2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
42 #include <net/strparser.h>
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
53 if (unlikely(recursion_level >= 24))
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69 WARN_ON(start > offset + len);
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
89 WARN_ON(start > offset + len);
91 end = start + frag_iter->len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
98 if (unlikely(ret < 0))
113 /* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
118 return __skb_nsg(skb, offset, len, 0);
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
124 struct strp_msg *rxm = strp_msg(skb);
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
146 ctx->control = content_type;
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
169 /* Propagate if there was an err */
172 TLS_INC_STATS(sock_net(skb->sk),
173 LINUX_MIB_TLSDECRYPTERROR);
174 ctx->async_wait.err = err;
175 tls_err_abort(skb->sk, err);
177 struct strp_msg *rxm = strp_msg(skb);
180 pad = padding_length(ctx, prot, skb);
182 ctx->async_wait.err = pad;
183 tls_err_abort(skb->sk, pad);
185 rxm->full_len -= pad;
186 rxm->offset += prot->prepend_size;
187 rxm->full_len -= prot->overhead_size;
191 /* After using skb->sk to propagate sk through crypto async callback
192 * we need to NULL it again.
197 /* Free the destination pages if skb was not decrypted inplace */
199 /* Skip the first S/G entry as it points to AAD */
200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
203 put_page(sg_page(sg));
209 spin_lock_bh(&ctx->decrypt_compl_lock);
210 pending = atomic_dec_return(&ctx->decrypt_pending);
212 if (!pending && ctx->async_notify)
213 complete(&ctx->async_wait.completion);
214 spin_unlock_bh(&ctx->decrypt_compl_lock);
217 static int tls_do_decryption(struct sock *sk,
219 struct scatterlist *sgin,
220 struct scatterlist *sgout,
223 struct aead_request *aead_req,
226 struct tls_context *tls_ctx = tls_get_ctx(sk);
227 struct tls_prot_info *prot = &tls_ctx->prot_info;
228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
231 aead_request_set_tfm(aead_req, ctx->aead_recv);
232 aead_request_set_ad(aead_req, prot->aad_size);
233 aead_request_set_crypt(aead_req, sgin, sgout,
234 data_len + prot->tag_size,
238 /* Using skb->sk to push sk through to crypto async callback
239 * handler. This allows propagating errors up to the socket
240 * if needed. It _must_ be cleared in the async handler
241 * before consume_skb is called. We _know_ skb->sk is NULL
242 * because it is a clone from strparser.
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 tls_decrypt_done, skb);
248 atomic_inc(&ctx->decrypt_pending);
250 aead_request_set_callback(aead_req,
251 CRYPTO_TFM_REQ_MAY_BACKLOG,
252 crypto_req_done, &ctx->async_wait);
255 ret = crypto_aead_decrypt(aead_req);
256 if (ret == -EINPROGRESS) {
260 ret = crypto_wait_req(ret, &ctx->async_wait);
264 atomic_dec(&ctx->decrypt_pending);
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
271 struct tls_context *tls_ctx = tls_get_ctx(sk);
272 struct tls_prot_info *prot = &tls_ctx->prot_info;
273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274 struct tls_rec *rec = ctx->open_rec;
276 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
278 target_size += prot->overhead_size;
279 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
284 struct tls_context *tls_ctx = tls_get_ctx(sk);
285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286 struct tls_rec *rec = ctx->open_rec;
287 struct sk_msg *msg_en = &rec->msg_encrypted;
289 return sk_msg_alloc(sk, msg_en, len, 0);
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
294 struct tls_context *tls_ctx = tls_get_ctx(sk);
295 struct tls_prot_info *prot = &tls_ctx->prot_info;
296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297 struct tls_rec *rec = ctx->open_rec;
298 struct sk_msg *msg_pl = &rec->msg_plaintext;
299 struct sk_msg *msg_en = &rec->msg_encrypted;
302 /* We add page references worth len bytes from encrypted sg
303 * at the end of plaintext sg. It is guaranteed that msg_en
304 * has enough required room (ensured by caller).
306 len = required - msg_pl->sg.size;
308 /* Skip initial bytes in msg_en's data to be able to use
309 * same offset of both plain and encrypted data.
311 skip = prot->prepend_size + msg_pl->sg.size;
313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
316 static struct tls_rec *tls_get_rec(struct sock *sk)
318 struct tls_context *tls_ctx = tls_get_ctx(sk);
319 struct tls_prot_info *prot = &tls_ctx->prot_info;
320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321 struct sk_msg *msg_pl, *msg_en;
325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
327 rec = kzalloc(mem_size, sk->sk_allocation);
331 msg_pl = &rec->msg_plaintext;
332 msg_en = &rec->msg_encrypted;
337 sg_init_table(rec->sg_aead_in, 2);
338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339 sg_unmark_end(&rec->sg_aead_in[1]);
341 sg_init_table(rec->sg_aead_out, 2);
342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343 sg_unmark_end(&rec->sg_aead_out[1]);
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
350 sk_msg_free(sk, &rec->msg_encrypted);
351 sk_msg_free(sk, &rec->msg_plaintext);
355 static void tls_free_open_rec(struct sock *sk)
357 struct tls_context *tls_ctx = tls_get_ctx(sk);
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct tls_rec *rec = ctx->open_rec;
362 tls_free_rec(sk, rec);
363 ctx->open_rec = NULL;
367 int tls_tx_records(struct sock *sk, int flags)
369 struct tls_context *tls_ctx = tls_get_ctx(sk);
370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 struct tls_rec *rec, *tmp;
372 struct sk_msg *msg_en;
373 int tx_flags, rc = 0;
375 if (tls_is_partially_sent_record(tls_ctx)) {
376 rec = list_first_entry(&ctx->tx_list,
377 struct tls_rec, list);
380 tx_flags = rec->tx_flags;
384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
388 /* Full record has been transmitted.
389 * Remove the head of tx_list
391 list_del(&rec->list);
392 sk_msg_free(sk, &rec->msg_plaintext);
396 /* Tx all ready records */
397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398 if (READ_ONCE(rec->tx_ready)) {
400 tx_flags = rec->tx_flags;
404 msg_en = &rec->msg_encrypted;
405 rc = tls_push_sg(sk, tls_ctx,
406 &msg_en->sg.data[msg_en->sg.curr],
411 list_del(&rec->list);
412 sk_msg_free(sk, &rec->msg_plaintext);
420 if (rc < 0 && rc != -EAGAIN)
421 tls_err_abort(sk, EBADMSG);
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
428 struct aead_request *aead_req = (struct aead_request *)req;
429 struct sock *sk = req->data;
430 struct tls_context *tls_ctx = tls_get_ctx(sk);
431 struct tls_prot_info *prot = &tls_ctx->prot_info;
432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433 struct scatterlist *sge;
434 struct sk_msg *msg_en;
439 rec = container_of(aead_req, struct tls_rec, aead_req);
440 msg_en = &rec->msg_encrypted;
442 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443 sge->offset -= prot->prepend_size;
444 sge->length += prot->prepend_size;
446 /* Check if error is previously set on socket */
447 if (err || sk->sk_err) {
450 /* If err is already set on socket, return the same code */
452 ctx->async_wait.err = sk->sk_err;
454 ctx->async_wait.err = err;
455 tls_err_abort(sk, err);
460 struct tls_rec *first_rec;
462 /* Mark the record as ready for transmission */
463 smp_store_mb(rec->tx_ready, true);
465 /* If received record is at head of tx_list, schedule tx */
466 first_rec = list_first_entry(&ctx->tx_list,
467 struct tls_rec, list);
468 if (rec == first_rec)
472 spin_lock_bh(&ctx->encrypt_compl_lock);
473 pending = atomic_dec_return(&ctx->encrypt_pending);
475 if (!pending && ctx->async_notify)
476 complete(&ctx->async_wait.completion);
477 spin_unlock_bh(&ctx->encrypt_compl_lock);
482 /* Schedule the transmission */
483 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484 schedule_delayed_work(&ctx->tx_work.work, 1);
487 static int tls_do_encryption(struct sock *sk,
488 struct tls_context *tls_ctx,
489 struct tls_sw_context_tx *ctx,
490 struct aead_request *aead_req,
491 size_t data_len, u32 start)
493 struct tls_prot_info *prot = &tls_ctx->prot_info;
494 struct tls_rec *rec = ctx->open_rec;
495 struct sk_msg *msg_en = &rec->msg_encrypted;
496 struct scatterlist *sge = sk_msg_elem(msg_en, start);
497 int rc, iv_offset = 0;
499 /* For CCM based ciphers, first byte of IV is a constant */
500 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 prot->iv_size + prot->salt_size);
508 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
510 sge->offset += prot->prepend_size;
511 sge->length -= prot->prepend_size;
513 msg_en->sg.curr = start;
515 aead_request_set_tfm(aead_req, ctx->aead_send);
516 aead_request_set_ad(aead_req, prot->aad_size);
517 aead_request_set_crypt(aead_req, rec->sg_aead_in,
519 data_len, rec->iv_data);
521 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522 tls_encrypt_done, sk);
524 /* Add the record in tx_list */
525 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526 atomic_inc(&ctx->encrypt_pending);
528 rc = crypto_aead_encrypt(aead_req);
529 if (!rc || rc != -EINPROGRESS) {
530 atomic_dec(&ctx->encrypt_pending);
531 sge->offset -= prot->prepend_size;
532 sge->length += prot->prepend_size;
536 WRITE_ONCE(rec->tx_ready, true);
537 } else if (rc != -EINPROGRESS) {
538 list_del(&rec->list);
542 /* Unhook the record from context if encryption is not failure */
543 ctx->open_rec = NULL;
544 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549 struct tls_rec **to, struct sk_msg *msg_opl,
550 struct sk_msg *msg_oen, u32 split_point,
551 u32 tx_overhead_size, u32 *orig_end)
553 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554 struct scatterlist *sge, *osge, *nsge;
555 u32 orig_size = msg_opl->sg.size;
556 struct scatterlist tmp = { };
557 struct sk_msg *msg_npl;
561 new = tls_get_rec(sk);
564 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565 tx_overhead_size, 0);
567 tls_free_rec(sk, new);
571 *orig_end = msg_opl->sg.end;
572 i = msg_opl->sg.start;
573 sge = sk_msg_elem(msg_opl, i);
574 while (apply && sge->length) {
575 if (sge->length > apply) {
576 u32 len = sge->length - apply;
578 get_page(sg_page(sge));
579 sg_set_page(&tmp, sg_page(sge), len,
580 sge->offset + apply);
585 apply -= sge->length;
586 bytes += sge->length;
589 sk_msg_iter_var_next(i);
590 if (i == msg_opl->sg.end)
592 sge = sk_msg_elem(msg_opl, i);
596 msg_opl->sg.curr = i;
597 msg_opl->sg.copybreak = 0;
598 msg_opl->apply_bytes = 0;
599 msg_opl->sg.size = bytes;
601 msg_npl = &new->msg_plaintext;
602 msg_npl->apply_bytes = apply;
603 msg_npl->sg.size = orig_size - bytes;
605 j = msg_npl->sg.start;
606 nsge = sk_msg_elem(msg_npl, j);
608 memcpy(nsge, &tmp, sizeof(*nsge));
609 sk_msg_iter_var_next(j);
610 nsge = sk_msg_elem(msg_npl, j);
613 osge = sk_msg_elem(msg_opl, i);
614 while (osge->length) {
615 memcpy(nsge, osge, sizeof(*nsge));
617 sk_msg_iter_var_next(i);
618 sk_msg_iter_var_next(j);
621 osge = sk_msg_elem(msg_opl, i);
622 nsge = sk_msg_elem(msg_npl, j);
626 msg_npl->sg.curr = j;
627 msg_npl->sg.copybreak = 0;
633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634 struct tls_rec *from, u32 orig_end)
636 struct sk_msg *msg_npl = &from->msg_plaintext;
637 struct sk_msg *msg_opl = &to->msg_plaintext;
638 struct scatterlist *osge, *nsge;
642 sk_msg_iter_var_prev(i);
643 j = msg_npl->sg.start;
645 osge = sk_msg_elem(msg_opl, i);
646 nsge = sk_msg_elem(msg_npl, j);
648 if (sg_page(osge) == sg_page(nsge) &&
649 osge->offset + osge->length == nsge->offset) {
650 osge->length += nsge->length;
651 put_page(sg_page(nsge));
654 msg_opl->sg.end = orig_end;
655 msg_opl->sg.curr = orig_end;
656 msg_opl->sg.copybreak = 0;
657 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658 msg_opl->sg.size += msg_npl->sg.size;
660 sk_msg_free(sk, &to->msg_encrypted);
661 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
666 static int tls_push_record(struct sock *sk, int flags,
667 unsigned char record_type)
669 struct tls_context *tls_ctx = tls_get_ctx(sk);
670 struct tls_prot_info *prot = &tls_ctx->prot_info;
671 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673 u32 i, split_point, orig_end;
674 struct sk_msg *msg_pl, *msg_en;
675 struct aead_request *req;
682 msg_pl = &rec->msg_plaintext;
683 msg_en = &rec->msg_encrypted;
685 split_point = msg_pl->apply_bytes;
686 split = split_point && split_point < msg_pl->sg.size;
687 if (unlikely((!split &&
689 prot->overhead_size > msg_en->sg.size) ||
692 prot->overhead_size > msg_en->sg.size))) {
694 split_point = msg_en->sg.size;
697 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698 split_point, prot->overhead_size,
702 /* This can happen if above tls_split_open_record allocates
703 * a single large encryption buffer instead of two smaller
704 * ones. In this case adjust pointers and continue without
707 if (!msg_pl->sg.size) {
708 tls_merge_open_record(sk, rec, tmp, orig_end);
709 msg_pl = &rec->msg_plaintext;
710 msg_en = &rec->msg_encrypted;
713 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714 prot->overhead_size);
717 rec->tx_flags = flags;
718 req = &rec->aead_req;
721 sk_msg_iter_var_prev(i);
723 rec->content_type = record_type;
724 if (prot->version == TLS_1_3_VERSION) {
725 /* Add content type to end of message. No padding added */
726 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727 sg_mark_end(&rec->sg_content_type);
728 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729 &rec->sg_content_type);
731 sg_mark_end(sk_msg_elem(msg_pl, i));
734 if (msg_pl->sg.end < msg_pl->sg.start) {
735 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
740 i = msg_pl->sg.start;
741 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
744 sk_msg_iter_var_prev(i);
745 sg_mark_end(sk_msg_elem(msg_en, i));
747 i = msg_en->sg.start;
748 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751 tls_ctx->tx.rec_seq, prot->rec_seq_size,
752 record_type, prot->version);
754 tls_fill_prepend(tls_ctx,
755 page_address(sg_page(&msg_en->sg.data[i])) +
756 msg_en->sg.data[i].offset,
757 msg_pl->sg.size + prot->tail_size,
758 record_type, prot->version);
760 tls_ctx->pending_open_record_frags = false;
762 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 msg_pl->sg.size + prot->tail_size, i);
765 if (rc != -EINPROGRESS) {
766 tls_err_abort(sk, EBADMSG);
768 tls_ctx->pending_open_record_frags = true;
769 tls_merge_open_record(sk, rec, tmp, orig_end);
772 ctx->async_capable = 1;
775 msg_pl = &tmp->msg_plaintext;
776 msg_en = &tmp->msg_encrypted;
777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 tls_ctx->pending_open_record_frags = true;
782 return tls_tx_records(sk, flags);
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 bool full_record, u8 record_type,
787 ssize_t *copied, int flags)
789 struct tls_context *tls_ctx = tls_get_ctx(sk);
790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 struct sk_msg msg_redir = { };
792 struct sk_psock *psock;
793 struct sock *sk_redir;
799 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 psock = sk_psock_get(sk);
801 if (!psock || !policy) {
802 err = tls_push_record(sk, flags, record_type);
803 if (err && sk->sk_err == EBADMSG) {
804 *copied -= sk_msg_free(sk, msg);
805 tls_free_open_rec(sk);
809 sk_psock_put(sk, psock);
813 enospc = sk_msg_full(msg);
814 if (psock->eval == __SK_NONE) {
815 delta = msg->sg.size;
816 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 delta -= msg->sg.size;
819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 !enospc && !full_record) {
826 if (msg->apply_bytes && msg->apply_bytes < send)
827 send = msg->apply_bytes;
829 switch (psock->eval) {
831 err = tls_push_record(sk, flags, record_type);
832 if (err && sk->sk_err == EBADMSG) {
833 *copied -= sk_msg_free(sk, msg);
834 tls_free_open_rec(sk);
840 sk_redir = psock->sk_redir;
841 memcpy(&msg_redir, msg, sizeof(*msg));
842 if (msg->apply_bytes < send)
843 msg->apply_bytes = 0;
845 msg->apply_bytes -= send;
846 sk_msg_return_zero(sk, msg, send);
847 msg->sg.size -= send;
849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
852 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
855 if (msg->sg.size == 0)
856 tls_free_open_rec(sk);
860 sk_msg_free_partial(sk, msg, send);
861 if (msg->apply_bytes < send)
862 msg->apply_bytes = 0;
864 msg->apply_bytes -= send;
865 if (msg->sg.size == 0)
866 tls_free_open_rec(sk);
867 *copied -= (send + delta);
872 bool reset_eval = !ctx->open_rec;
876 msg = &rec->msg_plaintext;
877 if (!msg->apply_bytes)
881 psock->eval = __SK_NONE;
882 if (psock->sk_redir) {
883 sock_put(psock->sk_redir);
884 psock->sk_redir = NULL;
891 sk_psock_put(sk, psock);
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
897 struct tls_context *tls_ctx = tls_get_ctx(sk);
898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 struct tls_rec *rec = ctx->open_rec;
900 struct sk_msg *msg_pl;
906 msg_pl = &rec->msg_plaintext;
907 copied = msg_pl->sg.size;
911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 struct tls_context *tls_ctx = tls_get_ctx(sk);
919 struct tls_prot_info *prot = &tls_ctx->prot_info;
920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 bool async_capable = ctx->async_capable;
922 unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 bool eor = !(msg->msg_flags & MSG_MORE);
927 struct sk_msg *msg_pl, *msg_en;
938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
942 mutex_lock(&tls_ctx->tx_lock);
945 if (unlikely(msg->msg_controllen)) {
946 ret = tls_proccess_cmsg(sk, msg, &record_type);
948 if (ret == -EINPROGRESS)
950 else if (ret != -EAGAIN)
955 while (msg_data_left(msg)) {
964 rec = ctx->open_rec = tls_get_rec(sk);
970 msg_pl = &rec->msg_plaintext;
971 msg_en = &rec->msg_encrypted;
973 orig_size = msg_pl->sg.size;
975 try_to_copy = msg_data_left(msg);
976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977 if (try_to_copy >= record_room) {
978 try_to_copy = record_room;
982 required_size = msg_pl->sg.size + try_to_copy +
985 if (!sk_stream_memory_free(sk))
986 goto wait_for_sndbuf;
989 ret = tls_alloc_encrypted_msg(sk, required_size);
992 goto wait_for_memory;
994 /* Adjust try_to_copy according to the amount that was
995 * actually allocated. The difference is due
996 * to max sg elements limit
998 try_to_copy -= required_size - msg_en->sg.size;
1002 if (!is_kvec && (full_record || eor) && !async_capable) {
1003 u32 first = msg_pl->sg.end;
1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006 msg_pl, try_to_copy);
1008 goto fallback_to_reg_send;
1011 copied += try_to_copy;
1013 sk_msg_sg_copy_set(msg_pl, first);
1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 record_type, &copied,
1018 if (ret == -EINPROGRESS)
1020 else if (ret == -ENOMEM)
1021 goto wait_for_memory;
1022 else if (ctx->open_rec && ret == -ENOSPC)
1024 else if (ret != -EAGAIN)
1029 copied -= try_to_copy;
1030 sk_msg_sg_copy_clear(msg_pl, first);
1031 iov_iter_revert(&msg->msg_iter,
1032 msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034 sk_msg_trim(sk, msg_pl, orig_size);
1037 required_size = msg_pl->sg.size + try_to_copy;
1039 ret = tls_clone_plaintext_msg(sk, required_size);
1044 /* Adjust try_to_copy according to the amount that was
1045 * actually allocated. The difference is due
1046 * to max sg elements limit
1048 try_to_copy -= required_size - msg_pl->sg.size;
1050 sk_msg_trim(sk, msg_en,
1051 msg_pl->sg.size + prot->overhead_size);
1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056 msg_pl, try_to_copy);
1061 /* Open records defined only if successfully copied, otherwise
1062 * we would trim the sg but not reset the open record frags.
1064 tls_ctx->pending_open_record_frags = true;
1065 copied += try_to_copy;
1066 if (full_record || eor) {
1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 record_type, &copied,
1071 if (ret == -EINPROGRESS)
1073 else if (ret == -ENOMEM)
1074 goto wait_for_memory;
1075 else if (ret != -EAGAIN) {
1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1088 ret = sk_stream_wait_memory(sk, &timeo);
1092 tls_trim_both_msgs(sk, orig_size);
1096 if (ctx->open_rec && msg_en->sg.size < required_size)
1097 goto alloc_encrypted;
1102 } else if (num_zc) {
1103 /* Wait for pending encryptions to get completed */
1104 spin_lock_bh(&ctx->encrypt_compl_lock);
1105 ctx->async_notify = true;
1107 pending = atomic_read(&ctx->encrypt_pending);
1108 spin_unlock_bh(&ctx->encrypt_compl_lock);
1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1112 reinit_completion(&ctx->async_wait.completion);
1114 /* There can be no concurrent accesses, since we have no
1115 * pending encrypt operations
1117 WRITE_ONCE(ctx->async_notify, false);
1119 if (ctx->async_wait.err) {
1120 ret = ctx->async_wait.err;
1125 /* Transmit if any encryptions have completed */
1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127 cancel_delayed_work(&ctx->tx_work.work);
1128 tls_tx_records(sk, msg->msg_flags);
1132 ret = sk_stream_error(sk, msg->msg_flags, ret);
1135 mutex_unlock(&tls_ctx->tx_lock);
1136 return copied > 0 ? copied : ret;
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140 int offset, size_t size, int flags)
1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143 struct tls_context *tls_ctx = tls_get_ctx(sk);
1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145 struct tls_prot_info *prot = &tls_ctx->prot_info;
1146 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147 struct sk_msg *msg_pl;
1148 struct tls_rec *rec;
1156 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1159 /* Call the sk_stream functions to manage the sndbuf mem. */
1161 size_t copy, required_size;
1169 rec = ctx->open_rec;
1171 rec = ctx->open_rec = tls_get_rec(sk);
1177 msg_pl = &rec->msg_plaintext;
1179 full_record = false;
1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1182 if (copy >= record_room) {
1187 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1189 if (!sk_stream_memory_free(sk))
1190 goto wait_for_sndbuf;
1192 ret = tls_alloc_encrypted_msg(sk, required_size);
1195 goto wait_for_memory;
1197 /* Adjust copy according to the amount that was
1198 * actually allocated. The difference is due
1199 * to max sg elements limit
1201 copy -= required_size - msg_pl->sg.size;
1205 sk_msg_page_add(msg_pl, page, copy, offset);
1206 sk_mem_charge(sk, copy);
1212 tls_ctx->pending_open_record_frags = true;
1213 if (full_record || eor || sk_msg_full(msg_pl)) {
1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215 record_type, &copied, flags);
1217 if (ret == -EINPROGRESS)
1219 else if (ret == -ENOMEM)
1220 goto wait_for_memory;
1221 else if (ret != -EAGAIN) {
1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1232 ret = sk_stream_wait_memory(sk, &timeo);
1235 tls_trim_both_msgs(sk, msg_pl->sg.size);
1244 /* Transmit if any encryptions have completed */
1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246 cancel_delayed_work(&ctx->tx_work.work);
1247 tls_tx_records(sk, flags);
1251 ret = sk_stream_error(sk, flags, ret);
1252 return copied > 0 ? copied : ret;
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256 int offset, size_t size, int flags)
1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260 MSG_NO_SHARED_FRAGS))
1263 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267 int offset, size_t size, int flags)
1269 struct tls_context *tls_ctx = tls_get_ctx(sk);
1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1276 mutex_lock(&tls_ctx->tx_lock);
1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1280 mutex_unlock(&tls_ctx->tx_lock);
1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285 int flags, long timeo, int *err)
1287 struct tls_context *tls_ctx = tls_get_ctx(sk);
1288 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289 struct sk_buff *skb;
1290 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1292 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1294 *err = sock_error(sk);
1298 if (sk->sk_shutdown & RCV_SHUTDOWN)
1301 if (sock_flag(sk, SOCK_DONE))
1304 if ((flags & MSG_DONTWAIT) || !timeo) {
1309 add_wait_queue(sk_sleep(sk), &wait);
1310 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1311 sk_wait_event(sk, &timeo,
1312 ctx->recv_pkt != skb ||
1313 !sk_psock_queue_empty(psock),
1315 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316 remove_wait_queue(sk_sleep(sk), &wait);
1318 /* Handle signals */
1319 if (signal_pending(current)) {
1320 *err = sock_intr_errno(timeo);
1328 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1329 int length, int *pages_used,
1330 unsigned int *size_used,
1331 struct scatterlist *to,
1334 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1335 struct page *pages[MAX_SKB_FRAGS];
1336 unsigned int size = *size_used;
1337 ssize_t copied, use;
1340 while (length > 0) {
1342 maxpages = to_max_pages - num_elem;
1343 if (maxpages == 0) {
1347 copied = iov_iter_get_pages(from, pages,
1355 iov_iter_advance(from, copied);
1360 use = min_t(int, copied, PAGE_SIZE - offset);
1362 sg_set_page(&to[num_elem],
1363 pages[i], use, offset);
1364 sg_unmark_end(&to[num_elem]);
1365 /* We do not uncharge memory from this API */
1374 /* Mark the end in the last sg entry if newly added */
1375 if (num_elem > *pages_used)
1376 sg_mark_end(&to[num_elem - 1]);
1379 iov_iter_revert(from, size - *size_used);
1381 *pages_used = num_elem;
1386 /* This function decrypts the input skb into either out_iov or in out_sg
1387 * or in skb buffers itself. The input parameter 'zc' indicates if
1388 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1389 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1390 * NULL, then the decryption happens inside skb buffers itself, i.e.
1391 * zero-copy gets disabled and 'zc' is updated.
1394 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1395 struct iov_iter *out_iov,
1396 struct scatterlist *out_sg,
1397 int *chunk, bool *zc, bool async)
1399 struct tls_context *tls_ctx = tls_get_ctx(sk);
1400 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1401 struct tls_prot_info *prot = &tls_ctx->prot_info;
1402 struct strp_msg *rxm = strp_msg(skb);
1403 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1404 struct aead_request *aead_req;
1405 struct sk_buff *unused;
1406 u8 *aad, *iv, *mem = NULL;
1407 struct scatterlist *sgin = NULL;
1408 struct scatterlist *sgout = NULL;
1409 const int data_len = rxm->full_len - prot->overhead_size +
1413 if (*zc && (out_iov || out_sg)) {
1415 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1417 n_sgout = sg_nents(out_sg);
1418 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1419 rxm->full_len - prot->prepend_size);
1423 n_sgin = skb_cow_data(skb, 0, &unused);
1429 /* Increment to accommodate AAD */
1430 n_sgin = n_sgin + 1;
1432 nsg = n_sgin + n_sgout;
1434 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1435 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1436 mem_size = mem_size + prot->aad_size;
1437 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1439 /* Allocate a single block of memory which contains
1440 * aead_req || sgin[] || sgout[] || aad || iv.
1441 * This order achieves correct alignment for aead_req, sgin, sgout.
1443 mem = kmalloc(mem_size, sk->sk_allocation);
1447 /* Segment the allocated memory */
1448 aead_req = (struct aead_request *)mem;
1449 sgin = (struct scatterlist *)(mem + aead_size);
1450 sgout = sgin + n_sgin;
1451 aad = (u8 *)(sgout + n_sgout);
1452 iv = aad + prot->aad_size;
1454 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1455 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1461 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1462 iv + iv_offset + prot->salt_size,
1468 if (prot->version == TLS_1_3_VERSION)
1469 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1470 crypto_aead_ivsize(ctx->aead_recv));
1472 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1474 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1477 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1479 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1480 ctx->control, prot->version);
1483 sg_init_table(sgin, n_sgin);
1484 sg_set_buf(&sgin[0], aad, prot->aad_size);
1485 err = skb_to_sgvec(skb, &sgin[1],
1486 rxm->offset + prot->prepend_size,
1487 rxm->full_len - prot->prepend_size);
1495 sg_init_table(sgout, n_sgout);
1496 sg_set_buf(&sgout[0], aad, prot->aad_size);
1499 err = tls_setup_from_iter(sk, out_iov, data_len,
1500 &pages, chunk, &sgout[1],
1503 goto fallback_to_reg_recv;
1504 } else if (out_sg) {
1505 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1507 goto fallback_to_reg_recv;
1510 fallback_to_reg_recv:
1517 /* Prepare and submit AEAD request */
1518 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1519 data_len, aead_req, async);
1520 if (err == -EINPROGRESS)
1523 /* Release the pages in case iov was mapped to pages */
1524 for (; pages > 0; pages--)
1525 put_page(sg_page(&sgout[pages]));
1531 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1532 struct iov_iter *dest, int *chunk, bool *zc,
1535 struct tls_context *tls_ctx = tls_get_ctx(sk);
1536 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1537 struct tls_prot_info *prot = &tls_ctx->prot_info;
1538 struct strp_msg *rxm = strp_msg(skb);
1541 if (!ctx->decrypted) {
1542 if (tls_ctx->rx_conf == TLS_HW) {
1543 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1548 /* Still not decrypted after tls_device */
1549 if (!ctx->decrypted) {
1550 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1553 if (err == -EINPROGRESS)
1554 tls_advance_record_sn(sk, prot,
1556 else if (err == -EBADMSG)
1557 TLS_INC_STATS(sock_net(sk),
1558 LINUX_MIB_TLSDECRYPTERROR);
1565 pad = padding_length(ctx, prot, skb);
1569 rxm->full_len -= pad;
1570 rxm->offset += prot->prepend_size;
1571 rxm->full_len -= prot->overhead_size;
1572 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1574 ctx->saved_data_ready(sk);
1582 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1583 struct scatterlist *sgout)
1588 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1591 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1594 struct tls_context *tls_ctx = tls_get_ctx(sk);
1595 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1598 struct strp_msg *rxm = strp_msg(skb);
1600 if (len < rxm->full_len) {
1602 rxm->full_len -= len;
1608 /* Finished with message */
1609 ctx->recv_pkt = NULL;
1610 __strp_unpause(&ctx->strp);
1615 /* This function traverses the rx_list in tls receive context to copies the
1616 * decrypted records into the buffer provided by caller zero copy is not
1617 * true. Further, the records are removed from the rx_list if it is not a peek
1618 * case and the record has been consumed completely.
1620 static int process_rx_list(struct tls_sw_context_rx *ctx,
1629 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1632 struct tls_msg *tlm;
1635 /* Set the record type in 'control' if caller didn't pass it */
1638 ctrl = tlm->control;
1641 while (skip && skb) {
1642 struct strp_msg *rxm = strp_msg(skb);
1645 /* Cannot process a record of different type */
1646 if (ctrl != tlm->control)
1649 if (skip < rxm->full_len)
1652 skip = skip - rxm->full_len;
1653 skb = skb_peek_next(skb, &ctx->rx_list);
1656 while (len && skb) {
1657 struct sk_buff *next_skb;
1658 struct strp_msg *rxm = strp_msg(skb);
1659 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1663 /* Cannot process a record of different type */
1664 if (ctrl != tlm->control)
1667 /* Set record type if not already done. For a non-data record,
1668 * do not proceed if record type could not be copied.
1671 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1672 sizeof(ctrl), &ctrl);
1674 if (ctrl != TLS_RECORD_TYPE_DATA) {
1675 if (cerr || msg->msg_flags & MSG_CTRUNC)
1682 if (!zc || (rxm->full_len - skip) > len) {
1683 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690 copied = copied + chunk;
1692 /* Consume the data from record if it is non-peek case*/
1694 rxm->offset = rxm->offset + chunk;
1695 rxm->full_len = rxm->full_len - chunk;
1697 /* Return if there is unconsumed data in the record */
1698 if (rxm->full_len - skip)
1702 /* The remaining skip-bytes must lie in 1st record in rx_list.
1703 * So from the 2nd record, 'skip' should be 0.
1708 msg->msg_flags |= MSG_EOR;
1710 next_skb = skb_peek_next(skb, &ctx->rx_list);
1713 skb_unlink(skb, &ctx->rx_list);
1724 int tls_sw_recvmsg(struct sock *sk,
1731 struct tls_context *tls_ctx = tls_get_ctx(sk);
1732 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1733 struct tls_prot_info *prot = &tls_ctx->prot_info;
1734 struct sk_psock *psock;
1735 unsigned char control = 0;
1736 ssize_t decrypted = 0;
1737 struct strp_msg *rxm;
1738 struct tls_msg *tlm;
1739 struct sk_buff *skb;
1742 int target, err = 0;
1744 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1745 bool is_peek = flags & MSG_PEEK;
1746 bool bpf_strp_enabled;
1752 if (unlikely(flags & MSG_ERRQUEUE))
1753 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1755 psock = sk_psock_get(sk);
1757 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1759 /* Process pending decrypted records. It must be non-zero-copy */
1760 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1763 tls_err_abort(sk, err);
1772 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1774 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1776 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1777 bool retain_skb = false;
1784 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1787 int ret = __tcp_bpf_recvmsg(sk, psock,
1799 if (prot->version == TLS_1_3_VERSION)
1802 tlm->control = ctx->control;
1805 rxm = strp_msg(skb);
1807 to_decrypt = rxm->full_len - prot->overhead_size;
1809 if (to_decrypt <= len && !is_kvec && !is_peek &&
1810 ctx->control == TLS_RECORD_TYPE_DATA &&
1811 prot->version != TLS_1_3_VERSION &&
1815 /* Do not use async mode if record is non-data */
1816 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1817 async_capable = ctx->async_capable;
1819 async_capable = false;
1821 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1822 &chunk, &zc, async_capable);
1823 if (err < 0 && err != -EINPROGRESS) {
1824 tls_err_abort(sk, EBADMSG);
1828 if (err == -EINPROGRESS) {
1831 } else if (prot->version == TLS_1_3_VERSION) {
1832 tlm->control = ctx->control;
1835 /* If the type of records being processed is not known yet,
1836 * set it to record type just dequeued. If it is already known,
1837 * but does not match the record type just dequeued, go to end.
1838 * We always get record type here since for tls1.2, record type
1839 * is known just after record is dequeued from stream parser.
1840 * For tls1.3, we disable async.
1844 control = tlm->control;
1845 else if (control != tlm->control)
1851 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1852 sizeof(control), &control);
1854 if (control != TLS_RECORD_TYPE_DATA) {
1855 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1863 goto pick_next_record;
1866 if (bpf_strp_enabled) {
1867 err = sk_psock_tls_strp_read(psock, skb);
1868 if (err != __SK_PASS) {
1869 rxm->offset = rxm->offset + rxm->full_len;
1871 if (err == __SK_DROP)
1873 ctx->recv_pkt = NULL;
1874 __strp_unpause(&ctx->strp);
1879 if (rxm->full_len > len) {
1883 chunk = rxm->full_len;
1886 err = skb_copy_datagram_msg(skb, rxm->offset,
1892 rxm->offset = rxm->offset + chunk;
1893 rxm->full_len = rxm->full_len - chunk;
1904 /* For async or peek case, queue the current skb */
1905 if (async || is_peek || retain_skb) {
1906 skb_queue_tail(&ctx->rx_list, skb);
1910 if (tls_sw_advance_skb(sk, skb, chunk)) {
1911 /* Return full control message to
1912 * userspace before trying to parse
1913 * another message type
1915 msg->msg_flags |= MSG_EOR;
1916 if (ctx->control != TLS_RECORD_TYPE_DATA)
1925 /* Wait for all previously submitted records to be decrypted */
1926 spin_lock_bh(&ctx->decrypt_compl_lock);
1927 ctx->async_notify = true;
1928 pending = atomic_read(&ctx->decrypt_pending);
1929 spin_unlock_bh(&ctx->decrypt_compl_lock);
1931 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1933 /* one of async decrypt failed */
1934 tls_err_abort(sk, err);
1940 reinit_completion(&ctx->async_wait.completion);
1943 /* There can be no concurrent accesses, since we have no
1944 * pending decrypt operations
1946 WRITE_ONCE(ctx->async_notify, false);
1948 /* Drain records from the rx_list & copy if required */
1949 if (is_peek || is_kvec)
1950 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1951 decrypted, false, is_peek);
1953 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1954 decrypted, true, is_peek);
1956 tls_err_abort(sk, err);
1962 copied += decrypted;
1967 sk_psock_put(sk, psock);
1968 return copied ? : err;
1971 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1972 struct pipe_inode_info *pipe,
1973 size_t len, unsigned int flags)
1975 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1976 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1977 struct strp_msg *rxm = NULL;
1978 struct sock *sk = sock->sk;
1979 struct sk_buff *skb;
1988 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1990 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1992 goto splice_read_end;
1994 if (!ctx->decrypted) {
1995 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1997 /* splice does not support reading control messages */
1998 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2000 goto splice_read_end;
2004 tls_err_abort(sk, EBADMSG);
2005 goto splice_read_end;
2009 rxm = strp_msg(skb);
2011 chunk = min_t(unsigned int, rxm->full_len, len);
2012 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2014 goto splice_read_end;
2016 if (likely(!(flags & MSG_PEEK)))
2017 tls_sw_advance_skb(sk, skb, copied);
2021 return copied ? : err;
2024 bool tls_sw_stream_read(const struct sock *sk)
2026 struct tls_context *tls_ctx = tls_get_ctx(sk);
2027 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2028 bool ingress_empty = true;
2029 struct sk_psock *psock;
2032 psock = sk_psock(sk);
2034 ingress_empty = list_empty(&psock->ingress_msg);
2037 return !ingress_empty || ctx->recv_pkt ||
2038 !skb_queue_empty(&ctx->rx_list);
2041 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2043 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2044 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045 struct tls_prot_info *prot = &tls_ctx->prot_info;
2046 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2047 struct strp_msg *rxm = strp_msg(skb);
2048 size_t cipher_overhead;
2049 size_t data_len = 0;
2052 /* Verify that we have a full TLS header, or wait for more data */
2053 if (rxm->offset + prot->prepend_size > skb->len)
2056 /* Sanity-check size of on-stack buffer. */
2057 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2062 /* Linearize header to local buffer */
2063 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2068 ctx->control = header[0];
2070 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2072 cipher_overhead = prot->tag_size;
2073 if (prot->version != TLS_1_3_VERSION)
2074 cipher_overhead += prot->iv_size;
2076 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2081 if (data_len < cipher_overhead) {
2086 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2087 if (header[1] != TLS_1_2_VERSION_MINOR ||
2088 header[2] != TLS_1_2_VERSION_MAJOR) {
2093 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2094 TCP_SKB_CB(skb)->seq + rxm->offset);
2095 return data_len + TLS_HEADER_SIZE;
2098 tls_err_abort(strp->sk, ret);
2103 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2105 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2106 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2110 ctx->recv_pkt = skb;
2113 ctx->saved_data_ready(strp->sk);
2116 static void tls_data_ready(struct sock *sk)
2118 struct tls_context *tls_ctx = tls_get_ctx(sk);
2119 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120 struct sk_psock *psock;
2122 strp_data_ready(&ctx->strp);
2124 psock = sk_psock_get(sk);
2126 if (!list_empty(&psock->ingress_msg))
2127 ctx->saved_data_ready(sk);
2128 sk_psock_put(sk, psock);
2132 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2134 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2136 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2137 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2138 cancel_delayed_work_sync(&ctx->tx_work.work);
2141 void tls_sw_release_resources_tx(struct sock *sk)
2143 struct tls_context *tls_ctx = tls_get_ctx(sk);
2144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2145 struct tls_rec *rec, *tmp;
2147 /* Wait for any pending async encryptions to complete */
2148 smp_store_mb(ctx->async_notify, true);
2149 if (atomic_read(&ctx->encrypt_pending))
2150 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2152 tls_tx_records(sk, -1);
2154 /* Free up un-sent records in tx_list. First, free
2155 * the partially sent record if any at head of tx_list.
2157 if (tls_ctx->partially_sent_record) {
2158 tls_free_partial_record(sk, tls_ctx);
2159 rec = list_first_entry(&ctx->tx_list,
2160 struct tls_rec, list);
2161 list_del(&rec->list);
2162 sk_msg_free(sk, &rec->msg_plaintext);
2166 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2167 list_del(&rec->list);
2168 sk_msg_free(sk, &rec->msg_encrypted);
2169 sk_msg_free(sk, &rec->msg_plaintext);
2173 crypto_free_aead(ctx->aead_send);
2174 tls_free_open_rec(sk);
2177 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2179 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2184 void tls_sw_release_resources_rx(struct sock *sk)
2186 struct tls_context *tls_ctx = tls_get_ctx(sk);
2187 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2189 kfree(tls_ctx->rx.rec_seq);
2190 kfree(tls_ctx->rx.iv);
2192 if (ctx->aead_recv) {
2193 kfree_skb(ctx->recv_pkt);
2194 ctx->recv_pkt = NULL;
2195 skb_queue_purge(&ctx->rx_list);
2196 crypto_free_aead(ctx->aead_recv);
2197 strp_stop(&ctx->strp);
2198 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2199 * we still want to strp_stop(), but sk->sk_data_ready was
2202 if (ctx->saved_data_ready) {
2203 write_lock_bh(&sk->sk_callback_lock);
2204 sk->sk_data_ready = ctx->saved_data_ready;
2205 write_unlock_bh(&sk->sk_callback_lock);
2210 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2212 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2214 strp_done(&ctx->strp);
2217 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2219 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224 void tls_sw_free_resources_rx(struct sock *sk)
2226 struct tls_context *tls_ctx = tls_get_ctx(sk);
2228 tls_sw_release_resources_rx(sk);
2229 tls_sw_free_ctx_rx(tls_ctx);
2232 /* The work handler to transmitt the encrypted records in tx_list */
2233 static void tx_work_handler(struct work_struct *work)
2235 struct delayed_work *delayed_work = to_delayed_work(work);
2236 struct tx_work *tx_work = container_of(delayed_work,
2237 struct tx_work, work);
2238 struct sock *sk = tx_work->sk;
2239 struct tls_context *tls_ctx = tls_get_ctx(sk);
2240 struct tls_sw_context_tx *ctx;
2242 if (unlikely(!tls_ctx))
2245 ctx = tls_sw_ctx_tx(tls_ctx);
2246 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2249 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2251 mutex_lock(&tls_ctx->tx_lock);
2253 tls_tx_records(sk, -1);
2255 mutex_unlock(&tls_ctx->tx_lock);
2258 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2260 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2262 /* Schedule the transmission if tx list is ready */
2263 if (is_tx_ready(tx_ctx) &&
2264 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2265 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2268 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2270 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2272 write_lock_bh(&sk->sk_callback_lock);
2273 rx_ctx->saved_data_ready = sk->sk_data_ready;
2274 sk->sk_data_ready = tls_data_ready;
2275 write_unlock_bh(&sk->sk_callback_lock);
2277 strp_check_rcv(&rx_ctx->strp);
2280 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2282 struct tls_context *tls_ctx = tls_get_ctx(sk);
2283 struct tls_prot_info *prot = &tls_ctx->prot_info;
2284 struct tls_crypto_info *crypto_info;
2285 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2286 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2287 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2288 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2289 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2290 struct cipher_context *cctx;
2291 struct crypto_aead **aead;
2292 struct strp_callbacks cb;
2293 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2294 struct crypto_tfm *tfm;
2295 char *iv, *rec_seq, *key, *salt, *cipher_name;
2305 if (!ctx->priv_ctx_tx) {
2306 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2311 ctx->priv_ctx_tx = sw_ctx_tx;
2314 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2317 if (!ctx->priv_ctx_rx) {
2318 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2323 ctx->priv_ctx_rx = sw_ctx_rx;
2326 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2331 crypto_init_wait(&sw_ctx_tx->async_wait);
2332 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2333 crypto_info = &ctx->crypto_send.info;
2335 aead = &sw_ctx_tx->aead_send;
2336 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2337 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2338 sw_ctx_tx->tx_work.sk = sk;
2340 crypto_init_wait(&sw_ctx_rx->async_wait);
2341 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2342 crypto_info = &ctx->crypto_recv.info;
2344 skb_queue_head_init(&sw_ctx_rx->rx_list);
2345 aead = &sw_ctx_rx->aead_recv;
2348 switch (crypto_info->cipher_type) {
2349 case TLS_CIPHER_AES_GCM_128: {
2350 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2351 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2352 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2353 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2354 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2356 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2358 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2359 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2360 key = gcm_128_info->key;
2361 salt = gcm_128_info->salt;
2362 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2363 cipher_name = "gcm(aes)";
2366 case TLS_CIPHER_AES_GCM_256: {
2367 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2368 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2369 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2370 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2371 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2373 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2375 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2376 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2377 key = gcm_256_info->key;
2378 salt = gcm_256_info->salt;
2379 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2380 cipher_name = "gcm(aes)";
2383 case TLS_CIPHER_AES_CCM_128: {
2384 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2385 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2386 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2387 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2388 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2390 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2392 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2393 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2394 key = ccm_128_info->key;
2395 salt = ccm_128_info->salt;
2396 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2397 cipher_name = "ccm(aes)";
2405 /* Sanity-check the sizes for stack allocations. */
2406 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2407 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2412 if (crypto_info->version == TLS_1_3_VERSION) {
2414 prot->aad_size = TLS_HEADER_SIZE;
2415 prot->tail_size = 1;
2417 prot->aad_size = TLS_AAD_SPACE_SIZE;
2418 prot->tail_size = 0;
2421 prot->version = crypto_info->version;
2422 prot->cipher_type = crypto_info->cipher_type;
2423 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2424 prot->tag_size = tag_size;
2425 prot->overhead_size = prot->prepend_size +
2426 prot->tag_size + prot->tail_size;
2427 prot->iv_size = iv_size;
2428 prot->salt_size = salt_size;
2429 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2434 /* Note: 128 & 256 bit salt are the same size */
2435 prot->rec_seq_size = rec_seq_size;
2436 memcpy(cctx->iv, salt, salt_size);
2437 memcpy(cctx->iv + salt_size, iv, iv_size);
2438 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2439 if (!cctx->rec_seq) {
2445 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2446 if (IS_ERR(*aead)) {
2447 rc = PTR_ERR(*aead);
2453 ctx->push_pending_record = tls_sw_push_pending_record;
2455 rc = crypto_aead_setkey(*aead, key, keysize);
2460 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2465 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2467 if (crypto_info->version == TLS_1_3_VERSION)
2468 sw_ctx_rx->async_capable = 0;
2470 sw_ctx_rx->async_capable =
2471 !!(tfm->__crt_alg->cra_flags &
2474 /* Set up strparser */
2475 memset(&cb, 0, sizeof(cb));
2476 cb.rcv_msg = tls_queue;
2477 cb.parse_msg = tls_read_size;
2479 strp_init(&sw_ctx_rx->strp, sk, &cb);
2485 crypto_free_aead(*aead);
2488 kfree(cctx->rec_seq);
2489 cctx->rec_seq = NULL;
2495 kfree(ctx->priv_ctx_tx);
2496 ctx->priv_ctx_tx = NULL;
2498 kfree(ctx->priv_ctx_rx);
2499 ctx->priv_ctx_rx = NULL;