1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
59 #include "page_reporting.h"
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
64 /* No special request */
65 #define FPI_NONE ((__force fpi_t)0)
68 * Skip free page reporting notification for the (possibly merged) page.
69 * This does not hinder free page reporting from grabbing the page,
70 * reporting it and marking it "reported" - it only skips notifying
71 * the free page reporting infrastructure about a newly freed page. For
72 * example, used when temporarily pulling a page from a freelist and
73 * putting it back unmodified.
75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
79 * page shuffling (relevant code - e.g., memory onlining - is expected to
80 * shuffle the whole zone).
82 * Note: No code should rely on this flag for correctness - it's purely
83 * to allow for optimizations when handing back either fresh pages
84 * (memory onlining) or untouched pages (page isolation, free page
87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
95 * On SMP, spin_trylock is sufficient protection.
96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
98 #define pcp_trylock_prepare(flags) do { } while (0)
99 #define pcp_trylock_finish(flag) do { } while (0)
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags) local_irq_save(flags)
104 #define pcp_trylock_finish(flags) local_irq_restore(flags)
108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109 * a migration causing the wrong PCP to be locked and remote memory being
110 * potentially allocated, pin the task to the CPU for the lookup+lock.
111 * preempt_disable is used on !RT because it is faster than migrate_disable.
112 * migrate_disable is used on RT because otherwise RT spinlock usage is
113 * interfered with and a high priority task cannot preempt the allocator.
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin() preempt_disable()
117 #define pcpu_task_unpin() preempt_enable()
119 #define pcpu_task_pin() migrate_disable()
120 #define pcpu_task_unpin() migrate_enable()
124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125 * Return value should be used with equivalent unlock helper.
127 #define pcpu_spin_lock(type, member, ptr) \
131 _ret = this_cpu_ptr(ptr); \
132 spin_lock(&_ret->member); \
136 #define pcpu_spin_trylock(type, member, ptr) \
140 _ret = this_cpu_ptr(ptr); \
141 if (!spin_trylock(&_ret->member)) { \
148 #define pcpu_spin_unlock(member, ptr) \
150 spin_unlock(&ptr->member); \
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr) \
156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
158 #define pcp_spin_trylock(ptr) \
159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
161 #define pcp_spin_unlock(ptr) \
162 pcpu_spin_unlock(lock, ptr)
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176 * defined in <linux/topology.h>.
178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 static DEFINE_MUTEX(pcpu_drain_mutex);
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
190 * Array of node states.
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 [N_POSSIBLE] = NODE_MASK_ALL,
194 [N_ONLINE] = { { [0] = 1UL } },
196 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 [N_HIGH_MEMORY] = { { [0] = 1UL } },
200 [N_MEMORY] = { { [0] = 1UL } },
201 [N_CPU] = { { [0] = 1UL } },
204 EXPORT_SYMBOL(node_states);
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 * A cached value of the page's pageblock's migratetype, used when the page is
210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212 * Also the migratetype set in the page does not necessarily match the pcplist
213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214 * other index - this ensures that it will be put on the correct CMA freelist.
216 static inline int get_pcppage_migratetype(struct page *page)
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
223 page->index = migratetype;
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
230 static void __free_pages_ok(struct page *page, unsigned int order,
234 * results with 256, 32 in the lowmem_reserve sysctl:
235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236 * 1G machine -> (16M dma, 784M normal, 224M high)
237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
242 * don't need any ZONE_NORMAL reservation
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
248 #ifdef CONFIG_ZONE_DMA32
252 #ifdef CONFIG_HIGHMEM
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
262 #ifdef CONFIG_ZONE_DMA32
266 #ifdef CONFIG_HIGHMEM
270 #ifdef CONFIG_ZONE_DEVICE
275 const char * const migratetype_names[MIGRATE_TYPES] = {
283 #ifdef CONFIG_MEMORY_ISOLATION
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
295 EXPORT_SYMBOL(movable_zone);
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
310 int page_group_by_mobility_disabled __read_mostly;
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 * During boot we initialize deferred pages on-demand, as needed, but once
315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
316 * and we can permanently disable that path.
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
320 static inline bool deferred_pages_enabled(void)
322 return static_branch_unlikely(&deferred_pages);
326 * deferred_grow_zone() is __init, but it is called from
327 * get_page_from_freelist() during early boot until deferred_pages permanently
328 * disables this call. This is why we have refdata wrapper to avoid warning,
329 * and to ensure that the function body gets unloaded.
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
334 return deferred_grow_zone(zone, order);
337 static inline bool deferred_pages_enabled(void)
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
347 #ifdef CONFIG_SPARSEMEM
348 return section_to_usemap(__pfn_to_section(pfn));
350 return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
356 #ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @mask: mask of bits that the caller is interested in
370 * Return: pageblock_bits flags
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 unsigned long pfn, unsigned long mask)
375 unsigned long *bitmap;
376 unsigned long bitidx, word_bitidx;
379 bitmap = get_pageblock_bitmap(page, pfn);
380 bitidx = pfn_to_bitidx(page, pfn);
381 word_bitidx = bitidx / BITS_PER_LONG;
382 bitidx &= (BITS_PER_LONG-1);
384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 * a consistent read of the memory array, so that results, even though
386 * racy, are not corrupted.
388 word = READ_ONCE(bitmap[word_bitidx]);
389 return (word >> bitidx) & mask;
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400 * @page: The page within the block of interest
401 * @flags: The flags to set
402 * @pfn: The target page frame number
403 * @mask: mask of bits that the caller is interested in
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
409 unsigned long *bitmap;
410 unsigned long bitidx, word_bitidx;
413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
416 bitmap = get_pageblock_bitmap(page, pfn);
417 bitidx = pfn_to_bitidx(page, pfn);
418 word_bitidx = bitidx / BITS_PER_LONG;
419 bitidx &= (BITS_PER_LONG-1);
421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
426 word = READ_ONCE(bitmap[word_bitidx]);
428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
431 void set_pageblock_migratetype(struct page *page, int migratetype)
433 if (unlikely(page_group_by_mobility_disabled &&
434 migratetype < MIGRATE_PCPTYPES))
435 migratetype = MIGRATE_UNMOVABLE;
437 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 page_to_pfn(page), MIGRATETYPE_MASK);
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
446 unsigned long pfn = page_to_pfn(page);
447 unsigned long sp, start_pfn;
450 seq = zone_span_seqbegin(zone);
451 start_pfn = zone->zone_start_pfn;
452 sp = zone->spanned_pages;
453 ret = !zone_spans_pfn(zone, pfn);
454 } while (zone_span_seqretry(zone, seq));
457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 pfn, zone_to_nid(zone), zone->name,
459 start_pfn, start_pfn + sp);
465 * Temporary debugging check for pages not lying within a given zone.
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
469 if (page_outside_zone_boundaries(zone, page))
471 if (zone != page_zone(page))
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
483 static void bad_page(struct page *page, const char *reason)
485 static unsigned long resume;
486 static unsigned long nr_shown;
487 static unsigned long nr_unshown;
490 * Allow a burst of 60 reports, then keep quiet for that minute;
491 * or allow a steady drip of one report per second.
493 if (nr_shown == 60) {
494 if (time_before(jiffies, resume)) {
500 "BUG: Bad page state: %lu messages suppressed\n",
507 resume = jiffies + 60 * HZ;
509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
510 current->comm, page_to_pfn(page));
511 dump_page(page, reason);
516 /* Leave bad fields for debug, except PageBuddy could make trouble */
517 page_mapcount_reset(page); /* remove PageBuddy */
518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 static inline unsigned int order_to_pindex(int migratetype, int order)
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 VM_BUG_ON(order != pageblock_order);
526 return NR_LOWORDER_PCP_LISTS;
529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
532 return (MIGRATE_PCPTYPES * order) + migratetype;
535 static inline int pindex_to_order(unsigned int pindex)
537 int order = pindex / MIGRATE_PCPTYPES;
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 if (pindex == NR_LOWORDER_PCP_LISTS)
541 order = pageblock_order;
543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
549 static inline bool pcp_allowed_order(unsigned int order)
551 if (order <= PAGE_ALLOC_COSTLY_ORDER)
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 if (order == pageblock_order)
560 static inline void free_the_page(struct page *page, unsigned int order)
562 if (pcp_allowed_order(order)) /* Via pcp? */
563 free_unref_page(page, order);
565 __free_pages_ok(page, order, FPI_NONE);
569 * Higher-order pages are called "compound pages". They are structured thusly:
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 * The first tail page's ->compound_order holds the order of allocation.
577 * This usage means that zero-order pages may not be compound.
580 void prep_compound_page(struct page *page, unsigned int order)
583 int nr_pages = 1 << order;
586 for (i = 1; i < nr_pages; i++)
587 prep_compound_tail(page, i);
589 prep_compound_head(page, order);
592 void destroy_large_folio(struct folio *folio)
594 if (folio_test_hugetlb(folio)) {
595 free_huge_folio(folio);
599 if (folio_test_large_rmappable(folio))
600 folio_undo_large_rmappable(folio);
602 mem_cgroup_uncharge(folio);
603 free_the_page(&folio->page, folio_order(folio));
606 static inline void set_buddy_order(struct page *page, unsigned int order)
608 set_page_private(page, order);
609 __SetPageBuddy(page);
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
615 struct capture_control *capc = current->capture_control;
617 return unlikely(capc) &&
618 !(current->flags & PF_KTHREAD) &&
620 capc->cc->zone == zone ? capc : NULL;
624 compaction_capture(struct capture_control *capc, struct page *page,
625 int order, int migratetype)
627 if (!capc || order != capc->cc->order)
630 /* Do not accidentally pollute CMA or isolated regions*/
631 if (is_migrate_cma(migratetype) ||
632 is_migrate_isolate(migratetype))
636 * Do not let lower order allocations pollute a movable pageblock.
637 * This might let an unmovable request use a reclaimable pageblock
638 * and vice-versa but no more than normal fallback logic which can
639 * have trouble finding a high-order free page.
641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
649 static inline struct capture_control *task_capc(struct zone *zone)
655 compaction_capture(struct capture_control *capc, struct page *page,
656 int order, int migratetype)
660 #endif /* CONFIG_COMPACTION */
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 unsigned int order, int migratetype)
666 struct free_area *area = &zone->free_area[order];
668 list_add(&page->buddy_list, &area->free_list[migratetype]);
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 unsigned int order, int migratetype)
676 struct free_area *area = &zone->free_area[order];
678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
683 * Used for pages which are on another list. Move the pages to the tail
684 * of the list - so the moved pages won't immediately be considered for
685 * allocation again (e.g., optimization for memory onlining).
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int migratetype)
690 struct free_area *area = &zone->free_area[order];
692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
702 list_del(&page->buddy_list);
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
708 static inline struct page *get_page_from_free_area(struct free_area *area,
711 return list_first_entry_or_null(&area->free_list[migratetype],
712 struct page, buddy_list);
716 * If this is not the largest possible page, check if the buddy
717 * of the next-highest order is free. If it is, it's possible
718 * that pages are being freed that will coalesce soon. In case,
719 * that is happening, add the free page to the tail of the list
720 * so it's less likely to be used soon and more likely to be merged
721 * as a higher order page
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 struct page *page, unsigned int order)
727 unsigned long higher_page_pfn;
728 struct page *higher_page;
730 if (order >= MAX_ORDER - 1)
733 higher_page_pfn = buddy_pfn & pfn;
734 higher_page = page + (higher_page_pfn - pfn);
736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
741 * Freeing function for a buddy system allocator.
743 * The concept of a buddy system is to maintain direct-mapped table
744 * (containing bit values) for memory blocks of various "orders".
745 * The bottom level table contains the map for the smallest allocatable
746 * units of memory (here, pages), and each level above it describes
747 * pairs of units from the levels below, hence, "buddies".
748 * At a high level, all that happens here is marking the table entry
749 * at the bottom level available, and propagating the changes upward
750 * as necessary, plus some accounting needed to play nicely with other
751 * parts of the VM system.
752 * At each level, we keep a list of pages, which are heads of continuous
753 * free pages of length of (1 << order) and marked with PageBuddy.
754 * Page's order is recorded in page_private(page) field.
755 * So when we are allocating or freeing one, we can derive the state of the
756 * other. That is, if we allocate a small block, and both were
757 * free, the remainder of the region must be split into blocks.
758 * If a block is freed, and its buddy is also free, then this
759 * triggers coalescing into a block of larger size.
764 static inline void __free_one_page(struct page *page,
766 struct zone *zone, unsigned int order,
767 int migratetype, fpi_t fpi_flags)
769 struct capture_control *capc = task_capc(zone);
770 unsigned long buddy_pfn = 0;
771 unsigned long combined_pfn;
775 VM_BUG_ON(!zone_is_initialized(zone));
776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778 VM_BUG_ON(migratetype == -1);
779 if (likely(!is_migrate_isolate(migratetype)))
780 __mod_zone_freepage_state(zone, 1 << order, migratetype);
782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 VM_BUG_ON_PAGE(bad_range(zone, page), page);
785 while (order < MAX_ORDER) {
786 if (compaction_capture(capc, page, order, migratetype)) {
787 __mod_zone_freepage_state(zone, -(1 << order),
792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
796 if (unlikely(order >= pageblock_order)) {
798 * We want to prevent merge between freepages on pageblock
799 * without fallbacks and normal pageblock. Without this,
800 * pageblock isolation could cause incorrect freepage or CMA
801 * accounting or HIGHATOMIC accounting.
803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805 if (migratetype != buddy_mt
806 && (!migratetype_is_mergeable(migratetype) ||
807 !migratetype_is_mergeable(buddy_mt)))
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
815 if (page_is_guard(buddy))
816 clear_page_guard(zone, buddy, order, migratetype);
818 del_page_from_free_list(buddy, zone, order);
819 combined_pfn = buddy_pfn & pfn;
820 page = page + (combined_pfn - pfn);
826 set_buddy_order(page, order);
828 if (fpi_flags & FPI_TO_TAIL)
830 else if (is_shuffle_order(order))
831 to_tail = shuffle_pick_tail();
833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836 add_to_free_list_tail(page, zone, order, migratetype);
838 add_to_free_list(page, zone, order, migratetype);
840 /* Notify page reporting subsystem of freed page */
841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 page_reporting_notify_free(order);
846 * split_free_page() -- split a free page at split_pfn_offset
847 * @free_page: the original free page
848 * @order: the order of the page
849 * @split_pfn_offset: split offset within the page
851 * Return -ENOENT if the free page is changed, otherwise 0
853 * It is used when the free page crosses two pageblocks with different migratetypes
854 * at split_pfn_offset within the page. The split free page will be put into
855 * separate migratetype lists afterwards. Otherwise, the function achieves
858 int split_free_page(struct page *free_page,
859 unsigned int order, unsigned long split_pfn_offset)
861 struct zone *zone = page_zone(free_page);
862 unsigned long free_page_pfn = page_to_pfn(free_page);
869 if (split_pfn_offset == 0)
872 spin_lock_irqsave(&zone->lock, flags);
874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
879 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 if (likely(!is_migrate_isolate(mt)))
881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
883 del_page_from_free_list(free_page, zone, order);
884 for (pfn = free_page_pfn;
885 pfn < free_page_pfn + (1UL << order);) {
886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888 free_page_order = min_t(unsigned int,
889 pfn ? __ffs(pfn) : order,
890 __fls(split_pfn_offset));
891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 pfn += 1UL << free_page_order;
894 split_pfn_offset -= (1UL << free_page_order);
895 /* we have done the first part, now switch to second part */
896 if (split_pfn_offset == 0)
897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 spin_unlock_irqrestore(&zone->lock, flags);
904 * A bad page could be due to a number of fields. Instead of multiple branches,
905 * try and check multiple fields with one check. The caller must do a detailed
906 * check if necessary.
908 static inline bool page_expected_state(struct page *page,
909 unsigned long check_flags)
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 if (unlikely((unsigned long)page->mapping |
915 page_ref_count(page) |
919 (page->flags & check_flags)))
925 static const char *page_bad_reason(struct page *page, unsigned long flags)
927 const char *bad_reason = NULL;
929 if (unlikely(atomic_read(&page->_mapcount) != -1))
930 bad_reason = "nonzero mapcount";
931 if (unlikely(page->mapping != NULL))
932 bad_reason = "non-NULL mapping";
933 if (unlikely(page_ref_count(page) != 0))
934 bad_reason = "nonzero _refcount";
935 if (unlikely(page->flags & flags)) {
936 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
937 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 if (unlikely(page->memcg_data))
943 bad_reason = "page still charged to cgroup";
948 static void free_page_is_bad_report(struct page *page)
951 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 static inline bool free_page_is_bad(struct page *page)
956 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 /* Something has gone sideways, find it */
960 free_page_is_bad_report(page);
964 static inline bool is_check_pages_enabled(void)
966 return static_branch_unlikely(&check_pages_enabled);
969 static int free_tail_page_prepare(struct page *head_page, struct page *page)
971 struct folio *folio = (struct folio *)head_page;
975 * We rely page->lru.next never has bit 0 set, unless the page
976 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
978 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
980 if (!is_check_pages_enabled()) {
984 switch (page - head_page) {
986 /* the first tail page: these may be in place of ->mapping */
987 if (unlikely(folio_entire_mapcount(folio))) {
988 bad_page(page, "nonzero entire_mapcount");
991 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
992 bad_page(page, "nonzero nr_pages_mapped");
995 if (unlikely(atomic_read(&folio->_pincount))) {
996 bad_page(page, "nonzero pincount");
1002 * the second tail page: ->mapping is
1003 * deferred_list.next -- ignore value.
1007 if (page->mapping != TAIL_MAPPING) {
1008 bad_page(page, "corrupted mapping in tail page");
1013 if (unlikely(!PageTail(page))) {
1014 bad_page(page, "PageTail not set");
1017 if (unlikely(compound_head(page) != head_page)) {
1018 bad_page(page, "compound_head not consistent");
1023 page->mapping = NULL;
1024 clear_compound_head(page);
1029 * Skip KASAN memory poisoning when either:
1031 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1032 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1033 * using page tags instead (see below).
1034 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1035 * that error detection is disabled for accesses via the page address.
1037 * Pages will have match-all tags in the following circumstances:
1039 * 1. Pages are being initialized for the first time, including during deferred
1040 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1041 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1042 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1043 * 3. The allocation was excluded from being checked due to sampling,
1044 * see the call to kasan_unpoison_pages.
1046 * Poisoning pages during deferred memory init will greatly lengthen the
1047 * process and cause problem in large memory systems as the deferred pages
1048 * initialization is done with interrupt disabled.
1050 * Assuming that there will be no reference to those newly initialized
1051 * pages before they are ever allocated, this should have no effect on
1052 * KASAN memory tracking as the poison will be properly inserted at page
1053 * allocation time. The only corner case is when pages are allocated by
1054 * on-demand allocation and then freed again before the deferred pages
1055 * initialization is done, but this is not likely to happen.
1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1059 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1060 return deferred_pages_enabled();
1062 return page_kasan_tag(page) == 0xff;
1065 static void kernel_init_pages(struct page *page, int numpages)
1069 /* s390's use of memset() could override KASAN redzones. */
1070 kasan_disable_current();
1071 for (i = 0; i < numpages; i++)
1072 clear_highpage_kasan_tagged(page + i);
1073 kasan_enable_current();
1076 static __always_inline bool free_pages_prepare(struct page *page,
1077 unsigned int order, fpi_t fpi_flags)
1080 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1081 bool init = want_init_on_free();
1082 bool compound = PageCompound(page);
1084 VM_BUG_ON_PAGE(PageTail(page), page);
1086 trace_mm_page_free(page, order);
1087 kmsan_free_page(page, order);
1089 if (memcg_kmem_online() && PageMemcgKmem(page))
1090 __memcg_kmem_uncharge_page(page, order);
1092 if (unlikely(PageHWPoison(page)) && !order) {
1093 /* Do not let hwpoison pages hit pcplists/buddy */
1094 reset_page_owner(page, order);
1095 page_table_check_free(page, order);
1099 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1102 * Check tail pages before head page information is cleared to
1103 * avoid checking PageCompound for order-0 pages.
1105 if (unlikely(order)) {
1109 page[1].flags &= ~PAGE_FLAGS_SECOND;
1110 for (i = 1; i < (1 << order); i++) {
1112 bad += free_tail_page_prepare(page, page + i);
1113 if (is_check_pages_enabled()) {
1114 if (free_page_is_bad(page + i)) {
1119 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 if (PageMappingFlags(page))
1123 page->mapping = NULL;
1124 if (is_check_pages_enabled()) {
1125 if (free_page_is_bad(page))
1131 page_cpupid_reset_last(page);
1132 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1133 reset_page_owner(page, order);
1134 page_table_check_free(page, order);
1136 if (!PageHighMem(page)) {
1137 debug_check_no_locks_freed(page_address(page),
1138 PAGE_SIZE << order);
1139 debug_check_no_obj_freed(page_address(page),
1140 PAGE_SIZE << order);
1143 kernel_poison_pages(page, 1 << order);
1146 * As memory initialization might be integrated into KASAN,
1147 * KASAN poisoning and memory initialization code must be
1148 * kept together to avoid discrepancies in behavior.
1150 * With hardware tag-based KASAN, memory tags must be set before the
1151 * page becomes unavailable via debug_pagealloc or arch_free_page.
1153 if (!skip_kasan_poison) {
1154 kasan_poison_pages(page, order, init);
1156 /* Memory is already initialized if KASAN did it internally. */
1157 if (kasan_has_integrated_init())
1161 kernel_init_pages(page, 1 << order);
1164 * arch_free_page() can make the page's contents inaccessible. s390
1165 * does this. So nothing which can access the page's contents should
1166 * happen after this.
1168 arch_free_page(page, order);
1170 debug_pagealloc_unmap_pages(page, 1 << order);
1176 * Frees a number of pages from the PCP lists
1177 * Assumes all pages on list are in same zone.
1178 * count is the number of pages to free.
1180 static void free_pcppages_bulk(struct zone *zone, int count,
1181 struct per_cpu_pages *pcp,
1184 unsigned long flags;
1186 bool isolated_pageblocks;
1190 * Ensure proper count is passed which otherwise would stuck in the
1191 * below while (list_empty(list)) loop.
1193 count = min(pcp->count, count);
1195 /* Ensure requested pindex is drained first. */
1196 pindex = pindex - 1;
1198 spin_lock_irqsave(&zone->lock, flags);
1199 isolated_pageblocks = has_isolate_pageblock(zone);
1202 struct list_head *list;
1205 /* Remove pages from lists in a round-robin fashion. */
1207 if (++pindex > NR_PCP_LISTS - 1)
1209 list = &pcp->lists[pindex];
1210 } while (list_empty(list));
1212 order = pindex_to_order(pindex);
1213 nr_pages = 1 << order;
1217 page = list_last_entry(list, struct page, pcp_list);
1218 mt = get_pcppage_migratetype(page);
1220 /* must delete to avoid corrupting pcp list */
1221 list_del(&page->pcp_list);
1223 pcp->count -= nr_pages;
1225 /* MIGRATE_ISOLATE page should not go to pcplists */
1226 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1227 /* Pageblock could have been isolated meanwhile */
1228 if (unlikely(isolated_pageblocks))
1229 mt = get_pageblock_migratetype(page);
1231 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1232 trace_mm_page_pcpu_drain(page, order, mt);
1233 } while (count > 0 && !list_empty(list));
1236 spin_unlock_irqrestore(&zone->lock, flags);
1239 static void free_one_page(struct zone *zone,
1240 struct page *page, unsigned long pfn,
1242 int migratetype, fpi_t fpi_flags)
1244 unsigned long flags;
1246 spin_lock_irqsave(&zone->lock, flags);
1247 if (unlikely(has_isolate_pageblock(zone) ||
1248 is_migrate_isolate(migratetype))) {
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1251 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1252 spin_unlock_irqrestore(&zone->lock, flags);
1255 static void __free_pages_ok(struct page *page, unsigned int order,
1259 unsigned long pfn = page_to_pfn(page);
1260 struct zone *zone = page_zone(page);
1262 if (!free_pages_prepare(page, order, fpi_flags))
1266 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1267 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1268 * This will reduce the lock holding time.
1270 migratetype = get_pfnblock_migratetype(page, pfn);
1272 free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1274 __count_vm_events(PGFREE, 1 << order);
1277 void __free_pages_core(struct page *page, unsigned int order)
1279 unsigned int nr_pages = 1 << order;
1280 struct page *p = page;
1284 * When initializing the memmap, __init_single_page() sets the refcount
1285 * of all pages to 1 ("allocated"/"not free"). We have to set the
1286 * refcount of all involved pages to 0.
1289 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1291 __ClearPageReserved(p);
1292 set_page_count(p, 0);
1294 __ClearPageReserved(p);
1295 set_page_count(p, 0);
1297 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1299 if (page_contains_unaccepted(page, order)) {
1300 if (order == MAX_ORDER && __free_unaccepted(page))
1303 accept_page(page, order);
1307 * Bypass PCP and place fresh pages right to the tail, primarily
1308 * relevant for memory onlining.
1310 __free_pages_ok(page, order, FPI_TO_TAIL);
1314 * Check that the whole (or subset of) a pageblock given by the interval of
1315 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1316 * with the migration of free compaction scanner.
1318 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1320 * It's possible on some configurations to have a setup like node0 node1 node0
1321 * i.e. it's possible that all pages within a zones range of pages do not
1322 * belong to a single zone. We assume that a border between node0 and node1
1323 * can occur within a single pageblock, but not a node0 node1 node0
1324 * interleaving within a single pageblock. It is therefore sufficient to check
1325 * the first and last page of a pageblock and avoid checking each individual
1326 * page in a pageblock.
1328 * Note: the function may return non-NULL struct page even for a page block
1329 * which contains a memory hole (i.e. there is no physical memory for a subset
1330 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1331 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1332 * even though the start pfn is online and valid. This should be safe most of
1333 * the time because struct pages are still initialized via init_unavailable_range()
1334 * and pfn walkers shouldn't touch any physical memory range for which they do
1335 * not recognize any specific metadata in struct pages.
1337 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1338 unsigned long end_pfn, struct zone *zone)
1340 struct page *start_page;
1341 struct page *end_page;
1343 /* end_pfn is one past the range we are checking */
1346 if (!pfn_valid(end_pfn))
1349 start_page = pfn_to_online_page(start_pfn);
1353 if (page_zone(start_page) != zone)
1356 end_page = pfn_to_page(end_pfn);
1358 /* This gives a shorter code than deriving page_zone(end_page) */
1359 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 * The order of subdivision here is critical for the IO subsystem.
1367 * Please do not alter this order without good reasons and regression
1368 * testing. Specifically, as large blocks of memory are subdivided,
1369 * the order in which smaller blocks are delivered depends on the order
1370 * they're subdivided in this function. This is the primary factor
1371 * influencing the order in which pages are delivered to the IO
1372 * subsystem according to empirical testing, and this is also justified
1373 * by considering the behavior of a buddy system containing a single
1374 * large block of memory acted on by a series of small allocations.
1375 * This behavior is a critical factor in sglist merging's success.
1379 static inline void expand(struct zone *zone, struct page *page,
1380 int low, int high, int migratetype)
1382 unsigned long size = 1 << high;
1384 while (high > low) {
1387 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1390 * Mark as guard pages (or page), that will allow to
1391 * merge back to allocator when buddy will be freed.
1392 * Corresponding page table entries will not be touched,
1393 * pages will stay not present in virtual address space
1395 if (set_page_guard(zone, &page[size], high, migratetype))
1398 add_to_free_list(&page[size], zone, high, migratetype);
1399 set_buddy_order(&page[size], high);
1403 static void check_new_page_bad(struct page *page)
1405 if (unlikely(page->flags & __PG_HWPOISON)) {
1406 /* Don't complain about hwpoisoned pages */
1407 page_mapcount_reset(page); /* remove PageBuddy */
1412 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1416 * This page is about to be returned from the page allocator
1418 static int check_new_page(struct page *page)
1420 if (likely(page_expected_state(page,
1421 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1424 check_new_page_bad(page);
1428 static inline bool check_new_pages(struct page *page, unsigned int order)
1430 if (is_check_pages_enabled()) {
1431 for (int i = 0; i < (1 << order); i++) {
1432 struct page *p = page + i;
1434 if (check_new_page(p))
1442 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1444 /* Don't skip if a software KASAN mode is enabled. */
1445 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1446 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1449 /* Skip, if hardware tag-based KASAN is not enabled. */
1450 if (!kasan_hw_tags_enabled())
1454 * With hardware tag-based KASAN enabled, skip if this has been
1455 * requested via __GFP_SKIP_KASAN.
1457 return flags & __GFP_SKIP_KASAN;
1460 static inline bool should_skip_init(gfp_t flags)
1462 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1463 if (!kasan_hw_tags_enabled())
1466 /* For hardware tag-based KASAN, skip if requested. */
1467 return (flags & __GFP_SKIP_ZERO);
1470 inline void post_alloc_hook(struct page *page, unsigned int order,
1473 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1474 !should_skip_init(gfp_flags);
1475 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1478 set_page_private(page, 0);
1479 set_page_refcounted(page);
1481 arch_alloc_page(page, order);
1482 debug_pagealloc_map_pages(page, 1 << order);
1485 * Page unpoisoning must happen before memory initialization.
1486 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1487 * allocations and the page unpoisoning code will complain.
1489 kernel_unpoison_pages(page, 1 << order);
1492 * As memory initialization might be integrated into KASAN,
1493 * KASAN unpoisoning and memory initializion code must be
1494 * kept together to avoid discrepancies in behavior.
1498 * If memory tags should be zeroed
1499 * (which happens only when memory should be initialized as well).
1502 /* Initialize both memory and memory tags. */
1503 for (i = 0; i != 1 << order; ++i)
1504 tag_clear_highpage(page + i);
1506 /* Take note that memory was initialized by the loop above. */
1509 if (!should_skip_kasan_unpoison(gfp_flags) &&
1510 kasan_unpoison_pages(page, order, init)) {
1511 /* Take note that memory was initialized by KASAN. */
1512 if (kasan_has_integrated_init())
1516 * If memory tags have not been set by KASAN, reset the page
1517 * tags to ensure page_address() dereferencing does not fault.
1519 for (i = 0; i != 1 << order; ++i)
1520 page_kasan_tag_reset(page + i);
1522 /* If memory is still not initialized, initialize it now. */
1524 kernel_init_pages(page, 1 << order);
1526 set_page_owner(page, order, gfp_flags);
1527 page_table_check_alloc(page, order);
1530 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1531 unsigned int alloc_flags)
1533 post_alloc_hook(page, order, gfp_flags);
1535 if (order && (gfp_flags & __GFP_COMP))
1536 prep_compound_page(page, order);
1539 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1540 * allocate the page. The expectation is that the caller is taking
1541 * steps that will free more memory. The caller should avoid the page
1542 * being used for !PFMEMALLOC purposes.
1544 if (alloc_flags & ALLOC_NO_WATERMARKS)
1545 set_page_pfmemalloc(page);
1547 clear_page_pfmemalloc(page);
1551 * Go through the free lists for the given migratetype and remove
1552 * the smallest available page from the freelists
1554 static __always_inline
1555 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1558 unsigned int current_order;
1559 struct free_area *area;
1562 /* Find a page of the appropriate size in the preferred list */
1563 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1564 area = &(zone->free_area[current_order]);
1565 page = get_page_from_free_area(area, migratetype);
1568 del_page_from_free_list(page, zone, current_order);
1569 expand(zone, page, order, current_order, migratetype);
1570 set_pcppage_migratetype(page, migratetype);
1571 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1572 pcp_allowed_order(order) &&
1573 migratetype < MIGRATE_PCPTYPES);
1582 * This array describes the order lists are fallen back to when
1583 * the free lists for the desirable migrate type are depleted
1585 * The other migratetypes do not have fallbacks.
1587 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1588 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1589 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1590 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1594 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1597 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1600 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1601 unsigned int order) { return NULL; }
1605 * Move the free pages in a range to the freelist tail of the requested type.
1606 * Note that start_page and end_pages are not aligned on a pageblock
1607 * boundary. If alignment is required, use move_freepages_block()
1609 static int move_freepages(struct zone *zone,
1610 unsigned long start_pfn, unsigned long end_pfn,
1611 int migratetype, int *num_movable)
1616 int pages_moved = 0;
1618 for (pfn = start_pfn; pfn <= end_pfn;) {
1619 page = pfn_to_page(pfn);
1620 if (!PageBuddy(page)) {
1622 * We assume that pages that could be isolated for
1623 * migration are movable. But we don't actually try
1624 * isolating, as that would be expensive.
1627 (PageLRU(page) || __PageMovable(page)))
1633 /* Make sure we are not inadvertently changing nodes */
1634 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1635 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1637 order = buddy_order(page);
1638 move_to_free_list(page, zone, order, migratetype);
1640 pages_moved += 1 << order;
1646 int move_freepages_block(struct zone *zone, struct page *page,
1647 int migratetype, int *num_movable)
1649 unsigned long start_pfn, end_pfn, pfn;
1654 pfn = page_to_pfn(page);
1655 start_pfn = pageblock_start_pfn(pfn);
1656 end_pfn = pageblock_end_pfn(pfn) - 1;
1658 /* Do not cross zone boundaries */
1659 if (!zone_spans_pfn(zone, start_pfn))
1661 if (!zone_spans_pfn(zone, end_pfn))
1664 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1668 static void change_pageblock_range(struct page *pageblock_page,
1669 int start_order, int migratetype)
1671 int nr_pageblocks = 1 << (start_order - pageblock_order);
1673 while (nr_pageblocks--) {
1674 set_pageblock_migratetype(pageblock_page, migratetype);
1675 pageblock_page += pageblock_nr_pages;
1680 * When we are falling back to another migratetype during allocation, try to
1681 * steal extra free pages from the same pageblocks to satisfy further
1682 * allocations, instead of polluting multiple pageblocks.
1684 * If we are stealing a relatively large buddy page, it is likely there will
1685 * be more free pages in the pageblock, so try to steal them all. For
1686 * reclaimable and unmovable allocations, we steal regardless of page size,
1687 * as fragmentation caused by those allocations polluting movable pageblocks
1688 * is worse than movable allocations stealing from unmovable and reclaimable
1691 static bool can_steal_fallback(unsigned int order, int start_mt)
1694 * Leaving this order check is intended, although there is
1695 * relaxed order check in next check. The reason is that
1696 * we can actually steal whole pageblock if this condition met,
1697 * but, below check doesn't guarantee it and that is just heuristic
1698 * so could be changed anytime.
1700 if (order >= pageblock_order)
1703 if (order >= pageblock_order / 2 ||
1704 start_mt == MIGRATE_RECLAIMABLE ||
1705 start_mt == MIGRATE_UNMOVABLE ||
1706 page_group_by_mobility_disabled)
1712 static inline bool boost_watermark(struct zone *zone)
1714 unsigned long max_boost;
1716 if (!watermark_boost_factor)
1719 * Don't bother in zones that are unlikely to produce results.
1720 * On small machines, including kdump capture kernels running
1721 * in a small area, boosting the watermark can cause an out of
1722 * memory situation immediately.
1724 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1727 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1728 watermark_boost_factor, 10000);
1731 * high watermark may be uninitialised if fragmentation occurs
1732 * very early in boot so do not boost. We do not fall
1733 * through and boost by pageblock_nr_pages as failing
1734 * allocations that early means that reclaim is not going
1735 * to help and it may even be impossible to reclaim the
1736 * boosted watermark resulting in a hang.
1741 max_boost = max(pageblock_nr_pages, max_boost);
1743 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1750 * This function implements actual steal behaviour. If order is large enough,
1751 * we can steal whole pageblock. If not, we first move freepages in this
1752 * pageblock to our migratetype and determine how many already-allocated pages
1753 * are there in the pageblock with a compatible migratetype. If at least half
1754 * of pages are free or compatible, we can change migratetype of the pageblock
1755 * itself, so pages freed in the future will be put on the correct free list.
1757 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1758 unsigned int alloc_flags, int start_type, bool whole_block)
1760 unsigned int current_order = buddy_order(page);
1761 int free_pages, movable_pages, alike_pages;
1764 old_block_type = get_pageblock_migratetype(page);
1767 * This can happen due to races and we want to prevent broken
1768 * highatomic accounting.
1770 if (is_migrate_highatomic(old_block_type))
1773 /* Take ownership for orders >= pageblock_order */
1774 if (current_order >= pageblock_order) {
1775 change_pageblock_range(page, current_order, start_type);
1780 * Boost watermarks to increase reclaim pressure to reduce the
1781 * likelihood of future fallbacks. Wake kswapd now as the node
1782 * may be balanced overall and kswapd will not wake naturally.
1784 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1785 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1787 /* We are not allowed to try stealing from the whole block */
1791 free_pages = move_freepages_block(zone, page, start_type,
1793 /* moving whole block can fail due to zone boundary conditions */
1798 * Determine how many pages are compatible with our allocation.
1799 * For movable allocation, it's the number of movable pages which
1800 * we just obtained. For other types it's a bit more tricky.
1802 if (start_type == MIGRATE_MOVABLE) {
1803 alike_pages = movable_pages;
1806 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1807 * to MOVABLE pageblock, consider all non-movable pages as
1808 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1809 * vice versa, be conservative since we can't distinguish the
1810 * exact migratetype of non-movable pages.
1812 if (old_block_type == MIGRATE_MOVABLE)
1813 alike_pages = pageblock_nr_pages
1814 - (free_pages + movable_pages);
1819 * If a sufficient number of pages in the block are either free or of
1820 * compatible migratability as our allocation, claim the whole block.
1822 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1823 page_group_by_mobility_disabled)
1824 set_pageblock_migratetype(page, start_type);
1829 move_to_free_list(page, zone, current_order, start_type);
1833 * Check whether there is a suitable fallback freepage with requested order.
1834 * If only_stealable is true, this function returns fallback_mt only if
1835 * we can steal other freepages all together. This would help to reduce
1836 * fragmentation due to mixed migratetype pages in one pageblock.
1838 int find_suitable_fallback(struct free_area *area, unsigned int order,
1839 int migratetype, bool only_stealable, bool *can_steal)
1844 if (area->nr_free == 0)
1848 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1849 fallback_mt = fallbacks[migratetype][i];
1850 if (free_area_empty(area, fallback_mt))
1853 if (can_steal_fallback(order, migratetype))
1856 if (!only_stealable)
1867 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1868 * there are no empty page blocks that contain a page with a suitable order
1870 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1873 unsigned long max_managed, flags;
1876 * The number reserved as: minimum is 1 pageblock, maximum is
1877 * roughly 1% of a zone. But if 1% of a zone falls below a
1878 * pageblock size, then don't reserve any pageblocks.
1879 * Check is race-prone but harmless.
1881 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1883 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1884 if (zone->nr_reserved_highatomic >= max_managed)
1887 spin_lock_irqsave(&zone->lock, flags);
1889 /* Recheck the nr_reserved_highatomic limit under the lock */
1890 if (zone->nr_reserved_highatomic >= max_managed)
1894 mt = get_pageblock_migratetype(page);
1895 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1896 if (migratetype_is_mergeable(mt)) {
1897 zone->nr_reserved_highatomic += pageblock_nr_pages;
1898 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1899 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1903 spin_unlock_irqrestore(&zone->lock, flags);
1907 * Used when an allocation is about to fail under memory pressure. This
1908 * potentially hurts the reliability of high-order allocations when under
1909 * intense memory pressure but failed atomic allocations should be easier
1910 * to recover from than an OOM.
1912 * If @force is true, try to unreserve a pageblock even though highatomic
1913 * pageblock is exhausted.
1915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1918 struct zonelist *zonelist = ac->zonelist;
1919 unsigned long flags;
1926 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1929 * Preserve at least one pageblock unless memory pressure
1932 if (!force && zone->nr_reserved_highatomic <=
1936 spin_lock_irqsave(&zone->lock, flags);
1937 for (order = 0; order <= MAX_ORDER; order++) {
1938 struct free_area *area = &(zone->free_area[order]);
1940 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1945 * In page freeing path, migratetype change is racy so
1946 * we can counter several free pages in a pageblock
1947 * in this loop although we changed the pageblock type
1948 * from highatomic to ac->migratetype. So we should
1949 * adjust the count once.
1951 if (is_migrate_highatomic_page(page)) {
1953 * It should never happen but changes to
1954 * locking could inadvertently allow a per-cpu
1955 * drain to add pages to MIGRATE_HIGHATOMIC
1956 * while unreserving so be safe and watch for
1959 zone->nr_reserved_highatomic -= min(
1961 zone->nr_reserved_highatomic);
1965 * Convert to ac->migratetype and avoid the normal
1966 * pageblock stealing heuristics. Minimally, the caller
1967 * is doing the work and needs the pages. More
1968 * importantly, if the block was always converted to
1969 * MIGRATE_UNMOVABLE or another type then the number
1970 * of pageblocks that cannot be completely freed
1973 set_pageblock_migratetype(page, ac->migratetype);
1974 ret = move_freepages_block(zone, page, ac->migratetype,
1977 spin_unlock_irqrestore(&zone->lock, flags);
1981 spin_unlock_irqrestore(&zone->lock, flags);
1988 * Try finding a free buddy page on the fallback list and put it on the free
1989 * list of requested migratetype, possibly along with other pages from the same
1990 * block, depending on fragmentation avoidance heuristics. Returns true if
1991 * fallback was found so that __rmqueue_smallest() can grab it.
1993 * The use of signed ints for order and current_order is a deliberate
1994 * deviation from the rest of this file, to make the for loop
1995 * condition simpler.
1997 static __always_inline bool
1998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
1999 unsigned int alloc_flags)
2001 struct free_area *area;
2003 int min_order = order;
2009 * Do not steal pages from freelists belonging to other pageblocks
2010 * i.e. orders < pageblock_order. If there are no local zones free,
2011 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2013 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2014 min_order = pageblock_order;
2017 * Find the largest available free page in the other list. This roughly
2018 * approximates finding the pageblock with the most free pages, which
2019 * would be too costly to do exactly.
2021 for (current_order = MAX_ORDER; current_order >= min_order;
2023 area = &(zone->free_area[current_order]);
2024 fallback_mt = find_suitable_fallback(area, current_order,
2025 start_migratetype, false, &can_steal);
2026 if (fallback_mt == -1)
2030 * We cannot steal all free pages from the pageblock and the
2031 * requested migratetype is movable. In that case it's better to
2032 * steal and split the smallest available page instead of the
2033 * largest available page, because even if the next movable
2034 * allocation falls back into a different pageblock than this
2035 * one, it won't cause permanent fragmentation.
2037 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2038 && current_order > order)
2047 for (current_order = order; current_order <= MAX_ORDER;
2049 area = &(zone->free_area[current_order]);
2050 fallback_mt = find_suitable_fallback(area, current_order,
2051 start_migratetype, false, &can_steal);
2052 if (fallback_mt != -1)
2057 * This should not happen - we already found a suitable fallback
2058 * when looking for the largest page.
2060 VM_BUG_ON(current_order > MAX_ORDER);
2063 page = get_page_from_free_area(area, fallback_mt);
2065 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2068 trace_mm_page_alloc_extfrag(page, order, current_order,
2069 start_migratetype, fallback_mt);
2076 * Do the hard work of removing an element from the buddy allocator.
2077 * Call me with the zone->lock already held.
2079 static __always_inline struct page *
2080 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2081 unsigned int alloc_flags)
2085 if (IS_ENABLED(CONFIG_CMA)) {
2087 * Balance movable allocations between regular and CMA areas by
2088 * allocating from CMA when over half of the zone's free memory
2089 * is in the CMA area.
2091 if (alloc_flags & ALLOC_CMA &&
2092 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2093 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2094 page = __rmqueue_cma_fallback(zone, order);
2100 page = __rmqueue_smallest(zone, order, migratetype);
2101 if (unlikely(!page)) {
2102 if (alloc_flags & ALLOC_CMA)
2103 page = __rmqueue_cma_fallback(zone, order);
2105 if (!page && __rmqueue_fallback(zone, order, migratetype,
2113 * Obtain a specified number of elements from the buddy allocator, all under
2114 * a single hold of the lock, for efficiency. Add them to the supplied list.
2115 * Returns the number of new pages which were placed at *list.
2117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2118 unsigned long count, struct list_head *list,
2119 int migratetype, unsigned int alloc_flags)
2121 unsigned long flags;
2124 spin_lock_irqsave(&zone->lock, flags);
2125 for (i = 0; i < count; ++i) {
2126 struct page *page = __rmqueue(zone, order, migratetype,
2128 if (unlikely(page == NULL))
2132 * Split buddy pages returned by expand() are received here in
2133 * physical page order. The page is added to the tail of
2134 * caller's list. From the callers perspective, the linked list
2135 * is ordered by page number under some conditions. This is
2136 * useful for IO devices that can forward direction from the
2137 * head, thus also in the physical page order. This is useful
2138 * for IO devices that can merge IO requests if the physical
2139 * pages are ordered properly.
2141 list_add_tail(&page->pcp_list, list);
2142 if (is_migrate_cma(get_pcppage_migratetype(page)))
2143 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2147 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2148 spin_unlock_irqrestore(&zone->lock, flags);
2154 * Called from the vmstat counter updater to decay the PCP high.
2155 * Return whether there are addition works to do.
2157 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2159 int high_min, to_drain, batch;
2162 high_min = READ_ONCE(pcp->high_min);
2163 batch = READ_ONCE(pcp->batch);
2165 * Decrease pcp->high periodically to try to free possible
2166 * idle PCP pages. And, avoid to free too many pages to
2167 * control latency. This caps pcp->high decrement too.
2169 if (pcp->high > high_min) {
2170 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2171 pcp->high - (pcp->high >> 3), high_min);
2172 if (pcp->high > high_min)
2176 to_drain = pcp->count - pcp->high;
2178 spin_lock(&pcp->lock);
2179 free_pcppages_bulk(zone, to_drain, pcp, 0);
2180 spin_unlock(&pcp->lock);
2189 * Called from the vmstat counter updater to drain pagesets of this
2190 * currently executing processor on remote nodes after they have
2193 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2195 int to_drain, batch;
2197 batch = READ_ONCE(pcp->batch);
2198 to_drain = min(pcp->count, batch);
2200 spin_lock(&pcp->lock);
2201 free_pcppages_bulk(zone, to_drain, pcp, 0);
2202 spin_unlock(&pcp->lock);
2208 * Drain pcplists of the indicated processor and zone.
2210 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2212 struct per_cpu_pages *pcp;
2214 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2216 spin_lock(&pcp->lock);
2217 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2218 spin_unlock(&pcp->lock);
2223 * Drain pcplists of all zones on the indicated processor.
2225 static void drain_pages(unsigned int cpu)
2229 for_each_populated_zone(zone) {
2230 drain_pages_zone(cpu, zone);
2235 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2237 void drain_local_pages(struct zone *zone)
2239 int cpu = smp_processor_id();
2242 drain_pages_zone(cpu, zone);
2248 * The implementation of drain_all_pages(), exposing an extra parameter to
2249 * drain on all cpus.
2251 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2252 * not empty. The check for non-emptiness can however race with a free to
2253 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2254 * that need the guarantee that every CPU has drained can disable the
2255 * optimizing racy check.
2257 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2262 * Allocate in the BSS so we won't require allocation in
2263 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2265 static cpumask_t cpus_with_pcps;
2268 * Do not drain if one is already in progress unless it's specific to
2269 * a zone. Such callers are primarily CMA and memory hotplug and need
2270 * the drain to be complete when the call returns.
2272 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2275 mutex_lock(&pcpu_drain_mutex);
2279 * We don't care about racing with CPU hotplug event
2280 * as offline notification will cause the notified
2281 * cpu to drain that CPU pcps and on_each_cpu_mask
2282 * disables preemption as part of its processing
2284 for_each_online_cpu(cpu) {
2285 struct per_cpu_pages *pcp;
2287 bool has_pcps = false;
2289 if (force_all_cpus) {
2291 * The pcp.count check is racy, some callers need a
2292 * guarantee that no cpu is missed.
2296 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2300 for_each_populated_zone(z) {
2301 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2310 cpumask_set_cpu(cpu, &cpus_with_pcps);
2312 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2315 for_each_cpu(cpu, &cpus_with_pcps) {
2317 drain_pages_zone(cpu, zone);
2322 mutex_unlock(&pcpu_drain_mutex);
2326 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2328 * When zone parameter is non-NULL, spill just the single zone's pages.
2330 void drain_all_pages(struct zone *zone)
2332 __drain_all_pages(zone, false);
2335 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2340 if (!free_pages_prepare(page, order, FPI_NONE))
2343 migratetype = get_pfnblock_migratetype(page, pfn);
2344 set_pcppage_migratetype(page, migratetype);
2348 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2350 int min_nr_free, max_nr_free;
2352 /* Free as much as possible if batch freeing high-order pages. */
2353 if (unlikely(free_high))
2354 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2356 /* Check for PCP disabled or boot pageset */
2357 if (unlikely(high < batch))
2360 /* Leave at least pcp->batch pages on the list */
2361 min_nr_free = batch;
2362 max_nr_free = high - batch;
2365 * Increase the batch number to the number of the consecutive
2366 * freed pages to reduce zone lock contention.
2368 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2373 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2374 int batch, bool free_high)
2376 int high, high_min, high_max;
2378 high_min = READ_ONCE(pcp->high_min);
2379 high_max = READ_ONCE(pcp->high_max);
2380 high = pcp->high = clamp(pcp->high, high_min, high_max);
2382 if (unlikely(!high))
2385 if (unlikely(free_high)) {
2386 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2392 * If reclaim is active, limit the number of pages that can be
2393 * stored on pcp lists
2395 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2396 int free_count = max_t(int, pcp->free_count, batch);
2398 pcp->high = max(high - free_count, high_min);
2399 return min(batch << 2, pcp->high);
2402 if (high_min == high_max)
2405 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2406 int free_count = max_t(int, pcp->free_count, batch);
2408 pcp->high = max(high - free_count, high_min);
2409 high = max(pcp->count, high_min);
2410 } else if (pcp->count >= high) {
2411 int need_high = pcp->free_count + batch;
2413 /* pcp->high should be large enough to hold batch freed pages */
2414 if (pcp->high < need_high)
2415 pcp->high = clamp(need_high, high_min, high_max);
2421 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2422 struct page *page, int migratetype,
2427 bool free_high = false;
2430 * On freeing, reduce the number of pages that are batch allocated.
2431 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2434 pcp->alloc_factor >>= 1;
2435 __count_vm_events(PGFREE, 1 << order);
2436 pindex = order_to_pindex(migratetype, order);
2437 list_add(&page->pcp_list, &pcp->lists[pindex]);
2438 pcp->count += 1 << order;
2440 batch = READ_ONCE(pcp->batch);
2442 * As high-order pages other than THP's stored on PCP can contribute
2443 * to fragmentation, limit the number stored when PCP is heavily
2444 * freeing without allocation. The remainder after bulk freeing
2445 * stops will be drained from vmstat refresh context.
2447 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2448 free_high = (pcp->free_count >= batch &&
2449 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2450 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2451 pcp->count >= READ_ONCE(batch)));
2452 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2453 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2454 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2456 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2457 pcp->free_count += (1 << order);
2458 high = nr_pcp_high(pcp, zone, batch, free_high);
2459 if (pcp->count >= high) {
2460 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2462 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2463 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2465 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2472 void free_unref_page(struct page *page, unsigned int order)
2474 unsigned long __maybe_unused UP_flags;
2475 struct per_cpu_pages *pcp;
2477 unsigned long pfn = page_to_pfn(page);
2478 int migratetype, pcpmigratetype;
2480 if (!free_unref_page_prepare(page, pfn, order))
2484 * We only track unmovable, reclaimable and movable on pcp lists.
2485 * Place ISOLATE pages on the isolated list because they are being
2486 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2487 * get those areas back if necessary. Otherwise, we may have to free
2488 * excessively into the page allocator
2490 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2491 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2492 if (unlikely(is_migrate_isolate(migratetype))) {
2493 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2496 pcpmigratetype = MIGRATE_MOVABLE;
2499 zone = page_zone(page);
2500 pcp_trylock_prepare(UP_flags);
2501 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2503 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2504 pcp_spin_unlock(pcp);
2506 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2508 pcp_trylock_finish(UP_flags);
2512 * Free a list of 0-order pages
2514 void free_unref_page_list(struct list_head *list)
2516 unsigned long __maybe_unused UP_flags;
2517 struct page *page, *next;
2518 struct per_cpu_pages *pcp = NULL;
2519 struct zone *locked_zone = NULL;
2520 int batch_count = 0;
2523 /* Prepare pages for freeing */
2524 list_for_each_entry_safe(page, next, list, lru) {
2525 unsigned long pfn = page_to_pfn(page);
2526 if (!free_unref_page_prepare(page, pfn, 0)) {
2527 list_del(&page->lru);
2532 * Free isolated pages directly to the allocator, see
2533 * comment in free_unref_page.
2535 migratetype = get_pcppage_migratetype(page);
2536 if (unlikely(is_migrate_isolate(migratetype))) {
2537 list_del(&page->lru);
2538 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2543 list_for_each_entry_safe(page, next, list, lru) {
2544 struct zone *zone = page_zone(page);
2546 list_del(&page->lru);
2547 migratetype = get_pcppage_migratetype(page);
2550 * Either different zone requiring a different pcp lock or
2551 * excessive lock hold times when freeing a large list of
2554 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2556 pcp_spin_unlock(pcp);
2557 pcp_trylock_finish(UP_flags);
2563 * trylock is necessary as pages may be getting freed
2564 * from IRQ or SoftIRQ context after an IO completion.
2566 pcp_trylock_prepare(UP_flags);
2567 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2568 if (unlikely(!pcp)) {
2569 pcp_trylock_finish(UP_flags);
2570 free_one_page(zone, page, page_to_pfn(page),
2571 0, migratetype, FPI_NONE);
2579 * Non-isolated types over MIGRATE_PCPTYPES get added
2580 * to the MIGRATE_MOVABLE pcp list.
2582 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2583 migratetype = MIGRATE_MOVABLE;
2585 trace_mm_page_free_batched(page);
2586 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2591 pcp_spin_unlock(pcp);
2592 pcp_trylock_finish(UP_flags);
2597 * split_page takes a non-compound higher-order page, and splits it into
2598 * n (1<<order) sub-pages: page[0..n]
2599 * Each sub-page must be freed individually.
2601 * Note: this is probably too low level an operation for use in drivers.
2602 * Please consult with lkml before using this in your driver.
2604 void split_page(struct page *page, unsigned int order)
2608 VM_BUG_ON_PAGE(PageCompound(page), page);
2609 VM_BUG_ON_PAGE(!page_count(page), page);
2611 for (i = 1; i < (1 << order); i++)
2612 set_page_refcounted(page + i);
2613 split_page_owner(page, 1 << order);
2614 split_page_memcg(page, 1 << order);
2616 EXPORT_SYMBOL_GPL(split_page);
2618 int __isolate_free_page(struct page *page, unsigned int order)
2620 struct zone *zone = page_zone(page);
2621 int mt = get_pageblock_migratetype(page);
2623 if (!is_migrate_isolate(mt)) {
2624 unsigned long watermark;
2626 * Obey watermarks as if the page was being allocated. We can
2627 * emulate a high-order watermark check with a raised order-0
2628 * watermark, because we already know our high-order page
2631 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2632 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2638 del_page_from_free_list(page, zone, order);
2641 * Set the pageblock if the isolated page is at least half of a
2644 if (order >= pageblock_order - 1) {
2645 struct page *endpage = page + (1 << order) - 1;
2646 for (; page < endpage; page += pageblock_nr_pages) {
2647 int mt = get_pageblock_migratetype(page);
2649 * Only change normal pageblocks (i.e., they can merge
2652 if (migratetype_is_mergeable(mt))
2653 set_pageblock_migratetype(page,
2658 return 1UL << order;
2662 * __putback_isolated_page - Return a now-isolated page back where we got it
2663 * @page: Page that was isolated
2664 * @order: Order of the isolated page
2665 * @mt: The page's pageblock's migratetype
2667 * This function is meant to return a page pulled from the free lists via
2668 * __isolate_free_page back to the free lists they were pulled from.
2670 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2672 struct zone *zone = page_zone(page);
2674 /* zone lock should be held when this function is called */
2675 lockdep_assert_held(&zone->lock);
2677 /* Return isolated page to tail of freelist. */
2678 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2679 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2683 * Update NUMA hit/miss statistics
2685 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2689 enum numa_stat_item local_stat = NUMA_LOCAL;
2691 /* skip numa counters update if numa stats is disabled */
2692 if (!static_branch_likely(&vm_numa_stat_key))
2695 if (zone_to_nid(z) != numa_node_id())
2696 local_stat = NUMA_OTHER;
2698 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2699 __count_numa_events(z, NUMA_HIT, nr_account);
2701 __count_numa_events(z, NUMA_MISS, nr_account);
2702 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2704 __count_numa_events(z, local_stat, nr_account);
2708 static __always_inline
2709 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2710 unsigned int order, unsigned int alloc_flags,
2714 unsigned long flags;
2718 spin_lock_irqsave(&zone->lock, flags);
2719 if (alloc_flags & ALLOC_HIGHATOMIC)
2720 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2722 page = __rmqueue(zone, order, migratetype, alloc_flags);
2725 * If the allocation fails, allow OOM handling access
2726 * to HIGHATOMIC reserves as failing now is worse than
2727 * failing a high-order atomic allocation in the
2730 if (!page && (alloc_flags & ALLOC_OOM))
2731 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2734 spin_unlock_irqrestore(&zone->lock, flags);
2738 __mod_zone_freepage_state(zone, -(1 << order),
2739 get_pcppage_migratetype(page));
2740 spin_unlock_irqrestore(&zone->lock, flags);
2741 } while (check_new_pages(page, order));
2743 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2744 zone_statistics(preferred_zone, zone, 1);
2749 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2751 int high, base_batch, batch, max_nr_alloc;
2752 int high_max, high_min;
2754 base_batch = READ_ONCE(pcp->batch);
2755 high_min = READ_ONCE(pcp->high_min);
2756 high_max = READ_ONCE(pcp->high_max);
2757 high = pcp->high = clamp(pcp->high, high_min, high_max);
2759 /* Check for PCP disabled or boot pageset */
2760 if (unlikely(high < base_batch))
2766 batch = (base_batch << pcp->alloc_factor);
2769 * If we had larger pcp->high, we could avoid to allocate from
2772 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2773 high = pcp->high = min(high + batch, high_max);
2776 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2778 * Double the number of pages allocated each time there is
2779 * subsequent allocation of order-0 pages without any freeing.
2781 if (batch <= max_nr_alloc &&
2782 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2783 pcp->alloc_factor++;
2784 batch = min(batch, max_nr_alloc);
2788 * Scale batch relative to order if batch implies free pages
2789 * can be stored on the PCP. Batch can be 1 for small zones or
2790 * for boot pagesets which should never store free pages as
2791 * the pages may belong to arbitrary zones.
2794 batch = max(batch >> order, 2);
2799 /* Remove page from the per-cpu list, caller must protect the list */
2801 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2803 unsigned int alloc_flags,
2804 struct per_cpu_pages *pcp,
2805 struct list_head *list)
2810 if (list_empty(list)) {
2811 int batch = nr_pcp_alloc(pcp, zone, order);
2814 alloced = rmqueue_bulk(zone, order,
2816 migratetype, alloc_flags);
2818 pcp->count += alloced << order;
2819 if (unlikely(list_empty(list)))
2823 page = list_first_entry(list, struct page, pcp_list);
2824 list_del(&page->pcp_list);
2825 pcp->count -= 1 << order;
2826 } while (check_new_pages(page, order));
2831 /* Lock and remove page from the per-cpu list */
2832 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2833 struct zone *zone, unsigned int order,
2834 int migratetype, unsigned int alloc_flags)
2836 struct per_cpu_pages *pcp;
2837 struct list_head *list;
2839 unsigned long __maybe_unused UP_flags;
2841 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2842 pcp_trylock_prepare(UP_flags);
2843 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2845 pcp_trylock_finish(UP_flags);
2850 * On allocation, reduce the number of pages that are batch freed.
2851 * See nr_pcp_free() where free_factor is increased for subsequent
2854 pcp->free_count >>= 1;
2855 list = &pcp->lists[order_to_pindex(migratetype, order)];
2856 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2857 pcp_spin_unlock(pcp);
2858 pcp_trylock_finish(UP_flags);
2860 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2861 zone_statistics(preferred_zone, zone, 1);
2867 * Allocate a page from the given zone.
2868 * Use pcplists for THP or "cheap" high-order allocations.
2872 * Do not instrument rmqueue() with KMSAN. This function may call
2873 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2874 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2875 * may call rmqueue() again, which will result in a deadlock.
2877 __no_sanitize_memory
2879 struct page *rmqueue(struct zone *preferred_zone,
2880 struct zone *zone, unsigned int order,
2881 gfp_t gfp_flags, unsigned int alloc_flags,
2887 * We most definitely don't want callers attempting to
2888 * allocate greater than order-1 page units with __GFP_NOFAIL.
2890 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2892 if (likely(pcp_allowed_order(order))) {
2893 page = rmqueue_pcplist(preferred_zone, zone, order,
2894 migratetype, alloc_flags);
2899 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2903 /* Separate test+clear to avoid unnecessary atomics */
2904 if ((alloc_flags & ALLOC_KSWAPD) &&
2905 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2906 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2907 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2910 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2914 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2916 return __should_fail_alloc_page(gfp_mask, order);
2918 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2920 static inline long __zone_watermark_unusable_free(struct zone *z,
2921 unsigned int order, unsigned int alloc_flags)
2923 long unusable_free = (1 << order) - 1;
2926 * If the caller does not have rights to reserves below the min
2927 * watermark then subtract the high-atomic reserves. This will
2928 * over-estimate the size of the atomic reserve but it avoids a search.
2930 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2931 unusable_free += z->nr_reserved_highatomic;
2934 /* If allocation can't use CMA areas don't use free CMA pages */
2935 if (!(alloc_flags & ALLOC_CMA))
2936 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2938 #ifdef CONFIG_UNACCEPTED_MEMORY
2939 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2942 return unusable_free;
2946 * Return true if free base pages are above 'mark'. For high-order checks it
2947 * will return true of the order-0 watermark is reached and there is at least
2948 * one free page of a suitable size. Checking now avoids taking the zone lock
2949 * to check in the allocation paths if no pages are free.
2951 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2952 int highest_zoneidx, unsigned int alloc_flags,
2958 /* free_pages may go negative - that's OK */
2959 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2961 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2963 * __GFP_HIGH allows access to 50% of the min reserve as well
2966 if (alloc_flags & ALLOC_MIN_RESERVE) {
2970 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2971 * access more reserves than just __GFP_HIGH. Other
2972 * non-blocking allocations requests such as GFP_NOWAIT
2973 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2974 * access to the min reserve.
2976 if (alloc_flags & ALLOC_NON_BLOCK)
2981 * OOM victims can try even harder than the normal reserve
2982 * users on the grounds that it's definitely going to be in
2983 * the exit path shortly and free memory. Any allocation it
2984 * makes during the free path will be small and short-lived.
2986 if (alloc_flags & ALLOC_OOM)
2991 * Check watermarks for an order-0 allocation request. If these
2992 * are not met, then a high-order request also cannot go ahead
2993 * even if a suitable page happened to be free.
2995 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2998 /* If this is an order-0 request then the watermark is fine */
3002 /* For a high-order request, check at least one suitable page is free */
3003 for (o = order; o <= MAX_ORDER; o++) {
3004 struct free_area *area = &z->free_area[o];
3010 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3011 if (!free_area_empty(area, mt))
3016 if ((alloc_flags & ALLOC_CMA) &&
3017 !free_area_empty(area, MIGRATE_CMA)) {
3021 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3022 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3029 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3030 int highest_zoneidx, unsigned int alloc_flags)
3032 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3033 zone_page_state(z, NR_FREE_PAGES));
3036 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3037 unsigned long mark, int highest_zoneidx,
3038 unsigned int alloc_flags, gfp_t gfp_mask)
3042 free_pages = zone_page_state(z, NR_FREE_PAGES);
3045 * Fast check for order-0 only. If this fails then the reserves
3046 * need to be calculated.
3052 usable_free = free_pages;
3053 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3055 /* reserved may over estimate high-atomic reserves. */
3056 usable_free -= min(usable_free, reserved);
3057 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3061 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3066 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3067 * when checking the min watermark. The min watermark is the
3068 * point where boosting is ignored so that kswapd is woken up
3069 * when below the low watermark.
3071 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3072 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3073 mark = z->_watermark[WMARK_MIN];
3074 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3075 alloc_flags, free_pages);
3081 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3082 unsigned long mark, int highest_zoneidx)
3084 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3086 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3087 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3089 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3094 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3096 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3098 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3099 node_reclaim_distance;
3101 #else /* CONFIG_NUMA */
3102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3106 #endif /* CONFIG_NUMA */
3109 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3110 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3111 * premature use of a lower zone may cause lowmem pressure problems that
3112 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3113 * probably too small. It only makes sense to spread allocations to avoid
3114 * fragmentation between the Normal and DMA32 zones.
3116 static inline unsigned int
3117 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3119 unsigned int alloc_flags;
3122 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3125 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3127 #ifdef CONFIG_ZONE_DMA32
3131 if (zone_idx(zone) != ZONE_NORMAL)
3135 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3136 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3137 * on UMA that if Normal is populated then so is DMA32.
3139 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3140 if (nr_online_nodes > 1 && !populated_zone(--zone))
3143 alloc_flags |= ALLOC_NOFRAGMENT;
3144 #endif /* CONFIG_ZONE_DMA32 */
3148 /* Must be called after current_gfp_context() which can change gfp_mask */
3149 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3150 unsigned int alloc_flags)
3153 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3154 alloc_flags |= ALLOC_CMA;
3160 * get_page_from_freelist goes through the zonelist trying to allocate
3163 static struct page *
3164 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3165 const struct alloc_context *ac)
3169 struct pglist_data *last_pgdat = NULL;
3170 bool last_pgdat_dirty_ok = false;
3175 * Scan zonelist, looking for a zone with enough free.
3176 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3178 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3179 z = ac->preferred_zoneref;
3180 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3185 if (cpusets_enabled() &&
3186 (alloc_flags & ALLOC_CPUSET) &&
3187 !__cpuset_zone_allowed(zone, gfp_mask))
3190 * When allocating a page cache page for writing, we
3191 * want to get it from a node that is within its dirty
3192 * limit, such that no single node holds more than its
3193 * proportional share of globally allowed dirty pages.
3194 * The dirty limits take into account the node's
3195 * lowmem reserves and high watermark so that kswapd
3196 * should be able to balance it without having to
3197 * write pages from its LRU list.
3199 * XXX: For now, allow allocations to potentially
3200 * exceed the per-node dirty limit in the slowpath
3201 * (spread_dirty_pages unset) before going into reclaim,
3202 * which is important when on a NUMA setup the allowed
3203 * nodes are together not big enough to reach the
3204 * global limit. The proper fix for these situations
3205 * will require awareness of nodes in the
3206 * dirty-throttling and the flusher threads.
3208 if (ac->spread_dirty_pages) {
3209 if (last_pgdat != zone->zone_pgdat) {
3210 last_pgdat = zone->zone_pgdat;
3211 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3214 if (!last_pgdat_dirty_ok)
3218 if (no_fallback && nr_online_nodes > 1 &&
3219 zone != ac->preferred_zoneref->zone) {
3223 * If moving to a remote node, retry but allow
3224 * fragmenting fallbacks. Locality is more important
3225 * than fragmentation avoidance.
3227 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3228 if (zone_to_nid(zone) != local_nid) {
3229 alloc_flags &= ~ALLOC_NOFRAGMENT;
3235 * Detect whether the number of free pages is below high
3236 * watermark. If so, we will decrease pcp->high and free
3237 * PCP pages in free path to reduce the possibility of
3238 * premature page reclaiming. Detection is done here to
3239 * avoid to do that in hotter free path.
3241 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3242 goto check_alloc_wmark;
3244 mark = high_wmark_pages(zone);
3245 if (zone_watermark_fast(zone, order, mark,
3246 ac->highest_zoneidx, alloc_flags,
3250 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3253 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3254 if (!zone_watermark_fast(zone, order, mark,
3255 ac->highest_zoneidx, alloc_flags,
3259 if (has_unaccepted_memory()) {
3260 if (try_to_accept_memory(zone, order))
3264 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3266 * Watermark failed for this zone, but see if we can
3267 * grow this zone if it contains deferred pages.
3269 if (deferred_pages_enabled()) {
3270 if (_deferred_grow_zone(zone, order))
3274 /* Checked here to keep the fast path fast */
3275 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3276 if (alloc_flags & ALLOC_NO_WATERMARKS)
3279 if (!node_reclaim_enabled() ||
3280 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3283 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3285 case NODE_RECLAIM_NOSCAN:
3288 case NODE_RECLAIM_FULL:
3289 /* scanned but unreclaimable */
3292 /* did we reclaim enough */
3293 if (zone_watermark_ok(zone, order, mark,
3294 ac->highest_zoneidx, alloc_flags))
3302 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3303 gfp_mask, alloc_flags, ac->migratetype);
3305 prep_new_page(page, order, gfp_mask, alloc_flags);
3308 * If this is a high-order atomic allocation then check
3309 * if the pageblock should be reserved for the future
3311 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3312 reserve_highatomic_pageblock(page, zone);
3316 if (has_unaccepted_memory()) {
3317 if (try_to_accept_memory(zone, order))
3321 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3322 /* Try again if zone has deferred pages */
3323 if (deferred_pages_enabled()) {
3324 if (_deferred_grow_zone(zone, order))
3332 * It's possible on a UMA machine to get through all zones that are
3333 * fragmented. If avoiding fragmentation, reset and try again.
3336 alloc_flags &= ~ALLOC_NOFRAGMENT;
3343 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3345 unsigned int filter = SHOW_MEM_FILTER_NODES;
3348 * This documents exceptions given to allocations in certain
3349 * contexts that are allowed to allocate outside current's set
3352 if (!(gfp_mask & __GFP_NOMEMALLOC))
3353 if (tsk_is_oom_victim(current) ||
3354 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3355 filter &= ~SHOW_MEM_FILTER_NODES;
3356 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3357 filter &= ~SHOW_MEM_FILTER_NODES;
3359 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3362 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3364 struct va_format vaf;
3366 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3368 if ((gfp_mask & __GFP_NOWARN) ||
3369 !__ratelimit(&nopage_rs) ||
3370 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3373 va_start(args, fmt);
3376 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3377 current->comm, &vaf, gfp_mask, &gfp_mask,
3378 nodemask_pr_args(nodemask));
3381 cpuset_print_current_mems_allowed();
3384 warn_alloc_show_mem(gfp_mask, nodemask);
3387 static inline struct page *
3388 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3389 unsigned int alloc_flags,
3390 const struct alloc_context *ac)
3394 page = get_page_from_freelist(gfp_mask, order,
3395 alloc_flags|ALLOC_CPUSET, ac);
3397 * fallback to ignore cpuset restriction if our nodes
3401 page = get_page_from_freelist(gfp_mask, order,
3407 static inline struct page *
3408 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3409 const struct alloc_context *ac, unsigned long *did_some_progress)
3411 struct oom_control oc = {
3412 .zonelist = ac->zonelist,
3413 .nodemask = ac->nodemask,
3415 .gfp_mask = gfp_mask,
3420 *did_some_progress = 0;
3423 * Acquire the oom lock. If that fails, somebody else is
3424 * making progress for us.
3426 if (!mutex_trylock(&oom_lock)) {
3427 *did_some_progress = 1;
3428 schedule_timeout_uninterruptible(1);
3433 * Go through the zonelist yet one more time, keep very high watermark
3434 * here, this is only to catch a parallel oom killing, we must fail if
3435 * we're still under heavy pressure. But make sure that this reclaim
3436 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3437 * allocation which will never fail due to oom_lock already held.
3439 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3440 ~__GFP_DIRECT_RECLAIM, order,
3441 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3445 /* Coredumps can quickly deplete all memory reserves */
3446 if (current->flags & PF_DUMPCORE)
3448 /* The OOM killer will not help higher order allocs */
3449 if (order > PAGE_ALLOC_COSTLY_ORDER)
3452 * We have already exhausted all our reclaim opportunities without any
3453 * success so it is time to admit defeat. We will skip the OOM killer
3454 * because it is very likely that the caller has a more reasonable
3455 * fallback than shooting a random task.
3457 * The OOM killer may not free memory on a specific node.
3459 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3461 /* The OOM killer does not needlessly kill tasks for lowmem */
3462 if (ac->highest_zoneidx < ZONE_NORMAL)
3464 if (pm_suspended_storage())
3467 * XXX: GFP_NOFS allocations should rather fail than rely on
3468 * other request to make a forward progress.
3469 * We are in an unfortunate situation where out_of_memory cannot
3470 * do much for this context but let's try it to at least get
3471 * access to memory reserved if the current task is killed (see
3472 * out_of_memory). Once filesystems are ready to handle allocation
3473 * failures more gracefully we should just bail out here.
3476 /* Exhausted what can be done so it's blame time */
3477 if (out_of_memory(&oc) ||
3478 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3479 *did_some_progress = 1;
3482 * Help non-failing allocations by giving them access to memory
3485 if (gfp_mask & __GFP_NOFAIL)
3486 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3487 ALLOC_NO_WATERMARKS, ac);
3490 mutex_unlock(&oom_lock);
3495 * Maximum number of compaction retries with a progress before OOM
3496 * killer is consider as the only way to move forward.
3498 #define MAX_COMPACT_RETRIES 16
3500 #ifdef CONFIG_COMPACTION
3501 /* Try memory compaction for high-order allocations before reclaim */
3502 static struct page *
3503 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3504 unsigned int alloc_flags, const struct alloc_context *ac,
3505 enum compact_priority prio, enum compact_result *compact_result)
3507 struct page *page = NULL;
3508 unsigned long pflags;
3509 unsigned int noreclaim_flag;
3514 psi_memstall_enter(&pflags);
3515 delayacct_compact_start();
3516 noreclaim_flag = memalloc_noreclaim_save();
3518 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3521 memalloc_noreclaim_restore(noreclaim_flag);
3522 psi_memstall_leave(&pflags);
3523 delayacct_compact_end();
3525 if (*compact_result == COMPACT_SKIPPED)
3528 * At least in one zone compaction wasn't deferred or skipped, so let's
3529 * count a compaction stall
3531 count_vm_event(COMPACTSTALL);
3533 /* Prep a captured page if available */
3535 prep_new_page(page, order, gfp_mask, alloc_flags);
3537 /* Try get a page from the freelist if available */
3539 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3542 struct zone *zone = page_zone(page);
3544 zone->compact_blockskip_flush = false;
3545 compaction_defer_reset(zone, order, true);
3546 count_vm_event(COMPACTSUCCESS);
3551 * It's bad if compaction run occurs and fails. The most likely reason
3552 * is that pages exist, but not enough to satisfy watermarks.
3554 count_vm_event(COMPACTFAIL);
3562 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3563 enum compact_result compact_result,
3564 enum compact_priority *compact_priority,
3565 int *compaction_retries)
3567 int max_retries = MAX_COMPACT_RETRIES;
3570 int retries = *compaction_retries;
3571 enum compact_priority priority = *compact_priority;
3576 if (fatal_signal_pending(current))
3580 * Compaction was skipped due to a lack of free order-0
3581 * migration targets. Continue if reclaim can help.
3583 if (compact_result == COMPACT_SKIPPED) {
3584 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3589 * Compaction managed to coalesce some page blocks, but the
3590 * allocation failed presumably due to a race. Retry some.
3592 if (compact_result == COMPACT_SUCCESS) {
3594 * !costly requests are much more important than
3595 * __GFP_RETRY_MAYFAIL costly ones because they are de
3596 * facto nofail and invoke OOM killer to move on while
3597 * costly can fail and users are ready to cope with
3598 * that. 1/4 retries is rather arbitrary but we would
3599 * need much more detailed feedback from compaction to
3600 * make a better decision.
3602 if (order > PAGE_ALLOC_COSTLY_ORDER)
3605 if (++(*compaction_retries) <= max_retries) {
3612 * Compaction failed. Retry with increasing priority.
3614 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3615 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3617 if (*compact_priority > min_priority) {
3618 (*compact_priority)--;
3619 *compaction_retries = 0;
3623 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3627 static inline struct page *
3628 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3629 unsigned int alloc_flags, const struct alloc_context *ac,
3630 enum compact_priority prio, enum compact_result *compact_result)
3632 *compact_result = COMPACT_SKIPPED;
3637 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3638 enum compact_result compact_result,
3639 enum compact_priority *compact_priority,
3640 int *compaction_retries)
3645 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3649 * There are setups with compaction disabled which would prefer to loop
3650 * inside the allocator rather than hit the oom killer prematurely.
3651 * Let's give them a good hope and keep retrying while the order-0
3652 * watermarks are OK.
3654 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3655 ac->highest_zoneidx, ac->nodemask) {
3656 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3657 ac->highest_zoneidx, alloc_flags))
3662 #endif /* CONFIG_COMPACTION */
3664 #ifdef CONFIG_LOCKDEP
3665 static struct lockdep_map __fs_reclaim_map =
3666 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3668 static bool __need_reclaim(gfp_t gfp_mask)
3670 /* no reclaim without waiting on it */
3671 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3674 /* this guy won't enter reclaim */
3675 if (current->flags & PF_MEMALLOC)
3678 if (gfp_mask & __GFP_NOLOCKDEP)
3684 void __fs_reclaim_acquire(unsigned long ip)
3686 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3689 void __fs_reclaim_release(unsigned long ip)
3691 lock_release(&__fs_reclaim_map, ip);
3694 void fs_reclaim_acquire(gfp_t gfp_mask)
3696 gfp_mask = current_gfp_context(gfp_mask);
3698 if (__need_reclaim(gfp_mask)) {
3699 if (gfp_mask & __GFP_FS)
3700 __fs_reclaim_acquire(_RET_IP_);
3702 #ifdef CONFIG_MMU_NOTIFIER
3703 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3704 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3709 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3711 void fs_reclaim_release(gfp_t gfp_mask)
3713 gfp_mask = current_gfp_context(gfp_mask);
3715 if (__need_reclaim(gfp_mask)) {
3716 if (gfp_mask & __GFP_FS)
3717 __fs_reclaim_release(_RET_IP_);
3720 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3724 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3725 * have been rebuilt so allocation retries. Reader side does not lock and
3726 * retries the allocation if zonelist changes. Writer side is protected by the
3727 * embedded spin_lock.
3729 static DEFINE_SEQLOCK(zonelist_update_seq);
3731 static unsigned int zonelist_iter_begin(void)
3733 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3734 return read_seqbegin(&zonelist_update_seq);
3739 static unsigned int check_retry_zonelist(unsigned int seq)
3741 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3742 return read_seqretry(&zonelist_update_seq, seq);
3747 /* Perform direct synchronous page reclaim */
3748 static unsigned long
3749 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3750 const struct alloc_context *ac)
3752 unsigned int noreclaim_flag;
3753 unsigned long progress;
3757 /* We now go into synchronous reclaim */
3758 cpuset_memory_pressure_bump();
3759 fs_reclaim_acquire(gfp_mask);
3760 noreclaim_flag = memalloc_noreclaim_save();
3762 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3765 memalloc_noreclaim_restore(noreclaim_flag);
3766 fs_reclaim_release(gfp_mask);
3773 /* The really slow allocator path where we enter direct reclaim */
3774 static inline struct page *
3775 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3776 unsigned int alloc_flags, const struct alloc_context *ac,
3777 unsigned long *did_some_progress)
3779 struct page *page = NULL;
3780 unsigned long pflags;
3781 bool drained = false;
3783 psi_memstall_enter(&pflags);
3784 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3785 if (unlikely(!(*did_some_progress)))
3789 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3792 * If an allocation failed after direct reclaim, it could be because
3793 * pages are pinned on the per-cpu lists or in high alloc reserves.
3794 * Shrink them and try again
3796 if (!page && !drained) {
3797 unreserve_highatomic_pageblock(ac, false);
3798 drain_all_pages(NULL);
3803 psi_memstall_leave(&pflags);
3808 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3809 const struct alloc_context *ac)
3813 pg_data_t *last_pgdat = NULL;
3814 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3816 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3818 if (!managed_zone(zone))
3820 if (last_pgdat != zone->zone_pgdat) {
3821 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3822 last_pgdat = zone->zone_pgdat;
3827 static inline unsigned int
3828 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3830 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3833 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3834 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3835 * to save two branches.
3837 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3838 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3841 * The caller may dip into page reserves a bit more if the caller
3842 * cannot run direct reclaim, or if the caller has realtime scheduling
3843 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3844 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3846 alloc_flags |= (__force int)
3847 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3849 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3851 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3852 * if it can't schedule.
3854 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3855 alloc_flags |= ALLOC_NON_BLOCK;
3858 alloc_flags |= ALLOC_HIGHATOMIC;
3862 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3863 * GFP_ATOMIC) rather than fail, see the comment for
3864 * cpuset_node_allowed().
3866 if (alloc_flags & ALLOC_MIN_RESERVE)
3867 alloc_flags &= ~ALLOC_CPUSET;
3868 } else if (unlikely(rt_task(current)) && in_task())
3869 alloc_flags |= ALLOC_MIN_RESERVE;
3871 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3876 static bool oom_reserves_allowed(struct task_struct *tsk)
3878 if (!tsk_is_oom_victim(tsk))
3882 * !MMU doesn't have oom reaper so give access to memory reserves
3883 * only to the thread with TIF_MEMDIE set
3885 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3892 * Distinguish requests which really need access to full memory
3893 * reserves from oom victims which can live with a portion of it
3895 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3897 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3899 if (gfp_mask & __GFP_MEMALLOC)
3900 return ALLOC_NO_WATERMARKS;
3901 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3902 return ALLOC_NO_WATERMARKS;
3903 if (!in_interrupt()) {
3904 if (current->flags & PF_MEMALLOC)
3905 return ALLOC_NO_WATERMARKS;
3906 else if (oom_reserves_allowed(current))
3913 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3915 return !!__gfp_pfmemalloc_flags(gfp_mask);
3919 * Checks whether it makes sense to retry the reclaim to make a forward progress
3920 * for the given allocation request.
3922 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3923 * without success, or when we couldn't even meet the watermark if we
3924 * reclaimed all remaining pages on the LRU lists.
3926 * Returns true if a retry is viable or false to enter the oom path.
3929 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3930 struct alloc_context *ac, int alloc_flags,
3931 bool did_some_progress, int *no_progress_loops)
3938 * Costly allocations might have made a progress but this doesn't mean
3939 * their order will become available due to high fragmentation so
3940 * always increment the no progress counter for them
3942 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3943 *no_progress_loops = 0;
3945 (*no_progress_loops)++;
3947 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3952 * Keep reclaiming pages while there is a chance this will lead
3953 * somewhere. If none of the target zones can satisfy our allocation
3954 * request even if all reclaimable pages are considered then we are
3955 * screwed and have to go OOM.
3957 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3958 ac->highest_zoneidx, ac->nodemask) {
3959 unsigned long available;
3960 unsigned long reclaimable;
3961 unsigned long min_wmark = min_wmark_pages(zone);
3964 available = reclaimable = zone_reclaimable_pages(zone);
3965 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3968 * Would the allocation succeed if we reclaimed all
3969 * reclaimable pages?
3971 wmark = __zone_watermark_ok(zone, order, min_wmark,
3972 ac->highest_zoneidx, alloc_flags, available);
3973 trace_reclaim_retry_zone(z, order, reclaimable,
3974 available, min_wmark, *no_progress_loops, wmark);
3982 * Memory allocation/reclaim might be called from a WQ context and the
3983 * current implementation of the WQ concurrency control doesn't
3984 * recognize that a particular WQ is congested if the worker thread is
3985 * looping without ever sleeping. Therefore we have to do a short sleep
3986 * here rather than calling cond_resched().
3988 if (current->flags & PF_WQ_WORKER)
3989 schedule_timeout_uninterruptible(1);
3993 /* Before OOM, exhaust highatomic_reserve */
3995 return unreserve_highatomic_pageblock(ac, true);
4001 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004 * It's possible that cpuset's mems_allowed and the nodemask from
4005 * mempolicy don't intersect. This should be normally dealt with by
4006 * policy_nodemask(), but it's possible to race with cpuset update in
4007 * such a way the check therein was true, and then it became false
4008 * before we got our cpuset_mems_cookie here.
4009 * This assumes that for all allocations, ac->nodemask can come only
4010 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4011 * when it does not intersect with the cpuset restrictions) or the
4012 * caller can deal with a violated nodemask.
4014 if (cpusets_enabled() && ac->nodemask &&
4015 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4016 ac->nodemask = NULL;
4021 * When updating a task's mems_allowed or mempolicy nodemask, it is
4022 * possible to race with parallel threads in such a way that our
4023 * allocation can fail while the mask is being updated. If we are about
4024 * to fail, check if the cpuset changed during allocation and if so,
4027 if (read_mems_allowed_retry(cpuset_mems_cookie))
4033 static inline struct page *
4034 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4035 struct alloc_context *ac)
4037 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4038 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4039 struct page *page = NULL;
4040 unsigned int alloc_flags;
4041 unsigned long did_some_progress;
4042 enum compact_priority compact_priority;
4043 enum compact_result compact_result;
4044 int compaction_retries;
4045 int no_progress_loops;
4046 unsigned int cpuset_mems_cookie;
4047 unsigned int zonelist_iter_cookie;
4051 compaction_retries = 0;
4052 no_progress_loops = 0;
4053 compact_priority = DEF_COMPACT_PRIORITY;
4054 cpuset_mems_cookie = read_mems_allowed_begin();
4055 zonelist_iter_cookie = zonelist_iter_begin();
4058 * The fast path uses conservative alloc_flags to succeed only until
4059 * kswapd needs to be woken up, and to avoid the cost of setting up
4060 * alloc_flags precisely. So we do that now.
4062 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4065 * We need to recalculate the starting point for the zonelist iterator
4066 * because we might have used different nodemask in the fast path, or
4067 * there was a cpuset modification and we are retrying - otherwise we
4068 * could end up iterating over non-eligible zones endlessly.
4070 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4071 ac->highest_zoneidx, ac->nodemask);
4072 if (!ac->preferred_zoneref->zone)
4076 * Check for insane configurations where the cpuset doesn't contain
4077 * any suitable zone to satisfy the request - e.g. non-movable
4078 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4080 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4081 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4082 ac->highest_zoneidx,
4083 &cpuset_current_mems_allowed);
4088 if (alloc_flags & ALLOC_KSWAPD)
4089 wake_all_kswapds(order, gfp_mask, ac);
4092 * The adjusted alloc_flags might result in immediate success, so try
4095 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4100 * For costly allocations, try direct compaction first, as it's likely
4101 * that we have enough base pages and don't need to reclaim. For non-
4102 * movable high-order allocations, do that as well, as compaction will
4103 * try prevent permanent fragmentation by migrating from blocks of the
4105 * Don't try this for allocations that are allowed to ignore
4106 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4108 if (can_direct_reclaim &&
4110 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4111 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4112 page = __alloc_pages_direct_compact(gfp_mask, order,
4114 INIT_COMPACT_PRIORITY,
4120 * Checks for costly allocations with __GFP_NORETRY, which
4121 * includes some THP page fault allocations
4123 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4125 * If allocating entire pageblock(s) and compaction
4126 * failed because all zones are below low watermarks
4127 * or is prohibited because it recently failed at this
4128 * order, fail immediately unless the allocator has
4129 * requested compaction and reclaim retry.
4132 * - potentially very expensive because zones are far
4133 * below their low watermarks or this is part of very
4134 * bursty high order allocations,
4135 * - not guaranteed to help because isolate_freepages()
4136 * may not iterate over freed pages as part of its
4138 * - unlikely to make entire pageblocks free on its
4141 if (compact_result == COMPACT_SKIPPED ||
4142 compact_result == COMPACT_DEFERRED)
4146 * Looks like reclaim/compaction is worth trying, but
4147 * sync compaction could be very expensive, so keep
4148 * using async compaction.
4150 compact_priority = INIT_COMPACT_PRIORITY;
4155 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4156 if (alloc_flags & ALLOC_KSWAPD)
4157 wake_all_kswapds(order, gfp_mask, ac);
4159 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4161 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4162 (alloc_flags & ALLOC_KSWAPD);
4165 * Reset the nodemask and zonelist iterators if memory policies can be
4166 * ignored. These allocations are high priority and system rather than
4169 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4170 ac->nodemask = NULL;
4171 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4172 ac->highest_zoneidx, ac->nodemask);
4175 /* Attempt with potentially adjusted zonelist and alloc_flags */
4176 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4180 /* Caller is not willing to reclaim, we can't balance anything */
4181 if (!can_direct_reclaim)
4184 /* Avoid recursion of direct reclaim */
4185 if (current->flags & PF_MEMALLOC)
4188 /* Try direct reclaim and then allocating */
4189 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4190 &did_some_progress);
4194 /* Try direct compaction and then allocating */
4195 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4196 compact_priority, &compact_result);
4200 /* Do not loop if specifically requested */
4201 if (gfp_mask & __GFP_NORETRY)
4205 * Do not retry costly high order allocations unless they are
4206 * __GFP_RETRY_MAYFAIL
4208 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4211 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4212 did_some_progress > 0, &no_progress_loops))
4216 * It doesn't make any sense to retry for the compaction if the order-0
4217 * reclaim is not able to make any progress because the current
4218 * implementation of the compaction depends on the sufficient amount
4219 * of free memory (see __compaction_suitable)
4221 if (did_some_progress > 0 &&
4222 should_compact_retry(ac, order, alloc_flags,
4223 compact_result, &compact_priority,
4224 &compaction_retries))
4229 * Deal with possible cpuset update races or zonelist updates to avoid
4230 * a unnecessary OOM kill.
4232 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4233 check_retry_zonelist(zonelist_iter_cookie))
4236 /* Reclaim has failed us, start killing things */
4237 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4241 /* Avoid allocations with no watermarks from looping endlessly */
4242 if (tsk_is_oom_victim(current) &&
4243 (alloc_flags & ALLOC_OOM ||
4244 (gfp_mask & __GFP_NOMEMALLOC)))
4247 /* Retry as long as the OOM killer is making progress */
4248 if (did_some_progress) {
4249 no_progress_loops = 0;
4255 * Deal with possible cpuset update races or zonelist updates to avoid
4256 * a unnecessary OOM kill.
4258 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4259 check_retry_zonelist(zonelist_iter_cookie))
4263 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4266 if (gfp_mask & __GFP_NOFAIL) {
4268 * All existing users of the __GFP_NOFAIL are blockable, so warn
4269 * of any new users that actually require GFP_NOWAIT
4271 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4275 * PF_MEMALLOC request from this context is rather bizarre
4276 * because we cannot reclaim anything and only can loop waiting
4277 * for somebody to do a work for us
4279 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4282 * non failing costly orders are a hard requirement which we
4283 * are not prepared for much so let's warn about these users
4284 * so that we can identify them and convert them to something
4287 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4290 * Help non-failing allocations by giving some access to memory
4291 * reserves normally used for high priority non-blocking
4292 * allocations but do not use ALLOC_NO_WATERMARKS because this
4293 * could deplete whole memory reserves which would just make
4294 * the situation worse.
4296 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4304 warn_alloc(gfp_mask, ac->nodemask,
4305 "page allocation failure: order:%u", order);
4310 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4311 int preferred_nid, nodemask_t *nodemask,
4312 struct alloc_context *ac, gfp_t *alloc_gfp,
4313 unsigned int *alloc_flags)
4315 ac->highest_zoneidx = gfp_zone(gfp_mask);
4316 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4317 ac->nodemask = nodemask;
4318 ac->migratetype = gfp_migratetype(gfp_mask);
4320 if (cpusets_enabled()) {
4321 *alloc_gfp |= __GFP_HARDWALL;
4323 * When we are in the interrupt context, it is irrelevant
4324 * to the current task context. It means that any node ok.
4326 if (in_task() && !ac->nodemask)
4327 ac->nodemask = &cpuset_current_mems_allowed;
4329 *alloc_flags |= ALLOC_CPUSET;
4332 might_alloc(gfp_mask);
4334 if (should_fail_alloc_page(gfp_mask, order))
4337 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4339 /* Dirty zone balancing only done in the fast path */
4340 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4343 * The preferred zone is used for statistics but crucially it is
4344 * also used as the starting point for the zonelist iterator. It
4345 * may get reset for allocations that ignore memory policies.
4347 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4348 ac->highest_zoneidx, ac->nodemask);
4354 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4355 * @gfp: GFP flags for the allocation
4356 * @preferred_nid: The preferred NUMA node ID to allocate from
4357 * @nodemask: Set of nodes to allocate from, may be NULL
4358 * @nr_pages: The number of pages desired on the list or array
4359 * @page_list: Optional list to store the allocated pages
4360 * @page_array: Optional array to store the pages
4362 * This is a batched version of the page allocator that attempts to
4363 * allocate nr_pages quickly. Pages are added to page_list if page_list
4364 * is not NULL, otherwise it is assumed that the page_array is valid.
4366 * For lists, nr_pages is the number of pages that should be allocated.
4368 * For arrays, only NULL elements are populated with pages and nr_pages
4369 * is the maximum number of pages that will be stored in the array.
4371 * Returns the number of pages on the list or array.
4373 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4374 nodemask_t *nodemask, int nr_pages,
4375 struct list_head *page_list,
4376 struct page **page_array)
4379 unsigned long __maybe_unused UP_flags;
4382 struct per_cpu_pages *pcp;
4383 struct list_head *pcp_list;
4384 struct alloc_context ac;
4386 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4387 int nr_populated = 0, nr_account = 0;
4390 * Skip populated array elements to determine if any pages need
4391 * to be allocated before disabling IRQs.
4393 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4396 /* No pages requested? */
4397 if (unlikely(nr_pages <= 0))
4400 /* Already populated array? */
4401 if (unlikely(page_array && nr_pages - nr_populated == 0))
4404 /* Bulk allocator does not support memcg accounting. */
4405 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4408 /* Use the single page allocator for one page. */
4409 if (nr_pages - nr_populated == 1)
4412 #ifdef CONFIG_PAGE_OWNER
4414 * PAGE_OWNER may recurse into the allocator to allocate space to
4415 * save the stack with pagesets.lock held. Releasing/reacquiring
4416 * removes much of the performance benefit of bulk allocation so
4417 * force the caller to allocate one page at a time as it'll have
4418 * similar performance to added complexity to the bulk allocator.
4420 if (static_branch_unlikely(&page_owner_inited))
4424 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4425 gfp &= gfp_allowed_mask;
4427 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4431 /* Find an allowed local zone that meets the low watermark. */
4432 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4435 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4436 !__cpuset_zone_allowed(zone, gfp)) {
4440 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4441 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4445 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4446 if (zone_watermark_fast(zone, 0, mark,
4447 zonelist_zone_idx(ac.preferred_zoneref),
4448 alloc_flags, gfp)) {
4454 * If there are no allowed local zones that meets the watermarks then
4455 * try to allocate a single page and reclaim if necessary.
4457 if (unlikely(!zone))
4460 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4461 pcp_trylock_prepare(UP_flags);
4462 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4466 /* Attempt the batch allocation */
4467 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4468 while (nr_populated < nr_pages) {
4470 /* Skip existing pages */
4471 if (page_array && page_array[nr_populated]) {
4476 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4478 if (unlikely(!page)) {
4479 /* Try and allocate at least one page */
4481 pcp_spin_unlock(pcp);
4488 prep_new_page(page, 0, gfp, 0);
4490 list_add(&page->lru, page_list);
4492 page_array[nr_populated] = page;
4496 pcp_spin_unlock(pcp);
4497 pcp_trylock_finish(UP_flags);
4499 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4500 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4503 return nr_populated;
4506 pcp_trylock_finish(UP_flags);
4509 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4512 list_add(&page->lru, page_list);
4514 page_array[nr_populated] = page;
4520 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4523 * This is the 'heart' of the zoned buddy allocator.
4525 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4526 nodemask_t *nodemask)
4529 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4530 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4531 struct alloc_context ac = { };
4534 * There are several places where we assume that the order value is sane
4535 * so bail out early if the request is out of bound.
4537 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4540 gfp &= gfp_allowed_mask;
4542 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4543 * resp. GFP_NOIO which has to be inherited for all allocation requests
4544 * from a particular context which has been marked by
4545 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4546 * movable zones are not used during allocation.
4548 gfp = current_gfp_context(gfp);
4550 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4551 &alloc_gfp, &alloc_flags))
4555 * Forbid the first pass from falling back to types that fragment
4556 * memory until all local zones are considered.
4558 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4560 /* First allocation attempt */
4561 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4566 ac.spread_dirty_pages = false;
4569 * Restore the original nodemask if it was potentially replaced with
4570 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4572 ac.nodemask = nodemask;
4574 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4577 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4578 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4579 __free_pages(page, order);
4583 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4584 kmsan_alloc_page(page, order, alloc_gfp);
4588 EXPORT_SYMBOL(__alloc_pages);
4590 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4591 nodemask_t *nodemask)
4593 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4594 preferred_nid, nodemask);
4595 return page_rmappable_folio(page);
4597 EXPORT_SYMBOL(__folio_alloc);
4600 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4601 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4602 * you need to access high mem.
4604 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4608 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4611 return (unsigned long) page_address(page);
4613 EXPORT_SYMBOL(__get_free_pages);
4615 unsigned long get_zeroed_page(gfp_t gfp_mask)
4617 return __get_free_page(gfp_mask | __GFP_ZERO);
4619 EXPORT_SYMBOL(get_zeroed_page);
4622 * __free_pages - Free pages allocated with alloc_pages().
4623 * @page: The page pointer returned from alloc_pages().
4624 * @order: The order of the allocation.
4626 * This function can free multi-page allocations that are not compound
4627 * pages. It does not check that the @order passed in matches that of
4628 * the allocation, so it is easy to leak memory. Freeing more memory
4629 * than was allocated will probably emit a warning.
4631 * If the last reference to this page is speculative, it will be released
4632 * by put_page() which only frees the first page of a non-compound
4633 * allocation. To prevent the remaining pages from being leaked, we free
4634 * the subsequent pages here. If you want to use the page's reference
4635 * count to decide when to free the allocation, you should allocate a
4636 * compound page, and use put_page() instead of __free_pages().
4638 * Context: May be called in interrupt context or while holding a normal
4639 * spinlock, but not in NMI context or while holding a raw spinlock.
4641 void __free_pages(struct page *page, unsigned int order)
4643 /* get PageHead before we drop reference */
4644 int head = PageHead(page);
4646 if (put_page_testzero(page))
4647 free_the_page(page, order);
4650 free_the_page(page + (1 << order), order);
4652 EXPORT_SYMBOL(__free_pages);
4654 void free_pages(unsigned long addr, unsigned int order)
4657 VM_BUG_ON(!virt_addr_valid((void *)addr));
4658 __free_pages(virt_to_page((void *)addr), order);
4662 EXPORT_SYMBOL(free_pages);
4666 * An arbitrary-length arbitrary-offset area of memory which resides
4667 * within a 0 or higher order page. Multiple fragments within that page
4668 * are individually refcounted, in the page's reference counter.
4670 * The page_frag functions below provide a simple allocation framework for
4671 * page fragments. This is used by the network stack and network device
4672 * drivers to provide a backing region of memory for use as either an
4673 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4675 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4678 struct page *page = NULL;
4679 gfp_t gfp = gfp_mask;
4681 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4682 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4684 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4685 PAGE_FRAG_CACHE_MAX_ORDER);
4686 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4688 if (unlikely(!page))
4689 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4691 nc->va = page ? page_address(page) : NULL;
4696 void __page_frag_cache_drain(struct page *page, unsigned int count)
4698 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4700 if (page_ref_sub_and_test(page, count))
4701 free_the_page(page, compound_order(page));
4703 EXPORT_SYMBOL(__page_frag_cache_drain);
4705 void *page_frag_alloc_align(struct page_frag_cache *nc,
4706 unsigned int fragsz, gfp_t gfp_mask,
4707 unsigned int align_mask)
4709 unsigned int size = PAGE_SIZE;
4713 if (unlikely(!nc->va)) {
4715 page = __page_frag_cache_refill(nc, gfp_mask);
4719 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4720 /* if size can vary use size else just use PAGE_SIZE */
4723 /* Even if we own the page, we do not use atomic_set().
4724 * This would break get_page_unless_zero() users.
4726 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4728 /* reset page count bias and offset to start of new frag */
4729 nc->pfmemalloc = page_is_pfmemalloc(page);
4730 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4734 offset = nc->offset - fragsz;
4735 if (unlikely(offset < 0)) {
4736 page = virt_to_page(nc->va);
4738 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4741 if (unlikely(nc->pfmemalloc)) {
4742 free_the_page(page, compound_order(page));
4746 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4747 /* if size can vary use size else just use PAGE_SIZE */
4750 /* OK, page count is 0, we can safely set it */
4751 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4753 /* reset page count bias and offset to start of new frag */
4754 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4755 offset = size - fragsz;
4756 if (unlikely(offset < 0)) {
4758 * The caller is trying to allocate a fragment
4759 * with fragsz > PAGE_SIZE but the cache isn't big
4760 * enough to satisfy the request, this may
4761 * happen in low memory conditions.
4762 * We don't release the cache page because
4763 * it could make memory pressure worse
4764 * so we simply return NULL here.
4771 offset &= align_mask;
4772 nc->offset = offset;
4774 return nc->va + offset;
4776 EXPORT_SYMBOL(page_frag_alloc_align);
4779 * Frees a page fragment allocated out of either a compound or order 0 page.
4781 void page_frag_free(void *addr)
4783 struct page *page = virt_to_head_page(addr);
4785 if (unlikely(put_page_testzero(page)))
4786 free_the_page(page, compound_order(page));
4788 EXPORT_SYMBOL(page_frag_free);
4790 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4794 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4795 struct page *page = virt_to_page((void *)addr);
4796 struct page *last = page + nr;
4798 split_page_owner(page, 1 << order);
4799 split_page_memcg(page, 1 << order);
4800 while (page < --last)
4801 set_page_refcounted(last);
4803 last = page + (1UL << order);
4804 for (page += nr; page < last; page++)
4805 __free_pages_ok(page, 0, FPI_TO_TAIL);
4807 return (void *)addr;
4811 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4812 * @size: the number of bytes to allocate
4813 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4815 * This function is similar to alloc_pages(), except that it allocates the
4816 * minimum number of pages to satisfy the request. alloc_pages() can only
4817 * allocate memory in power-of-two pages.
4819 * This function is also limited by MAX_ORDER.
4821 * Memory allocated by this function must be released by free_pages_exact().
4823 * Return: pointer to the allocated area or %NULL in case of error.
4825 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4827 unsigned int order = get_order(size);
4830 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4831 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4833 addr = __get_free_pages(gfp_mask, order);
4834 return make_alloc_exact(addr, order, size);
4836 EXPORT_SYMBOL(alloc_pages_exact);
4839 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4841 * @nid: the preferred node ID where memory should be allocated
4842 * @size: the number of bytes to allocate
4843 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4845 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4848 * Return: pointer to the allocated area or %NULL in case of error.
4850 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4852 unsigned int order = get_order(size);
4855 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4856 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4858 p = alloc_pages_node(nid, gfp_mask, order);
4861 return make_alloc_exact((unsigned long)page_address(p), order, size);
4865 * free_pages_exact - release memory allocated via alloc_pages_exact()
4866 * @virt: the value returned by alloc_pages_exact.
4867 * @size: size of allocation, same value as passed to alloc_pages_exact().
4869 * Release the memory allocated by a previous call to alloc_pages_exact.
4871 void free_pages_exact(void *virt, size_t size)
4873 unsigned long addr = (unsigned long)virt;
4874 unsigned long end = addr + PAGE_ALIGN(size);
4876 while (addr < end) {
4881 EXPORT_SYMBOL(free_pages_exact);
4884 * nr_free_zone_pages - count number of pages beyond high watermark
4885 * @offset: The zone index of the highest zone
4887 * nr_free_zone_pages() counts the number of pages which are beyond the
4888 * high watermark within all zones at or below a given zone index. For each
4889 * zone, the number of pages is calculated as:
4891 * nr_free_zone_pages = managed_pages - high_pages
4893 * Return: number of pages beyond high watermark.
4895 static unsigned long nr_free_zone_pages(int offset)
4900 /* Just pick one node, since fallback list is circular */
4901 unsigned long sum = 0;
4903 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4905 for_each_zone_zonelist(zone, z, zonelist, offset) {
4906 unsigned long size = zone_managed_pages(zone);
4907 unsigned long high = high_wmark_pages(zone);
4916 * nr_free_buffer_pages - count number of pages beyond high watermark
4918 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4919 * watermark within ZONE_DMA and ZONE_NORMAL.
4921 * Return: number of pages beyond high watermark within ZONE_DMA and
4924 unsigned long nr_free_buffer_pages(void)
4926 return nr_free_zone_pages(gfp_zone(GFP_USER));
4928 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4930 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4932 zoneref->zone = zone;
4933 zoneref->zone_idx = zone_idx(zone);
4937 * Builds allocation fallback zone lists.
4939 * Add all populated zones of a node to the zonelist.
4941 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4944 enum zone_type zone_type = MAX_NR_ZONES;
4949 zone = pgdat->node_zones + zone_type;
4950 if (populated_zone(zone)) {
4951 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4952 check_highest_zone(zone_type);
4954 } while (zone_type);
4961 static int __parse_numa_zonelist_order(char *s)
4964 * We used to support different zonelists modes but they turned
4965 * out to be just not useful. Let's keep the warning in place
4966 * if somebody still use the cmd line parameter so that we do
4967 * not fail it silently
4969 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4970 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4976 static char numa_zonelist_order[] = "Node";
4977 #define NUMA_ZONELIST_ORDER_LEN 16
4979 * sysctl handler for numa_zonelist_order
4981 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4982 void *buffer, size_t *length, loff_t *ppos)
4985 return __parse_numa_zonelist_order(buffer);
4986 return proc_dostring(table, write, buffer, length, ppos);
4989 static int node_load[MAX_NUMNODES];
4992 * find_next_best_node - find the next node that should appear in a given node's fallback list
4993 * @node: node whose fallback list we're appending
4994 * @used_node_mask: nodemask_t of already used nodes
4996 * We use a number of factors to determine which is the next node that should
4997 * appear on a given node's fallback list. The node should not have appeared
4998 * already in @node's fallback list, and it should be the next closest node
4999 * according to the distance array (which contains arbitrary distance values
5000 * from each node to each node in the system), and should also prefer nodes
5001 * with no CPUs, since presumably they'll have very little allocation pressure
5002 * on them otherwise.
5004 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5006 int find_next_best_node(int node, nodemask_t *used_node_mask)
5009 int min_val = INT_MAX;
5010 int best_node = NUMA_NO_NODE;
5013 * Use the local node if we haven't already, but for memoryless local
5014 * node, we should skip it and fall back to other nodes.
5016 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5017 node_set(node, *used_node_mask);
5021 for_each_node_state(n, N_MEMORY) {
5023 /* Don't want a node to appear more than once */
5024 if (node_isset(n, *used_node_mask))
5027 /* Use the distance array to find the distance */
5028 val = node_distance(node, n);
5030 /* Penalize nodes under us ("prefer the next node") */
5033 /* Give preference to headless and unused nodes */
5034 if (!cpumask_empty(cpumask_of_node(n)))
5035 val += PENALTY_FOR_NODE_WITH_CPUS;
5037 /* Slight preference for less loaded node */
5038 val *= MAX_NUMNODES;
5039 val += node_load[n];
5041 if (val < min_val) {
5048 node_set(best_node, *used_node_mask);
5055 * Build zonelists ordered by node and zones within node.
5056 * This results in maximum locality--normal zone overflows into local
5057 * DMA zone, if any--but risks exhausting DMA zone.
5059 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5062 struct zoneref *zonerefs;
5065 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5067 for (i = 0; i < nr_nodes; i++) {
5070 pg_data_t *node = NODE_DATA(node_order[i]);
5072 nr_zones = build_zonerefs_node(node, zonerefs);
5073 zonerefs += nr_zones;
5075 zonerefs->zone = NULL;
5076 zonerefs->zone_idx = 0;
5080 * Build gfp_thisnode zonelists
5082 static void build_thisnode_zonelists(pg_data_t *pgdat)
5084 struct zoneref *zonerefs;
5087 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5088 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5089 zonerefs += nr_zones;
5090 zonerefs->zone = NULL;
5091 zonerefs->zone_idx = 0;
5095 * Build zonelists ordered by zone and nodes within zones.
5096 * This results in conserving DMA zone[s] until all Normal memory is
5097 * exhausted, but results in overflowing to remote node while memory
5098 * may still exist in local DMA zone.
5101 static void build_zonelists(pg_data_t *pgdat)
5103 static int node_order[MAX_NUMNODES];
5104 int node, nr_nodes = 0;
5105 nodemask_t used_mask = NODE_MASK_NONE;
5106 int local_node, prev_node;
5108 /* NUMA-aware ordering of nodes */
5109 local_node = pgdat->node_id;
5110 prev_node = local_node;
5112 memset(node_order, 0, sizeof(node_order));
5113 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5115 * We don't want to pressure a particular node.
5116 * So adding penalty to the first node in same
5117 * distance group to make it round-robin.
5119 if (node_distance(local_node, node) !=
5120 node_distance(local_node, prev_node))
5121 node_load[node] += 1;
5123 node_order[nr_nodes++] = node;
5127 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5128 build_thisnode_zonelists(pgdat);
5129 pr_info("Fallback order for Node %d: ", local_node);
5130 for (node = 0; node < nr_nodes; node++)
5131 pr_cont("%d ", node_order[node]);
5135 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5137 * Return node id of node used for "local" allocations.
5138 * I.e., first node id of first zone in arg node's generic zonelist.
5139 * Used for initializing percpu 'numa_mem', which is used primarily
5140 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5142 int local_memory_node(int node)
5146 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5147 gfp_zone(GFP_KERNEL),
5149 return zone_to_nid(z->zone);
5153 static void setup_min_unmapped_ratio(void);
5154 static void setup_min_slab_ratio(void);
5155 #else /* CONFIG_NUMA */
5157 static void build_zonelists(pg_data_t *pgdat)
5159 int node, local_node;
5160 struct zoneref *zonerefs;
5163 local_node = pgdat->node_id;
5165 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5166 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5167 zonerefs += nr_zones;
5170 * Now we build the zonelist so that it contains the zones
5171 * of all the other nodes.
5172 * We don't want to pressure a particular node, so when
5173 * building the zones for node N, we make sure that the
5174 * zones coming right after the local ones are those from
5175 * node N+1 (modulo N)
5177 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5178 if (!node_online(node))
5180 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5181 zonerefs += nr_zones;
5183 for (node = 0; node < local_node; node++) {
5184 if (!node_online(node))
5186 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5187 zonerefs += nr_zones;
5190 zonerefs->zone = NULL;
5191 zonerefs->zone_idx = 0;
5194 #endif /* CONFIG_NUMA */
5197 * Boot pageset table. One per cpu which is going to be used for all
5198 * zones and all nodes. The parameters will be set in such a way
5199 * that an item put on a list will immediately be handed over to
5200 * the buddy list. This is safe since pageset manipulation is done
5201 * with interrupts disabled.
5203 * The boot_pagesets must be kept even after bootup is complete for
5204 * unused processors and/or zones. They do play a role for bootstrapping
5205 * hotplugged processors.
5207 * zoneinfo_show() and maybe other functions do
5208 * not check if the processor is online before following the pageset pointer.
5209 * Other parts of the kernel may not check if the zone is available.
5211 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5212 /* These effectively disable the pcplists in the boot pageset completely */
5213 #define BOOT_PAGESET_HIGH 0
5214 #define BOOT_PAGESET_BATCH 1
5215 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5216 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5218 static void __build_all_zonelists(void *data)
5221 int __maybe_unused cpu;
5222 pg_data_t *self = data;
5223 unsigned long flags;
5226 * The zonelist_update_seq must be acquired with irqsave because the
5227 * reader can be invoked from IRQ with GFP_ATOMIC.
5229 write_seqlock_irqsave(&zonelist_update_seq, flags);
5231 * Also disable synchronous printk() to prevent any printk() from
5232 * trying to hold port->lock, for
5233 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5234 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5236 printk_deferred_enter();
5239 memset(node_load, 0, sizeof(node_load));
5243 * This node is hotadded and no memory is yet present. So just
5244 * building zonelists is fine - no need to touch other nodes.
5246 if (self && !node_online(self->node_id)) {
5247 build_zonelists(self);
5250 * All possible nodes have pgdat preallocated
5253 for_each_node(nid) {
5254 pg_data_t *pgdat = NODE_DATA(nid);
5256 build_zonelists(pgdat);
5259 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5261 * We now know the "local memory node" for each node--
5262 * i.e., the node of the first zone in the generic zonelist.
5263 * Set up numa_mem percpu variable for on-line cpus. During
5264 * boot, only the boot cpu should be on-line; we'll init the
5265 * secondary cpus' numa_mem as they come on-line. During
5266 * node/memory hotplug, we'll fixup all on-line cpus.
5268 for_each_online_cpu(cpu)
5269 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5273 printk_deferred_exit();
5274 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5277 static noinline void __init
5278 build_all_zonelists_init(void)
5282 __build_all_zonelists(NULL);
5285 * Initialize the boot_pagesets that are going to be used
5286 * for bootstrapping processors. The real pagesets for
5287 * each zone will be allocated later when the per cpu
5288 * allocator is available.
5290 * boot_pagesets are used also for bootstrapping offline
5291 * cpus if the system is already booted because the pagesets
5292 * are needed to initialize allocators on a specific cpu too.
5293 * F.e. the percpu allocator needs the page allocator which
5294 * needs the percpu allocator in order to allocate its pagesets
5295 * (a chicken-egg dilemma).
5297 for_each_possible_cpu(cpu)
5298 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5300 mminit_verify_zonelist();
5301 cpuset_init_current_mems_allowed();
5305 * unless system_state == SYSTEM_BOOTING.
5307 * __ref due to call of __init annotated helper build_all_zonelists_init
5308 * [protected by SYSTEM_BOOTING].
5310 void __ref build_all_zonelists(pg_data_t *pgdat)
5312 unsigned long vm_total_pages;
5314 if (system_state == SYSTEM_BOOTING) {
5315 build_all_zonelists_init();
5317 __build_all_zonelists(pgdat);
5318 /* cpuset refresh routine should be here */
5320 /* Get the number of free pages beyond high watermark in all zones. */
5321 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5323 * Disable grouping by mobility if the number of pages in the
5324 * system is too low to allow the mechanism to work. It would be
5325 * more accurate, but expensive to check per-zone. This check is
5326 * made on memory-hotadd so a system can start with mobility
5327 * disabled and enable it later
5329 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5330 page_group_by_mobility_disabled = 1;
5332 page_group_by_mobility_disabled = 0;
5334 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5336 page_group_by_mobility_disabled ? "off" : "on",
5339 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5343 static int zone_batchsize(struct zone *zone)
5349 * The number of pages to batch allocate is either ~0.1%
5350 * of the zone or 1MB, whichever is smaller. The batch
5351 * size is striking a balance between allocation latency
5352 * and zone lock contention.
5354 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5355 batch /= 4; /* We effectively *= 4 below */
5360 * Clamp the batch to a 2^n - 1 value. Having a power
5361 * of 2 value was found to be more likely to have
5362 * suboptimal cache aliasing properties in some cases.
5364 * For example if 2 tasks are alternately allocating
5365 * batches of pages, one task can end up with a lot
5366 * of pages of one half of the possible page colors
5367 * and the other with pages of the other colors.
5369 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5374 /* The deferral and batching of frees should be suppressed under NOMMU
5377 * The problem is that NOMMU needs to be able to allocate large chunks
5378 * of contiguous memory as there's no hardware page translation to
5379 * assemble apparent contiguous memory from discontiguous pages.
5381 * Queueing large contiguous runs of pages for batching, however,
5382 * causes the pages to actually be freed in smaller chunks. As there
5383 * can be a significant delay between the individual batches being
5384 * recycled, this leads to the once large chunks of space being
5385 * fragmented and becoming unavailable for high-order allocations.
5391 static int percpu_pagelist_high_fraction;
5392 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5398 unsigned long total_pages;
5400 if (!high_fraction) {
5402 * By default, the high value of the pcp is based on the zone
5403 * low watermark so that if they are full then background
5404 * reclaim will not be started prematurely.
5406 total_pages = low_wmark_pages(zone);
5409 * If percpu_pagelist_high_fraction is configured, the high
5410 * value is based on a fraction of the managed pages in the
5413 total_pages = zone_managed_pages(zone) / high_fraction;
5417 * Split the high value across all online CPUs local to the zone. Note
5418 * that early in boot that CPUs may not be online yet and that during
5419 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5420 * onlined. For memory nodes that have no CPUs, split the high value
5421 * across all online CPUs to mitigate the risk that reclaim is triggered
5422 * prematurely due to pages stored on pcp lists.
5424 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5426 nr_split_cpus = num_online_cpus();
5427 high = total_pages / nr_split_cpus;
5430 * Ensure high is at least batch*4. The multiple is based on the
5431 * historical relationship between high and batch.
5433 high = max(high, batch << 2);
5442 * pcp->high and pcp->batch values are related and generally batch is lower
5443 * than high. They are also related to pcp->count such that count is lower
5444 * than high, and as soon as it reaches high, the pcplist is flushed.
5446 * However, guaranteeing these relations at all times would require e.g. write
5447 * barriers here but also careful usage of read barriers at the read side, and
5448 * thus be prone to error and bad for performance. Thus the update only prevents
5449 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5450 * should ensure they can cope with those fields changing asynchronously, and
5451 * fully trust only the pcp->count field on the local CPU with interrupts
5454 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5455 * outside of boot time (or some other assurance that no concurrent updaters
5458 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5459 unsigned long high_max, unsigned long batch)
5461 WRITE_ONCE(pcp->batch, batch);
5462 WRITE_ONCE(pcp->high_min, high_min);
5463 WRITE_ONCE(pcp->high_max, high_max);
5466 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5470 memset(pcp, 0, sizeof(*pcp));
5471 memset(pzstats, 0, sizeof(*pzstats));
5473 spin_lock_init(&pcp->lock);
5474 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5475 INIT_LIST_HEAD(&pcp->lists[pindex]);
5478 * Set batch and high values safe for a boot pageset. A true percpu
5479 * pageset's initialization will update them subsequently. Here we don't
5480 * need to be as careful as pageset_update() as nobody can access the
5483 pcp->high_min = BOOT_PAGESET_HIGH;
5484 pcp->high_max = BOOT_PAGESET_HIGH;
5485 pcp->batch = BOOT_PAGESET_BATCH;
5486 pcp->free_count = 0;
5489 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5490 unsigned long high_max, unsigned long batch)
5492 struct per_cpu_pages *pcp;
5495 for_each_possible_cpu(cpu) {
5496 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5497 pageset_update(pcp, high_min, high_max, batch);
5502 * Calculate and set new high and batch values for all per-cpu pagesets of a
5503 * zone based on the zone's size.
5505 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5507 int new_high_min, new_high_max, new_batch;
5509 new_batch = max(1, zone_batchsize(zone));
5510 if (percpu_pagelist_high_fraction) {
5511 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5512 percpu_pagelist_high_fraction);
5514 * PCP high is tuned manually, disable auto-tuning via
5515 * setting high_min and high_max to the manual value.
5517 new_high_max = new_high_min;
5519 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5520 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5521 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5524 if (zone->pageset_high_min == new_high_min &&
5525 zone->pageset_high_max == new_high_max &&
5526 zone->pageset_batch == new_batch)
5529 zone->pageset_high_min = new_high_min;
5530 zone->pageset_high_max = new_high_max;
5531 zone->pageset_batch = new_batch;
5533 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5537 void __meminit setup_zone_pageset(struct zone *zone)
5541 /* Size may be 0 on !SMP && !NUMA */
5542 if (sizeof(struct per_cpu_zonestat) > 0)
5543 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5545 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5546 for_each_possible_cpu(cpu) {
5547 struct per_cpu_pages *pcp;
5548 struct per_cpu_zonestat *pzstats;
5550 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5551 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5552 per_cpu_pages_init(pcp, pzstats);
5555 zone_set_pageset_high_and_batch(zone, 0);
5559 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5560 * page high values need to be recalculated.
5562 static void zone_pcp_update(struct zone *zone, int cpu_online)
5564 mutex_lock(&pcp_batch_high_lock);
5565 zone_set_pageset_high_and_batch(zone, cpu_online);
5566 mutex_unlock(&pcp_batch_high_lock);
5569 static void zone_pcp_update_cacheinfo(struct zone *zone)
5572 struct per_cpu_pages *pcp;
5573 struct cpu_cacheinfo *cci;
5575 for_each_online_cpu(cpu) {
5576 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5577 cci = get_cpu_cacheinfo(cpu);
5579 * If data cache slice of CPU is large enough, "pcp->batch"
5580 * pages can be preserved in PCP before draining PCP for
5581 * consecutive high-order pages freeing without allocation.
5582 * This can reduce zone lock contention without hurting
5583 * cache-hot pages sharing.
5585 spin_lock(&pcp->lock);
5586 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5587 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5589 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5590 spin_unlock(&pcp->lock);
5594 void setup_pcp_cacheinfo(void)
5598 for_each_populated_zone(zone)
5599 zone_pcp_update_cacheinfo(zone);
5603 * Allocate per cpu pagesets and initialize them.
5604 * Before this call only boot pagesets were available.
5606 void __init setup_per_cpu_pageset(void)
5608 struct pglist_data *pgdat;
5610 int __maybe_unused cpu;
5612 for_each_populated_zone(zone)
5613 setup_zone_pageset(zone);
5617 * Unpopulated zones continue using the boot pagesets.
5618 * The numa stats for these pagesets need to be reset.
5619 * Otherwise, they will end up skewing the stats of
5620 * the nodes these zones are associated with.
5622 for_each_possible_cpu(cpu) {
5623 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5624 memset(pzstats->vm_numa_event, 0,
5625 sizeof(pzstats->vm_numa_event));
5629 for_each_online_pgdat(pgdat)
5630 pgdat->per_cpu_nodestats =
5631 alloc_percpu(struct per_cpu_nodestat);
5634 __meminit void zone_pcp_init(struct zone *zone)
5637 * per cpu subsystem is not up at this point. The following code
5638 * relies on the ability of the linker to provide the
5639 * offset of a (static) per cpu variable into the per cpu area.
5641 zone->per_cpu_pageset = &boot_pageset;
5642 zone->per_cpu_zonestats = &boot_zonestats;
5643 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5644 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5645 zone->pageset_batch = BOOT_PAGESET_BATCH;
5647 if (populated_zone(zone))
5648 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5649 zone->present_pages, zone_batchsize(zone));
5652 void adjust_managed_page_count(struct page *page, long count)
5654 atomic_long_add(count, &page_zone(page)->managed_pages);
5655 totalram_pages_add(count);
5656 #ifdef CONFIG_HIGHMEM
5657 if (PageHighMem(page))
5658 totalhigh_pages_add(count);
5661 EXPORT_SYMBOL(adjust_managed_page_count);
5663 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5666 unsigned long pages = 0;
5668 start = (void *)PAGE_ALIGN((unsigned long)start);
5669 end = (void *)((unsigned long)end & PAGE_MASK);
5670 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5671 struct page *page = virt_to_page(pos);
5672 void *direct_map_addr;
5675 * 'direct_map_addr' might be different from 'pos'
5676 * because some architectures' virt_to_page()
5677 * work with aliases. Getting the direct map
5678 * address ensures that we get a _writeable_
5679 * alias for the memset().
5681 direct_map_addr = page_address(page);
5683 * Perform a kasan-unchecked memset() since this memory
5684 * has not been initialized.
5686 direct_map_addr = kasan_reset_tag(direct_map_addr);
5687 if ((unsigned int)poison <= 0xFF)
5688 memset(direct_map_addr, poison, PAGE_SIZE);
5690 free_reserved_page(page);
5694 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5699 static int page_alloc_cpu_dead(unsigned int cpu)
5703 lru_add_drain_cpu(cpu);
5704 mlock_drain_remote(cpu);
5708 * Spill the event counters of the dead processor
5709 * into the current processors event counters.
5710 * This artificially elevates the count of the current
5713 vm_events_fold_cpu(cpu);
5716 * Zero the differential counters of the dead processor
5717 * so that the vm statistics are consistent.
5719 * This is only okay since the processor is dead and cannot
5720 * race with what we are doing.
5722 cpu_vm_stats_fold(cpu);
5724 for_each_populated_zone(zone)
5725 zone_pcp_update(zone, 0);
5730 static int page_alloc_cpu_online(unsigned int cpu)
5734 for_each_populated_zone(zone)
5735 zone_pcp_update(zone, 1);
5739 void __init page_alloc_init_cpuhp(void)
5743 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5744 "mm/page_alloc:pcp",
5745 page_alloc_cpu_online,
5746 page_alloc_cpu_dead);
5751 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5752 * or min_free_kbytes changes.
5754 static void calculate_totalreserve_pages(void)
5756 struct pglist_data *pgdat;
5757 unsigned long reserve_pages = 0;
5758 enum zone_type i, j;
5760 for_each_online_pgdat(pgdat) {
5762 pgdat->totalreserve_pages = 0;
5764 for (i = 0; i < MAX_NR_ZONES; i++) {
5765 struct zone *zone = pgdat->node_zones + i;
5767 unsigned long managed_pages = zone_managed_pages(zone);
5769 /* Find valid and maximum lowmem_reserve in the zone */
5770 for (j = i; j < MAX_NR_ZONES; j++) {
5771 if (zone->lowmem_reserve[j] > max)
5772 max = zone->lowmem_reserve[j];
5775 /* we treat the high watermark as reserved pages. */
5776 max += high_wmark_pages(zone);
5778 if (max > managed_pages)
5779 max = managed_pages;
5781 pgdat->totalreserve_pages += max;
5783 reserve_pages += max;
5786 totalreserve_pages = reserve_pages;
5790 * setup_per_zone_lowmem_reserve - called whenever
5791 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5792 * has a correct pages reserved value, so an adequate number of
5793 * pages are left in the zone after a successful __alloc_pages().
5795 static void setup_per_zone_lowmem_reserve(void)
5797 struct pglist_data *pgdat;
5798 enum zone_type i, j;
5800 for_each_online_pgdat(pgdat) {
5801 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5802 struct zone *zone = &pgdat->node_zones[i];
5803 int ratio = sysctl_lowmem_reserve_ratio[i];
5804 bool clear = !ratio || !zone_managed_pages(zone);
5805 unsigned long managed_pages = 0;
5807 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5808 struct zone *upper_zone = &pgdat->node_zones[j];
5810 managed_pages += zone_managed_pages(upper_zone);
5813 zone->lowmem_reserve[j] = 0;
5815 zone->lowmem_reserve[j] = managed_pages / ratio;
5820 /* update totalreserve_pages */
5821 calculate_totalreserve_pages();
5824 static void __setup_per_zone_wmarks(void)
5826 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5827 unsigned long lowmem_pages = 0;
5829 unsigned long flags;
5831 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5832 for_each_zone(zone) {
5833 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5834 lowmem_pages += zone_managed_pages(zone);
5837 for_each_zone(zone) {
5840 spin_lock_irqsave(&zone->lock, flags);
5841 tmp = (u64)pages_min * zone_managed_pages(zone);
5842 do_div(tmp, lowmem_pages);
5843 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5845 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5846 * need highmem and movable zones pages, so cap pages_min
5847 * to a small value here.
5849 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5850 * deltas control async page reclaim, and so should
5851 * not be capped for highmem and movable zones.
5853 unsigned long min_pages;
5855 min_pages = zone_managed_pages(zone) / 1024;
5856 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5857 zone->_watermark[WMARK_MIN] = min_pages;
5860 * If it's a lowmem zone, reserve a number of pages
5861 * proportionate to the zone's size.
5863 zone->_watermark[WMARK_MIN] = tmp;
5867 * Set the kswapd watermarks distance according to the
5868 * scale factor in proportion to available memory, but
5869 * ensure a minimum size on small systems.
5871 tmp = max_t(u64, tmp >> 2,
5872 mult_frac(zone_managed_pages(zone),
5873 watermark_scale_factor, 10000));
5875 zone->watermark_boost = 0;
5876 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5877 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5878 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5880 spin_unlock_irqrestore(&zone->lock, flags);
5883 /* update totalreserve_pages */
5884 calculate_totalreserve_pages();
5888 * setup_per_zone_wmarks - called when min_free_kbytes changes
5889 * or when memory is hot-{added|removed}
5891 * Ensures that the watermark[min,low,high] values for each zone are set
5892 * correctly with respect to min_free_kbytes.
5894 void setup_per_zone_wmarks(void)
5897 static DEFINE_SPINLOCK(lock);
5900 __setup_per_zone_wmarks();
5904 * The watermark size have changed so update the pcpu batch
5905 * and high limits or the limits may be inappropriate.
5908 zone_pcp_update(zone, 0);
5912 * Initialise min_free_kbytes.
5914 * For small machines we want it small (128k min). For large machines
5915 * we want it large (256MB max). But it is not linear, because network
5916 * bandwidth does not increase linearly with machine size. We use
5918 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5919 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5935 void calculate_min_free_kbytes(void)
5937 unsigned long lowmem_kbytes;
5938 int new_min_free_kbytes;
5940 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5941 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5943 if (new_min_free_kbytes > user_min_free_kbytes)
5944 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5946 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5947 new_min_free_kbytes, user_min_free_kbytes);
5951 int __meminit init_per_zone_wmark_min(void)
5953 calculate_min_free_kbytes();
5954 setup_per_zone_wmarks();
5955 refresh_zone_stat_thresholds();
5956 setup_per_zone_lowmem_reserve();
5959 setup_min_unmapped_ratio();
5960 setup_min_slab_ratio();
5963 khugepaged_min_free_kbytes_update();
5967 postcore_initcall(init_per_zone_wmark_min)
5970 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5971 * that we can call two helper functions whenever min_free_kbytes
5974 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5975 void *buffer, size_t *length, loff_t *ppos)
5979 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5984 user_min_free_kbytes = min_free_kbytes;
5985 setup_per_zone_wmarks();
5990 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5991 void *buffer, size_t *length, loff_t *ppos)
5995 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6000 setup_per_zone_wmarks();
6006 static void setup_min_unmapped_ratio(void)
6011 for_each_online_pgdat(pgdat)
6012 pgdat->min_unmapped_pages = 0;
6015 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6016 sysctl_min_unmapped_ratio) / 100;
6020 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6021 void *buffer, size_t *length, loff_t *ppos)
6025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6029 setup_min_unmapped_ratio();
6034 static void setup_min_slab_ratio(void)
6039 for_each_online_pgdat(pgdat)
6040 pgdat->min_slab_pages = 0;
6043 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6044 sysctl_min_slab_ratio) / 100;
6047 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6048 void *buffer, size_t *length, loff_t *ppos)
6052 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6056 setup_min_slab_ratio();
6063 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6064 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6065 * whenever sysctl_lowmem_reserve_ratio changes.
6067 * The reserve ratio obviously has absolutely no relation with the
6068 * minimum watermarks. The lowmem reserve ratio can only make sense
6069 * if in function of the boot time zone sizes.
6071 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6072 int write, void *buffer, size_t *length, loff_t *ppos)
6076 proc_dointvec_minmax(table, write, buffer, length, ppos);
6078 for (i = 0; i < MAX_NR_ZONES; i++) {
6079 if (sysctl_lowmem_reserve_ratio[i] < 1)
6080 sysctl_lowmem_reserve_ratio[i] = 0;
6083 setup_per_zone_lowmem_reserve();
6088 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6089 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6090 * pagelist can have before it gets flushed back to buddy allocator.
6092 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6093 int write, void *buffer, size_t *length, loff_t *ppos)
6096 int old_percpu_pagelist_high_fraction;
6099 mutex_lock(&pcp_batch_high_lock);
6100 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6102 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6103 if (!write || ret < 0)
6106 /* Sanity checking to avoid pcp imbalance */
6107 if (percpu_pagelist_high_fraction &&
6108 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6109 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6115 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6118 for_each_populated_zone(zone)
6119 zone_set_pageset_high_and_batch(zone, 0);
6121 mutex_unlock(&pcp_batch_high_lock);
6125 static struct ctl_table page_alloc_sysctl_table[] = {
6127 .procname = "min_free_kbytes",
6128 .data = &min_free_kbytes,
6129 .maxlen = sizeof(min_free_kbytes),
6131 .proc_handler = min_free_kbytes_sysctl_handler,
6132 .extra1 = SYSCTL_ZERO,
6135 .procname = "watermark_boost_factor",
6136 .data = &watermark_boost_factor,
6137 .maxlen = sizeof(watermark_boost_factor),
6139 .proc_handler = proc_dointvec_minmax,
6140 .extra1 = SYSCTL_ZERO,
6143 .procname = "watermark_scale_factor",
6144 .data = &watermark_scale_factor,
6145 .maxlen = sizeof(watermark_scale_factor),
6147 .proc_handler = watermark_scale_factor_sysctl_handler,
6148 .extra1 = SYSCTL_ONE,
6149 .extra2 = SYSCTL_THREE_THOUSAND,
6152 .procname = "percpu_pagelist_high_fraction",
6153 .data = &percpu_pagelist_high_fraction,
6154 .maxlen = sizeof(percpu_pagelist_high_fraction),
6156 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6157 .extra1 = SYSCTL_ZERO,
6160 .procname = "lowmem_reserve_ratio",
6161 .data = &sysctl_lowmem_reserve_ratio,
6162 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6164 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6168 .procname = "numa_zonelist_order",
6169 .data = &numa_zonelist_order,
6170 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6172 .proc_handler = numa_zonelist_order_handler,
6175 .procname = "min_unmapped_ratio",
6176 .data = &sysctl_min_unmapped_ratio,
6177 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6179 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6180 .extra1 = SYSCTL_ZERO,
6181 .extra2 = SYSCTL_ONE_HUNDRED,
6184 .procname = "min_slab_ratio",
6185 .data = &sysctl_min_slab_ratio,
6186 .maxlen = sizeof(sysctl_min_slab_ratio),
6188 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6189 .extra1 = SYSCTL_ZERO,
6190 .extra2 = SYSCTL_ONE_HUNDRED,
6196 void __init page_alloc_sysctl_init(void)
6198 register_sysctl_init("vm", page_alloc_sysctl_table);
6201 #ifdef CONFIG_CONTIG_ALLOC
6202 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6203 static void alloc_contig_dump_pages(struct list_head *page_list)
6205 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6207 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6211 list_for_each_entry(page, page_list, lru)
6212 dump_page(page, "migration failure");
6216 /* [start, end) must belong to a single zone. */
6217 int __alloc_contig_migrate_range(struct compact_control *cc,
6218 unsigned long start, unsigned long end)
6220 /* This function is based on compact_zone() from compaction.c. */
6221 unsigned int nr_reclaimed;
6222 unsigned long pfn = start;
6223 unsigned int tries = 0;
6225 struct migration_target_control mtc = {
6226 .nid = zone_to_nid(cc->zone),
6227 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6230 lru_cache_disable();
6232 while (pfn < end || !list_empty(&cc->migratepages)) {
6233 if (fatal_signal_pending(current)) {
6238 if (list_empty(&cc->migratepages)) {
6239 cc->nr_migratepages = 0;
6240 ret = isolate_migratepages_range(cc, pfn, end);
6241 if (ret && ret != -EAGAIN)
6243 pfn = cc->migrate_pfn;
6245 } else if (++tries == 5) {
6250 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6252 cc->nr_migratepages -= nr_reclaimed;
6254 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6255 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6258 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6259 * to retry again over this error, so do the same here.
6267 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6268 alloc_contig_dump_pages(&cc->migratepages);
6269 putback_movable_pages(&cc->migratepages);
6276 * alloc_contig_range() -- tries to allocate given range of pages
6277 * @start: start PFN to allocate
6278 * @end: one-past-the-last PFN to allocate
6279 * @migratetype: migratetype of the underlying pageblocks (either
6280 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6281 * in range must have the same migratetype and it must
6282 * be either of the two.
6283 * @gfp_mask: GFP mask to use during compaction
6285 * The PFN range does not have to be pageblock aligned. The PFN range must
6286 * belong to a single zone.
6288 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6289 * pageblocks in the range. Once isolated, the pageblocks should not
6290 * be modified by others.
6292 * Return: zero on success or negative error code. On success all
6293 * pages which PFN is in [start, end) are allocated for the caller and
6294 * need to be freed with free_contig_range().
6296 int alloc_contig_range(unsigned long start, unsigned long end,
6297 unsigned migratetype, gfp_t gfp_mask)
6299 unsigned long outer_start, outer_end;
6303 struct compact_control cc = {
6304 .nr_migratepages = 0,
6306 .zone = page_zone(pfn_to_page(start)),
6307 .mode = MIGRATE_SYNC,
6308 .ignore_skip_hint = true,
6309 .no_set_skip_hint = true,
6310 .gfp_mask = current_gfp_context(gfp_mask),
6311 .alloc_contig = true,
6313 INIT_LIST_HEAD(&cc.migratepages);
6316 * What we do here is we mark all pageblocks in range as
6317 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6318 * have different sizes, and due to the way page allocator
6319 * work, start_isolate_page_range() has special handlings for this.
6321 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6322 * migrate the pages from an unaligned range (ie. pages that
6323 * we are interested in). This will put all the pages in
6324 * range back to page allocator as MIGRATE_ISOLATE.
6326 * When this is done, we take the pages in range from page
6327 * allocator removing them from the buddy system. This way
6328 * page allocator will never consider using them.
6330 * This lets us mark the pageblocks back as
6331 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6332 * aligned range but not in the unaligned, original range are
6333 * put back to page allocator so that buddy can use them.
6336 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6340 drain_all_pages(cc.zone);
6343 * In case of -EBUSY, we'd like to know which page causes problem.
6344 * So, just fall through. test_pages_isolated() has a tracepoint
6345 * which will report the busy page.
6347 * It is possible that busy pages could become available before
6348 * the call to test_pages_isolated, and the range will actually be
6349 * allocated. So, if we fall through be sure to clear ret so that
6350 * -EBUSY is not accidentally used or returned to caller.
6352 ret = __alloc_contig_migrate_range(&cc, start, end);
6353 if (ret && ret != -EBUSY)
6358 * Pages from [start, end) are within a pageblock_nr_pages
6359 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6360 * more, all pages in [start, end) are free in page allocator.
6361 * What we are going to do is to allocate all pages from
6362 * [start, end) (that is remove them from page allocator).
6364 * The only problem is that pages at the beginning and at the
6365 * end of interesting range may be not aligned with pages that
6366 * page allocator holds, ie. they can be part of higher order
6367 * pages. Because of this, we reserve the bigger range and
6368 * once this is done free the pages we are not interested in.
6370 * We don't have to hold zone->lock here because the pages are
6371 * isolated thus they won't get removed from buddy.
6375 outer_start = start;
6376 while (!PageBuddy(pfn_to_page(outer_start))) {
6377 if (++order > MAX_ORDER) {
6378 outer_start = start;
6381 outer_start &= ~0UL << order;
6384 if (outer_start != start) {
6385 order = buddy_order(pfn_to_page(outer_start));
6388 * outer_start page could be small order buddy page and
6389 * it doesn't include start page. Adjust outer_start
6390 * in this case to report failed page properly
6391 * on tracepoint in test_pages_isolated()
6393 if (outer_start + (1UL << order) <= start)
6394 outer_start = start;
6397 /* Make sure the range is really isolated. */
6398 if (test_pages_isolated(outer_start, end, 0)) {
6403 /* Grab isolated pages from freelists. */
6404 outer_end = isolate_freepages_range(&cc, outer_start, end);
6410 /* Free head and tail (if any) */
6411 if (start != outer_start)
6412 free_contig_range(outer_start, start - outer_start);
6413 if (end != outer_end)
6414 free_contig_range(end, outer_end - end);
6417 undo_isolate_page_range(start, end, migratetype);
6420 EXPORT_SYMBOL(alloc_contig_range);
6422 static int __alloc_contig_pages(unsigned long start_pfn,
6423 unsigned long nr_pages, gfp_t gfp_mask)
6425 unsigned long end_pfn = start_pfn + nr_pages;
6427 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6431 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6432 unsigned long nr_pages)
6434 unsigned long i, end_pfn = start_pfn + nr_pages;
6437 for (i = start_pfn; i < end_pfn; i++) {
6438 page = pfn_to_online_page(i);
6442 if (page_zone(page) != z)
6445 if (PageReserved(page))
6454 static bool zone_spans_last_pfn(const struct zone *zone,
6455 unsigned long start_pfn, unsigned long nr_pages)
6457 unsigned long last_pfn = start_pfn + nr_pages - 1;
6459 return zone_spans_pfn(zone, last_pfn);
6463 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6464 * @nr_pages: Number of contiguous pages to allocate
6465 * @gfp_mask: GFP mask to limit search and used during compaction
6467 * @nodemask: Mask for other possible nodes
6469 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6470 * on an applicable zonelist to find a contiguous pfn range which can then be
6471 * tried for allocation with alloc_contig_range(). This routine is intended
6472 * for allocation requests which can not be fulfilled with the buddy allocator.
6474 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6475 * power of two, then allocated range is also guaranteed to be aligned to same
6476 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6478 * Allocated pages can be freed with free_contig_range() or by manually calling
6479 * __free_page() on each allocated page.
6481 * Return: pointer to contiguous pages on success, or NULL if not successful.
6483 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6484 int nid, nodemask_t *nodemask)
6486 unsigned long ret, pfn, flags;
6487 struct zonelist *zonelist;
6491 zonelist = node_zonelist(nid, gfp_mask);
6492 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6493 gfp_zone(gfp_mask), nodemask) {
6494 spin_lock_irqsave(&zone->lock, flags);
6496 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6497 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6498 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6500 * We release the zone lock here because
6501 * alloc_contig_range() will also lock the zone
6502 * at some point. If there's an allocation
6503 * spinning on this lock, it may win the race
6504 * and cause alloc_contig_range() to fail...
6506 spin_unlock_irqrestore(&zone->lock, flags);
6507 ret = __alloc_contig_pages(pfn, nr_pages,
6510 return pfn_to_page(pfn);
6511 spin_lock_irqsave(&zone->lock, flags);
6515 spin_unlock_irqrestore(&zone->lock, flags);
6519 #endif /* CONFIG_CONTIG_ALLOC */
6521 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6523 unsigned long count = 0;
6525 for (; nr_pages--; pfn++) {
6526 struct page *page = pfn_to_page(pfn);
6528 count += page_count(page) != 1;
6531 WARN(count != 0, "%lu pages are still in use!\n", count);
6533 EXPORT_SYMBOL(free_contig_range);
6536 * Effectively disable pcplists for the zone by setting the high limit to 0
6537 * and draining all cpus. A concurrent page freeing on another CPU that's about
6538 * to put the page on pcplist will either finish before the drain and the page
6539 * will be drained, or observe the new high limit and skip the pcplist.
6541 * Must be paired with a call to zone_pcp_enable().
6543 void zone_pcp_disable(struct zone *zone)
6545 mutex_lock(&pcp_batch_high_lock);
6546 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6547 __drain_all_pages(zone, true);
6550 void zone_pcp_enable(struct zone *zone)
6552 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6553 zone->pageset_high_max, zone->pageset_batch);
6554 mutex_unlock(&pcp_batch_high_lock);
6557 void zone_pcp_reset(struct zone *zone)
6560 struct per_cpu_zonestat *pzstats;
6562 if (zone->per_cpu_pageset != &boot_pageset) {
6563 for_each_online_cpu(cpu) {
6564 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6565 drain_zonestat(zone, pzstats);
6567 free_percpu(zone->per_cpu_pageset);
6568 zone->per_cpu_pageset = &boot_pageset;
6569 if (zone->per_cpu_zonestats != &boot_zonestats) {
6570 free_percpu(zone->per_cpu_zonestats);
6571 zone->per_cpu_zonestats = &boot_zonestats;
6576 #ifdef CONFIG_MEMORY_HOTREMOVE
6578 * All pages in the range must be in a single zone, must not contain holes,
6579 * must span full sections, and must be isolated before calling this function.
6581 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6583 unsigned long pfn = start_pfn;
6587 unsigned long flags;
6589 offline_mem_sections(pfn, end_pfn);
6590 zone = page_zone(pfn_to_page(pfn));
6591 spin_lock_irqsave(&zone->lock, flags);
6592 while (pfn < end_pfn) {
6593 page = pfn_to_page(pfn);
6595 * The HWPoisoned page may be not in buddy system, and
6596 * page_count() is not 0.
6598 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6603 * At this point all remaining PageOffline() pages have a
6604 * reference count of 0 and can simply be skipped.
6606 if (PageOffline(page)) {
6607 BUG_ON(page_count(page));
6608 BUG_ON(PageBuddy(page));
6613 BUG_ON(page_count(page));
6614 BUG_ON(!PageBuddy(page));
6615 order = buddy_order(page);
6616 del_page_from_free_list(page, zone, order);
6617 pfn += (1 << order);
6619 spin_unlock_irqrestore(&zone->lock, flags);
6624 * This function returns a stable result only if called under zone lock.
6626 bool is_free_buddy_page(struct page *page)
6628 unsigned long pfn = page_to_pfn(page);
6631 for (order = 0; order <= MAX_ORDER; order++) {
6632 struct page *page_head = page - (pfn & ((1 << order) - 1));
6634 if (PageBuddy(page_head) &&
6635 buddy_order_unsafe(page_head) >= order)
6639 return order <= MAX_ORDER;
6641 EXPORT_SYMBOL(is_free_buddy_page);
6643 #ifdef CONFIG_MEMORY_FAILURE
6645 * Break down a higher-order page in sub-pages, and keep our target out of
6648 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6649 struct page *target, int low, int high,
6652 unsigned long size = 1 << high;
6653 struct page *current_buddy;
6655 while (high > low) {
6659 if (target >= &page[size]) {
6660 current_buddy = page;
6663 current_buddy = page + size;
6666 if (set_page_guard(zone, current_buddy, high, migratetype))
6669 add_to_free_list(current_buddy, zone, high, migratetype);
6670 set_buddy_order(current_buddy, high);
6675 * Take a page that will be marked as poisoned off the buddy allocator.
6677 bool take_page_off_buddy(struct page *page)
6679 struct zone *zone = page_zone(page);
6680 unsigned long pfn = page_to_pfn(page);
6681 unsigned long flags;
6685 spin_lock_irqsave(&zone->lock, flags);
6686 for (order = 0; order <= MAX_ORDER; order++) {
6687 struct page *page_head = page - (pfn & ((1 << order) - 1));
6688 int page_order = buddy_order(page_head);
6690 if (PageBuddy(page_head) && page_order >= order) {
6691 unsigned long pfn_head = page_to_pfn(page_head);
6692 int migratetype = get_pfnblock_migratetype(page_head,
6695 del_page_from_free_list(page_head, zone, page_order);
6696 break_down_buddy_pages(zone, page_head, page, 0,
6697 page_order, migratetype);
6698 SetPageHWPoisonTakenOff(page);
6699 if (!is_migrate_isolate(migratetype))
6700 __mod_zone_freepage_state(zone, -1, migratetype);
6704 if (page_count(page_head) > 0)
6707 spin_unlock_irqrestore(&zone->lock, flags);
6712 * Cancel takeoff done by take_page_off_buddy().
6714 bool put_page_back_buddy(struct page *page)
6716 struct zone *zone = page_zone(page);
6717 unsigned long pfn = page_to_pfn(page);
6718 unsigned long flags;
6719 int migratetype = get_pfnblock_migratetype(page, pfn);
6722 spin_lock_irqsave(&zone->lock, flags);
6723 if (put_page_testzero(page)) {
6724 ClearPageHWPoisonTakenOff(page);
6725 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6726 if (TestClearPageHWPoison(page)) {
6730 spin_unlock_irqrestore(&zone->lock, flags);
6736 #ifdef CONFIG_ZONE_DMA
6737 bool has_managed_dma(void)
6739 struct pglist_data *pgdat;
6741 for_each_online_pgdat(pgdat) {
6742 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6744 if (managed_zone(zone))
6749 #endif /* CONFIG_ZONE_DMA */
6751 #ifdef CONFIG_UNACCEPTED_MEMORY
6753 /* Counts number of zones with unaccepted pages. */
6754 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6756 static bool lazy_accept = true;
6758 static int __init accept_memory_parse(char *p)
6760 if (!strcmp(p, "lazy")) {
6763 } else if (!strcmp(p, "eager")) {
6764 lazy_accept = false;
6770 early_param("accept_memory", accept_memory_parse);
6772 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6774 phys_addr_t start = page_to_phys(page);
6775 phys_addr_t end = start + (PAGE_SIZE << order);
6777 return range_contains_unaccepted_memory(start, end);
6780 static void accept_page(struct page *page, unsigned int order)
6782 phys_addr_t start = page_to_phys(page);
6784 accept_memory(start, start + (PAGE_SIZE << order));
6787 static bool try_to_accept_memory_one(struct zone *zone)
6789 unsigned long flags;
6793 if (list_empty(&zone->unaccepted_pages))
6796 spin_lock_irqsave(&zone->lock, flags);
6797 page = list_first_entry_or_null(&zone->unaccepted_pages,
6800 spin_unlock_irqrestore(&zone->lock, flags);
6804 list_del(&page->lru);
6805 last = list_empty(&zone->unaccepted_pages);
6807 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6808 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6809 spin_unlock_irqrestore(&zone->lock, flags);
6811 accept_page(page, MAX_ORDER);
6813 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6816 static_branch_dec(&zones_with_unaccepted_pages);
6821 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6826 /* How much to accept to get to high watermark? */
6827 to_accept = high_wmark_pages(zone) -
6828 (zone_page_state(zone, NR_FREE_PAGES) -
6829 __zone_watermark_unusable_free(zone, order, 0));
6831 /* Accept at least one page */
6833 if (!try_to_accept_memory_one(zone))
6836 to_accept -= MAX_ORDER_NR_PAGES;
6837 } while (to_accept > 0);
6842 static inline bool has_unaccepted_memory(void)
6844 return static_branch_unlikely(&zones_with_unaccepted_pages);
6847 static bool __free_unaccepted(struct page *page)
6849 struct zone *zone = page_zone(page);
6850 unsigned long flags;
6856 spin_lock_irqsave(&zone->lock, flags);
6857 first = list_empty(&zone->unaccepted_pages);
6858 list_add_tail(&page->lru, &zone->unaccepted_pages);
6859 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6860 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6861 spin_unlock_irqrestore(&zone->lock, flags);
6864 static_branch_inc(&zones_with_unaccepted_pages);
6871 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6876 static void accept_page(struct page *page, unsigned int order)
6880 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6885 static inline bool has_unaccepted_memory(void)
6890 static bool __free_unaccepted(struct page *page)
6896 #endif /* CONFIG_UNACCEPTED_MEMORY */