]> Git Repo - linux.git/blob - mm/swapfile.c
mm: vmscan: avoid split during shrink_folio_list()
[linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /*
134  * returns number of pages in the folio that backs the swap entry. If positive,
135  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136  * folio was associated with the swap entry.
137  */
138 static int __try_to_reclaim_swap(struct swap_info_struct *si,
139                                  unsigned long offset, unsigned long flags)
140 {
141         swp_entry_t entry = swp_entry(si->type, offset);
142         struct folio *folio;
143         int ret = 0;
144
145         folio = filemap_get_folio(swap_address_space(entry), offset);
146         if (IS_ERR(folio))
147                 return 0;
148         /*
149          * When this function is called from scan_swap_map_slots() and it's
150          * called by vmscan.c at reclaiming folios. So we hold a folio lock
151          * here. We have to use trylock for avoiding deadlock. This is a special
152          * case and you should use folio_free_swap() with explicit folio_lock()
153          * in usual operations.
154          */
155         if (folio_trylock(folio)) {
156                 if ((flags & TTRS_ANYWAY) ||
157                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159                         ret = folio_free_swap(folio);
160                 folio_unlock(folio);
161         }
162         ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
163         folio_put(folio);
164         return ret;
165 }
166
167 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
168 {
169         struct rb_node *rb = rb_first(&sis->swap_extent_root);
170         return rb_entry(rb, struct swap_extent, rb_node);
171 }
172
173 static inline struct swap_extent *next_se(struct swap_extent *se)
174 {
175         struct rb_node *rb = rb_next(&se->rb_node);
176         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
177 }
178
179 /*
180  * swapon tell device that all the old swap contents can be discarded,
181  * to allow the swap device to optimize its wear-levelling.
182  */
183 static int discard_swap(struct swap_info_struct *si)
184 {
185         struct swap_extent *se;
186         sector_t start_block;
187         sector_t nr_blocks;
188         int err = 0;
189
190         /* Do not discard the swap header page! */
191         se = first_se(si);
192         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
194         if (nr_blocks) {
195                 err = blkdev_issue_discard(si->bdev, start_block,
196                                 nr_blocks, GFP_KERNEL);
197                 if (err)
198                         return err;
199                 cond_resched();
200         }
201
202         for (se = next_se(se); se; se = next_se(se)) {
203                 start_block = se->start_block << (PAGE_SHIFT - 9);
204                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
205
206                 err = blkdev_issue_discard(si->bdev, start_block,
207                                 nr_blocks, GFP_KERNEL);
208                 if (err)
209                         break;
210
211                 cond_resched();
212         }
213         return err;             /* That will often be -EOPNOTSUPP */
214 }
215
216 static struct swap_extent *
217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
218 {
219         struct swap_extent *se;
220         struct rb_node *rb;
221
222         rb = sis->swap_extent_root.rb_node;
223         while (rb) {
224                 se = rb_entry(rb, struct swap_extent, rb_node);
225                 if (offset < se->start_page)
226                         rb = rb->rb_left;
227                 else if (offset >= se->start_page + se->nr_pages)
228                         rb = rb->rb_right;
229                 else
230                         return se;
231         }
232         /* It *must* be present */
233         BUG();
234 }
235
236 sector_t swap_folio_sector(struct folio *folio)
237 {
238         struct swap_info_struct *sis = swp_swap_info(folio->swap);
239         struct swap_extent *se;
240         sector_t sector;
241         pgoff_t offset;
242
243         offset = swp_offset(folio->swap);
244         se = offset_to_swap_extent(sis, offset);
245         sector = se->start_block + (offset - se->start_page);
246         return sector << (PAGE_SHIFT - 9);
247 }
248
249 /*
250  * swap allocation tell device that a cluster of swap can now be discarded,
251  * to allow the swap device to optimize its wear-levelling.
252  */
253 static void discard_swap_cluster(struct swap_info_struct *si,
254                                  pgoff_t start_page, pgoff_t nr_pages)
255 {
256         struct swap_extent *se = offset_to_swap_extent(si, start_page);
257
258         while (nr_pages) {
259                 pgoff_t offset = start_page - se->start_page;
260                 sector_t start_block = se->start_block + offset;
261                 sector_t nr_blocks = se->nr_pages - offset;
262
263                 if (nr_blocks > nr_pages)
264                         nr_blocks = nr_pages;
265                 start_page += nr_blocks;
266                 nr_pages -= nr_blocks;
267
268                 start_block <<= PAGE_SHIFT - 9;
269                 nr_blocks <<= PAGE_SHIFT - 9;
270                 if (blkdev_issue_discard(si->bdev, start_block,
271                                         nr_blocks, GFP_NOIO))
272                         break;
273
274                 se = next_se(se);
275         }
276 }
277
278 #ifdef CONFIG_THP_SWAP
279 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
280
281 #define swap_entry_order(order) (order)
282 #else
283 #define SWAPFILE_CLUSTER        256
284
285 /*
286  * Define swap_entry_order() as constant to let compiler to optimize
287  * out some code if !CONFIG_THP_SWAP
288  */
289 #define swap_entry_order(order) 0
290 #endif
291 #define LATENCY_LIMIT           256
292
293 static inline void cluster_set_flag(struct swap_cluster_info *info,
294         unsigned int flag)
295 {
296         info->flags = flag;
297 }
298
299 static inline unsigned int cluster_count(struct swap_cluster_info *info)
300 {
301         return info->data;
302 }
303
304 static inline void cluster_set_count(struct swap_cluster_info *info,
305                                      unsigned int c)
306 {
307         info->data = c;
308 }
309
310 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311                                          unsigned int c, unsigned int f)
312 {
313         info->flags = f;
314         info->data = c;
315 }
316
317 static inline unsigned int cluster_next(struct swap_cluster_info *info)
318 {
319         return info->data;
320 }
321
322 static inline void cluster_set_next(struct swap_cluster_info *info,
323                                     unsigned int n)
324 {
325         info->data = n;
326 }
327
328 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329                                          unsigned int n, unsigned int f)
330 {
331         info->flags = f;
332         info->data = n;
333 }
334
335 static inline bool cluster_is_free(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_FREE;
338 }
339
340 static inline bool cluster_is_null(struct swap_cluster_info *info)
341 {
342         return info->flags & CLUSTER_FLAG_NEXT_NULL;
343 }
344
345 static inline void cluster_set_null(struct swap_cluster_info *info)
346 {
347         info->flags = CLUSTER_FLAG_NEXT_NULL;
348         info->data = 0;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384
385         return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448
449         return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map_slots() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460          * It will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467         schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486
487         info = si->cluster_info;
488
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508
509         si = container_of(work, struct swap_info_struct, discard_work);
510
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518         struct swap_info_struct *si;
519
520         si = container_of(ref, struct swap_info_struct, users);
521         complete(&si->comp);
522 }
523
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info;
527
528         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529         cluster_list_del_first(&si->free_clusters, ci);
530         cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535         struct swap_cluster_info *ci = si->cluster_info + idx;
536
537         VM_BUG_ON(cluster_count(ci) != 0);
538         /*
539          * If the swap is discardable, prepare discard the cluster
540          * instead of free it immediately. The cluster will be freed
541          * after discard.
542          */
543         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545                 swap_cluster_schedule_discard(si, idx);
546                 return;
547         }
548
549         __free_cluster(si, idx);
550 }
551
552 /*
553  * The cluster corresponding to page_nr will be used. The cluster will be
554  * removed from free cluster list and its usage counter will be increased by
555  * count.
556  */
557 static void add_cluster_info_page(struct swap_info_struct *p,
558         struct swap_cluster_info *cluster_info, unsigned long page_nr,
559         unsigned long count)
560 {
561         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
562
563         if (!cluster_info)
564                 return;
565         if (cluster_is_free(&cluster_info[idx]))
566                 alloc_cluster(p, idx);
567
568         VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569         cluster_set_count(&cluster_info[idx],
570                 cluster_count(&cluster_info[idx]) + count);
571 }
572
573 /*
574  * The cluster corresponding to page_nr will be used. The cluster will be
575  * removed from free cluster list and its usage counter will be increased by 1.
576  */
577 static void inc_cluster_info_page(struct swap_info_struct *p,
578         struct swap_cluster_info *cluster_info, unsigned long page_nr)
579 {
580         add_cluster_info_page(p, cluster_info, page_nr, 1);
581 }
582
583 /*
584  * The cluster corresponding to page_nr decreases one usage. If the usage
585  * counter becomes 0, which means no page in the cluster is in using, we can
586  * optionally discard the cluster and add it to free cluster list.
587  */
588 static void dec_cluster_info_page(struct swap_info_struct *p,
589         struct swap_cluster_info *cluster_info, unsigned long page_nr)
590 {
591         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
592
593         if (!cluster_info)
594                 return;
595
596         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597         cluster_set_count(&cluster_info[idx],
598                 cluster_count(&cluster_info[idx]) - 1);
599
600         if (cluster_count(&cluster_info[idx]) == 0)
601                 free_cluster(p, idx);
602 }
603
604 /*
605  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606  * cluster list. Avoiding such abuse to avoid list corruption.
607  */
608 static bool
609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610         unsigned long offset, int order)
611 {
612         struct percpu_cluster *percpu_cluster;
613         bool conflict;
614
615         offset /= SWAPFILE_CLUSTER;
616         conflict = !cluster_list_empty(&si->free_clusters) &&
617                 offset != cluster_list_first(&si->free_clusters) &&
618                 cluster_is_free(&si->cluster_info[offset]);
619
620         if (!conflict)
621                 return false;
622
623         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624         percpu_cluster->next[order] = SWAP_NEXT_INVALID;
625         return true;
626 }
627
628 static inline bool swap_range_empty(char *swap_map, unsigned int start,
629                                     unsigned int nr_pages)
630 {
631         unsigned int i;
632
633         for (i = 0; i < nr_pages; i++) {
634                 if (swap_map[start + i])
635                         return false;
636         }
637
638         return true;
639 }
640
641 /*
642  * Try to get swap entries with specified order from current cpu's swap entry
643  * pool (a cluster). This might involve allocating a new cluster for current CPU
644  * too.
645  */
646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647         unsigned long *offset, unsigned long *scan_base, int order)
648 {
649         unsigned int nr_pages = 1 << order;
650         struct percpu_cluster *cluster;
651         struct swap_cluster_info *ci;
652         unsigned int tmp, max;
653
654 new_cluster:
655         cluster = this_cpu_ptr(si->percpu_cluster);
656         tmp = cluster->next[order];
657         if (tmp == SWAP_NEXT_INVALID) {
658                 if (!cluster_list_empty(&si->free_clusters)) {
659                         tmp = cluster_next(&si->free_clusters.head) *
660                                         SWAPFILE_CLUSTER;
661                 } else if (!cluster_list_empty(&si->discard_clusters)) {
662                         /*
663                          * we don't have free cluster but have some clusters in
664                          * discarding, do discard now and reclaim them, then
665                          * reread cluster_next_cpu since we dropped si->lock
666                          */
667                         swap_do_scheduled_discard(si);
668                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
669                         *offset = *scan_base;
670                         goto new_cluster;
671                 } else
672                         return false;
673         }
674
675         /*
676          * Other CPUs can use our cluster if they can't find a free cluster,
677          * check if there is still free entry in the cluster, maintaining
678          * natural alignment.
679          */
680         max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
681         if (tmp < max) {
682                 ci = lock_cluster(si, tmp);
683                 while (tmp < max) {
684                         if (swap_range_empty(si->swap_map, tmp, nr_pages))
685                                 break;
686                         tmp += nr_pages;
687                 }
688                 unlock_cluster(ci);
689         }
690         if (tmp >= max) {
691                 cluster->next[order] = SWAP_NEXT_INVALID;
692                 goto new_cluster;
693         }
694         *offset = tmp;
695         *scan_base = tmp;
696         tmp += nr_pages;
697         cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
698         return true;
699 }
700
701 static void __del_from_avail_list(struct swap_info_struct *p)
702 {
703         int nid;
704
705         assert_spin_locked(&p->lock);
706         for_each_node(nid)
707                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
708 }
709
710 static void del_from_avail_list(struct swap_info_struct *p)
711 {
712         spin_lock(&swap_avail_lock);
713         __del_from_avail_list(p);
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718                              unsigned int nr_entries)
719 {
720         unsigned int end = offset + nr_entries - 1;
721
722         if (offset == si->lowest_bit)
723                 si->lowest_bit += nr_entries;
724         if (end == si->highest_bit)
725                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727         if (si->inuse_pages == si->pages) {
728                 si->lowest_bit = si->max;
729                 si->highest_bit = 0;
730                 del_from_avail_list(si);
731         }
732 }
733
734 static void add_to_avail_list(struct swap_info_struct *p)
735 {
736         int nid;
737
738         spin_lock(&swap_avail_lock);
739         for_each_node(nid)
740                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741         spin_unlock(&swap_avail_lock);
742 }
743
744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745                             unsigned int nr_entries)
746 {
747         unsigned long begin = offset;
748         unsigned long end = offset + nr_entries - 1;
749         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
750
751         if (offset < si->lowest_bit)
752                 si->lowest_bit = offset;
753         if (end > si->highest_bit) {
754                 bool was_full = !si->highest_bit;
755
756                 WRITE_ONCE(si->highest_bit, end);
757                 if (was_full && (si->flags & SWP_WRITEOK))
758                         add_to_avail_list(si);
759         }
760         if (si->flags & SWP_BLKDEV)
761                 swap_slot_free_notify =
762                         si->bdev->bd_disk->fops->swap_slot_free_notify;
763         else
764                 swap_slot_free_notify = NULL;
765         while (offset <= end) {
766                 arch_swap_invalidate_page(si->type, offset);
767                 if (swap_slot_free_notify)
768                         swap_slot_free_notify(si->bdev, offset);
769                 offset++;
770         }
771         clear_shadow_from_swap_cache(si->type, begin, end);
772
773         /*
774          * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775          * only after the above cleanups are done.
776          */
777         smp_wmb();
778         atomic_long_add(nr_entries, &nr_swap_pages);
779         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
780 }
781
782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
783 {
784         unsigned long prev;
785
786         if (!(si->flags & SWP_SOLIDSTATE)) {
787                 si->cluster_next = next;
788                 return;
789         }
790
791         prev = this_cpu_read(*si->cluster_next_cpu);
792         /*
793          * Cross the swap address space size aligned trunk, choose
794          * another trunk randomly to avoid lock contention on swap
795          * address space if possible.
796          */
797         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799                 /* No free swap slots available */
800                 if (si->highest_bit <= si->lowest_bit)
801                         return;
802                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804                 next = max_t(unsigned int, next, si->lowest_bit);
805         }
806         this_cpu_write(*si->cluster_next_cpu, next);
807 }
808
809 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810                                              unsigned long offset)
811 {
812         if (data_race(!si->swap_map[offset])) {
813                 spin_lock(&si->lock);
814                 return true;
815         }
816
817         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818                 spin_lock(&si->lock);
819                 return true;
820         }
821
822         return false;
823 }
824
825 static int scan_swap_map_slots(struct swap_info_struct *si,
826                                unsigned char usage, int nr,
827                                swp_entry_t slots[], int order)
828 {
829         struct swap_cluster_info *ci;
830         unsigned long offset;
831         unsigned long scan_base;
832         unsigned long last_in_cluster = 0;
833         int latency_ration = LATENCY_LIMIT;
834         unsigned int nr_pages = 1 << order;
835         int n_ret = 0;
836         bool scanned_many = false;
837
838         /*
839          * We try to cluster swap pages by allocating them sequentially
840          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
841          * way, however, we resort to first-free allocation, starting
842          * a new cluster.  This prevents us from scattering swap pages
843          * all over the entire swap partition, so that we reduce
844          * overall disk seek times between swap pages.  -- sct
845          * But we do now try to find an empty cluster.  -Andrea
846          * And we let swap pages go all over an SSD partition.  Hugh
847          */
848
849         if (order > 0) {
850                 /*
851                  * Should not even be attempting large allocations when huge
852                  * page swap is disabled.  Warn and fail the allocation.
853                  */
854                 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855                     nr_pages > SWAPFILE_CLUSTER) {
856                         VM_WARN_ON_ONCE(1);
857                         return 0;
858                 }
859
860                 /*
861                  * Swapfile is not block device or not using clusters so unable
862                  * to allocate large entries.
863                  */
864                 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
865                         return 0;
866         }
867
868         si->flags += SWP_SCANNING;
869         /*
870          * Use percpu scan base for SSD to reduce lock contention on
871          * cluster and swap cache.  For HDD, sequential access is more
872          * important.
873          */
874         if (si->flags & SWP_SOLIDSTATE)
875                 scan_base = this_cpu_read(*si->cluster_next_cpu);
876         else
877                 scan_base = si->cluster_next;
878         offset = scan_base;
879
880         /* SSD algorithm */
881         if (si->cluster_info) {
882                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
883                         if (order > 0)
884                                 goto no_page;
885                         goto scan;
886                 }
887         } else if (unlikely(!si->cluster_nr--)) {
888                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
890                         goto checks;
891                 }
892
893                 spin_unlock(&si->lock);
894
895                 /*
896                  * If seek is expensive, start searching for new cluster from
897                  * start of partition, to minimize the span of allocated swap.
898                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
900                  */
901                 scan_base = offset = si->lowest_bit;
902                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
903
904                 /* Locate the first empty (unaligned) cluster */
905                 for (; last_in_cluster <= si->highest_bit; offset++) {
906                         if (si->swap_map[offset])
907                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
908                         else if (offset == last_in_cluster) {
909                                 spin_lock(&si->lock);
910                                 offset -= SWAPFILE_CLUSTER - 1;
911                                 si->cluster_next = offset;
912                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
913                                 goto checks;
914                         }
915                         if (unlikely(--latency_ration < 0)) {
916                                 cond_resched();
917                                 latency_ration = LATENCY_LIMIT;
918                         }
919                 }
920
921                 offset = scan_base;
922                 spin_lock(&si->lock);
923                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
924         }
925
926 checks:
927         if (si->cluster_info) {
928                 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929                 /* take a break if we already got some slots */
930                         if (n_ret)
931                                 goto done;
932                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
933                                                         &scan_base, order)) {
934                                 if (order > 0)
935                                         goto no_page;
936                                 goto scan;
937                         }
938                 }
939         }
940         if (!(si->flags & SWP_WRITEOK))
941                 goto no_page;
942         if (!si->highest_bit)
943                 goto no_page;
944         if (offset > si->highest_bit)
945                 scan_base = offset = si->lowest_bit;
946
947         ci = lock_cluster(si, offset);
948         /* reuse swap entry of cache-only swap if not busy. */
949         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
950                 int swap_was_freed;
951                 unlock_cluster(ci);
952                 spin_unlock(&si->lock);
953                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954                 spin_lock(&si->lock);
955                 /* entry was freed successfully, try to use this again */
956                 if (swap_was_freed > 0)
957                         goto checks;
958                 goto scan; /* check next one */
959         }
960
961         if (si->swap_map[offset]) {
962                 unlock_cluster(ci);
963                 if (!n_ret)
964                         goto scan;
965                 else
966                         goto done;
967         }
968         memset(si->swap_map + offset, usage, nr_pages);
969         add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
970         unlock_cluster(ci);
971
972         swap_range_alloc(si, offset, nr_pages);
973         slots[n_ret++] = swp_entry(si->type, offset);
974
975         /* got enough slots or reach max slots? */
976         if ((n_ret == nr) || (offset >= si->highest_bit))
977                 goto done;
978
979         /* search for next available slot */
980
981         /* time to take a break? */
982         if (unlikely(--latency_ration < 0)) {
983                 if (n_ret)
984                         goto done;
985                 spin_unlock(&si->lock);
986                 cond_resched();
987                 spin_lock(&si->lock);
988                 latency_ration = LATENCY_LIMIT;
989         }
990
991         /* try to get more slots in cluster */
992         if (si->cluster_info) {
993                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
994                         goto checks;
995                 if (order > 0)
996                         goto done;
997         } else if (si->cluster_nr && !si->swap_map[++offset]) {
998                 /* non-ssd case, still more slots in cluster? */
999                 --si->cluster_nr;
1000                 goto checks;
1001         }
1002
1003         /*
1004          * Even if there's no free clusters available (fragmented),
1005          * try to scan a little more quickly with lock held unless we
1006          * have scanned too many slots already.
1007          */
1008         if (!scanned_many) {
1009                 unsigned long scan_limit;
1010
1011                 if (offset < scan_base)
1012                         scan_limit = scan_base;
1013                 else
1014                         scan_limit = si->highest_bit;
1015                 for (; offset <= scan_limit && --latency_ration > 0;
1016                      offset++) {
1017                         if (!si->swap_map[offset])
1018                                 goto checks;
1019                 }
1020         }
1021
1022 done:
1023         if (order == 0)
1024                 set_cluster_next(si, offset + 1);
1025         si->flags -= SWP_SCANNING;
1026         return n_ret;
1027
1028 scan:
1029         VM_WARN_ON(order > 0);
1030         spin_unlock(&si->lock);
1031         while (++offset <= READ_ONCE(si->highest_bit)) {
1032                 if (unlikely(--latency_ration < 0)) {
1033                         cond_resched();
1034                         latency_ration = LATENCY_LIMIT;
1035                         scanned_many = true;
1036                 }
1037                 if (swap_offset_available_and_locked(si, offset))
1038                         goto checks;
1039         }
1040         offset = si->lowest_bit;
1041         while (offset < scan_base) {
1042                 if (unlikely(--latency_ration < 0)) {
1043                         cond_resched();
1044                         latency_ration = LATENCY_LIMIT;
1045                         scanned_many = true;
1046                 }
1047                 if (swap_offset_available_and_locked(si, offset))
1048                         goto checks;
1049                 offset++;
1050         }
1051         spin_lock(&si->lock);
1052
1053 no_page:
1054         si->flags -= SWP_SCANNING;
1055         return n_ret;
1056 }
1057
1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1059 {
1060         unsigned long offset = idx * SWAPFILE_CLUSTER;
1061         struct swap_cluster_info *ci;
1062
1063         ci = lock_cluster(si, offset);
1064         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065         cluster_set_count_flag(ci, 0, 0);
1066         free_cluster(si, idx);
1067         unlock_cluster(ci);
1068         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1069 }
1070
1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1072 {
1073         int order = swap_entry_order(entry_order);
1074         unsigned long size = 1 << order;
1075         struct swap_info_struct *si, *next;
1076         long avail_pgs;
1077         int n_ret = 0;
1078         int node;
1079
1080         spin_lock(&swap_avail_lock);
1081
1082         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083         if (avail_pgs <= 0) {
1084                 spin_unlock(&swap_avail_lock);
1085                 goto noswap;
1086         }
1087
1088         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089
1090         atomic_long_sub(n_goal * size, &nr_swap_pages);
1091
1092 start_over:
1093         node = numa_node_id();
1094         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095                 /* requeue si to after same-priority siblings */
1096                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097                 spin_unlock(&swap_avail_lock);
1098                 spin_lock(&si->lock);
1099                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100                         spin_lock(&swap_avail_lock);
1101                         if (plist_node_empty(&si->avail_lists[node])) {
1102                                 spin_unlock(&si->lock);
1103                                 goto nextsi;
1104                         }
1105                         WARN(!si->highest_bit,
1106                              "swap_info %d in list but !highest_bit\n",
1107                              si->type);
1108                         WARN(!(si->flags & SWP_WRITEOK),
1109                              "swap_info %d in list but !SWP_WRITEOK\n",
1110                              si->type);
1111                         __del_from_avail_list(si);
1112                         spin_unlock(&si->lock);
1113                         goto nextsi;
1114                 }
1115                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116                                             n_goal, swp_entries, order);
1117                 spin_unlock(&si->lock);
1118                 if (n_ret || size > 1)
1119                         goto check_out;
1120                 cond_resched();
1121
1122                 spin_lock(&swap_avail_lock);
1123 nextsi:
1124                 /*
1125                  * if we got here, it's likely that si was almost full before,
1126                  * and since scan_swap_map_slots() can drop the si->lock,
1127                  * multiple callers probably all tried to get a page from the
1128                  * same si and it filled up before we could get one; or, the si
1129                  * filled up between us dropping swap_avail_lock and taking
1130                  * si->lock. Since we dropped the swap_avail_lock, the
1131                  * swap_avail_head list may have been modified; so if next is
1132                  * still in the swap_avail_head list then try it, otherwise
1133                  * start over if we have not gotten any slots.
1134                  */
1135                 if (plist_node_empty(&next->avail_lists[node]))
1136                         goto start_over;
1137         }
1138
1139         spin_unlock(&swap_avail_lock);
1140
1141 check_out:
1142         if (n_ret < n_goal)
1143                 atomic_long_add((long)(n_goal - n_ret) * size,
1144                                 &nr_swap_pages);
1145 noswap:
1146         return n_ret;
1147 }
1148
1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152         unsigned long offset;
1153
1154         if (!entry.val)
1155                 goto out;
1156         p = swp_swap_info(entry);
1157         if (!p)
1158                 goto bad_nofile;
1159         if (data_race(!(p->flags & SWP_USED)))
1160                 goto bad_device;
1161         offset = swp_offset(entry);
1162         if (offset >= p->max)
1163                 goto bad_offset;
1164         if (data_race(!p->swap_map[swp_offset(entry)]))
1165                 goto bad_free;
1166         return p;
1167
1168 bad_free:
1169         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170         goto out;
1171 bad_offset:
1172         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1173         goto out;
1174 bad_device:
1175         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1176         goto out;
1177 bad_nofile:
1178         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1179 out:
1180         return NULL;
1181 }
1182
1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184                                         struct swap_info_struct *q)
1185 {
1186         struct swap_info_struct *p;
1187
1188         p = _swap_info_get(entry);
1189
1190         if (p != q) {
1191                 if (q != NULL)
1192                         spin_unlock(&q->lock);
1193                 if (p != NULL)
1194                         spin_lock(&p->lock);
1195         }
1196         return p;
1197 }
1198
1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200                                               unsigned long offset,
1201                                               unsigned char usage)
1202 {
1203         unsigned char count;
1204         unsigned char has_cache;
1205
1206         count = p->swap_map[offset];
1207
1208         has_cache = count & SWAP_HAS_CACHE;
1209         count &= ~SWAP_HAS_CACHE;
1210
1211         if (usage == SWAP_HAS_CACHE) {
1212                 VM_BUG_ON(!has_cache);
1213                 has_cache = 0;
1214         } else if (count == SWAP_MAP_SHMEM) {
1215                 /*
1216                  * Or we could insist on shmem.c using a special
1217                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1218                  */
1219                 count = 0;
1220         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221                 if (count == COUNT_CONTINUED) {
1222                         if (swap_count_continued(p, offset, count))
1223                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224                         else
1225                                 count = SWAP_MAP_MAX;
1226                 } else
1227                         count--;
1228         }
1229
1230         usage = count | has_cache;
1231         if (usage)
1232                 WRITE_ONCE(p->swap_map[offset], usage);
1233         else
1234                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235
1236         return usage;
1237 }
1238
1239 /*
1240  * When we get a swap entry, if there aren't some other ways to
1241  * prevent swapoff, such as the folio in swap cache is locked, page
1242  * table lock is held, etc., the swap entry may become invalid because
1243  * of swapoff.  Then, we need to enclose all swap related functions
1244  * with get_swap_device() and put_swap_device(), unless the swap
1245  * functions call get/put_swap_device() by themselves.
1246  *
1247  * Note that when only holding the PTL, swapoff might succeed immediately
1248  * after freeing a swap entry. Therefore, immediately after
1249  * __swap_entry_free(), the swap info might become stale and should not
1250  * be touched without a prior get_swap_device().
1251  *
1252  * Check whether swap entry is valid in the swap device.  If so,
1253  * return pointer to swap_info_struct, and keep the swap entry valid
1254  * via preventing the swap device from being swapoff, until
1255  * put_swap_device() is called.  Otherwise return NULL.
1256  *
1257  * Notice that swapoff or swapoff+swapon can still happen before the
1258  * percpu_ref_tryget_live() in get_swap_device() or after the
1259  * percpu_ref_put() in put_swap_device() if there isn't any other way
1260  * to prevent swapoff.  The caller must be prepared for that.  For
1261  * example, the following situation is possible.
1262  *
1263  *   CPU1                               CPU2
1264  *   do_swap_page()
1265  *     ...                              swapoff+swapon
1266  *     __read_swap_cache_async()
1267  *       swapcache_prepare()
1268  *         __swap_duplicate()
1269  *           // check swap_map
1270  *     // verify PTE not changed
1271  *
1272  * In __swap_duplicate(), the swap_map need to be checked before
1273  * changing partly because the specified swap entry may be for another
1274  * swap device which has been swapoff.  And in do_swap_page(), after
1275  * the page is read from the swap device, the PTE is verified not
1276  * changed with the page table locked to check whether the swap device
1277  * has been swapoff or swapoff+swapon.
1278  */
1279 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1280 {
1281         struct swap_info_struct *si;
1282         unsigned long offset;
1283
1284         if (!entry.val)
1285                 goto out;
1286         si = swp_swap_info(entry);
1287         if (!si)
1288                 goto bad_nofile;
1289         if (!percpu_ref_tryget_live(&si->users))
1290                 goto out;
1291         /*
1292          * Guarantee the si->users are checked before accessing other
1293          * fields of swap_info_struct.
1294          *
1295          * Paired with the spin_unlock() after setup_swap_info() in
1296          * enable_swap_info().
1297          */
1298         smp_rmb();
1299         offset = swp_offset(entry);
1300         if (offset >= si->max)
1301                 goto put_out;
1302
1303         return si;
1304 bad_nofile:
1305         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1306 out:
1307         return NULL;
1308 put_out:
1309         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1310         percpu_ref_put(&si->users);
1311         return NULL;
1312 }
1313
1314 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1315                                        swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char usage;
1320
1321         ci = lock_cluster_or_swap_info(p, offset);
1322         usage = __swap_entry_free_locked(p, offset, 1);
1323         unlock_cluster_or_swap_info(p, ci);
1324         if (!usage)
1325                 free_swap_slot(entry);
1326
1327         return usage;
1328 }
1329
1330 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 {
1332         struct swap_cluster_info *ci;
1333         unsigned long offset = swp_offset(entry);
1334         unsigned char count;
1335
1336         ci = lock_cluster(p, offset);
1337         count = p->swap_map[offset];
1338         VM_BUG_ON(count != SWAP_HAS_CACHE);
1339         p->swap_map[offset] = 0;
1340         dec_cluster_info_page(p, p->cluster_info, offset);
1341         unlock_cluster(ci);
1342
1343         mem_cgroup_uncharge_swap(entry, 1);
1344         swap_range_free(p, offset, 1);
1345 }
1346
1347 /*
1348  * Caller has made sure that the swap device corresponding to entry
1349  * is still around or has not been recycled.
1350  */
1351 void swap_free(swp_entry_t entry)
1352 {
1353         struct swap_info_struct *p;
1354
1355         p = _swap_info_get(entry);
1356         if (p)
1357                 __swap_entry_free(p, entry);
1358 }
1359
1360 /*
1361  * Called after dropping swapcache to decrease refcnt to swap entries.
1362  */
1363 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1364 {
1365         unsigned long offset = swp_offset(entry);
1366         unsigned long idx = offset / SWAPFILE_CLUSTER;
1367         struct swap_cluster_info *ci;
1368         struct swap_info_struct *si;
1369         unsigned char *map;
1370         unsigned int i, free_entries = 0;
1371         unsigned char val;
1372         int size = 1 << swap_entry_order(folio_order(folio));
1373
1374         si = _swap_info_get(entry);
1375         if (!si)
1376                 return;
1377
1378         ci = lock_cluster_or_swap_info(si, offset);
1379         if (size == SWAPFILE_CLUSTER) {
1380                 map = si->swap_map + offset;
1381                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1382                         val = map[i];
1383                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1384                         if (val == SWAP_HAS_CACHE)
1385                                 free_entries++;
1386                 }
1387                 if (free_entries == SWAPFILE_CLUSTER) {
1388                         unlock_cluster_or_swap_info(si, ci);
1389                         spin_lock(&si->lock);
1390                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1391                         swap_free_cluster(si, idx);
1392                         spin_unlock(&si->lock);
1393                         return;
1394                 }
1395         }
1396         for (i = 0; i < size; i++, entry.val++) {
1397                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1398                         unlock_cluster_or_swap_info(si, ci);
1399                         free_swap_slot(entry);
1400                         if (i == size - 1)
1401                                 return;
1402                         lock_cluster_or_swap_info(si, offset);
1403                 }
1404         }
1405         unlock_cluster_or_swap_info(si, ci);
1406 }
1407
1408 static int swp_entry_cmp(const void *ent1, const void *ent2)
1409 {
1410         const swp_entry_t *e1 = ent1, *e2 = ent2;
1411
1412         return (int)swp_type(*e1) - (int)swp_type(*e2);
1413 }
1414
1415 void swapcache_free_entries(swp_entry_t *entries, int n)
1416 {
1417         struct swap_info_struct *p, *prev;
1418         int i;
1419
1420         if (n <= 0)
1421                 return;
1422
1423         prev = NULL;
1424         p = NULL;
1425
1426         /*
1427          * Sort swap entries by swap device, so each lock is only taken once.
1428          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1429          * so low that it isn't necessary to optimize further.
1430          */
1431         if (nr_swapfiles > 1)
1432                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1433         for (i = 0; i < n; ++i) {
1434                 p = swap_info_get_cont(entries[i], prev);
1435                 if (p)
1436                         swap_entry_free(p, entries[i]);
1437                 prev = p;
1438         }
1439         if (p)
1440                 spin_unlock(&p->lock);
1441 }
1442
1443 int __swap_count(swp_entry_t entry)
1444 {
1445         struct swap_info_struct *si = swp_swap_info(entry);
1446         pgoff_t offset = swp_offset(entry);
1447
1448         return swap_count(si->swap_map[offset]);
1449 }
1450
1451 /*
1452  * How many references to @entry are currently swapped out?
1453  * This does not give an exact answer when swap count is continued,
1454  * but does include the high COUNT_CONTINUED flag to allow for that.
1455  */
1456 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1457 {
1458         pgoff_t offset = swp_offset(entry);
1459         struct swap_cluster_info *ci;
1460         int count;
1461
1462         ci = lock_cluster_or_swap_info(si, offset);
1463         count = swap_count(si->swap_map[offset]);
1464         unlock_cluster_or_swap_info(si, ci);
1465         return count;
1466 }
1467
1468 /*
1469  * How many references to @entry are currently swapped out?
1470  * This considers COUNT_CONTINUED so it returns exact answer.
1471  */
1472 int swp_swapcount(swp_entry_t entry)
1473 {
1474         int count, tmp_count, n;
1475         struct swap_info_struct *p;
1476         struct swap_cluster_info *ci;
1477         struct page *page;
1478         pgoff_t offset;
1479         unsigned char *map;
1480
1481         p = _swap_info_get(entry);
1482         if (!p)
1483                 return 0;
1484
1485         offset = swp_offset(entry);
1486
1487         ci = lock_cluster_or_swap_info(p, offset);
1488
1489         count = swap_count(p->swap_map[offset]);
1490         if (!(count & COUNT_CONTINUED))
1491                 goto out;
1492
1493         count &= ~COUNT_CONTINUED;
1494         n = SWAP_MAP_MAX + 1;
1495
1496         page = vmalloc_to_page(p->swap_map + offset);
1497         offset &= ~PAGE_MASK;
1498         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1499
1500         do {
1501                 page = list_next_entry(page, lru);
1502                 map = kmap_local_page(page);
1503                 tmp_count = map[offset];
1504                 kunmap_local(map);
1505
1506                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1507                 n *= (SWAP_CONT_MAX + 1);
1508         } while (tmp_count & COUNT_CONTINUED);
1509 out:
1510         unlock_cluster_or_swap_info(p, ci);
1511         return count;
1512 }
1513
1514 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1515                                          swp_entry_t entry, int order)
1516 {
1517         struct swap_cluster_info *ci;
1518         unsigned char *map = si->swap_map;
1519         unsigned int nr_pages = 1 << order;
1520         unsigned long roffset = swp_offset(entry);
1521         unsigned long offset = round_down(roffset, nr_pages);
1522         int i;
1523         bool ret = false;
1524
1525         ci = lock_cluster_or_swap_info(si, offset);
1526         if (!ci || nr_pages == 1) {
1527                 if (swap_count(map[roffset]))
1528                         ret = true;
1529                 goto unlock_out;
1530         }
1531         for (i = 0; i < nr_pages; i++) {
1532                 if (swap_count(map[offset + i])) {
1533                         ret = true;
1534                         break;
1535                 }
1536         }
1537 unlock_out:
1538         unlock_cluster_or_swap_info(si, ci);
1539         return ret;
1540 }
1541
1542 static bool folio_swapped(struct folio *folio)
1543 {
1544         swp_entry_t entry = folio->swap;
1545         struct swap_info_struct *si = _swap_info_get(entry);
1546
1547         if (!si)
1548                 return false;
1549
1550         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1551                 return swap_swapcount(si, entry) != 0;
1552
1553         return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1554 }
1555
1556 /**
1557  * folio_free_swap() - Free the swap space used for this folio.
1558  * @folio: The folio to remove.
1559  *
1560  * If swap is getting full, or if there are no more mappings of this folio,
1561  * then call folio_free_swap to free its swap space.
1562  *
1563  * Return: true if we were able to release the swap space.
1564  */
1565 bool folio_free_swap(struct folio *folio)
1566 {
1567         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1568
1569         if (!folio_test_swapcache(folio))
1570                 return false;
1571         if (folio_test_writeback(folio))
1572                 return false;
1573         if (folio_swapped(folio))
1574                 return false;
1575
1576         /*
1577          * Once hibernation has begun to create its image of memory,
1578          * there's a danger that one of the calls to folio_free_swap()
1579          * - most probably a call from __try_to_reclaim_swap() while
1580          * hibernation is allocating its own swap pages for the image,
1581          * but conceivably even a call from memory reclaim - will free
1582          * the swap from a folio which has already been recorded in the
1583          * image as a clean swapcache folio, and then reuse its swap for
1584          * another page of the image.  On waking from hibernation, the
1585          * original folio might be freed under memory pressure, then
1586          * later read back in from swap, now with the wrong data.
1587          *
1588          * Hibernation suspends storage while it is writing the image
1589          * to disk so check that here.
1590          */
1591         if (pm_suspended_storage())
1592                 return false;
1593
1594         delete_from_swap_cache(folio);
1595         folio_set_dirty(folio);
1596         return true;
1597 }
1598
1599 /**
1600  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1601  *                            reclaim their cache if no more references remain.
1602  * @entry: First entry of range.
1603  * @nr: Number of entries in range.
1604  *
1605  * For each swap entry in the contiguous range, release a reference. If any swap
1606  * entries become free, try to reclaim their underlying folios, if present. The
1607  * offset range is defined by [entry.offset, entry.offset + nr).
1608  */
1609 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1610 {
1611         const unsigned long start_offset = swp_offset(entry);
1612         const unsigned long end_offset = start_offset + nr;
1613         unsigned int type = swp_type(entry);
1614         struct swap_info_struct *si;
1615         bool any_only_cache = false;
1616         unsigned long offset;
1617         unsigned char count;
1618
1619         if (non_swap_entry(entry))
1620                 return;
1621
1622         si = get_swap_device(entry);
1623         if (!si)
1624                 return;
1625
1626         if (WARN_ON(end_offset > si->max))
1627                 goto out;
1628
1629         /*
1630          * First free all entries in the range.
1631          */
1632         for (offset = start_offset; offset < end_offset; offset++) {
1633                 if (data_race(si->swap_map[offset])) {
1634                         count = __swap_entry_free(si, swp_entry(type, offset));
1635                         if (count == SWAP_HAS_CACHE)
1636                                 any_only_cache = true;
1637                 } else {
1638                         WARN_ON_ONCE(1);
1639                 }
1640         }
1641
1642         /*
1643          * Short-circuit the below loop if none of the entries had their
1644          * reference drop to zero.
1645          */
1646         if (!any_only_cache)
1647                 goto out;
1648
1649         /*
1650          * Now go back over the range trying to reclaim the swap cache. This is
1651          * more efficient for large folios because we will only try to reclaim
1652          * the swap once per folio in the common case. If we do
1653          * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1654          * latter will get a reference and lock the folio for every individual
1655          * page but will only succeed once the swap slot for every subpage is
1656          * zero.
1657          */
1658         for (offset = start_offset; offset < end_offset; offset += nr) {
1659                 nr = 1;
1660                 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1661                         /*
1662                          * Folios are always naturally aligned in swap so
1663                          * advance forward to the next boundary. Zero means no
1664                          * folio was found for the swap entry, so advance by 1
1665                          * in this case. Negative value means folio was found
1666                          * but could not be reclaimed. Here we can still advance
1667                          * to the next boundary.
1668                          */
1669                         nr = __try_to_reclaim_swap(si, offset,
1670                                               TTRS_UNMAPPED | TTRS_FULL);
1671                         if (nr == 0)
1672                                 nr = 1;
1673                         else if (nr < 0)
1674                                 nr = -nr;
1675                         nr = ALIGN(offset + 1, nr) - offset;
1676                 }
1677         }
1678
1679 out:
1680         put_swap_device(si);
1681 }
1682
1683 #ifdef CONFIG_HIBERNATION
1684
1685 swp_entry_t get_swap_page_of_type(int type)
1686 {
1687         struct swap_info_struct *si = swap_type_to_swap_info(type);
1688         swp_entry_t entry = {0};
1689
1690         if (!si)
1691                 goto fail;
1692
1693         /* This is called for allocating swap entry, not cache */
1694         spin_lock(&si->lock);
1695         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1696                 atomic_long_dec(&nr_swap_pages);
1697         spin_unlock(&si->lock);
1698 fail:
1699         return entry;
1700 }
1701
1702 /*
1703  * Find the swap type that corresponds to given device (if any).
1704  *
1705  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1706  * from 0, in which the swap header is expected to be located.
1707  *
1708  * This is needed for the suspend to disk (aka swsusp).
1709  */
1710 int swap_type_of(dev_t device, sector_t offset)
1711 {
1712         int type;
1713
1714         if (!device)
1715                 return -1;
1716
1717         spin_lock(&swap_lock);
1718         for (type = 0; type < nr_swapfiles; type++) {
1719                 struct swap_info_struct *sis = swap_info[type];
1720
1721                 if (!(sis->flags & SWP_WRITEOK))
1722                         continue;
1723
1724                 if (device == sis->bdev->bd_dev) {
1725                         struct swap_extent *se = first_se(sis);
1726
1727                         if (se->start_block == offset) {
1728                                 spin_unlock(&swap_lock);
1729                                 return type;
1730                         }
1731                 }
1732         }
1733         spin_unlock(&swap_lock);
1734         return -ENODEV;
1735 }
1736
1737 int find_first_swap(dev_t *device)
1738 {
1739         int type;
1740
1741         spin_lock(&swap_lock);
1742         for (type = 0; type < nr_swapfiles; type++) {
1743                 struct swap_info_struct *sis = swap_info[type];
1744
1745                 if (!(sis->flags & SWP_WRITEOK))
1746                         continue;
1747                 *device = sis->bdev->bd_dev;
1748                 spin_unlock(&swap_lock);
1749                 return type;
1750         }
1751         spin_unlock(&swap_lock);
1752         return -ENODEV;
1753 }
1754
1755 /*
1756  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1757  * corresponding to given index in swap_info (swap type).
1758  */
1759 sector_t swapdev_block(int type, pgoff_t offset)
1760 {
1761         struct swap_info_struct *si = swap_type_to_swap_info(type);
1762         struct swap_extent *se;
1763
1764         if (!si || !(si->flags & SWP_WRITEOK))
1765                 return 0;
1766         se = offset_to_swap_extent(si, offset);
1767         return se->start_block + (offset - se->start_page);
1768 }
1769
1770 /*
1771  * Return either the total number of swap pages of given type, or the number
1772  * of free pages of that type (depending on @free)
1773  *
1774  * This is needed for software suspend
1775  */
1776 unsigned int count_swap_pages(int type, int free)
1777 {
1778         unsigned int n = 0;
1779
1780         spin_lock(&swap_lock);
1781         if ((unsigned int)type < nr_swapfiles) {
1782                 struct swap_info_struct *sis = swap_info[type];
1783
1784                 spin_lock(&sis->lock);
1785                 if (sis->flags & SWP_WRITEOK) {
1786                         n = sis->pages;
1787                         if (free)
1788                                 n -= sis->inuse_pages;
1789                 }
1790                 spin_unlock(&sis->lock);
1791         }
1792         spin_unlock(&swap_lock);
1793         return n;
1794 }
1795 #endif /* CONFIG_HIBERNATION */
1796
1797 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1798 {
1799         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1800 }
1801
1802 /*
1803  * No need to decide whether this PTE shares the swap entry with others,
1804  * just let do_wp_page work it out if a write is requested later - to
1805  * force COW, vm_page_prot omits write permission from any private vma.
1806  */
1807 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1808                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1809 {
1810         struct page *page;
1811         struct folio *swapcache;
1812         spinlock_t *ptl;
1813         pte_t *pte, new_pte, old_pte;
1814         bool hwpoisoned = false;
1815         int ret = 1;
1816
1817         swapcache = folio;
1818         folio = ksm_might_need_to_copy(folio, vma, addr);
1819         if (unlikely(!folio))
1820                 return -ENOMEM;
1821         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1822                 hwpoisoned = true;
1823                 folio = swapcache;
1824         }
1825
1826         page = folio_file_page(folio, swp_offset(entry));
1827         if (PageHWPoison(page))
1828                 hwpoisoned = true;
1829
1830         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1831         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1832                                                 swp_entry_to_pte(entry)))) {
1833                 ret = 0;
1834                 goto out;
1835         }
1836
1837         old_pte = ptep_get(pte);
1838
1839         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1840                 swp_entry_t swp_entry;
1841
1842                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1843                 if (hwpoisoned) {
1844                         swp_entry = make_hwpoison_entry(page);
1845                 } else {
1846                         swp_entry = make_poisoned_swp_entry();
1847                 }
1848                 new_pte = swp_entry_to_pte(swp_entry);
1849                 ret = 0;
1850                 goto setpte;
1851         }
1852
1853         /*
1854          * Some architectures may have to restore extra metadata to the page
1855          * when reading from swap. This metadata may be indexed by swap entry
1856          * so this must be called before swap_free().
1857          */
1858         arch_swap_restore(folio_swap(entry, folio), folio);
1859
1860         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1861         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1862         folio_get(folio);
1863         if (folio == swapcache) {
1864                 rmap_t rmap_flags = RMAP_NONE;
1865
1866                 /*
1867                  * See do_swap_page(): writeback would be problematic.
1868                  * However, we do a folio_wait_writeback() just before this
1869                  * call and have the folio locked.
1870                  */
1871                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1872                 if (pte_swp_exclusive(old_pte))
1873                         rmap_flags |= RMAP_EXCLUSIVE;
1874
1875                 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1876         } else { /* ksm created a completely new copy */
1877                 folio_add_new_anon_rmap(folio, vma, addr);
1878                 folio_add_lru_vma(folio, vma);
1879         }
1880         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1881         if (pte_swp_soft_dirty(old_pte))
1882                 new_pte = pte_mksoft_dirty(new_pte);
1883         if (pte_swp_uffd_wp(old_pte))
1884                 new_pte = pte_mkuffd_wp(new_pte);
1885 setpte:
1886         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1887         swap_free(entry);
1888 out:
1889         if (pte)
1890                 pte_unmap_unlock(pte, ptl);
1891         if (folio != swapcache) {
1892                 folio_unlock(folio);
1893                 folio_put(folio);
1894         }
1895         return ret;
1896 }
1897
1898 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1899                         unsigned long addr, unsigned long end,
1900                         unsigned int type)
1901 {
1902         pte_t *pte = NULL;
1903         struct swap_info_struct *si;
1904
1905         si = swap_info[type];
1906         do {
1907                 struct folio *folio;
1908                 unsigned long offset;
1909                 unsigned char swp_count;
1910                 swp_entry_t entry;
1911                 int ret;
1912                 pte_t ptent;
1913
1914                 if (!pte++) {
1915                         pte = pte_offset_map(pmd, addr);
1916                         if (!pte)
1917                                 break;
1918                 }
1919
1920                 ptent = ptep_get_lockless(pte);
1921
1922                 if (!is_swap_pte(ptent))
1923                         continue;
1924
1925                 entry = pte_to_swp_entry(ptent);
1926                 if (swp_type(entry) != type)
1927                         continue;
1928
1929                 offset = swp_offset(entry);
1930                 pte_unmap(pte);
1931                 pte = NULL;
1932
1933                 folio = swap_cache_get_folio(entry, vma, addr);
1934                 if (!folio) {
1935                         struct page *page;
1936                         struct vm_fault vmf = {
1937                                 .vma = vma,
1938                                 .address = addr,
1939                                 .real_address = addr,
1940                                 .pmd = pmd,
1941                         };
1942
1943                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1944                                                 &vmf);
1945                         if (page)
1946                                 folio = page_folio(page);
1947                 }
1948                 if (!folio) {
1949                         swp_count = READ_ONCE(si->swap_map[offset]);
1950                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1951                                 continue;
1952                         return -ENOMEM;
1953                 }
1954
1955                 folio_lock(folio);
1956                 folio_wait_writeback(folio);
1957                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1958                 if (ret < 0) {
1959                         folio_unlock(folio);
1960                         folio_put(folio);
1961                         return ret;
1962                 }
1963
1964                 folio_free_swap(folio);
1965                 folio_unlock(folio);
1966                 folio_put(folio);
1967         } while (addr += PAGE_SIZE, addr != end);
1968
1969         if (pte)
1970                 pte_unmap(pte);
1971         return 0;
1972 }
1973
1974 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1975                                 unsigned long addr, unsigned long end,
1976                                 unsigned int type)
1977 {
1978         pmd_t *pmd;
1979         unsigned long next;
1980         int ret;
1981
1982         pmd = pmd_offset(pud, addr);
1983         do {
1984                 cond_resched();
1985                 next = pmd_addr_end(addr, end);
1986                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1987                 if (ret)
1988                         return ret;
1989         } while (pmd++, addr = next, addr != end);
1990         return 0;
1991 }
1992
1993 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1994                                 unsigned long addr, unsigned long end,
1995                                 unsigned int type)
1996 {
1997         pud_t *pud;
1998         unsigned long next;
1999         int ret;
2000
2001         pud = pud_offset(p4d, addr);
2002         do {
2003                 next = pud_addr_end(addr, end);
2004                 if (pud_none_or_clear_bad(pud))
2005                         continue;
2006                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2007                 if (ret)
2008                         return ret;
2009         } while (pud++, addr = next, addr != end);
2010         return 0;
2011 }
2012
2013 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2014                                 unsigned long addr, unsigned long end,
2015                                 unsigned int type)
2016 {
2017         p4d_t *p4d;
2018         unsigned long next;
2019         int ret;
2020
2021         p4d = p4d_offset(pgd, addr);
2022         do {
2023                 next = p4d_addr_end(addr, end);
2024                 if (p4d_none_or_clear_bad(p4d))
2025                         continue;
2026                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2027                 if (ret)
2028                         return ret;
2029         } while (p4d++, addr = next, addr != end);
2030         return 0;
2031 }
2032
2033 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2034 {
2035         pgd_t *pgd;
2036         unsigned long addr, end, next;
2037         int ret;
2038
2039         addr = vma->vm_start;
2040         end = vma->vm_end;
2041
2042         pgd = pgd_offset(vma->vm_mm, addr);
2043         do {
2044                 next = pgd_addr_end(addr, end);
2045                 if (pgd_none_or_clear_bad(pgd))
2046                         continue;
2047                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2048                 if (ret)
2049                         return ret;
2050         } while (pgd++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2055 {
2056         struct vm_area_struct *vma;
2057         int ret = 0;
2058         VMA_ITERATOR(vmi, mm, 0);
2059
2060         mmap_read_lock(mm);
2061         for_each_vma(vmi, vma) {
2062                 if (vma->anon_vma) {
2063                         ret = unuse_vma(vma, type);
2064                         if (ret)
2065                                 break;
2066                 }
2067
2068                 cond_resched();
2069         }
2070         mmap_read_unlock(mm);
2071         return ret;
2072 }
2073
2074 /*
2075  * Scan swap_map from current position to next entry still in use.
2076  * Return 0 if there are no inuse entries after prev till end of
2077  * the map.
2078  */
2079 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2080                                         unsigned int prev)
2081 {
2082         unsigned int i;
2083         unsigned char count;
2084
2085         /*
2086          * No need for swap_lock here: we're just looking
2087          * for whether an entry is in use, not modifying it; false
2088          * hits are okay, and sys_swapoff() has already prevented new
2089          * allocations from this area (while holding swap_lock).
2090          */
2091         for (i = prev + 1; i < si->max; i++) {
2092                 count = READ_ONCE(si->swap_map[i]);
2093                 if (count && swap_count(count) != SWAP_MAP_BAD)
2094                         break;
2095                 if ((i % LATENCY_LIMIT) == 0)
2096                         cond_resched();
2097         }
2098
2099         if (i == si->max)
2100                 i = 0;
2101
2102         return i;
2103 }
2104
2105 static int try_to_unuse(unsigned int type)
2106 {
2107         struct mm_struct *prev_mm;
2108         struct mm_struct *mm;
2109         struct list_head *p;
2110         int retval = 0;
2111         struct swap_info_struct *si = swap_info[type];
2112         struct folio *folio;
2113         swp_entry_t entry;
2114         unsigned int i;
2115
2116         if (!READ_ONCE(si->inuse_pages))
2117                 goto success;
2118
2119 retry:
2120         retval = shmem_unuse(type);
2121         if (retval)
2122                 return retval;
2123
2124         prev_mm = &init_mm;
2125         mmget(prev_mm);
2126
2127         spin_lock(&mmlist_lock);
2128         p = &init_mm.mmlist;
2129         while (READ_ONCE(si->inuse_pages) &&
2130                !signal_pending(current) &&
2131                (p = p->next) != &init_mm.mmlist) {
2132
2133                 mm = list_entry(p, struct mm_struct, mmlist);
2134                 if (!mmget_not_zero(mm))
2135                         continue;
2136                 spin_unlock(&mmlist_lock);
2137                 mmput(prev_mm);
2138                 prev_mm = mm;
2139                 retval = unuse_mm(mm, type);
2140                 if (retval) {
2141                         mmput(prev_mm);
2142                         return retval;
2143                 }
2144
2145                 /*
2146                  * Make sure that we aren't completely killing
2147                  * interactive performance.
2148                  */
2149                 cond_resched();
2150                 spin_lock(&mmlist_lock);
2151         }
2152         spin_unlock(&mmlist_lock);
2153
2154         mmput(prev_mm);
2155
2156         i = 0;
2157         while (READ_ONCE(si->inuse_pages) &&
2158                !signal_pending(current) &&
2159                (i = find_next_to_unuse(si, i)) != 0) {
2160
2161                 entry = swp_entry(type, i);
2162                 folio = filemap_get_folio(swap_address_space(entry), i);
2163                 if (IS_ERR(folio))
2164                         continue;
2165
2166                 /*
2167                  * It is conceivable that a racing task removed this folio from
2168                  * swap cache just before we acquired the page lock. The folio
2169                  * might even be back in swap cache on another swap area. But
2170                  * that is okay, folio_free_swap() only removes stale folios.
2171                  */
2172                 folio_lock(folio);
2173                 folio_wait_writeback(folio);
2174                 folio_free_swap(folio);
2175                 folio_unlock(folio);
2176                 folio_put(folio);
2177         }
2178
2179         /*
2180          * Lets check again to see if there are still swap entries in the map.
2181          * If yes, we would need to do retry the unuse logic again.
2182          * Under global memory pressure, swap entries can be reinserted back
2183          * into process space after the mmlist loop above passes over them.
2184          *
2185          * Limit the number of retries? No: when mmget_not_zero()
2186          * above fails, that mm is likely to be freeing swap from
2187          * exit_mmap(), which proceeds at its own independent pace;
2188          * and even shmem_writepage() could have been preempted after
2189          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2190          * and robust (though cpu-intensive) just to keep retrying.
2191          */
2192         if (READ_ONCE(si->inuse_pages)) {
2193                 if (!signal_pending(current))
2194                         goto retry;
2195                 return -EINTR;
2196         }
2197
2198 success:
2199         /*
2200          * Make sure that further cleanups after try_to_unuse() returns happen
2201          * after swap_range_free() reduces si->inuse_pages to 0.
2202          */
2203         smp_mb();
2204         return 0;
2205 }
2206
2207 /*
2208  * After a successful try_to_unuse, if no swap is now in use, we know
2209  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2210  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2211  * added to the mmlist just after page_duplicate - before would be racy.
2212  */
2213 static void drain_mmlist(void)
2214 {
2215         struct list_head *p, *next;
2216         unsigned int type;
2217
2218         for (type = 0; type < nr_swapfiles; type++)
2219                 if (swap_info[type]->inuse_pages)
2220                         return;
2221         spin_lock(&mmlist_lock);
2222         list_for_each_safe(p, next, &init_mm.mmlist)
2223                 list_del_init(p);
2224         spin_unlock(&mmlist_lock);
2225 }
2226
2227 /*
2228  * Free all of a swapdev's extent information
2229  */
2230 static void destroy_swap_extents(struct swap_info_struct *sis)
2231 {
2232         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2233                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2234                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2235
2236                 rb_erase(rb, &sis->swap_extent_root);
2237                 kfree(se);
2238         }
2239
2240         if (sis->flags & SWP_ACTIVATED) {
2241                 struct file *swap_file = sis->swap_file;
2242                 struct address_space *mapping = swap_file->f_mapping;
2243
2244                 sis->flags &= ~SWP_ACTIVATED;
2245                 if (mapping->a_ops->swap_deactivate)
2246                         mapping->a_ops->swap_deactivate(swap_file);
2247         }
2248 }
2249
2250 /*
2251  * Add a block range (and the corresponding page range) into this swapdev's
2252  * extent tree.
2253  *
2254  * This function rather assumes that it is called in ascending page order.
2255  */
2256 int
2257 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2258                 unsigned long nr_pages, sector_t start_block)
2259 {
2260         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2261         struct swap_extent *se;
2262         struct swap_extent *new_se;
2263
2264         /*
2265          * place the new node at the right most since the
2266          * function is called in ascending page order.
2267          */
2268         while (*link) {
2269                 parent = *link;
2270                 link = &parent->rb_right;
2271         }
2272
2273         if (parent) {
2274                 se = rb_entry(parent, struct swap_extent, rb_node);
2275                 BUG_ON(se->start_page + se->nr_pages != start_page);
2276                 if (se->start_block + se->nr_pages == start_block) {
2277                         /* Merge it */
2278                         se->nr_pages += nr_pages;
2279                         return 0;
2280                 }
2281         }
2282
2283         /* No merge, insert a new extent. */
2284         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2285         if (new_se == NULL)
2286                 return -ENOMEM;
2287         new_se->start_page = start_page;
2288         new_se->nr_pages = nr_pages;
2289         new_se->start_block = start_block;
2290
2291         rb_link_node(&new_se->rb_node, parent, link);
2292         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2293         return 1;
2294 }
2295 EXPORT_SYMBOL_GPL(add_swap_extent);
2296
2297 /*
2298  * A `swap extent' is a simple thing which maps a contiguous range of pages
2299  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2300  * built at swapon time and is then used at swap_writepage/swap_read_folio
2301  * time for locating where on disk a page belongs.
2302  *
2303  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2304  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2305  * swap files identically.
2306  *
2307  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2308  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2309  * swapfiles are handled *identically* after swapon time.
2310  *
2311  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2312  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2313  * blocks are found which do not fall within the PAGE_SIZE alignment
2314  * requirements, they are simply tossed out - we will never use those blocks
2315  * for swapping.
2316  *
2317  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2318  * prevents users from writing to the swap device, which will corrupt memory.
2319  *
2320  * The amount of disk space which a single swap extent represents varies.
2321  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2322  * extents in the rbtree. - akpm.
2323  */
2324 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2325 {
2326         struct file *swap_file = sis->swap_file;
2327         struct address_space *mapping = swap_file->f_mapping;
2328         struct inode *inode = mapping->host;
2329         int ret;
2330
2331         if (S_ISBLK(inode->i_mode)) {
2332                 ret = add_swap_extent(sis, 0, sis->max, 0);
2333                 *span = sis->pages;
2334                 return ret;
2335         }
2336
2337         if (mapping->a_ops->swap_activate) {
2338                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2339                 if (ret < 0)
2340                         return ret;
2341                 sis->flags |= SWP_ACTIVATED;
2342                 if ((sis->flags & SWP_FS_OPS) &&
2343                     sio_pool_init() != 0) {
2344                         destroy_swap_extents(sis);
2345                         return -ENOMEM;
2346                 }
2347                 return ret;
2348         }
2349
2350         return generic_swapfile_activate(sis, swap_file, span);
2351 }
2352
2353 static int swap_node(struct swap_info_struct *p)
2354 {
2355         struct block_device *bdev;
2356
2357         if (p->bdev)
2358                 bdev = p->bdev;
2359         else
2360                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2361
2362         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2363 }
2364
2365 static void setup_swap_info(struct swap_info_struct *p, int prio,
2366                             unsigned char *swap_map,
2367                             struct swap_cluster_info *cluster_info)
2368 {
2369         int i;
2370
2371         if (prio >= 0)
2372                 p->prio = prio;
2373         else
2374                 p->prio = --least_priority;
2375         /*
2376          * the plist prio is negated because plist ordering is
2377          * low-to-high, while swap ordering is high-to-low
2378          */
2379         p->list.prio = -p->prio;
2380         for_each_node(i) {
2381                 if (p->prio >= 0)
2382                         p->avail_lists[i].prio = -p->prio;
2383                 else {
2384                         if (swap_node(p) == i)
2385                                 p->avail_lists[i].prio = 1;
2386                         else
2387                                 p->avail_lists[i].prio = -p->prio;
2388                 }
2389         }
2390         p->swap_map = swap_map;
2391         p->cluster_info = cluster_info;
2392 }
2393
2394 static void _enable_swap_info(struct swap_info_struct *p)
2395 {
2396         p->flags |= SWP_WRITEOK;
2397         atomic_long_add(p->pages, &nr_swap_pages);
2398         total_swap_pages += p->pages;
2399
2400         assert_spin_locked(&swap_lock);
2401         /*
2402          * both lists are plists, and thus priority ordered.
2403          * swap_active_head needs to be priority ordered for swapoff(),
2404          * which on removal of any swap_info_struct with an auto-assigned
2405          * (i.e. negative) priority increments the auto-assigned priority
2406          * of any lower-priority swap_info_structs.
2407          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2408          * which allocates swap pages from the highest available priority
2409          * swap_info_struct.
2410          */
2411         plist_add(&p->list, &swap_active_head);
2412
2413         /* add to available list iff swap device is not full */
2414         if (p->highest_bit)
2415                 add_to_avail_list(p);
2416 }
2417
2418 static void enable_swap_info(struct swap_info_struct *p, int prio,
2419                                 unsigned char *swap_map,
2420                                 struct swap_cluster_info *cluster_info)
2421 {
2422         spin_lock(&swap_lock);
2423         spin_lock(&p->lock);
2424         setup_swap_info(p, prio, swap_map, cluster_info);
2425         spin_unlock(&p->lock);
2426         spin_unlock(&swap_lock);
2427         /*
2428          * Finished initializing swap device, now it's safe to reference it.
2429          */
2430         percpu_ref_resurrect(&p->users);
2431         spin_lock(&swap_lock);
2432         spin_lock(&p->lock);
2433         _enable_swap_info(p);
2434         spin_unlock(&p->lock);
2435         spin_unlock(&swap_lock);
2436 }
2437
2438 static void reinsert_swap_info(struct swap_info_struct *p)
2439 {
2440         spin_lock(&swap_lock);
2441         spin_lock(&p->lock);
2442         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2443         _enable_swap_info(p);
2444         spin_unlock(&p->lock);
2445         spin_unlock(&swap_lock);
2446 }
2447
2448 bool has_usable_swap(void)
2449 {
2450         bool ret = true;
2451
2452         spin_lock(&swap_lock);
2453         if (plist_head_empty(&swap_active_head))
2454                 ret = false;
2455         spin_unlock(&swap_lock);
2456         return ret;
2457 }
2458
2459 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2460 {
2461         struct swap_info_struct *p = NULL;
2462         unsigned char *swap_map;
2463         struct swap_cluster_info *cluster_info;
2464         struct file *swap_file, *victim;
2465         struct address_space *mapping;
2466         struct inode *inode;
2467         struct filename *pathname;
2468         int err, found = 0;
2469         unsigned int old_block_size;
2470
2471         if (!capable(CAP_SYS_ADMIN))
2472                 return -EPERM;
2473
2474         BUG_ON(!current->mm);
2475
2476         pathname = getname(specialfile);
2477         if (IS_ERR(pathname))
2478                 return PTR_ERR(pathname);
2479
2480         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2481         err = PTR_ERR(victim);
2482         if (IS_ERR(victim))
2483                 goto out;
2484
2485         mapping = victim->f_mapping;
2486         spin_lock(&swap_lock);
2487         plist_for_each_entry(p, &swap_active_head, list) {
2488                 if (p->flags & SWP_WRITEOK) {
2489                         if (p->swap_file->f_mapping == mapping) {
2490                                 found = 1;
2491                                 break;
2492                         }
2493                 }
2494         }
2495         if (!found) {
2496                 err = -EINVAL;
2497                 spin_unlock(&swap_lock);
2498                 goto out_dput;
2499         }
2500         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2501                 vm_unacct_memory(p->pages);
2502         else {
2503                 err = -ENOMEM;
2504                 spin_unlock(&swap_lock);
2505                 goto out_dput;
2506         }
2507         spin_lock(&p->lock);
2508         del_from_avail_list(p);
2509         if (p->prio < 0) {
2510                 struct swap_info_struct *si = p;
2511                 int nid;
2512
2513                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2514                         si->prio++;
2515                         si->list.prio--;
2516                         for_each_node(nid) {
2517                                 if (si->avail_lists[nid].prio != 1)
2518                                         si->avail_lists[nid].prio--;
2519                         }
2520                 }
2521                 least_priority++;
2522         }
2523         plist_del(&p->list, &swap_active_head);
2524         atomic_long_sub(p->pages, &nr_swap_pages);
2525         total_swap_pages -= p->pages;
2526         p->flags &= ~SWP_WRITEOK;
2527         spin_unlock(&p->lock);
2528         spin_unlock(&swap_lock);
2529
2530         disable_swap_slots_cache_lock();
2531
2532         set_current_oom_origin();
2533         err = try_to_unuse(p->type);
2534         clear_current_oom_origin();
2535
2536         if (err) {
2537                 /* re-insert swap space back into swap_list */
2538                 reinsert_swap_info(p);
2539                 reenable_swap_slots_cache_unlock();
2540                 goto out_dput;
2541         }
2542
2543         reenable_swap_slots_cache_unlock();
2544
2545         /*
2546          * Wait for swap operations protected by get/put_swap_device()
2547          * to complete.
2548          *
2549          * We need synchronize_rcu() here to protect the accessing to
2550          * the swap cache data structure.
2551          */
2552         percpu_ref_kill(&p->users);
2553         synchronize_rcu();
2554         wait_for_completion(&p->comp);
2555
2556         flush_work(&p->discard_work);
2557
2558         destroy_swap_extents(p);
2559         if (p->flags & SWP_CONTINUED)
2560                 free_swap_count_continuations(p);
2561
2562         if (!p->bdev || !bdev_nonrot(p->bdev))
2563                 atomic_dec(&nr_rotate_swap);
2564
2565         mutex_lock(&swapon_mutex);
2566         spin_lock(&swap_lock);
2567         spin_lock(&p->lock);
2568         drain_mmlist();
2569
2570         /* wait for anyone still in scan_swap_map_slots */
2571         p->highest_bit = 0;             /* cuts scans short */
2572         while (p->flags >= SWP_SCANNING) {
2573                 spin_unlock(&p->lock);
2574                 spin_unlock(&swap_lock);
2575                 schedule_timeout_uninterruptible(1);
2576                 spin_lock(&swap_lock);
2577                 spin_lock(&p->lock);
2578         }
2579
2580         swap_file = p->swap_file;
2581         old_block_size = p->old_block_size;
2582         p->swap_file = NULL;
2583         p->max = 0;
2584         swap_map = p->swap_map;
2585         p->swap_map = NULL;
2586         cluster_info = p->cluster_info;
2587         p->cluster_info = NULL;
2588         spin_unlock(&p->lock);
2589         spin_unlock(&swap_lock);
2590         arch_swap_invalidate_area(p->type);
2591         zswap_swapoff(p->type);
2592         mutex_unlock(&swapon_mutex);
2593         free_percpu(p->percpu_cluster);
2594         p->percpu_cluster = NULL;
2595         free_percpu(p->cluster_next_cpu);
2596         p->cluster_next_cpu = NULL;
2597         vfree(swap_map);
2598         kvfree(cluster_info);
2599         /* Destroy swap account information */
2600         swap_cgroup_swapoff(p->type);
2601         exit_swap_address_space(p->type);
2602
2603         inode = mapping->host;
2604         if (p->bdev_file) {
2605                 set_blocksize(p->bdev, old_block_size);
2606                 fput(p->bdev_file);
2607                 p->bdev_file = NULL;
2608         }
2609
2610         inode_lock(inode);
2611         inode->i_flags &= ~S_SWAPFILE;
2612         inode_unlock(inode);
2613         filp_close(swap_file, NULL);
2614
2615         /*
2616          * Clear the SWP_USED flag after all resources are freed so that swapon
2617          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2618          * not hold p->lock after we cleared its SWP_WRITEOK.
2619          */
2620         spin_lock(&swap_lock);
2621         p->flags = 0;
2622         spin_unlock(&swap_lock);
2623
2624         err = 0;
2625         atomic_inc(&proc_poll_event);
2626         wake_up_interruptible(&proc_poll_wait);
2627
2628 out_dput:
2629         filp_close(victim, NULL);
2630 out:
2631         putname(pathname);
2632         return err;
2633 }
2634
2635 #ifdef CONFIG_PROC_FS
2636 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2637 {
2638         struct seq_file *seq = file->private_data;
2639
2640         poll_wait(file, &proc_poll_wait, wait);
2641
2642         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2643                 seq->poll_event = atomic_read(&proc_poll_event);
2644                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2645         }
2646
2647         return EPOLLIN | EPOLLRDNORM;
2648 }
2649
2650 /* iterator */
2651 static void *swap_start(struct seq_file *swap, loff_t *pos)
2652 {
2653         struct swap_info_struct *si;
2654         int type;
2655         loff_t l = *pos;
2656
2657         mutex_lock(&swapon_mutex);
2658
2659         if (!l)
2660                 return SEQ_START_TOKEN;
2661
2662         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2663                 if (!(si->flags & SWP_USED) || !si->swap_map)
2664                         continue;
2665                 if (!--l)
2666                         return si;
2667         }
2668
2669         return NULL;
2670 }
2671
2672 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2673 {
2674         struct swap_info_struct *si = v;
2675         int type;
2676
2677         if (v == SEQ_START_TOKEN)
2678                 type = 0;
2679         else
2680                 type = si->type + 1;
2681
2682         ++(*pos);
2683         for (; (si = swap_type_to_swap_info(type)); type++) {
2684                 if (!(si->flags & SWP_USED) || !si->swap_map)
2685                         continue;
2686                 return si;
2687         }
2688
2689         return NULL;
2690 }
2691
2692 static void swap_stop(struct seq_file *swap, void *v)
2693 {
2694         mutex_unlock(&swapon_mutex);
2695 }
2696
2697 static int swap_show(struct seq_file *swap, void *v)
2698 {
2699         struct swap_info_struct *si = v;
2700         struct file *file;
2701         int len;
2702         unsigned long bytes, inuse;
2703
2704         if (si == SEQ_START_TOKEN) {
2705                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2706                 return 0;
2707         }
2708
2709         bytes = K(si->pages);
2710         inuse = K(READ_ONCE(si->inuse_pages));
2711
2712         file = si->swap_file;
2713         len = seq_file_path(swap, file, " \t\n\\");
2714         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2715                         len < 40 ? 40 - len : 1, " ",
2716                         S_ISBLK(file_inode(file)->i_mode) ?
2717                                 "partition" : "file\t",
2718                         bytes, bytes < 10000000 ? "\t" : "",
2719                         inuse, inuse < 10000000 ? "\t" : "",
2720                         si->prio);
2721         return 0;
2722 }
2723
2724 static const struct seq_operations swaps_op = {
2725         .start =        swap_start,
2726         .next =         swap_next,
2727         .stop =         swap_stop,
2728         .show =         swap_show
2729 };
2730
2731 static int swaps_open(struct inode *inode, struct file *file)
2732 {
2733         struct seq_file *seq;
2734         int ret;
2735
2736         ret = seq_open(file, &swaps_op);
2737         if (ret)
2738                 return ret;
2739
2740         seq = file->private_data;
2741         seq->poll_event = atomic_read(&proc_poll_event);
2742         return 0;
2743 }
2744
2745 static const struct proc_ops swaps_proc_ops = {
2746         .proc_flags     = PROC_ENTRY_PERMANENT,
2747         .proc_open      = swaps_open,
2748         .proc_read      = seq_read,
2749         .proc_lseek     = seq_lseek,
2750         .proc_release   = seq_release,
2751         .proc_poll      = swaps_poll,
2752 };
2753
2754 static int __init procswaps_init(void)
2755 {
2756         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2757         return 0;
2758 }
2759 __initcall(procswaps_init);
2760 #endif /* CONFIG_PROC_FS */
2761
2762 #ifdef MAX_SWAPFILES_CHECK
2763 static int __init max_swapfiles_check(void)
2764 {
2765         MAX_SWAPFILES_CHECK();
2766         return 0;
2767 }
2768 late_initcall(max_swapfiles_check);
2769 #endif
2770
2771 static struct swap_info_struct *alloc_swap_info(void)
2772 {
2773         struct swap_info_struct *p;
2774         struct swap_info_struct *defer = NULL;
2775         unsigned int type;
2776         int i;
2777
2778         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2779         if (!p)
2780                 return ERR_PTR(-ENOMEM);
2781
2782         if (percpu_ref_init(&p->users, swap_users_ref_free,
2783                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2784                 kvfree(p);
2785                 return ERR_PTR(-ENOMEM);
2786         }
2787
2788         spin_lock(&swap_lock);
2789         for (type = 0; type < nr_swapfiles; type++) {
2790                 if (!(swap_info[type]->flags & SWP_USED))
2791                         break;
2792         }
2793         if (type >= MAX_SWAPFILES) {
2794                 spin_unlock(&swap_lock);
2795                 percpu_ref_exit(&p->users);
2796                 kvfree(p);
2797                 return ERR_PTR(-EPERM);
2798         }
2799         if (type >= nr_swapfiles) {
2800                 p->type = type;
2801                 /*
2802                  * Publish the swap_info_struct after initializing it.
2803                  * Note that kvzalloc() above zeroes all its fields.
2804                  */
2805                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2806                 nr_swapfiles++;
2807         } else {
2808                 defer = p;
2809                 p = swap_info[type];
2810                 /*
2811                  * Do not memset this entry: a racing procfs swap_next()
2812                  * would be relying on p->type to remain valid.
2813                  */
2814         }
2815         p->swap_extent_root = RB_ROOT;
2816         plist_node_init(&p->list, 0);
2817         for_each_node(i)
2818                 plist_node_init(&p->avail_lists[i], 0);
2819         p->flags = SWP_USED;
2820         spin_unlock(&swap_lock);
2821         if (defer) {
2822                 percpu_ref_exit(&defer->users);
2823                 kvfree(defer);
2824         }
2825         spin_lock_init(&p->lock);
2826         spin_lock_init(&p->cont_lock);
2827         init_completion(&p->comp);
2828
2829         return p;
2830 }
2831
2832 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2833 {
2834         int error;
2835
2836         if (S_ISBLK(inode->i_mode)) {
2837                 p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2838                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2839                 if (IS_ERR(p->bdev_file)) {
2840                         error = PTR_ERR(p->bdev_file);
2841                         p->bdev_file = NULL;
2842                         return error;
2843                 }
2844                 p->bdev = file_bdev(p->bdev_file);
2845                 p->old_block_size = block_size(p->bdev);
2846                 error = set_blocksize(p->bdev, PAGE_SIZE);
2847                 if (error < 0)
2848                         return error;
2849                 /*
2850                  * Zoned block devices contain zones that have a sequential
2851                  * write only restriction.  Hence zoned block devices are not
2852                  * suitable for swapping.  Disallow them here.
2853                  */
2854                 if (bdev_is_zoned(p->bdev))
2855                         return -EINVAL;
2856                 p->flags |= SWP_BLKDEV;
2857         } else if (S_ISREG(inode->i_mode)) {
2858                 p->bdev = inode->i_sb->s_bdev;
2859         }
2860
2861         return 0;
2862 }
2863
2864
2865 /*
2866  * Find out how many pages are allowed for a single swap device. There
2867  * are two limiting factors:
2868  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2869  * 2) the number of bits in the swap pte, as defined by the different
2870  * architectures.
2871  *
2872  * In order to find the largest possible bit mask, a swap entry with
2873  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2874  * decoded to a swp_entry_t again, and finally the swap offset is
2875  * extracted.
2876  *
2877  * This will mask all the bits from the initial ~0UL mask that can't
2878  * be encoded in either the swp_entry_t or the architecture definition
2879  * of a swap pte.
2880  */
2881 unsigned long generic_max_swapfile_size(void)
2882 {
2883         return swp_offset(pte_to_swp_entry(
2884                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2885 }
2886
2887 /* Can be overridden by an architecture for additional checks. */
2888 __weak unsigned long arch_max_swapfile_size(void)
2889 {
2890         return generic_max_swapfile_size();
2891 }
2892
2893 static unsigned long read_swap_header(struct swap_info_struct *p,
2894                                         union swap_header *swap_header,
2895                                         struct inode *inode)
2896 {
2897         int i;
2898         unsigned long maxpages;
2899         unsigned long swapfilepages;
2900         unsigned long last_page;
2901
2902         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2903                 pr_err("Unable to find swap-space signature\n");
2904                 return 0;
2905         }
2906
2907         /* swap partition endianness hack... */
2908         if (swab32(swap_header->info.version) == 1) {
2909                 swab32s(&swap_header->info.version);
2910                 swab32s(&swap_header->info.last_page);
2911                 swab32s(&swap_header->info.nr_badpages);
2912                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2913                         return 0;
2914                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2915                         swab32s(&swap_header->info.badpages[i]);
2916         }
2917         /* Check the swap header's sub-version */
2918         if (swap_header->info.version != 1) {
2919                 pr_warn("Unable to handle swap header version %d\n",
2920                         swap_header->info.version);
2921                 return 0;
2922         }
2923
2924         p->lowest_bit  = 1;
2925         p->cluster_next = 1;
2926         p->cluster_nr = 0;
2927
2928         maxpages = swapfile_maximum_size;
2929         last_page = swap_header->info.last_page;
2930         if (!last_page) {
2931                 pr_warn("Empty swap-file\n");
2932                 return 0;
2933         }
2934         if (last_page > maxpages) {
2935                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2936                         K(maxpages), K(last_page));
2937         }
2938         if (maxpages > last_page) {
2939                 maxpages = last_page + 1;
2940                 /* p->max is an unsigned int: don't overflow it */
2941                 if ((unsigned int)maxpages == 0)
2942                         maxpages = UINT_MAX;
2943         }
2944         p->highest_bit = maxpages - 1;
2945
2946         if (!maxpages)
2947                 return 0;
2948         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2949         if (swapfilepages && maxpages > swapfilepages) {
2950                 pr_warn("Swap area shorter than signature indicates\n");
2951                 return 0;
2952         }
2953         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2954                 return 0;
2955         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2956                 return 0;
2957
2958         return maxpages;
2959 }
2960
2961 #define SWAP_CLUSTER_INFO_COLS                                          \
2962         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2963 #define SWAP_CLUSTER_SPACE_COLS                                         \
2964         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2965 #define SWAP_CLUSTER_COLS                                               \
2966         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2967
2968 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2969                                         union swap_header *swap_header,
2970                                         unsigned char *swap_map,
2971                                         struct swap_cluster_info *cluster_info,
2972                                         unsigned long maxpages,
2973                                         sector_t *span)
2974 {
2975         unsigned int j, k;
2976         unsigned int nr_good_pages;
2977         int nr_extents;
2978         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2979         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2980         unsigned long i, idx;
2981
2982         nr_good_pages = maxpages - 1;   /* omit header page */
2983
2984         cluster_list_init(&p->free_clusters);
2985         cluster_list_init(&p->discard_clusters);
2986
2987         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2988                 unsigned int page_nr = swap_header->info.badpages[i];
2989                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2990                         return -EINVAL;
2991                 if (page_nr < maxpages) {
2992                         swap_map[page_nr] = SWAP_MAP_BAD;
2993                         nr_good_pages--;
2994                         /*
2995                          * Haven't marked the cluster free yet, no list
2996                          * operation involved
2997                          */
2998                         inc_cluster_info_page(p, cluster_info, page_nr);
2999                 }
3000         }
3001
3002         /* Haven't marked the cluster free yet, no list operation involved */
3003         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3004                 inc_cluster_info_page(p, cluster_info, i);
3005
3006         if (nr_good_pages) {
3007                 swap_map[0] = SWAP_MAP_BAD;
3008                 /*
3009                  * Not mark the cluster free yet, no list
3010                  * operation involved
3011                  */
3012                 inc_cluster_info_page(p, cluster_info, 0);
3013                 p->max = maxpages;
3014                 p->pages = nr_good_pages;
3015                 nr_extents = setup_swap_extents(p, span);
3016                 if (nr_extents < 0)
3017                         return nr_extents;
3018                 nr_good_pages = p->pages;
3019         }
3020         if (!nr_good_pages) {
3021                 pr_warn("Empty swap-file\n");
3022                 return -EINVAL;
3023         }
3024
3025         if (!cluster_info)
3026                 return nr_extents;
3027
3028
3029         /*
3030          * Reduce false cache line sharing between cluster_info and
3031          * sharing same address space.
3032          */
3033         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3034                 j = (k + col) % SWAP_CLUSTER_COLS;
3035                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3036                         idx = i * SWAP_CLUSTER_COLS + j;
3037                         if (idx >= nr_clusters)
3038                                 continue;
3039                         if (cluster_count(&cluster_info[idx]))
3040                                 continue;
3041                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3042                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3043                                               idx);
3044                 }
3045         }
3046         return nr_extents;
3047 }
3048
3049 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3050 {
3051         struct swap_info_struct *p;
3052         struct filename *name;
3053         struct file *swap_file = NULL;
3054         struct address_space *mapping;
3055         struct dentry *dentry;
3056         int prio;
3057         int error;
3058         union swap_header *swap_header;
3059         int nr_extents;
3060         sector_t span;
3061         unsigned long maxpages;
3062         unsigned char *swap_map = NULL;
3063         struct swap_cluster_info *cluster_info = NULL;
3064         struct page *page = NULL;
3065         struct inode *inode = NULL;
3066         bool inced_nr_rotate_swap = false;
3067
3068         if (swap_flags & ~SWAP_FLAGS_VALID)
3069                 return -EINVAL;
3070
3071         if (!capable(CAP_SYS_ADMIN))
3072                 return -EPERM;
3073
3074         if (!swap_avail_heads)
3075                 return -ENOMEM;
3076
3077         p = alloc_swap_info();
3078         if (IS_ERR(p))
3079                 return PTR_ERR(p);
3080
3081         INIT_WORK(&p->discard_work, swap_discard_work);
3082
3083         name = getname(specialfile);
3084         if (IS_ERR(name)) {
3085                 error = PTR_ERR(name);
3086                 name = NULL;
3087                 goto bad_swap;
3088         }
3089         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3090         if (IS_ERR(swap_file)) {
3091                 error = PTR_ERR(swap_file);
3092                 swap_file = NULL;
3093                 goto bad_swap;
3094         }
3095
3096         p->swap_file = swap_file;
3097         mapping = swap_file->f_mapping;
3098         dentry = swap_file->f_path.dentry;
3099         inode = mapping->host;
3100
3101         error = claim_swapfile(p, inode);
3102         if (unlikely(error))
3103                 goto bad_swap;
3104
3105         inode_lock(inode);
3106         if (d_unlinked(dentry) || cant_mount(dentry)) {
3107                 error = -ENOENT;
3108                 goto bad_swap_unlock_inode;
3109         }
3110         if (IS_SWAPFILE(inode)) {
3111                 error = -EBUSY;
3112                 goto bad_swap_unlock_inode;
3113         }
3114
3115         /*
3116          * Read the swap header.
3117          */
3118         if (!mapping->a_ops->read_folio) {
3119                 error = -EINVAL;
3120                 goto bad_swap_unlock_inode;
3121         }
3122         page = read_mapping_page(mapping, 0, swap_file);
3123         if (IS_ERR(page)) {
3124                 error = PTR_ERR(page);
3125                 goto bad_swap_unlock_inode;
3126         }
3127         swap_header = kmap(page);
3128
3129         maxpages = read_swap_header(p, swap_header, inode);
3130         if (unlikely(!maxpages)) {
3131                 error = -EINVAL;
3132                 goto bad_swap_unlock_inode;
3133         }
3134
3135         /* OK, set up the swap map and apply the bad block list */
3136         swap_map = vzalloc(maxpages);
3137         if (!swap_map) {
3138                 error = -ENOMEM;
3139                 goto bad_swap_unlock_inode;
3140         }
3141
3142         if (p->bdev && bdev_stable_writes(p->bdev))
3143                 p->flags |= SWP_STABLE_WRITES;
3144
3145         if (p->bdev && bdev_synchronous(p->bdev))
3146                 p->flags |= SWP_SYNCHRONOUS_IO;
3147
3148         if (p->bdev && bdev_nonrot(p->bdev)) {
3149                 int cpu, i;
3150                 unsigned long ci, nr_cluster;
3151
3152                 p->flags |= SWP_SOLIDSTATE;
3153                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3154                 if (!p->cluster_next_cpu) {
3155                         error = -ENOMEM;
3156                         goto bad_swap_unlock_inode;
3157                 }
3158                 /*
3159                  * select a random position to start with to help wear leveling
3160                  * SSD
3161                  */
3162                 for_each_possible_cpu(cpu) {
3163                         per_cpu(*p->cluster_next_cpu, cpu) =
3164                                 get_random_u32_inclusive(1, p->highest_bit);
3165                 }
3166                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3167
3168                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3169                                         GFP_KERNEL);
3170                 if (!cluster_info) {
3171                         error = -ENOMEM;
3172                         goto bad_swap_unlock_inode;
3173                 }
3174
3175                 for (ci = 0; ci < nr_cluster; ci++)
3176                         spin_lock_init(&((cluster_info + ci)->lock));
3177
3178                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3179                 if (!p->percpu_cluster) {
3180                         error = -ENOMEM;
3181                         goto bad_swap_unlock_inode;
3182                 }
3183                 for_each_possible_cpu(cpu) {
3184                         struct percpu_cluster *cluster;
3185
3186                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3187                         for (i = 0; i < SWAP_NR_ORDERS; i++)
3188                                 cluster->next[i] = SWAP_NEXT_INVALID;
3189                 }
3190         } else {
3191                 atomic_inc(&nr_rotate_swap);
3192                 inced_nr_rotate_swap = true;
3193         }
3194
3195         error = swap_cgroup_swapon(p->type, maxpages);
3196         if (error)
3197                 goto bad_swap_unlock_inode;
3198
3199         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3200                 cluster_info, maxpages, &span);
3201         if (unlikely(nr_extents < 0)) {
3202                 error = nr_extents;
3203                 goto bad_swap_unlock_inode;
3204         }
3205
3206         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3207             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3208                 /*
3209                  * When discard is enabled for swap with no particular
3210                  * policy flagged, we set all swap discard flags here in
3211                  * order to sustain backward compatibility with older
3212                  * swapon(8) releases.
3213                  */
3214                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3215                              SWP_PAGE_DISCARD);
3216
3217                 /*
3218                  * By flagging sys_swapon, a sysadmin can tell us to
3219                  * either do single-time area discards only, or to just
3220                  * perform discards for released swap page-clusters.
3221                  * Now it's time to adjust the p->flags accordingly.
3222                  */
3223                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3224                         p->flags &= ~SWP_PAGE_DISCARD;
3225                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3226                         p->flags &= ~SWP_AREA_DISCARD;
3227
3228                 /* issue a swapon-time discard if it's still required */
3229                 if (p->flags & SWP_AREA_DISCARD) {
3230                         int err = discard_swap(p);
3231                         if (unlikely(err))
3232                                 pr_err("swapon: discard_swap(%p): %d\n",
3233                                         p, err);
3234                 }
3235         }
3236
3237         error = init_swap_address_space(p->type, maxpages);
3238         if (error)
3239                 goto bad_swap_unlock_inode;
3240
3241         error = zswap_swapon(p->type, maxpages);
3242         if (error)
3243                 goto free_swap_address_space;
3244
3245         /*
3246          * Flush any pending IO and dirty mappings before we start using this
3247          * swap device.
3248          */
3249         inode->i_flags |= S_SWAPFILE;
3250         error = inode_drain_writes(inode);
3251         if (error) {
3252                 inode->i_flags &= ~S_SWAPFILE;
3253                 goto free_swap_zswap;
3254         }
3255
3256         mutex_lock(&swapon_mutex);
3257         prio = -1;
3258         if (swap_flags & SWAP_FLAG_PREFER)
3259                 prio =
3260                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3261         enable_swap_info(p, prio, swap_map, cluster_info);
3262
3263         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3264                 K(p->pages), name->name, p->prio, nr_extents,
3265                 K((unsigned long long)span),
3266                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3267                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3268                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3269                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3270
3271         mutex_unlock(&swapon_mutex);
3272         atomic_inc(&proc_poll_event);
3273         wake_up_interruptible(&proc_poll_wait);
3274
3275         error = 0;
3276         goto out;
3277 free_swap_zswap:
3278         zswap_swapoff(p->type);
3279 free_swap_address_space:
3280         exit_swap_address_space(p->type);
3281 bad_swap_unlock_inode:
3282         inode_unlock(inode);
3283 bad_swap:
3284         free_percpu(p->percpu_cluster);
3285         p->percpu_cluster = NULL;
3286         free_percpu(p->cluster_next_cpu);
3287         p->cluster_next_cpu = NULL;
3288         if (p->bdev_file) {
3289                 set_blocksize(p->bdev, p->old_block_size);
3290                 fput(p->bdev_file);
3291                 p->bdev_file = NULL;
3292         }
3293         inode = NULL;
3294         destroy_swap_extents(p);
3295         swap_cgroup_swapoff(p->type);
3296         spin_lock(&swap_lock);
3297         p->swap_file = NULL;
3298         p->flags = 0;
3299         spin_unlock(&swap_lock);
3300         vfree(swap_map);
3301         kvfree(cluster_info);
3302         if (inced_nr_rotate_swap)
3303                 atomic_dec(&nr_rotate_swap);
3304         if (swap_file)
3305                 filp_close(swap_file, NULL);
3306 out:
3307         if (page && !IS_ERR(page)) {
3308                 kunmap(page);
3309                 put_page(page);
3310         }
3311         if (name)
3312                 putname(name);
3313         if (inode)
3314                 inode_unlock(inode);
3315         if (!error)
3316                 enable_swap_slots_cache();
3317         return error;
3318 }
3319
3320 void si_swapinfo(struct sysinfo *val)
3321 {
3322         unsigned int type;
3323         unsigned long nr_to_be_unused = 0;
3324
3325         spin_lock(&swap_lock);
3326         for (type = 0; type < nr_swapfiles; type++) {
3327                 struct swap_info_struct *si = swap_info[type];
3328
3329                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3330                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3331         }
3332         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3333         val->totalswap = total_swap_pages + nr_to_be_unused;
3334         spin_unlock(&swap_lock);
3335 }
3336
3337 /*
3338  * Verify that a swap entry is valid and increment its swap map count.
3339  *
3340  * Returns error code in following case.
3341  * - success -> 0
3342  * - swp_entry is invalid -> EINVAL
3343  * - swp_entry is migration entry -> EINVAL
3344  * - swap-cache reference is requested but there is already one. -> EEXIST
3345  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3346  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3347  */
3348 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3349 {
3350         struct swap_info_struct *p;
3351         struct swap_cluster_info *ci;
3352         unsigned long offset;
3353         unsigned char count;
3354         unsigned char has_cache;
3355         int err;
3356
3357         p = swp_swap_info(entry);
3358
3359         offset = swp_offset(entry);
3360         ci = lock_cluster_or_swap_info(p, offset);
3361
3362         count = p->swap_map[offset];
3363
3364         /*
3365          * swapin_readahead() doesn't check if a swap entry is valid, so the
3366          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3367          */
3368         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3369                 err = -ENOENT;
3370                 goto unlock_out;
3371         }
3372
3373         has_cache = count & SWAP_HAS_CACHE;
3374         count &= ~SWAP_HAS_CACHE;
3375         err = 0;
3376
3377         if (usage == SWAP_HAS_CACHE) {
3378
3379                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3380                 if (!has_cache && count)
3381                         has_cache = SWAP_HAS_CACHE;
3382                 else if (has_cache)             /* someone else added cache */
3383                         err = -EEXIST;
3384                 else                            /* no users remaining */
3385                         err = -ENOENT;
3386
3387         } else if (count || has_cache) {
3388
3389                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3390                         count += usage;
3391                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3392                         err = -EINVAL;
3393                 else if (swap_count_continued(p, offset, count))
3394                         count = COUNT_CONTINUED;
3395                 else
3396                         err = -ENOMEM;
3397         } else
3398                 err = -ENOENT;                  /* unused swap entry */
3399
3400         if (!err)
3401                 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3402
3403 unlock_out:
3404         unlock_cluster_or_swap_info(p, ci);
3405         return err;
3406 }
3407
3408 /*
3409  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3410  * (in which case its reference count is never incremented).
3411  */
3412 void swap_shmem_alloc(swp_entry_t entry)
3413 {
3414         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3415 }
3416
3417 /*
3418  * Increase reference count of swap entry by 1.
3419  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3420  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3421  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3422  * might occur if a page table entry has got corrupted.
3423  */
3424 int swap_duplicate(swp_entry_t entry)
3425 {
3426         int err = 0;
3427
3428         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3429                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3430         return err;
3431 }
3432
3433 /*
3434  * @entry: swap entry for which we allocate swap cache.
3435  *
3436  * Called when allocating swap cache for existing swap entry,
3437  * This can return error codes. Returns 0 at success.
3438  * -EEXIST means there is a swap cache.
3439  * Note: return code is different from swap_duplicate().
3440  */
3441 int swapcache_prepare(swp_entry_t entry)
3442 {
3443         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3444 }
3445
3446 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3447 {
3448         struct swap_cluster_info *ci;
3449         unsigned long offset = swp_offset(entry);
3450         unsigned char usage;
3451
3452         ci = lock_cluster_or_swap_info(si, offset);
3453         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3454         unlock_cluster_or_swap_info(si, ci);
3455         if (!usage)
3456                 free_swap_slot(entry);
3457 }
3458
3459 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3460 {
3461         return swap_type_to_swap_info(swp_type(entry));
3462 }
3463
3464 /*
3465  * out-of-line methods to avoid include hell.
3466  */
3467 struct address_space *swapcache_mapping(struct folio *folio)
3468 {
3469         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3470 }
3471 EXPORT_SYMBOL_GPL(swapcache_mapping);
3472
3473 pgoff_t __page_file_index(struct page *page)
3474 {
3475         swp_entry_t swap = page_swap_entry(page);
3476         return swp_offset(swap);
3477 }
3478 EXPORT_SYMBOL_GPL(__page_file_index);
3479
3480 /*
3481  * add_swap_count_continuation - called when a swap count is duplicated
3482  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3483  * page of the original vmalloc'ed swap_map, to hold the continuation count
3484  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3485  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3486  *
3487  * These continuation pages are seldom referenced: the common paths all work
3488  * on the original swap_map, only referring to a continuation page when the
3489  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3490  *
3491  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3492  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3493  * can be called after dropping locks.
3494  */
3495 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3496 {
3497         struct swap_info_struct *si;
3498         struct swap_cluster_info *ci;
3499         struct page *head;
3500         struct page *page;
3501         struct page *list_page;
3502         pgoff_t offset;
3503         unsigned char count;
3504         int ret = 0;
3505
3506         /*
3507          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3508          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3509          */
3510         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3511
3512         si = get_swap_device(entry);
3513         if (!si) {
3514                 /*
3515                  * An acceptable race has occurred since the failing
3516                  * __swap_duplicate(): the swap device may be swapoff
3517                  */
3518                 goto outer;
3519         }
3520         spin_lock(&si->lock);
3521
3522         offset = swp_offset(entry);
3523
3524         ci = lock_cluster(si, offset);
3525
3526         count = swap_count(si->swap_map[offset]);
3527
3528         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3529                 /*
3530                  * The higher the swap count, the more likely it is that tasks
3531                  * will race to add swap count continuation: we need to avoid
3532                  * over-provisioning.
3533                  */
3534                 goto out;
3535         }
3536
3537         if (!page) {
3538                 ret = -ENOMEM;
3539                 goto out;
3540         }
3541
3542         head = vmalloc_to_page(si->swap_map + offset);
3543         offset &= ~PAGE_MASK;
3544
3545         spin_lock(&si->cont_lock);
3546         /*
3547          * Page allocation does not initialize the page's lru field,
3548          * but it does always reset its private field.
3549          */
3550         if (!page_private(head)) {
3551                 BUG_ON(count & COUNT_CONTINUED);
3552                 INIT_LIST_HEAD(&head->lru);
3553                 set_page_private(head, SWP_CONTINUED);
3554                 si->flags |= SWP_CONTINUED;
3555         }
3556
3557         list_for_each_entry(list_page, &head->lru, lru) {
3558                 unsigned char *map;
3559
3560                 /*
3561                  * If the previous map said no continuation, but we've found
3562                  * a continuation page, free our allocation and use this one.
3563                  */
3564                 if (!(count & COUNT_CONTINUED))
3565                         goto out_unlock_cont;
3566
3567                 map = kmap_local_page(list_page) + offset;
3568                 count = *map;
3569                 kunmap_local(map);
3570
3571                 /*
3572                  * If this continuation count now has some space in it,
3573                  * free our allocation and use this one.
3574                  */
3575                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3576                         goto out_unlock_cont;
3577         }
3578
3579         list_add_tail(&page->lru, &head->lru);
3580         page = NULL;                    /* now it's attached, don't free it */
3581 out_unlock_cont:
3582         spin_unlock(&si->cont_lock);
3583 out:
3584         unlock_cluster(ci);
3585         spin_unlock(&si->lock);
3586         put_swap_device(si);
3587 outer:
3588         if (page)
3589                 __free_page(page);
3590         return ret;
3591 }
3592
3593 /*
3594  * swap_count_continued - when the original swap_map count is incremented
3595  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3596  * into, carry if so, or else fail until a new continuation page is allocated;
3597  * when the original swap_map count is decremented from 0 with continuation,
3598  * borrow from the continuation and report whether it still holds more.
3599  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3600  * lock.
3601  */
3602 static bool swap_count_continued(struct swap_info_struct *si,
3603                                  pgoff_t offset, unsigned char count)
3604 {
3605         struct page *head;
3606         struct page *page;
3607         unsigned char *map;
3608         bool ret;
3609
3610         head = vmalloc_to_page(si->swap_map + offset);
3611         if (page_private(head) != SWP_CONTINUED) {
3612                 BUG_ON(count & COUNT_CONTINUED);
3613                 return false;           /* need to add count continuation */
3614         }
3615
3616         spin_lock(&si->cont_lock);
3617         offset &= ~PAGE_MASK;
3618         page = list_next_entry(head, lru);
3619         map = kmap_local_page(page) + offset;
3620
3621         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3622                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3623
3624         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3625                 /*
3626                  * Think of how you add 1 to 999
3627                  */
3628                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3629                         kunmap_local(map);
3630                         page = list_next_entry(page, lru);
3631                         BUG_ON(page == head);
3632                         map = kmap_local_page(page) + offset;
3633                 }
3634                 if (*map == SWAP_CONT_MAX) {
3635                         kunmap_local(map);
3636                         page = list_next_entry(page, lru);
3637                         if (page == head) {
3638                                 ret = false;    /* add count continuation */
3639                                 goto out;
3640                         }
3641                         map = kmap_local_page(page) + offset;
3642 init_map:               *map = 0;               /* we didn't zero the page */
3643                 }
3644                 *map += 1;
3645                 kunmap_local(map);
3646                 while ((page = list_prev_entry(page, lru)) != head) {
3647                         map = kmap_local_page(page) + offset;
3648                         *map = COUNT_CONTINUED;
3649                         kunmap_local(map);
3650                 }
3651                 ret = true;                     /* incremented */
3652
3653         } else {                                /* decrementing */
3654                 /*
3655                  * Think of how you subtract 1 from 1000
3656                  */
3657                 BUG_ON(count != COUNT_CONTINUED);
3658                 while (*map == COUNT_CONTINUED) {
3659                         kunmap_local(map);
3660                         page = list_next_entry(page, lru);
3661                         BUG_ON(page == head);
3662                         map = kmap_local_page(page) + offset;
3663                 }
3664                 BUG_ON(*map == 0);
3665                 *map -= 1;
3666                 if (*map == 0)
3667                         count = 0;
3668                 kunmap_local(map);
3669                 while ((page = list_prev_entry(page, lru)) != head) {
3670                         map = kmap_local_page(page) + offset;
3671                         *map = SWAP_CONT_MAX | count;
3672                         count = COUNT_CONTINUED;
3673                         kunmap_local(map);
3674                 }
3675                 ret = count == COUNT_CONTINUED;
3676         }
3677 out:
3678         spin_unlock(&si->cont_lock);
3679         return ret;
3680 }
3681
3682 /*
3683  * free_swap_count_continuations - swapoff free all the continuation pages
3684  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3685  */
3686 static void free_swap_count_continuations(struct swap_info_struct *si)
3687 {
3688         pgoff_t offset;
3689
3690         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3691                 struct page *head;
3692                 head = vmalloc_to_page(si->swap_map + offset);
3693                 if (page_private(head)) {
3694                         struct page *page, *next;
3695
3696                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3697                                 list_del(&page->lru);
3698                                 __free_page(page);
3699                         }
3700                 }
3701         }
3702 }
3703
3704 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3705 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3706 {
3707         struct swap_info_struct *si, *next;
3708         int nid = folio_nid(folio);
3709
3710         if (!(gfp & __GFP_IO))
3711                 return;
3712
3713         if (!blk_cgroup_congested())
3714                 return;
3715
3716         /*
3717          * We've already scheduled a throttle, avoid taking the global swap
3718          * lock.
3719          */
3720         if (current->throttle_disk)
3721                 return;
3722
3723         spin_lock(&swap_avail_lock);
3724         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3725                                   avail_lists[nid]) {
3726                 if (si->bdev) {
3727                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3728                         break;
3729                 }
3730         }
3731         spin_unlock(&swap_avail_lock);
3732 }
3733 #endif
3734
3735 static int __init swapfile_init(void)
3736 {
3737         int nid;
3738
3739         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3740                                          GFP_KERNEL);
3741         if (!swap_avail_heads) {
3742                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3743                 return -ENOMEM;
3744         }
3745
3746         for_each_node(nid)
3747                 plist_head_init(&swap_avail_heads[nid]);
3748
3749         swapfile_maximum_size = arch_max_swapfile_size();
3750
3751 #ifdef CONFIG_MIGRATION
3752         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3753                 swap_migration_ad_supported = true;
3754 #endif  /* CONFIG_MIGRATION */
3755
3756         return 0;
3757 }
3758 subsys_initcall(swapfile_init);
This page took 0.259325 seconds and 4 git commands to generate.