2 * An async IO implementation for Linux
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
76 #define AIO_PLUG_THRESHOLD 2
78 #define AIO_RING_PAGES 8
83 struct kioctx __rcu *table[];
87 unsigned reqs_available;
91 struct completion comp;
96 struct percpu_ref users;
99 struct percpu_ref reqs;
101 unsigned long user_id;
103 struct __percpu kioctx_cpu *cpu;
106 * For percpu reqs_available, number of slots we move to/from global
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
114 * The real limit is nr_events - 1, which will be larger (see
119 /* Size of ringbuffer, in units of struct io_event */
122 unsigned long mmap_base;
123 unsigned long mmap_size;
125 struct page **ring_pages;
128 struct rcu_work free_rwork; /* see free_ioctx() */
131 * signals when all in-flight requests are done
133 struct ctx_rq_wait *rq_wait;
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
142 * We batch accesses to it with a percpu version.
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
175 struct work_struct work;
182 struct wait_queue_head *head;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
199 struct file *ki_filp;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
208 struct io_event ki_res;
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
218 struct eventfd_ctx *ki_eventfd;
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr; /* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
227 static struct kmem_cache *kiocb_cachep;
228 static struct kmem_cache *kioctx_cachep;
230 static struct vfsmount *aio_mnt;
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 return ERR_CAST(inode);
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
253 static int aio_init_fs_context(struct fs_context *fc)
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
257 fc->s_iflags |= SB_I_NOEXEC;
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
265 static int __init aio_setup(void)
267 static struct file_system_type aio_fs = {
269 .init_fs_context = aio_init_fs_context,
270 .kill_sb = kill_anon_super,
272 aio_mnt = kern_mount(&aio_fs);
274 panic("Failed to create aio fs mount.");
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
280 __initcall(aio_setup);
282 static void put_aio_ring_file(struct kioctx *ctx)
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
288 truncate_setsize(file_inode(aio_ring_file), 0);
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
301 static void aio_free_ring(struct kioctx *ctx)
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
308 put_aio_ring_file(ctx);
310 for (i = 0; i < ctx->nr_pages; i++) {
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
317 ctx->ring_pages[i] = NULL;
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
327 static int aio_ring_mremap(struct vm_area_struct *vma)
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
334 spin_lock(&mm->ioctx_lock);
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
351 spin_unlock(&mm->ioctx_lock);
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
371 static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 if (mode == MIGRATE_SYNC_NO_COPY)
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
406 if (!mutex_trylock(&ctx->ring_lock)) {
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
426 rc = migrate_page_move_mapping(mapping, new, old, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
442 /* The old page is no longer accessible. */
446 mutex_unlock(&ctx->ring_lock);
448 spin_unlock(&mapping->private_lock);
453 static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
475 nr_pages = PFN_UP(size);
479 file = aio_private_file(ctx, nr_pages);
481 ctx->aio_ring_file = NULL;
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
499 for (i = 0; i < nr_pages; i++) {
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
510 ctx->ring_pages[i] = page;
514 if (unlikely(i != nr_pages)) {
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
522 if (mmap_write_lock_killable(mm)) {
528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 mmap_write_unlock(mm);
532 if (IS_ERR((void *)ctx->mmap_base)) {
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
552 flush_dcache_page(ctx->ring_pages[0]);
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
582 static void free_ioctx(struct work_struct *work)
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
586 pr_debug("freeing %p\n", ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
595 static void free_ioctx_reqs(struct percpu_ref *ref)
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
613 static void free_ioctx_users(struct percpu_ref *ref)
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
618 spin_lock_irq(&ctx->ctx_lock);
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
627 spin_unlock_irq(&ctx->ctx_lock);
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
654 ring = kmap_atomic(ctx->ring_pages[0]);
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
663 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
669 spin_lock(&mm->ioctx_lock);
670 old = rcu_dereference_raw(mm->ioctx_table);
673 rcu_assign_pointer(mm->ioctx_table, table);
674 } else if (table->nr > old->nr) {
675 memcpy(table->table, old->table,
676 old->nr * sizeof(struct kioctx *));
678 rcu_assign_pointer(mm->ioctx_table, table);
687 static void aio_nr_sub(unsigned nr)
689 spin_lock(&aio_nr_lock);
690 if (WARN_ON(aio_nr - nr > aio_nr))
694 spin_unlock(&aio_nr_lock);
698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 struct mm_struct *mm = current->mm;
707 * Store the original nr_events -- what userspace passed to io_setup(),
708 * for counting against the global limit -- before it changes.
710 unsigned int max_reqs = nr_events;
713 * We keep track of the number of available ringbuffer slots, to prevent
714 * overflow (reqs_available), and we also use percpu counters for this.
716 * So since up to half the slots might be on other cpu's percpu counters
717 * and unavailable, double nr_events so userspace sees what they
718 * expected: additionally, we move req_batch slots to/from percpu
719 * counters at a time, so make sure that isn't 0:
721 nr_events = max(nr_events, num_possible_cpus() * 4);
724 /* Prevent overflows */
725 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
726 pr_debug("ENOMEM: nr_events too high\n");
727 return ERR_PTR(-EINVAL);
730 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
731 return ERR_PTR(-EAGAIN);
733 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 return ERR_PTR(-ENOMEM);
737 ctx->max_reqs = max_reqs;
739 spin_lock_init(&ctx->ctx_lock);
740 spin_lock_init(&ctx->completion_lock);
741 mutex_init(&ctx->ring_lock);
742 /* Protect against page migration throughout kiotx setup by keeping
743 * the ring_lock mutex held until setup is complete. */
744 mutex_lock(&ctx->ring_lock);
745 init_waitqueue_head(&ctx->wait);
747 INIT_LIST_HEAD(&ctx->active_reqs);
749 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
752 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
755 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 err = aio_setup_ring(ctx, nr_events);
763 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
764 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
765 if (ctx->req_batch < 1)
768 /* limit the number of system wide aios */
769 spin_lock(&aio_nr_lock);
770 if (aio_nr + ctx->max_reqs > aio_max_nr ||
771 aio_nr + ctx->max_reqs < aio_nr) {
772 spin_unlock(&aio_nr_lock);
776 aio_nr += ctx->max_reqs;
777 spin_unlock(&aio_nr_lock);
779 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
780 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
782 err = ioctx_add_table(ctx, mm);
786 /* Release the ring_lock mutex now that all setup is complete. */
787 mutex_unlock(&ctx->ring_lock);
789 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
790 ctx, ctx->user_id, mm, ctx->nr_events);
794 aio_nr_sub(ctx->max_reqs);
796 atomic_set(&ctx->dead, 1);
798 vm_munmap(ctx->mmap_base, ctx->mmap_size);
801 mutex_unlock(&ctx->ring_lock);
802 free_percpu(ctx->cpu);
803 percpu_ref_exit(&ctx->reqs);
804 percpu_ref_exit(&ctx->users);
805 kmem_cache_free(kioctx_cachep, ctx);
806 pr_debug("error allocating ioctx %d\n", err);
811 * Cancels all outstanding aio requests on an aio context. Used
812 * when the processes owning a context have all exited to encourage
813 * the rapid destruction of the kioctx.
815 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
816 struct ctx_rq_wait *wait)
818 struct kioctx_table *table;
820 spin_lock(&mm->ioctx_lock);
821 if (atomic_xchg(&ctx->dead, 1)) {
822 spin_unlock(&mm->ioctx_lock);
826 table = rcu_dereference_raw(mm->ioctx_table);
827 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
828 RCU_INIT_POINTER(table->table[ctx->id], NULL);
829 spin_unlock(&mm->ioctx_lock);
831 /* free_ioctx_reqs() will do the necessary RCU synchronization */
832 wake_up_all(&ctx->wait);
835 * It'd be more correct to do this in free_ioctx(), after all
836 * the outstanding kiocbs have finished - but by then io_destroy
837 * has already returned, so io_setup() could potentially return
838 * -EAGAIN with no ioctxs actually in use (as far as userspace
841 aio_nr_sub(ctx->max_reqs);
844 vm_munmap(ctx->mmap_base, ctx->mmap_size);
847 percpu_ref_kill(&ctx->users);
852 * exit_aio: called when the last user of mm goes away. At this point, there is
853 * no way for any new requests to be submited or any of the io_* syscalls to be
854 * called on the context.
856 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
859 void exit_aio(struct mm_struct *mm)
861 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
862 struct ctx_rq_wait wait;
868 atomic_set(&wait.count, table->nr);
869 init_completion(&wait.comp);
872 for (i = 0; i < table->nr; ++i) {
874 rcu_dereference_protected(table->table[i], true);
882 * We don't need to bother with munmap() here - exit_mmap(mm)
883 * is coming and it'll unmap everything. And we simply can't,
884 * this is not necessarily our ->mm.
885 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
886 * that it needs to unmap the area, just set it to 0.
889 kill_ioctx(mm, ctx, &wait);
892 if (!atomic_sub_and_test(skipped, &wait.count)) {
893 /* Wait until all IO for the context are done. */
894 wait_for_completion(&wait.comp);
897 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903 struct kioctx_cpu *kcpu;
906 local_irq_save(flags);
907 kcpu = this_cpu_ptr(ctx->cpu);
908 kcpu->reqs_available += nr;
910 while (kcpu->reqs_available >= ctx->req_batch * 2) {
911 kcpu->reqs_available -= ctx->req_batch;
912 atomic_add(ctx->req_batch, &ctx->reqs_available);
915 local_irq_restore(flags);
918 static bool __get_reqs_available(struct kioctx *ctx)
920 struct kioctx_cpu *kcpu;
924 local_irq_save(flags);
925 kcpu = this_cpu_ptr(ctx->cpu);
926 if (!kcpu->reqs_available) {
927 int old, avail = atomic_read(&ctx->reqs_available);
930 if (avail < ctx->req_batch)
934 avail = atomic_cmpxchg(&ctx->reqs_available,
935 avail, avail - ctx->req_batch);
936 } while (avail != old);
938 kcpu->reqs_available += ctx->req_batch;
942 kcpu->reqs_available--;
944 local_irq_restore(flags);
948 /* refill_reqs_available
949 * Updates the reqs_available reference counts used for tracking the
950 * number of free slots in the completion ring. This can be called
951 * from aio_complete() (to optimistically update reqs_available) or
952 * from aio_get_req() (the we're out of events case). It must be
953 * called holding ctx->completion_lock.
955 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
958 unsigned events_in_ring, completed;
960 /* Clamp head since userland can write to it. */
961 head %= ctx->nr_events;
963 events_in_ring = tail - head;
965 events_in_ring = ctx->nr_events - (head - tail);
967 completed = ctx->completed_events;
968 if (events_in_ring < completed)
969 completed -= events_in_ring;
976 ctx->completed_events -= completed;
977 put_reqs_available(ctx, completed);
980 /* user_refill_reqs_available
981 * Called to refill reqs_available when aio_get_req() encounters an
982 * out of space in the completion ring.
984 static void user_refill_reqs_available(struct kioctx *ctx)
986 spin_lock_irq(&ctx->completion_lock);
987 if (ctx->completed_events) {
988 struct aio_ring *ring;
991 /* Access of ring->head may race with aio_read_events_ring()
992 * here, but that's okay since whether we read the old version
993 * or the new version, and either will be valid. The important
994 * part is that head cannot pass tail since we prevent
995 * aio_complete() from updating tail by holding
996 * ctx->completion_lock. Even if head is invalid, the check
997 * against ctx->completed_events below will make sure we do the
1000 ring = kmap_atomic(ctx->ring_pages[0]);
1002 kunmap_atomic(ring);
1004 refill_reqs_available(ctx, head, ctx->tail);
1007 spin_unlock_irq(&ctx->completion_lock);
1010 static bool get_reqs_available(struct kioctx *ctx)
1012 if (__get_reqs_available(ctx))
1014 user_refill_reqs_available(ctx);
1015 return __get_reqs_available(ctx);
1019 * Allocate a slot for an aio request.
1020 * Returns NULL if no requests are free.
1022 * The refcount is initialized to 2 - one for the async op completion,
1023 * one for the synchronous code that does this.
1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 struct aio_kiocb *req;
1029 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 if (unlikely(!get_reqs_available(ctx))) {
1034 kmem_cache_free(kiocb_cachep, req);
1038 percpu_ref_get(&ctx->reqs);
1040 INIT_LIST_HEAD(&req->ki_list);
1041 refcount_set(&req->ki_refcnt, 2);
1042 req->ki_eventfd = NULL;
1046 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048 struct aio_ring __user *ring = (void __user *)ctx_id;
1049 struct mm_struct *mm = current->mm;
1050 struct kioctx *ctx, *ret = NULL;
1051 struct kioctx_table *table;
1054 if (get_user(id, &ring->id))
1058 table = rcu_dereference(mm->ioctx_table);
1060 if (!table || id >= table->nr)
1063 id = array_index_nospec(id, table->nr);
1064 ctx = rcu_dereference(table->table[id]);
1065 if (ctx && ctx->user_id == ctx_id) {
1066 if (percpu_ref_tryget_live(&ctx->users))
1074 static inline void iocb_destroy(struct aio_kiocb *iocb)
1076 if (iocb->ki_eventfd)
1077 eventfd_ctx_put(iocb->ki_eventfd);
1079 fput(iocb->ki_filp);
1080 percpu_ref_put(&iocb->ki_ctx->reqs);
1081 kmem_cache_free(kiocb_cachep, iocb);
1085 * Called when the io request on the given iocb is complete.
1087 static void aio_complete(struct aio_kiocb *iocb)
1089 struct kioctx *ctx = iocb->ki_ctx;
1090 struct aio_ring *ring;
1091 struct io_event *ev_page, *event;
1092 unsigned tail, pos, head;
1093 unsigned long flags;
1096 * Add a completion event to the ring buffer. Must be done holding
1097 * ctx->completion_lock to prevent other code from messing with the tail
1098 * pointer since we might be called from irq context.
1100 spin_lock_irqsave(&ctx->completion_lock, flags);
1103 pos = tail + AIO_EVENTS_OFFSET;
1105 if (++tail >= ctx->nr_events)
1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111 *event = iocb->ki_res;
1113 kunmap_atomic(ev_page);
1114 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1116 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1117 (void __user *)(unsigned long)iocb->ki_res.obj,
1118 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1120 /* after flagging the request as done, we
1121 * must never even look at it again
1123 smp_wmb(); /* make event visible before updating tail */
1127 ring = kmap_atomic(ctx->ring_pages[0]);
1130 kunmap_atomic(ring);
1131 flush_dcache_page(ctx->ring_pages[0]);
1133 ctx->completed_events++;
1134 if (ctx->completed_events > 1)
1135 refill_reqs_available(ctx, head, tail);
1136 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1141 * Check if the user asked us to deliver the result through an
1142 * eventfd. The eventfd_signal() function is safe to be called
1145 if (iocb->ki_eventfd)
1146 eventfd_signal(iocb->ki_eventfd, 1);
1149 * We have to order our ring_info tail store above and test
1150 * of the wait list below outside the wait lock. This is
1151 * like in wake_up_bit() where clearing a bit has to be
1152 * ordered with the unlocked test.
1156 if (waitqueue_active(&ctx->wait))
1157 wake_up(&ctx->wait);
1160 static inline void iocb_put(struct aio_kiocb *iocb)
1162 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1168 /* aio_read_events_ring
1169 * Pull an event off of the ioctx's event ring. Returns the number of
1172 static long aio_read_events_ring(struct kioctx *ctx,
1173 struct io_event __user *event, long nr)
1175 struct aio_ring *ring;
1176 unsigned head, tail, pos;
1181 * The mutex can block and wake us up and that will cause
1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 * and repeat. This should be rare enough that it doesn't cause
1184 * peformance issues. See the comment in read_events() for more detail.
1186 sched_annotate_sleep();
1187 mutex_lock(&ctx->ring_lock);
1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190 ring = kmap_atomic(ctx->ring_pages[0]);
1193 kunmap_atomic(ring);
1196 * Ensure that once we've read the current tail pointer, that
1197 * we also see the events that were stored up to the tail.
1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1206 head %= ctx->nr_events;
1207 tail %= ctx->nr_events;
1211 struct io_event *ev;
1214 avail = (head <= tail ? tail : ctx->nr_events) - head;
1218 pos = head + AIO_EVENTS_OFFSET;
1219 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1220 pos %= AIO_EVENTS_PER_PAGE;
1222 avail = min(avail, nr - ret);
1223 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1226 copy_ret = copy_to_user(event + ret, ev + pos,
1227 sizeof(*ev) * avail);
1230 if (unlikely(copy_ret)) {
1237 head %= ctx->nr_events;
1240 ring = kmap_atomic(ctx->ring_pages[0]);
1242 kunmap_atomic(ring);
1243 flush_dcache_page(ctx->ring_pages[0]);
1245 pr_debug("%li h%u t%u\n", ret, head, tail);
1247 mutex_unlock(&ctx->ring_lock);
1252 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1253 struct io_event __user *event, long *i)
1255 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1260 if (unlikely(atomic_read(&ctx->dead)))
1266 return ret < 0 || *i >= min_nr;
1269 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1270 struct io_event __user *event,
1276 * Note that aio_read_events() is being called as the conditional - i.e.
1277 * we're calling it after prepare_to_wait() has set task state to
1278 * TASK_INTERRUPTIBLE.
1280 * But aio_read_events() can block, and if it blocks it's going to flip
1281 * the task state back to TASK_RUNNING.
1283 * This should be ok, provided it doesn't flip the state back to
1284 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1285 * will only happen if the mutex_lock() call blocks, and we then find
1286 * the ringbuffer empty. So in practice we should be ok, but it's
1287 * something to be aware of when touching this code.
1290 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 wait_event_interruptible_hrtimeout(ctx->wait,
1293 aio_read_events(ctx, min_nr, nr, event, &ret),
1299 * Create an aio_context capable of receiving at least nr_events.
1300 * ctxp must not point to an aio_context that already exists, and
1301 * must be initialized to 0 prior to the call. On successful
1302 * creation of the aio_context, *ctxp is filled in with the resulting
1303 * handle. May fail with -EINVAL if *ctxp is not initialized,
1304 * if the specified nr_events exceeds internal limits. May fail
1305 * with -EAGAIN if the specified nr_events exceeds the user's limit
1306 * of available events. May fail with -ENOMEM if insufficient kernel
1307 * resources are available. May fail with -EFAULT if an invalid
1308 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313 struct kioctx *ioctx = NULL;
1317 ret = get_user(ctx, ctxp);
1322 if (unlikely(ctx || nr_events == 0)) {
1323 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1328 ioctx = ioctx_alloc(nr_events);
1329 ret = PTR_ERR(ioctx);
1330 if (!IS_ERR(ioctx)) {
1331 ret = put_user(ioctx->user_id, ctxp);
1333 kill_ioctx(current->mm, ioctx, NULL);
1334 percpu_ref_put(&ioctx->users);
1341 #ifdef CONFIG_COMPAT
1342 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344 struct kioctx *ioctx = NULL;
1348 ret = get_user(ctx, ctx32p);
1353 if (unlikely(ctx || nr_events == 0)) {
1354 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1359 ioctx = ioctx_alloc(nr_events);
1360 ret = PTR_ERR(ioctx);
1361 if (!IS_ERR(ioctx)) {
1362 /* truncating is ok because it's a user address */
1363 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 kill_ioctx(current->mm, ioctx, NULL);
1366 percpu_ref_put(&ioctx->users);
1375 * Destroy the aio_context specified. May cancel any outstanding
1376 * AIOs and block on completion. Will fail with -ENOSYS if not
1377 * implemented. May fail with -EINVAL if the context pointed to
1380 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382 struct kioctx *ioctx = lookup_ioctx(ctx);
1383 if (likely(NULL != ioctx)) {
1384 struct ctx_rq_wait wait;
1387 init_completion(&wait.comp);
1388 atomic_set(&wait.count, 1);
1390 /* Pass requests_done to kill_ioctx() where it can be set
1391 * in a thread-safe way. If we try to set it here then we have
1392 * a race condition if two io_destroy() called simultaneously.
1394 ret = kill_ioctx(current->mm, ioctx, &wait);
1395 percpu_ref_put(&ioctx->users);
1397 /* Wait until all IO for the context are done. Otherwise kernel
1398 * keep using user-space buffers even if user thinks the context
1402 wait_for_completion(&wait.comp);
1406 pr_debug("EINVAL: invalid context id\n");
1410 static void aio_remove_iocb(struct aio_kiocb *iocb)
1412 struct kioctx *ctx = iocb->ki_ctx;
1413 unsigned long flags;
1415 spin_lock_irqsave(&ctx->ctx_lock, flags);
1416 list_del(&iocb->ki_list);
1417 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1420 static void aio_complete_rw(struct kiocb *kiocb, long res)
1422 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424 if (!list_empty_careful(&iocb->ki_list))
1425 aio_remove_iocb(iocb);
1427 if (kiocb->ki_flags & IOCB_WRITE) {
1428 struct inode *inode = file_inode(kiocb->ki_filp);
1431 * Tell lockdep we inherited freeze protection from submission
1434 if (S_ISREG(inode->i_mode))
1435 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1436 file_end_write(kiocb->ki_filp);
1439 iocb->ki_res.res = res;
1440 iocb->ki_res.res2 = 0;
1444 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1448 req->ki_complete = aio_complete_rw;
1449 req->private = NULL;
1450 req->ki_pos = iocb->aio_offset;
1451 req->ki_flags = iocb_flags(req->ki_filp);
1452 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1453 req->ki_flags |= IOCB_EVENTFD;
1454 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1455 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1458 * aio_reqprio is interpreted as an I/O scheduling
1459 * class and priority.
1461 ret = ioprio_check_cap(iocb->aio_reqprio);
1463 pr_debug("aio ioprio check cap error: %d\n", ret);
1467 req->ki_ioprio = iocb->aio_reqprio;
1469 req->ki_ioprio = get_current_ioprio();
1471 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1480 struct iovec **iovec, bool vectored, bool compat,
1481 struct iov_iter *iter)
1483 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1484 size_t len = iocb->aio_nbytes;
1487 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1492 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1495 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1501 case -ERESTARTNOINTR:
1502 case -ERESTARTNOHAND:
1503 case -ERESTART_RESTARTBLOCK:
1505 * There's no easy way to restart the syscall since other AIO's
1506 * may be already running. Just fail this IO with EINTR.
1511 req->ki_complete(req, ret);
1515 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1516 bool vectored, bool compat)
1518 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1519 struct iov_iter iter;
1523 ret = aio_prep_rw(req, iocb);
1526 file = req->ki_filp;
1527 if (unlikely(!(file->f_mode & FMODE_READ)))
1530 if (unlikely(!file->f_op->read_iter))
1533 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1536 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1538 aio_rw_done(req, call_read_iter(file, req, &iter));
1543 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1544 bool vectored, bool compat)
1546 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1547 struct iov_iter iter;
1551 ret = aio_prep_rw(req, iocb);
1554 file = req->ki_filp;
1556 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1558 if (unlikely(!file->f_op->write_iter))
1561 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1564 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1567 * Open-code file_start_write here to grab freeze protection,
1568 * which will be released by another thread in
1569 * aio_complete_rw(). Fool lockdep by telling it the lock got
1570 * released so that it doesn't complain about the held lock when
1571 * we return to userspace.
1573 if (S_ISREG(file_inode(file)->i_mode)) {
1574 sb_start_write(file_inode(file)->i_sb);
1575 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1577 req->ki_flags |= IOCB_WRITE;
1578 aio_rw_done(req, call_write_iter(file, req, &iter));
1584 static void aio_fsync_work(struct work_struct *work)
1586 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1587 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1589 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1590 revert_creds(old_cred);
1591 put_cred(iocb->fsync.creds);
1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 iocb->aio_rw_flags))
1602 if (unlikely(!req->file->f_op->fsync))
1605 req->creds = prepare_creds();
1609 req->datasync = datasync;
1610 INIT_WORK(&req->work, aio_fsync_work);
1611 schedule_work(&req->work);
1615 static void aio_poll_put_work(struct work_struct *work)
1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1624 * Safely lock the waitqueue which the request is on, synchronizing with the
1625 * case where the ->poll() provider decides to free its waitqueue early.
1627 * Returns true on success, meaning that req->head->lock was locked, req->wait
1628 * is on req->head, and an RCU read lock was taken. Returns false if the
1629 * request was already removed from its waitqueue (which might no longer exist).
1631 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1633 wait_queue_head_t *head;
1636 * While we hold the waitqueue lock and the waitqueue is nonempty,
1637 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1638 * lock in the first place can race with the waitqueue being freed.
1640 * We solve this as eventpoll does: by taking advantage of the fact that
1641 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1642 * we enter rcu_read_lock() and see that the pointer to the queue is
1643 * non-NULL, we can then lock it without the memory being freed out from
1644 * under us, then check whether the request is still on the queue.
1646 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1647 * case the caller deletes the entry from the queue, leaving it empty.
1648 * In that case, only RCU prevents the queue memory from being freed.
1651 head = smp_load_acquire(&req->head);
1653 spin_lock(&head->lock);
1654 if (!list_empty(&req->wait.entry))
1656 spin_unlock(&head->lock);
1662 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1664 spin_unlock(&req->head->lock);
1668 static void aio_poll_complete_work(struct work_struct *work)
1670 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1671 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1672 struct poll_table_struct pt = { ._key = req->events };
1673 struct kioctx *ctx = iocb->ki_ctx;
1676 if (!READ_ONCE(req->cancelled))
1677 mask = vfs_poll(req->file, &pt) & req->events;
1680 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1681 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1682 * synchronize with them. In the cancellation case the list_del_init
1683 * itself is not actually needed, but harmless so we keep it in to
1684 * avoid further branches in the fast path.
1686 spin_lock_irq(&ctx->ctx_lock);
1687 if (poll_iocb_lock_wq(req)) {
1688 if (!mask && !READ_ONCE(req->cancelled)) {
1690 * The request isn't actually ready to be completed yet.
1691 * Reschedule completion if another wakeup came in.
1693 if (req->work_need_resched) {
1694 schedule_work(&req->work);
1695 req->work_need_resched = false;
1697 req->work_scheduled = false;
1699 poll_iocb_unlock_wq(req);
1700 spin_unlock_irq(&ctx->ctx_lock);
1703 list_del_init(&req->wait.entry);
1704 poll_iocb_unlock_wq(req);
1705 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1706 list_del_init(&iocb->ki_list);
1707 iocb->ki_res.res = mangle_poll(mask);
1708 spin_unlock_irq(&ctx->ctx_lock);
1713 /* assumes we are called with irqs disabled */
1714 static int aio_poll_cancel(struct kiocb *iocb)
1716 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1717 struct poll_iocb *req = &aiocb->poll;
1719 if (poll_iocb_lock_wq(req)) {
1720 WRITE_ONCE(req->cancelled, true);
1721 if (!req->work_scheduled) {
1722 schedule_work(&aiocb->poll.work);
1723 req->work_scheduled = true;
1725 poll_iocb_unlock_wq(req);
1726 } /* else, the request was force-cancelled by POLLFREE already */
1731 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1734 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1735 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1736 __poll_t mask = key_to_poll(key);
1737 unsigned long flags;
1739 /* for instances that support it check for an event match first: */
1740 if (mask && !(mask & req->events))
1744 * Complete the request inline if possible. This requires that three
1745 * conditions be met:
1746 * 1. An event mask must have been passed. If a plain wakeup was done
1747 * instead, then mask == 0 and we have to call vfs_poll() to get
1748 * the events, so inline completion isn't possible.
1749 * 2. The completion work must not have already been scheduled.
1750 * 3. ctx_lock must not be busy. We have to use trylock because we
1751 * already hold the waitqueue lock, so this inverts the normal
1752 * locking order. Use irqsave/irqrestore because not all
1753 * filesystems (e.g. fuse) call this function with IRQs disabled,
1754 * yet IRQs have to be disabled before ctx_lock is obtained.
1756 if (mask && !req->work_scheduled &&
1757 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1758 struct kioctx *ctx = iocb->ki_ctx;
1760 list_del_init(&req->wait.entry);
1761 list_del(&iocb->ki_list);
1762 iocb->ki_res.res = mangle_poll(mask);
1763 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1765 INIT_WORK(&req->work, aio_poll_put_work);
1766 schedule_work(&req->work);
1768 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1773 * Schedule the completion work if needed. If it was already
1774 * scheduled, record that another wakeup came in.
1776 * Don't remove the request from the waitqueue here, as it might
1777 * not actually be complete yet (we won't know until vfs_poll()
1778 * is called), and we must not miss any wakeups. POLLFREE is an
1779 * exception to this; see below.
1781 if (req->work_scheduled) {
1782 req->work_need_resched = true;
1784 schedule_work(&req->work);
1785 req->work_scheduled = true;
1789 * If the waitqueue is being freed early but we can't complete
1790 * the request inline, we have to tear down the request as best
1791 * we can. That means immediately removing the request from its
1792 * waitqueue and preventing all further accesses to the
1793 * waitqueue via the request. We also need to schedule the
1794 * completion work (done above). Also mark the request as
1795 * cancelled, to potentially skip an unneeded call to ->poll().
1797 if (mask & POLLFREE) {
1798 WRITE_ONCE(req->cancelled, true);
1799 list_del_init(&req->wait.entry);
1802 * Careful: this *must* be the last step, since as soon
1803 * as req->head is NULL'ed out, the request can be
1804 * completed and freed, since aio_poll_complete_work()
1805 * will no longer need to take the waitqueue lock.
1807 smp_store_release(&req->head, NULL);
1813 struct aio_poll_table {
1814 struct poll_table_struct pt;
1815 struct aio_kiocb *iocb;
1821 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1822 struct poll_table_struct *p)
1824 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1826 /* multiple wait queues per file are not supported */
1827 if (unlikely(pt->queued)) {
1828 pt->error = -EINVAL;
1834 pt->iocb->poll.head = head;
1835 add_wait_queue(head, &pt->iocb->poll.wait);
1838 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1840 struct kioctx *ctx = aiocb->ki_ctx;
1841 struct poll_iocb *req = &aiocb->poll;
1842 struct aio_poll_table apt;
1843 bool cancel = false;
1846 /* reject any unknown events outside the normal event mask. */
1847 if ((u16)iocb->aio_buf != iocb->aio_buf)
1849 /* reject fields that are not defined for poll */
1850 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1853 INIT_WORK(&req->work, aio_poll_complete_work);
1854 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1857 req->cancelled = false;
1858 req->work_scheduled = false;
1859 req->work_need_resched = false;
1861 apt.pt._qproc = aio_poll_queue_proc;
1862 apt.pt._key = req->events;
1865 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1867 /* initialized the list so that we can do list_empty checks */
1868 INIT_LIST_HEAD(&req->wait.entry);
1869 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1871 mask = vfs_poll(req->file, &apt.pt) & req->events;
1872 spin_lock_irq(&ctx->ctx_lock);
1873 if (likely(apt.queued)) {
1874 bool on_queue = poll_iocb_lock_wq(req);
1876 if (!on_queue || req->work_scheduled) {
1878 * aio_poll_wake() already either scheduled the async
1879 * completion work, or completed the request inline.
1881 if (apt.error) /* unsupported case: multiple queues */
1886 if (mask || apt.error) {
1887 /* Steal to complete synchronously. */
1888 list_del_init(&req->wait.entry);
1889 } else if (cancel) {
1890 /* Cancel if possible (may be too late though). */
1891 WRITE_ONCE(req->cancelled, true);
1892 } else if (on_queue) {
1894 * Actually waiting for an event, so add the request to
1895 * active_reqs so that it can be cancelled if needed.
1897 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1898 aiocb->ki_cancel = aio_poll_cancel;
1901 poll_iocb_unlock_wq(req);
1903 if (mask) { /* no async, we'd stolen it */
1904 aiocb->ki_res.res = mangle_poll(mask);
1907 spin_unlock_irq(&ctx->ctx_lock);
1913 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1914 struct iocb __user *user_iocb, struct aio_kiocb *req,
1917 req->ki_filp = fget(iocb->aio_fildes);
1918 if (unlikely(!req->ki_filp))
1921 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1922 struct eventfd_ctx *eventfd;
1924 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1925 * instance of the file* now. The file descriptor must be
1926 * an eventfd() fd, and will be signaled for each completed
1927 * event using the eventfd_signal() function.
1929 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1930 if (IS_ERR(eventfd))
1931 return PTR_ERR(eventfd);
1933 req->ki_eventfd = eventfd;
1936 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1937 pr_debug("EFAULT: aio_key\n");
1941 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1942 req->ki_res.data = iocb->aio_data;
1943 req->ki_res.res = 0;
1944 req->ki_res.res2 = 0;
1946 switch (iocb->aio_lio_opcode) {
1947 case IOCB_CMD_PREAD:
1948 return aio_read(&req->rw, iocb, false, compat);
1949 case IOCB_CMD_PWRITE:
1950 return aio_write(&req->rw, iocb, false, compat);
1951 case IOCB_CMD_PREADV:
1952 return aio_read(&req->rw, iocb, true, compat);
1953 case IOCB_CMD_PWRITEV:
1954 return aio_write(&req->rw, iocb, true, compat);
1955 case IOCB_CMD_FSYNC:
1956 return aio_fsync(&req->fsync, iocb, false);
1957 case IOCB_CMD_FDSYNC:
1958 return aio_fsync(&req->fsync, iocb, true);
1960 return aio_poll(req, iocb);
1962 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1967 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1970 struct aio_kiocb *req;
1974 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1977 /* enforce forwards compatibility on users */
1978 if (unlikely(iocb.aio_reserved2)) {
1979 pr_debug("EINVAL: reserve field set\n");
1983 /* prevent overflows */
1985 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1986 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1987 ((ssize_t)iocb.aio_nbytes < 0)
1989 pr_debug("EINVAL: overflow check\n");
1993 req = aio_get_req(ctx);
1997 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1999 /* Done with the synchronous reference */
2003 * If err is 0, we'd either done aio_complete() ourselves or have
2004 * arranged for that to be done asynchronously. Anything non-zero
2005 * means that we need to destroy req ourselves.
2007 if (unlikely(err)) {
2009 put_reqs_available(ctx, 1);
2015 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2016 * the number of iocbs queued. May return -EINVAL if the aio_context
2017 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2018 * *iocbpp[0] is not properly initialized, if the operation specified
2019 * is invalid for the file descriptor in the iocb. May fail with
2020 * -EFAULT if any of the data structures point to invalid data. May
2021 * fail with -EBADF if the file descriptor specified in the first
2022 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2023 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2024 * fail with -ENOSYS if not implemented.
2026 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2027 struct iocb __user * __user *, iocbpp)
2032 struct blk_plug plug;
2034 if (unlikely(nr < 0))
2037 ctx = lookup_ioctx(ctx_id);
2038 if (unlikely(!ctx)) {
2039 pr_debug("EINVAL: invalid context id\n");
2043 if (nr > ctx->nr_events)
2044 nr = ctx->nr_events;
2046 if (nr > AIO_PLUG_THRESHOLD)
2047 blk_start_plug(&plug);
2048 for (i = 0; i < nr; i++) {
2049 struct iocb __user *user_iocb;
2051 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2056 ret = io_submit_one(ctx, user_iocb, false);
2060 if (nr > AIO_PLUG_THRESHOLD)
2061 blk_finish_plug(&plug);
2063 percpu_ref_put(&ctx->users);
2067 #ifdef CONFIG_COMPAT
2068 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2069 int, nr, compat_uptr_t __user *, iocbpp)
2074 struct blk_plug plug;
2076 if (unlikely(nr < 0))
2079 ctx = lookup_ioctx(ctx_id);
2080 if (unlikely(!ctx)) {
2081 pr_debug("EINVAL: invalid context id\n");
2085 if (nr > ctx->nr_events)
2086 nr = ctx->nr_events;
2088 if (nr > AIO_PLUG_THRESHOLD)
2089 blk_start_plug(&plug);
2090 for (i = 0; i < nr; i++) {
2091 compat_uptr_t user_iocb;
2093 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2098 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2102 if (nr > AIO_PLUG_THRESHOLD)
2103 blk_finish_plug(&plug);
2105 percpu_ref_put(&ctx->users);
2111 * Attempts to cancel an iocb previously passed to io_submit. If
2112 * the operation is successfully cancelled, the resulting event is
2113 * copied into the memory pointed to by result without being placed
2114 * into the completion queue and 0 is returned. May fail with
2115 * -EFAULT if any of the data structures pointed to are invalid.
2116 * May fail with -EINVAL if aio_context specified by ctx_id is
2117 * invalid. May fail with -EAGAIN if the iocb specified was not
2118 * cancelled. Will fail with -ENOSYS if not implemented.
2120 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2121 struct io_event __user *, result)
2124 struct aio_kiocb *kiocb;
2127 u64 obj = (u64)(unsigned long)iocb;
2129 if (unlikely(get_user(key, &iocb->aio_key)))
2131 if (unlikely(key != KIOCB_KEY))
2134 ctx = lookup_ioctx(ctx_id);
2138 spin_lock_irq(&ctx->ctx_lock);
2139 /* TODO: use a hash or array, this sucks. */
2140 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2141 if (kiocb->ki_res.obj == obj) {
2142 ret = kiocb->ki_cancel(&kiocb->rw);
2143 list_del_init(&kiocb->ki_list);
2147 spin_unlock_irq(&ctx->ctx_lock);
2151 * The result argument is no longer used - the io_event is
2152 * always delivered via the ring buffer. -EINPROGRESS indicates
2153 * cancellation is progress:
2158 percpu_ref_put(&ctx->users);
2163 static long do_io_getevents(aio_context_t ctx_id,
2166 struct io_event __user *events,
2167 struct timespec64 *ts)
2169 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2170 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2173 if (likely(ioctx)) {
2174 if (likely(min_nr <= nr && min_nr >= 0))
2175 ret = read_events(ioctx, min_nr, nr, events, until);
2176 percpu_ref_put(&ioctx->users);
2183 * Attempts to read at least min_nr events and up to nr events from
2184 * the completion queue for the aio_context specified by ctx_id. If
2185 * it succeeds, the number of read events is returned. May fail with
2186 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2187 * out of range, if timeout is out of range. May fail with -EFAULT
2188 * if any of the memory specified is invalid. May return 0 or
2189 * < min_nr if the timeout specified by timeout has elapsed
2190 * before sufficient events are available, where timeout == NULL
2191 * specifies an infinite timeout. Note that the timeout pointed to by
2192 * timeout is relative. Will fail with -ENOSYS if not implemented.
2196 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2199 struct io_event __user *, events,
2200 struct __kernel_timespec __user *, timeout)
2202 struct timespec64 ts;
2205 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2208 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2209 if (!ret && signal_pending(current))
2216 struct __aio_sigset {
2217 const sigset_t __user *sigmask;
2221 SYSCALL_DEFINE6(io_pgetevents,
2222 aio_context_t, ctx_id,
2225 struct io_event __user *, events,
2226 struct __kernel_timespec __user *, timeout,
2227 const struct __aio_sigset __user *, usig)
2229 struct __aio_sigset ksig = { NULL, };
2230 struct timespec64 ts;
2234 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2237 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2244 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2246 interrupted = signal_pending(current);
2247 restore_saved_sigmask_unless(interrupted);
2248 if (interrupted && !ret)
2249 ret = -ERESTARTNOHAND;
2254 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2256 SYSCALL_DEFINE6(io_pgetevents_time32,
2257 aio_context_t, ctx_id,
2260 struct io_event __user *, events,
2261 struct old_timespec32 __user *, timeout,
2262 const struct __aio_sigset __user *, usig)
2264 struct __aio_sigset ksig = { NULL, };
2265 struct timespec64 ts;
2269 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2272 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2276 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2280 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2282 interrupted = signal_pending(current);
2283 restore_saved_sigmask_unless(interrupted);
2284 if (interrupted && !ret)
2285 ret = -ERESTARTNOHAND;
2292 #if defined(CONFIG_COMPAT_32BIT_TIME)
2294 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2297 struct io_event __user *, events,
2298 struct old_timespec32 __user *, timeout)
2300 struct timespec64 t;
2303 if (timeout && get_old_timespec32(&t, timeout))
2306 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2307 if (!ret && signal_pending(current))
2314 #ifdef CONFIG_COMPAT
2316 struct __compat_aio_sigset {
2317 compat_uptr_t sigmask;
2318 compat_size_t sigsetsize;
2321 #if defined(CONFIG_COMPAT_32BIT_TIME)
2323 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2324 compat_aio_context_t, ctx_id,
2325 compat_long_t, min_nr,
2327 struct io_event __user *, events,
2328 struct old_timespec32 __user *, timeout,
2329 const struct __compat_aio_sigset __user *, usig)
2331 struct __compat_aio_sigset ksig = { 0, };
2332 struct timespec64 t;
2336 if (timeout && get_old_timespec32(&t, timeout))
2339 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2342 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2346 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2348 interrupted = signal_pending(current);
2349 restore_saved_sigmask_unless(interrupted);
2350 if (interrupted && !ret)
2351 ret = -ERESTARTNOHAND;
2358 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2359 compat_aio_context_t, ctx_id,
2360 compat_long_t, min_nr,
2362 struct io_event __user *, events,
2363 struct __kernel_timespec __user *, timeout,
2364 const struct __compat_aio_sigset __user *, usig)
2366 struct __compat_aio_sigset ksig = { 0, };
2367 struct timespec64 t;
2371 if (timeout && get_timespec64(&t, timeout))
2374 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2377 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2381 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2383 interrupted = signal_pending(current);
2384 restore_saved_sigmask_unless(interrupted);
2385 if (interrupted && !ret)
2386 ret = -ERESTARTNOHAND;