]> Git Repo - linux.git/blob - drivers/usb/gadget/function/f_fs.c
move asm/unaligned.h to linux/unaligned.h
[linux.git] / drivers / usb / gadget / function / f_fs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <[email protected]>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46
47 #define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS        2                 /* Allow up to 2 alt settings to be set. */
49
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51
52 MODULE_IMPORT_NS(DMA_BUF);
53
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59         __attribute__((malloc));
60
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70
71
72 /* The function structure ***************************************************/
73
74 struct ffs_ep;
75
76 struct ffs_function {
77         struct usb_configuration        *conf;
78         struct usb_gadget               *gadget;
79         struct ffs_data                 *ffs;
80
81         struct ffs_ep                   *eps;
82         u8                              eps_revmap[16];
83         short                           *interfaces_nums;
84
85         struct usb_function             function;
86         int                             cur_alt[MAX_CONFIG_INTERFACES];
87 };
88
89
90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92         return container_of(f, struct ffs_function, function);
93 }
94
95
96 static inline enum ffs_setup_state
97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99         return (enum ffs_setup_state)
100                 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102
103
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106
107 static int ffs_func_bind(struct usb_configuration *,
108                          struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113                           const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115                                const struct usb_ctrlrequest *,
116                                bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119
120
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123
124
125 /* The endpoints structures *************************************************/
126
127 struct ffs_ep {
128         struct usb_ep                   *ep;    /* P: ffs->eps_lock */
129         struct usb_request              *req;   /* P: epfile->mutex */
130
131         /* [0]: full speed, [1]: high speed, [2]: super speed */
132         struct usb_endpoint_descriptor  *descs[3];
133
134         u8                              num;
135 };
136
137 struct ffs_dmabuf_priv {
138         struct list_head entry;
139         struct kref ref;
140         struct ffs_data *ffs;
141         struct dma_buf_attachment *attach;
142         struct sg_table *sgt;
143         enum dma_data_direction dir;
144         spinlock_t lock;
145         u64 context;
146         struct usb_request *req;        /* P: ffs->eps_lock */
147         struct usb_ep *ep;              /* P: ffs->eps_lock */
148 };
149
150 struct ffs_dma_fence {
151         struct dma_fence base;
152         struct ffs_dmabuf_priv *priv;
153         struct work_struct work;
154 };
155
156 struct ffs_epfile {
157         /* Protects ep->ep and ep->req. */
158         struct mutex                    mutex;
159
160         struct ffs_data                 *ffs;
161         struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
162
163         struct dentry                   *dentry;
164
165         /*
166          * Buffer for holding data from partial reads which may happen since
167          * we’re rounding user read requests to a multiple of a max packet size.
168          *
169          * The pointer is initialised with NULL value and may be set by
170          * __ffs_epfile_read_data function to point to a temporary buffer.
171          *
172          * In normal operation, calls to __ffs_epfile_read_buffered will consume
173          * data from said buffer and eventually free it.  Importantly, while the
174          * function is using the buffer, it sets the pointer to NULL.  This is
175          * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176          * can never run concurrently (they are synchronised by epfile->mutex)
177          * so the latter will not assign a new value to the pointer.
178          *
179          * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180          * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
181          * value is crux of the synchronisation between ffs_func_eps_disable and
182          * __ffs_epfile_read_data.
183          *
184          * Once __ffs_epfile_read_data is about to finish it will try to set the
185          * pointer back to its old value (as described above), but seeing as the
186          * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187          * the buffer.
188          *
189          * == State transitions ==
190          *
191          * • ptr == NULL:  (initial state)
192          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193          *   ◦ __ffs_epfile_read_buffered:    nop
194          *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196          * • ptr == DROP:
197          *   ◦ __ffs_epfile_read_buffer_free: nop
198          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
199          *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
201          * • ptr == buf:
202          *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
204          *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
205          *                                    is always called first
206          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
207          * • ptr == NULL and reading:
208          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
210          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
211          *   ◦ reading finishes and …
212          *     … all data read:               free buf, go to ptr == NULL
213          *     … otherwise:                   go to ptr == buf and reading
214          * • ptr == DROP and reading:
215          *   ◦ __ffs_epfile_read_buffer_free: nop
216          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
217          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
218          *   ◦ reading finishes:              free buf, go to ptr == DROP
219          */
220         struct ffs_buffer               *read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222
223         char                            name[5];
224
225         unsigned char                   in;     /* P: ffs->eps_lock */
226         unsigned char                   isoc;   /* P: ffs->eps_lock */
227
228         unsigned char                   _pad;
229
230         /* Protects dmabufs */
231         struct mutex                    dmabufs_mutex;
232         struct list_head                dmabufs; /* P: dmabufs_mutex */
233         atomic_t                        seqno;
234 };
235
236 struct ffs_buffer {
237         size_t length;
238         char *data;
239         char storage[] __counted_by(length);
240 };
241
242 /*  ffs_io_data structure ***************************************************/
243
244 struct ffs_io_data {
245         bool aio;
246         bool read;
247
248         struct kiocb *kiocb;
249         struct iov_iter data;
250         const void *to_free;
251         char *buf;
252
253         struct mm_struct *mm;
254         struct work_struct work;
255
256         struct usb_ep *ep;
257         struct usb_request *req;
258         struct sg_table sgt;
259         bool use_sg;
260
261         struct ffs_data *ffs;
262
263         int status;
264         struct completion done;
265 };
266
267 struct ffs_desc_helper {
268         struct ffs_data *ffs;
269         unsigned interfaces_count;
270         unsigned eps_count;
271 };
272
273 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278                    const struct file_operations *fops);
279
280 /* Devices management *******************************************************/
281
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292
293 /* Misc helper functions ****************************************************/
294
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296         __attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298         __attribute__((warn_unused_result, nonnull));
299
300
301 /* Control file aka ep0 *****************************************************/
302
303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305         struct ffs_data *ffs = req->context;
306
307         complete(&ffs->ep0req_completion);
308 }
309
310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311         __releases(&ffs->ev.waitq.lock)
312 {
313         struct usb_request *req = ffs->ep0req;
314         int ret;
315
316         if (!req) {
317                 spin_unlock_irq(&ffs->ev.waitq.lock);
318                 return -EINVAL;
319         }
320
321         req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
322
323         spin_unlock_irq(&ffs->ev.waitq.lock);
324
325         req->buf      = data;
326         req->length   = len;
327
328         /*
329          * UDC layer requires to provide a buffer even for ZLP, but should
330          * not use it at all. Let's provide some poisoned pointer to catch
331          * possible bug in the driver.
332          */
333         if (req->buf == NULL)
334                 req->buf = (void *)0xDEADBABE;
335
336         reinit_completion(&ffs->ep0req_completion);
337
338         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339         if (ret < 0)
340                 return ret;
341
342         ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343         if (ret) {
344                 usb_ep_dequeue(ffs->gadget->ep0, req);
345                 return -EINTR;
346         }
347
348         ffs->setup_state = FFS_NO_SETUP;
349         return req->status ? req->status : req->actual;
350 }
351
352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354         if (ffs->ev.can_stall) {
355                 pr_vdebug("ep0 stall\n");
356                 usb_ep_set_halt(ffs->gadget->ep0);
357                 ffs->setup_state = FFS_NO_SETUP;
358                 return -EL2HLT;
359         } else {
360                 pr_debug("bogus ep0 stall!\n");
361                 return -ESRCH;
362         }
363 }
364
365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366                              size_t len, loff_t *ptr)
367 {
368         struct ffs_data *ffs = file->private_data;
369         ssize_t ret;
370         char *data;
371
372         /* Fast check if setup was canceled */
373         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374                 return -EIDRM;
375
376         /* Acquire mutex */
377         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378         if (ret < 0)
379                 return ret;
380
381         /* Check state */
382         switch (ffs->state) {
383         case FFS_READ_DESCRIPTORS:
384         case FFS_READ_STRINGS:
385                 /* Copy data */
386                 if (len < 16) {
387                         ret = -EINVAL;
388                         break;
389                 }
390
391                 data = ffs_prepare_buffer(buf, len);
392                 if (IS_ERR(data)) {
393                         ret = PTR_ERR(data);
394                         break;
395                 }
396
397                 /* Handle data */
398                 if (ffs->state == FFS_READ_DESCRIPTORS) {
399                         pr_info("read descriptors\n");
400                         ret = __ffs_data_got_descs(ffs, data, len);
401                         if (ret < 0)
402                                 break;
403
404                         ffs->state = FFS_READ_STRINGS;
405                         ret = len;
406                 } else {
407                         pr_info("read strings\n");
408                         ret = __ffs_data_got_strings(ffs, data, len);
409                         if (ret < 0)
410                                 break;
411
412                         ret = ffs_epfiles_create(ffs);
413                         if (ret) {
414                                 ffs->state = FFS_CLOSING;
415                                 break;
416                         }
417
418                         ffs->state = FFS_ACTIVE;
419                         mutex_unlock(&ffs->mutex);
420
421                         ret = ffs_ready(ffs);
422                         if (ret < 0) {
423                                 ffs->state = FFS_CLOSING;
424                                 return ret;
425                         }
426
427                         return len;
428                 }
429                 break;
430
431         case FFS_ACTIVE:
432                 data = NULL;
433                 /*
434                  * We're called from user space, we can use _irq
435                  * rather then _irqsave
436                  */
437                 spin_lock_irq(&ffs->ev.waitq.lock);
438                 switch (ffs_setup_state_clear_cancelled(ffs)) {
439                 case FFS_SETUP_CANCELLED:
440                         ret = -EIDRM;
441                         goto done_spin;
442
443                 case FFS_NO_SETUP:
444                         ret = -ESRCH;
445                         goto done_spin;
446
447                 case FFS_SETUP_PENDING:
448                         break;
449                 }
450
451                 /* FFS_SETUP_PENDING */
452                 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453                         spin_unlock_irq(&ffs->ev.waitq.lock);
454                         ret = __ffs_ep0_stall(ffs);
455                         break;
456                 }
457
458                 /* FFS_SETUP_PENDING and not stall */
459                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
460
461                 spin_unlock_irq(&ffs->ev.waitq.lock);
462
463                 data = ffs_prepare_buffer(buf, len);
464                 if (IS_ERR(data)) {
465                         ret = PTR_ERR(data);
466                         break;
467                 }
468
469                 spin_lock_irq(&ffs->ev.waitq.lock);
470
471                 /*
472                  * We are guaranteed to be still in FFS_ACTIVE state
473                  * but the state of setup could have changed from
474                  * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475                  * to check for that.  If that happened we copied data
476                  * from user space in vain but it's unlikely.
477                  *
478                  * For sure we are not in FFS_NO_SETUP since this is
479                  * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480                  * transition can be performed and it's protected by
481                  * mutex.
482                  */
483                 if (ffs_setup_state_clear_cancelled(ffs) ==
484                     FFS_SETUP_CANCELLED) {
485                         ret = -EIDRM;
486 done_spin:
487                         spin_unlock_irq(&ffs->ev.waitq.lock);
488                 } else {
489                         /* unlocks spinlock */
490                         ret = __ffs_ep0_queue_wait(ffs, data, len);
491                 }
492                 kfree(data);
493                 break;
494
495         default:
496                 ret = -EBADFD;
497                 break;
498         }
499
500         mutex_unlock(&ffs->mutex);
501         return ret;
502 }
503
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506                                      size_t n)
507         __releases(&ffs->ev.waitq.lock)
508 {
509         /*
510          * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511          * size of ffs->ev.types array (which is four) so that's how much space
512          * we reserve.
513          */
514         struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515         const size_t size = n * sizeof *events;
516         unsigned i = 0;
517
518         memset(events, 0, size);
519
520         do {
521                 events[i].type = ffs->ev.types[i];
522                 if (events[i].type == FUNCTIONFS_SETUP) {
523                         events[i].u.setup = ffs->ev.setup;
524                         ffs->setup_state = FFS_SETUP_PENDING;
525                 }
526         } while (++i < n);
527
528         ffs->ev.count -= n;
529         if (ffs->ev.count)
530                 memmove(ffs->ev.types, ffs->ev.types + n,
531                         ffs->ev.count * sizeof *ffs->ev.types);
532
533         spin_unlock_irq(&ffs->ev.waitq.lock);
534         mutex_unlock(&ffs->mutex);
535
536         return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538
539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540                             size_t len, loff_t *ptr)
541 {
542         struct ffs_data *ffs = file->private_data;
543         char *data = NULL;
544         size_t n;
545         int ret;
546
547         /* Fast check if setup was canceled */
548         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549                 return -EIDRM;
550
551         /* Acquire mutex */
552         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553         if (ret < 0)
554                 return ret;
555
556         /* Check state */
557         if (ffs->state != FFS_ACTIVE) {
558                 ret = -EBADFD;
559                 goto done_mutex;
560         }
561
562         /*
563          * We're called from user space, we can use _irq rather then
564          * _irqsave
565          */
566         spin_lock_irq(&ffs->ev.waitq.lock);
567
568         switch (ffs_setup_state_clear_cancelled(ffs)) {
569         case FFS_SETUP_CANCELLED:
570                 ret = -EIDRM;
571                 break;
572
573         case FFS_NO_SETUP:
574                 n = len / sizeof(struct usb_functionfs_event);
575                 if (!n) {
576                         ret = -EINVAL;
577                         break;
578                 }
579
580                 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581                         ret = -EAGAIN;
582                         break;
583                 }
584
585                 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586                                                         ffs->ev.count)) {
587                         ret = -EINTR;
588                         break;
589                 }
590
591                 /* unlocks spinlock */
592                 return __ffs_ep0_read_events(ffs, buf,
593                                              min(n, (size_t)ffs->ev.count));
594
595         case FFS_SETUP_PENDING:
596                 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597                         spin_unlock_irq(&ffs->ev.waitq.lock);
598                         ret = __ffs_ep0_stall(ffs);
599                         goto done_mutex;
600                 }
601
602                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
603
604                 spin_unlock_irq(&ffs->ev.waitq.lock);
605
606                 if (len) {
607                         data = kmalloc(len, GFP_KERNEL);
608                         if (!data) {
609                                 ret = -ENOMEM;
610                                 goto done_mutex;
611                         }
612                 }
613
614                 spin_lock_irq(&ffs->ev.waitq.lock);
615
616                 /* See ffs_ep0_write() */
617                 if (ffs_setup_state_clear_cancelled(ffs) ==
618                     FFS_SETUP_CANCELLED) {
619                         ret = -EIDRM;
620                         break;
621                 }
622
623                 /* unlocks spinlock */
624                 ret = __ffs_ep0_queue_wait(ffs, data, len);
625                 if ((ret > 0) && (copy_to_user(buf, data, len)))
626                         ret = -EFAULT;
627                 goto done_mutex;
628
629         default:
630                 ret = -EBADFD;
631                 break;
632         }
633
634         spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636         mutex_unlock(&ffs->mutex);
637         kfree(data);
638         return ret;
639 }
640
641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643         struct ffs_data *ffs = inode->i_private;
644
645         if (ffs->state == FFS_CLOSING)
646                 return -EBUSY;
647
648         file->private_data = ffs;
649         ffs_data_opened(ffs);
650
651         return stream_open(inode, file);
652 }
653
654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656         struct ffs_data *ffs = file->private_data;
657
658         ffs_data_closed(ffs);
659
660         return 0;
661 }
662
663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665         struct ffs_data *ffs = file->private_data;
666         struct usb_gadget *gadget = ffs->gadget;
667         long ret;
668
669         if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670                 struct ffs_function *func = ffs->func;
671                 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672         } else if (gadget && gadget->ops->ioctl) {
673                 ret = gadget->ops->ioctl(gadget, code, value);
674         } else {
675                 ret = -ENOTTY;
676         }
677
678         return ret;
679 }
680
681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683         struct ffs_data *ffs = file->private_data;
684         __poll_t mask = EPOLLWRNORM;
685         int ret;
686
687         poll_wait(file, &ffs->ev.waitq, wait);
688
689         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690         if (ret < 0)
691                 return mask;
692
693         switch (ffs->state) {
694         case FFS_READ_DESCRIPTORS:
695         case FFS_READ_STRINGS:
696                 mask |= EPOLLOUT;
697                 break;
698
699         case FFS_ACTIVE:
700                 switch (ffs->setup_state) {
701                 case FFS_NO_SETUP:
702                         if (ffs->ev.count)
703                                 mask |= EPOLLIN;
704                         break;
705
706                 case FFS_SETUP_PENDING:
707                 case FFS_SETUP_CANCELLED:
708                         mask |= (EPOLLIN | EPOLLOUT);
709                         break;
710                 }
711                 break;
712
713         case FFS_CLOSING:
714                 break;
715         case FFS_DEACTIVATED:
716                 break;
717         }
718
719         mutex_unlock(&ffs->mutex);
720
721         return mask;
722 }
723
724 static const struct file_operations ffs_ep0_operations = {
725
726         .open =         ffs_ep0_open,
727         .write =        ffs_ep0_write,
728         .read =         ffs_ep0_read,
729         .release =      ffs_ep0_release,
730         .unlocked_ioctl =       ffs_ep0_ioctl,
731         .poll =         ffs_ep0_poll,
732 };
733
734
735 /* "Normal" endpoints operations ********************************************/
736
737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738 {
739         struct ffs_io_data *io_data = req->context;
740
741         if (req->status)
742                 io_data->status = req->status;
743         else
744                 io_data->status = req->actual;
745
746         complete(&io_data->done);
747 }
748
749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750 {
751         ssize_t ret = copy_to_iter(data, data_len, iter);
752         if (ret == data_len)
753                 return ret;
754
755         if (iov_iter_count(iter))
756                 return -EFAULT;
757
758         /*
759          * Dear user space developer!
760          *
761          * TL;DR: To stop getting below error message in your kernel log, change
762          * user space code using functionfs to align read buffers to a max
763          * packet size.
764          *
765          * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766          * packet size.  When unaligned buffer is passed to functionfs, it
767          * internally uses a larger, aligned buffer so that such UDCs are happy.
768          *
769          * Unfortunately, this means that host may send more data than was
770          * requested in read(2) system call.  f_fs doesn’t know what to do with
771          * that excess data so it simply drops it.
772          *
773          * Was the buffer aligned in the first place, no such problem would
774          * happen.
775          *
776          * Data may be dropped only in AIO reads.  Synchronous reads are handled
777          * by splitting a request into multiple parts.  This splitting may still
778          * be a problem though so it’s likely best to align the buffer
779          * regardless of it being AIO or not..
780          *
781          * This only affects OUT endpoints, i.e. reading data with a read(2),
782          * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
783          * affected.
784          */
785         pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786                "Align read buffer size to max packet size to avoid the problem.\n",
787                data_len, ret);
788
789         return ret;
790 }
791
792 /*
793  * allocate a virtually contiguous buffer and create a scatterlist describing it
794  * @sg_table    - pointer to a place to be filled with sg_table contents
795  * @size        - required buffer size
796  */
797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798 {
799         struct page **pages;
800         void *vaddr, *ptr;
801         unsigned int n_pages;
802         int i;
803
804         vaddr = vmalloc(sz);
805         if (!vaddr)
806                 return NULL;
807
808         n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809         pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810         if (!pages) {
811                 vfree(vaddr);
812
813                 return NULL;
814         }
815         for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816                 pages[i] = vmalloc_to_page(ptr);
817
818         if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819                 kvfree(pages);
820                 vfree(vaddr);
821
822                 return NULL;
823         }
824         kvfree(pages);
825
826         return vaddr;
827 }
828
829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830         size_t data_len)
831 {
832         if (io_data->use_sg)
833                 return ffs_build_sg_list(&io_data->sgt, data_len);
834
835         return kmalloc(data_len, GFP_KERNEL);
836 }
837
838 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839 {
840         if (!io_data->buf)
841                 return;
842
843         if (io_data->use_sg) {
844                 sg_free_table(&io_data->sgt);
845                 vfree(io_data->buf);
846         } else {
847                 kfree(io_data->buf);
848         }
849 }
850
851 static void ffs_user_copy_worker(struct work_struct *work)
852 {
853         struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854                                                    work);
855         int ret = io_data->status;
856         bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857         unsigned long flags;
858
859         if (io_data->read && ret > 0) {
860                 kthread_use_mm(io_data->mm);
861                 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
862                 kthread_unuse_mm(io_data->mm);
863         }
864
865         io_data->kiocb->ki_complete(io_data->kiocb, ret);
866
867         if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
868                 eventfd_signal(io_data->ffs->ffs_eventfd);
869
870         spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
871         usb_ep_free_request(io_data->ep, io_data->req);
872         io_data->req = NULL;
873         spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
874
875         if (io_data->read)
876                 kfree(io_data->to_free);
877         ffs_free_buffer(io_data);
878         kfree(io_data);
879 }
880
881 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
882                                          struct usb_request *req)
883 {
884         struct ffs_io_data *io_data = req->context;
885         struct ffs_data *ffs = io_data->ffs;
886
887         io_data->status = req->status ? req->status : req->actual;
888
889         INIT_WORK(&io_data->work, ffs_user_copy_worker);
890         queue_work(ffs->io_completion_wq, &io_data->work);
891 }
892
893 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
894 {
895         /*
896          * See comment in struct ffs_epfile for full read_buffer pointer
897          * synchronisation story.
898          */
899         struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
900         if (buf && buf != READ_BUFFER_DROP)
901                 kfree(buf);
902 }
903
904 /* Assumes epfile->mutex is held. */
905 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
906                                           struct iov_iter *iter)
907 {
908         /*
909          * Null out epfile->read_buffer so ffs_func_eps_disable does not free
910          * the buffer while we are using it.  See comment in struct ffs_epfile
911          * for full read_buffer pointer synchronisation story.
912          */
913         struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
914         ssize_t ret;
915         if (!buf || buf == READ_BUFFER_DROP)
916                 return 0;
917
918         ret = copy_to_iter(buf->data, buf->length, iter);
919         if (buf->length == ret) {
920                 kfree(buf);
921                 return ret;
922         }
923
924         if (iov_iter_count(iter)) {
925                 ret = -EFAULT;
926         } else {
927                 buf->length -= ret;
928                 buf->data += ret;
929         }
930
931         if (cmpxchg(&epfile->read_buffer, NULL, buf))
932                 kfree(buf);
933
934         return ret;
935 }
936
937 /* Assumes epfile->mutex is held. */
938 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
939                                       void *data, int data_len,
940                                       struct iov_iter *iter)
941 {
942         struct ffs_buffer *buf;
943
944         ssize_t ret = copy_to_iter(data, data_len, iter);
945         if (data_len == ret)
946                 return ret;
947
948         if (iov_iter_count(iter))
949                 return -EFAULT;
950
951         /* See ffs_copy_to_iter for more context. */
952         pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
953                 data_len, ret);
954
955         data_len -= ret;
956         buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
957         if (!buf)
958                 return -ENOMEM;
959         buf->length = data_len;
960         buf->data = buf->storage;
961         memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
962
963         /*
964          * At this point read_buffer is NULL or READ_BUFFER_DROP (if
965          * ffs_func_eps_disable has been called in the meanwhile).  See comment
966          * in struct ffs_epfile for full read_buffer pointer synchronisation
967          * story.
968          */
969         if (cmpxchg(&epfile->read_buffer, NULL, buf))
970                 kfree(buf);
971
972         return ret;
973 }
974
975 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
976 {
977         struct ffs_epfile *epfile = file->private_data;
978         struct ffs_ep *ep;
979         int ret;
980
981         /* Wait for endpoint to be enabled */
982         ep = epfile->ep;
983         if (!ep) {
984                 if (file->f_flags & O_NONBLOCK)
985                         return ERR_PTR(-EAGAIN);
986
987                 ret = wait_event_interruptible(
988                                 epfile->ffs->wait, (ep = epfile->ep));
989                 if (ret)
990                         return ERR_PTR(-EINTR);
991         }
992
993         return ep;
994 }
995
996 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
997 {
998         struct ffs_epfile *epfile = file->private_data;
999         struct usb_request *req;
1000         struct ffs_ep *ep;
1001         char *data = NULL;
1002         ssize_t ret, data_len = -EINVAL;
1003         int halt;
1004
1005         /* Are we still active? */
1006         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007                 return -ENODEV;
1008
1009         ep = ffs_epfile_wait_ep(file);
1010         if (IS_ERR(ep))
1011                 return PTR_ERR(ep);
1012
1013         /* Do we halt? */
1014         halt = (!io_data->read == !epfile->in);
1015         if (halt && epfile->isoc)
1016                 return -EINVAL;
1017
1018         /* We will be using request and read_buffer */
1019         ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1020         if (ret)
1021                 goto error;
1022
1023         /* Allocate & copy */
1024         if (!halt) {
1025                 struct usb_gadget *gadget;
1026
1027                 /*
1028                  * Do we have buffered data from previous partial read?  Check
1029                  * that for synchronous case only because we do not have
1030                  * facility to ‘wake up’ a pending asynchronous read and push
1031                  * buffered data to it which we would need to make things behave
1032                  * consistently.
1033                  */
1034                 if (!io_data->aio && io_data->read) {
1035                         ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1036                         if (ret)
1037                                 goto error_mutex;
1038                 }
1039
1040                 /*
1041                  * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1042                  * before the waiting completes, so do not assign to 'gadget'
1043                  * earlier
1044                  */
1045                 gadget = epfile->ffs->gadget;
1046
1047                 spin_lock_irq(&epfile->ffs->eps_lock);
1048                 /* In the meantime, endpoint got disabled or changed. */
1049                 if (epfile->ep != ep) {
1050                         ret = -ESHUTDOWN;
1051                         goto error_lock;
1052                 }
1053                 data_len = iov_iter_count(&io_data->data);
1054                 /*
1055                  * Controller may require buffer size to be aligned to
1056                  * maxpacketsize of an out endpoint.
1057                  */
1058                 if (io_data->read)
1059                         data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1060
1061                 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1062                 spin_unlock_irq(&epfile->ffs->eps_lock);
1063
1064                 data = ffs_alloc_buffer(io_data, data_len);
1065                 if (!data) {
1066                         ret = -ENOMEM;
1067                         goto error_mutex;
1068                 }
1069                 if (!io_data->read &&
1070                     !copy_from_iter_full(data, data_len, &io_data->data)) {
1071                         ret = -EFAULT;
1072                         goto error_mutex;
1073                 }
1074         }
1075
1076         spin_lock_irq(&epfile->ffs->eps_lock);
1077
1078         if (epfile->ep != ep) {
1079                 /* In the meantime, endpoint got disabled or changed. */
1080                 ret = -ESHUTDOWN;
1081         } else if (halt) {
1082                 ret = usb_ep_set_halt(ep->ep);
1083                 if (!ret)
1084                         ret = -EBADMSG;
1085         } else if (data_len == -EINVAL) {
1086                 /*
1087                  * Sanity Check: even though data_len can't be used
1088                  * uninitialized at the time I write this comment, some
1089                  * compilers complain about this situation.
1090                  * In order to keep the code clean from warnings, data_len is
1091                  * being initialized to -EINVAL during its declaration, which
1092                  * means we can't rely on compiler anymore to warn no future
1093                  * changes won't result in data_len being used uninitialized.
1094                  * For such reason, we're adding this redundant sanity check
1095                  * here.
1096                  */
1097                 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1098                 ret = -EINVAL;
1099         } else if (!io_data->aio) {
1100                 bool interrupted = false;
1101
1102                 req = ep->req;
1103                 if (io_data->use_sg) {
1104                         req->buf = NULL;
1105                         req->sg = io_data->sgt.sgl;
1106                         req->num_sgs = io_data->sgt.nents;
1107                 } else {
1108                         req->buf = data;
1109                         req->num_sgs = 0;
1110                 }
1111                 req->length = data_len;
1112
1113                 io_data->buf = data;
1114
1115                 init_completion(&io_data->done);
1116                 req->context  = io_data;
1117                 req->complete = ffs_epfile_io_complete;
1118
1119                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120                 if (ret < 0)
1121                         goto error_lock;
1122
1123                 spin_unlock_irq(&epfile->ffs->eps_lock);
1124
1125                 if (wait_for_completion_interruptible(&io_data->done)) {
1126                         spin_lock_irq(&epfile->ffs->eps_lock);
1127                         if (epfile->ep != ep) {
1128                                 ret = -ESHUTDOWN;
1129                                 goto error_lock;
1130                         }
1131                         /*
1132                          * To avoid race condition with ffs_epfile_io_complete,
1133                          * dequeue the request first then check
1134                          * status. usb_ep_dequeue API should guarantee no race
1135                          * condition with req->complete callback.
1136                          */
1137                         usb_ep_dequeue(ep->ep, req);
1138                         spin_unlock_irq(&epfile->ffs->eps_lock);
1139                         wait_for_completion(&io_data->done);
1140                         interrupted = io_data->status < 0;
1141                 }
1142
1143                 if (interrupted)
1144                         ret = -EINTR;
1145                 else if (io_data->read && io_data->status > 0)
1146                         ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1147                                                      &io_data->data);
1148                 else
1149                         ret = io_data->status;
1150                 goto error_mutex;
1151         } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1152                 ret = -ENOMEM;
1153         } else {
1154                 if (io_data->use_sg) {
1155                         req->buf = NULL;
1156                         req->sg = io_data->sgt.sgl;
1157                         req->num_sgs = io_data->sgt.nents;
1158                 } else {
1159                         req->buf = data;
1160                         req->num_sgs = 0;
1161                 }
1162                 req->length = data_len;
1163
1164                 io_data->buf = data;
1165                 io_data->ep = ep->ep;
1166                 io_data->req = req;
1167                 io_data->ffs = epfile->ffs;
1168
1169                 req->context  = io_data;
1170                 req->complete = ffs_epfile_async_io_complete;
1171
1172                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1173                 if (ret) {
1174                         io_data->req = NULL;
1175                         usb_ep_free_request(ep->ep, req);
1176                         goto error_lock;
1177                 }
1178
1179                 ret = -EIOCBQUEUED;
1180                 /*
1181                  * Do not kfree the buffer in this function.  It will be freed
1182                  * by ffs_user_copy_worker.
1183                  */
1184                 data = NULL;
1185         }
1186
1187 error_lock:
1188         spin_unlock_irq(&epfile->ffs->eps_lock);
1189 error_mutex:
1190         mutex_unlock(&epfile->mutex);
1191 error:
1192         if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1193                 ffs_free_buffer(io_data);
1194         return ret;
1195 }
1196
1197 static int
1198 ffs_epfile_open(struct inode *inode, struct file *file)
1199 {
1200         struct ffs_epfile *epfile = inode->i_private;
1201
1202         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1203                 return -ENODEV;
1204
1205         file->private_data = epfile;
1206         ffs_data_opened(epfile->ffs);
1207
1208         return stream_open(inode, file);
1209 }
1210
1211 static int ffs_aio_cancel(struct kiocb *kiocb)
1212 {
1213         struct ffs_io_data *io_data = kiocb->private;
1214         struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1215         unsigned long flags;
1216         int value;
1217
1218         spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1219
1220         if (io_data && io_data->ep && io_data->req)
1221                 value = usb_ep_dequeue(io_data->ep, io_data->req);
1222         else
1223                 value = -EINVAL;
1224
1225         spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1226
1227         return value;
1228 }
1229
1230 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1231 {
1232         struct ffs_io_data io_data, *p = &io_data;
1233         ssize_t res;
1234
1235         if (!is_sync_kiocb(kiocb)) {
1236                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237                 if (!p)
1238                         return -ENOMEM;
1239                 p->aio = true;
1240         } else {
1241                 memset(p, 0, sizeof(*p));
1242                 p->aio = false;
1243         }
1244
1245         p->read = false;
1246         p->kiocb = kiocb;
1247         p->data = *from;
1248         p->mm = current->mm;
1249
1250         kiocb->private = p;
1251
1252         if (p->aio)
1253                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254
1255         res = ffs_epfile_io(kiocb->ki_filp, p);
1256         if (res == -EIOCBQUEUED)
1257                 return res;
1258         if (p->aio)
1259                 kfree(p);
1260         else
1261                 *from = p->data;
1262         return res;
1263 }
1264
1265 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1266 {
1267         struct ffs_io_data io_data, *p = &io_data;
1268         ssize_t res;
1269
1270         if (!is_sync_kiocb(kiocb)) {
1271                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1272                 if (!p)
1273                         return -ENOMEM;
1274                 p->aio = true;
1275         } else {
1276                 memset(p, 0, sizeof(*p));
1277                 p->aio = false;
1278         }
1279
1280         p->read = true;
1281         p->kiocb = kiocb;
1282         if (p->aio) {
1283                 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1284                 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1285                         kfree(p);
1286                         return -ENOMEM;
1287                 }
1288         } else {
1289                 p->data = *to;
1290                 p->to_free = NULL;
1291         }
1292         p->mm = current->mm;
1293
1294         kiocb->private = p;
1295
1296         if (p->aio)
1297                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1298
1299         res = ffs_epfile_io(kiocb->ki_filp, p);
1300         if (res == -EIOCBQUEUED)
1301                 return res;
1302
1303         if (p->aio) {
1304                 kfree(p->to_free);
1305                 kfree(p);
1306         } else {
1307                 *to = p->data;
1308         }
1309         return res;
1310 }
1311
1312 static void ffs_dmabuf_release(struct kref *ref)
1313 {
1314         struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1315         struct dma_buf_attachment *attach = priv->attach;
1316         struct dma_buf *dmabuf = attach->dmabuf;
1317
1318         pr_vdebug("FFS DMABUF release\n");
1319         dma_resv_lock(dmabuf->resv, NULL);
1320         dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1321         dma_resv_unlock(dmabuf->resv);
1322
1323         dma_buf_detach(attach->dmabuf, attach);
1324         dma_buf_put(dmabuf);
1325         kfree(priv);
1326 }
1327
1328 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1329 {
1330         struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332         kref_get(&priv->ref);
1333 }
1334
1335 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1336 {
1337         struct ffs_dmabuf_priv *priv = attach->importer_priv;
1338
1339         kref_put(&priv->ref, ffs_dmabuf_release);
1340 }
1341
1342 static int
1343 ffs_epfile_release(struct inode *inode, struct file *file)
1344 {
1345         struct ffs_epfile *epfile = inode->i_private;
1346         struct ffs_dmabuf_priv *priv, *tmp;
1347         struct ffs_data *ffs = epfile->ffs;
1348
1349         mutex_lock(&epfile->dmabufs_mutex);
1350
1351         /* Close all attached DMABUFs */
1352         list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1353                 /* Cancel any pending transfer */
1354                 spin_lock_irq(&ffs->eps_lock);
1355                 if (priv->ep && priv->req)
1356                         usb_ep_dequeue(priv->ep, priv->req);
1357                 spin_unlock_irq(&ffs->eps_lock);
1358
1359                 list_del(&priv->entry);
1360                 ffs_dmabuf_put(priv->attach);
1361         }
1362
1363         mutex_unlock(&epfile->dmabufs_mutex);
1364
1365         __ffs_epfile_read_buffer_free(epfile);
1366         ffs_data_closed(epfile->ffs);
1367
1368         return 0;
1369 }
1370
1371 static void ffs_dmabuf_cleanup(struct work_struct *work)
1372 {
1373         struct ffs_dma_fence *dma_fence =
1374                 container_of(work, struct ffs_dma_fence, work);
1375         struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376         struct dma_buf_attachment *attach = priv->attach;
1377         struct dma_fence *fence = &dma_fence->base;
1378
1379         ffs_dmabuf_put(attach);
1380         dma_fence_put(fence);
1381 }
1382
1383 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1384 {
1385         struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386         struct dma_fence *fence = &dma_fence->base;
1387         bool cookie = dma_fence_begin_signalling();
1388
1389         dma_fence_get(fence);
1390         fence->error = ret;
1391         dma_fence_signal(fence);
1392         dma_fence_end_signalling(cookie);
1393
1394         /*
1395          * The fence will be unref'd in ffs_dmabuf_cleanup.
1396          * It can't be done here, as the unref functions might try to lock
1397          * the resv object, which would deadlock.
1398          */
1399         INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1400         queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1401 }
1402
1403 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1404                                           struct usb_request *req)
1405 {
1406         pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1407         ffs_dmabuf_signal_done(req->context, req->status);
1408         usb_ep_free_request(ep, req);
1409 }
1410
1411 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1412 {
1413         return "functionfs";
1414 }
1415
1416 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1417 {
1418         return "";
1419 }
1420
1421 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1422 {
1423         struct ffs_dma_fence *dma_fence =
1424                 container_of(fence, struct ffs_dma_fence, base);
1425
1426         kfree(dma_fence);
1427 }
1428
1429 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1430         .get_driver_name        = ffs_dmabuf_get_driver_name,
1431         .get_timeline_name      = ffs_dmabuf_get_timeline_name,
1432         .release                = ffs_dmabuf_fence_release,
1433 };
1434
1435 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1436 {
1437         if (!nonblock)
1438                 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1439
1440         if (!dma_resv_trylock(dmabuf->resv))
1441                 return -EBUSY;
1442
1443         return 0;
1444 }
1445
1446 static struct dma_buf_attachment *
1447 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1448 {
1449         struct device *dev = epfile->ffs->gadget->dev.parent;
1450         struct dma_buf_attachment *attach = NULL;
1451         struct ffs_dmabuf_priv *priv;
1452
1453         mutex_lock(&epfile->dmabufs_mutex);
1454
1455         list_for_each_entry(priv, &epfile->dmabufs, entry) {
1456                 if (priv->attach->dev == dev
1457                     && priv->attach->dmabuf == dmabuf) {
1458                         attach = priv->attach;
1459                         break;
1460                 }
1461         }
1462
1463         if (attach)
1464                 ffs_dmabuf_get(attach);
1465
1466         mutex_unlock(&epfile->dmabufs_mutex);
1467
1468         return attach ?: ERR_PTR(-EPERM);
1469 }
1470
1471 static int ffs_dmabuf_attach(struct file *file, int fd)
1472 {
1473         bool nonblock = file->f_flags & O_NONBLOCK;
1474         struct ffs_epfile *epfile = file->private_data;
1475         struct usb_gadget *gadget = epfile->ffs->gadget;
1476         struct dma_buf_attachment *attach;
1477         struct ffs_dmabuf_priv *priv;
1478         enum dma_data_direction dir;
1479         struct sg_table *sg_table;
1480         struct dma_buf *dmabuf;
1481         int err;
1482
1483         if (!gadget || !gadget->sg_supported)
1484                 return -EPERM;
1485
1486         dmabuf = dma_buf_get(fd);
1487         if (IS_ERR(dmabuf))
1488                 return PTR_ERR(dmabuf);
1489
1490         attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1491         if (IS_ERR(attach)) {
1492                 err = PTR_ERR(attach);
1493                 goto err_dmabuf_put;
1494         }
1495
1496         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1497         if (!priv) {
1498                 err = -ENOMEM;
1499                 goto err_dmabuf_detach;
1500         }
1501
1502         dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1503
1504         err = ffs_dma_resv_lock(dmabuf, nonblock);
1505         if (err)
1506                 goto err_free_priv;
1507
1508         sg_table = dma_buf_map_attachment(attach, dir);
1509         dma_resv_unlock(dmabuf->resv);
1510
1511         if (IS_ERR(sg_table)) {
1512                 err = PTR_ERR(sg_table);
1513                 goto err_free_priv;
1514         }
1515
1516         attach->importer_priv = priv;
1517
1518         priv->sgt = sg_table;
1519         priv->dir = dir;
1520         priv->ffs = epfile->ffs;
1521         priv->attach = attach;
1522         spin_lock_init(&priv->lock);
1523         kref_init(&priv->ref);
1524         priv->context = dma_fence_context_alloc(1);
1525
1526         mutex_lock(&epfile->dmabufs_mutex);
1527         list_add(&priv->entry, &epfile->dmabufs);
1528         mutex_unlock(&epfile->dmabufs_mutex);
1529
1530         return 0;
1531
1532 err_free_priv:
1533         kfree(priv);
1534 err_dmabuf_detach:
1535         dma_buf_detach(dmabuf, attach);
1536 err_dmabuf_put:
1537         dma_buf_put(dmabuf);
1538
1539         return err;
1540 }
1541
1542 static int ffs_dmabuf_detach(struct file *file, int fd)
1543 {
1544         struct ffs_epfile *epfile = file->private_data;
1545         struct ffs_data *ffs = epfile->ffs;
1546         struct device *dev = ffs->gadget->dev.parent;
1547         struct ffs_dmabuf_priv *priv, *tmp;
1548         struct dma_buf *dmabuf;
1549         int ret = -EPERM;
1550
1551         dmabuf = dma_buf_get(fd);
1552         if (IS_ERR(dmabuf))
1553                 return PTR_ERR(dmabuf);
1554
1555         mutex_lock(&epfile->dmabufs_mutex);
1556
1557         list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1558                 if (priv->attach->dev == dev
1559                     && priv->attach->dmabuf == dmabuf) {
1560                         /* Cancel any pending transfer */
1561                         spin_lock_irq(&ffs->eps_lock);
1562                         if (priv->ep && priv->req)
1563                                 usb_ep_dequeue(priv->ep, priv->req);
1564                         spin_unlock_irq(&ffs->eps_lock);
1565
1566                         list_del(&priv->entry);
1567
1568                         /* Unref the reference from ffs_dmabuf_attach() */
1569                         ffs_dmabuf_put(priv->attach);
1570                         ret = 0;
1571                         break;
1572                 }
1573         }
1574
1575         mutex_unlock(&epfile->dmabufs_mutex);
1576         dma_buf_put(dmabuf);
1577
1578         return ret;
1579 }
1580
1581 static int ffs_dmabuf_transfer(struct file *file,
1582                                const struct usb_ffs_dmabuf_transfer_req *req)
1583 {
1584         bool nonblock = file->f_flags & O_NONBLOCK;
1585         struct ffs_epfile *epfile = file->private_data;
1586         struct dma_buf_attachment *attach;
1587         struct ffs_dmabuf_priv *priv;
1588         struct ffs_dma_fence *fence;
1589         struct usb_request *usb_req;
1590         enum dma_resv_usage resv_dir;
1591         struct dma_buf *dmabuf;
1592         unsigned long timeout;
1593         struct ffs_ep *ep;
1594         bool cookie;
1595         u32 seqno;
1596         long retl;
1597         int ret;
1598
1599         if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1600                 return -EINVAL;
1601
1602         dmabuf = dma_buf_get(req->fd);
1603         if (IS_ERR(dmabuf))
1604                 return PTR_ERR(dmabuf);
1605
1606         if (req->length > dmabuf->size || req->length == 0) {
1607                 ret = -EINVAL;
1608                 goto err_dmabuf_put;
1609         }
1610
1611         attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1612         if (IS_ERR(attach)) {
1613                 ret = PTR_ERR(attach);
1614                 goto err_dmabuf_put;
1615         }
1616
1617         priv = attach->importer_priv;
1618
1619         ep = ffs_epfile_wait_ep(file);
1620         if (IS_ERR(ep)) {
1621                 ret = PTR_ERR(ep);
1622                 goto err_attachment_put;
1623         }
1624
1625         ret = ffs_dma_resv_lock(dmabuf, nonblock);
1626         if (ret)
1627                 goto err_attachment_put;
1628
1629         /* Make sure we don't have writers */
1630         timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1631         retl = dma_resv_wait_timeout(dmabuf->resv,
1632                                      dma_resv_usage_rw(epfile->in),
1633                                      true, timeout);
1634         if (retl == 0)
1635                 retl = -EBUSY;
1636         if (retl < 0) {
1637                 ret = (int)retl;
1638                 goto err_resv_unlock;
1639         }
1640
1641         ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1642         if (ret)
1643                 goto err_resv_unlock;
1644
1645         fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1646         if (!fence) {
1647                 ret = -ENOMEM;
1648                 goto err_resv_unlock;
1649         }
1650
1651         fence->priv = priv;
1652
1653         spin_lock_irq(&epfile->ffs->eps_lock);
1654
1655         /* In the meantime, endpoint got disabled or changed. */
1656         if (epfile->ep != ep) {
1657                 ret = -ESHUTDOWN;
1658                 goto err_fence_put;
1659         }
1660
1661         usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1662         if (!usb_req) {
1663                 ret = -ENOMEM;
1664                 goto err_fence_put;
1665         }
1666
1667         /*
1668          * usb_ep_queue() guarantees that all transfers are processed in the
1669          * order they are enqueued, so we can use a simple incrementing
1670          * sequence number for the dma_fence.
1671          */
1672         seqno = atomic_add_return(1, &epfile->seqno);
1673
1674         dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1675                        &priv->lock, priv->context, seqno);
1676
1677         resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1678
1679         dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1680         dma_resv_unlock(dmabuf->resv);
1681
1682         /* Now that the dma_fence is in place, queue the transfer. */
1683
1684         usb_req->length = req->length;
1685         usb_req->buf = NULL;
1686         usb_req->sg = priv->sgt->sgl;
1687         usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1688         usb_req->sg_was_mapped = true;
1689         usb_req->context  = fence;
1690         usb_req->complete = ffs_epfile_dmabuf_io_complete;
1691
1692         cookie = dma_fence_begin_signalling();
1693         ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1694         dma_fence_end_signalling(cookie);
1695         if (!ret) {
1696                 priv->req = usb_req;
1697                 priv->ep = ep->ep;
1698         } else {
1699                 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1700                 ffs_dmabuf_signal_done(fence, ret);
1701                 usb_ep_free_request(ep->ep, usb_req);
1702         }
1703
1704         spin_unlock_irq(&epfile->ffs->eps_lock);
1705         dma_buf_put(dmabuf);
1706
1707         return ret;
1708
1709 err_fence_put:
1710         spin_unlock_irq(&epfile->ffs->eps_lock);
1711         dma_fence_put(&fence->base);
1712 err_resv_unlock:
1713         dma_resv_unlock(dmabuf->resv);
1714 err_attachment_put:
1715         ffs_dmabuf_put(attach);
1716 err_dmabuf_put:
1717         dma_buf_put(dmabuf);
1718
1719         return ret;
1720 }
1721
1722 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1723                              unsigned long value)
1724 {
1725         struct ffs_epfile *epfile = file->private_data;
1726         struct ffs_ep *ep;
1727         int ret;
1728
1729         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1730                 return -ENODEV;
1731
1732         switch (code) {
1733         case FUNCTIONFS_DMABUF_ATTACH:
1734         {
1735                 int fd;
1736
1737                 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1738                         ret = -EFAULT;
1739                         break;
1740                 }
1741
1742                 return ffs_dmabuf_attach(file, fd);
1743         }
1744         case FUNCTIONFS_DMABUF_DETACH:
1745         {
1746                 int fd;
1747
1748                 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1749                         ret = -EFAULT;
1750                         break;
1751                 }
1752
1753                 return ffs_dmabuf_detach(file, fd);
1754         }
1755         case FUNCTIONFS_DMABUF_TRANSFER:
1756         {
1757                 struct usb_ffs_dmabuf_transfer_req req;
1758
1759                 if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1760                         ret = -EFAULT;
1761                         break;
1762                 }
1763
1764                 return ffs_dmabuf_transfer(file, &req);
1765         }
1766         default:
1767                 break;
1768         }
1769
1770         /* Wait for endpoint to be enabled */
1771         ep = ffs_epfile_wait_ep(file);
1772         if (IS_ERR(ep))
1773                 return PTR_ERR(ep);
1774
1775         spin_lock_irq(&epfile->ffs->eps_lock);
1776
1777         /* In the meantime, endpoint got disabled or changed. */
1778         if (epfile->ep != ep) {
1779                 spin_unlock_irq(&epfile->ffs->eps_lock);
1780                 return -ESHUTDOWN;
1781         }
1782
1783         switch (code) {
1784         case FUNCTIONFS_FIFO_STATUS:
1785                 ret = usb_ep_fifo_status(epfile->ep->ep);
1786                 break;
1787         case FUNCTIONFS_FIFO_FLUSH:
1788                 usb_ep_fifo_flush(epfile->ep->ep);
1789                 ret = 0;
1790                 break;
1791         case FUNCTIONFS_CLEAR_HALT:
1792                 ret = usb_ep_clear_halt(epfile->ep->ep);
1793                 break;
1794         case FUNCTIONFS_ENDPOINT_REVMAP:
1795                 ret = epfile->ep->num;
1796                 break;
1797         case FUNCTIONFS_ENDPOINT_DESC:
1798         {
1799                 int desc_idx;
1800                 struct usb_endpoint_descriptor desc1, *desc;
1801
1802                 switch (epfile->ffs->gadget->speed) {
1803                 case USB_SPEED_SUPER:
1804                 case USB_SPEED_SUPER_PLUS:
1805                         desc_idx = 2;
1806                         break;
1807                 case USB_SPEED_HIGH:
1808                         desc_idx = 1;
1809                         break;
1810                 default:
1811                         desc_idx = 0;
1812                 }
1813
1814                 desc = epfile->ep->descs[desc_idx];
1815                 memcpy(&desc1, desc, desc->bLength);
1816
1817                 spin_unlock_irq(&epfile->ffs->eps_lock);
1818                 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1819                 if (ret)
1820                         ret = -EFAULT;
1821                 return ret;
1822         }
1823         default:
1824                 ret = -ENOTTY;
1825         }
1826         spin_unlock_irq(&epfile->ffs->eps_lock);
1827
1828         return ret;
1829 }
1830
1831 static const struct file_operations ffs_epfile_operations = {
1832
1833         .open =         ffs_epfile_open,
1834         .write_iter =   ffs_epfile_write_iter,
1835         .read_iter =    ffs_epfile_read_iter,
1836         .release =      ffs_epfile_release,
1837         .unlocked_ioctl =       ffs_epfile_ioctl,
1838         .compat_ioctl = compat_ptr_ioctl,
1839 };
1840
1841
1842 /* File system and super block operations ***********************************/
1843
1844 /*
1845  * Mounting the file system creates a controller file, used first for
1846  * function configuration then later for event monitoring.
1847  */
1848
1849 static struct inode *__must_check
1850 ffs_sb_make_inode(struct super_block *sb, void *data,
1851                   const struct file_operations *fops,
1852                   const struct inode_operations *iops,
1853                   struct ffs_file_perms *perms)
1854 {
1855         struct inode *inode;
1856
1857         inode = new_inode(sb);
1858
1859         if (inode) {
1860                 struct timespec64 ts = inode_set_ctime_current(inode);
1861
1862                 inode->i_ino     = get_next_ino();
1863                 inode->i_mode    = perms->mode;
1864                 inode->i_uid     = perms->uid;
1865                 inode->i_gid     = perms->gid;
1866                 inode_set_atime_to_ts(inode, ts);
1867                 inode_set_mtime_to_ts(inode, ts);
1868                 inode->i_private = data;
1869                 if (fops)
1870                         inode->i_fop = fops;
1871                 if (iops)
1872                         inode->i_op  = iops;
1873         }
1874
1875         return inode;
1876 }
1877
1878 /* Create "regular" file */
1879 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1880                                         const char *name, void *data,
1881                                         const struct file_operations *fops)
1882 {
1883         struct ffs_data *ffs = sb->s_fs_info;
1884         struct dentry   *dentry;
1885         struct inode    *inode;
1886
1887         dentry = d_alloc_name(sb->s_root, name);
1888         if (!dentry)
1889                 return NULL;
1890
1891         inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1892         if (!inode) {
1893                 dput(dentry);
1894                 return NULL;
1895         }
1896
1897         d_add(dentry, inode);
1898         return dentry;
1899 }
1900
1901 /* Super block */
1902 static const struct super_operations ffs_sb_operations = {
1903         .statfs =       simple_statfs,
1904         .drop_inode =   generic_delete_inode,
1905 };
1906
1907 struct ffs_sb_fill_data {
1908         struct ffs_file_perms perms;
1909         umode_t root_mode;
1910         const char *dev_name;
1911         bool no_disconnect;
1912         struct ffs_data *ffs_data;
1913 };
1914
1915 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1916 {
1917         struct ffs_sb_fill_data *data = fc->fs_private;
1918         struct inode    *inode;
1919         struct ffs_data *ffs = data->ffs_data;
1920
1921         ffs->sb              = sb;
1922         data->ffs_data       = NULL;
1923         sb->s_fs_info        = ffs;
1924         sb->s_blocksize      = PAGE_SIZE;
1925         sb->s_blocksize_bits = PAGE_SHIFT;
1926         sb->s_magic          = FUNCTIONFS_MAGIC;
1927         sb->s_op             = &ffs_sb_operations;
1928         sb->s_time_gran      = 1;
1929
1930         /* Root inode */
1931         data->perms.mode = data->root_mode;
1932         inode = ffs_sb_make_inode(sb, NULL,
1933                                   &simple_dir_operations,
1934                                   &simple_dir_inode_operations,
1935                                   &data->perms);
1936         sb->s_root = d_make_root(inode);
1937         if (!sb->s_root)
1938                 return -ENOMEM;
1939
1940         /* EP0 file */
1941         if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1942                 return -ENOMEM;
1943
1944         return 0;
1945 }
1946
1947 enum {
1948         Opt_no_disconnect,
1949         Opt_rmode,
1950         Opt_fmode,
1951         Opt_mode,
1952         Opt_uid,
1953         Opt_gid,
1954 };
1955
1956 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1957         fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1958         fsparam_u32     ("rmode",               Opt_rmode),
1959         fsparam_u32     ("fmode",               Opt_fmode),
1960         fsparam_u32     ("mode",                Opt_mode),
1961         fsparam_u32     ("uid",                 Opt_uid),
1962         fsparam_u32     ("gid",                 Opt_gid),
1963         {}
1964 };
1965
1966 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1967 {
1968         struct ffs_sb_fill_data *data = fc->fs_private;
1969         struct fs_parse_result result;
1970         int opt;
1971
1972         opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1973         if (opt < 0)
1974                 return opt;
1975
1976         switch (opt) {
1977         case Opt_no_disconnect:
1978                 data->no_disconnect = result.boolean;
1979                 break;
1980         case Opt_rmode:
1981                 data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982                 break;
1983         case Opt_fmode:
1984                 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1985                 break;
1986         case Opt_mode:
1987                 data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1988                 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1989                 break;
1990
1991         case Opt_uid:
1992                 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1993                 if (!uid_valid(data->perms.uid))
1994                         goto unmapped_value;
1995                 break;
1996         case Opt_gid:
1997                 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1998                 if (!gid_valid(data->perms.gid))
1999                         goto unmapped_value;
2000                 break;
2001
2002         default:
2003                 return -ENOPARAM;
2004         }
2005
2006         return 0;
2007
2008 unmapped_value:
2009         return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2010 }
2011
2012 /*
2013  * Set up the superblock for a mount.
2014  */
2015 static int ffs_fs_get_tree(struct fs_context *fc)
2016 {
2017         struct ffs_sb_fill_data *ctx = fc->fs_private;
2018         struct ffs_data *ffs;
2019         int ret;
2020
2021         if (!fc->source)
2022                 return invalf(fc, "No source specified");
2023
2024         ffs = ffs_data_new(fc->source);
2025         if (!ffs)
2026                 return -ENOMEM;
2027         ffs->file_perms = ctx->perms;
2028         ffs->no_disconnect = ctx->no_disconnect;
2029
2030         ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2031         if (!ffs->dev_name) {
2032                 ffs_data_put(ffs);
2033                 return -ENOMEM;
2034         }
2035
2036         ret = ffs_acquire_dev(ffs->dev_name, ffs);
2037         if (ret) {
2038                 ffs_data_put(ffs);
2039                 return ret;
2040         }
2041
2042         ctx->ffs_data = ffs;
2043         return get_tree_nodev(fc, ffs_sb_fill);
2044 }
2045
2046 static void ffs_fs_free_fc(struct fs_context *fc)
2047 {
2048         struct ffs_sb_fill_data *ctx = fc->fs_private;
2049
2050         if (ctx) {
2051                 if (ctx->ffs_data) {
2052                         ffs_data_put(ctx->ffs_data);
2053                 }
2054
2055                 kfree(ctx);
2056         }
2057 }
2058
2059 static const struct fs_context_operations ffs_fs_context_ops = {
2060         .free           = ffs_fs_free_fc,
2061         .parse_param    = ffs_fs_parse_param,
2062         .get_tree       = ffs_fs_get_tree,
2063 };
2064
2065 static int ffs_fs_init_fs_context(struct fs_context *fc)
2066 {
2067         struct ffs_sb_fill_data *ctx;
2068
2069         ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2070         if (!ctx)
2071                 return -ENOMEM;
2072
2073         ctx->perms.mode = S_IFREG | 0600;
2074         ctx->perms.uid = GLOBAL_ROOT_UID;
2075         ctx->perms.gid = GLOBAL_ROOT_GID;
2076         ctx->root_mode = S_IFDIR | 0500;
2077         ctx->no_disconnect = false;
2078
2079         fc->fs_private = ctx;
2080         fc->ops = &ffs_fs_context_ops;
2081         return 0;
2082 }
2083
2084 static void
2085 ffs_fs_kill_sb(struct super_block *sb)
2086 {
2087         kill_litter_super(sb);
2088         if (sb->s_fs_info)
2089                 ffs_data_closed(sb->s_fs_info);
2090 }
2091
2092 static struct file_system_type ffs_fs_type = {
2093         .owner          = THIS_MODULE,
2094         .name           = "functionfs",
2095         .init_fs_context = ffs_fs_init_fs_context,
2096         .parameters     = ffs_fs_fs_parameters,
2097         .kill_sb        = ffs_fs_kill_sb,
2098 };
2099 MODULE_ALIAS_FS("functionfs");
2100
2101
2102 /* Driver's main init/cleanup functions *************************************/
2103
2104 static int functionfs_init(void)
2105 {
2106         int ret;
2107
2108         ret = register_filesystem(&ffs_fs_type);
2109         if (!ret)
2110                 pr_info("file system registered\n");
2111         else
2112                 pr_err("failed registering file system (%d)\n", ret);
2113
2114         return ret;
2115 }
2116
2117 static void functionfs_cleanup(void)
2118 {
2119         pr_info("unloading\n");
2120         unregister_filesystem(&ffs_fs_type);
2121 }
2122
2123
2124 /* ffs_data and ffs_function construction and destruction code **************/
2125
2126 static void ffs_data_clear(struct ffs_data *ffs);
2127 static void ffs_data_reset(struct ffs_data *ffs);
2128
2129 static void ffs_data_get(struct ffs_data *ffs)
2130 {
2131         refcount_inc(&ffs->ref);
2132 }
2133
2134 static void ffs_data_opened(struct ffs_data *ffs)
2135 {
2136         refcount_inc(&ffs->ref);
2137         if (atomic_add_return(1, &ffs->opened) == 1 &&
2138                         ffs->state == FFS_DEACTIVATED) {
2139                 ffs->state = FFS_CLOSING;
2140                 ffs_data_reset(ffs);
2141         }
2142 }
2143
2144 static void ffs_data_put(struct ffs_data *ffs)
2145 {
2146         if (refcount_dec_and_test(&ffs->ref)) {
2147                 pr_info("%s(): freeing\n", __func__);
2148                 ffs_data_clear(ffs);
2149                 ffs_release_dev(ffs->private_data);
2150                 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2151                        swait_active(&ffs->ep0req_completion.wait) ||
2152                        waitqueue_active(&ffs->wait));
2153                 destroy_workqueue(ffs->io_completion_wq);
2154                 kfree(ffs->dev_name);
2155                 kfree(ffs);
2156         }
2157 }
2158
2159 static void ffs_data_closed(struct ffs_data *ffs)
2160 {
2161         struct ffs_epfile *epfiles;
2162         unsigned long flags;
2163
2164         if (atomic_dec_and_test(&ffs->opened)) {
2165                 if (ffs->no_disconnect) {
2166                         ffs->state = FFS_DEACTIVATED;
2167                         spin_lock_irqsave(&ffs->eps_lock, flags);
2168                         epfiles = ffs->epfiles;
2169                         ffs->epfiles = NULL;
2170                         spin_unlock_irqrestore(&ffs->eps_lock,
2171                                                         flags);
2172
2173                         if (epfiles)
2174                                 ffs_epfiles_destroy(epfiles,
2175                                                  ffs->eps_count);
2176
2177                         if (ffs->setup_state == FFS_SETUP_PENDING)
2178                                 __ffs_ep0_stall(ffs);
2179                 } else {
2180                         ffs->state = FFS_CLOSING;
2181                         ffs_data_reset(ffs);
2182                 }
2183         }
2184         if (atomic_read(&ffs->opened) < 0) {
2185                 ffs->state = FFS_CLOSING;
2186                 ffs_data_reset(ffs);
2187         }
2188
2189         ffs_data_put(ffs);
2190 }
2191
2192 static struct ffs_data *ffs_data_new(const char *dev_name)
2193 {
2194         struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2195         if (!ffs)
2196                 return NULL;
2197
2198         ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2199         if (!ffs->io_completion_wq) {
2200                 kfree(ffs);
2201                 return NULL;
2202         }
2203
2204         refcount_set(&ffs->ref, 1);
2205         atomic_set(&ffs->opened, 0);
2206         ffs->state = FFS_READ_DESCRIPTORS;
2207         mutex_init(&ffs->mutex);
2208         spin_lock_init(&ffs->eps_lock);
2209         init_waitqueue_head(&ffs->ev.waitq);
2210         init_waitqueue_head(&ffs->wait);
2211         init_completion(&ffs->ep0req_completion);
2212
2213         /* XXX REVISIT need to update it in some places, or do we? */
2214         ffs->ev.can_stall = 1;
2215
2216         return ffs;
2217 }
2218
2219 static void ffs_data_clear(struct ffs_data *ffs)
2220 {
2221         struct ffs_epfile *epfiles;
2222         unsigned long flags;
2223
2224         ffs_closed(ffs);
2225
2226         BUG_ON(ffs->gadget);
2227
2228         spin_lock_irqsave(&ffs->eps_lock, flags);
2229         epfiles = ffs->epfiles;
2230         ffs->epfiles = NULL;
2231         spin_unlock_irqrestore(&ffs->eps_lock, flags);
2232
2233         /*
2234          * potential race possible between ffs_func_eps_disable
2235          * & ffs_epfile_release therefore maintaining a local
2236          * copy of epfile will save us from use-after-free.
2237          */
2238         if (epfiles) {
2239                 ffs_epfiles_destroy(epfiles, ffs->eps_count);
2240                 ffs->epfiles = NULL;
2241         }
2242
2243         if (ffs->ffs_eventfd) {
2244                 eventfd_ctx_put(ffs->ffs_eventfd);
2245                 ffs->ffs_eventfd = NULL;
2246         }
2247
2248         kfree(ffs->raw_descs_data);
2249         kfree(ffs->raw_strings);
2250         kfree(ffs->stringtabs);
2251 }
2252
2253 static void ffs_data_reset(struct ffs_data *ffs)
2254 {
2255         ffs_data_clear(ffs);
2256
2257         ffs->raw_descs_data = NULL;
2258         ffs->raw_descs = NULL;
2259         ffs->raw_strings = NULL;
2260         ffs->stringtabs = NULL;
2261
2262         ffs->raw_descs_length = 0;
2263         ffs->fs_descs_count = 0;
2264         ffs->hs_descs_count = 0;
2265         ffs->ss_descs_count = 0;
2266
2267         ffs->strings_count = 0;
2268         ffs->interfaces_count = 0;
2269         ffs->eps_count = 0;
2270
2271         ffs->ev.count = 0;
2272
2273         ffs->state = FFS_READ_DESCRIPTORS;
2274         ffs->setup_state = FFS_NO_SETUP;
2275         ffs->flags = 0;
2276
2277         ffs->ms_os_descs_ext_prop_count = 0;
2278         ffs->ms_os_descs_ext_prop_name_len = 0;
2279         ffs->ms_os_descs_ext_prop_data_len = 0;
2280 }
2281
2282
2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284 {
2285         struct usb_gadget_strings **lang;
2286         int first_id;
2287
2288         if (WARN_ON(ffs->state != FFS_ACTIVE
2289                  || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290                 return -EBADFD;
2291
2292         first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293         if (first_id < 0)
2294                 return first_id;
2295
2296         ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297         if (!ffs->ep0req)
2298                 return -ENOMEM;
2299         ffs->ep0req->complete = ffs_ep0_complete;
2300         ffs->ep0req->context = ffs;
2301
2302         lang = ffs->stringtabs;
2303         if (lang) {
2304                 for (; *lang; ++lang) {
2305                         struct usb_string *str = (*lang)->strings;
2306                         int id = first_id;
2307                         for (; str->s; ++id, ++str)
2308                                 str->id = id;
2309                 }
2310         }
2311
2312         ffs->gadget = cdev->gadget;
2313         ffs_data_get(ffs);
2314         return 0;
2315 }
2316
2317 static void functionfs_unbind(struct ffs_data *ffs)
2318 {
2319         if (!WARN_ON(!ffs->gadget)) {
2320                 /* dequeue before freeing ep0req */
2321                 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322                 mutex_lock(&ffs->mutex);
2323                 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324                 ffs->ep0req = NULL;
2325                 ffs->gadget = NULL;
2326                 clear_bit(FFS_FL_BOUND, &ffs->flags);
2327                 mutex_unlock(&ffs->mutex);
2328                 ffs_data_put(ffs);
2329         }
2330 }
2331
2332 static int ffs_epfiles_create(struct ffs_data *ffs)
2333 {
2334         struct ffs_epfile *epfile, *epfiles;
2335         unsigned i, count;
2336
2337         count = ffs->eps_count;
2338         epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2339         if (!epfiles)
2340                 return -ENOMEM;
2341
2342         epfile = epfiles;
2343         for (i = 1; i <= count; ++i, ++epfile) {
2344                 epfile->ffs = ffs;
2345                 mutex_init(&epfile->mutex);
2346                 mutex_init(&epfile->dmabufs_mutex);
2347                 INIT_LIST_HEAD(&epfile->dmabufs);
2348                 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2349                         sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2350                 else
2351                         sprintf(epfile->name, "ep%u", i);
2352                 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2353                                                  epfile,
2354                                                  &ffs_epfile_operations);
2355                 if (!epfile->dentry) {
2356                         ffs_epfiles_destroy(epfiles, i - 1);
2357                         return -ENOMEM;
2358                 }
2359         }
2360
2361         ffs->epfiles = epfiles;
2362         return 0;
2363 }
2364
2365 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2366 {
2367         struct ffs_epfile *epfile = epfiles;
2368
2369         for (; count; --count, ++epfile) {
2370                 BUG_ON(mutex_is_locked(&epfile->mutex));
2371                 if (epfile->dentry) {
2372                         d_delete(epfile->dentry);
2373                         dput(epfile->dentry);
2374                         epfile->dentry = NULL;
2375                 }
2376         }
2377
2378         kfree(epfiles);
2379 }
2380
2381 static void ffs_func_eps_disable(struct ffs_function *func)
2382 {
2383         struct ffs_ep *ep;
2384         struct ffs_epfile *epfile;
2385         unsigned short count;
2386         unsigned long flags;
2387
2388         spin_lock_irqsave(&func->ffs->eps_lock, flags);
2389         count = func->ffs->eps_count;
2390         epfile = func->ffs->epfiles;
2391         ep = func->eps;
2392         while (count--) {
2393                 /* pending requests get nuked */
2394                 if (ep->ep)
2395                         usb_ep_disable(ep->ep);
2396                 ++ep;
2397
2398                 if (epfile) {
2399                         epfile->ep = NULL;
2400                         __ffs_epfile_read_buffer_free(epfile);
2401                         ++epfile;
2402                 }
2403         }
2404         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2405 }
2406
2407 static int ffs_func_eps_enable(struct ffs_function *func)
2408 {
2409         struct ffs_data *ffs;
2410         struct ffs_ep *ep;
2411         struct ffs_epfile *epfile;
2412         unsigned short count;
2413         unsigned long flags;
2414         int ret = 0;
2415
2416         spin_lock_irqsave(&func->ffs->eps_lock, flags);
2417         ffs = func->ffs;
2418         ep = func->eps;
2419         epfile = ffs->epfiles;
2420         count = ffs->eps_count;
2421         while(count--) {
2422                 ep->ep->driver_data = ep;
2423
2424                 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2425                 if (ret) {
2426                         pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2427                                         __func__, ep->ep->name, ret);
2428                         break;
2429                 }
2430
2431                 ret = usb_ep_enable(ep->ep);
2432                 if (!ret) {
2433                         epfile->ep = ep;
2434                         epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2435                         epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2436                 } else {
2437                         break;
2438                 }
2439
2440                 ++ep;
2441                 ++epfile;
2442         }
2443
2444         wake_up_interruptible(&ffs->wait);
2445         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2446
2447         return ret;
2448 }
2449
2450
2451 /* Parsing and building descriptors and strings *****************************/
2452
2453 /*
2454  * This validates if data pointed by data is a valid USB descriptor as
2455  * well as record how many interfaces, endpoints and strings are
2456  * required by given configuration.  Returns address after the
2457  * descriptor or NULL if data is invalid.
2458  */
2459
2460 enum ffs_entity_type {
2461         FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2462 };
2463
2464 enum ffs_os_desc_type {
2465         FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2466 };
2467
2468 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2469                                    u8 *valuep,
2470                                    struct usb_descriptor_header *desc,
2471                                    void *priv);
2472
2473 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2474                                     struct usb_os_desc_header *h, void *data,
2475                                     unsigned len, void *priv);
2476
2477 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2478                                            ffs_entity_callback entity,
2479                                            void *priv, int *current_class, int *current_subclass)
2480 {
2481         struct usb_descriptor_header *_ds = (void *)data;
2482         u8 length;
2483         int ret;
2484
2485         /* At least two bytes are required: length and type */
2486         if (len < 2) {
2487                 pr_vdebug("descriptor too short\n");
2488                 return -EINVAL;
2489         }
2490
2491         /* If we have at least as many bytes as the descriptor takes? */
2492         length = _ds->bLength;
2493         if (len < length) {
2494                 pr_vdebug("descriptor longer then available data\n");
2495                 return -EINVAL;
2496         }
2497
2498 #define __entity_check_INTERFACE(val)  1
2499 #define __entity_check_STRING(val)     (val)
2500 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2501 #define __entity(type, val) do {                                        \
2502                 pr_vdebug("entity " #type "(%02x)\n", (val));           \
2503                 if (!__entity_check_ ##type(val)) {                     \
2504                         pr_vdebug("invalid entity's value\n");          \
2505                         return -EINVAL;                                 \
2506                 }                                                       \
2507                 ret = entity(FFS_ ##type, &val, _ds, priv);             \
2508                 if (ret < 0) {                                          \
2509                         pr_debug("entity " #type "(%02x); ret = %d\n",  \
2510                                  (val), ret);                           \
2511                         return ret;                                     \
2512                 }                                                       \
2513         } while (0)
2514
2515         /* Parse descriptor depending on type. */
2516         switch (_ds->bDescriptorType) {
2517         case USB_DT_DEVICE:
2518         case USB_DT_CONFIG:
2519         case USB_DT_STRING:
2520         case USB_DT_DEVICE_QUALIFIER:
2521                 /* function can't have any of those */
2522                 pr_vdebug("descriptor reserved for gadget: %d\n",
2523                       _ds->bDescriptorType);
2524                 return -EINVAL;
2525
2526         case USB_DT_INTERFACE: {
2527                 struct usb_interface_descriptor *ds = (void *)_ds;
2528                 pr_vdebug("interface descriptor\n");
2529                 if (length != sizeof *ds)
2530                         goto inv_length;
2531
2532                 __entity(INTERFACE, ds->bInterfaceNumber);
2533                 if (ds->iInterface)
2534                         __entity(STRING, ds->iInterface);
2535                 *current_class = ds->bInterfaceClass;
2536                 *current_subclass = ds->bInterfaceSubClass;
2537         }
2538                 break;
2539
2540         case USB_DT_ENDPOINT: {
2541                 struct usb_endpoint_descriptor *ds = (void *)_ds;
2542                 pr_vdebug("endpoint descriptor\n");
2543                 if (length != USB_DT_ENDPOINT_SIZE &&
2544                     length != USB_DT_ENDPOINT_AUDIO_SIZE)
2545                         goto inv_length;
2546                 __entity(ENDPOINT, ds->bEndpointAddress);
2547         }
2548                 break;
2549
2550         case USB_TYPE_CLASS | 0x01:
2551                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2552                         pr_vdebug("hid descriptor\n");
2553                         if (length != sizeof(struct hid_descriptor))
2554                                 goto inv_length;
2555                         break;
2556                 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2557                         pr_vdebug("ccid descriptor\n");
2558                         if (length != sizeof(struct ccid_descriptor))
2559                                 goto inv_length;
2560                         break;
2561                 } else if (*current_class == USB_CLASS_APP_SPEC &&
2562                            *current_subclass == USB_SUBCLASS_DFU) {
2563                         pr_vdebug("dfu functional descriptor\n");
2564                         if (length != sizeof(struct usb_dfu_functional_descriptor))
2565                                 goto inv_length;
2566                         break;
2567                 } else {
2568                         pr_vdebug("unknown descriptor: %d for class %d\n",
2569                               _ds->bDescriptorType, *current_class);
2570                         return -EINVAL;
2571                 }
2572
2573         case USB_DT_OTG:
2574                 if (length != sizeof(struct usb_otg_descriptor))
2575                         goto inv_length;
2576                 break;
2577
2578         case USB_DT_INTERFACE_ASSOCIATION: {
2579                 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2580                 pr_vdebug("interface association descriptor\n");
2581                 if (length != sizeof *ds)
2582                         goto inv_length;
2583                 if (ds->iFunction)
2584                         __entity(STRING, ds->iFunction);
2585         }
2586                 break;
2587
2588         case USB_DT_SS_ENDPOINT_COMP:
2589                 pr_vdebug("EP SS companion descriptor\n");
2590                 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2591                         goto inv_length;
2592                 break;
2593
2594         case USB_DT_OTHER_SPEED_CONFIG:
2595         case USB_DT_INTERFACE_POWER:
2596         case USB_DT_DEBUG:
2597         case USB_DT_SECURITY:
2598         case USB_DT_CS_RADIO_CONTROL:
2599                 /* TODO */
2600                 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2601                 return -EINVAL;
2602
2603         default:
2604                 /* We should never be here */
2605                 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2606                 return -EINVAL;
2607
2608 inv_length:
2609                 pr_vdebug("invalid length: %d (descriptor %d)\n",
2610                           _ds->bLength, _ds->bDescriptorType);
2611                 return -EINVAL;
2612         }
2613
2614 #undef __entity
2615 #undef __entity_check_DESCRIPTOR
2616 #undef __entity_check_INTERFACE
2617 #undef __entity_check_STRING
2618 #undef __entity_check_ENDPOINT
2619
2620         return length;
2621 }
2622
2623 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2624                                      ffs_entity_callback entity, void *priv)
2625 {
2626         const unsigned _len = len;
2627         unsigned long num = 0;
2628         int current_class = -1;
2629         int current_subclass = -1;
2630
2631         for (;;) {
2632                 int ret;
2633
2634                 if (num == count)
2635                         data = NULL;
2636
2637                 /* Record "descriptor" entity */
2638                 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2639                 if (ret < 0) {
2640                         pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2641                                  num, ret);
2642                         return ret;
2643                 }
2644
2645                 if (!data)
2646                         return _len - len;
2647
2648                 ret = ffs_do_single_desc(data, len, entity, priv,
2649                         &current_class, &current_subclass);
2650                 if (ret < 0) {
2651                         pr_debug("%s returns %d\n", __func__, ret);
2652                         return ret;
2653                 }
2654
2655                 len -= ret;
2656                 data += ret;
2657                 ++num;
2658         }
2659 }
2660
2661 static int __ffs_data_do_entity(enum ffs_entity_type type,
2662                                 u8 *valuep, struct usb_descriptor_header *desc,
2663                                 void *priv)
2664 {
2665         struct ffs_desc_helper *helper = priv;
2666         struct usb_endpoint_descriptor *d;
2667
2668         switch (type) {
2669         case FFS_DESCRIPTOR:
2670                 break;
2671
2672         case FFS_INTERFACE:
2673                 /*
2674                  * Interfaces are indexed from zero so if we
2675                  * encountered interface "n" then there are at least
2676                  * "n+1" interfaces.
2677                  */
2678                 if (*valuep >= helper->interfaces_count)
2679                         helper->interfaces_count = *valuep + 1;
2680                 break;
2681
2682         case FFS_STRING:
2683                 /*
2684                  * Strings are indexed from 1 (0 is reserved
2685                  * for languages list)
2686                  */
2687                 if (*valuep > helper->ffs->strings_count)
2688                         helper->ffs->strings_count = *valuep;
2689                 break;
2690
2691         case FFS_ENDPOINT:
2692                 d = (void *)desc;
2693                 helper->eps_count++;
2694                 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2695                         return -EINVAL;
2696                 /* Check if descriptors for any speed were already parsed */
2697                 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2698                         helper->ffs->eps_addrmap[helper->eps_count] =
2699                                 d->bEndpointAddress;
2700                 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2701                                 d->bEndpointAddress)
2702                         return -EINVAL;
2703                 break;
2704         }
2705
2706         return 0;
2707 }
2708
2709 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2710                                    struct usb_os_desc_header *desc)
2711 {
2712         u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2713         u16 w_index = le16_to_cpu(desc->wIndex);
2714
2715         if (bcd_version == 0x1) {
2716                 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2717                         "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2718         } else if (bcd_version != 0x100) {
2719                 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2720                           bcd_version);
2721                 return -EINVAL;
2722         }
2723         switch (w_index) {
2724         case 0x4:
2725                 *next_type = FFS_OS_DESC_EXT_COMPAT;
2726                 break;
2727         case 0x5:
2728                 *next_type = FFS_OS_DESC_EXT_PROP;
2729                 break;
2730         default:
2731                 pr_vdebug("unsupported os descriptor type: %d", w_index);
2732                 return -EINVAL;
2733         }
2734
2735         return sizeof(*desc);
2736 }
2737
2738 /*
2739  * Process all extended compatibility/extended property descriptors
2740  * of a feature descriptor
2741  */
2742 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2743                                               enum ffs_os_desc_type type,
2744                                               u16 feature_count,
2745                                               ffs_os_desc_callback entity,
2746                                               void *priv,
2747                                               struct usb_os_desc_header *h)
2748 {
2749         int ret;
2750         const unsigned _len = len;
2751
2752         /* loop over all ext compat/ext prop descriptors */
2753         while (feature_count--) {
2754                 ret = entity(type, h, data, len, priv);
2755                 if (ret < 0) {
2756                         pr_debug("bad OS descriptor, type: %d\n", type);
2757                         return ret;
2758                 }
2759                 data += ret;
2760                 len -= ret;
2761         }
2762         return _len - len;
2763 }
2764
2765 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2766 static int __must_check ffs_do_os_descs(unsigned count,
2767                                         char *data, unsigned len,
2768                                         ffs_os_desc_callback entity, void *priv)
2769 {
2770         const unsigned _len = len;
2771         unsigned long num = 0;
2772
2773         for (num = 0; num < count; ++num) {
2774                 int ret;
2775                 enum ffs_os_desc_type type;
2776                 u16 feature_count;
2777                 struct usb_os_desc_header *desc = (void *)data;
2778
2779                 if (len < sizeof(*desc))
2780                         return -EINVAL;
2781
2782                 /*
2783                  * Record "descriptor" entity.
2784                  * Process dwLength, bcdVersion, wIndex, get b/wCount.
2785                  * Move the data pointer to the beginning of extended
2786                  * compatibilities proper or extended properties proper
2787                  * portions of the data
2788                  */
2789                 if (le32_to_cpu(desc->dwLength) > len)
2790                         return -EINVAL;
2791
2792                 ret = __ffs_do_os_desc_header(&type, desc);
2793                 if (ret < 0) {
2794                         pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2795                                  num, ret);
2796                         return ret;
2797                 }
2798                 /*
2799                  * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2800                  */
2801                 feature_count = le16_to_cpu(desc->wCount);
2802                 if (type == FFS_OS_DESC_EXT_COMPAT &&
2803                     (feature_count > 255 || desc->Reserved))
2804                                 return -EINVAL;
2805                 len -= ret;
2806                 data += ret;
2807
2808                 /*
2809                  * Process all function/property descriptors
2810                  * of this Feature Descriptor
2811                  */
2812                 ret = ffs_do_single_os_desc(data, len, type,
2813                                             feature_count, entity, priv, desc);
2814                 if (ret < 0) {
2815                         pr_debug("%s returns %d\n", __func__, ret);
2816                         return ret;
2817                 }
2818
2819                 len -= ret;
2820                 data += ret;
2821         }
2822         return _len - len;
2823 }
2824
2825 /*
2826  * Validate contents of the buffer from userspace related to OS descriptors.
2827  */
2828 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2829                                  struct usb_os_desc_header *h, void *data,
2830                                  unsigned len, void *priv)
2831 {
2832         struct ffs_data *ffs = priv;
2833         u8 length;
2834
2835         switch (type) {
2836         case FFS_OS_DESC_EXT_COMPAT: {
2837                 struct usb_ext_compat_desc *d = data;
2838                 int i;
2839
2840                 if (len < sizeof(*d) ||
2841                     d->bFirstInterfaceNumber >= ffs->interfaces_count)
2842                         return -EINVAL;
2843                 if (d->Reserved1 != 1) {
2844                         /*
2845                          * According to the spec, Reserved1 must be set to 1
2846                          * but older kernels incorrectly rejected non-zero
2847                          * values.  We fix it here to avoid returning EINVAL
2848                          * in response to values we used to accept.
2849                          */
2850                         pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2851                         d->Reserved1 = 1;
2852                 }
2853                 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2854                         if (d->Reserved2[i])
2855                                 return -EINVAL;
2856
2857                 length = sizeof(struct usb_ext_compat_desc);
2858         }
2859                 break;
2860         case FFS_OS_DESC_EXT_PROP: {
2861                 struct usb_ext_prop_desc *d = data;
2862                 u32 type, pdl;
2863                 u16 pnl;
2864
2865                 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2866                         return -EINVAL;
2867                 length = le32_to_cpu(d->dwSize);
2868                 if (len < length)
2869                         return -EINVAL;
2870                 type = le32_to_cpu(d->dwPropertyDataType);
2871                 if (type < USB_EXT_PROP_UNICODE ||
2872                     type > USB_EXT_PROP_UNICODE_MULTI) {
2873                         pr_vdebug("unsupported os descriptor property type: %d",
2874                                   type);
2875                         return -EINVAL;
2876                 }
2877                 pnl = le16_to_cpu(d->wPropertyNameLength);
2878                 if (length < 14 + pnl) {
2879                         pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2880                                   length, pnl, type);
2881                         return -EINVAL;
2882                 }
2883                 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2884                 if (length != 14 + pnl + pdl) {
2885                         pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2886                                   length, pnl, pdl, type);
2887                         return -EINVAL;
2888                 }
2889                 ++ffs->ms_os_descs_ext_prop_count;
2890                 /* property name reported to the host as "WCHAR"s */
2891                 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2892                 ffs->ms_os_descs_ext_prop_data_len += pdl;
2893         }
2894                 break;
2895         default:
2896                 pr_vdebug("unknown descriptor: %d\n", type);
2897                 return -EINVAL;
2898         }
2899         return length;
2900 }
2901
2902 static int __ffs_data_got_descs(struct ffs_data *ffs,
2903                                 char *const _data, size_t len)
2904 {
2905         char *data = _data, *raw_descs;
2906         unsigned os_descs_count = 0, counts[3], flags;
2907         int ret = -EINVAL, i;
2908         struct ffs_desc_helper helper;
2909
2910         if (get_unaligned_le32(data + 4) != len)
2911                 goto error;
2912
2913         switch (get_unaligned_le32(data)) {
2914         case FUNCTIONFS_DESCRIPTORS_MAGIC:
2915                 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2916                 data += 8;
2917                 len  -= 8;
2918                 break;
2919         case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2920                 flags = get_unaligned_le32(data + 8);
2921                 ffs->user_flags = flags;
2922                 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2923                               FUNCTIONFS_HAS_HS_DESC |
2924                               FUNCTIONFS_HAS_SS_DESC |
2925                               FUNCTIONFS_HAS_MS_OS_DESC |
2926                               FUNCTIONFS_VIRTUAL_ADDR |
2927                               FUNCTIONFS_EVENTFD |
2928                               FUNCTIONFS_ALL_CTRL_RECIP |
2929                               FUNCTIONFS_CONFIG0_SETUP)) {
2930                         ret = -ENOSYS;
2931                         goto error;
2932                 }
2933                 data += 12;
2934                 len  -= 12;
2935                 break;
2936         default:
2937                 goto error;
2938         }
2939
2940         if (flags & FUNCTIONFS_EVENTFD) {
2941                 if (len < 4)
2942                         goto error;
2943                 ffs->ffs_eventfd =
2944                         eventfd_ctx_fdget((int)get_unaligned_le32(data));
2945                 if (IS_ERR(ffs->ffs_eventfd)) {
2946                         ret = PTR_ERR(ffs->ffs_eventfd);
2947                         ffs->ffs_eventfd = NULL;
2948                         goto error;
2949                 }
2950                 data += 4;
2951                 len  -= 4;
2952         }
2953
2954         /* Read fs_count, hs_count and ss_count (if present) */
2955         for (i = 0; i < 3; ++i) {
2956                 if (!(flags & (1 << i))) {
2957                         counts[i] = 0;
2958                 } else if (len < 4) {
2959                         goto error;
2960                 } else {
2961                         counts[i] = get_unaligned_le32(data);
2962                         data += 4;
2963                         len  -= 4;
2964                 }
2965         }
2966         if (flags & (1 << i)) {
2967                 if (len < 4) {
2968                         goto error;
2969                 }
2970                 os_descs_count = get_unaligned_le32(data);
2971                 data += 4;
2972                 len -= 4;
2973         }
2974
2975         /* Read descriptors */
2976         raw_descs = data;
2977         helper.ffs = ffs;
2978         for (i = 0; i < 3; ++i) {
2979                 if (!counts[i])
2980                         continue;
2981                 helper.interfaces_count = 0;
2982                 helper.eps_count = 0;
2983                 ret = ffs_do_descs(counts[i], data, len,
2984                                    __ffs_data_do_entity, &helper);
2985                 if (ret < 0)
2986                         goto error;
2987                 if (!ffs->eps_count && !ffs->interfaces_count) {
2988                         ffs->eps_count = helper.eps_count;
2989                         ffs->interfaces_count = helper.interfaces_count;
2990                 } else {
2991                         if (ffs->eps_count != helper.eps_count) {
2992                                 ret = -EINVAL;
2993                                 goto error;
2994                         }
2995                         if (ffs->interfaces_count != helper.interfaces_count) {
2996                                 ret = -EINVAL;
2997                                 goto error;
2998                         }
2999                 }
3000                 data += ret;
3001                 len  -= ret;
3002         }
3003         if (os_descs_count) {
3004                 ret = ffs_do_os_descs(os_descs_count, data, len,
3005                                       __ffs_data_do_os_desc, ffs);
3006                 if (ret < 0)
3007                         goto error;
3008                 data += ret;
3009                 len -= ret;
3010         }
3011
3012         if (raw_descs == data || len) {
3013                 ret = -EINVAL;
3014                 goto error;
3015         }
3016
3017         ffs->raw_descs_data     = _data;
3018         ffs->raw_descs          = raw_descs;
3019         ffs->raw_descs_length   = data - raw_descs;
3020         ffs->fs_descs_count     = counts[0];
3021         ffs->hs_descs_count     = counts[1];
3022         ffs->ss_descs_count     = counts[2];
3023         ffs->ms_os_descs_count  = os_descs_count;
3024
3025         return 0;
3026
3027 error:
3028         kfree(_data);
3029         return ret;
3030 }
3031
3032 static int __ffs_data_got_strings(struct ffs_data *ffs,
3033                                   char *const _data, size_t len)
3034 {
3035         u32 str_count, needed_count, lang_count;
3036         struct usb_gadget_strings **stringtabs, *t;
3037         const char *data = _data;
3038         struct usb_string *s;
3039
3040         if (len < 16 ||
3041             get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3042             get_unaligned_le32(data + 4) != len)
3043                 goto error;
3044         str_count  = get_unaligned_le32(data + 8);
3045         lang_count = get_unaligned_le32(data + 12);
3046
3047         /* if one is zero the other must be zero */
3048         if (!str_count != !lang_count)
3049                 goto error;
3050
3051         /* Do we have at least as many strings as descriptors need? */
3052         needed_count = ffs->strings_count;
3053         if (str_count < needed_count)
3054                 goto error;
3055
3056         /*
3057          * If we don't need any strings just return and free all
3058          * memory.
3059          */
3060         if (!needed_count) {
3061                 kfree(_data);
3062                 return 0;
3063         }
3064
3065         /* Allocate everything in one chunk so there's less maintenance. */
3066         {
3067                 unsigned i = 0;
3068                 vla_group(d);
3069                 vla_item(d, struct usb_gadget_strings *, stringtabs,
3070                         size_add(lang_count, 1));
3071                 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3072                 vla_item(d, struct usb_string, strings,
3073                         size_mul(lang_count, (needed_count + 1)));
3074
3075                 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3076
3077                 if (!vlabuf) {
3078                         kfree(_data);
3079                         return -ENOMEM;
3080                 }
3081
3082                 /* Initialize the VLA pointers */
3083                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084                 t = vla_ptr(vlabuf, d, stringtab);
3085                 i = lang_count;
3086                 do {
3087                         *stringtabs++ = t++;
3088                 } while (--i);
3089                 *stringtabs = NULL;
3090
3091                 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3092                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093                 t = vla_ptr(vlabuf, d, stringtab);
3094                 s = vla_ptr(vlabuf, d, strings);
3095         }
3096
3097         /* For each language */
3098         data += 16;
3099         len -= 16;
3100
3101         do { /* lang_count > 0 so we can use do-while */
3102                 unsigned needed = needed_count;
3103                 u32 str_per_lang = str_count;
3104
3105                 if (len < 3)
3106                         goto error_free;
3107                 t->language = get_unaligned_le16(data);
3108                 t->strings  = s;
3109                 ++t;
3110
3111                 data += 2;
3112                 len -= 2;
3113
3114                 /* For each string */
3115                 do { /* str_count > 0 so we can use do-while */
3116                         size_t length = strnlen(data, len);
3117
3118                         if (length == len)
3119                                 goto error_free;
3120
3121                         /*
3122                          * User may provide more strings then we need,
3123                          * if that's the case we simply ignore the
3124                          * rest
3125                          */
3126                         if (needed) {
3127                                 /*
3128                                  * s->id will be set while adding
3129                                  * function to configuration so for
3130                                  * now just leave garbage here.
3131                                  */
3132                                 s->s = data;
3133                                 --needed;
3134                                 ++s;
3135                         }
3136
3137                         data += length + 1;
3138                         len -= length + 1;
3139                 } while (--str_per_lang);
3140
3141                 s->id = 0;   /* terminator */
3142                 s->s = NULL;
3143                 ++s;
3144
3145         } while (--lang_count);
3146
3147         /* Some garbage left? */
3148         if (len)
3149                 goto error_free;
3150
3151         /* Done! */
3152         ffs->stringtabs = stringtabs;
3153         ffs->raw_strings = _data;
3154
3155         return 0;
3156
3157 error_free:
3158         kfree(stringtabs);
3159 error:
3160         kfree(_data);
3161         return -EINVAL;
3162 }
3163
3164
3165 /* Events handling and management *******************************************/
3166
3167 static void __ffs_event_add(struct ffs_data *ffs,
3168                             enum usb_functionfs_event_type type)
3169 {
3170         enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3171         int neg = 0;
3172
3173         /*
3174          * Abort any unhandled setup
3175          *
3176          * We do not need to worry about some cmpxchg() changing value
3177          * of ffs->setup_state without holding the lock because when
3178          * state is FFS_SETUP_PENDING cmpxchg() in several places in
3179          * the source does nothing.
3180          */
3181         if (ffs->setup_state == FFS_SETUP_PENDING)
3182                 ffs->setup_state = FFS_SETUP_CANCELLED;
3183
3184         /*
3185          * Logic of this function guarantees that there are at most four pending
3186          * evens on ffs->ev.types queue.  This is important because the queue
3187          * has space for four elements only and __ffs_ep0_read_events function
3188          * depends on that limit as well.  If more event types are added, those
3189          * limits have to be revisited or guaranteed to still hold.
3190          */
3191         switch (type) {
3192         case FUNCTIONFS_RESUME:
3193                 rem_type2 = FUNCTIONFS_SUSPEND;
3194                 fallthrough;
3195         case FUNCTIONFS_SUSPEND:
3196         case FUNCTIONFS_SETUP:
3197                 rem_type1 = type;
3198                 /* Discard all similar events */
3199                 break;
3200
3201         case FUNCTIONFS_BIND:
3202         case FUNCTIONFS_UNBIND:
3203         case FUNCTIONFS_DISABLE:
3204         case FUNCTIONFS_ENABLE:
3205                 /* Discard everything other then power management. */
3206                 rem_type1 = FUNCTIONFS_SUSPEND;
3207                 rem_type2 = FUNCTIONFS_RESUME;
3208                 neg = 1;
3209                 break;
3210
3211         default:
3212                 WARN(1, "%d: unknown event, this should not happen\n", type);
3213                 return;
3214         }
3215
3216         {
3217                 u8 *ev  = ffs->ev.types, *out = ev;
3218                 unsigned n = ffs->ev.count;
3219                 for (; n; --n, ++ev)
3220                         if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3221                                 *out++ = *ev;
3222                         else
3223                                 pr_vdebug("purging event %d\n", *ev);
3224                 ffs->ev.count = out - ffs->ev.types;
3225         }
3226
3227         pr_vdebug("adding event %d\n", type);
3228         ffs->ev.types[ffs->ev.count++] = type;
3229         wake_up_locked(&ffs->ev.waitq);
3230         if (ffs->ffs_eventfd)
3231                 eventfd_signal(ffs->ffs_eventfd);
3232 }
3233
3234 static void ffs_event_add(struct ffs_data *ffs,
3235                           enum usb_functionfs_event_type type)
3236 {
3237         unsigned long flags;
3238         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3239         __ffs_event_add(ffs, type);
3240         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241 }
3242
3243 /* Bind/unbind USB function hooks *******************************************/
3244
3245 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3246 {
3247         int i;
3248
3249         for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3250                 if (ffs->eps_addrmap[i] == endpoint_address)
3251                         return i;
3252         return -ENOENT;
3253 }
3254
3255 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3256                                     struct usb_descriptor_header *desc,
3257                                     void *priv)
3258 {
3259         struct usb_endpoint_descriptor *ds = (void *)desc;
3260         struct ffs_function *func = priv;
3261         struct ffs_ep *ffs_ep;
3262         unsigned ep_desc_id;
3263         int idx;
3264         static const char *speed_names[] = { "full", "high", "super" };
3265
3266         if (type != FFS_DESCRIPTOR)
3267                 return 0;
3268
3269         /*
3270          * If ss_descriptors is not NULL, we are reading super speed
3271          * descriptors; if hs_descriptors is not NULL, we are reading high
3272          * speed descriptors; otherwise, we are reading full speed
3273          * descriptors.
3274          */
3275         if (func->function.ss_descriptors) {
3276                 ep_desc_id = 2;
3277                 func->function.ss_descriptors[(long)valuep] = desc;
3278         } else if (func->function.hs_descriptors) {
3279                 ep_desc_id = 1;
3280                 func->function.hs_descriptors[(long)valuep] = desc;
3281         } else {
3282                 ep_desc_id = 0;
3283                 func->function.fs_descriptors[(long)valuep]    = desc;
3284         }
3285
3286         if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3287                 return 0;
3288
3289         idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3290         if (idx < 0)
3291                 return idx;
3292
3293         ffs_ep = func->eps + idx;
3294
3295         if (ffs_ep->descs[ep_desc_id]) {
3296                 pr_err("two %sspeed descriptors for EP %d\n",
3297                           speed_names[ep_desc_id],
3298                           ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3299                 return -EINVAL;
3300         }
3301         ffs_ep->descs[ep_desc_id] = ds;
3302
3303         ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3304         if (ffs_ep->ep) {
3305                 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3306                 if (!ds->wMaxPacketSize)
3307                         ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3308         } else {
3309                 struct usb_request *req;
3310                 struct usb_ep *ep;
3311                 u8 bEndpointAddress;
3312                 u16 wMaxPacketSize;
3313
3314                 /*
3315                  * We back up bEndpointAddress because autoconfig overwrites
3316                  * it with physical endpoint address.
3317                  */
3318                 bEndpointAddress = ds->bEndpointAddress;
3319                 /*
3320                  * We back up wMaxPacketSize because autoconfig treats
3321                  * endpoint descriptors as if they were full speed.
3322                  */
3323                 wMaxPacketSize = ds->wMaxPacketSize;
3324                 pr_vdebug("autoconfig\n");
3325                 ep = usb_ep_autoconfig(func->gadget, ds);
3326                 if (!ep)
3327                         return -ENOTSUPP;
3328                 ep->driver_data = func->eps + idx;
3329
3330                 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3331                 if (!req)
3332                         return -ENOMEM;
3333
3334                 ffs_ep->ep  = ep;
3335                 ffs_ep->req = req;
3336                 func->eps_revmap[ds->bEndpointAddress &
3337                                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3338                 /*
3339                  * If we use virtual address mapping, we restore
3340                  * original bEndpointAddress value.
3341                  */
3342                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3343                         ds->bEndpointAddress = bEndpointAddress;
3344                 /*
3345                  * Restore wMaxPacketSize which was potentially
3346                  * overwritten by autoconfig.
3347                  */
3348                 ds->wMaxPacketSize = wMaxPacketSize;
3349         }
3350         ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3351
3352         return 0;
3353 }
3354
3355 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3356                                    struct usb_descriptor_header *desc,
3357                                    void *priv)
3358 {
3359         struct ffs_function *func = priv;
3360         unsigned idx;
3361         u8 newValue;
3362
3363         switch (type) {
3364         default:
3365         case FFS_DESCRIPTOR:
3366                 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3367                 return 0;
3368
3369         case FFS_INTERFACE:
3370                 idx = *valuep;
3371                 if (func->interfaces_nums[idx] < 0) {
3372                         int id = usb_interface_id(func->conf, &func->function);
3373                         if (id < 0)
3374                                 return id;
3375                         func->interfaces_nums[idx] = id;
3376                 }
3377                 newValue = func->interfaces_nums[idx];
3378                 break;
3379
3380         case FFS_STRING:
3381                 /* String' IDs are allocated when fsf_data is bound to cdev */
3382                 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3383                 break;
3384
3385         case FFS_ENDPOINT:
3386                 /*
3387                  * USB_DT_ENDPOINT are handled in
3388                  * __ffs_func_bind_do_descs().
3389                  */
3390                 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3391                         return 0;
3392
3393                 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3394                 if (!func->eps[idx].ep)
3395                         return -EINVAL;
3396
3397                 {
3398                         struct usb_endpoint_descriptor **descs;
3399                         descs = func->eps[idx].descs;
3400                         newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3401                 }
3402                 break;
3403         }
3404
3405         pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3406         *valuep = newValue;
3407         return 0;
3408 }
3409
3410 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3411                                       struct usb_os_desc_header *h, void *data,
3412                                       unsigned len, void *priv)
3413 {
3414         struct ffs_function *func = priv;
3415         u8 length = 0;
3416
3417         switch (type) {
3418         case FFS_OS_DESC_EXT_COMPAT: {
3419                 struct usb_ext_compat_desc *desc = data;
3420                 struct usb_os_desc_table *t;
3421
3422                 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3423                 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3424                 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3425                        sizeof_field(struct usb_ext_compat_desc, IDs));
3426                 length = sizeof(*desc);
3427         }
3428                 break;
3429         case FFS_OS_DESC_EXT_PROP: {
3430                 struct usb_ext_prop_desc *desc = data;
3431                 struct usb_os_desc_table *t;
3432                 struct usb_os_desc_ext_prop *ext_prop;
3433                 char *ext_prop_name;
3434                 char *ext_prop_data;
3435
3436                 t = &func->function.os_desc_table[h->interface];
3437                 t->if_id = func->interfaces_nums[h->interface];
3438
3439                 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3440                 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3441
3442                 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3443                 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3444                 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3445                         usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3446                 length = ext_prop->name_len + ext_prop->data_len + 14;
3447
3448                 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3449                 func->ffs->ms_os_descs_ext_prop_name_avail +=
3450                         ext_prop->name_len;
3451
3452                 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3453                 func->ffs->ms_os_descs_ext_prop_data_avail +=
3454                         ext_prop->data_len;
3455                 memcpy(ext_prop_data,
3456                        usb_ext_prop_data_ptr(data, ext_prop->name_len),
3457                        ext_prop->data_len);
3458                 /* unicode data reported to the host as "WCHAR"s */
3459                 switch (ext_prop->type) {
3460                 case USB_EXT_PROP_UNICODE:
3461                 case USB_EXT_PROP_UNICODE_ENV:
3462                 case USB_EXT_PROP_UNICODE_LINK:
3463                 case USB_EXT_PROP_UNICODE_MULTI:
3464                         ext_prop->data_len *= 2;
3465                         break;
3466                 }
3467                 ext_prop->data = ext_prop_data;
3468
3469                 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3470                        ext_prop->name_len);
3471                 /* property name reported to the host as "WCHAR"s */
3472                 ext_prop->name_len *= 2;
3473                 ext_prop->name = ext_prop_name;
3474
3475                 t->os_desc->ext_prop_len +=
3476                         ext_prop->name_len + ext_prop->data_len + 14;
3477                 ++t->os_desc->ext_prop_count;
3478                 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3479         }
3480                 break;
3481         default:
3482                 pr_vdebug("unknown descriptor: %d\n", type);
3483         }
3484
3485         return length;
3486 }
3487
3488 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3489                                                 struct usb_configuration *c)
3490 {
3491         struct ffs_function *func = ffs_func_from_usb(f);
3492         struct f_fs_opts *ffs_opts =
3493                 container_of(f->fi, struct f_fs_opts, func_inst);
3494         struct ffs_data *ffs_data;
3495         int ret;
3496
3497         /*
3498          * Legacy gadget triggers binding in functionfs_ready_callback,
3499          * which already uses locking; taking the same lock here would
3500          * cause a deadlock.
3501          *
3502          * Configfs-enabled gadgets however do need ffs_dev_lock.
3503          */
3504         if (!ffs_opts->no_configfs)
3505                 ffs_dev_lock();
3506         ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3507         ffs_data = ffs_opts->dev->ffs_data;
3508         if (!ffs_opts->no_configfs)
3509                 ffs_dev_unlock();
3510         if (ret)
3511                 return ERR_PTR(ret);
3512
3513         func->ffs = ffs_data;
3514         func->conf = c;
3515         func->gadget = c->cdev->gadget;
3516
3517         /*
3518          * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3519          * configurations are bound in sequence with list_for_each_entry,
3520          * in each configuration its functions are bound in sequence
3521          * with list_for_each_entry, so we assume no race condition
3522          * with regard to ffs_opts->bound access
3523          */
3524         if (!ffs_opts->refcnt) {
3525                 ret = functionfs_bind(func->ffs, c->cdev);
3526                 if (ret)
3527                         return ERR_PTR(ret);
3528         }
3529         ffs_opts->refcnt++;
3530         func->function.strings = func->ffs->stringtabs;
3531
3532         return ffs_opts;
3533 }
3534
3535 static int _ffs_func_bind(struct usb_configuration *c,
3536                           struct usb_function *f)
3537 {
3538         struct ffs_function *func = ffs_func_from_usb(f);
3539         struct ffs_data *ffs = func->ffs;
3540
3541         const int full = !!func->ffs->fs_descs_count;
3542         const int high = !!func->ffs->hs_descs_count;
3543         const int super = !!func->ffs->ss_descs_count;
3544
3545         int fs_len, hs_len, ss_len, ret, i;
3546         struct ffs_ep *eps_ptr;
3547
3548         /* Make it a single chunk, less management later on */
3549         vla_group(d);
3550         vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3551         vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3552                 full ? ffs->fs_descs_count + 1 : 0);
3553         vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3554                 high ? ffs->hs_descs_count + 1 : 0);
3555         vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3556                 super ? ffs->ss_descs_count + 1 : 0);
3557         vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3558         vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3559                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3560         vla_item_with_sz(d, char[16], ext_compat,
3561                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562         vla_item_with_sz(d, struct usb_os_desc, os_desc,
3563                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564         vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3565                          ffs->ms_os_descs_ext_prop_count);
3566         vla_item_with_sz(d, char, ext_prop_name,
3567                          ffs->ms_os_descs_ext_prop_name_len);
3568         vla_item_with_sz(d, char, ext_prop_data,
3569                          ffs->ms_os_descs_ext_prop_data_len);
3570         vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3571         char *vlabuf;
3572
3573         /* Has descriptors only for speeds gadget does not support */
3574         if (!(full | high | super))
3575                 return -ENOTSUPP;
3576
3577         /* Allocate a single chunk, less management later on */
3578         vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3579         if (!vlabuf)
3580                 return -ENOMEM;
3581
3582         ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3583         ffs->ms_os_descs_ext_prop_name_avail =
3584                 vla_ptr(vlabuf, d, ext_prop_name);
3585         ffs->ms_os_descs_ext_prop_data_avail =
3586                 vla_ptr(vlabuf, d, ext_prop_data);
3587
3588         /* Copy descriptors  */
3589         memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3590                ffs->raw_descs_length);
3591
3592         memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3593         eps_ptr = vla_ptr(vlabuf, d, eps);
3594         for (i = 0; i < ffs->eps_count; i++)
3595                 eps_ptr[i].num = -1;
3596
3597         /* Save pointers
3598          * d_eps == vlabuf, func->eps used to kfree vlabuf later
3599         */
3600         func->eps             = vla_ptr(vlabuf, d, eps);
3601         func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3602
3603         /*
3604          * Go through all the endpoint descriptors and allocate
3605          * endpoints first, so that later we can rewrite the endpoint
3606          * numbers without worrying that it may be described later on.
3607          */
3608         if (full) {
3609                 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3610                 fs_len = ffs_do_descs(ffs->fs_descs_count,
3611                                       vla_ptr(vlabuf, d, raw_descs),
3612                                       d_raw_descs__sz,
3613                                       __ffs_func_bind_do_descs, func);
3614                 if (fs_len < 0) {
3615                         ret = fs_len;
3616                         goto error;
3617                 }
3618         } else {
3619                 fs_len = 0;
3620         }
3621
3622         if (high) {
3623                 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3624                 hs_len = ffs_do_descs(ffs->hs_descs_count,
3625                                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
3626                                       d_raw_descs__sz - fs_len,
3627                                       __ffs_func_bind_do_descs, func);
3628                 if (hs_len < 0) {
3629                         ret = hs_len;
3630                         goto error;
3631                 }
3632         } else {
3633                 hs_len = 0;
3634         }
3635
3636         if (super) {
3637                 func->function.ss_descriptors = func->function.ssp_descriptors =
3638                         vla_ptr(vlabuf, d, ss_descs);
3639                 ss_len = ffs_do_descs(ffs->ss_descs_count,
3640                                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3641                                 d_raw_descs__sz - fs_len - hs_len,
3642                                 __ffs_func_bind_do_descs, func);
3643                 if (ss_len < 0) {
3644                         ret = ss_len;
3645                         goto error;
3646                 }
3647         } else {
3648                 ss_len = 0;
3649         }
3650
3651         /*
3652          * Now handle interface numbers allocation and interface and
3653          * endpoint numbers rewriting.  We can do that in one go
3654          * now.
3655          */
3656         ret = ffs_do_descs(ffs->fs_descs_count +
3657                            (high ? ffs->hs_descs_count : 0) +
3658                            (super ? ffs->ss_descs_count : 0),
3659                            vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3660                            __ffs_func_bind_do_nums, func);
3661         if (ret < 0)
3662                 goto error;
3663
3664         func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3665         if (c->cdev->use_os_string) {
3666                 for (i = 0; i < ffs->interfaces_count; ++i) {
3667                         struct usb_os_desc *desc;
3668
3669                         desc = func->function.os_desc_table[i].os_desc =
3670                                 vla_ptr(vlabuf, d, os_desc) +
3671                                 i * sizeof(struct usb_os_desc);
3672                         desc->ext_compat_id =
3673                                 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3674                         INIT_LIST_HEAD(&desc->ext_prop);
3675                 }
3676                 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3677                                       vla_ptr(vlabuf, d, raw_descs) +
3678                                       fs_len + hs_len + ss_len,
3679                                       d_raw_descs__sz - fs_len - hs_len -
3680                                       ss_len,
3681                                       __ffs_func_bind_do_os_desc, func);
3682                 if (ret < 0)
3683                         goto error;
3684         }
3685         func->function.os_desc_n =
3686                 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3687
3688         /* And we're done */
3689         ffs_event_add(ffs, FUNCTIONFS_BIND);
3690         return 0;
3691
3692 error:
3693         /* XXX Do we need to release all claimed endpoints here? */
3694         return ret;
3695 }
3696
3697 static int ffs_func_bind(struct usb_configuration *c,
3698                          struct usb_function *f)
3699 {
3700         struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3701         struct ffs_function *func = ffs_func_from_usb(f);
3702         int ret;
3703
3704         if (IS_ERR(ffs_opts))
3705                 return PTR_ERR(ffs_opts);
3706
3707         ret = _ffs_func_bind(c, f);
3708         if (ret && !--ffs_opts->refcnt)
3709                 functionfs_unbind(func->ffs);
3710
3711         return ret;
3712 }
3713
3714
3715 /* Other USB function hooks *************************************************/
3716
3717 static void ffs_reset_work(struct work_struct *work)
3718 {
3719         struct ffs_data *ffs = container_of(work,
3720                 struct ffs_data, reset_work);
3721         ffs_data_reset(ffs);
3722 }
3723
3724 static int ffs_func_get_alt(struct usb_function *f,
3725                             unsigned int interface)
3726 {
3727         struct ffs_function *func = ffs_func_from_usb(f);
3728         int intf = ffs_func_revmap_intf(func, interface);
3729
3730         return (intf < 0) ? intf : func->cur_alt[interface];
3731 }
3732
3733 static int ffs_func_set_alt(struct usb_function *f,
3734                             unsigned interface, unsigned alt)
3735 {
3736         struct ffs_function *func = ffs_func_from_usb(f);
3737         struct ffs_data *ffs = func->ffs;
3738         int ret = 0, intf;
3739
3740         if (alt > MAX_ALT_SETTINGS)
3741                 return -EINVAL;
3742
3743         intf = ffs_func_revmap_intf(func, interface);
3744         if (intf < 0)
3745                 return intf;
3746
3747         if (ffs->func)
3748                 ffs_func_eps_disable(ffs->func);
3749
3750         if (ffs->state == FFS_DEACTIVATED) {
3751                 ffs->state = FFS_CLOSING;
3752                 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3753                 schedule_work(&ffs->reset_work);
3754                 return -ENODEV;
3755         }
3756
3757         if (ffs->state != FFS_ACTIVE)
3758                 return -ENODEV;
3759
3760         ffs->func = func;
3761         ret = ffs_func_eps_enable(func);
3762         if (ret >= 0) {
3763                 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3764                 func->cur_alt[interface] = alt;
3765         }
3766         return ret;
3767 }
3768
3769 static void ffs_func_disable(struct usb_function *f)
3770 {
3771         struct ffs_function *func = ffs_func_from_usb(f);
3772         struct ffs_data *ffs = func->ffs;
3773
3774         if (ffs->func)
3775                 ffs_func_eps_disable(ffs->func);
3776
3777         if (ffs->state == FFS_DEACTIVATED) {
3778                 ffs->state = FFS_CLOSING;
3779                 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3780                 schedule_work(&ffs->reset_work);
3781                 return;
3782         }
3783
3784         if (ffs->state == FFS_ACTIVE) {
3785                 ffs->func = NULL;
3786                 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3787         }
3788 }
3789
3790 static int ffs_func_setup(struct usb_function *f,
3791                           const struct usb_ctrlrequest *creq)
3792 {
3793         struct ffs_function *func = ffs_func_from_usb(f);
3794         struct ffs_data *ffs = func->ffs;
3795         unsigned long flags;
3796         int ret;
3797
3798         pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3799         pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3800         pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3801         pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3802         pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3803
3804         /*
3805          * Most requests directed to interface go through here
3806          * (notable exceptions are set/get interface) so we need to
3807          * handle them.  All other either handled by composite or
3808          * passed to usb_configuration->setup() (if one is set).  No
3809          * matter, we will handle requests directed to endpoint here
3810          * as well (as it's straightforward).  Other request recipient
3811          * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3812          * is being used.
3813          */
3814         if (ffs->state != FFS_ACTIVE)
3815                 return -ENODEV;
3816
3817         switch (creq->bRequestType & USB_RECIP_MASK) {
3818         case USB_RECIP_INTERFACE:
3819                 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3820                 if (ret < 0)
3821                         return ret;
3822                 break;
3823
3824         case USB_RECIP_ENDPOINT:
3825                 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3826                 if (ret < 0)
3827                         return ret;
3828                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3829                         ret = func->ffs->eps_addrmap[ret];
3830                 break;
3831
3832         default:
3833                 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3834                         ret = le16_to_cpu(creq->wIndex);
3835                 else
3836                         return -EOPNOTSUPP;
3837         }
3838
3839         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3840         ffs->ev.setup = *creq;
3841         ffs->ev.setup.wIndex = cpu_to_le16(ret);
3842         __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3843         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3844
3845         return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3846 }
3847
3848 static bool ffs_func_req_match(struct usb_function *f,
3849                                const struct usb_ctrlrequest *creq,
3850                                bool config0)
3851 {
3852         struct ffs_function *func = ffs_func_from_usb(f);
3853
3854         if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3855                 return false;
3856
3857         switch (creq->bRequestType & USB_RECIP_MASK) {
3858         case USB_RECIP_INTERFACE:
3859                 return (ffs_func_revmap_intf(func,
3860                                              le16_to_cpu(creq->wIndex)) >= 0);
3861         case USB_RECIP_ENDPOINT:
3862                 return (ffs_func_revmap_ep(func,
3863                                            le16_to_cpu(creq->wIndex)) >= 0);
3864         default:
3865                 return (bool) (func->ffs->user_flags &
3866                                FUNCTIONFS_ALL_CTRL_RECIP);
3867         }
3868 }
3869
3870 static void ffs_func_suspend(struct usb_function *f)
3871 {
3872         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3873 }
3874
3875 static void ffs_func_resume(struct usb_function *f)
3876 {
3877         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3878 }
3879
3880
3881 /* Endpoint and interface numbers reverse mapping ***************************/
3882
3883 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3884 {
3885         num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3886         return num ? num : -EDOM;
3887 }
3888
3889 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3890 {
3891         short *nums = func->interfaces_nums;
3892         unsigned count = func->ffs->interfaces_count;
3893
3894         for (; count; --count, ++nums) {
3895                 if (*nums >= 0 && *nums == intf)
3896                         return nums - func->interfaces_nums;
3897         }
3898
3899         return -EDOM;
3900 }
3901
3902
3903 /* Devices management *******************************************************/
3904
3905 static LIST_HEAD(ffs_devices);
3906
3907 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3908 {
3909         struct ffs_dev *dev;
3910
3911         if (!name)
3912                 return NULL;
3913
3914         list_for_each_entry(dev, &ffs_devices, entry) {
3915                 if (strcmp(dev->name, name) == 0)
3916                         return dev;
3917         }
3918
3919         return NULL;
3920 }
3921
3922 /*
3923  * ffs_lock must be taken by the caller of this function
3924  */
3925 static struct ffs_dev *_ffs_get_single_dev(void)
3926 {
3927         struct ffs_dev *dev;
3928
3929         if (list_is_singular(&ffs_devices)) {
3930                 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3931                 if (dev->single)
3932                         return dev;
3933         }
3934
3935         return NULL;
3936 }
3937
3938 /*
3939  * ffs_lock must be taken by the caller of this function
3940  */
3941 static struct ffs_dev *_ffs_find_dev(const char *name)
3942 {
3943         struct ffs_dev *dev;
3944
3945         dev = _ffs_get_single_dev();
3946         if (dev)
3947                 return dev;
3948
3949         return _ffs_do_find_dev(name);
3950 }
3951
3952 /* Configfs support *********************************************************/
3953
3954 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3955 {
3956         return container_of(to_config_group(item), struct f_fs_opts,
3957                             func_inst.group);
3958 }
3959
3960 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3961 {
3962         struct f_fs_opts *opts = to_ffs_opts(item);
3963         int ready;
3964
3965         ffs_dev_lock();
3966         ready = opts->dev->desc_ready;
3967         ffs_dev_unlock();
3968
3969         return sprintf(page, "%d\n", ready);
3970 }
3971
3972 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3973
3974 static struct configfs_attribute *ffs_attrs[] = {
3975         &f_fs_opts_attr_ready,
3976         NULL,
3977 };
3978
3979 static void ffs_attr_release(struct config_item *item)
3980 {
3981         struct f_fs_opts *opts = to_ffs_opts(item);
3982
3983         usb_put_function_instance(&opts->func_inst);
3984 }
3985
3986 static struct configfs_item_operations ffs_item_ops = {
3987         .release        = ffs_attr_release,
3988 };
3989
3990 static const struct config_item_type ffs_func_type = {
3991         .ct_item_ops    = &ffs_item_ops,
3992         .ct_attrs       = ffs_attrs,
3993         .ct_owner       = THIS_MODULE,
3994 };
3995
3996
3997 /* Function registration interface ******************************************/
3998
3999 static void ffs_free_inst(struct usb_function_instance *f)
4000 {
4001         struct f_fs_opts *opts;
4002
4003         opts = to_f_fs_opts(f);
4004         ffs_release_dev(opts->dev);
4005         ffs_dev_lock();
4006         _ffs_free_dev(opts->dev);
4007         ffs_dev_unlock();
4008         kfree(opts);
4009 }
4010
4011 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4012 {
4013         if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4014                 return -ENAMETOOLONG;
4015         return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4016 }
4017
4018 static struct usb_function_instance *ffs_alloc_inst(void)
4019 {
4020         struct f_fs_opts *opts;
4021         struct ffs_dev *dev;
4022
4023         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4024         if (!opts)
4025                 return ERR_PTR(-ENOMEM);
4026
4027         opts->func_inst.set_inst_name = ffs_set_inst_name;
4028         opts->func_inst.free_func_inst = ffs_free_inst;
4029         ffs_dev_lock();
4030         dev = _ffs_alloc_dev();
4031         ffs_dev_unlock();
4032         if (IS_ERR(dev)) {
4033                 kfree(opts);
4034                 return ERR_CAST(dev);
4035         }
4036         opts->dev = dev;
4037         dev->opts = opts;
4038
4039         config_group_init_type_name(&opts->func_inst.group, "",
4040                                     &ffs_func_type);
4041         return &opts->func_inst;
4042 }
4043
4044 static void ffs_free(struct usb_function *f)
4045 {
4046         kfree(ffs_func_from_usb(f));
4047 }
4048
4049 static void ffs_func_unbind(struct usb_configuration *c,
4050                             struct usb_function *f)
4051 {
4052         struct ffs_function *func = ffs_func_from_usb(f);
4053         struct ffs_data *ffs = func->ffs;
4054         struct f_fs_opts *opts =
4055                 container_of(f->fi, struct f_fs_opts, func_inst);
4056         struct ffs_ep *ep = func->eps;
4057         unsigned count = ffs->eps_count;
4058         unsigned long flags;
4059
4060         if (ffs->func == func) {
4061                 ffs_func_eps_disable(func);
4062                 ffs->func = NULL;
4063         }
4064
4065         /* Drain any pending AIO completions */
4066         drain_workqueue(ffs->io_completion_wq);
4067
4068         ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4069         if (!--opts->refcnt)
4070                 functionfs_unbind(ffs);
4071
4072         /* cleanup after autoconfig */
4073         spin_lock_irqsave(&func->ffs->eps_lock, flags);
4074         while (count--) {
4075                 if (ep->ep && ep->req)
4076                         usb_ep_free_request(ep->ep, ep->req);
4077                 ep->req = NULL;
4078                 ++ep;
4079         }
4080         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4081         kfree(func->eps);
4082         func->eps = NULL;
4083         /*
4084          * eps, descriptors and interfaces_nums are allocated in the
4085          * same chunk so only one free is required.
4086          */
4087         func->function.fs_descriptors = NULL;
4088         func->function.hs_descriptors = NULL;
4089         func->function.ss_descriptors = NULL;
4090         func->function.ssp_descriptors = NULL;
4091         func->interfaces_nums = NULL;
4092
4093 }
4094
4095 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4096 {
4097         struct ffs_function *func;
4098
4099         func = kzalloc(sizeof(*func), GFP_KERNEL);
4100         if (!func)
4101                 return ERR_PTR(-ENOMEM);
4102
4103         func->function.name    = "Function FS Gadget";
4104
4105         func->function.bind    = ffs_func_bind;
4106         func->function.unbind  = ffs_func_unbind;
4107         func->function.set_alt = ffs_func_set_alt;
4108         func->function.get_alt = ffs_func_get_alt;
4109         func->function.disable = ffs_func_disable;
4110         func->function.setup   = ffs_func_setup;
4111         func->function.req_match = ffs_func_req_match;
4112         func->function.suspend = ffs_func_suspend;
4113         func->function.resume  = ffs_func_resume;
4114         func->function.free_func = ffs_free;
4115
4116         return &func->function;
4117 }
4118
4119 /*
4120  * ffs_lock must be taken by the caller of this function
4121  */
4122 static struct ffs_dev *_ffs_alloc_dev(void)
4123 {
4124         struct ffs_dev *dev;
4125         int ret;
4126
4127         if (_ffs_get_single_dev())
4128                         return ERR_PTR(-EBUSY);
4129
4130         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4131         if (!dev)
4132                 return ERR_PTR(-ENOMEM);
4133
4134         if (list_empty(&ffs_devices)) {
4135                 ret = functionfs_init();
4136                 if (ret) {
4137                         kfree(dev);
4138                         return ERR_PTR(ret);
4139                 }
4140         }
4141
4142         list_add(&dev->entry, &ffs_devices);
4143
4144         return dev;
4145 }
4146
4147 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4148 {
4149         struct ffs_dev *existing;
4150         int ret = 0;
4151
4152         ffs_dev_lock();
4153
4154         existing = _ffs_do_find_dev(name);
4155         if (!existing)
4156                 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4157         else if (existing != dev)
4158                 ret = -EBUSY;
4159
4160         ffs_dev_unlock();
4161
4162         return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(ffs_name_dev);
4165
4166 int ffs_single_dev(struct ffs_dev *dev)
4167 {
4168         int ret;
4169
4170         ret = 0;
4171         ffs_dev_lock();
4172
4173         if (!list_is_singular(&ffs_devices))
4174                 ret = -EBUSY;
4175         else
4176                 dev->single = true;
4177
4178         ffs_dev_unlock();
4179         return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ffs_single_dev);
4182
4183 /*
4184  * ffs_lock must be taken by the caller of this function
4185  */
4186 static void _ffs_free_dev(struct ffs_dev *dev)
4187 {
4188         list_del(&dev->entry);
4189
4190         kfree(dev);
4191         if (list_empty(&ffs_devices))
4192                 functionfs_cleanup();
4193 }
4194
4195 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4196 {
4197         int ret = 0;
4198         struct ffs_dev *ffs_dev;
4199
4200         ffs_dev_lock();
4201
4202         ffs_dev = _ffs_find_dev(dev_name);
4203         if (!ffs_dev) {
4204                 ret = -ENOENT;
4205         } else if (ffs_dev->mounted) {
4206                 ret = -EBUSY;
4207         } else if (ffs_dev->ffs_acquire_dev_callback &&
4208                    ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4209                 ret = -ENOENT;
4210         } else {
4211                 ffs_dev->mounted = true;
4212                 ffs_dev->ffs_data = ffs_data;
4213                 ffs_data->private_data = ffs_dev;
4214         }
4215
4216         ffs_dev_unlock();
4217         return ret;
4218 }
4219
4220 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4221 {
4222         ffs_dev_lock();
4223
4224         if (ffs_dev && ffs_dev->mounted) {
4225                 ffs_dev->mounted = false;
4226                 if (ffs_dev->ffs_data) {
4227                         ffs_dev->ffs_data->private_data = NULL;
4228                         ffs_dev->ffs_data = NULL;
4229                 }
4230
4231                 if (ffs_dev->ffs_release_dev_callback)
4232                         ffs_dev->ffs_release_dev_callback(ffs_dev);
4233         }
4234
4235         ffs_dev_unlock();
4236 }
4237
4238 static int ffs_ready(struct ffs_data *ffs)
4239 {
4240         struct ffs_dev *ffs_obj;
4241         int ret = 0;
4242
4243         ffs_dev_lock();
4244
4245         ffs_obj = ffs->private_data;
4246         if (!ffs_obj) {
4247                 ret = -EINVAL;
4248                 goto done;
4249         }
4250         if (WARN_ON(ffs_obj->desc_ready)) {
4251                 ret = -EBUSY;
4252                 goto done;
4253         }
4254
4255         ffs_obj->desc_ready = true;
4256
4257         if (ffs_obj->ffs_ready_callback) {
4258                 ret = ffs_obj->ffs_ready_callback(ffs);
4259                 if (ret)
4260                         goto done;
4261         }
4262
4263         set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4264 done:
4265         ffs_dev_unlock();
4266         return ret;
4267 }
4268
4269 static void ffs_closed(struct ffs_data *ffs)
4270 {
4271         struct ffs_dev *ffs_obj;
4272         struct f_fs_opts *opts;
4273         struct config_item *ci;
4274
4275         ffs_dev_lock();
4276
4277         ffs_obj = ffs->private_data;
4278         if (!ffs_obj)
4279                 goto done;
4280
4281         ffs_obj->desc_ready = false;
4282
4283         if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4284             ffs_obj->ffs_closed_callback)
4285                 ffs_obj->ffs_closed_callback(ffs);
4286
4287         if (ffs_obj->opts)
4288                 opts = ffs_obj->opts;
4289         else
4290                 goto done;
4291
4292         if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4293             || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4294                 goto done;
4295
4296         ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4297         ffs_dev_unlock();
4298
4299         if (test_bit(FFS_FL_BOUND, &ffs->flags))
4300                 unregister_gadget_item(ci);
4301         return;
4302 done:
4303         ffs_dev_unlock();
4304 }
4305
4306 /* Misc helper functions ****************************************************/
4307
4308 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4309 {
4310         return nonblock
4311                 ? mutex_trylock(mutex) ? 0 : -EAGAIN
4312                 : mutex_lock_interruptible(mutex);
4313 }
4314
4315 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4316 {
4317         char *data;
4318
4319         if (!len)
4320                 return NULL;
4321
4322         data = memdup_user(buf, len);
4323         if (IS_ERR(data))
4324                 return data;
4325
4326         pr_vdebug("Buffer from user space:\n");
4327         ffs_dump_mem("", data, len);
4328
4329         return data;
4330 }
4331
4332 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4333 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4334 MODULE_LICENSE("GPL");
4335 MODULE_AUTHOR("Michal Nazarewicz");
This page took 0.286136 seconds and 4 git commands to generate.