once the journal has been initialised but before we've
4531 * done any recovery; and again on any subsequent remount.
4533 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4535 struct ext4_sb_info *sbi = EXT4_SB(sb);
4537 journal->j_commit_interval = sbi->s_commit_interval;
4538 journal->j_min_batch_time = sbi->s_min_batch_time;
4539 journal->j_max_batch_time = sbi->s_max_batch_time;
4541 write_lock(&journal->j_state_lock);
4542 if (test_opt(sb, BARRIER))
4543 journal->j_flags |= JBD2_BARRIER;
4545 journal->j_flags &= ~JBD2_BARRIER;
4546 if (test_opt(sb, DATA_ERR_ABORT))
4547 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4549 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4550 write_unlock(&journal->j_state_lock);
4553 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4554 unsigned int journal_inum)
4556 struct inode *journal_inode;
4559 * Test for the existence of a valid inode on disk. Bad things
4560 * happen if we iget() an unused inode, as the subsequent iput()
4561 * will try to delete it.
4563 journal_inode = ext4_iget(sb, journal_inum);
4564 if (IS_ERR(journal_inode)) {
4565 ext4_msg(sb, KERN_ERR, "no journal found");
4568 if (!journal_inode->i_nlink) {
4569 make_bad_inode(journal_inode);
4570 iput(journal_inode);
4571 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4575 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4576 journal_inode, journal_inode->i_size);
4577 if (!S_ISREG(journal_inode->i_mode)) {
4578 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4579 iput(journal_inode);
4582 return journal_inode;
4585 static journal_t *ext4_get_journal(struct super_block *sb,
4586 unsigned int journal_inum)
4588 struct inode *journal_inode;
4591 BUG_ON(!ext4_has_feature_journal(sb));
4593 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4597 journal = jbd2_journal_init_inode(journal_inode);
4599 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4600 iput(journal_inode);
4603 journal->j_private = sb;
4604 ext4_init_journal_params(sb, journal);
4608 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4611 struct buffer_head *bh;
4615 int hblock, blocksize;
4616 ext4_fsblk_t sb_block;
4617 unsigned long offset;
4618 struct ext4_super_block *es;
4619 struct block_device *bdev;
4621 BUG_ON(!ext4_has_feature_journal(sb));
4623 bdev = ext4_blkdev_get(j_dev, sb);
4627 blocksize = sb->s_blocksize;
4628 hblock = bdev_logical_block_size(bdev);
4629 if (blocksize < hblock) {
4630 ext4_msg(sb, KERN_ERR,
4631 "blocksize too small for journal device");
4635 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4636 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4637 set_blocksize(bdev, blocksize);
4638 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4639 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4640 "external journal");
4644 es = (struct ext4_super_block *) (bh->b_data + offset);
4645 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4646 !(le32_to_cpu(es->s_feature_incompat) &
4647 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4648 ext4_msg(sb, KERN_ERR, "external journal has "
4654 if ((le32_to_cpu(es->s_feature_ro_compat) &
4655 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4656 es->s_checksum != ext4_superblock_csum(sb, es)) {
4657 ext4_msg(sb, KERN_ERR, "external journal has "
4658 "corrupt superblock");
4663 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4664 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4669 len = ext4_blocks_count(es);
4670 start = sb_block + 1;
4671 brelse(bh); /* we're done with the superblock */
4673 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4674 start, len, blocksize);
4676 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4679 journal->j_private = sb;
4680 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4681 wait_on_buffer(journal->j_sb_buffer);
4682 if (!buffer_uptodate(journal->j_sb_buffer)) {
4683 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4686 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4687 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4688 "user (unsupported) - %d",
4689 be32_to_cpu(journal->j_superblock->s_nr_users));
4692 EXT4_SB(sb)->journal_bdev = bdev;
4693 ext4_init_journal_params(sb, journal);
4697 jbd2_journal_destroy(journal);
4699 ext4_blkdev_put(bdev);
4703 static int ext4_load_journal(struct super_block *sb,
4704 struct ext4_super_block *es,
4705 unsigned long journal_devnum)
4708 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4711 int really_read_only;
4713 BUG_ON(!ext4_has_feature_journal(sb));
4715 if (journal_devnum &&
4716 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4717 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4718 "numbers have changed");
4719 journal_dev = new_decode_dev(journal_devnum);
4721 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4723 really_read_only = bdev_read_only(sb->s_bdev);
4726 * Are we loading a blank journal or performing recovery after a
4727 * crash? For recovery, we need to check in advance whether we
4728 * can get read-write access to the device.
4730 if (ext4_has_feature_journal_needs_recovery(sb)) {
4731 if (sb_rdonly(sb)) {
4732 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4733 "required on readonly filesystem");
4734 if (really_read_only) {
4735 ext4_msg(sb, KERN_ERR, "write access "
4736 "unavailable, cannot proceed "
4737 "(try mounting with noload)");
4740 ext4_msg(sb, KERN_INFO, "write access will "
4741 "be enabled during recovery");
4745 if (journal_inum && journal_dev) {
4746 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4747 "and inode journals!");
4752 if (!(journal = ext4_get_journal(sb, journal_inum)))
4755 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4759 if (!(journal->j_flags & JBD2_BARRIER))
4760 ext4_msg(sb, KERN_INFO, "barriers disabled");
4762 if (!ext4_has_feature_journal_needs_recovery(sb))
4763 err = jbd2_journal_wipe(journal, !really_read_only);
4765 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4767 memcpy(save, ((char *) es) +
4768 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4769 err = jbd2_journal_load(journal);
4771 memcpy(((char *) es) + EXT4_S_ERR_START,
4772 save, EXT4_S_ERR_LEN);
4777 ext4_msg(sb, KERN_ERR, "error loading journal");
4778 jbd2_journal_destroy(journal);
4782 EXT4_SB(sb)->s_journal = journal;
4783 ext4_clear_journal_err(sb, es);
4785 if (!really_read_only && journal_devnum &&
4786 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4787 es->s_journal_dev = cpu_to_le32(journal_devnum);
4789 /* Make sure we flush the recovery flag to disk. */
4790 ext4_commit_super(sb, 1);
4796 static int ext4_commit_super(struct super_block *sb, int sync)
4798 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4799 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4802 if (!sbh || block_device_ejected(sb))
4806 * The superblock bh should be mapped, but it might not be if the
4807 * device was hot-removed. Not much we can do but fail the I/O.
4809 if (!buffer_mapped(sbh))
4813 * If the file system is mounted read-only, don't update the
4814 * superblock write time. This avoids updating the superblock
4815 * write time when we are mounting the root file system
4816 * read/only but we need to replay the journal; at that point,
4817 * for people who are east of GMT and who make their clock
4818 * tick in localtime for Windows bug-for-bug compatibility,
4819 * the clock is set in the future, and this will cause e2fsck
4820 * to complain and force a full file system check.
4822 if (!(sb->s_flags & SB_RDONLY))
4823 es->s_wtime = cpu_to_le32(get_seconds());
4824 if (sb->s_bdev->bd_part)
4825 es->s_kbytes_written =
4826 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4827 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4828 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4830 es->s_kbytes_written =
4831 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4832 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4833 ext4_free_blocks_count_set(es,
4834 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4835 &EXT4_SB(sb)->s_freeclusters_counter)));
4836 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4837 es->s_free_inodes_count =
4838 cpu_to_le32(percpu_counter_sum_positive(
4839 &EXT4_SB(sb)->s_freeinodes_counter));
4840 BUFFER_TRACE(sbh, "marking dirty");
4841 ext4_superblock_csum_set(sb);
4844 if (buffer_write_io_error(sbh)) {
4846 * Oh, dear. A previous attempt to write the
4847 * superblock failed. This could happen because the
4848 * USB device was yanked out. Or it could happen to
4849 * be a transient write error and maybe the block will
4850 * be remapped. Nothing we can do but to retry the
4851 * write and hope for the best.
4853 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4854 "superblock detected");
4855 clear_buffer_write_io_error(sbh);
4856 set_buffer_uptodate(sbh);
4858 mark_buffer_dirty(sbh);
4861 error = __sync_dirty_buffer(sbh,
4862 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4863 if (buffer_write_io_error(sbh)) {
4864 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4866 clear_buffer_write_io_error(sbh);
4867 set_buffer_uptodate(sbh);
4874 * Have we just finished recovery? If so, and if we are mounting (or
4875 * remounting) the filesystem readonly, then we will end up with a
4876 * consistent fs on disk. Record that fact.
4878 static void ext4_mark_recovery_complete(struct super_block *sb,
4879 struct ext4_super_block *es)
4881 journal_t *journal = EXT4_SB(sb)->s_journal;
4883 if (!ext4_has_feature_journal(sb)) {
4884 BUG_ON(journal != NULL);
4887 jbd2_journal_lock_updates(journal);
4888 if (jbd2_journal_flush(journal) < 0)
4891 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4892 ext4_clear_feature_journal_needs_recovery(sb);
4893 ext4_commit_super(sb, 1);
4897 jbd2_journal_unlock_updates(journal);
4901 * If we are mounting (or read-write remounting) a filesystem whose journal
4902 * has recorded an error from a previous lifetime, move that error to the
4903 * main filesystem now.
4905 static void ext4_clear_journal_err(struct super_block *sb,
4906 struct ext4_super_block *es)
4912 BUG_ON(!ext4_has_feature_journal(sb));
4914 journal = EXT4_SB(sb)->s_journal;
4917 * Now check for any error status which may have been recorded in the
4918 * journal by a prior ext4_error() or ext4_abort()
4921 j_errno = jbd2_journal_errno(journal);
4925 errstr = ext4_decode_error(sb, j_errno, nbuf);
4926 ext4_warning(sb, "Filesystem error recorded "
4927 "from previous mount: %s", errstr);
4928 ext4_warning(sb, "Marking fs in need of filesystem check.");
4930 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4931 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4932 ext4_commit_super(sb, 1);
4934 jbd2_journal_clear_err(journal);
4935 jbd2_journal_update_sb_errno(journal);
4940 * Force the running and committing transactions to commit,
4941 * and wait on the commit.
4943 int ext4_force_commit(struct super_block *sb)
4950 journal = EXT4_SB(sb)->s_journal;
4951 return ext4_journal_force_commit(journal);
4954 static int ext4_sync_fs(struct super_block *sb, int wait)
4958 bool needs_barrier = false;
4959 struct ext4_sb_info *sbi = EXT4_SB(sb);
4961 if (unlikely(ext4_forced_shutdown(sbi)))
4964 trace_ext4_sync_fs(sb, wait);
4965 flush_workqueue(sbi->rsv_conversion_wq);
4967 * Writeback quota in non-journalled quota case - journalled quota has
4970 dquot_writeback_dquots(sb, -1);
4972 * Data writeback is possible w/o journal transaction, so barrier must
4973 * being sent at the end of the function. But we can skip it if
4974 * transaction_commit will do it for us.
4976 if (sbi->s_journal) {
4977 target = jbd2_get_latest_transaction(sbi->s_journal);
4978 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4979 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4980 needs_barrier = true;
4982 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4984 ret = jbd2_log_wait_commit(sbi->s_journal,
4987 } else if (wait && test_opt(sb, BARRIER))
4988 needs_barrier = true;
4989 if (needs_barrier) {
4991 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5000 * LVM calls this function before a (read-only) snapshot is created. This
5001 * gives us a chance to flush the journal completely and mark the fs clean.
5003 * Note that only this function cannot bring a filesystem to be in a clean
5004 * state independently. It relies on upper layer to stop all data & metadata
5007 static int ext4_freeze(struct super_block *sb)
5015 journal = EXT4_SB(sb)->s_journal;
5018 /* Now we set up the journal barrier. */
5019 jbd2_journal_lock_updates(journal);
5022 * Don't clear the needs_recovery flag if we failed to
5023 * flush the journal.
5025 error = jbd2_journal_flush(journal);
5029 /* Journal blocked and flushed, clear needs_recovery flag. */
5030 ext4_clear_feature_journal_needs_recovery(sb);
5033 error = ext4_commit_super(sb, 1);
5036 /* we rely on upper layer to stop further updates */
5037 jbd2_journal_unlock_updates(journal);
5042 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5043 * flag here, even though the filesystem is not technically dirty yet.
5045 static int ext4_unfreeze(struct super_block *sb)
5047 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5050 if (EXT4_SB(sb)->s_journal) {
5051 /* Reset the needs_recovery flag before the fs is unlocked. */
5052 ext4_set_feature_journal_needs_recovery(sb);
5055 ext4_commit_super(sb, 1);
5060 * Structure to save mount options for ext4_remount's benefit
5062 struct ext4_mount_options {
5063 unsigned long s_mount_opt;
5064 unsigned long s_mount_opt2;
5067 unsigned long s_commit_interval;
5068 u32 s_min_batch_time, s_max_batch_time;
5071 char *s_qf_names[EXT4_MAXQUOTAS];
5075 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5077 struct ext4_super_block *es;
5078 struct ext4_sb_info *sbi = EXT4_SB(sb);
5079 unsigned long old_sb_flags;
5080 struct ext4_mount_options old_opts;
5081 int enable_quota = 0;
5083 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5088 char *orig_data = kstrdup(data, GFP_KERNEL);
5090 /* Store the original options */
5091 old_sb_flags = sb->s_flags;
5092 old_opts.s_mount_opt = sbi->s_mount_opt;
5093 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5094 old_opts.s_resuid = sbi->s_resuid;
5095 old_opts.s_resgid = sbi->s_resgid;
5096 old_opts.s_commit_interval = sbi->s_commit_interval;
5097 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5098 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5100 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5101 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5102 if (sbi->s_qf_names[i]) {
5103 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5105 if (!old_opts.s_qf_names[i]) {
5106 for (j = 0; j < i; j++)
5107 kfree(old_opts.s_qf_names[j]);
5112 old_opts.s_qf_names[i] = NULL;
5114 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5115 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5117 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5122 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5123 test_opt(sb, JOURNAL_CHECKSUM)) {
5124 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5125 "during remount not supported; ignoring");
5126 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5129 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5130 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5131 ext4_msg(sb, KERN_ERR, "can't mount with "
5132 "both data=journal and delalloc");
5136 if (test_opt(sb, DIOREAD_NOLOCK)) {
5137 ext4_msg(sb, KERN_ERR, "can't mount with "
5138 "both data=journal and dioread_nolock");
5142 if (test_opt(sb, DAX)) {
5143 ext4_msg(sb, KERN_ERR, "can't mount with "
5144 "both data=journal and dax");
5148 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5149 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5150 ext4_msg(sb, KERN_ERR, "can't mount with "
5151 "journal_async_commit in data=ordered mode");
5157 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5158 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5163 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5164 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5165 "dax flag with busy inodes while remounting");
5166 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5169 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5170 ext4_abort(sb, "Abort forced by user");
5172 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5173 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5177 if (sbi->s_journal) {
5178 ext4_init_journal_params(sb, sbi->s_journal);
5179 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5182 if (*flags & SB_LAZYTIME)
5183 sb->s_flags |= SB_LAZYTIME;
5185 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5186 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5191 if (*flags & SB_RDONLY) {
5192 err = sync_filesystem(sb);
5195 err = dquot_suspend(sb, -1);
5200 * First of all, the unconditional stuff we have to do
5201 * to disable replay of the journal when we next remount
5203 sb->s_flags |= SB_RDONLY;
5206 * OK, test if we are remounting a valid rw partition
5207 * readonly, and if so set the rdonly flag and then
5208 * mark the partition as valid again.
5210 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5211 (sbi->s_mount_state & EXT4_VALID_FS))
5212 es->s_state = cpu_to_le16(sbi->s_mount_state);
5215 ext4_mark_recovery_complete(sb, es);
5217 /* Make sure we can mount this feature set readwrite */
5218 if (ext4_has_feature_readonly(sb) ||
5219 !ext4_feature_set_ok(sb, 0)) {
5224 * Make sure the group descriptor checksums
5225 * are sane. If they aren't, refuse to remount r/w.
5227 for (g = 0; g < sbi->s_groups_count; g++) {
5228 struct ext4_group_desc *gdp =
5229 ext4_get_group_desc(sb, g, NULL);
5231 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5232 ext4_msg(sb, KERN_ERR,
5233 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5234 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5235 le16_to_cpu(gdp->bg_checksum));
5242 * If we have an unprocessed orphan list hanging
5243 * around from a previously readonly bdev mount,
5244 * require a full umount/remount for now.
5246 if (es->s_last_orphan) {
5247 ext4_msg(sb, KERN_WARNING, "Couldn't "
5248 "remount RDWR because of unprocessed "
5249 "orphan inode list. Please "
5250 "umount/remount instead");
5256 * Mounting a RDONLY partition read-write, so reread
5257 * and store the current valid flag. (It may have
5258 * been changed by e2fsck since we originally mounted
5262 ext4_clear_journal_err(sb, es);
5263 sbi->s_mount_state = le16_to_cpu(es->s_state);
5265 err = ext4_setup_super(sb, es, 0);
5269 sb->s_flags &= ~SB_RDONLY;
5270 if (ext4_has_feature_mmp(sb))
5271 if (ext4_multi_mount_protect(sb,
5272 le64_to_cpu(es->s_mmp_block))) {
5281 * Reinitialize lazy itable initialization thread based on
5284 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5285 ext4_unregister_li_request(sb);
5287 ext4_group_t first_not_zeroed;
5288 first_not_zeroed = ext4_has_uninit_itable(sb);
5289 ext4_register_li_request(sb, first_not_zeroed);
5292 ext4_setup_system_zone(sb);
5293 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5294 err = ext4_commit_super(sb, 1);
5300 /* Release old quota file names */
5301 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5302 kfree(old_opts.s_qf_names[i]);
5304 if (sb_any_quota_suspended(sb))
5305 dquot_resume(sb, -1);
5306 else if (ext4_has_feature_quota(sb)) {
5307 err = ext4_enable_quotas(sb);
5314 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5315 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5320 sb->s_flags = old_sb_flags;
5321 sbi->s_mount_opt = old_opts.s_mount_opt;
5322 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5323 sbi->s_resuid = old_opts.s_resuid;
5324 sbi->s_resgid = old_opts.s_resgid;
5325 sbi->s_commit_interval = old_opts.s_commit_interval;
5326 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5327 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5329 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5330 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5331 kfree(sbi->s_qf_names[i]);
5332 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5340 static int ext4_statfs_project(struct super_block *sb,
5341 kprojid_t projid, struct kstatfs *buf)
5344 struct dquot *dquot;
5348 qid = make_kqid_projid(projid);
5349 dquot = dqget(sb, qid);
5351 return PTR_ERR(dquot);
5352 spin_lock(&dquot->dq_dqb_lock);
5354 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5355 dquot->dq_dqb.dqb_bsoftlimit :
5356 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5357 if (limit && buf->f_blocks > limit) {
5358 curblock = (dquot->dq_dqb.dqb_curspace +
5359 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5360 buf->f_blocks = limit;
5361 buf->f_bfree = buf->f_bavail =
5362 (buf->f_blocks > curblock) ?
5363 (buf->f_blocks - curblock) : 0;
5366 limit = dquot->dq_dqb.dqb_isoftlimit ?
5367 dquot->dq_dqb.dqb_isoftlimit :
5368 dquot->dq_dqb.dqb_ihardlimit;
5369 if (limit && buf->f_files > limit) {
5370 buf->f_files = limit;
5372 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5373 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5376 spin_unlock(&dquot->dq_dqb_lock);
5382 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5384 struct super_block *sb = dentry->d_sb;
5385 struct ext4_sb_info *sbi = EXT4_SB(sb);
5386 struct ext4_super_block *es = sbi->s_es;
5387 ext4_fsblk_t overhead = 0, resv_blocks;
5390 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5392 if (!test_opt(sb, MINIX_DF))
5393 overhead = sbi->s_overhead;
5395 buf->f_type = EXT4_SUPER_MAGIC;
5396 buf->f_bsize = sb->s_blocksize;
5397 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5398 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5399 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5400 /* prevent underflow in case that few free space is available */
5401 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5402 buf->f_bavail = buf->f_bfree -
5403 (ext4_r_blocks_count(es) + resv_blocks);
5404 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5406 buf->f_files = le32_to_cpu(es->s_inodes_count);
5407 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5408 buf->f_namelen = EXT4_NAME_LEN;
5409 fsid = le64_to_cpup((void *)es->s_uuid) ^
5410 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5411 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5412 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5415 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5416 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5417 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5426 * Helper functions so that transaction is started before we acquire dqio_sem
5427 * to keep correct lock ordering of transaction > dqio_sem
5429 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5431 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5434 static int ext4_write_dquot(struct dquot *dquot)
5438 struct inode *inode;
5440 inode = dquot_to_inode(dquot);
5441 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5442 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5444 return PTR_ERR(handle);
5445 ret = dquot_commit(dquot);
5446 err = ext4_journal_stop(handle);
5452 static int ext4_acquire_dquot(struct dquot *dquot)
5457 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5458 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5460 return PTR_ERR(handle);
5461 ret = dquot_acquire(dquot);
5462 err = ext4_journal_stop(handle);
5468 static int ext4_release_dquot(struct dquot *dquot)
5473 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5474 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5475 if (IS_ERR(handle)) {
5476 /* Release dquot anyway to avoid endless cycle in dqput() */
5477 dquot_release(dquot);
5478 return PTR_ERR(handle);
5480 ret = dquot_release(dquot);
5481 err = ext4_journal_stop(handle);
5487 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5489 struct super_block *sb = dquot->dq_sb;
5490 struct ext4_sb_info *sbi = EXT4_SB(sb);
5492 /* Are we journaling quotas? */
5493 if (ext4_has_feature_quota(sb) ||
5494 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5495 dquot_mark_dquot_dirty(dquot);
5496 return ext4_write_dquot(dquot);
5498 return dquot_mark_dquot_dirty(dquot);
5502 static int ext4_write_info(struct super_block *sb, int type)
5507 /* Data block + inode block */
5508 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5510 return PTR_ERR(handle);
5511 ret = dquot_commit_info(sb, type);
5512 err = ext4_journal_stop(handle);
5519 * Turn on quotas during mount time - we need to find
5520 * the quota file and such...
5522 static int ext4_quota_on_mount(struct super_block *sb, int type)
5524 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5525 EXT4_SB(sb)->s_jquota_fmt, type);
5528 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5530 struct ext4_inode_info *ei = EXT4_I(inode);
5532 /* The first argument of lockdep_set_subclass has to be
5533 * *exactly* the same as the argument to init_rwsem() --- in
5534 * this case, in init_once() --- or lockdep gets unhappy
5535 * because the name of the lock is set using the
5536 * stringification of the argument to init_rwsem().
5538 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5539 lockdep_set_subclass(&ei->i_data_sem, subclass);
5543 * Standard function to be called on quota_on
5545 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5546 const struct path *path)
5550 if (!test_opt(sb, QUOTA))
5553 /* Quotafile not on the same filesystem? */
5554 if (path->dentry->d_sb != sb)
5556 /* Journaling quota? */
5557 if (EXT4_SB(sb)->s_qf_names[type]) {
5558 /* Quotafile not in fs root? */
5559 if (path->dentry->d_parent != sb->s_root)
5560 ext4_msg(sb, KERN_WARNING,
5561 "Quota file not on filesystem root. "
5562 "Journaled quota will not work");
5563 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5566 * Clear the flag just in case mount options changed since
5569 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5573 * When we journal data on quota file, we have to flush journal to see
5574 * all updates to the file when we bypass pagecache...
5576 if (EXT4_SB(sb)->s_journal &&
5577 ext4_should_journal_data(d_inode(path->dentry))) {
5579 * We don't need to lock updates but journal_flush() could
5580 * otherwise be livelocked...
5582 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5583 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5584 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5589 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5590 err = dquot_quota_on(sb, type, format_id, path);
5592 lockdep_set_quota_inode(path->dentry->d_inode,
5595 struct inode *inode = d_inode(path->dentry);
5599 * Set inode flags to prevent userspace from messing with quota
5600 * files. If this fails, we return success anyway since quotas
5601 * are already enabled and this is not a hard failure.
5604 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5607 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5608 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5609 S_NOATIME | S_IMMUTABLE);
5610 ext4_mark_inode_dirty(handle, inode);
5611 ext4_journal_stop(handle);
5613 inode_unlock(inode);
5618 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5622 struct inode *qf_inode;
5623 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5624 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5625 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5626 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5629 BUG_ON(!ext4_has_feature_quota(sb));
5631 if (!qf_inums[type])
5634 qf_inode = ext4_iget(sb, qf_inums[type]);
5635 if (IS_ERR(qf_inode)) {
5636 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5637 return PTR_ERR(qf_inode);
5640 /* Don't account quota for quota files to avoid recursion */
5641 qf_inode->i_flags |= S_NOQUOTA;
5642 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5643 err = dquot_enable(qf_inode, type, format_id, flags);
5646 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5651 /* Enable usage tracking for all quota types. */
5652 static int ext4_enable_quotas(struct super_block *sb)
5655 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5656 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5657 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5658 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5660 bool quota_mopt[EXT4_MAXQUOTAS] = {
5661 test_opt(sb, USRQUOTA),
5662 test_opt(sb, GRPQUOTA),
5663 test_opt(sb, PRJQUOTA),
5666 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5667 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5668 if (qf_inums[type]) {
5669 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5670 DQUOT_USAGE_ENABLED |
5671 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5673 for (type--; type >= 0; type--)
5674 dquot_quota_off(sb, type);
5677 "Failed to enable quota tracking "
5678 "(type=%d, err=%d). Please run "
5679 "e2fsck to fix.", type, err);
5687 static int ext4_quota_off(struct super_block *sb, int type)
5689 struct inode *inode = sb_dqopt(sb)->files[type];
5693 /* Force all delayed allocation blocks to be allocated.
5694 * Caller already holds s_umount sem */
5695 if (test_opt(sb, DELALLOC))
5696 sync_filesystem(sb);
5698 if (!inode || !igrab(inode))
5701 err = dquot_quota_off(sb, type);
5702 if (err || ext4_has_feature_quota(sb))
5707 * Update modification times of quota files when userspace can
5708 * start looking at them. If we fail, we return success anyway since
5709 * this is not a hard failure and quotas are already disabled.
5711 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5714 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5715 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5716 inode->i_mtime = inode->i_ctime = current_time(inode);
5717 ext4_mark_inode_dirty(handle, inode);
5718 ext4_journal_stop(handle);
5720 inode_unlock(inode);
5722 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5726 return dquot_quota_off(sb, type);
5729 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5730 * acquiring the locks... As quota files are never truncated and quota code
5731 * itself serializes the operations (and no one else should touch the files)
5732 * we don't have to be afraid of races */
5733 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5734 size_t len, loff_t off)
5736 struct inode *inode = sb_dqopt(sb)->files[type];
5737 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5738 int offset = off & (sb->s_blocksize - 1);
5741 struct buffer_head *bh;
5742 loff_t i_size = i_size_read(inode);
5746 if (off+len > i_size)
5749 while (toread > 0) {
5750 tocopy = sb->s_blocksize - offset < toread ?
5751 sb->s_blocksize - offset : toread;
5752 bh = ext4_bread(NULL, inode, blk, 0);
5755 if (!bh) /* A hole? */
5756 memset(data, 0, tocopy);
5758 memcpy(data, bh->b_data+offset, tocopy);
5768 /* Write to quotafile (we know the transaction is already started and has
5769 * enough credits) */
5770 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5771 const char *data, size_t len, loff_t off)
5773 struct inode *inode = sb_dqopt(sb)->files[type];
5774 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5775 int err, offset = off & (sb->s_blocksize - 1);
5777 struct buffer_head *bh;
5778 handle_t *handle = journal_current_handle();
5780 if (EXT4_SB(sb)->s_journal && !handle) {
5781 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5782 " cancelled because transaction is not started",
5783 (unsigned long long)off, (unsigned long long)len);
5787 * Since we account only one data block in transaction credits,
5788 * then it is impossible to cross a block boundary.
5790 if (sb->s_blocksize - offset < len) {
5791 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5792 " cancelled because not block aligned",
5793 (unsigned long long)off, (unsigned long long)len);
5798 bh = ext4_bread(handle, inode, blk,
5799 EXT4_GET_BLOCKS_CREATE |
5800 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5801 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5802 ext4_should_retry_alloc(inode->i_sb, &retries));
5807 BUFFER_TRACE(bh, "get write access");
5808 err = ext4_journal_get_write_access(handle, bh);
5814 memcpy(bh->b_data+offset, data, len);
5815 flush_dcache_page(bh->b_page);
5817 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5820 if (inode->i_size < off + len) {
5821 i_size_write(inode, off + len);
5822 EXT4_I(inode)->i_disksize = inode->i_size;
5823 ext4_mark_inode_dirty(handle, inode);
5828 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5830 const struct quota_format_ops *ops;
5832 if (!sb_has_quota_loaded(sb, qid->type))
5834 ops = sb_dqopt(sb)->ops[qid->type];
5835 if (!ops || !ops->get_next_id)
5837 return dquot_get_next_id(sb, qid);
5841 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5842 const char *dev_name, void *data)
5844 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5847 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5848 static inline void register_as_ext2(void)
5850 int err = register_filesystem(&ext2_fs_type);
5853 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5856 static inline void unregister_as_ext2(void)
5858 unregister_filesystem(&ext2_fs_type);
5861 static inline int ext2_feature_set_ok(struct super_block *sb)
5863 if (ext4_has_unknown_ext2_incompat_features(sb))
5867 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5872 static inline void register_as_ext2(void) { }
5873 static inline void unregister_as_ext2(void) { }
5874 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5877 static inline void register_as_ext3(void)
5879 int err = register_filesystem(&ext3_fs_type);
5882 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5885 static inline void unregister_as_ext3(void)
5887 unregister_filesystem(&ext3_fs_type);
5890 static inline int ext3_feature_set_ok(struct super_block *sb)
5892 if (ext4_has_unknown_ext3_incompat_features(sb))
5894 if (!ext4_has_feature_journal(sb))
5898 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5903 static struct file_system_type ext4_fs_type = {
5904 .owner = THIS_MODULE,
5906 .mount = ext4_mount,
5907 .kill_sb = kill_block_super,
5908 .fs_flags = FS_REQUIRES_DEV,
5910 MODULE_ALIAS_FS("ext4");
5912 /* Shared across all ext4 file systems */
5913 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5915 static int __init ext4_init_fs(void)
5919 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5920 ext4_li_info = NULL;
5921 mutex_init(&ext4_li_mtx);
5923 /* Build-time check for flags consistency */
5924 ext4_check_flag_values();
5926 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5927 init_waitqueue_head(&ext4__ioend_wq[i]);
5929 err = ext4_init_es();
5933 err = ext4_init_pageio();
5937 err = ext4_init_system_zone();
5941 err = ext4_init_sysfs();
5945 err = ext4_init_mballoc();
5948 err = init_inodecache();
5953 err = register_filesystem(&ext4_fs_type);
5959 unregister_as_ext2();
5960 unregister_as_ext3();
5961 destroy_inodecache();
5963 ext4_exit_mballoc();
5967 ext4_exit_system_zone();
5976 static void __exit ext4_exit_fs(void)
5978 ext4_destroy_lazyinit_thread();
5979 unregister_as_ext2();
5980 unregister_as_ext3();
5981 unregister_filesystem(&ext4_fs_type);
5982 destroy_inodecache();
5983 ext4_exit_mballoc();
5985 ext4_exit_system_zone();
5990 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5991 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5992 MODULE_LICENSE("GPL");
5993 MODULE_SOFTDEP("pre: crc32c");
5994 module_init(ext4_init_fs)
5995 module_exit(ext4_exit_fs)