2 * Copyright (c) 2016, Mellanox Technologies inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/file.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/sched/mm.h>
36 #include <rdma/ib_verbs.h>
37 #include <rdma/uverbs_types.h>
38 #include <linux/rcupdate.h>
39 #include <rdma/uverbs_ioctl.h>
40 #include <rdma/rdma_user_ioctl.h>
42 #include "core_priv.h"
43 #include "rdma_core.h"
45 void uverbs_uobject_get(struct ib_uobject *uobject)
47 kref_get(&uobject->ref);
50 static void uverbs_uobject_free(struct kref *ref)
52 struct ib_uobject *uobj =
53 container_of(ref, struct ib_uobject, ref);
55 if (uobj->uapi_object->type_class->needs_kfree_rcu)
61 void uverbs_uobject_put(struct ib_uobject *uobject)
63 kref_put(&uobject->ref, uverbs_uobject_free);
66 static int uverbs_try_lock_object(struct ib_uobject *uobj,
67 enum rdma_lookup_mode mode)
70 * When a shared access is required, we use a positive counter. Each
71 * shared access request checks that the value != -1 and increment it.
72 * Exclusive access is required for operations like write or destroy.
73 * In exclusive access mode, we check that the counter is zero (nobody
74 * claimed this object) and we set it to -1. Releasing a shared access
75 * lock is done simply by decreasing the counter. As for exclusive
76 * access locks, since only a single one of them is is allowed
77 * concurrently, setting the counter to zero is enough for releasing
81 case UVERBS_LOOKUP_READ:
82 return atomic_fetch_add_unless(&uobj->usecnt, 1, -1) == -1 ?
84 case UVERBS_LOOKUP_WRITE:
85 /* lock is exclusive */
86 return atomic_cmpxchg(&uobj->usecnt, 0, -1) == 0 ? 0 : -EBUSY;
87 case UVERBS_LOOKUP_DESTROY:
93 static void assert_uverbs_usecnt(struct ib_uobject *uobj,
94 enum rdma_lookup_mode mode)
98 case UVERBS_LOOKUP_READ:
99 WARN_ON(atomic_read(&uobj->usecnt) <= 0);
101 case UVERBS_LOOKUP_WRITE:
102 WARN_ON(atomic_read(&uobj->usecnt) != -1);
104 case UVERBS_LOOKUP_DESTROY:
111 * This must be called with the hw_destroy_rwsem locked for read or write,
112 * also the uobject itself must be locked for write.
114 * Upon return the HW object is guaranteed to be destroyed.
116 * For RDMA_REMOVE_ABORT, the hw_destroy_rwsem is not required to be held,
117 * however the type's allocat_commit function cannot have been called and the
118 * uobject cannot be on the uobjects_lists
120 * For RDMA_REMOVE_DESTROY the caller shold be holding a kref (eg via
121 * rdma_lookup_get_uobject) and the object is left in a state where the caller
122 * needs to call rdma_lookup_put_uobject.
124 * For all other destroy modes this function internally unlocks the uobject
125 * and consumes the kref on the uobj.
127 static int uverbs_destroy_uobject(struct ib_uobject *uobj,
128 enum rdma_remove_reason reason)
130 struct ib_uverbs_file *ufile = uobj->ufile;
134 lockdep_assert_held(&ufile->hw_destroy_rwsem);
135 assert_uverbs_usecnt(uobj, UVERBS_LOOKUP_WRITE);
138 ret = uobj->uapi_object->type_class->destroy_hw(uobj, reason);
140 if (ib_is_destroy_retryable(ret, reason, uobj))
143 /* Nothing to be done, dangle the memory and move on */
145 "ib_uverbs: failed to remove uobject id %d, driver err=%d",
152 if (reason == RDMA_REMOVE_ABORT) {
153 WARN_ON(!list_empty(&uobj->list));
154 WARN_ON(!uobj->context);
155 uobj->uapi_object->type_class->alloc_abort(uobj);
158 uobj->context = NULL;
161 * For DESTROY the usecnt is held write locked, the caller is expected
162 * to put it unlock and put the object when done with it. Only DESTROY
163 * can remove the IDR handle.
165 if (reason != RDMA_REMOVE_DESTROY)
166 atomic_set(&uobj->usecnt, 0);
168 uobj->uapi_object->type_class->remove_handle(uobj);
170 if (!list_empty(&uobj->list)) {
171 spin_lock_irqsave(&ufile->uobjects_lock, flags);
172 list_del_init(&uobj->list);
173 spin_unlock_irqrestore(&ufile->uobjects_lock, flags);
176 * Pairs with the get in rdma_alloc_commit_uobject(), could
179 uverbs_uobject_put(uobj);
183 * When aborting the stack kref remains owned by the core code, and is
184 * not transferred into the type. Pairs with the get in alloc_uobj
186 if (reason == RDMA_REMOVE_ABORT)
187 uverbs_uobject_put(uobj);
193 * This calls uverbs_destroy_uobject() using the RDMA_REMOVE_DESTROY
194 * sequence. It should only be used from command callbacks. On success the
195 * caller must pair this with rdma_lookup_put_uobject(LOOKUP_WRITE). This
196 * version requires the caller to have already obtained an
197 * LOOKUP_DESTROY uobject kref.
199 int uobj_destroy(struct ib_uobject *uobj)
201 struct ib_uverbs_file *ufile = uobj->ufile;
204 down_read(&ufile->hw_destroy_rwsem);
206 ret = uverbs_try_lock_object(uobj, UVERBS_LOOKUP_WRITE);
210 ret = uverbs_destroy_uobject(uobj, RDMA_REMOVE_DESTROY);
212 atomic_set(&uobj->usecnt, 0);
217 up_read(&ufile->hw_destroy_rwsem);
222 * uobj_get_destroy destroys the HW object and returns a handle to the uobj
223 * with a NULL object pointer. The caller must pair this with
224 * uverbs_put_destroy.
226 struct ib_uobject *__uobj_get_destroy(const struct uverbs_api_object *obj,
227 u32 id, struct ib_uverbs_file *ufile)
229 struct ib_uobject *uobj;
232 uobj = rdma_lookup_get_uobject(obj, ufile, id, UVERBS_LOOKUP_DESTROY);
236 ret = uobj_destroy(uobj);
238 rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_DESTROY);
246 * Does both uobj_get_destroy() and uobj_put_destroy(). Returns success_res
247 * on success (negative errno on failure). For use by callers that do not need
250 int __uobj_perform_destroy(const struct uverbs_api_object *obj, u32 id,
251 struct ib_uverbs_file *ufile, int success_res)
253 struct ib_uobject *uobj;
255 uobj = __uobj_get_destroy(obj, id, ufile);
257 return PTR_ERR(uobj);
259 rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_WRITE);
263 /* alloc_uobj must be undone by uverbs_destroy_uobject() */
264 static struct ib_uobject *alloc_uobj(struct ib_uverbs_file *ufile,
265 const struct uverbs_api_object *obj)
267 struct ib_uobject *uobj;
268 struct ib_ucontext *ucontext;
270 ucontext = ib_uverbs_get_ucontext(ufile);
271 if (IS_ERR(ucontext))
272 return ERR_CAST(ucontext);
274 uobj = kzalloc(obj->type_attrs->obj_size, GFP_KERNEL);
276 return ERR_PTR(-ENOMEM);
278 * user_handle should be filled by the handler,
279 * The object is added to the list in the commit stage.
282 uobj->context = ucontext;
283 INIT_LIST_HEAD(&uobj->list);
284 uobj->uapi_object = obj;
286 * Allocated objects start out as write locked to deny any other
287 * syscalls from accessing them until they are committed. See
288 * rdma_alloc_commit_uobject
290 atomic_set(&uobj->usecnt, -1);
291 kref_init(&uobj->ref);
296 static int idr_add_uobj(struct ib_uobject *uobj)
300 idr_preload(GFP_KERNEL);
301 spin_lock(&uobj->ufile->idr_lock);
304 * We start with allocating an idr pointing to NULL. This represents an
305 * object which isn't initialized yet. We'll replace it later on with
306 * the real object once we commit.
308 ret = idr_alloc(&uobj->ufile->idr, NULL, 0,
309 min_t(unsigned long, U32_MAX - 1, INT_MAX), GFP_NOWAIT);
313 spin_unlock(&uobj->ufile->idr_lock);
316 return ret < 0 ? ret : 0;
319 /* Returns the ib_uobject or an error. The caller should check for IS_ERR. */
320 static struct ib_uobject *
321 lookup_get_idr_uobject(const struct uverbs_api_object *obj,
322 struct ib_uverbs_file *ufile, s64 id,
323 enum rdma_lookup_mode mode)
325 struct ib_uobject *uobj;
326 unsigned long idrno = id;
328 if (id < 0 || id > ULONG_MAX)
329 return ERR_PTR(-EINVAL);
332 /* object won't be released as we're protected in rcu */
333 uobj = idr_find(&ufile->idr, idrno);
335 uobj = ERR_PTR(-ENOENT);
340 * The idr_find is guaranteed to return a pointer to something that
341 * isn't freed yet, or NULL, as the free after idr_remove goes through
342 * kfree_rcu(). However the object may still have been released and
343 * kfree() could be called at any time.
345 if (!kref_get_unless_zero(&uobj->ref))
346 uobj = ERR_PTR(-ENOENT);
353 static struct ib_uobject *
354 lookup_get_fd_uobject(const struct uverbs_api_object *obj,
355 struct ib_uverbs_file *ufile, s64 id,
356 enum rdma_lookup_mode mode)
358 const struct uverbs_obj_fd_type *fd_type;
360 struct ib_uobject *uobject;
364 return ERR_PTR(-EINVAL);
366 if (mode != UVERBS_LOOKUP_READ)
367 return ERR_PTR(-EOPNOTSUPP);
369 if (!obj->type_attrs)
370 return ERR_PTR(-EIO);
372 container_of(obj->type_attrs, struct uverbs_obj_fd_type, type);
376 return ERR_PTR(-EBADF);
378 uobject = f->private_data;
380 * fget(id) ensures we are not currently running uverbs_close_fd,
381 * and the caller is expected to ensure that uverbs_close_fd is never
382 * done while a call top lookup is possible.
384 if (f->f_op != fd_type->fops) {
386 return ERR_PTR(-EBADF);
389 uverbs_uobject_get(uobject);
393 struct ib_uobject *rdma_lookup_get_uobject(const struct uverbs_api_object *obj,
394 struct ib_uverbs_file *ufile, s64 id,
395 enum rdma_lookup_mode mode)
397 struct ib_uobject *uobj;
401 return ERR_PTR(-EINVAL);
403 uobj = obj->type_class->lookup_get(obj, ufile, id, mode);
407 if (uobj->uapi_object != obj) {
413 * If we have been disassociated block every command except for
414 * DESTROY based commands.
416 if (mode != UVERBS_LOOKUP_DESTROY &&
417 !srcu_dereference(ufile->device->ib_dev,
418 &ufile->device->disassociate_srcu)) {
423 ret = uverbs_try_lock_object(uobj, mode);
429 obj->type_class->lookup_put(uobj, mode);
430 uverbs_uobject_put(uobj);
434 static struct ib_uobject *
435 alloc_begin_idr_uobject(const struct uverbs_api_object *obj,
436 struct ib_uverbs_file *ufile)
439 struct ib_uobject *uobj;
441 uobj = alloc_uobj(ufile, obj);
445 ret = idr_add_uobj(uobj);
449 ret = ib_rdmacg_try_charge(&uobj->cg_obj, uobj->context->device,
450 RDMACG_RESOURCE_HCA_OBJECT);
457 spin_lock(&ufile->idr_lock);
458 idr_remove(&ufile->idr, uobj->id);
459 spin_unlock(&ufile->idr_lock);
461 uverbs_uobject_put(uobj);
465 static struct ib_uobject *
466 alloc_begin_fd_uobject(const struct uverbs_api_object *obj,
467 struct ib_uverbs_file *ufile)
470 struct ib_uobject *uobj;
472 new_fd = get_unused_fd_flags(O_CLOEXEC);
474 return ERR_PTR(new_fd);
476 uobj = alloc_uobj(ufile, obj);
478 put_unused_fd(new_fd);
488 struct ib_uobject *rdma_alloc_begin_uobject(const struct uverbs_api_object *obj,
489 struct ib_uverbs_file *ufile)
491 struct ib_uobject *ret;
494 return ERR_PTR(-EINVAL);
497 * The hw_destroy_rwsem is held across the entire object creation and
498 * released during rdma_alloc_commit_uobject or
499 * rdma_alloc_abort_uobject
501 if (!down_read_trylock(&ufile->hw_destroy_rwsem))
502 return ERR_PTR(-EIO);
504 ret = obj->type_class->alloc_begin(obj, ufile);
506 up_read(&ufile->hw_destroy_rwsem);
512 static void alloc_abort_idr_uobject(struct ib_uobject *uobj)
514 ib_rdmacg_uncharge(&uobj->cg_obj, uobj->context->device,
515 RDMACG_RESOURCE_HCA_OBJECT);
517 spin_lock(&uobj->ufile->idr_lock);
518 idr_remove(&uobj->ufile->idr, uobj->id);
519 spin_unlock(&uobj->ufile->idr_lock);
522 static int __must_check destroy_hw_idr_uobject(struct ib_uobject *uobj,
523 enum rdma_remove_reason why)
525 const struct uverbs_obj_idr_type *idr_type =
526 container_of(uobj->uapi_object->type_attrs,
527 struct uverbs_obj_idr_type, type);
528 int ret = idr_type->destroy_object(uobj, why);
531 * We can only fail gracefully if the user requested to destroy the
532 * object or when a retry may be called upon an error.
533 * In the rest of the cases, just remove whatever you can.
535 if (ib_is_destroy_retryable(ret, why, uobj))
538 if (why == RDMA_REMOVE_ABORT)
541 ib_rdmacg_uncharge(&uobj->cg_obj, uobj->context->device,
542 RDMACG_RESOURCE_HCA_OBJECT);
547 static void remove_handle_idr_uobject(struct ib_uobject *uobj)
549 spin_lock(&uobj->ufile->idr_lock);
550 idr_remove(&uobj->ufile->idr, uobj->id);
551 spin_unlock(&uobj->ufile->idr_lock);
552 /* Matches the kref in alloc_commit_idr_uobject */
553 uverbs_uobject_put(uobj);
556 static void alloc_abort_fd_uobject(struct ib_uobject *uobj)
558 put_unused_fd(uobj->id);
561 static int __must_check destroy_hw_fd_uobject(struct ib_uobject *uobj,
562 enum rdma_remove_reason why)
564 const struct uverbs_obj_fd_type *fd_type = container_of(
565 uobj->uapi_object->type_attrs, struct uverbs_obj_fd_type, type);
566 int ret = fd_type->context_closed(uobj, why);
568 if (ib_is_destroy_retryable(ret, why, uobj))
574 static void remove_handle_fd_uobject(struct ib_uobject *uobj)
578 static int alloc_commit_idr_uobject(struct ib_uobject *uobj)
580 struct ib_uverbs_file *ufile = uobj->ufile;
582 spin_lock(&ufile->idr_lock);
584 * We already allocated this IDR with a NULL object, so
585 * this shouldn't fail.
587 * NOTE: Once we set the IDR we loose ownership of our kref on uobj.
588 * It will be put by remove_commit_idr_uobject()
590 WARN_ON(idr_replace(&ufile->idr, uobj, uobj->id));
591 spin_unlock(&ufile->idr_lock);
596 static int alloc_commit_fd_uobject(struct ib_uobject *uobj)
598 const struct uverbs_obj_fd_type *fd_type = container_of(
599 uobj->uapi_object->type_attrs, struct uverbs_obj_fd_type, type);
604 * The kref for uobj is moved into filp->private data and put in
605 * uverbs_close_fd(). Once alloc_commit() succeeds uverbs_close_fd()
606 * must be guaranteed to be called from the provided fops release
609 filp = anon_inode_getfile(fd_type->name,
614 return PTR_ERR(filp);
618 /* Matching put will be done in uverbs_close_fd() */
619 kref_get(&uobj->ufile->ref);
621 /* This shouldn't be used anymore. Use the file object instead */
625 * NOTE: Once we install the file we loose ownership of our kref on
626 * uobj. It will be put by uverbs_close_fd()
628 fd_install(fd, filp);
634 * In all cases rdma_alloc_commit_uobject() consumes the kref to uobj and the
635 * caller can no longer assume uobj is valid. If this function fails it
636 * destroys the uboject, including the attached HW object.
638 int __must_check rdma_alloc_commit_uobject(struct ib_uobject *uobj)
640 struct ib_uverbs_file *ufile = uobj->ufile;
643 /* alloc_commit consumes the uobj kref */
644 ret = uobj->uapi_object->type_class->alloc_commit(uobj);
646 uverbs_destroy_uobject(uobj, RDMA_REMOVE_ABORT);
647 up_read(&ufile->hw_destroy_rwsem);
651 /* kref is held so long as the uobj is on the uobj list. */
652 uverbs_uobject_get(uobj);
653 spin_lock_irq(&ufile->uobjects_lock);
654 list_add(&uobj->list, &ufile->uobjects);
655 spin_unlock_irq(&ufile->uobjects_lock);
657 /* matches atomic_set(-1) in alloc_uobj */
658 atomic_set(&uobj->usecnt, 0);
660 /* Matches the down_read in rdma_alloc_begin_uobject */
661 up_read(&ufile->hw_destroy_rwsem);
667 * This consumes the kref for uobj. It is up to the caller to unwind the HW
668 * object and anything else connected to uobj before calling this.
670 void rdma_alloc_abort_uobject(struct ib_uobject *uobj)
672 struct ib_uverbs_file *ufile = uobj->ufile;
675 uverbs_destroy_uobject(uobj, RDMA_REMOVE_ABORT);
677 /* Matches the down_read in rdma_alloc_begin_uobject */
678 up_read(&ufile->hw_destroy_rwsem);
681 static void lookup_put_idr_uobject(struct ib_uobject *uobj,
682 enum rdma_lookup_mode mode)
686 static void lookup_put_fd_uobject(struct ib_uobject *uobj,
687 enum rdma_lookup_mode mode)
689 struct file *filp = uobj->object;
691 WARN_ON(mode != UVERBS_LOOKUP_READ);
692 /* This indirectly calls uverbs_close_fd and free the object */
696 void rdma_lookup_put_uobject(struct ib_uobject *uobj,
697 enum rdma_lookup_mode mode)
699 assert_uverbs_usecnt(uobj, mode);
700 uobj->uapi_object->type_class->lookup_put(uobj, mode);
702 * In order to unlock an object, either decrease its usecnt for
703 * read access or zero it in case of exclusive access. See
704 * uverbs_try_lock_object for locking schema information.
707 case UVERBS_LOOKUP_READ:
708 atomic_dec(&uobj->usecnt);
710 case UVERBS_LOOKUP_WRITE:
711 atomic_set(&uobj->usecnt, 0);
713 case UVERBS_LOOKUP_DESTROY:
717 /* Pairs with the kref obtained by type->lookup_get */
718 uverbs_uobject_put(uobj);
721 void setup_ufile_idr_uobject(struct ib_uverbs_file *ufile)
723 spin_lock_init(&ufile->idr_lock);
724 idr_init(&ufile->idr);
727 void release_ufile_idr_uobject(struct ib_uverbs_file *ufile)
729 struct ib_uobject *entry;
733 * At this point uverbs_cleanup_ufile() is guaranteed to have run, and
734 * there are no HW objects left, however the IDR is still populated
735 * with anything that has not been cleaned up by userspace. Since the
736 * kref on ufile is 0, nothing is allowed to call lookup_get.
738 * This is an optimized equivalent to remove_handle_idr_uobject
740 idr_for_each_entry(&ufile->idr, entry, id) {
741 WARN_ON(entry->object);
742 uverbs_uobject_put(entry);
745 idr_destroy(&ufile->idr);
748 const struct uverbs_obj_type_class uverbs_idr_class = {
749 .alloc_begin = alloc_begin_idr_uobject,
750 .lookup_get = lookup_get_idr_uobject,
751 .alloc_commit = alloc_commit_idr_uobject,
752 .alloc_abort = alloc_abort_idr_uobject,
753 .lookup_put = lookup_put_idr_uobject,
754 .destroy_hw = destroy_hw_idr_uobject,
755 .remove_handle = remove_handle_idr_uobject,
757 * When we destroy an object, we first just lock it for WRITE and
758 * actually DESTROY it in the finalize stage. So, the problematic
759 * scenario is when we just started the finalize stage of the
760 * destruction (nothing was executed yet). Now, the other thread
761 * fetched the object for READ access, but it didn't lock it yet.
762 * The DESTROY thread continues and starts destroying the object.
763 * When the other thread continue - without the RCU, it would
764 * access freed memory. However, the rcu_read_lock delays the free
765 * until the rcu_read_lock of the READ operation quits. Since the
766 * exclusive lock of the object is still taken by the DESTROY flow, the
767 * READ operation will get -EBUSY and it'll just bail out.
769 .needs_kfree_rcu = true,
771 EXPORT_SYMBOL(uverbs_idr_class);
773 void uverbs_close_fd(struct file *f)
775 struct ib_uobject *uobj = f->private_data;
776 struct ib_uverbs_file *ufile = uobj->ufile;
778 if (down_read_trylock(&ufile->hw_destroy_rwsem)) {
780 * lookup_get_fd_uobject holds the kref on the struct file any
781 * time a FD uobj is locked, which prevents this release
782 * method from being invoked. Meaning we can always get the
783 * write lock here, or we have a kernel bug.
785 WARN_ON(uverbs_try_lock_object(uobj, UVERBS_LOOKUP_WRITE));
786 uverbs_destroy_uobject(uobj, RDMA_REMOVE_CLOSE);
787 up_read(&ufile->hw_destroy_rwsem);
790 /* Matches the get in alloc_begin_fd_uobject */
791 kref_put(&ufile->ref, ib_uverbs_release_file);
793 /* Pairs with filp->private_data in alloc_begin_fd_uobject */
794 uverbs_uobject_put(uobj);
797 static void ufile_disassociate_ucontext(struct ib_ucontext *ibcontext)
799 struct ib_device *ib_dev = ibcontext->device;
800 struct task_struct *owning_process = NULL;
801 struct mm_struct *owning_mm = NULL;
803 owning_process = get_pid_task(ibcontext->tgid, PIDTYPE_PID);
807 owning_mm = get_task_mm(owning_process);
809 pr_info("no mm, disassociate ucontext is pending task termination\n");
811 put_task_struct(owning_process);
812 usleep_range(1000, 2000);
813 owning_process = get_pid_task(ibcontext->tgid,
815 if (!owning_process ||
816 owning_process->state == TASK_DEAD) {
817 pr_info("disassociate ucontext done, task was terminated\n");
818 /* in case task was dead need to release the
822 put_task_struct(owning_process);
828 down_write(&owning_mm->mmap_sem);
829 ib_dev->disassociate_ucontext(ibcontext);
830 up_write(&owning_mm->mmap_sem);
832 put_task_struct(owning_process);
836 * Drop the ucontext off the ufile and completely disconnect it from the
839 static void ufile_destroy_ucontext(struct ib_uverbs_file *ufile,
840 enum rdma_remove_reason reason)
842 struct ib_ucontext *ucontext = ufile->ucontext;
845 if (reason == RDMA_REMOVE_DRIVER_REMOVE)
846 ufile_disassociate_ucontext(ucontext);
848 put_pid(ucontext->tgid);
849 ib_rdmacg_uncharge(&ucontext->cg_obj, ucontext->device,
850 RDMACG_RESOURCE_HCA_HANDLE);
853 * FIXME: Drivers are not permitted to fail dealloc_ucontext, remove
856 ret = ucontext->device->dealloc_ucontext(ucontext);
859 ufile->ucontext = NULL;
862 static int __uverbs_cleanup_ufile(struct ib_uverbs_file *ufile,
863 enum rdma_remove_reason reason)
865 struct ib_uobject *obj, *next_obj;
869 * This shouldn't run while executing other commands on this
870 * context. Thus, the only thing we should take care of is
871 * releasing a FD while traversing this list. The FD could be
872 * closed and released from the _release fop of this FD.
873 * In order to mitigate this, we add a lock.
874 * We take and release the lock per traversal in order to let
875 * other threads (which might still use the FDs) chance to run.
877 list_for_each_entry_safe(obj, next_obj, &ufile->uobjects, list) {
879 * if we hit this WARN_ON, that means we are
880 * racing with a lookup_get.
882 WARN_ON(uverbs_try_lock_object(obj, UVERBS_LOOKUP_WRITE));
883 if (!uverbs_destroy_uobject(obj, reason))
890 * Destroy the uncontext and every uobject associated with it. If called with
891 * reason != RDMA_REMOVE_CLOSE this will not return until the destruction has
892 * been completed and ufile->ucontext is NULL.
894 * This is internally locked and can be called in parallel from multiple
897 void uverbs_destroy_ufile_hw(struct ib_uverbs_file *ufile,
898 enum rdma_remove_reason reason)
900 if (reason == RDMA_REMOVE_CLOSE) {
902 * During destruction we might trigger something that
903 * synchronously calls release on any file descriptor. For
904 * this reason all paths that come from file_operations
905 * release must use try_lock. They can progress knowing that
906 * there is an ongoing uverbs_destroy_ufile_hw that will clean
907 * up the driver resources.
909 if (!mutex_trylock(&ufile->ucontext_lock))
913 mutex_lock(&ufile->ucontext_lock);
916 down_write(&ufile->hw_destroy_rwsem);
919 * If a ucontext was never created then we can't have any uobjects to
920 * cleanup, nothing to do.
922 if (!ufile->ucontext)
925 ufile->ucontext->closing = true;
926 ufile->ucontext->cleanup_retryable = true;
927 while (!list_empty(&ufile->uobjects))
928 if (__uverbs_cleanup_ufile(ufile, reason)) {
930 * No entry was cleaned-up successfully during this
936 ufile->ucontext->cleanup_retryable = false;
937 if (!list_empty(&ufile->uobjects))
938 __uverbs_cleanup_ufile(ufile, reason);
940 ufile_destroy_ucontext(ufile, reason);
943 up_write(&ufile->hw_destroy_rwsem);
944 mutex_unlock(&ufile->ucontext_lock);
947 const struct uverbs_obj_type_class uverbs_fd_class = {
948 .alloc_begin = alloc_begin_fd_uobject,
949 .lookup_get = lookup_get_fd_uobject,
950 .alloc_commit = alloc_commit_fd_uobject,
951 .alloc_abort = alloc_abort_fd_uobject,
952 .lookup_put = lookup_put_fd_uobject,
953 .destroy_hw = destroy_hw_fd_uobject,
954 .remove_handle = remove_handle_fd_uobject,
955 .needs_kfree_rcu = false,
957 EXPORT_SYMBOL(uverbs_fd_class);
960 uverbs_get_uobject_from_file(u16 object_id,
961 struct ib_uverbs_file *ufile,
962 enum uverbs_obj_access access, s64 id)
964 const struct uverbs_api_object *obj =
965 uapi_get_object(ufile->device->uapi, object_id);
968 case UVERBS_ACCESS_READ:
969 return rdma_lookup_get_uobject(obj, ufile, id,
971 case UVERBS_ACCESS_DESTROY:
972 /* Actual destruction is done inside uverbs_handle_method */
973 return rdma_lookup_get_uobject(obj, ufile, id,
974 UVERBS_LOOKUP_DESTROY);
975 case UVERBS_ACCESS_WRITE:
976 return rdma_lookup_get_uobject(obj, ufile, id,
977 UVERBS_LOOKUP_WRITE);
978 case UVERBS_ACCESS_NEW:
979 return rdma_alloc_begin_uobject(obj, ufile);
982 return ERR_PTR(-EOPNOTSUPP);
986 int uverbs_finalize_object(struct ib_uobject *uobj,
987 enum uverbs_obj_access access,
993 * refcounts should be handled at the object level and not at the
994 * uobject level. Refcounts of the objects themselves are done in
999 case UVERBS_ACCESS_READ:
1000 rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_READ);
1002 case UVERBS_ACCESS_WRITE:
1003 rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_WRITE);
1005 case UVERBS_ACCESS_DESTROY:
1007 rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_DESTROY);
1009 case UVERBS_ACCESS_NEW:
1011 ret = rdma_alloc_commit_uobject(uobj);
1013 rdma_alloc_abort_uobject(uobj);