1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
154 #include "net-sysfs.h"
156 #define MAX_GRO_SKBS 8
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly; /* Taps */
165 static struct list_head offload_base __read_mostly;
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 static DEFINE_MUTEX(ifalias_mutex);
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
205 static DECLARE_RWSEM(devnet_rename_sem);
207 static inline void dev_base_seq_inc(struct net *net)
209 while (++net->dev_base_seq == 0)
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
225 static inline void rps_lock(struct softnet_data *sd)
228 spin_lock(&sd->input_pkt_queue.lock);
232 static inline void rps_unlock(struct softnet_data *sd)
235 spin_unlock(&sd->input_pkt_queue.lock);
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
242 struct netdev_name_node *name_node;
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
256 struct netdev_name_node *name_node;
258 name_node = netdev_name_node_alloc(dev, dev->name);
261 INIT_LIST_HEAD(&name_node->list);
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
270 static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
279 hlist_del_rcu(&name_node->hlist);
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308 struct netdev_name_node *name_node;
309 struct net *net = dev_net(dev);
311 name_node = netdev_name_node_lookup(net, name);
314 name_node = netdev_name_node_alloc(dev, name);
317 netdev_name_node_add(net, name_node);
318 /* The node that holds dev->name acts as a head of per-device list. */
319 list_add_tail(&name_node->list, &dev->name_node->list);
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
327 list_del(&name_node->list);
328 netdev_name_node_del(name_node);
329 kfree(name_node->name);
330 netdev_name_node_free(name_node);
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
335 struct netdev_name_node *name_node;
336 struct net *net = dev_net(dev);
338 name_node = netdev_name_node_lookup(net, name);
341 /* lookup might have found our primary name or a name belonging
344 if (name_node == dev->name_node || name_node->dev != dev)
347 __netdev_name_node_alt_destroy(name_node);
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
353 static void netdev_name_node_alt_flush(struct net_device *dev)
355 struct netdev_name_node *name_node, *tmp;
357 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 __netdev_name_node_alt_destroy(name_node);
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
364 struct net *net = dev_net(dev);
368 write_lock_bh(&dev_base_lock);
369 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 netdev_name_node_add(net, dev->name_node);
371 hlist_add_head_rcu(&dev->index_hlist,
372 dev_index_hash(net, dev->ifindex));
373 write_unlock_bh(&dev_base_lock);
375 dev_base_seq_inc(net);
378 /* Device list removal
379 * caller must respect a RCU grace period before freeing/reusing dev
381 static void unlist_netdevice(struct net_device *dev)
385 /* Unlink dev from the device chain */
386 write_lock_bh(&dev_base_lock);
387 list_del_rcu(&dev->dev_list);
388 netdev_name_node_del(dev->name_node);
389 hlist_del_rcu(&dev->index_hlist);
390 write_unlock_bh(&dev_base_lock);
392 dev_base_seq_inc(dev_net(dev));
399 static RAW_NOTIFIER_HEAD(netdev_chain);
402 * Device drivers call our routines to queue packets here. We empty the
403 * queue in the local softnet handler.
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
409 #ifdef CONFIG_LOCKDEP
411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412 * according to dev->type
414 static const unsigned short netdev_lock_type[] = {
415 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
431 static const char *const netdev_lock_name[] = {
432 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
455 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 if (netdev_lock_type[i] == dev_type)
458 /* the last key is used by default */
459 return ARRAY_SIZE(netdev_lock_type) - 1;
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 unsigned short dev_type)
467 i = netdev_lock_pos(dev_type);
468 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 netdev_lock_name[i]);
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
476 i = netdev_lock_pos(dev->type);
477 lockdep_set_class_and_name(&dev->addr_list_lock,
478 &netdev_addr_lock_key[i],
479 netdev_lock_name[i]);
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 unsigned short dev_type)
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 /*******************************************************************************
494 * Protocol management and registration routines
496 *******************************************************************************/
500 * Add a protocol ID to the list. Now that the input handler is
501 * smarter we can dispense with all the messy stuff that used to be
504 * BEWARE!!! Protocol handlers, mangling input packets,
505 * MUST BE last in hash buckets and checking protocol handlers
506 * MUST start from promiscuous ptype_all chain in net_bh.
507 * It is true now, do not change it.
508 * Explanation follows: if protocol handler, mangling packet, will
509 * be the first on list, it is not able to sense, that packet
510 * is cloned and should be copied-on-write, so that it will
511 * change it and subsequent readers will get broken packet.
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
517 if (pt->type == htons(ETH_P_ALL))
518 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
520 return pt->dev ? &pt->dev->ptype_specific :
521 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
525 * dev_add_pack - add packet handler
526 * @pt: packet type declaration
528 * Add a protocol handler to the networking stack. The passed &packet_type
529 * is linked into kernel lists and may not be freed until it has been
530 * removed from the kernel lists.
532 * This call does not sleep therefore it can not
533 * guarantee all CPU's that are in middle of receiving packets
534 * will see the new packet type (until the next received packet).
537 void dev_add_pack(struct packet_type *pt)
539 struct list_head *head = ptype_head(pt);
541 spin_lock(&ptype_lock);
542 list_add_rcu(&pt->list, head);
543 spin_unlock(&ptype_lock);
545 EXPORT_SYMBOL(dev_add_pack);
548 * __dev_remove_pack - remove packet handler
549 * @pt: packet type declaration
551 * Remove a protocol handler that was previously added to the kernel
552 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
553 * from the kernel lists and can be freed or reused once this function
556 * The packet type might still be in use by receivers
557 * and must not be freed until after all the CPU's have gone
558 * through a quiescent state.
560 void __dev_remove_pack(struct packet_type *pt)
562 struct list_head *head = ptype_head(pt);
563 struct packet_type *pt1;
565 spin_lock(&ptype_lock);
567 list_for_each_entry(pt1, head, list) {
569 list_del_rcu(&pt->list);
574 pr_warn("dev_remove_pack: %p not found\n", pt);
576 spin_unlock(&ptype_lock);
578 EXPORT_SYMBOL(__dev_remove_pack);
581 * dev_remove_pack - remove packet handler
582 * @pt: packet type declaration
584 * Remove a protocol handler that was previously added to the kernel
585 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
586 * from the kernel lists and can be freed or reused once this function
589 * This call sleeps to guarantee that no CPU is looking at the packet
592 void dev_remove_pack(struct packet_type *pt)
594 __dev_remove_pack(pt);
598 EXPORT_SYMBOL(dev_remove_pack);
602 * dev_add_offload - register offload handlers
603 * @po: protocol offload declaration
605 * Add protocol offload handlers to the networking stack. The passed
606 * &proto_offload is linked into kernel lists and may not be freed until
607 * it has been removed from the kernel lists.
609 * This call does not sleep therefore it can not
610 * guarantee all CPU's that are in middle of receiving packets
611 * will see the new offload handlers (until the next received packet).
613 void dev_add_offload(struct packet_offload *po)
615 struct packet_offload *elem;
617 spin_lock(&offload_lock);
618 list_for_each_entry(elem, &offload_base, list) {
619 if (po->priority < elem->priority)
622 list_add_rcu(&po->list, elem->list.prev);
623 spin_unlock(&offload_lock);
625 EXPORT_SYMBOL(dev_add_offload);
628 * __dev_remove_offload - remove offload handler
629 * @po: packet offload declaration
631 * Remove a protocol offload handler that was previously added to the
632 * kernel offload handlers by dev_add_offload(). The passed &offload_type
633 * is removed from the kernel lists and can be freed or reused once this
636 * The packet type might still be in use by receivers
637 * and must not be freed until after all the CPU's have gone
638 * through a quiescent state.
640 static void __dev_remove_offload(struct packet_offload *po)
642 struct list_head *head = &offload_base;
643 struct packet_offload *po1;
645 spin_lock(&offload_lock);
647 list_for_each_entry(po1, head, list) {
649 list_del_rcu(&po->list);
654 pr_warn("dev_remove_offload: %p not found\n", po);
656 spin_unlock(&offload_lock);
660 * dev_remove_offload - remove packet offload handler
661 * @po: packet offload declaration
663 * Remove a packet offload handler that was previously added to the kernel
664 * offload handlers by dev_add_offload(). The passed &offload_type is
665 * removed from the kernel lists and can be freed or reused once this
668 * This call sleeps to guarantee that no CPU is looking at the packet
671 void dev_remove_offload(struct packet_offload *po)
673 __dev_remove_offload(po);
677 EXPORT_SYMBOL(dev_remove_offload);
679 /******************************************************************************
681 * Device Boot-time Settings Routines
683 ******************************************************************************/
685 /* Boot time configuration table */
686 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
689 * netdev_boot_setup_add - add new setup entry
690 * @name: name of the device
691 * @map: configured settings for the device
693 * Adds new setup entry to the dev_boot_setup list. The function
694 * returns 0 on error and 1 on success. This is a generic routine to
697 static int netdev_boot_setup_add(char *name, struct ifmap *map)
699 struct netdev_boot_setup *s;
703 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
704 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
705 memset(s[i].name, 0, sizeof(s[i].name));
706 strlcpy(s[i].name, name, IFNAMSIZ);
707 memcpy(&s[i].map, map, sizeof(s[i].map));
712 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
716 * netdev_boot_setup_check - check boot time settings
717 * @dev: the netdevice
719 * Check boot time settings for the device.
720 * The found settings are set for the device to be used
721 * later in the device probing.
722 * Returns 0 if no settings found, 1 if they are.
724 int netdev_boot_setup_check(struct net_device *dev)
726 struct netdev_boot_setup *s = dev_boot_setup;
729 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
730 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
731 !strcmp(dev->name, s[i].name)) {
732 dev->irq = s[i].map.irq;
733 dev->base_addr = s[i].map.base_addr;
734 dev->mem_start = s[i].map.mem_start;
735 dev->mem_end = s[i].map.mem_end;
741 EXPORT_SYMBOL(netdev_boot_setup_check);
745 * netdev_boot_base - get address from boot time settings
746 * @prefix: prefix for network device
747 * @unit: id for network device
749 * Check boot time settings for the base address of device.
750 * The found settings are set for the device to be used
751 * later in the device probing.
752 * Returns 0 if no settings found.
754 unsigned long netdev_boot_base(const char *prefix, int unit)
756 const struct netdev_boot_setup *s = dev_boot_setup;
760 sprintf(name, "%s%d", prefix, unit);
763 * If device already registered then return base of 1
764 * to indicate not to probe for this interface
766 if (__dev_get_by_name(&init_net, name))
769 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
770 if (!strcmp(name, s[i].name))
771 return s[i].map.base_addr;
776 * Saves at boot time configured settings for any netdevice.
778 int __init netdev_boot_setup(char *str)
783 str = get_options(str, ARRAY_SIZE(ints), ints);
788 memset(&map, 0, sizeof(map));
792 map.base_addr = ints[2];
794 map.mem_start = ints[3];
796 map.mem_end = ints[4];
798 /* Add new entry to the list */
799 return netdev_boot_setup_add(str, &map);
802 __setup("netdev=", netdev_boot_setup);
804 /*******************************************************************************
806 * Device Interface Subroutines
808 *******************************************************************************/
811 * dev_get_iflink - get 'iflink' value of a interface
812 * @dev: targeted interface
814 * Indicates the ifindex the interface is linked to.
815 * Physical interfaces have the same 'ifindex' and 'iflink' values.
818 int dev_get_iflink(const struct net_device *dev)
820 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
821 return dev->netdev_ops->ndo_get_iflink(dev);
825 EXPORT_SYMBOL(dev_get_iflink);
828 * dev_fill_metadata_dst - Retrieve tunnel egress information.
829 * @dev: targeted interface
832 * For better visibility of tunnel traffic OVS needs to retrieve
833 * egress tunnel information for a packet. Following API allows
834 * user to get this info.
836 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
838 struct ip_tunnel_info *info;
840 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
843 info = skb_tunnel_info_unclone(skb);
846 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
849 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
851 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
853 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
855 int k = stack->num_paths++;
857 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
860 return &stack->path[k];
863 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
864 struct net_device_path_stack *stack)
866 const struct net_device *last_dev;
867 struct net_device_path_ctx ctx = {
871 struct net_device_path *path;
874 stack->num_paths = 0;
875 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
877 path = dev_fwd_path(stack);
881 memset(path, 0, sizeof(struct net_device_path));
882 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
886 if (WARN_ON_ONCE(last_dev == ctx.dev))
889 path = dev_fwd_path(stack);
892 path->type = DEV_PATH_ETHERNET;
897 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
900 * __dev_get_by_name - find a device by its name
901 * @net: the applicable net namespace
902 * @name: name to find
904 * Find an interface by name. Must be called under RTNL semaphore
905 * or @dev_base_lock. If the name is found a pointer to the device
906 * is returned. If the name is not found then %NULL is returned. The
907 * reference counters are not incremented so the caller must be
908 * careful with locks.
911 struct net_device *__dev_get_by_name(struct net *net, const char *name)
913 struct netdev_name_node *node_name;
915 node_name = netdev_name_node_lookup(net, name);
916 return node_name ? node_name->dev : NULL;
918 EXPORT_SYMBOL(__dev_get_by_name);
921 * dev_get_by_name_rcu - find a device by its name
922 * @net: the applicable net namespace
923 * @name: name to find
925 * Find an interface by name.
926 * If the name is found a pointer to the device is returned.
927 * If the name is not found then %NULL is returned.
928 * The reference counters are not incremented so the caller must be
929 * careful with locks. The caller must hold RCU lock.
932 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
934 struct netdev_name_node *node_name;
936 node_name = netdev_name_node_lookup_rcu(net, name);
937 return node_name ? node_name->dev : NULL;
939 EXPORT_SYMBOL(dev_get_by_name_rcu);
942 * dev_get_by_name - find a device by its name
943 * @net: the applicable net namespace
944 * @name: name to find
946 * Find an interface by name. This can be called from any
947 * context and does its own locking. The returned handle has
948 * the usage count incremented and the caller must use dev_put() to
949 * release it when it is no longer needed. %NULL is returned if no
950 * matching device is found.
953 struct net_device *dev_get_by_name(struct net *net, const char *name)
955 struct net_device *dev;
958 dev = dev_get_by_name_rcu(net, name);
964 EXPORT_SYMBOL(dev_get_by_name);
967 * __dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
971 * Search for an interface by index. Returns %NULL if the device
972 * is not found or a pointer to the device. The device has not
973 * had its reference counter increased so the caller must be careful
974 * about locking. The caller must hold either the RTNL semaphore
978 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
980 struct net_device *dev;
981 struct hlist_head *head = dev_index_hash(net, ifindex);
983 hlist_for_each_entry(dev, head, index_hlist)
984 if (dev->ifindex == ifindex)
989 EXPORT_SYMBOL(__dev_get_by_index);
992 * dev_get_by_index_rcu - find a device by its ifindex
993 * @net: the applicable net namespace
994 * @ifindex: index of device
996 * Search for an interface by index. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not
998 * had its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1002 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1004 struct net_device *dev;
1005 struct hlist_head *head = dev_index_hash(net, ifindex);
1007 hlist_for_each_entry_rcu(dev, head, index_hlist)
1008 if (dev->ifindex == ifindex)
1013 EXPORT_SYMBOL(dev_get_by_index_rcu);
1017 * dev_get_by_index - find a device by its ifindex
1018 * @net: the applicable net namespace
1019 * @ifindex: index of device
1021 * Search for an interface by index. Returns NULL if the device
1022 * is not found or a pointer to the device. The device returned has
1023 * had a reference added and the pointer is safe until the user calls
1024 * dev_put to indicate they have finished with it.
1027 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1029 struct net_device *dev;
1032 dev = dev_get_by_index_rcu(net, ifindex);
1038 EXPORT_SYMBOL(dev_get_by_index);
1041 * dev_get_by_napi_id - find a device by napi_id
1042 * @napi_id: ID of the NAPI struct
1044 * Search for an interface by NAPI ID. Returns %NULL if the device
1045 * is not found or a pointer to the device. The device has not had
1046 * its reference counter increased so the caller must be careful
1047 * about locking. The caller must hold RCU lock.
1050 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1052 struct napi_struct *napi;
1054 WARN_ON_ONCE(!rcu_read_lock_held());
1056 if (napi_id < MIN_NAPI_ID)
1059 napi = napi_by_id(napi_id);
1061 return napi ? napi->dev : NULL;
1063 EXPORT_SYMBOL(dev_get_by_napi_id);
1066 * netdev_get_name - get a netdevice name, knowing its ifindex.
1067 * @net: network namespace
1068 * @name: a pointer to the buffer where the name will be stored.
1069 * @ifindex: the ifindex of the interface to get the name from.
1071 int netdev_get_name(struct net *net, char *name, int ifindex)
1073 struct net_device *dev;
1076 down_read(&devnet_rename_sem);
1079 dev = dev_get_by_index_rcu(net, ifindex);
1085 strcpy(name, dev->name);
1090 up_read(&devnet_rename_sem);
1095 * dev_getbyhwaddr_rcu - find a device by its hardware address
1096 * @net: the applicable net namespace
1097 * @type: media type of device
1098 * @ha: hardware address
1100 * Search for an interface by MAC address. Returns NULL if the device
1101 * is not found or a pointer to the device.
1102 * The caller must hold RCU or RTNL.
1103 * The returned device has not had its ref count increased
1104 * and the caller must therefore be careful about locking
1108 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1111 struct net_device *dev;
1113 for_each_netdev_rcu(net, dev)
1114 if (dev->type == type &&
1115 !memcmp(dev->dev_addr, ha, dev->addr_len))
1120 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1122 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1124 struct net_device *dev, *ret = NULL;
1127 for_each_netdev_rcu(net, dev)
1128 if (dev->type == type) {
1136 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1139 * __dev_get_by_flags - find any device with given flags
1140 * @net: the applicable net namespace
1141 * @if_flags: IFF_* values
1142 * @mask: bitmask of bits in if_flags to check
1144 * Search for any interface with the given flags. Returns NULL if a device
1145 * is not found or a pointer to the device. Must be called inside
1146 * rtnl_lock(), and result refcount is unchanged.
1149 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1150 unsigned short mask)
1152 struct net_device *dev, *ret;
1157 for_each_netdev(net, dev) {
1158 if (((dev->flags ^ if_flags) & mask) == 0) {
1165 EXPORT_SYMBOL(__dev_get_by_flags);
1168 * dev_valid_name - check if name is okay for network device
1169 * @name: name string
1171 * Network device names need to be valid file names to
1172 * allow sysfs to work. We also disallow any kind of
1175 bool dev_valid_name(const char *name)
1179 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1181 if (!strcmp(name, ".") || !strcmp(name, ".."))
1185 if (*name == '/' || *name == ':' || isspace(*name))
1191 EXPORT_SYMBOL(dev_valid_name);
1194 * __dev_alloc_name - allocate a name for a device
1195 * @net: network namespace to allocate the device name in
1196 * @name: name format string
1197 * @buf: scratch buffer and result name string
1199 * Passed a format string - eg "lt%d" it will try and find a suitable
1200 * id. It scans list of devices to build up a free map, then chooses
1201 * the first empty slot. The caller must hold the dev_base or rtnl lock
1202 * while allocating the name and adding the device in order to avoid
1204 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1205 * Returns the number of the unit assigned or a negative errno code.
1208 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1212 const int max_netdevices = 8*PAGE_SIZE;
1213 unsigned long *inuse;
1214 struct net_device *d;
1216 if (!dev_valid_name(name))
1219 p = strchr(name, '%');
1222 * Verify the string as this thing may have come from
1223 * the user. There must be either one "%d" and no other "%"
1226 if (p[1] != 'd' || strchr(p + 2, '%'))
1229 /* Use one page as a bit array of possible slots */
1230 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1234 for_each_netdev(net, d) {
1235 struct netdev_name_node *name_node;
1236 list_for_each_entry(name_node, &d->name_node->list, list) {
1237 if (!sscanf(name_node->name, name, &i))
1239 if (i < 0 || i >= max_netdevices)
1242 /* avoid cases where sscanf is not exact inverse of printf */
1243 snprintf(buf, IFNAMSIZ, name, i);
1244 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1247 if (!sscanf(d->name, name, &i))
1249 if (i < 0 || i >= max_netdevices)
1252 /* avoid cases where sscanf is not exact inverse of printf */
1253 snprintf(buf, IFNAMSIZ, name, i);
1254 if (!strncmp(buf, d->name, IFNAMSIZ))
1258 i = find_first_zero_bit(inuse, max_netdevices);
1259 free_page((unsigned long) inuse);
1262 snprintf(buf, IFNAMSIZ, name, i);
1263 if (!__dev_get_by_name(net, buf))
1266 /* It is possible to run out of possible slots
1267 * when the name is long and there isn't enough space left
1268 * for the digits, or if all bits are used.
1273 static int dev_alloc_name_ns(struct net *net,
1274 struct net_device *dev,
1281 ret = __dev_alloc_name(net, name, buf);
1283 strlcpy(dev->name, buf, IFNAMSIZ);
1288 * dev_alloc_name - allocate a name for a device
1290 * @name: name format string
1292 * Passed a format string - eg "lt%d" it will try and find a suitable
1293 * id. It scans list of devices to build up a free map, then chooses
1294 * the first empty slot. The caller must hold the dev_base or rtnl lock
1295 * while allocating the name and adding the device in order to avoid
1297 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1298 * Returns the number of the unit assigned or a negative errno code.
1301 int dev_alloc_name(struct net_device *dev, const char *name)
1303 return dev_alloc_name_ns(dev_net(dev), dev, name);
1305 EXPORT_SYMBOL(dev_alloc_name);
1307 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1312 if (!dev_valid_name(name))
1315 if (strchr(name, '%'))
1316 return dev_alloc_name_ns(net, dev, name);
1317 else if (__dev_get_by_name(net, name))
1319 else if (dev->name != name)
1320 strlcpy(dev->name, name, IFNAMSIZ);
1326 * dev_change_name - change name of a device
1328 * @newname: name (or format string) must be at least IFNAMSIZ
1330 * Change name of a device, can pass format strings "eth%d".
1333 int dev_change_name(struct net_device *dev, const char *newname)
1335 unsigned char old_assign_type;
1336 char oldname[IFNAMSIZ];
1342 BUG_ON(!dev_net(dev));
1346 /* Some auto-enslaved devices e.g. failover slaves are
1347 * special, as userspace might rename the device after
1348 * the interface had been brought up and running since
1349 * the point kernel initiated auto-enslavement. Allow
1350 * live name change even when these slave devices are
1353 * Typically, users of these auto-enslaving devices
1354 * don't actually care about slave name change, as
1355 * they are supposed to operate on master interface
1358 if (dev->flags & IFF_UP &&
1359 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1362 down_write(&devnet_rename_sem);
1364 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1365 up_write(&devnet_rename_sem);
1369 memcpy(oldname, dev->name, IFNAMSIZ);
1371 err = dev_get_valid_name(net, dev, newname);
1373 up_write(&devnet_rename_sem);
1377 if (oldname[0] && !strchr(oldname, '%'))
1378 netdev_info(dev, "renamed from %s\n", oldname);
1380 old_assign_type = dev->name_assign_type;
1381 dev->name_assign_type = NET_NAME_RENAMED;
1384 ret = device_rename(&dev->dev, dev->name);
1386 memcpy(dev->name, oldname, IFNAMSIZ);
1387 dev->name_assign_type = old_assign_type;
1388 up_write(&devnet_rename_sem);
1392 up_write(&devnet_rename_sem);
1394 netdev_adjacent_rename_links(dev, oldname);
1396 write_lock_bh(&dev_base_lock);
1397 netdev_name_node_del(dev->name_node);
1398 write_unlock_bh(&dev_base_lock);
1402 write_lock_bh(&dev_base_lock);
1403 netdev_name_node_add(net, dev->name_node);
1404 write_unlock_bh(&dev_base_lock);
1406 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1407 ret = notifier_to_errno(ret);
1410 /* err >= 0 after dev_alloc_name() or stores the first errno */
1413 down_write(&devnet_rename_sem);
1414 memcpy(dev->name, oldname, IFNAMSIZ);
1415 memcpy(oldname, newname, IFNAMSIZ);
1416 dev->name_assign_type = old_assign_type;
1417 old_assign_type = NET_NAME_RENAMED;
1420 pr_err("%s: name change rollback failed: %d\n",
1429 * dev_set_alias - change ifalias of a device
1431 * @alias: name up to IFALIASZ
1432 * @len: limit of bytes to copy from info
1434 * Set ifalias for a device,
1436 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1438 struct dev_ifalias *new_alias = NULL;
1440 if (len >= IFALIASZ)
1444 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1448 memcpy(new_alias->ifalias, alias, len);
1449 new_alias->ifalias[len] = 0;
1452 mutex_lock(&ifalias_mutex);
1453 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1454 mutex_is_locked(&ifalias_mutex));
1455 mutex_unlock(&ifalias_mutex);
1458 kfree_rcu(new_alias, rcuhead);
1462 EXPORT_SYMBOL(dev_set_alias);
1465 * dev_get_alias - get ifalias of a device
1467 * @name: buffer to store name of ifalias
1468 * @len: size of buffer
1470 * get ifalias for a device. Caller must make sure dev cannot go
1471 * away, e.g. rcu read lock or own a reference count to device.
1473 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1475 const struct dev_ifalias *alias;
1479 alias = rcu_dereference(dev->ifalias);
1481 ret = snprintf(name, len, "%s", alias->ifalias);
1488 * netdev_features_change - device changes features
1489 * @dev: device to cause notification
1491 * Called to indicate a device has changed features.
1493 void netdev_features_change(struct net_device *dev)
1495 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1497 EXPORT_SYMBOL(netdev_features_change);
1500 * netdev_state_change - device changes state
1501 * @dev: device to cause notification
1503 * Called to indicate a device has changed state. This function calls
1504 * the notifier chains for netdev_chain and sends a NEWLINK message
1505 * to the routing socket.
1507 void netdev_state_change(struct net_device *dev)
1509 if (dev->flags & IFF_UP) {
1510 struct netdev_notifier_change_info change_info = {
1514 call_netdevice_notifiers_info(NETDEV_CHANGE,
1516 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1519 EXPORT_SYMBOL(netdev_state_change);
1522 * __netdev_notify_peers - notify network peers about existence of @dev,
1523 * to be called when rtnl lock is already held.
1524 * @dev: network device
1526 * Generate traffic such that interested network peers are aware of
1527 * @dev, such as by generating a gratuitous ARP. This may be used when
1528 * a device wants to inform the rest of the network about some sort of
1529 * reconfiguration such as a failover event or virtual machine
1532 void __netdev_notify_peers(struct net_device *dev)
1535 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1536 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1538 EXPORT_SYMBOL(__netdev_notify_peers);
1541 * netdev_notify_peers - notify network peers about existence of @dev
1542 * @dev: network device
1544 * Generate traffic such that interested network peers are aware of
1545 * @dev, such as by generating a gratuitous ARP. This may be used when
1546 * a device wants to inform the rest of the network about some sort of
1547 * reconfiguration such as a failover event or virtual machine
1550 void netdev_notify_peers(struct net_device *dev)
1553 __netdev_notify_peers(dev);
1556 EXPORT_SYMBOL(netdev_notify_peers);
1558 static int napi_threaded_poll(void *data);
1560 static int napi_kthread_create(struct napi_struct *n)
1564 /* Create and wake up the kthread once to put it in
1565 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1566 * warning and work with loadavg.
1568 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1569 n->dev->name, n->napi_id);
1570 if (IS_ERR(n->thread)) {
1571 err = PTR_ERR(n->thread);
1572 pr_err("kthread_run failed with err %d\n", err);
1579 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 const struct net_device_ops *ops = dev->netdev_ops;
1586 if (!netif_device_present(dev)) {
1587 /* may be detached because parent is runtime-suspended */
1588 if (dev->dev.parent)
1589 pm_runtime_resume(dev->dev.parent);
1590 if (!netif_device_present(dev))
1594 /* Block netpoll from trying to do any rx path servicing.
1595 * If we don't do this there is a chance ndo_poll_controller
1596 * or ndo_poll may be running while we open the device
1598 netpoll_poll_disable(dev);
1600 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1601 ret = notifier_to_errno(ret);
1605 set_bit(__LINK_STATE_START, &dev->state);
1607 if (ops->ndo_validate_addr)
1608 ret = ops->ndo_validate_addr(dev);
1610 if (!ret && ops->ndo_open)
1611 ret = ops->ndo_open(dev);
1613 netpoll_poll_enable(dev);
1616 clear_bit(__LINK_STATE_START, &dev->state);
1618 dev->flags |= IFF_UP;
1619 dev_set_rx_mode(dev);
1621 add_device_randomness(dev->dev_addr, dev->addr_len);
1628 * dev_open - prepare an interface for use.
1629 * @dev: device to open
1630 * @extack: netlink extended ack
1632 * Takes a device from down to up state. The device's private open
1633 * function is invoked and then the multicast lists are loaded. Finally
1634 * the device is moved into the up state and a %NETDEV_UP message is
1635 * sent to the netdev notifier chain.
1637 * Calling this function on an active interface is a nop. On a failure
1638 * a negative errno code is returned.
1640 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1644 if (dev->flags & IFF_UP)
1647 ret = __dev_open(dev, extack);
1651 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1652 call_netdevice_notifiers(NETDEV_UP, dev);
1656 EXPORT_SYMBOL(dev_open);
1658 static void __dev_close_many(struct list_head *head)
1660 struct net_device *dev;
1665 list_for_each_entry(dev, head, close_list) {
1666 /* Temporarily disable netpoll until the interface is down */
1667 netpoll_poll_disable(dev);
1669 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1671 clear_bit(__LINK_STATE_START, &dev->state);
1673 /* Synchronize to scheduled poll. We cannot touch poll list, it
1674 * can be even on different cpu. So just clear netif_running().
1676 * dev->stop() will invoke napi_disable() on all of it's
1677 * napi_struct instances on this device.
1679 smp_mb__after_atomic(); /* Commit netif_running(). */
1682 dev_deactivate_many(head);
1684 list_for_each_entry(dev, head, close_list) {
1685 const struct net_device_ops *ops = dev->netdev_ops;
1688 * Call the device specific close. This cannot fail.
1689 * Only if device is UP
1691 * We allow it to be called even after a DETACH hot-plug
1697 dev->flags &= ~IFF_UP;
1698 netpoll_poll_enable(dev);
1702 static void __dev_close(struct net_device *dev)
1706 list_add(&dev->close_list, &single);
1707 __dev_close_many(&single);
1711 void dev_close_many(struct list_head *head, bool unlink)
1713 struct net_device *dev, *tmp;
1715 /* Remove the devices that don't need to be closed */
1716 list_for_each_entry_safe(dev, tmp, head, close_list)
1717 if (!(dev->flags & IFF_UP))
1718 list_del_init(&dev->close_list);
1720 __dev_close_many(head);
1722 list_for_each_entry_safe(dev, tmp, head, close_list) {
1723 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1724 call_netdevice_notifiers(NETDEV_DOWN, dev);
1726 list_del_init(&dev->close_list);
1729 EXPORT_SYMBOL(dev_close_many);
1732 * dev_close - shutdown an interface.
1733 * @dev: device to shutdown
1735 * This function moves an active device into down state. A
1736 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1737 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1740 void dev_close(struct net_device *dev)
1742 if (dev->flags & IFF_UP) {
1745 list_add(&dev->close_list, &single);
1746 dev_close_many(&single, true);
1750 EXPORT_SYMBOL(dev_close);
1754 * dev_disable_lro - disable Large Receive Offload on a device
1757 * Disable Large Receive Offload (LRO) on a net device. Must be
1758 * called under RTNL. This is needed if received packets may be
1759 * forwarded to another interface.
1761 void dev_disable_lro(struct net_device *dev)
1763 struct net_device *lower_dev;
1764 struct list_head *iter;
1766 dev->wanted_features &= ~NETIF_F_LRO;
1767 netdev_update_features(dev);
1769 if (unlikely(dev->features & NETIF_F_LRO))
1770 netdev_WARN(dev, "failed to disable LRO!\n");
1772 netdev_for_each_lower_dev(dev, lower_dev, iter)
1773 dev_disable_lro(lower_dev);
1775 EXPORT_SYMBOL(dev_disable_lro);
1778 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1781 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1782 * called under RTNL. This is needed if Generic XDP is installed on
1785 static void dev_disable_gro_hw(struct net_device *dev)
1787 dev->wanted_features &= ~NETIF_F_GRO_HW;
1788 netdev_update_features(dev);
1790 if (unlikely(dev->features & NETIF_F_GRO_HW))
1791 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1794 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1797 case NETDEV_##val: \
1798 return "NETDEV_" __stringify(val);
1800 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1801 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1802 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1803 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1804 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1805 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1806 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1807 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1808 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1812 return "UNKNOWN_NETDEV_EVENT";
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817 struct net_device *dev)
1819 struct netdev_notifier_info info = {
1823 return nb->notifier_call(nb, val, &info);
1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827 struct net_device *dev)
1831 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832 err = notifier_to_errno(err);
1836 if (!(dev->flags & IFF_UP))
1839 call_netdevice_notifier(nb, NETDEV_UP, dev);
1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844 struct net_device *dev)
1846 if (dev->flags & IFF_UP) {
1847 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1849 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1851 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1857 struct net_device *dev;
1860 for_each_netdev(net, dev) {
1861 err = call_netdevice_register_notifiers(nb, dev);
1868 for_each_netdev_continue_reverse(net, dev)
1869 call_netdevice_unregister_notifiers(nb, dev);
1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1876 struct net_device *dev;
1878 for_each_netdev(net, dev)
1879 call_netdevice_unregister_notifiers(nb, dev);
1882 static int dev_boot_phase = 1;
1885 * register_netdevice_notifier - register a network notifier block
1888 * Register a notifier to be called when network device events occur.
1889 * The notifier passed is linked into the kernel structures and must
1890 * not be reused until it has been unregistered. A negative errno code
1891 * is returned on a failure.
1893 * When registered all registration and up events are replayed
1894 * to the new notifier to allow device to have a race free
1895 * view of the network device list.
1898 int register_netdevice_notifier(struct notifier_block *nb)
1903 /* Close race with setup_net() and cleanup_net() */
1904 down_write(&pernet_ops_rwsem);
1906 err = raw_notifier_chain_register(&netdev_chain, nb);
1912 err = call_netdevice_register_net_notifiers(nb, net);
1919 up_write(&pernet_ops_rwsem);
1923 for_each_net_continue_reverse(net)
1924 call_netdevice_unregister_net_notifiers(nb, net);
1926 raw_notifier_chain_unregister(&netdev_chain, nb);
1929 EXPORT_SYMBOL(register_netdevice_notifier);
1932 * unregister_netdevice_notifier - unregister a network notifier block
1935 * Unregister a notifier previously registered by
1936 * register_netdevice_notifier(). The notifier is unlinked into the
1937 * kernel structures and may then be reused. A negative errno code
1938 * is returned on a failure.
1940 * After unregistering unregister and down device events are synthesized
1941 * for all devices on the device list to the removed notifier to remove
1942 * the need for special case cleanup code.
1945 int unregister_netdevice_notifier(struct notifier_block *nb)
1950 /* Close race with setup_net() and cleanup_net() */
1951 down_write(&pernet_ops_rwsem);
1953 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1958 call_netdevice_unregister_net_notifiers(nb, net);
1962 up_write(&pernet_ops_rwsem);
1965 EXPORT_SYMBOL(unregister_netdevice_notifier);
1967 static int __register_netdevice_notifier_net(struct net *net,
1968 struct notifier_block *nb,
1969 bool ignore_call_fail)
1973 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1979 err = call_netdevice_register_net_notifiers(nb, net);
1980 if (err && !ignore_call_fail)
1981 goto chain_unregister;
1986 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1990 static int __unregister_netdevice_notifier_net(struct net *net,
1991 struct notifier_block *nb)
1995 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1999 call_netdevice_unregister_net_notifiers(nb, net);
2004 * register_netdevice_notifier_net - register a per-netns network notifier block
2005 * @net: network namespace
2008 * Register a notifier to be called when network device events occur.
2009 * The notifier passed is linked into the kernel structures and must
2010 * not be reused until it has been unregistered. A negative errno code
2011 * is returned on a failure.
2013 * When registered all registration and up events are replayed
2014 * to the new notifier to allow device to have a race free
2015 * view of the network device list.
2018 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2023 err = __register_netdevice_notifier_net(net, nb, false);
2027 EXPORT_SYMBOL(register_netdevice_notifier_net);
2030 * unregister_netdevice_notifier_net - unregister a per-netns
2031 * network notifier block
2032 * @net: network namespace
2035 * Unregister a notifier previously registered by
2036 * register_netdevice_notifier(). The notifier is unlinked into the
2037 * kernel structures and may then be reused. A negative errno code
2038 * is returned on a failure.
2040 * After unregistering unregister and down device events are synthesized
2041 * for all devices on the device list to the removed notifier to remove
2042 * the need for special case cleanup code.
2045 int unregister_netdevice_notifier_net(struct net *net,
2046 struct notifier_block *nb)
2051 err = __unregister_netdevice_notifier_net(net, nb);
2055 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2057 int register_netdevice_notifier_dev_net(struct net_device *dev,
2058 struct notifier_block *nb,
2059 struct netdev_net_notifier *nn)
2064 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2067 list_add(&nn->list, &dev->net_notifier_list);
2072 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2074 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2075 struct notifier_block *nb,
2076 struct netdev_net_notifier *nn)
2081 list_del(&nn->list);
2082 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2086 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2088 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2091 struct netdev_net_notifier *nn;
2093 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2094 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2095 __register_netdevice_notifier_net(net, nn->nb, true);
2100 * call_netdevice_notifiers_info - call all network notifier blocks
2101 * @val: value passed unmodified to notifier function
2102 * @info: notifier information data
2104 * Call all network notifier blocks. Parameters and return value
2105 * are as for raw_notifier_call_chain().
2108 static int call_netdevice_notifiers_info(unsigned long val,
2109 struct netdev_notifier_info *info)
2111 struct net *net = dev_net(info->dev);
2116 /* Run per-netns notifier block chain first, then run the global one.
2117 * Hopefully, one day, the global one is going to be removed after
2118 * all notifier block registrators get converted to be per-netns.
2120 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2121 if (ret & NOTIFY_STOP_MASK)
2123 return raw_notifier_call_chain(&netdev_chain, val, info);
2126 static int call_netdevice_notifiers_extack(unsigned long val,
2127 struct net_device *dev,
2128 struct netlink_ext_ack *extack)
2130 struct netdev_notifier_info info = {
2135 return call_netdevice_notifiers_info(val, &info);
2139 * call_netdevice_notifiers - call all network notifier blocks
2140 * @val: value passed unmodified to notifier function
2141 * @dev: net_device pointer passed unmodified to notifier function
2143 * Call all network notifier blocks. Parameters and return value
2144 * are as for raw_notifier_call_chain().
2147 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2149 return call_netdevice_notifiers_extack(val, dev, NULL);
2151 EXPORT_SYMBOL(call_netdevice_notifiers);
2154 * call_netdevice_notifiers_mtu - call all network notifier blocks
2155 * @val: value passed unmodified to notifier function
2156 * @dev: net_device pointer passed unmodified to notifier function
2157 * @arg: additional u32 argument passed to the notifier function
2159 * Call all network notifier blocks. Parameters and return value
2160 * are as for raw_notifier_call_chain().
2162 static int call_netdevice_notifiers_mtu(unsigned long val,
2163 struct net_device *dev, u32 arg)
2165 struct netdev_notifier_info_ext info = {
2170 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2172 return call_netdevice_notifiers_info(val, &info.info);
2175 #ifdef CONFIG_NET_INGRESS
2176 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2178 void net_inc_ingress_queue(void)
2180 static_branch_inc(&ingress_needed_key);
2182 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2184 void net_dec_ingress_queue(void)
2186 static_branch_dec(&ingress_needed_key);
2188 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2191 #ifdef CONFIG_NET_EGRESS
2192 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2194 void net_inc_egress_queue(void)
2196 static_branch_inc(&egress_needed_key);
2198 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2200 void net_dec_egress_queue(void)
2202 static_branch_dec(&egress_needed_key);
2204 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2207 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2208 #ifdef CONFIG_JUMP_LABEL
2209 static atomic_t netstamp_needed_deferred;
2210 static atomic_t netstamp_wanted;
2211 static void netstamp_clear(struct work_struct *work)
2213 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2216 wanted = atomic_add_return(deferred, &netstamp_wanted);
2218 static_branch_enable(&netstamp_needed_key);
2220 static_branch_disable(&netstamp_needed_key);
2222 static DECLARE_WORK(netstamp_work, netstamp_clear);
2225 void net_enable_timestamp(void)
2227 #ifdef CONFIG_JUMP_LABEL
2231 wanted = atomic_read(&netstamp_wanted);
2234 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2237 atomic_inc(&netstamp_needed_deferred);
2238 schedule_work(&netstamp_work);
2240 static_branch_inc(&netstamp_needed_key);
2243 EXPORT_SYMBOL(net_enable_timestamp);
2245 void net_disable_timestamp(void)
2247 #ifdef CONFIG_JUMP_LABEL
2251 wanted = atomic_read(&netstamp_wanted);
2254 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2257 atomic_dec(&netstamp_needed_deferred);
2258 schedule_work(&netstamp_work);
2260 static_branch_dec(&netstamp_needed_key);
2263 EXPORT_SYMBOL(net_disable_timestamp);
2265 static inline void net_timestamp_set(struct sk_buff *skb)
2268 if (static_branch_unlikely(&netstamp_needed_key))
2269 __net_timestamp(skb);
2272 #define net_timestamp_check(COND, SKB) \
2273 if (static_branch_unlikely(&netstamp_needed_key)) { \
2274 if ((COND) && !(SKB)->tstamp) \
2275 __net_timestamp(SKB); \
2278 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2280 return __is_skb_forwardable(dev, skb, true);
2282 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2284 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2287 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2290 skb->protocol = eth_type_trans(skb, dev);
2291 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2297 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2299 return __dev_forward_skb2(dev, skb, true);
2301 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2304 * dev_forward_skb - loopback an skb to another netif
2306 * @dev: destination network device
2307 * @skb: buffer to forward
2310 * NET_RX_SUCCESS (no congestion)
2311 * NET_RX_DROP (packet was dropped, but freed)
2313 * dev_forward_skb can be used for injecting an skb from the
2314 * start_xmit function of one device into the receive queue
2315 * of another device.
2317 * The receiving device may be in another namespace, so
2318 * we have to clear all information in the skb that could
2319 * impact namespace isolation.
2321 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2323 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2325 EXPORT_SYMBOL_GPL(dev_forward_skb);
2327 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2329 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2332 static inline int deliver_skb(struct sk_buff *skb,
2333 struct packet_type *pt_prev,
2334 struct net_device *orig_dev)
2336 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2338 refcount_inc(&skb->users);
2339 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2342 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2343 struct packet_type **pt,
2344 struct net_device *orig_dev,
2346 struct list_head *ptype_list)
2348 struct packet_type *ptype, *pt_prev = *pt;
2350 list_for_each_entry_rcu(ptype, ptype_list, list) {
2351 if (ptype->type != type)
2354 deliver_skb(skb, pt_prev, orig_dev);
2360 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2362 if (!ptype->af_packet_priv || !skb->sk)
2365 if (ptype->id_match)
2366 return ptype->id_match(ptype, skb->sk);
2367 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2374 * dev_nit_active - return true if any network interface taps are in use
2376 * @dev: network device to check for the presence of taps
2378 bool dev_nit_active(struct net_device *dev)
2380 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2382 EXPORT_SYMBOL_GPL(dev_nit_active);
2385 * Support routine. Sends outgoing frames to any network
2386 * taps currently in use.
2389 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2391 struct packet_type *ptype;
2392 struct sk_buff *skb2 = NULL;
2393 struct packet_type *pt_prev = NULL;
2394 struct list_head *ptype_list = &ptype_all;
2398 list_for_each_entry_rcu(ptype, ptype_list, list) {
2399 if (ptype->ignore_outgoing)
2402 /* Never send packets back to the socket
2405 if (skb_loop_sk(ptype, skb))
2409 deliver_skb(skb2, pt_prev, skb->dev);
2414 /* need to clone skb, done only once */
2415 skb2 = skb_clone(skb, GFP_ATOMIC);
2419 net_timestamp_set(skb2);
2421 /* skb->nh should be correctly
2422 * set by sender, so that the second statement is
2423 * just protection against buggy protocols.
2425 skb_reset_mac_header(skb2);
2427 if (skb_network_header(skb2) < skb2->data ||
2428 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2429 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2430 ntohs(skb2->protocol),
2432 skb_reset_network_header(skb2);
2435 skb2->transport_header = skb2->network_header;
2436 skb2->pkt_type = PACKET_OUTGOING;
2440 if (ptype_list == &ptype_all) {
2441 ptype_list = &dev->ptype_all;
2446 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2447 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2453 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2456 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2457 * @dev: Network device
2458 * @txq: number of queues available
2460 * If real_num_tx_queues is changed the tc mappings may no longer be
2461 * valid. To resolve this verify the tc mapping remains valid and if
2462 * not NULL the mapping. With no priorities mapping to this
2463 * offset/count pair it will no longer be used. In the worst case TC0
2464 * is invalid nothing can be done so disable priority mappings. If is
2465 * expected that drivers will fix this mapping if they can before
2466 * calling netif_set_real_num_tx_queues.
2468 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2471 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2473 /* If TC0 is invalidated disable TC mapping */
2474 if (tc->offset + tc->count > txq) {
2475 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2480 /* Invalidated prio to tc mappings set to TC0 */
2481 for (i = 1; i < TC_BITMASK + 1; i++) {
2482 int q = netdev_get_prio_tc_map(dev, i);
2484 tc = &dev->tc_to_txq[q];
2485 if (tc->offset + tc->count > txq) {
2486 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2488 netdev_set_prio_tc_map(dev, i, 0);
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2496 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2499 /* walk through the TCs and see if it falls into any of them */
2500 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2501 if ((txq - tc->offset) < tc->count)
2505 /* didn't find it, just return -1 to indicate no match */
2511 EXPORT_SYMBOL(netdev_txq_to_tc);
2514 static struct static_key xps_needed __read_mostly;
2515 static struct static_key xps_rxqs_needed __read_mostly;
2516 static DEFINE_MUTEX(xps_map_mutex);
2517 #define xmap_dereference(P) \
2518 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2520 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2521 struct xps_dev_maps *old_maps, int tci, u16 index)
2523 struct xps_map *map = NULL;
2527 map = xmap_dereference(dev_maps->attr_map[tci]);
2531 for (pos = map->len; pos--;) {
2532 if (map->queues[pos] != index)
2536 map->queues[pos] = map->queues[--map->len];
2541 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2542 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2543 kfree_rcu(map, rcu);
2550 static bool remove_xps_queue_cpu(struct net_device *dev,
2551 struct xps_dev_maps *dev_maps,
2552 int cpu, u16 offset, u16 count)
2554 int num_tc = dev_maps->num_tc;
2555 bool active = false;
2558 for (tci = cpu * num_tc; num_tc--; tci++) {
2561 for (i = count, j = offset; i--; j++) {
2562 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2572 static void reset_xps_maps(struct net_device *dev,
2573 struct xps_dev_maps *dev_maps,
2574 enum xps_map_type type)
2576 static_key_slow_dec_cpuslocked(&xps_needed);
2577 if (type == XPS_RXQS)
2578 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2580 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2582 kfree_rcu(dev_maps, rcu);
2585 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2586 u16 offset, u16 count)
2588 struct xps_dev_maps *dev_maps;
2589 bool active = false;
2592 dev_maps = xmap_dereference(dev->xps_maps[type]);
2596 for (j = 0; j < dev_maps->nr_ids; j++)
2597 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2599 reset_xps_maps(dev, dev_maps, type);
2601 if (type == XPS_CPUS) {
2602 for (i = offset + (count - 1); count--; i--)
2603 netdev_queue_numa_node_write(
2604 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2608 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2611 if (!static_key_false(&xps_needed))
2615 mutex_lock(&xps_map_mutex);
2617 if (static_key_false(&xps_rxqs_needed))
2618 clean_xps_maps(dev, XPS_RXQS, offset, count);
2620 clean_xps_maps(dev, XPS_CPUS, offset, count);
2622 mutex_unlock(&xps_map_mutex);
2626 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2628 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2631 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2632 u16 index, bool is_rxqs_map)
2634 struct xps_map *new_map;
2635 int alloc_len = XPS_MIN_MAP_ALLOC;
2638 for (pos = 0; map && pos < map->len; pos++) {
2639 if (map->queues[pos] != index)
2644 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2646 if (pos < map->alloc_len)
2649 alloc_len = map->alloc_len * 2;
2652 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2656 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2658 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2659 cpu_to_node(attr_index));
2663 for (i = 0; i < pos; i++)
2664 new_map->queues[i] = map->queues[i];
2665 new_map->alloc_len = alloc_len;
2671 /* Copy xps maps at a given index */
2672 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2673 struct xps_dev_maps *new_dev_maps, int index,
2674 int tc, bool skip_tc)
2676 int i, tci = index * dev_maps->num_tc;
2677 struct xps_map *map;
2679 /* copy maps belonging to foreign traffic classes */
2680 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2681 if (i == tc && skip_tc)
2684 /* fill in the new device map from the old device map */
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2690 /* Must be called under cpus_read_lock */
2691 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2692 u16 index, enum xps_map_type type)
2694 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2695 const unsigned long *online_mask = NULL;
2696 bool active = false, copy = false;
2697 int i, j, tci, numa_node_id = -2;
2698 int maps_sz, num_tc = 1, tc = 0;
2699 struct xps_map *map, *new_map;
2700 unsigned int nr_ids;
2703 /* Do not allow XPS on subordinate device directly */
2704 num_tc = dev->num_tc;
2708 /* If queue belongs to subordinate dev use its map */
2709 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2711 tc = netdev_txq_to_tc(dev, index);
2716 mutex_lock(&xps_map_mutex);
2718 dev_maps = xmap_dereference(dev->xps_maps[type]);
2719 if (type == XPS_RXQS) {
2720 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2721 nr_ids = dev->num_rx_queues;
2723 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2724 if (num_possible_cpus() > 1)
2725 online_mask = cpumask_bits(cpu_online_mask);
2726 nr_ids = nr_cpu_ids;
2729 if (maps_sz < L1_CACHE_BYTES)
2730 maps_sz = L1_CACHE_BYTES;
2732 /* The old dev_maps could be larger or smaller than the one we're
2733 * setting up now, as dev->num_tc or nr_ids could have been updated in
2734 * between. We could try to be smart, but let's be safe instead and only
2735 * copy foreign traffic classes if the two map sizes match.
2738 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2741 /* allocate memory for queue storage */
2742 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2744 if (!new_dev_maps) {
2745 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2746 if (!new_dev_maps) {
2747 mutex_unlock(&xps_map_mutex);
2751 new_dev_maps->nr_ids = nr_ids;
2752 new_dev_maps->num_tc = num_tc;
2755 tci = j * num_tc + tc;
2756 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2758 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2762 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2766 goto out_no_new_maps;
2769 /* Increment static keys at most once per type */
2770 static_key_slow_inc_cpuslocked(&xps_needed);
2771 if (type == XPS_RXQS)
2772 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2775 for (j = 0; j < nr_ids; j++) {
2776 bool skip_tc = false;
2778 tci = j * num_tc + tc;
2779 if (netif_attr_test_mask(j, mask, nr_ids) &&
2780 netif_attr_test_online(j, online_mask, nr_ids)) {
2781 /* add tx-queue to CPU/rx-queue maps */
2786 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2787 while ((pos < map->len) && (map->queues[pos] != index))
2790 if (pos == map->len)
2791 map->queues[map->len++] = index;
2793 if (type == XPS_CPUS) {
2794 if (numa_node_id == -2)
2795 numa_node_id = cpu_to_node(j);
2796 else if (numa_node_id != cpu_to_node(j))
2803 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2807 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2809 /* Cleanup old maps */
2811 goto out_no_old_maps;
2813 for (j = 0; j < dev_maps->nr_ids; j++) {
2814 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2815 map = xmap_dereference(dev_maps->attr_map[tci]);
2820 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2825 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2826 kfree_rcu(map, rcu);
2830 old_dev_maps = dev_maps;
2833 dev_maps = new_dev_maps;
2837 if (type == XPS_CPUS)
2838 /* update Tx queue numa node */
2839 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2840 (numa_node_id >= 0) ?
2841 numa_node_id : NUMA_NO_NODE);
2846 /* removes tx-queue from unused CPUs/rx-queues */
2847 for (j = 0; j < dev_maps->nr_ids; j++) {
2848 tci = j * dev_maps->num_tc;
2850 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2852 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2853 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2856 active |= remove_xps_queue(dev_maps,
2857 copy ? old_dev_maps : NULL,
2863 kfree_rcu(old_dev_maps, rcu);
2865 /* free map if not active */
2867 reset_xps_maps(dev, dev_maps, type);
2870 mutex_unlock(&xps_map_mutex);
2874 /* remove any maps that we added */
2875 for (j = 0; j < nr_ids; j++) {
2876 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2877 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2879 xmap_dereference(dev_maps->attr_map[tci]) :
2881 if (new_map && new_map != map)
2886 mutex_unlock(&xps_map_mutex);
2888 kfree(new_dev_maps);
2891 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2893 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2899 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2904 EXPORT_SYMBOL(netif_set_xps_queue);
2907 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2909 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2911 /* Unbind any subordinate channels */
2912 while (txq-- != &dev->_tx[0]) {
2914 netdev_unbind_sb_channel(dev, txq->sb_dev);
2918 void netdev_reset_tc(struct net_device *dev)
2921 netif_reset_xps_queues_gt(dev, 0);
2923 netdev_unbind_all_sb_channels(dev);
2925 /* Reset TC configuration of device */
2927 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2928 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2930 EXPORT_SYMBOL(netdev_reset_tc);
2932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2934 if (tc >= dev->num_tc)
2938 netif_reset_xps_queues(dev, offset, count);
2940 dev->tc_to_txq[tc].count = count;
2941 dev->tc_to_txq[tc].offset = offset;
2944 EXPORT_SYMBOL(netdev_set_tc_queue);
2946 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2948 if (num_tc > TC_MAX_QUEUE)
2952 netif_reset_xps_queues_gt(dev, 0);
2954 netdev_unbind_all_sb_channels(dev);
2956 dev->num_tc = num_tc;
2959 EXPORT_SYMBOL(netdev_set_num_tc);
2961 void netdev_unbind_sb_channel(struct net_device *dev,
2962 struct net_device *sb_dev)
2964 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2967 netif_reset_xps_queues_gt(sb_dev, 0);
2969 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2970 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2972 while (txq-- != &dev->_tx[0]) {
2973 if (txq->sb_dev == sb_dev)
2977 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2979 int netdev_bind_sb_channel_queue(struct net_device *dev,
2980 struct net_device *sb_dev,
2981 u8 tc, u16 count, u16 offset)
2983 /* Make certain the sb_dev and dev are already configured */
2984 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2987 /* We cannot hand out queues we don't have */
2988 if ((offset + count) > dev->real_num_tx_queues)
2991 /* Record the mapping */
2992 sb_dev->tc_to_txq[tc].count = count;
2993 sb_dev->tc_to_txq[tc].offset = offset;
2995 /* Provide a way for Tx queue to find the tc_to_txq map or
2996 * XPS map for itself.
2999 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3003 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3005 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3007 /* Do not use a multiqueue device to represent a subordinate channel */
3008 if (netif_is_multiqueue(dev))
3011 /* We allow channels 1 - 32767 to be used for subordinate channels.
3012 * Channel 0 is meant to be "native" mode and used only to represent
3013 * the main root device. We allow writing 0 to reset the device back
3014 * to normal mode after being used as a subordinate channel.
3016 if (channel > S16_MAX)
3019 dev->num_tc = -channel;
3023 EXPORT_SYMBOL(netdev_set_sb_channel);
3026 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3027 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3029 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3034 disabling = txq < dev->real_num_tx_queues;
3036 if (txq < 1 || txq > dev->num_tx_queues)
3039 if (dev->reg_state == NETREG_REGISTERED ||
3040 dev->reg_state == NETREG_UNREGISTERING) {
3043 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3049 netif_setup_tc(dev, txq);
3051 dev->real_num_tx_queues = txq;
3055 qdisc_reset_all_tx_gt(dev, txq);
3057 netif_reset_xps_queues_gt(dev, txq);
3061 dev->real_num_tx_queues = txq;
3066 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3070 * netif_set_real_num_rx_queues - set actual number of RX queues used
3071 * @dev: Network device
3072 * @rxq: Actual number of RX queues
3074 * This must be called either with the rtnl_lock held or before
3075 * registration of the net device. Returns 0 on success, or a
3076 * negative error code. If called before registration, it always
3079 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3083 if (rxq < 1 || rxq > dev->num_rx_queues)
3086 if (dev->reg_state == NETREG_REGISTERED) {
3089 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3095 dev->real_num_rx_queues = rxq;
3098 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3102 * netif_get_num_default_rss_queues - default number of RSS queues
3104 * This routine should set an upper limit on the number of RSS queues
3105 * used by default by multiqueue devices.
3107 int netif_get_num_default_rss_queues(void)
3109 return is_kdump_kernel() ?
3110 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3112 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114 static void __netif_reschedule(struct Qdisc *q)
3116 struct softnet_data *sd;
3117 unsigned long flags;
3119 local_irq_save(flags);
3120 sd = this_cpu_ptr(&softnet_data);
3121 q->next_sched = NULL;
3122 *sd->output_queue_tailp = q;
3123 sd->output_queue_tailp = &q->next_sched;
3124 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3125 local_irq_restore(flags);
3128 void __netif_schedule(struct Qdisc *q)
3130 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3131 __netif_reschedule(q);
3133 EXPORT_SYMBOL(__netif_schedule);
3135 struct dev_kfree_skb_cb {
3136 enum skb_free_reason reason;
3139 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 return (struct dev_kfree_skb_cb *)skb->cb;
3144 void netif_schedule_queue(struct netdev_queue *txq)
3147 if (!netif_xmit_stopped(txq)) {
3148 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150 __netif_schedule(q);
3154 EXPORT_SYMBOL(netif_schedule_queue);
3156 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3162 q = rcu_dereference(dev_queue->qdisc);
3163 __netif_schedule(q);
3167 EXPORT_SYMBOL(netif_tx_wake_queue);
3169 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3171 unsigned long flags;
3176 if (likely(refcount_read(&skb->users) == 1)) {
3178 refcount_set(&skb->users, 0);
3179 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3182 get_kfree_skb_cb(skb)->reason = reason;
3183 local_irq_save(flags);
3184 skb->next = __this_cpu_read(softnet_data.completion_queue);
3185 __this_cpu_write(softnet_data.completion_queue, skb);
3186 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3187 local_irq_restore(flags);
3189 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3193 if (in_irq() || irqs_disabled())
3194 __dev_kfree_skb_irq(skb, reason);
3198 EXPORT_SYMBOL(__dev_kfree_skb_any);
3202 * netif_device_detach - mark device as removed
3203 * @dev: network device
3205 * Mark device as removed from system and therefore no longer available.
3207 void netif_device_detach(struct net_device *dev)
3209 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3210 netif_running(dev)) {
3211 netif_tx_stop_all_queues(dev);
3214 EXPORT_SYMBOL(netif_device_detach);
3217 * netif_device_attach - mark device as attached
3218 * @dev: network device
3220 * Mark device as attached from system and restart if needed.
3222 void netif_device_attach(struct net_device *dev)
3224 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3225 netif_running(dev)) {
3226 netif_tx_wake_all_queues(dev);
3227 __netdev_watchdog_up(dev);
3230 EXPORT_SYMBOL(netif_device_attach);
3233 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3234 * to be used as a distribution range.
3236 static u16 skb_tx_hash(const struct net_device *dev,
3237 const struct net_device *sb_dev,
3238 struct sk_buff *skb)
3242 u16 qcount = dev->real_num_tx_queues;
3245 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247 qoffset = sb_dev->tc_to_txq[tc].offset;
3248 qcount = sb_dev->tc_to_txq[tc].count;
3251 if (skb_rx_queue_recorded(skb)) {
3252 hash = skb_get_rx_queue(skb);
3253 if (hash >= qoffset)
3255 while (unlikely(hash >= qcount))
3257 return hash + qoffset;
3260 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3263 static void skb_warn_bad_offload(const struct sk_buff *skb)
3265 static const netdev_features_t null_features;
3266 struct net_device *dev = skb->dev;
3267 const char *name = "";
3269 if (!net_ratelimit())
3273 if (dev->dev.parent)
3274 name = dev_driver_string(dev->dev.parent);
3276 name = netdev_name(dev);
3278 skb_dump(KERN_WARNING, skb, false);
3279 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3280 name, dev ? &dev->features : &null_features,
3281 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3285 * Invalidate hardware checksum when packet is to be mangled, and
3286 * complete checksum manually on outgoing path.
3288 int skb_checksum_help(struct sk_buff *skb)
3291 int ret = 0, offset;
3293 if (skb->ip_summed == CHECKSUM_COMPLETE)
3294 goto out_set_summed;
3296 if (unlikely(skb_is_gso(skb))) {
3297 skb_warn_bad_offload(skb);
3301 /* Before computing a checksum, we should make sure no frag could
3302 * be modified by an external entity : checksum could be wrong.
3304 if (skb_has_shared_frag(skb)) {
3305 ret = __skb_linearize(skb);
3310 offset = skb_checksum_start_offset(skb);
3311 BUG_ON(offset >= skb_headlen(skb));
3312 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3314 offset += skb->csum_offset;
3315 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3317 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3321 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3323 skb->ip_summed = CHECKSUM_NONE;
3327 EXPORT_SYMBOL(skb_checksum_help);
3329 int skb_crc32c_csum_help(struct sk_buff *skb)
3332 int ret = 0, offset, start;
3334 if (skb->ip_summed != CHECKSUM_PARTIAL)
3337 if (unlikely(skb_is_gso(skb)))
3340 /* Before computing a checksum, we should make sure no frag could
3341 * be modified by an external entity : checksum could be wrong.
3343 if (unlikely(skb_has_shared_frag(skb))) {
3344 ret = __skb_linearize(skb);
3348 start = skb_checksum_start_offset(skb);
3349 offset = start + offsetof(struct sctphdr, checksum);
3350 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3355 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3359 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3360 skb->len - start, ~(__u32)0,
3362 *(__le32 *)(skb->data + offset) = crc32c_csum;
3363 skb->ip_summed = CHECKSUM_NONE;
3364 skb->csum_not_inet = 0;
3369 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3371 __be16 type = skb->protocol;
3373 /* Tunnel gso handlers can set protocol to ethernet. */
3374 if (type == htons(ETH_P_TEB)) {
3377 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3380 eth = (struct ethhdr *)skb->data;
3381 type = eth->h_proto;
3384 return __vlan_get_protocol(skb, type, depth);
3388 * skb_mac_gso_segment - mac layer segmentation handler.
3389 * @skb: buffer to segment
3390 * @features: features for the output path (see dev->features)
3392 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3393 netdev_features_t features)
3395 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3396 struct packet_offload *ptype;
3397 int vlan_depth = skb->mac_len;
3398 __be16 type = skb_network_protocol(skb, &vlan_depth);
3400 if (unlikely(!type))
3401 return ERR_PTR(-EINVAL);
3403 __skb_pull(skb, vlan_depth);
3406 list_for_each_entry_rcu(ptype, &offload_base, list) {
3407 if (ptype->type == type && ptype->callbacks.gso_segment) {
3408 segs = ptype->callbacks.gso_segment(skb, features);
3414 __skb_push(skb, skb->data - skb_mac_header(skb));
3418 EXPORT_SYMBOL(skb_mac_gso_segment);
3421 /* openvswitch calls this on rx path, so we need a different check.
3423 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3426 return skb->ip_summed != CHECKSUM_PARTIAL &&
3427 skb->ip_summed != CHECKSUM_UNNECESSARY;
3429 return skb->ip_summed == CHECKSUM_NONE;
3433 * __skb_gso_segment - Perform segmentation on skb.
3434 * @skb: buffer to segment
3435 * @features: features for the output path (see dev->features)
3436 * @tx_path: whether it is called in TX path
3438 * This function segments the given skb and returns a list of segments.
3440 * It may return NULL if the skb requires no segmentation. This is
3441 * only possible when GSO is used for verifying header integrity.
3443 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3445 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3446 netdev_features_t features, bool tx_path)
3448 struct sk_buff *segs;
3450 if (unlikely(skb_needs_check(skb, tx_path))) {
3453 /* We're going to init ->check field in TCP or UDP header */
3454 err = skb_cow_head(skb, 0);
3456 return ERR_PTR(err);
3459 /* Only report GSO partial support if it will enable us to
3460 * support segmentation on this frame without needing additional
3463 if (features & NETIF_F_GSO_PARTIAL) {
3464 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3465 struct net_device *dev = skb->dev;
3467 partial_features |= dev->features & dev->gso_partial_features;
3468 if (!skb_gso_ok(skb, features | partial_features))
3469 features &= ~NETIF_F_GSO_PARTIAL;
3472 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3473 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3475 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3476 SKB_GSO_CB(skb)->encap_level = 0;
3478 skb_reset_mac_header(skb);
3479 skb_reset_mac_len(skb);
3481 segs = skb_mac_gso_segment(skb, features);
3483 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3484 skb_warn_bad_offload(skb);
3488 EXPORT_SYMBOL(__skb_gso_segment);
3490 /* Take action when hardware reception checksum errors are detected. */
3492 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3494 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3495 skb_dump(KERN_ERR, skb, true);
3499 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3501 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3503 EXPORT_SYMBOL(netdev_rx_csum_fault);
3506 /* XXX: check that highmem exists at all on the given machine. */
3507 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3509 #ifdef CONFIG_HIGHMEM
3512 if (!(dev->features & NETIF_F_HIGHDMA)) {
3513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3516 if (PageHighMem(skb_frag_page(frag)))
3524 /* If MPLS offload request, verify we are testing hardware MPLS features
3525 * instead of standard features for the netdev.
3527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3529 netdev_features_t features,
3532 if (eth_p_mpls(type))
3533 features &= skb->dev->mpls_features;
3538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3539 netdev_features_t features,
3546 static netdev_features_t harmonize_features(struct sk_buff *skb,
3547 netdev_features_t features)
3551 type = skb_network_protocol(skb, NULL);
3552 features = net_mpls_features(skb, features, type);
3554 if (skb->ip_summed != CHECKSUM_NONE &&
3555 !can_checksum_protocol(features, type)) {
3556 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3558 if (illegal_highdma(skb->dev, skb))
3559 features &= ~NETIF_F_SG;
3564 netdev_features_t passthru_features_check(struct sk_buff *skb,
3565 struct net_device *dev,
3566 netdev_features_t features)
3570 EXPORT_SYMBOL(passthru_features_check);
3572 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3573 struct net_device *dev,
3574 netdev_features_t features)
3576 return vlan_features_check(skb, features);
3579 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3580 struct net_device *dev,
3581 netdev_features_t features)
3583 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3585 if (gso_segs > dev->gso_max_segs)
3586 return features & ~NETIF_F_GSO_MASK;
3588 if (!skb_shinfo(skb)->gso_type) {
3589 skb_warn_bad_offload(skb);
3590 return features & ~NETIF_F_GSO_MASK;
3593 /* Support for GSO partial features requires software
3594 * intervention before we can actually process the packets
3595 * so we need to strip support for any partial features now
3596 * and we can pull them back in after we have partially
3597 * segmented the frame.
3599 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3600 features &= ~dev->gso_partial_features;
3602 /* Make sure to clear the IPv4 ID mangling feature if the
3603 * IPv4 header has the potential to be fragmented.
3605 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3606 struct iphdr *iph = skb->encapsulation ?
3607 inner_ip_hdr(skb) : ip_hdr(skb);
3609 if (!(iph->frag_off & htons(IP_DF)))
3610 features &= ~NETIF_F_TSO_MANGLEID;
3616 netdev_features_t netif_skb_features(struct sk_buff *skb)
3618 struct net_device *dev = skb->dev;
3619 netdev_features_t features = dev->features;
3621 if (skb_is_gso(skb))
3622 features = gso_features_check(skb, dev, features);
3624 /* If encapsulation offload request, verify we are testing
3625 * hardware encapsulation features instead of standard
3626 * features for the netdev
3628 if (skb->encapsulation)
3629 features &= dev->hw_enc_features;
3631 if (skb_vlan_tagged(skb))
3632 features = netdev_intersect_features(features,
3633 dev->vlan_features |
3634 NETIF_F_HW_VLAN_CTAG_TX |
3635 NETIF_F_HW_VLAN_STAG_TX);
3637 if (dev->netdev_ops->ndo_features_check)
3638 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3641 features &= dflt_features_check(skb, dev, features);
3643 return harmonize_features(skb, features);
3645 EXPORT_SYMBOL(netif_skb_features);
3647 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3648 struct netdev_queue *txq, bool more)
3653 if (dev_nit_active(dev))
3654 dev_queue_xmit_nit(skb, dev);
3657 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3658 trace_net_dev_start_xmit(skb, dev);
3659 rc = netdev_start_xmit(skb, dev, txq, more);
3660 trace_net_dev_xmit(skb, rc, dev, len);
3665 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3666 struct netdev_queue *txq, int *ret)
3668 struct sk_buff *skb = first;
3669 int rc = NETDEV_TX_OK;
3672 struct sk_buff *next = skb->next;
3674 skb_mark_not_on_list(skb);
3675 rc = xmit_one(skb, dev, txq, next != NULL);
3676 if (unlikely(!dev_xmit_complete(rc))) {
3682 if (netif_tx_queue_stopped(txq) && skb) {
3683 rc = NETDEV_TX_BUSY;
3693 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3694 netdev_features_t features)
3696 if (skb_vlan_tag_present(skb) &&
3697 !vlan_hw_offload_capable(features, skb->vlan_proto))
3698 skb = __vlan_hwaccel_push_inside(skb);
3702 int skb_csum_hwoffload_help(struct sk_buff *skb,
3703 const netdev_features_t features)
3705 if (unlikely(skb_csum_is_sctp(skb)))
3706 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3707 skb_crc32c_csum_help(skb);
3709 if (features & NETIF_F_HW_CSUM)
3712 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3713 switch (skb->csum_offset) {
3714 case offsetof(struct tcphdr, check):
3715 case offsetof(struct udphdr, check):
3720 return skb_checksum_help(skb);
3722 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3724 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3726 netdev_features_t features;
3728 features = netif_skb_features(skb);
3729 skb = validate_xmit_vlan(skb, features);
3733 skb = sk_validate_xmit_skb(skb, dev);
3737 if (netif_needs_gso(skb, features)) {
3738 struct sk_buff *segs;
3740 segs = skb_gso_segment(skb, features);
3748 if (skb_needs_linearize(skb, features) &&
3749 __skb_linearize(skb))
3752 /* If packet is not checksummed and device does not
3753 * support checksumming for this protocol, complete
3754 * checksumming here.
3756 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757 if (skb->encapsulation)
3758 skb_set_inner_transport_header(skb,
3759 skb_checksum_start_offset(skb));
3761 skb_set_transport_header(skb,
3762 skb_checksum_start_offset(skb));
3763 if (skb_csum_hwoffload_help(skb, features))
3768 skb = validate_xmit_xfrm(skb, features, again);
3775 atomic_long_inc(&dev->tx_dropped);
3779 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3781 struct sk_buff *next, *head = NULL, *tail;
3783 for (; skb != NULL; skb = next) {
3785 skb_mark_not_on_list(skb);
3787 /* in case skb wont be segmented, point to itself */
3790 skb = validate_xmit_skb(skb, dev, again);
3798 /* If skb was segmented, skb->prev points to
3799 * the last segment. If not, it still contains skb.
3805 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3807 static void qdisc_pkt_len_init(struct sk_buff *skb)
3809 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3811 qdisc_skb_cb(skb)->pkt_len = skb->len;
3813 /* To get more precise estimation of bytes sent on wire,
3814 * we add to pkt_len the headers size of all segments
3816 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3817 unsigned int hdr_len;
3818 u16 gso_segs = shinfo->gso_segs;
3820 /* mac layer + network layer */
3821 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3823 /* + transport layer */
3824 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3825 const struct tcphdr *th;
3826 struct tcphdr _tcphdr;
3828 th = skb_header_pointer(skb, skb_transport_offset(skb),
3829 sizeof(_tcphdr), &_tcphdr);
3831 hdr_len += __tcp_hdrlen(th);
3833 struct udphdr _udphdr;
3835 if (skb_header_pointer(skb, skb_transport_offset(skb),
3836 sizeof(_udphdr), &_udphdr))
3837 hdr_len += sizeof(struct udphdr);
3840 if (shinfo->gso_type & SKB_GSO_DODGY)
3841 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3844 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3848 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3849 struct sk_buff **to_free,
3850 struct netdev_queue *txq)
3854 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3855 if (rc == NET_XMIT_SUCCESS)
3856 trace_qdisc_enqueue(q, txq, skb);
3860 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3861 struct net_device *dev,
3862 struct netdev_queue *txq)
3864 spinlock_t *root_lock = qdisc_lock(q);
3865 struct sk_buff *to_free = NULL;
3869 qdisc_calculate_pkt_len(skb, q);
3871 if (q->flags & TCQ_F_NOLOCK) {
3872 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3873 qdisc_run_begin(q)) {
3874 /* Retest nolock_qdisc_is_empty() within the protection
3875 * of q->seqlock to protect from racing with requeuing.
3877 if (unlikely(!nolock_qdisc_is_empty(q))) {
3878 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3885 qdisc_bstats_cpu_update(q, skb);
3886 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3887 !nolock_qdisc_is_empty(q))
3891 return NET_XMIT_SUCCESS;
3894 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3898 if (unlikely(to_free))
3899 kfree_skb_list(to_free);
3904 * Heuristic to force contended enqueues to serialize on a
3905 * separate lock before trying to get qdisc main lock.
3906 * This permits qdisc->running owner to get the lock more
3907 * often and dequeue packets faster.
3909 contended = qdisc_is_running(q);
3910 if (unlikely(contended))
3911 spin_lock(&q->busylock);
3913 spin_lock(root_lock);
3914 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3915 __qdisc_drop(skb, &to_free);
3917 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3918 qdisc_run_begin(q)) {
3920 * This is a work-conserving queue; there are no old skbs
3921 * waiting to be sent out; and the qdisc is not running -
3922 * xmit the skb directly.
3925 qdisc_bstats_update(q, skb);
3927 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3928 if (unlikely(contended)) {
3929 spin_unlock(&q->busylock);
3936 rc = NET_XMIT_SUCCESS;
3938 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3939 if (qdisc_run_begin(q)) {
3940 if (unlikely(contended)) {
3941 spin_unlock(&q->busylock);
3948 spin_unlock(root_lock);
3949 if (unlikely(to_free))
3950 kfree_skb_list(to_free);
3951 if (unlikely(contended))
3952 spin_unlock(&q->busylock);
3956 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957 static void skb_update_prio(struct sk_buff *skb)
3959 const struct netprio_map *map;
3960 const struct sock *sk;
3961 unsigned int prioidx;
3965 map = rcu_dereference_bh(skb->dev->priomap);
3968 sk = skb_to_full_sk(skb);
3972 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3974 if (prioidx < map->priomap_len)
3975 skb->priority = map->priomap[prioidx];
3978 #define skb_update_prio(skb)
3982 * dev_loopback_xmit - loop back @skb
3983 * @net: network namespace this loopback is happening in
3984 * @sk: sk needed to be a netfilter okfn
3985 * @skb: buffer to transmit
3987 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3989 skb_reset_mac_header(skb);
3990 __skb_pull(skb, skb_network_offset(skb));
3991 skb->pkt_type = PACKET_LOOPBACK;
3992 skb->ip_summed = CHECKSUM_UNNECESSARY;
3993 WARN_ON(!skb_dst(skb));
3998 EXPORT_SYMBOL(dev_loopback_xmit);
4000 #ifdef CONFIG_NET_EGRESS
4001 static struct sk_buff *
4002 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4004 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
4005 struct tcf_result cl_res;
4010 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
4011 qdisc_skb_cb(skb)->mru = 0;
4012 qdisc_skb_cb(skb)->post_ct = false;
4013 mini_qdisc_bstats_cpu_update(miniq, skb);
4015 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4017 case TC_ACT_RECLASSIFY:
4018 skb->tc_index = TC_H_MIN(cl_res.classid);
4021 mini_qdisc_qstats_cpu_drop(miniq);
4022 *ret = NET_XMIT_DROP;
4028 *ret = NET_XMIT_SUCCESS;
4031 case TC_ACT_REDIRECT:
4032 /* No need to push/pop skb's mac_header here on egress! */
4033 skb_do_redirect(skb);
4034 *ret = NET_XMIT_SUCCESS;
4042 #endif /* CONFIG_NET_EGRESS */
4045 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4046 struct xps_dev_maps *dev_maps, unsigned int tci)
4048 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4049 struct xps_map *map;
4050 int queue_index = -1;
4052 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4055 tci *= dev_maps->num_tc;
4058 map = rcu_dereference(dev_maps->attr_map[tci]);
4061 queue_index = map->queues[0];
4063 queue_index = map->queues[reciprocal_scale(
4064 skb_get_hash(skb), map->len)];
4065 if (unlikely(queue_index >= dev->real_num_tx_queues))
4072 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4073 struct sk_buff *skb)
4076 struct xps_dev_maps *dev_maps;
4077 struct sock *sk = skb->sk;
4078 int queue_index = -1;
4080 if (!static_key_false(&xps_needed))
4084 if (!static_key_false(&xps_rxqs_needed))
4087 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4089 int tci = sk_rx_queue_get(sk);
4092 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4097 if (queue_index < 0) {
4098 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4100 unsigned int tci = skb->sender_cpu - 1;
4102 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4114 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4115 struct net_device *sb_dev)
4119 EXPORT_SYMBOL(dev_pick_tx_zero);
4121 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4122 struct net_device *sb_dev)
4124 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4126 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4128 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4129 struct net_device *sb_dev)
4131 struct sock *sk = skb->sk;
4132 int queue_index = sk_tx_queue_get(sk);
4134 sb_dev = sb_dev ? : dev;
4136 if (queue_index < 0 || skb->ooo_okay ||
4137 queue_index >= dev->real_num_tx_queues) {
4138 int new_index = get_xps_queue(dev, sb_dev, skb);
4141 new_index = skb_tx_hash(dev, sb_dev, skb);
4143 if (queue_index != new_index && sk &&
4145 rcu_access_pointer(sk->sk_dst_cache))
4146 sk_tx_queue_set(sk, new_index);
4148 queue_index = new_index;
4153 EXPORT_SYMBOL(netdev_pick_tx);
4155 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4156 struct sk_buff *skb,
4157 struct net_device *sb_dev)
4159 int queue_index = 0;
4162 u32 sender_cpu = skb->sender_cpu - 1;
4164 if (sender_cpu >= (u32)NR_CPUS)
4165 skb->sender_cpu = raw_smp_processor_id() + 1;
4168 if (dev->real_num_tx_queues != 1) {
4169 const struct net_device_ops *ops = dev->netdev_ops;
4171 if (ops->ndo_select_queue)
4172 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4174 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4176 queue_index = netdev_cap_txqueue(dev, queue_index);
4179 skb_set_queue_mapping(skb, queue_index);
4180 return netdev_get_tx_queue(dev, queue_index);
4184 * __dev_queue_xmit - transmit a buffer
4185 * @skb: buffer to transmit
4186 * @sb_dev: suboordinate device used for L2 forwarding offload
4188 * Queue a buffer for transmission to a network device. The caller must
4189 * have set the device and priority and built the buffer before calling
4190 * this function. The function can be called from an interrupt.
4192 * A negative errno code is returned on a failure. A success does not
4193 * guarantee the frame will be transmitted as it may be dropped due
4194 * to congestion or traffic shaping.
4196 * -----------------------------------------------------------------------------------
4197 * I notice this method can also return errors from the queue disciplines,
4198 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4201 * Regardless of the return value, the skb is consumed, so it is currently
4202 * difficult to retry a send to this method. (You can bump the ref count
4203 * before sending to hold a reference for retry if you are careful.)
4205 * When calling this method, interrupts MUST be enabled. This is because
4206 * the BH enable code must have IRQs enabled so that it will not deadlock.
4209 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4211 struct net_device *dev = skb->dev;
4212 struct netdev_queue *txq;
4217 skb_reset_mac_header(skb);
4219 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4220 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4222 /* Disable soft irqs for various locks below. Also
4223 * stops preemption for RCU.
4227 skb_update_prio(skb);
4229 qdisc_pkt_len_init(skb);
4230 #ifdef CONFIG_NET_CLS_ACT
4231 skb->tc_at_ingress = 0;
4232 # ifdef CONFIG_NET_EGRESS
4233 if (static_branch_unlikely(&egress_needed_key)) {
4234 skb = sch_handle_egress(skb, &rc, dev);
4240 /* If device/qdisc don't need skb->dst, release it right now while
4241 * its hot in this cpu cache.
4243 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4248 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4249 q = rcu_dereference_bh(txq->qdisc);
4251 trace_net_dev_queue(skb);
4253 rc = __dev_xmit_skb(skb, q, dev, txq);
4257 /* The device has no queue. Common case for software devices:
4258 * loopback, all the sorts of tunnels...
4260 * Really, it is unlikely that netif_tx_lock protection is necessary
4261 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4263 * However, it is possible, that they rely on protection
4266 * Check this and shot the lock. It is not prone from deadlocks.
4267 *Either shot noqueue qdisc, it is even simpler 8)
4269 if (dev->flags & IFF_UP) {
4270 int cpu = smp_processor_id(); /* ok because BHs are off */
4272 if (txq->xmit_lock_owner != cpu) {
4273 if (dev_xmit_recursion())
4274 goto recursion_alert;
4276 skb = validate_xmit_skb(skb, dev, &again);
4280 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281 HARD_TX_LOCK(dev, txq, cpu);
4283 if (!netif_xmit_stopped(txq)) {
4284 dev_xmit_recursion_inc();
4285 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4286 dev_xmit_recursion_dec();
4287 if (dev_xmit_complete(rc)) {
4288 HARD_TX_UNLOCK(dev, txq);
4292 HARD_TX_UNLOCK(dev, txq);
4293 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4296 /* Recursion is detected! It is possible,
4300 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4306 rcu_read_unlock_bh();
4308 atomic_long_inc(&dev->tx_dropped);
4309 kfree_skb_list(skb);
4312 rcu_read_unlock_bh();
4316 int dev_queue_xmit(struct sk_buff *skb)
4318 return __dev_queue_xmit(skb, NULL);
4320 EXPORT_SYMBOL(dev_queue_xmit);
4322 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4324 return __dev_queue_xmit(skb, sb_dev);
4326 EXPORT_SYMBOL(dev_queue_xmit_accel);
4328 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4330 struct net_device *dev = skb->dev;
4331 struct sk_buff *orig_skb = skb;
4332 struct netdev_queue *txq;
4333 int ret = NETDEV_TX_BUSY;
4336 if (unlikely(!netif_running(dev) ||
4337 !netif_carrier_ok(dev)))
4340 skb = validate_xmit_skb_list(skb, dev, &again);
4341 if (skb != orig_skb)
4344 skb_set_queue_mapping(skb, queue_id);
4345 txq = skb_get_tx_queue(dev, skb);
4346 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4350 dev_xmit_recursion_inc();
4351 HARD_TX_LOCK(dev, txq, smp_processor_id());
4352 if (!netif_xmit_frozen_or_drv_stopped(txq))
4353 ret = netdev_start_xmit(skb, dev, txq, false);
4354 HARD_TX_UNLOCK(dev, txq);
4355 dev_xmit_recursion_dec();
4360 atomic_long_inc(&dev->tx_dropped);
4361 kfree_skb_list(skb);
4362 return NET_XMIT_DROP;
4364 EXPORT_SYMBOL(__dev_direct_xmit);
4366 /*************************************************************************
4368 *************************************************************************/
4370 int netdev_max_backlog __read_mostly = 1000;
4371 EXPORT_SYMBOL(netdev_max_backlog);
4373 int netdev_tstamp_prequeue __read_mostly = 1;
4374 int netdev_budget __read_mostly = 300;
4375 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4376 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4377 int weight_p __read_mostly = 64; /* old backlog weight */
4378 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4379 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4380 int dev_rx_weight __read_mostly = 64;
4381 int dev_tx_weight __read_mostly = 64;
4382 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4383 int gro_normal_batch __read_mostly = 8;
4385 /* Called with irq disabled */
4386 static inline void ____napi_schedule(struct softnet_data *sd,
4387 struct napi_struct *napi)
4389 struct task_struct *thread;
4391 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4392 /* Paired with smp_mb__before_atomic() in
4393 * napi_enable()/dev_set_threaded().
4394 * Use READ_ONCE() to guarantee a complete
4395 * read on napi->thread. Only call
4396 * wake_up_process() when it's not NULL.
4398 thread = READ_ONCE(napi->thread);
4400 /* Avoid doing set_bit() if the thread is in
4401 * INTERRUPTIBLE state, cause napi_thread_wait()
4402 * makes sure to proceed with napi polling
4403 * if the thread is explicitly woken from here.
4405 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4406 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4407 wake_up_process(thread);
4412 list_add_tail(&napi->poll_list, &sd->poll_list);
4413 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4418 /* One global table that all flow-based protocols share. */
4419 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4420 EXPORT_SYMBOL(rps_sock_flow_table);
4421 u32 rps_cpu_mask __read_mostly;
4422 EXPORT_SYMBOL(rps_cpu_mask);
4424 struct static_key_false rps_needed __read_mostly;
4425 EXPORT_SYMBOL(rps_needed);
4426 struct static_key_false rfs_needed __read_mostly;
4427 EXPORT_SYMBOL(rfs_needed);
4429 static struct rps_dev_flow *
4430 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431 struct rps_dev_flow *rflow, u16 next_cpu)
4433 if (next_cpu < nr_cpu_ids) {
4434 #ifdef CONFIG_RFS_ACCEL
4435 struct netdev_rx_queue *rxqueue;
4436 struct rps_dev_flow_table *flow_table;
4437 struct rps_dev_flow *old_rflow;
4442 /* Should we steer this flow to a different hardware queue? */
4443 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4444 !(dev->features & NETIF_F_NTUPLE))
4446 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4447 if (rxq_index == skb_get_rx_queue(skb))
4450 rxqueue = dev->_rx + rxq_index;
4451 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4454 flow_id = skb_get_hash(skb) & flow_table->mask;
4455 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4456 rxq_index, flow_id);
4460 rflow = &flow_table->flows[flow_id];
4462 if (old_rflow->filter == rflow->filter)
4463 old_rflow->filter = RPS_NO_FILTER;
4467 per_cpu(softnet_data, next_cpu).input_queue_head;
4470 rflow->cpu = next_cpu;
4475 * get_rps_cpu is called from netif_receive_skb and returns the target
4476 * CPU from the RPS map of the receiving queue for a given skb.
4477 * rcu_read_lock must be held on entry.
4479 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480 struct rps_dev_flow **rflowp)
4482 const struct rps_sock_flow_table *sock_flow_table;
4483 struct netdev_rx_queue *rxqueue = dev->_rx;
4484 struct rps_dev_flow_table *flow_table;
4485 struct rps_map *map;
4490 if (skb_rx_queue_recorded(skb)) {
4491 u16 index = skb_get_rx_queue(skb);
4493 if (unlikely(index >= dev->real_num_rx_queues)) {
4494 WARN_ONCE(dev->real_num_rx_queues > 1,
4495 "%s received packet on queue %u, but number "
4496 "of RX queues is %u\n",
4497 dev->name, index, dev->real_num_rx_queues);
4503 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4505 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4506 map = rcu_dereference(rxqueue->rps_map);
4507 if (!flow_table && !map)
4510 skb_reset_network_header(skb);
4511 hash = skb_get_hash(skb);
4515 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4516 if (flow_table && sock_flow_table) {
4517 struct rps_dev_flow *rflow;
4521 /* First check into global flow table if there is a match */
4522 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4523 if ((ident ^ hash) & ~rps_cpu_mask)
4526 next_cpu = ident & rps_cpu_mask;
4528 /* OK, now we know there is a match,
4529 * we can look at the local (per receive queue) flow table
4531 rflow = &flow_table->flows[hash & flow_table->mask];
4535 * If the desired CPU (where last recvmsg was done) is
4536 * different from current CPU (one in the rx-queue flow
4537 * table entry), switch if one of the following holds:
4538 * - Current CPU is unset (>= nr_cpu_ids).
4539 * - Current CPU is offline.
4540 * - The current CPU's queue tail has advanced beyond the
4541 * last packet that was enqueued using this table entry.
4542 * This guarantees that all previous packets for the flow
4543 * have been dequeued, thus preserving in order delivery.
4545 if (unlikely(tcpu != next_cpu) &&
4546 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4547 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4548 rflow->last_qtail)) >= 0)) {
4550 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4553 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4563 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4564 if (cpu_online(tcpu)) {
4574 #ifdef CONFIG_RFS_ACCEL
4577 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4578 * @dev: Device on which the filter was set
4579 * @rxq_index: RX queue index
4580 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4581 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4583 * Drivers that implement ndo_rx_flow_steer() should periodically call
4584 * this function for each installed filter and remove the filters for
4585 * which it returns %true.
4587 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4588 u32 flow_id, u16 filter_id)
4590 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4591 struct rps_dev_flow_table *flow_table;
4592 struct rps_dev_flow *rflow;
4597 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598 if (flow_table && flow_id <= flow_table->mask) {
4599 rflow = &flow_table->flows[flow_id];
4600 cpu = READ_ONCE(rflow->cpu);
4601 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4602 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4603 rflow->last_qtail) <
4604 (int)(10 * flow_table->mask)))
4610 EXPORT_SYMBOL(rps_may_expire_flow);
4612 #endif /* CONFIG_RFS_ACCEL */
4614 /* Called from hardirq (IPI) context */
4615 static void rps_trigger_softirq(void *data)
4617 struct softnet_data *sd = data;
4619 ____napi_schedule(sd, &sd->backlog);
4623 #endif /* CONFIG_RPS */
4626 * Check if this softnet_data structure is another cpu one
4627 * If yes, queue it to our IPI list and return 1
4630 static int rps_ipi_queued(struct softnet_data *sd)
4633 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4636 sd->rps_ipi_next = mysd->rps_ipi_list;
4637 mysd->rps_ipi_list = sd;
4639 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4642 #endif /* CONFIG_RPS */
4646 #ifdef CONFIG_NET_FLOW_LIMIT
4647 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4650 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4652 #ifdef CONFIG_NET_FLOW_LIMIT
4653 struct sd_flow_limit *fl;
4654 struct softnet_data *sd;
4655 unsigned int old_flow, new_flow;
4657 if (qlen < (netdev_max_backlog >> 1))
4660 sd = this_cpu_ptr(&softnet_data);
4663 fl = rcu_dereference(sd->flow_limit);
4665 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4666 old_flow = fl->history[fl->history_head];
4667 fl->history[fl->history_head] = new_flow;
4670 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4672 if (likely(fl->buckets[old_flow]))
4673 fl->buckets[old_flow]--;
4675 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4687 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4688 * queue (may be a remote CPU queue).
4690 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4691 unsigned int *qtail)
4693 struct softnet_data *sd;
4694 unsigned long flags;
4697 sd = &per_cpu(softnet_data, cpu);
4699 local_irq_save(flags);
4702 if (!netif_running(skb->dev))
4704 qlen = skb_queue_len(&sd->input_pkt_queue);
4705 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4708 __skb_queue_tail(&sd->input_pkt_queue, skb);
4709 input_queue_tail_incr_save(sd, qtail);
4711 local_irq_restore(flags);
4712 return NET_RX_SUCCESS;
4715 /* Schedule NAPI for backlog device
4716 * We can use non atomic operation since we own the queue lock
4718 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4719 if (!rps_ipi_queued(sd))
4720 ____napi_schedule(sd, &sd->backlog);
4729 local_irq_restore(flags);
4731 atomic_long_inc(&skb->dev->rx_dropped);
4736 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4738 struct net_device *dev = skb->dev;
4739 struct netdev_rx_queue *rxqueue;
4743 if (skb_rx_queue_recorded(skb)) {
4744 u16 index = skb_get_rx_queue(skb);
4746 if (unlikely(index >= dev->real_num_rx_queues)) {
4747 WARN_ONCE(dev->real_num_rx_queues > 1,
4748 "%s received packet on queue %u, but number "
4749 "of RX queues is %u\n",
4750 dev->name, index, dev->real_num_rx_queues);
4752 return rxqueue; /* Return first rxqueue */
4759 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4760 struct bpf_prog *xdp_prog)
4762 void *orig_data, *orig_data_end, *hard_start;
4763 struct netdev_rx_queue *rxqueue;
4764 bool orig_bcast, orig_host;
4765 u32 mac_len, frame_sz;
4766 __be16 orig_eth_type;
4771 /* The XDP program wants to see the packet starting at the MAC
4774 mac_len = skb->data - skb_mac_header(skb);
4775 hard_start = skb->data - skb_headroom(skb);
4777 /* SKB "head" area always have tailroom for skb_shared_info */
4778 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4779 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4781 rxqueue = netif_get_rxqueue(skb);
4782 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4783 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4784 skb_headlen(skb) + mac_len, true);
4786 orig_data_end = xdp->data_end;
4787 orig_data = xdp->data;
4788 eth = (struct ethhdr *)xdp->data;
4789 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4790 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4791 orig_eth_type = eth->h_proto;
4793 act = bpf_prog_run_xdp(xdp_prog, xdp);
4795 /* check if bpf_xdp_adjust_head was used */
4796 off = xdp->data - orig_data;
4799 __skb_pull(skb, off);
4801 __skb_push(skb, -off);
4803 skb->mac_header += off;
4804 skb_reset_network_header(skb);
4807 /* check if bpf_xdp_adjust_tail was used */
4808 off = xdp->data_end - orig_data_end;
4810 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4811 skb->len += off; /* positive on grow, negative on shrink */
4814 /* check if XDP changed eth hdr such SKB needs update */
4815 eth = (struct ethhdr *)xdp->data;
4816 if ((orig_eth_type != eth->h_proto) ||
4817 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4818 skb->dev->dev_addr)) ||
4819 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4820 __skb_push(skb, ETH_HLEN);
4821 skb->pkt_type = PACKET_HOST;
4822 skb->protocol = eth_type_trans(skb, skb->dev);
4825 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4826 * before calling us again on redirect path. We do not call do_redirect
4827 * as we leave that up to the caller.
4829 * Caller is responsible for managing lifetime of skb (i.e. calling
4830 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4835 __skb_push(skb, mac_len);
4838 metalen = xdp->data - xdp->data_meta;
4840 skb_metadata_set(skb, metalen);
4847 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4848 struct xdp_buff *xdp,
4849 struct bpf_prog *xdp_prog)
4853 /* Reinjected packets coming from act_mirred or similar should
4854 * not get XDP generic processing.
4856 if (skb_is_redirected(skb))
4859 /* XDP packets must be linear and must have sufficient headroom
4860 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4861 * native XDP provides, thus we need to do it here as well.
4863 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4864 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4865 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4866 int troom = skb->tail + skb->data_len - skb->end;
4868 /* In case we have to go down the path and also linearize,
4869 * then lets do the pskb_expand_head() work just once here.
4871 if (pskb_expand_head(skb,
4872 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4873 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4875 if (skb_linearize(skb))
4879 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4886 bpf_warn_invalid_xdp_action(act);
4889 trace_xdp_exception(skb->dev, xdp_prog, act);
4900 /* When doing generic XDP we have to bypass the qdisc layer and the
4901 * network taps in order to match in-driver-XDP behavior.
4903 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4905 struct net_device *dev = skb->dev;
4906 struct netdev_queue *txq;
4907 bool free_skb = true;
4910 txq = netdev_core_pick_tx(dev, skb, NULL);
4911 cpu = smp_processor_id();
4912 HARD_TX_LOCK(dev, txq, cpu);
4913 if (!netif_xmit_stopped(txq)) {
4914 rc = netdev_start_xmit(skb, dev, txq, 0);
4915 if (dev_xmit_complete(rc))
4918 HARD_TX_UNLOCK(dev, txq);
4920 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4925 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4927 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4930 struct xdp_buff xdp;
4934 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4935 if (act != XDP_PASS) {
4938 err = xdp_do_generic_redirect(skb->dev, skb,
4944 generic_xdp_tx(skb, xdp_prog);
4955 EXPORT_SYMBOL_GPL(do_xdp_generic);
4957 static int netif_rx_internal(struct sk_buff *skb)
4961 net_timestamp_check(netdev_tstamp_prequeue, skb);
4963 trace_netif_rx(skb);
4966 if (static_branch_unlikely(&rps_needed)) {
4967 struct rps_dev_flow voidflow, *rflow = &voidflow;
4973 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4975 cpu = smp_processor_id();
4977 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4986 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4993 * netif_rx - post buffer to the network code
4994 * @skb: buffer to post
4996 * This function receives a packet from a device driver and queues it for
4997 * the upper (protocol) levels to process. It always succeeds. The buffer
4998 * may be dropped during processing for congestion control or by the
5002 * NET_RX_SUCCESS (no congestion)
5003 * NET_RX_DROP (packet was dropped)
5007 int netif_rx(struct sk_buff *skb)
5011 trace_netif_rx_entry(skb);
5013 ret = netif_rx_internal(skb);
5014 trace_netif_rx_exit(ret);
5018 EXPORT_SYMBOL(netif_rx);
5020 int netif_rx_ni(struct sk_buff *skb)
5024 trace_netif_rx_ni_entry(skb);
5027 err = netif_rx_internal(skb);
5028 if (local_softirq_pending())
5031 trace_netif_rx_ni_exit(err);
5035 EXPORT_SYMBOL(netif_rx_ni);
5037 int netif_rx_any_context(struct sk_buff *skb)
5040 * If invoked from contexts which do not invoke bottom half
5041 * processing either at return from interrupt or when softrqs are
5042 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5046 return netif_rx(skb);
5048 return netif_rx_ni(skb);
5050 EXPORT_SYMBOL(netif_rx_any_context);
5052 static __latent_entropy void net_tx_action(struct softirq_action *h)
5054 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5056 if (sd->completion_queue) {
5057 struct sk_buff *clist;
5059 local_irq_disable();
5060 clist = sd->completion_queue;
5061 sd->completion_queue = NULL;
5065 struct sk_buff *skb = clist;
5067 clist = clist->next;
5069 WARN_ON(refcount_read(&skb->users));
5070 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5071 trace_consume_skb(skb);
5073 trace_kfree_skb(skb, net_tx_action);
5075 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5078 __kfree_skb_defer(skb);
5082 if (sd->output_queue) {
5085 local_irq_disable();
5086 head = sd->output_queue;
5087 sd->output_queue = NULL;
5088 sd->output_queue_tailp = &sd->output_queue;
5094 struct Qdisc *q = head;
5095 spinlock_t *root_lock = NULL;
5097 head = head->next_sched;
5099 /* We need to make sure head->next_sched is read
5100 * before clearing __QDISC_STATE_SCHED
5102 smp_mb__before_atomic();
5104 if (!(q->flags & TCQ_F_NOLOCK)) {
5105 root_lock = qdisc_lock(q);
5106 spin_lock(root_lock);
5107 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5109 /* There is a synchronize_net() between
5110 * STATE_DEACTIVATED flag being set and
5111 * qdisc_reset()/some_qdisc_is_busy() in
5112 * dev_deactivate(), so we can safely bail out
5113 * early here to avoid data race between
5114 * qdisc_deactivate() and some_qdisc_is_busy()
5115 * for lockless qdisc.
5117 clear_bit(__QDISC_STATE_SCHED, &q->state);
5121 clear_bit(__QDISC_STATE_SCHED, &q->state);
5124 spin_unlock(root_lock);
5130 xfrm_dev_backlog(sd);
5133 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5134 /* This hook is defined here for ATM LANE */
5135 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5136 unsigned char *addr) __read_mostly;
5137 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5140 static inline struct sk_buff *
5141 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5142 struct net_device *orig_dev, bool *another)
5144 #ifdef CONFIG_NET_CLS_ACT
5145 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5146 struct tcf_result cl_res;
5148 /* If there's at least one ingress present somewhere (so
5149 * we get here via enabled static key), remaining devices
5150 * that are not configured with an ingress qdisc will bail
5157 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5161 qdisc_skb_cb(skb)->pkt_len = skb->len;
5162 qdisc_skb_cb(skb)->mru = 0;
5163 qdisc_skb_cb(skb)->post_ct = false;
5164 skb->tc_at_ingress = 1;
5165 mini_qdisc_bstats_cpu_update(miniq, skb);
5167 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5170 case TC_ACT_RECLASSIFY:
5171 skb->tc_index = TC_H_MIN(cl_res.classid);
5174 mini_qdisc_qstats_cpu_drop(miniq);
5182 case TC_ACT_REDIRECT:
5183 /* skb_mac_header check was done by cls/act_bpf, so
5184 * we can safely push the L2 header back before
5185 * redirecting to another netdev
5187 __skb_push(skb, skb->mac_len);
5188 if (skb_do_redirect(skb) == -EAGAIN) {
5189 __skb_pull(skb, skb->mac_len);
5194 case TC_ACT_CONSUMED:
5199 #endif /* CONFIG_NET_CLS_ACT */
5204 * netdev_is_rx_handler_busy - check if receive handler is registered
5205 * @dev: device to check
5207 * Check if a receive handler is already registered for a given device.
5208 * Return true if there one.
5210 * The caller must hold the rtnl_mutex.
5212 bool netdev_is_rx_handler_busy(struct net_device *dev)
5215 return dev && rtnl_dereference(dev->rx_handler);
5217 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5220 * netdev_rx_handler_register - register receive handler
5221 * @dev: device to register a handler for
5222 * @rx_handler: receive handler to register
5223 * @rx_handler_data: data pointer that is used by rx handler
5225 * Register a receive handler for a device. This handler will then be
5226 * called from __netif_receive_skb. A negative errno code is returned
5229 * The caller must hold the rtnl_mutex.
5231 * For a general description of rx_handler, see enum rx_handler_result.
5233 int netdev_rx_handler_register(struct net_device *dev,
5234 rx_handler_func_t *rx_handler,
5235 void *rx_handler_data)
5237 if (netdev_is_rx_handler_busy(dev))
5240 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5243 /* Note: rx_handler_data must be set before rx_handler */
5244 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5245 rcu_assign_pointer(dev->rx_handler, rx_handler);
5249 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5252 * netdev_rx_handler_unregister - unregister receive handler
5253 * @dev: device to unregister a handler from
5255 * Unregister a receive handler from a device.
5257 * The caller must hold the rtnl_mutex.
5259 void netdev_rx_handler_unregister(struct net_device *dev)
5263 RCU_INIT_POINTER(dev->rx_handler, NULL);
5264 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5265 * section has a guarantee to see a non NULL rx_handler_data
5269 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5271 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5274 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5275 * the special handling of PFMEMALLOC skbs.
5277 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5279 switch (skb->protocol) {
5280 case htons(ETH_P_ARP):
5281 case htons(ETH_P_IP):
5282 case htons(ETH_P_IPV6):
5283 case htons(ETH_P_8021Q):
5284 case htons(ETH_P_8021AD):
5291 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5292 int *ret, struct net_device *orig_dev)
5294 if (nf_hook_ingress_active(skb)) {
5298 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5303 ingress_retval = nf_hook_ingress(skb);
5305 return ingress_retval;
5310 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5311 struct packet_type **ppt_prev)
5313 struct packet_type *ptype, *pt_prev;
5314 rx_handler_func_t *rx_handler;
5315 struct sk_buff *skb = *pskb;
5316 struct net_device *orig_dev;
5317 bool deliver_exact = false;
5318 int ret = NET_RX_DROP;
5321 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5323 trace_netif_receive_skb(skb);
5325 orig_dev = skb->dev;
5327 skb_reset_network_header(skb);
5328 if (!skb_transport_header_was_set(skb))
5329 skb_reset_transport_header(skb);
5330 skb_reset_mac_len(skb);
5335 skb->skb_iif = skb->dev->ifindex;
5337 __this_cpu_inc(softnet_data.processed);
5339 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5343 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5346 if (ret2 != XDP_PASS) {
5352 if (eth_type_vlan(skb->protocol)) {
5353 skb = skb_vlan_untag(skb);
5358 if (skb_skip_tc_classify(skb))
5364 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5366 ret = deliver_skb(skb, pt_prev, orig_dev);
5370 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5372 ret = deliver_skb(skb, pt_prev, orig_dev);
5377 #ifdef CONFIG_NET_INGRESS
5378 if (static_branch_unlikely(&ingress_needed_key)) {
5379 bool another = false;
5381 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5392 skb_reset_redirect(skb);
5394 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5397 if (skb_vlan_tag_present(skb)) {
5399 ret = deliver_skb(skb, pt_prev, orig_dev);
5402 if (vlan_do_receive(&skb))
5404 else if (unlikely(!skb))
5408 rx_handler = rcu_dereference(skb->dev->rx_handler);
5411 ret = deliver_skb(skb, pt_prev, orig_dev);
5414 switch (rx_handler(&skb)) {
5415 case RX_HANDLER_CONSUMED:
5416 ret = NET_RX_SUCCESS;
5418 case RX_HANDLER_ANOTHER:
5420 case RX_HANDLER_EXACT:
5421 deliver_exact = true;
5423 case RX_HANDLER_PASS:
5430 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5432 if (skb_vlan_tag_get_id(skb)) {
5433 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5436 skb->pkt_type = PACKET_OTHERHOST;
5437 } else if (eth_type_vlan(skb->protocol)) {
5438 /* Outer header is 802.1P with vlan 0, inner header is
5439 * 802.1Q or 802.1AD and vlan_do_receive() above could
5440 * not find vlan dev for vlan id 0.
5442 __vlan_hwaccel_clear_tag(skb);
5443 skb = skb_vlan_untag(skb);
5446 if (vlan_do_receive(&skb))
5447 /* After stripping off 802.1P header with vlan 0
5448 * vlan dev is found for inner header.
5451 else if (unlikely(!skb))
5454 /* We have stripped outer 802.1P vlan 0 header.
5455 * But could not find vlan dev.
5456 * check again for vlan id to set OTHERHOST.
5460 /* Note: we might in the future use prio bits
5461 * and set skb->priority like in vlan_do_receive()
5462 * For the time being, just ignore Priority Code Point
5464 __vlan_hwaccel_clear_tag(skb);
5467 type = skb->protocol;
5469 /* deliver only exact match when indicated */
5470 if (likely(!deliver_exact)) {
5471 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5472 &ptype_base[ntohs(type) &
5476 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5477 &orig_dev->ptype_specific);
5479 if (unlikely(skb->dev != orig_dev)) {
5480 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5481 &skb->dev->ptype_specific);
5485 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5487 *ppt_prev = pt_prev;
5491 atomic_long_inc(&skb->dev->rx_dropped);
5493 atomic_long_inc(&skb->dev->rx_nohandler);
5495 /* Jamal, now you will not able to escape explaining
5496 * me how you were going to use this. :-)
5502 /* The invariant here is that if *ppt_prev is not NULL
5503 * then skb should also be non-NULL.
5505 * Apparently *ppt_prev assignment above holds this invariant due to
5506 * skb dereferencing near it.
5512 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5514 struct net_device *orig_dev = skb->dev;
5515 struct packet_type *pt_prev = NULL;
5518 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5520 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5521 skb->dev, pt_prev, orig_dev);
5526 * netif_receive_skb_core - special purpose version of netif_receive_skb
5527 * @skb: buffer to process
5529 * More direct receive version of netif_receive_skb(). It should
5530 * only be used by callers that have a need to skip RPS and Generic XDP.
5531 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5533 * This function may only be called from softirq context and interrupts
5534 * should be enabled.
5536 * Return values (usually ignored):
5537 * NET_RX_SUCCESS: no congestion
5538 * NET_RX_DROP: packet was dropped
5540 int netif_receive_skb_core(struct sk_buff *skb)
5545 ret = __netif_receive_skb_one_core(skb, false);
5550 EXPORT_SYMBOL(netif_receive_skb_core);
5552 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5553 struct packet_type *pt_prev,
5554 struct net_device *orig_dev)
5556 struct sk_buff *skb, *next;
5560 if (list_empty(head))
5562 if (pt_prev->list_func != NULL)
5563 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5564 ip_list_rcv, head, pt_prev, orig_dev);
5566 list_for_each_entry_safe(skb, next, head, list) {
5567 skb_list_del_init(skb);
5568 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5572 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5574 /* Fast-path assumptions:
5575 * - There is no RX handler.
5576 * - Only one packet_type matches.
5577 * If either of these fails, we will end up doing some per-packet
5578 * processing in-line, then handling the 'last ptype' for the whole
5579 * sublist. This can't cause out-of-order delivery to any single ptype,
5580 * because the 'last ptype' must be constant across the sublist, and all
5581 * other ptypes are handled per-packet.
5583 /* Current (common) ptype of sublist */
5584 struct packet_type *pt_curr = NULL;
5585 /* Current (common) orig_dev of sublist */
5586 struct net_device *od_curr = NULL;
5587 struct list_head sublist;
5588 struct sk_buff *skb, *next;
5590 INIT_LIST_HEAD(&sublist);
5591 list_for_each_entry_safe(skb, next, head, list) {
5592 struct net_device *orig_dev = skb->dev;
5593 struct packet_type *pt_prev = NULL;
5595 skb_list_del_init(skb);
5596 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5599 if (pt_curr != pt_prev || od_curr != orig_dev) {
5600 /* dispatch old sublist */
5601 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5602 /* start new sublist */
5603 INIT_LIST_HEAD(&sublist);
5607 list_add_tail(&skb->list, &sublist);
5610 /* dispatch final sublist */
5611 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5614 static int __netif_receive_skb(struct sk_buff *skb)
5618 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5619 unsigned int noreclaim_flag;
5622 * PFMEMALLOC skbs are special, they should
5623 * - be delivered to SOCK_MEMALLOC sockets only
5624 * - stay away from userspace
5625 * - have bounded memory usage
5627 * Use PF_MEMALLOC as this saves us from propagating the allocation
5628 * context down to all allocation sites.
5630 noreclaim_flag = memalloc_noreclaim_save();
5631 ret = __netif_receive_skb_one_core(skb, true);
5632 memalloc_noreclaim_restore(noreclaim_flag);
5634 ret = __netif_receive_skb_one_core(skb, false);
5639 static void __netif_receive_skb_list(struct list_head *head)
5641 unsigned long noreclaim_flag = 0;
5642 struct sk_buff *skb, *next;
5643 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5645 list_for_each_entry_safe(skb, next, head, list) {
5646 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5647 struct list_head sublist;
5649 /* Handle the previous sublist */
5650 list_cut_before(&sublist, head, &skb->list);
5651 if (!list_empty(&sublist))
5652 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5653 pfmemalloc = !pfmemalloc;
5654 /* See comments in __netif_receive_skb */
5656 noreclaim_flag = memalloc_noreclaim_save();
5658 memalloc_noreclaim_restore(noreclaim_flag);
5661 /* Handle the remaining sublist */
5662 if (!list_empty(head))
5663 __netif_receive_skb_list_core(head, pfmemalloc);
5664 /* Restore pflags */
5666 memalloc_noreclaim_restore(noreclaim_flag);
5669 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5671 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5672 struct bpf_prog *new = xdp->prog;
5675 switch (xdp->command) {
5676 case XDP_SETUP_PROG:
5677 rcu_assign_pointer(dev->xdp_prog, new);
5682 static_branch_dec(&generic_xdp_needed_key);
5683 } else if (new && !old) {
5684 static_branch_inc(&generic_xdp_needed_key);
5685 dev_disable_lro(dev);
5686 dev_disable_gro_hw(dev);
5698 static int netif_receive_skb_internal(struct sk_buff *skb)
5702 net_timestamp_check(netdev_tstamp_prequeue, skb);
5704 if (skb_defer_rx_timestamp(skb))
5705 return NET_RX_SUCCESS;
5709 if (static_branch_unlikely(&rps_needed)) {
5710 struct rps_dev_flow voidflow, *rflow = &voidflow;
5711 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5714 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5720 ret = __netif_receive_skb(skb);
5725 static void netif_receive_skb_list_internal(struct list_head *head)
5727 struct sk_buff *skb, *next;
5728 struct list_head sublist;
5730 INIT_LIST_HEAD(&sublist);
5731 list_for_each_entry_safe(skb, next, head, list) {
5732 net_timestamp_check(netdev_tstamp_prequeue, skb);
5733 skb_list_del_init(skb);
5734 if (!skb_defer_rx_timestamp(skb))
5735 list_add_tail(&skb->list, &sublist);
5737 list_splice_init(&sublist, head);
5741 if (static_branch_unlikely(&rps_needed)) {
5742 list_for_each_entry_safe(skb, next, head, list) {
5743 struct rps_dev_flow voidflow, *rflow = &voidflow;
5744 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5747 /* Will be handled, remove from list */
5748 skb_list_del_init(skb);
5749 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5754 __netif_receive_skb_list(head);
5759 * netif_receive_skb - process receive buffer from network
5760 * @skb: buffer to process
5762 * netif_receive_skb() is the main receive data processing function.
5763 * It always succeeds. The buffer may be dropped during processing
5764 * for congestion control or by the protocol layers.
5766 * This function may only be called from softirq context and interrupts
5767 * should be enabled.
5769 * Return values (usually ignored):
5770 * NET_RX_SUCCESS: no congestion
5771 * NET_RX_DROP: packet was dropped
5773 int netif_receive_skb(struct sk_buff *skb)
5777 trace_netif_receive_skb_entry(skb);
5779 ret = netif_receive_skb_internal(skb);
5780 trace_netif_receive_skb_exit(ret);
5784 EXPORT_SYMBOL(netif_receive_skb);
5787 * netif_receive_skb_list - process many receive buffers from network
5788 * @head: list of skbs to process.
5790 * Since return value of netif_receive_skb() is normally ignored, and
5791 * wouldn't be meaningful for a list, this function returns void.
5793 * This function may only be called from softirq context and interrupts
5794 * should be enabled.
5796 void netif_receive_skb_list(struct list_head *head)
5798 struct sk_buff *skb;
5800 if (list_empty(head))
5802 if (trace_netif_receive_skb_list_entry_enabled()) {
5803 list_for_each_entry(skb, head, list)
5804 trace_netif_receive_skb_list_entry(skb);
5806 netif_receive_skb_list_internal(head);
5807 trace_netif_receive_skb_list_exit(0);
5809 EXPORT_SYMBOL(netif_receive_skb_list);
5811 static DEFINE_PER_CPU(struct work_struct, flush_works);
5813 /* Network device is going away, flush any packets still pending */
5814 static void flush_backlog(struct work_struct *work)
5816 struct sk_buff *skb, *tmp;
5817 struct softnet_data *sd;
5820 sd = this_cpu_ptr(&softnet_data);
5822 local_irq_disable();
5824 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5825 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5826 __skb_unlink(skb, &sd->input_pkt_queue);
5827 dev_kfree_skb_irq(skb);
5828 input_queue_head_incr(sd);
5834 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5835 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5836 __skb_unlink(skb, &sd->process_queue);
5838 input_queue_head_incr(sd);
5844 static bool flush_required(int cpu)
5846 #if IS_ENABLED(CONFIG_RPS)
5847 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5850 local_irq_disable();
5853 /* as insertion into process_queue happens with the rps lock held,
5854 * process_queue access may race only with dequeue
5856 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5857 !skb_queue_empty_lockless(&sd->process_queue);
5863 /* without RPS we can't safely check input_pkt_queue: during a
5864 * concurrent remote skb_queue_splice() we can detect as empty both
5865 * input_pkt_queue and process_queue even if the latter could end-up
5866 * containing a lot of packets.
5871 static void flush_all_backlogs(void)
5873 static cpumask_t flush_cpus;
5876 /* since we are under rtnl lock protection we can use static data
5877 * for the cpumask and avoid allocating on stack the possibly
5884 cpumask_clear(&flush_cpus);
5885 for_each_online_cpu(cpu) {
5886 if (flush_required(cpu)) {
5887 queue_work_on(cpu, system_highpri_wq,
5888 per_cpu_ptr(&flush_works, cpu));
5889 cpumask_set_cpu(cpu, &flush_cpus);
5893 /* we can have in flight packet[s] on the cpus we are not flushing,
5894 * synchronize_net() in unregister_netdevice_many() will take care of
5897 for_each_cpu(cpu, &flush_cpus)
5898 flush_work(per_cpu_ptr(&flush_works, cpu));
5903 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5904 static void gro_normal_list(struct napi_struct *napi)
5906 if (!napi->rx_count)
5908 netif_receive_skb_list_internal(&napi->rx_list);
5909 INIT_LIST_HEAD(&napi->rx_list);
5913 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5914 * pass the whole batch up to the stack.
5916 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5918 list_add_tail(&skb->list, &napi->rx_list);
5919 napi->rx_count += segs;
5920 if (napi->rx_count >= gro_normal_batch)
5921 gro_normal_list(napi);
5924 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5926 struct packet_offload *ptype;
5927 __be16 type = skb->protocol;
5928 struct list_head *head = &offload_base;
5931 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5933 if (NAPI_GRO_CB(skb)->count == 1) {
5934 skb_shinfo(skb)->gso_size = 0;
5939 list_for_each_entry_rcu(ptype, head, list) {
5940 if (ptype->type != type || !ptype->callbacks.gro_complete)
5943 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5944 ipv6_gro_complete, inet_gro_complete,
5951 WARN_ON(&ptype->list == head);
5953 return NET_RX_SUCCESS;
5957 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5958 return NET_RX_SUCCESS;
5961 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5964 struct list_head *head = &napi->gro_hash[index].list;
5965 struct sk_buff *skb, *p;
5967 list_for_each_entry_safe_reverse(skb, p, head, list) {
5968 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5970 skb_list_del_init(skb);
5971 napi_gro_complete(napi, skb);
5972 napi->gro_hash[index].count--;
5975 if (!napi->gro_hash[index].count)
5976 __clear_bit(index, &napi->gro_bitmask);
5979 /* napi->gro_hash[].list contains packets ordered by age.
5980 * youngest packets at the head of it.
5981 * Complete skbs in reverse order to reduce latencies.
5983 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5985 unsigned long bitmask = napi->gro_bitmask;
5986 unsigned int i, base = ~0U;
5988 while ((i = ffs(bitmask)) != 0) {
5991 __napi_gro_flush_chain(napi, base, flush_old);
5994 EXPORT_SYMBOL(napi_gro_flush);
5996 static void gro_list_prepare(const struct list_head *head,
5997 const struct sk_buff *skb)
5999 unsigned int maclen = skb->dev->hard_header_len;
6000 u32 hash = skb_get_hash_raw(skb);
6003 list_for_each_entry(p, head, list) {
6004 unsigned long diffs;
6006 NAPI_GRO_CB(p)->flush = 0;
6008 if (hash != skb_get_hash_raw(p)) {
6009 NAPI_GRO_CB(p)->same_flow = 0;
6013 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6014 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6015 if (skb_vlan_tag_present(p))
6016 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6017 diffs |= skb_metadata_differs(p, skb);
6018 if (maclen == ETH_HLEN)
6019 diffs |= compare_ether_header(skb_mac_header(p),
6020 skb_mac_header(skb));
6022 diffs = memcmp(skb_mac_header(p),
6023 skb_mac_header(skb),
6026 /* in most common scenarions _state is 0
6027 * otherwise we are already on some slower paths
6028 * either skip all the infrequent tests altogether or
6029 * avoid trying too hard to skip each of them individually
6031 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
6032 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6033 struct tc_skb_ext *skb_ext;
6034 struct tc_skb_ext *p_ext;
6037 diffs |= p->sk != skb->sk;
6038 diffs |= skb_metadata_dst_cmp(p, skb);
6039 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6041 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6042 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6043 p_ext = skb_ext_find(p, TC_SKB_EXT);
6045 diffs |= (!!p_ext) ^ (!!skb_ext);
6046 if (!diffs && unlikely(skb_ext))
6047 diffs |= p_ext->chain ^ skb_ext->chain;
6051 NAPI_GRO_CB(p)->same_flow = !diffs;
6055 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6057 const struct skb_shared_info *pinfo = skb_shinfo(skb);
6058 const skb_frag_t *frag0 = &pinfo->frags[0];
6060 NAPI_GRO_CB(skb)->data_offset = 0;
6061 NAPI_GRO_CB(skb)->frag0 = NULL;
6062 NAPI_GRO_CB(skb)->frag0_len = 0;
6064 if (!skb_headlen(skb) && pinfo->nr_frags &&
6065 !PageHighMem(skb_frag_page(frag0)) &&
6066 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6067 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6068 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6069 skb_frag_size(frag0),
6070 skb->end - skb->tail);
6074 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6076 struct skb_shared_info *pinfo = skb_shinfo(skb);
6078 BUG_ON(skb->end - skb->tail < grow);
6080 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6082 skb->data_len -= grow;
6085 skb_frag_off_add(&pinfo->frags[0], grow);
6086 skb_frag_size_sub(&pinfo->frags[0], grow);
6088 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6089 skb_frag_unref(skb, 0);
6090 memmove(pinfo->frags, pinfo->frags + 1,
6091 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6095 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6097 struct sk_buff *oldest;
6099 oldest = list_last_entry(head, struct sk_buff, list);
6101 /* We are called with head length >= MAX_GRO_SKBS, so this is
6104 if (WARN_ON_ONCE(!oldest))
6107 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6110 skb_list_del_init(oldest);
6111 napi_gro_complete(napi, oldest);
6114 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6116 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6117 struct gro_list *gro_list = &napi->gro_hash[bucket];
6118 struct list_head *head = &offload_base;
6119 struct packet_offload *ptype;
6120 __be16 type = skb->protocol;
6121 struct sk_buff *pp = NULL;
6122 enum gro_result ret;
6126 if (netif_elide_gro(skb->dev))
6129 gro_list_prepare(&gro_list->list, skb);
6132 list_for_each_entry_rcu(ptype, head, list) {
6133 if (ptype->type != type || !ptype->callbacks.gro_receive)
6136 skb_set_network_header(skb, skb_gro_offset(skb));
6137 skb_reset_mac_len(skb);
6138 NAPI_GRO_CB(skb)->same_flow = 0;
6139 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6140 NAPI_GRO_CB(skb)->free = 0;
6141 NAPI_GRO_CB(skb)->encap_mark = 0;
6142 NAPI_GRO_CB(skb)->recursion_counter = 0;
6143 NAPI_GRO_CB(skb)->is_fou = 0;
6144 NAPI_GRO_CB(skb)->is_atomic = 1;
6145 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6147 /* Setup for GRO checksum validation */
6148 switch (skb->ip_summed) {
6149 case CHECKSUM_COMPLETE:
6150 NAPI_GRO_CB(skb)->csum = skb->csum;
6151 NAPI_GRO_CB(skb)->csum_valid = 1;
6152 NAPI_GRO_CB(skb)->csum_cnt = 0;
6154 case CHECKSUM_UNNECESSARY:
6155 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6156 NAPI_GRO_CB(skb)->csum_valid = 0;
6159 NAPI_GRO_CB(skb)->csum_cnt = 0;
6160 NAPI_GRO_CB(skb)->csum_valid = 0;
6163 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6164 ipv6_gro_receive, inet_gro_receive,
6165 &gro_list->list, skb);
6170 if (&ptype->list == head)
6173 if (PTR_ERR(pp) == -EINPROGRESS) {
6178 same_flow = NAPI_GRO_CB(skb)->same_flow;
6179 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6182 skb_list_del_init(pp);
6183 napi_gro_complete(napi, pp);
6190 if (NAPI_GRO_CB(skb)->flush)
6193 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6194 gro_flush_oldest(napi, &gro_list->list);
6198 NAPI_GRO_CB(skb)->count = 1;
6199 NAPI_GRO_CB(skb)->age = jiffies;
6200 NAPI_GRO_CB(skb)->last = skb;
6201 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6202 list_add(&skb->list, &gro_list->list);
6206 grow = skb_gro_offset(skb) - skb_headlen(skb);
6208 gro_pull_from_frag0(skb, grow);
6210 if (gro_list->count) {
6211 if (!test_bit(bucket, &napi->gro_bitmask))
6212 __set_bit(bucket, &napi->gro_bitmask);
6213 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6214 __clear_bit(bucket, &napi->gro_bitmask);
6224 struct packet_offload *gro_find_receive_by_type(__be16 type)
6226 struct list_head *offload_head = &offload_base;
6227 struct packet_offload *ptype;
6229 list_for_each_entry_rcu(ptype, offload_head, list) {
6230 if (ptype->type != type || !ptype->callbacks.gro_receive)
6236 EXPORT_SYMBOL(gro_find_receive_by_type);
6238 struct packet_offload *gro_find_complete_by_type(__be16 type)
6240 struct list_head *offload_head = &offload_base;
6241 struct packet_offload *ptype;
6243 list_for_each_entry_rcu(ptype, offload_head, list) {
6244 if (ptype->type != type || !ptype->callbacks.gro_complete)
6250 EXPORT_SYMBOL(gro_find_complete_by_type);
6252 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6253 struct sk_buff *skb,
6258 gro_normal_one(napi, skb, 1);
6261 case GRO_MERGED_FREE:
6262 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6263 napi_skb_free_stolen_head(skb);
6264 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6267 __kfree_skb_defer(skb);
6279 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6283 skb_mark_napi_id(skb, napi);
6284 trace_napi_gro_receive_entry(skb);
6286 skb_gro_reset_offset(skb, 0);
6288 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6289 trace_napi_gro_receive_exit(ret);
6293 EXPORT_SYMBOL(napi_gro_receive);
6295 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6297 if (unlikely(skb->pfmemalloc)) {
6301 __skb_pull(skb, skb_headlen(skb));
6302 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6303 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6304 __vlan_hwaccel_clear_tag(skb);
6305 skb->dev = napi->dev;
6308 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6309 skb->pkt_type = PACKET_HOST;
6311 skb->encapsulation = 0;
6312 skb_shinfo(skb)->gso_type = 0;
6313 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6314 if (unlikely(skb->slow_gro)) {
6324 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6326 struct sk_buff *skb = napi->skb;
6329 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6332 skb_mark_napi_id(skb, napi);
6337 EXPORT_SYMBOL(napi_get_frags);
6339 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6340 struct sk_buff *skb,
6346 __skb_push(skb, ETH_HLEN);
6347 skb->protocol = eth_type_trans(skb, skb->dev);
6348 if (ret == GRO_NORMAL)
6349 gro_normal_one(napi, skb, 1);
6352 case GRO_MERGED_FREE:
6353 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6354 napi_skb_free_stolen_head(skb);
6356 napi_reuse_skb(napi, skb);
6367 /* Upper GRO stack assumes network header starts at gro_offset=0
6368 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6369 * We copy ethernet header into skb->data to have a common layout.
6371 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6373 struct sk_buff *skb = napi->skb;
6374 const struct ethhdr *eth;
6375 unsigned int hlen = sizeof(*eth);
6379 skb_reset_mac_header(skb);
6380 skb_gro_reset_offset(skb, hlen);
6382 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6383 eth = skb_gro_header_slow(skb, hlen, 0);
6384 if (unlikely(!eth)) {
6385 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6386 __func__, napi->dev->name);
6387 napi_reuse_skb(napi, skb);
6391 eth = (const struct ethhdr *)skb->data;
6392 gro_pull_from_frag0(skb, hlen);
6393 NAPI_GRO_CB(skb)->frag0 += hlen;
6394 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6396 __skb_pull(skb, hlen);
6399 * This works because the only protocols we care about don't require
6401 * We'll fix it up properly in napi_frags_finish()
6403 skb->protocol = eth->h_proto;
6408 gro_result_t napi_gro_frags(struct napi_struct *napi)
6411 struct sk_buff *skb = napi_frags_skb(napi);
6413 trace_napi_gro_frags_entry(skb);
6415 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6416 trace_napi_gro_frags_exit(ret);
6420 EXPORT_SYMBOL(napi_gro_frags);
6422 /* Compute the checksum from gro_offset and return the folded value
6423 * after adding in any pseudo checksum.
6425 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6430 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6432 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6433 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6434 /* See comments in __skb_checksum_complete(). */
6436 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6437 !skb->csum_complete_sw)
6438 netdev_rx_csum_fault(skb->dev, skb);
6441 NAPI_GRO_CB(skb)->csum = wsum;
6442 NAPI_GRO_CB(skb)->csum_valid = 1;
6446 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6448 static void net_rps_send_ipi(struct softnet_data *remsd)
6452 struct softnet_data *next = remsd->rps_ipi_next;
6454 if (cpu_online(remsd->cpu))
6455 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6462 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6463 * Note: called with local irq disabled, but exits with local irq enabled.
6465 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6468 struct softnet_data *remsd = sd->rps_ipi_list;
6471 sd->rps_ipi_list = NULL;
6475 /* Send pending IPI's to kick RPS processing on remote cpus. */
6476 net_rps_send_ipi(remsd);
6482 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6485 return sd->rps_ipi_list != NULL;
6491 static int process_backlog(struct napi_struct *napi, int quota)
6493 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6497 /* Check if we have pending ipi, its better to send them now,
6498 * not waiting net_rx_action() end.
6500 if (sd_has_rps_ipi_waiting(sd)) {
6501 local_irq_disable();
6502 net_rps_action_and_irq_enable(sd);
6505 napi->weight = dev_rx_weight;
6507 struct sk_buff *skb;
6509 while ((skb = __skb_dequeue(&sd->process_queue))) {
6511 __netif_receive_skb(skb);
6513 input_queue_head_incr(sd);
6514 if (++work >= quota)
6519 local_irq_disable();
6521 if (skb_queue_empty(&sd->input_pkt_queue)) {
6523 * Inline a custom version of __napi_complete().
6524 * only current cpu owns and manipulates this napi,
6525 * and NAPI_STATE_SCHED is the only possible flag set
6527 * We can use a plain write instead of clear_bit(),
6528 * and we dont need an smp_mb() memory barrier.
6533 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6534 &sd->process_queue);
6544 * __napi_schedule - schedule for receive
6545 * @n: entry to schedule
6547 * The entry's receive function will be scheduled to run.
6548 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6550 void __napi_schedule(struct napi_struct *n)
6552 unsigned long flags;
6554 local_irq_save(flags);
6555 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556 local_irq_restore(flags);
6558 EXPORT_SYMBOL(__napi_schedule);
6561 * napi_schedule_prep - check if napi can be scheduled
6564 * Test if NAPI routine is already running, and if not mark
6565 * it as running. This is used as a condition variable to
6566 * insure only one NAPI poll instance runs. We also make
6567 * sure there is no pending NAPI disable.
6569 bool napi_schedule_prep(struct napi_struct *n)
6571 unsigned long val, new;
6574 val = READ_ONCE(n->state);
6575 if (unlikely(val & NAPIF_STATE_DISABLE))
6577 new = val | NAPIF_STATE_SCHED;
6579 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6580 * This was suggested by Alexander Duyck, as compiler
6581 * emits better code than :
6582 * if (val & NAPIF_STATE_SCHED)
6583 * new |= NAPIF_STATE_MISSED;
6585 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6587 } while (cmpxchg(&n->state, val, new) != val);
6589 return !(val & NAPIF_STATE_SCHED);
6591 EXPORT_SYMBOL(napi_schedule_prep);
6594 * __napi_schedule_irqoff - schedule for receive
6595 * @n: entry to schedule
6597 * Variant of __napi_schedule() assuming hard irqs are masked.
6599 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6600 * because the interrupt disabled assumption might not be true
6601 * due to force-threaded interrupts and spinlock substitution.
6603 void __napi_schedule_irqoff(struct napi_struct *n)
6605 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6606 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6610 EXPORT_SYMBOL(__napi_schedule_irqoff);
6612 bool napi_complete_done(struct napi_struct *n, int work_done)
6614 unsigned long flags, val, new, timeout = 0;
6618 * 1) Don't let napi dequeue from the cpu poll list
6619 * just in case its running on a different cpu.
6620 * 2) If we are busy polling, do nothing here, we have
6621 * the guarantee we will be called later.
6623 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6624 NAPIF_STATE_IN_BUSY_POLL)))
6629 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6630 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6632 if (n->defer_hard_irqs_count > 0) {
6633 n->defer_hard_irqs_count--;
6634 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6638 if (n->gro_bitmask) {
6639 /* When the NAPI instance uses a timeout and keeps postponing
6640 * it, we need to bound somehow the time packets are kept in
6643 napi_gro_flush(n, !!timeout);
6648 if (unlikely(!list_empty(&n->poll_list))) {
6649 /* If n->poll_list is not empty, we need to mask irqs */
6650 local_irq_save(flags);
6651 list_del_init(&n->poll_list);
6652 local_irq_restore(flags);
6656 val = READ_ONCE(n->state);
6658 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6660 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6661 NAPIF_STATE_SCHED_THREADED |
6662 NAPIF_STATE_PREFER_BUSY_POLL);
6664 /* If STATE_MISSED was set, leave STATE_SCHED set,
6665 * because we will call napi->poll() one more time.
6666 * This C code was suggested by Alexander Duyck to help gcc.
6668 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6670 } while (cmpxchg(&n->state, val, new) != val);
6672 if (unlikely(val & NAPIF_STATE_MISSED)) {
6678 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6679 HRTIMER_MODE_REL_PINNED);
6682 EXPORT_SYMBOL(napi_complete_done);
6684 /* must be called under rcu_read_lock(), as we dont take a reference */
6685 static struct napi_struct *napi_by_id(unsigned int napi_id)
6687 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6688 struct napi_struct *napi;
6690 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6691 if (napi->napi_id == napi_id)
6697 #if defined(CONFIG_NET_RX_BUSY_POLL)
6699 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6701 if (!skip_schedule) {
6702 gro_normal_list(napi);
6703 __napi_schedule(napi);
6707 if (napi->gro_bitmask) {
6708 /* flush too old packets
6709 * If HZ < 1000, flush all packets.
6711 napi_gro_flush(napi, HZ >= 1000);
6714 gro_normal_list(napi);
6715 clear_bit(NAPI_STATE_SCHED, &napi->state);
6718 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6721 bool skip_schedule = false;
6722 unsigned long timeout;
6725 /* Busy polling means there is a high chance device driver hard irq
6726 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6727 * set in napi_schedule_prep().
6728 * Since we are about to call napi->poll() once more, we can safely
6729 * clear NAPI_STATE_MISSED.
6731 * Note: x86 could use a single "lock and ..." instruction
6732 * to perform these two clear_bit()
6734 clear_bit(NAPI_STATE_MISSED, &napi->state);
6735 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6739 if (prefer_busy_poll) {
6740 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6741 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6742 if (napi->defer_hard_irqs_count && timeout) {
6743 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6744 skip_schedule = true;
6748 /* All we really want here is to re-enable device interrupts.
6749 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6751 rc = napi->poll(napi, budget);
6752 /* We can't gro_normal_list() here, because napi->poll() might have
6753 * rearmed the napi (napi_complete_done()) in which case it could
6754 * already be running on another CPU.
6756 trace_napi_poll(napi, rc, budget);
6757 netpoll_poll_unlock(have_poll_lock);
6759 __busy_poll_stop(napi, skip_schedule);
6763 void napi_busy_loop(unsigned int napi_id,
6764 bool (*loop_end)(void *, unsigned long),
6765 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6767 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6768 int (*napi_poll)(struct napi_struct *napi, int budget);
6769 void *have_poll_lock = NULL;
6770 struct napi_struct *napi;
6777 napi = napi_by_id(napi_id);
6787 unsigned long val = READ_ONCE(napi->state);
6789 /* If multiple threads are competing for this napi,
6790 * we avoid dirtying napi->state as much as we can.
6792 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6793 NAPIF_STATE_IN_BUSY_POLL)) {
6794 if (prefer_busy_poll)
6795 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6798 if (cmpxchg(&napi->state, val,
6799 val | NAPIF_STATE_IN_BUSY_POLL |
6800 NAPIF_STATE_SCHED) != val) {
6801 if (prefer_busy_poll)
6802 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6805 have_poll_lock = netpoll_poll_lock(napi);
6806 napi_poll = napi->poll;
6808 work = napi_poll(napi, budget);
6809 trace_napi_poll(napi, work, budget);
6810 gro_normal_list(napi);
6813 __NET_ADD_STATS(dev_net(napi->dev),
6814 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6817 if (!loop_end || loop_end(loop_end_arg, start_time))
6820 if (unlikely(need_resched())) {
6822 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6826 if (loop_end(loop_end_arg, start_time))
6833 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6838 EXPORT_SYMBOL(napi_busy_loop);
6840 #endif /* CONFIG_NET_RX_BUSY_POLL */
6842 static void napi_hash_add(struct napi_struct *napi)
6844 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6847 spin_lock(&napi_hash_lock);
6849 /* 0..NR_CPUS range is reserved for sender_cpu use */
6851 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6852 napi_gen_id = MIN_NAPI_ID;
6853 } while (napi_by_id(napi_gen_id));
6854 napi->napi_id = napi_gen_id;
6856 hlist_add_head_rcu(&napi->napi_hash_node,
6857 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6859 spin_unlock(&napi_hash_lock);
6862 /* Warning : caller is responsible to make sure rcu grace period
6863 * is respected before freeing memory containing @napi
6865 static void napi_hash_del(struct napi_struct *napi)
6867 spin_lock(&napi_hash_lock);
6869 hlist_del_init_rcu(&napi->napi_hash_node);
6871 spin_unlock(&napi_hash_lock);
6874 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6876 struct napi_struct *napi;
6878 napi = container_of(timer, struct napi_struct, timer);
6880 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6881 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6883 if (!napi_disable_pending(napi) &&
6884 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6885 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6886 __napi_schedule_irqoff(napi);
6889 return HRTIMER_NORESTART;
6892 static void init_gro_hash(struct napi_struct *napi)
6896 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6897 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6898 napi->gro_hash[i].count = 0;
6900 napi->gro_bitmask = 0;
6903 int dev_set_threaded(struct net_device *dev, bool threaded)
6905 struct napi_struct *napi;
6908 if (dev->threaded == threaded)
6912 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6913 if (!napi->thread) {
6914 err = napi_kthread_create(napi);
6923 dev->threaded = threaded;
6925 /* Make sure kthread is created before THREADED bit
6928 smp_mb__before_atomic();
6930 /* Setting/unsetting threaded mode on a napi might not immediately
6931 * take effect, if the current napi instance is actively being
6932 * polled. In this case, the switch between threaded mode and
6933 * softirq mode will happen in the next round of napi_schedule().
6934 * This should not cause hiccups/stalls to the live traffic.
6936 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6938 set_bit(NAPI_STATE_THREADED, &napi->state);
6940 clear_bit(NAPI_STATE_THREADED, &napi->state);
6945 EXPORT_SYMBOL(dev_set_threaded);
6947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6948 int (*poll)(struct napi_struct *, int), int weight)
6950 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6953 INIT_LIST_HEAD(&napi->poll_list);
6954 INIT_HLIST_NODE(&napi->napi_hash_node);
6955 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6956 napi->timer.function = napi_watchdog;
6957 init_gro_hash(napi);
6959 INIT_LIST_HEAD(&napi->rx_list);
6962 if (weight > NAPI_POLL_WEIGHT)
6963 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6965 napi->weight = weight;
6967 #ifdef CONFIG_NETPOLL
6968 napi->poll_owner = -1;
6970 set_bit(NAPI_STATE_SCHED, &napi->state);
6971 set_bit(NAPI_STATE_NPSVC, &napi->state);
6972 list_add_rcu(&napi->dev_list, &dev->napi_list);
6973 napi_hash_add(napi);
6974 /* Create kthread for this napi if dev->threaded is set.
6975 * Clear dev->threaded if kthread creation failed so that
6976 * threaded mode will not be enabled in napi_enable().
6978 if (dev->threaded && napi_kthread_create(napi))
6981 EXPORT_SYMBOL(netif_napi_add);
6983 void napi_disable(struct napi_struct *n)
6986 set_bit(NAPI_STATE_DISABLE, &n->state);
6988 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6990 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6993 hrtimer_cancel(&n->timer);
6995 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6996 clear_bit(NAPI_STATE_DISABLE, &n->state);
6997 clear_bit(NAPI_STATE_THREADED, &n->state);
6999 EXPORT_SYMBOL(napi_disable);
7002 * napi_enable - enable NAPI scheduling
7005 * Resume NAPI from being scheduled on this context.
7006 * Must be paired with napi_disable.
7008 void napi_enable(struct napi_struct *n)
7010 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
7011 smp_mb__before_atomic();
7012 clear_bit(NAPI_STATE_SCHED, &n->state);
7013 clear_bit(NAPI_STATE_NPSVC, &n->state);
7014 if (n->dev->threaded && n->thread)
7015 set_bit(NAPI_STATE_THREADED, &n->state);
7017 EXPORT_SYMBOL(napi_enable);
7019 static void flush_gro_hash(struct napi_struct *napi)
7023 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7024 struct sk_buff *skb, *n;
7026 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7028 napi->gro_hash[i].count = 0;
7032 /* Must be called in process context */
7033 void __netif_napi_del(struct napi_struct *napi)
7035 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7038 napi_hash_del(napi);
7039 list_del_rcu(&napi->dev_list);
7040 napi_free_frags(napi);
7042 flush_gro_hash(napi);
7043 napi->gro_bitmask = 0;
7046 kthread_stop(napi->thread);
7047 napi->thread = NULL;
7050 EXPORT_SYMBOL(__netif_napi_del);
7052 static int __napi_poll(struct napi_struct *n, bool *repoll)
7058 /* This NAPI_STATE_SCHED test is for avoiding a race
7059 * with netpoll's poll_napi(). Only the entity which
7060 * obtains the lock and sees NAPI_STATE_SCHED set will
7061 * actually make the ->poll() call. Therefore we avoid
7062 * accidentally calling ->poll() when NAPI is not scheduled.
7065 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7066 work = n->poll(n, weight);
7067 trace_napi_poll(n, work, weight);
7070 if (unlikely(work > weight))
7071 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7072 n->poll, work, weight);
7074 if (likely(work < weight))
7077 /* Drivers must not modify the NAPI state if they
7078 * consume the entire weight. In such cases this code
7079 * still "owns" the NAPI instance and therefore can
7080 * move the instance around on the list at-will.
7082 if (unlikely(napi_disable_pending(n))) {
7087 /* The NAPI context has more processing work, but busy-polling
7088 * is preferred. Exit early.
7090 if (napi_prefer_busy_poll(n)) {
7091 if (napi_complete_done(n, work)) {
7092 /* If timeout is not set, we need to make sure
7093 * that the NAPI is re-scheduled.
7100 if (n->gro_bitmask) {
7101 /* flush too old packets
7102 * If HZ < 1000, flush all packets.
7104 napi_gro_flush(n, HZ >= 1000);
7109 /* Some drivers may have called napi_schedule
7110 * prior to exhausting their budget.
7112 if (unlikely(!list_empty(&n->poll_list))) {
7113 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7114 n->dev ? n->dev->name : "backlog");
7123 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7125 bool do_repoll = false;
7129 list_del_init(&n->poll_list);
7131 have = netpoll_poll_lock(n);
7133 work = __napi_poll(n, &do_repoll);
7136 list_add_tail(&n->poll_list, repoll);
7138 netpoll_poll_unlock(have);
7143 static int napi_thread_wait(struct napi_struct *napi)
7147 set_current_state(TASK_INTERRUPTIBLE);
7149 while (!kthread_should_stop()) {
7150 /* Testing SCHED_THREADED bit here to make sure the current
7151 * kthread owns this napi and could poll on this napi.
7152 * Testing SCHED bit is not enough because SCHED bit might be
7153 * set by some other busy poll thread or by napi_disable().
7155 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7156 WARN_ON(!list_empty(&napi->poll_list));
7157 __set_current_state(TASK_RUNNING);
7162 /* woken being true indicates this thread owns this napi. */
7164 set_current_state(TASK_INTERRUPTIBLE);
7166 __set_current_state(TASK_RUNNING);
7171 static int napi_threaded_poll(void *data)
7173 struct napi_struct *napi = data;
7176 while (!napi_thread_wait(napi)) {
7178 bool repoll = false;
7182 have = netpoll_poll_lock(napi);
7183 __napi_poll(napi, &repoll);
7184 netpoll_poll_unlock(have);
7197 static __latent_entropy void net_rx_action(struct softirq_action *h)
7199 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7200 unsigned long time_limit = jiffies +
7201 usecs_to_jiffies(netdev_budget_usecs);
7202 int budget = netdev_budget;
7206 local_irq_disable();
7207 list_splice_init(&sd->poll_list, &list);
7211 struct napi_struct *n;
7213 if (list_empty(&list)) {
7214 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7219 n = list_first_entry(&list, struct napi_struct, poll_list);
7220 budget -= napi_poll(n, &repoll);
7222 /* If softirq window is exhausted then punt.
7223 * Allow this to run for 2 jiffies since which will allow
7224 * an average latency of 1.5/HZ.
7226 if (unlikely(budget <= 0 ||
7227 time_after_eq(jiffies, time_limit))) {
7233 local_irq_disable();
7235 list_splice_tail_init(&sd->poll_list, &list);
7236 list_splice_tail(&repoll, &list);
7237 list_splice(&list, &sd->poll_list);
7238 if (!list_empty(&sd->poll_list))
7239 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7241 net_rps_action_and_irq_enable(sd);
7244 struct netdev_adjacent {
7245 struct net_device *dev;
7247 /* upper master flag, there can only be one master device per list */
7250 /* lookup ignore flag */
7253 /* counter for the number of times this device was added to us */
7256 /* private field for the users */
7259 struct list_head list;
7260 struct rcu_head rcu;
7263 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7264 struct list_head *adj_list)
7266 struct netdev_adjacent *adj;
7268 list_for_each_entry(adj, adj_list, list) {
7269 if (adj->dev == adj_dev)
7275 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7276 struct netdev_nested_priv *priv)
7278 struct net_device *dev = (struct net_device *)priv->data;
7280 return upper_dev == dev;
7284 * netdev_has_upper_dev - Check if device is linked to an upper device
7286 * @upper_dev: upper device to check
7288 * Find out if a device is linked to specified upper device and return true
7289 * in case it is. Note that this checks only immediate upper device,
7290 * not through a complete stack of devices. The caller must hold the RTNL lock.
7292 bool netdev_has_upper_dev(struct net_device *dev,
7293 struct net_device *upper_dev)
7295 struct netdev_nested_priv priv = {
7296 .data = (void *)upper_dev,
7301 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7304 EXPORT_SYMBOL(netdev_has_upper_dev);
7307 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7309 * @upper_dev: upper device to check
7311 * Find out if a device is linked to specified upper device and return true
7312 * in case it is. Note that this checks the entire upper device chain.
7313 * The caller must hold rcu lock.
7316 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7317 struct net_device *upper_dev)
7319 struct netdev_nested_priv priv = {
7320 .data = (void *)upper_dev,
7323 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7326 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7329 * netdev_has_any_upper_dev - Check if device is linked to some device
7332 * Find out if a device is linked to an upper device and return true in case
7333 * it is. The caller must hold the RTNL lock.
7335 bool netdev_has_any_upper_dev(struct net_device *dev)
7339 return !list_empty(&dev->adj_list.upper);
7341 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7344 * netdev_master_upper_dev_get - Get master upper device
7347 * Find a master upper device and return pointer to it or NULL in case
7348 * it's not there. The caller must hold the RTNL lock.
7350 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7352 struct netdev_adjacent *upper;
7356 if (list_empty(&dev->adj_list.upper))
7359 upper = list_first_entry(&dev->adj_list.upper,
7360 struct netdev_adjacent, list);
7361 if (likely(upper->master))
7365 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7367 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7369 struct netdev_adjacent *upper;
7373 if (list_empty(&dev->adj_list.upper))
7376 upper = list_first_entry(&dev->adj_list.upper,
7377 struct netdev_adjacent, list);
7378 if (likely(upper->master) && !upper->ignore)
7384 * netdev_has_any_lower_dev - Check if device is linked to some device
7387 * Find out if a device is linked to a lower device and return true in case
7388 * it is. The caller must hold the RTNL lock.
7390 static bool netdev_has_any_lower_dev(struct net_device *dev)
7394 return !list_empty(&dev->adj_list.lower);
7397 void *netdev_adjacent_get_private(struct list_head *adj_list)
7399 struct netdev_adjacent *adj;
7401 adj = list_entry(adj_list, struct netdev_adjacent, list);
7403 return adj->private;
7405 EXPORT_SYMBOL(netdev_adjacent_get_private);
7408 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7410 * @iter: list_head ** of the current position
7412 * Gets the next device from the dev's upper list, starting from iter
7413 * position. The caller must hold RCU read lock.
7415 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7416 struct list_head **iter)
7418 struct netdev_adjacent *upper;
7420 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7422 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7424 if (&upper->list == &dev->adj_list.upper)
7427 *iter = &upper->list;
7431 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7433 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7434 struct list_head **iter,
7437 struct netdev_adjacent *upper;
7439 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7441 if (&upper->list == &dev->adj_list.upper)
7444 *iter = &upper->list;
7445 *ignore = upper->ignore;
7450 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7451 struct list_head **iter)
7453 struct netdev_adjacent *upper;
7455 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7457 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7459 if (&upper->list == &dev->adj_list.upper)
7462 *iter = &upper->list;
7467 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7468 int (*fn)(struct net_device *dev,
7469 struct netdev_nested_priv *priv),
7470 struct netdev_nested_priv *priv)
7472 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7473 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7478 iter = &dev->adj_list.upper;
7482 ret = fn(now, priv);
7489 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7496 niter = &udev->adj_list.upper;
7497 dev_stack[cur] = now;
7498 iter_stack[cur++] = iter;
7505 next = dev_stack[--cur];
7506 niter = iter_stack[cur];
7516 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7517 int (*fn)(struct net_device *dev,
7518 struct netdev_nested_priv *priv),
7519 struct netdev_nested_priv *priv)
7521 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7522 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7526 iter = &dev->adj_list.upper;
7530 ret = fn(now, priv);
7537 udev = netdev_next_upper_dev_rcu(now, &iter);
7542 niter = &udev->adj_list.upper;
7543 dev_stack[cur] = now;
7544 iter_stack[cur++] = iter;
7551 next = dev_stack[--cur];
7552 niter = iter_stack[cur];
7561 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7563 static bool __netdev_has_upper_dev(struct net_device *dev,
7564 struct net_device *upper_dev)
7566 struct netdev_nested_priv priv = {
7568 .data = (void *)upper_dev,
7573 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7578 * netdev_lower_get_next_private - Get the next ->private from the
7579 * lower neighbour list
7581 * @iter: list_head ** of the current position
7583 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7584 * list, starting from iter position. The caller must hold either hold the
7585 * RTNL lock or its own locking that guarantees that the neighbour lower
7586 * list will remain unchanged.
7588 void *netdev_lower_get_next_private(struct net_device *dev,
7589 struct list_head **iter)
7591 struct netdev_adjacent *lower;
7593 lower = list_entry(*iter, struct netdev_adjacent, list);
7595 if (&lower->list == &dev->adj_list.lower)
7598 *iter = lower->list.next;
7600 return lower->private;
7602 EXPORT_SYMBOL(netdev_lower_get_next_private);
7605 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7606 * lower neighbour list, RCU
7609 * @iter: list_head ** of the current position
7611 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7612 * list, starting from iter position. The caller must hold RCU read lock.
7614 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7615 struct list_head **iter)
7617 struct netdev_adjacent *lower;
7619 WARN_ON_ONCE(!rcu_read_lock_held());
7621 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7623 if (&lower->list == &dev->adj_list.lower)
7626 *iter = &lower->list;
7628 return lower->private;
7630 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7633 * netdev_lower_get_next - Get the next device from the lower neighbour
7636 * @iter: list_head ** of the current position
7638 * Gets the next netdev_adjacent from the dev's lower neighbour
7639 * list, starting from iter position. The caller must hold RTNL lock or
7640 * its own locking that guarantees that the neighbour lower
7641 * list will remain unchanged.
7643 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7645 struct netdev_adjacent *lower;
7647 lower = list_entry(*iter, struct netdev_adjacent, list);
7649 if (&lower->list == &dev->adj_list.lower)
7652 *iter = lower->list.next;
7656 EXPORT_SYMBOL(netdev_lower_get_next);
7658 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7659 struct list_head **iter)
7661 struct netdev_adjacent *lower;
7663 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7665 if (&lower->list == &dev->adj_list.lower)
7668 *iter = &lower->list;
7673 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7674 struct list_head **iter,
7677 struct netdev_adjacent *lower;
7679 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7681 if (&lower->list == &dev->adj_list.lower)
7684 *iter = &lower->list;
7685 *ignore = lower->ignore;
7690 int netdev_walk_all_lower_dev(struct net_device *dev,
7691 int (*fn)(struct net_device *dev,
7692 struct netdev_nested_priv *priv),
7693 struct netdev_nested_priv *priv)
7695 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7696 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7700 iter = &dev->adj_list.lower;
7704 ret = fn(now, priv);
7711 ldev = netdev_next_lower_dev(now, &iter);
7716 niter = &ldev->adj_list.lower;
7717 dev_stack[cur] = now;
7718 iter_stack[cur++] = iter;
7725 next = dev_stack[--cur];
7726 niter = iter_stack[cur];
7735 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7737 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7738 int (*fn)(struct net_device *dev,
7739 struct netdev_nested_priv *priv),
7740 struct netdev_nested_priv *priv)
7742 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7743 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7748 iter = &dev->adj_list.lower;
7752 ret = fn(now, priv);
7759 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7766 niter = &ldev->adj_list.lower;
7767 dev_stack[cur] = now;
7768 iter_stack[cur++] = iter;
7775 next = dev_stack[--cur];
7776 niter = iter_stack[cur];
7786 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7787 struct list_head **iter)
7789 struct netdev_adjacent *lower;
7791 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7792 if (&lower->list == &dev->adj_list.lower)
7795 *iter = &lower->list;
7799 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7801 static u8 __netdev_upper_depth(struct net_device *dev)
7803 struct net_device *udev;
7804 struct list_head *iter;
7808 for (iter = &dev->adj_list.upper,
7809 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7811 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7814 if (max_depth < udev->upper_level)
7815 max_depth = udev->upper_level;
7821 static u8 __netdev_lower_depth(struct net_device *dev)
7823 struct net_device *ldev;
7824 struct list_head *iter;
7828 for (iter = &dev->adj_list.lower,
7829 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7831 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7834 if (max_depth < ldev->lower_level)
7835 max_depth = ldev->lower_level;
7841 static int __netdev_update_upper_level(struct net_device *dev,
7842 struct netdev_nested_priv *__unused)
7844 dev->upper_level = __netdev_upper_depth(dev) + 1;
7848 static int __netdev_update_lower_level(struct net_device *dev,
7849 struct netdev_nested_priv *priv)
7851 dev->lower_level = __netdev_lower_depth(dev) + 1;
7853 #ifdef CONFIG_LOCKDEP
7857 if (priv->flags & NESTED_SYNC_IMM)
7858 dev->nested_level = dev->lower_level - 1;
7859 if (priv->flags & NESTED_SYNC_TODO)
7860 net_unlink_todo(dev);
7865 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7866 int (*fn)(struct net_device *dev,
7867 struct netdev_nested_priv *priv),
7868 struct netdev_nested_priv *priv)
7870 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7871 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7875 iter = &dev->adj_list.lower;
7879 ret = fn(now, priv);
7886 ldev = netdev_next_lower_dev_rcu(now, &iter);
7891 niter = &ldev->adj_list.lower;
7892 dev_stack[cur] = now;
7893 iter_stack[cur++] = iter;
7900 next = dev_stack[--cur];
7901 niter = iter_stack[cur];
7910 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7913 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7914 * lower neighbour list, RCU
7918 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7919 * list. The caller must hold RCU read lock.
7921 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7923 struct netdev_adjacent *lower;
7925 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7926 struct netdev_adjacent, list);
7928 return lower->private;
7931 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7934 * netdev_master_upper_dev_get_rcu - Get master upper device
7937 * Find a master upper device and return pointer to it or NULL in case
7938 * it's not there. The caller must hold the RCU read lock.
7940 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7942 struct netdev_adjacent *upper;
7944 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7945 struct netdev_adjacent, list);
7946 if (upper && likely(upper->master))
7950 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7952 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7953 struct net_device *adj_dev,
7954 struct list_head *dev_list)
7956 char linkname[IFNAMSIZ+7];
7958 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7959 "upper_%s" : "lower_%s", adj_dev->name);
7960 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7963 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7965 struct list_head *dev_list)
7967 char linkname[IFNAMSIZ+7];
7969 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7970 "upper_%s" : "lower_%s", name);
7971 sysfs_remove_link(&(dev->dev.kobj), linkname);
7974 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7975 struct net_device *adj_dev,
7976 struct list_head *dev_list)
7978 return (dev_list == &dev->adj_list.upper ||
7979 dev_list == &dev->adj_list.lower) &&
7980 net_eq(dev_net(dev), dev_net(adj_dev));
7983 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7984 struct net_device *adj_dev,
7985 struct list_head *dev_list,
7986 void *private, bool master)
7988 struct netdev_adjacent *adj;
7991 adj = __netdev_find_adj(adj_dev, dev_list);
7995 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7996 dev->name, adj_dev->name, adj->ref_nr);
8001 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8006 adj->master = master;
8008 adj->private = private;
8009 adj->ignore = false;
8012 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8013 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8015 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8016 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8021 /* Ensure that master link is always the first item in list. */
8023 ret = sysfs_create_link(&(dev->dev.kobj),
8024 &(adj_dev->dev.kobj), "master");
8026 goto remove_symlinks;
8028 list_add_rcu(&adj->list, dev_list);
8030 list_add_tail_rcu(&adj->list, dev_list);
8036 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8037 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8045 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8046 struct net_device *adj_dev,
8048 struct list_head *dev_list)
8050 struct netdev_adjacent *adj;
8052 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8053 dev->name, adj_dev->name, ref_nr);
8055 adj = __netdev_find_adj(adj_dev, dev_list);
8058 pr_err("Adjacency does not exist for device %s from %s\n",
8059 dev->name, adj_dev->name);
8064 if (adj->ref_nr > ref_nr) {
8065 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8066 dev->name, adj_dev->name, ref_nr,
8067 adj->ref_nr - ref_nr);
8068 adj->ref_nr -= ref_nr;
8073 sysfs_remove_link(&(dev->dev.kobj), "master");
8075 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8076 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8078 list_del_rcu(&adj->list);
8079 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8080 adj_dev->name, dev->name, adj_dev->name);
8082 kfree_rcu(adj, rcu);
8085 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8086 struct net_device *upper_dev,
8087 struct list_head *up_list,
8088 struct list_head *down_list,
8089 void *private, bool master)
8093 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8098 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8101 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8108 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8109 struct net_device *upper_dev,
8111 struct list_head *up_list,
8112 struct list_head *down_list)
8114 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8115 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8118 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8119 struct net_device *upper_dev,
8120 void *private, bool master)
8122 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8123 &dev->adj_list.upper,
8124 &upper_dev->adj_list.lower,
8128 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8129 struct net_device *upper_dev)
8131 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8132 &dev->adj_list.upper,
8133 &upper_dev->adj_list.lower);
8136 static int __netdev_upper_dev_link(struct net_device *dev,
8137 struct net_device *upper_dev, bool master,
8138 void *upper_priv, void *upper_info,
8139 struct netdev_nested_priv *priv,
8140 struct netlink_ext_ack *extack)
8142 struct netdev_notifier_changeupper_info changeupper_info = {
8147 .upper_dev = upper_dev,
8150 .upper_info = upper_info,
8152 struct net_device *master_dev;
8157 if (dev == upper_dev)
8160 /* To prevent loops, check if dev is not upper device to upper_dev. */
8161 if (__netdev_has_upper_dev(upper_dev, dev))
8164 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8168 if (__netdev_has_upper_dev(dev, upper_dev))
8171 master_dev = __netdev_master_upper_dev_get(dev);
8173 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8176 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8177 &changeupper_info.info);
8178 ret = notifier_to_errno(ret);
8182 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8187 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8188 &changeupper_info.info);
8189 ret = notifier_to_errno(ret);
8193 __netdev_update_upper_level(dev, NULL);
8194 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8196 __netdev_update_lower_level(upper_dev, priv);
8197 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8203 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8209 * netdev_upper_dev_link - Add a link to the upper device
8211 * @upper_dev: new upper device
8212 * @extack: netlink extended ack
8214 * Adds a link to device which is upper to this one. The caller must hold
8215 * the RTNL lock. On a failure a negative errno code is returned.
8216 * On success the reference counts are adjusted and the function
8219 int netdev_upper_dev_link(struct net_device *dev,
8220 struct net_device *upper_dev,
8221 struct netlink_ext_ack *extack)
8223 struct netdev_nested_priv priv = {
8224 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8228 return __netdev_upper_dev_link(dev, upper_dev, false,
8229 NULL, NULL, &priv, extack);
8231 EXPORT_SYMBOL(netdev_upper_dev_link);
8234 * netdev_master_upper_dev_link - Add a master link to the upper device
8236 * @upper_dev: new upper device
8237 * @upper_priv: upper device private
8238 * @upper_info: upper info to be passed down via notifier
8239 * @extack: netlink extended ack
8241 * Adds a link to device which is upper to this one. In this case, only
8242 * one master upper device can be linked, although other non-master devices
8243 * might be linked as well. The caller must hold the RTNL lock.
8244 * On a failure a negative errno code is returned. On success the reference
8245 * counts are adjusted and the function returns zero.
8247 int netdev_master_upper_dev_link(struct net_device *dev,
8248 struct net_device *upper_dev,
8249 void *upper_priv, void *upper_info,
8250 struct netlink_ext_ack *extack)
8252 struct netdev_nested_priv priv = {
8253 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8257 return __netdev_upper_dev_link(dev, upper_dev, true,
8258 upper_priv, upper_info, &priv, extack);
8260 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8262 static void __netdev_upper_dev_unlink(struct net_device *dev,
8263 struct net_device *upper_dev,
8264 struct netdev_nested_priv *priv)
8266 struct netdev_notifier_changeupper_info changeupper_info = {
8270 .upper_dev = upper_dev,
8276 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8278 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8279 &changeupper_info.info);
8281 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8283 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8284 &changeupper_info.info);
8286 __netdev_update_upper_level(dev, NULL);
8287 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8289 __netdev_update_lower_level(upper_dev, priv);
8290 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8295 * netdev_upper_dev_unlink - Removes a link to upper device
8297 * @upper_dev: new upper device
8299 * Removes a link to device which is upper to this one. The caller must hold
8302 void netdev_upper_dev_unlink(struct net_device *dev,
8303 struct net_device *upper_dev)
8305 struct netdev_nested_priv priv = {
8306 .flags = NESTED_SYNC_TODO,
8310 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8312 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8314 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8315 struct net_device *lower_dev,
8318 struct netdev_adjacent *adj;
8320 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8324 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8329 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8330 struct net_device *lower_dev)
8332 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8335 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8336 struct net_device *lower_dev)
8338 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8341 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8342 struct net_device *new_dev,
8343 struct net_device *dev,
8344 struct netlink_ext_ack *extack)
8346 struct netdev_nested_priv priv = {
8355 if (old_dev && new_dev != old_dev)
8356 netdev_adjacent_dev_disable(dev, old_dev);
8357 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8360 if (old_dev && new_dev != old_dev)
8361 netdev_adjacent_dev_enable(dev, old_dev);
8367 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8369 void netdev_adjacent_change_commit(struct net_device *old_dev,
8370 struct net_device *new_dev,
8371 struct net_device *dev)
8373 struct netdev_nested_priv priv = {
8374 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8378 if (!new_dev || !old_dev)
8381 if (new_dev == old_dev)
8384 netdev_adjacent_dev_enable(dev, old_dev);
8385 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8387 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8389 void netdev_adjacent_change_abort(struct net_device *old_dev,
8390 struct net_device *new_dev,
8391 struct net_device *dev)
8393 struct netdev_nested_priv priv = {
8401 if (old_dev && new_dev != old_dev)
8402 netdev_adjacent_dev_enable(dev, old_dev);
8404 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8406 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8409 * netdev_bonding_info_change - Dispatch event about slave change
8411 * @bonding_info: info to dispatch
8413 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8414 * The caller must hold the RTNL lock.
8416 void netdev_bonding_info_change(struct net_device *dev,
8417 struct netdev_bonding_info *bonding_info)
8419 struct netdev_notifier_bonding_info info = {
8423 memcpy(&info.bonding_info, bonding_info,
8424 sizeof(struct netdev_bonding_info));
8425 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8428 EXPORT_SYMBOL(netdev_bonding_info_change);
8431 * netdev_get_xmit_slave - Get the xmit slave of master device
8434 * @all_slaves: assume all the slaves are active
8436 * The reference counters are not incremented so the caller must be
8437 * careful with locks. The caller must hold RCU lock.
8438 * %NULL is returned if no slave is found.
8441 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8442 struct sk_buff *skb,
8445 const struct net_device_ops *ops = dev->netdev_ops;
8447 if (!ops->ndo_get_xmit_slave)
8449 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8451 EXPORT_SYMBOL(netdev_get_xmit_slave);
8453 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8456 const struct net_device_ops *ops = dev->netdev_ops;
8458 if (!ops->ndo_sk_get_lower_dev)
8460 return ops->ndo_sk_get_lower_dev(dev, sk);
8464 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8468 * %NULL is returned if no lower device is found.
8471 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8474 struct net_device *lower;
8476 lower = netdev_sk_get_lower_dev(dev, sk);
8479 lower = netdev_sk_get_lower_dev(dev, sk);
8484 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8486 static void netdev_adjacent_add_links(struct net_device *dev)
8488 struct netdev_adjacent *iter;
8490 struct net *net = dev_net(dev);
8492 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8493 if (!net_eq(net, dev_net(iter->dev)))
8495 netdev_adjacent_sysfs_add(iter->dev, dev,
8496 &iter->dev->adj_list.lower);
8497 netdev_adjacent_sysfs_add(dev, iter->dev,
8498 &dev->adj_list.upper);
8501 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8502 if (!net_eq(net, dev_net(iter->dev)))
8504 netdev_adjacent_sysfs_add(iter->dev, dev,
8505 &iter->dev->adj_list.upper);
8506 netdev_adjacent_sysfs_add(dev, iter->dev,
8507 &dev->adj_list.lower);
8511 static void netdev_adjacent_del_links(struct net_device *dev)
8513 struct netdev_adjacent *iter;
8515 struct net *net = dev_net(dev);
8517 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8518 if (!net_eq(net, dev_net(iter->dev)))
8520 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8521 &iter->dev->adj_list.lower);
8522 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8523 &dev->adj_list.upper);
8526 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8527 if (!net_eq(net, dev_net(iter->dev)))
8529 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8530 &iter->dev->adj_list.upper);
8531 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8532 &dev->adj_list.lower);
8536 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8538 struct netdev_adjacent *iter;
8540 struct net *net = dev_net(dev);
8542 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8543 if (!net_eq(net, dev_net(iter->dev)))
8545 netdev_adjacent_sysfs_del(iter->dev, oldname,
8546 &iter->dev->adj_list.lower);
8547 netdev_adjacent_sysfs_add(iter->dev, dev,
8548 &iter->dev->adj_list.lower);
8551 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8552 if (!net_eq(net, dev_net(iter->dev)))
8554 netdev_adjacent_sysfs_del(iter->dev, oldname,
8555 &iter->dev->adj_list.upper);
8556 netdev_adjacent_sysfs_add(iter->dev, dev,
8557 &iter->dev->adj_list.upper);
8561 void *netdev_lower_dev_get_private(struct net_device *dev,
8562 struct net_device *lower_dev)
8564 struct netdev_adjacent *lower;
8568 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8572 return lower->private;
8574 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8578 * netdev_lower_state_changed - Dispatch event about lower device state change
8579 * @lower_dev: device
8580 * @lower_state_info: state to dispatch
8582 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8583 * The caller must hold the RTNL lock.
8585 void netdev_lower_state_changed(struct net_device *lower_dev,
8586 void *lower_state_info)
8588 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8589 .info.dev = lower_dev,
8593 changelowerstate_info.lower_state_info = lower_state_info;
8594 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8595 &changelowerstate_info.info);
8597 EXPORT_SYMBOL(netdev_lower_state_changed);
8599 static void dev_change_rx_flags(struct net_device *dev, int flags)
8601 const struct net_device_ops *ops = dev->netdev_ops;
8603 if (ops->ndo_change_rx_flags)
8604 ops->ndo_change_rx_flags(dev, flags);
8607 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8609 unsigned int old_flags = dev->flags;
8615 dev->flags |= IFF_PROMISC;
8616 dev->promiscuity += inc;
8617 if (dev->promiscuity == 0) {
8620 * If inc causes overflow, untouch promisc and return error.
8623 dev->flags &= ~IFF_PROMISC;
8625 dev->promiscuity -= inc;
8626 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8631 if (dev->flags != old_flags) {
8632 pr_info("device %s %s promiscuous mode\n",
8634 dev->flags & IFF_PROMISC ? "entered" : "left");
8635 if (audit_enabled) {
8636 current_uid_gid(&uid, &gid);
8637 audit_log(audit_context(), GFP_ATOMIC,
8638 AUDIT_ANOM_PROMISCUOUS,
8639 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8640 dev->name, (dev->flags & IFF_PROMISC),
8641 (old_flags & IFF_PROMISC),
8642 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8643 from_kuid(&init_user_ns, uid),
8644 from_kgid(&init_user_ns, gid),
8645 audit_get_sessionid(current));
8648 dev_change_rx_flags(dev, IFF_PROMISC);
8651 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8656 * dev_set_promiscuity - update promiscuity count on a device
8660 * Add or remove promiscuity from a device. While the count in the device
8661 * remains above zero the interface remains promiscuous. Once it hits zero
8662 * the device reverts back to normal filtering operation. A negative inc
8663 * value is used to drop promiscuity on the device.
8664 * Return 0 if successful or a negative errno code on error.
8666 int dev_set_promiscuity(struct net_device *dev, int inc)
8668 unsigned int old_flags = dev->flags;
8671 err = __dev_set_promiscuity(dev, inc, true);
8674 if (dev->flags != old_flags)
8675 dev_set_rx_mode(dev);
8678 EXPORT_SYMBOL(dev_set_promiscuity);
8680 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8682 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8686 dev->flags |= IFF_ALLMULTI;
8687 dev->allmulti += inc;
8688 if (dev->allmulti == 0) {
8691 * If inc causes overflow, untouch allmulti and return error.
8694 dev->flags &= ~IFF_ALLMULTI;
8696 dev->allmulti -= inc;
8697 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8702 if (dev->flags ^ old_flags) {
8703 dev_change_rx_flags(dev, IFF_ALLMULTI);
8704 dev_set_rx_mode(dev);
8706 __dev_notify_flags(dev, old_flags,
8707 dev->gflags ^ old_gflags);
8713 * dev_set_allmulti - update allmulti count on a device
8717 * Add or remove reception of all multicast frames to a device. While the
8718 * count in the device remains above zero the interface remains listening
8719 * to all interfaces. Once it hits zero the device reverts back to normal
8720 * filtering operation. A negative @inc value is used to drop the counter
8721 * when releasing a resource needing all multicasts.
8722 * Return 0 if successful or a negative errno code on error.
8725 int dev_set_allmulti(struct net_device *dev, int inc)
8727 return __dev_set_allmulti(dev, inc, true);
8729 EXPORT_SYMBOL(dev_set_allmulti);
8732 * Upload unicast and multicast address lists to device and
8733 * configure RX filtering. When the device doesn't support unicast
8734 * filtering it is put in promiscuous mode while unicast addresses
8737 void __dev_set_rx_mode(struct net_device *dev)
8739 const struct net_device_ops *ops = dev->netdev_ops;
8741 /* dev_open will call this function so the list will stay sane. */
8742 if (!(dev->flags&IFF_UP))
8745 if (!netif_device_present(dev))
8748 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8749 /* Unicast addresses changes may only happen under the rtnl,
8750 * therefore calling __dev_set_promiscuity here is safe.
8752 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8753 __dev_set_promiscuity(dev, 1, false);
8754 dev->uc_promisc = true;
8755 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8756 __dev_set_promiscuity(dev, -1, false);
8757 dev->uc_promisc = false;
8761 if (ops->ndo_set_rx_mode)
8762 ops->ndo_set_rx_mode(dev);
8765 void dev_set_rx_mode(struct net_device *dev)
8767 netif_addr_lock_bh(dev);
8768 __dev_set_rx_mode(dev);
8769 netif_addr_unlock_bh(dev);
8773 * dev_get_flags - get flags reported to userspace
8776 * Get the combination of flag bits exported through APIs to userspace.
8778 unsigned int dev_get_flags(const struct net_device *dev)
8782 flags = (dev->flags & ~(IFF_PROMISC |
8787 (dev->gflags & (IFF_PROMISC |
8790 if (netif_running(dev)) {
8791 if (netif_oper_up(dev))
8792 flags |= IFF_RUNNING;
8793 if (netif_carrier_ok(dev))
8794 flags |= IFF_LOWER_UP;
8795 if (netif_dormant(dev))
8796 flags |= IFF_DORMANT;
8801 EXPORT_SYMBOL(dev_get_flags);
8803 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8804 struct netlink_ext_ack *extack)
8806 unsigned int old_flags = dev->flags;
8812 * Set the flags on our device.
8815 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8816 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8818 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8822 * Load in the correct multicast list now the flags have changed.
8825 if ((old_flags ^ flags) & IFF_MULTICAST)
8826 dev_change_rx_flags(dev, IFF_MULTICAST);
8828 dev_set_rx_mode(dev);
8831 * Have we downed the interface. We handle IFF_UP ourselves
8832 * according to user attempts to set it, rather than blindly
8837 if ((old_flags ^ flags) & IFF_UP) {
8838 if (old_flags & IFF_UP)
8841 ret = __dev_open(dev, extack);
8844 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8845 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8846 unsigned int old_flags = dev->flags;
8848 dev->gflags ^= IFF_PROMISC;
8850 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8851 if (dev->flags != old_flags)
8852 dev_set_rx_mode(dev);
8855 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8856 * is important. Some (broken) drivers set IFF_PROMISC, when
8857 * IFF_ALLMULTI is requested not asking us and not reporting.
8859 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8860 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8862 dev->gflags ^= IFF_ALLMULTI;
8863 __dev_set_allmulti(dev, inc, false);
8869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8870 unsigned int gchanges)
8872 unsigned int changes = dev->flags ^ old_flags;
8875 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8877 if (changes & IFF_UP) {
8878 if (dev->flags & IFF_UP)
8879 call_netdevice_notifiers(NETDEV_UP, dev);
8881 call_netdevice_notifiers(NETDEV_DOWN, dev);
8884 if (dev->flags & IFF_UP &&
8885 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8886 struct netdev_notifier_change_info change_info = {
8890 .flags_changed = changes,
8893 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8898 * dev_change_flags - change device settings
8900 * @flags: device state flags
8901 * @extack: netlink extended ack
8903 * Change settings on device based state flags. The flags are
8904 * in the userspace exported format.
8906 int dev_change_flags(struct net_device *dev, unsigned int flags,
8907 struct netlink_ext_ack *extack)
8910 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8912 ret = __dev_change_flags(dev, flags, extack);
8916 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8917 __dev_notify_flags(dev, old_flags, changes);
8920 EXPORT_SYMBOL(dev_change_flags);
8922 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8924 const struct net_device_ops *ops = dev->netdev_ops;
8926 if (ops->ndo_change_mtu)
8927 return ops->ndo_change_mtu(dev, new_mtu);
8929 /* Pairs with all the lockless reads of dev->mtu in the stack */
8930 WRITE_ONCE(dev->mtu, new_mtu);
8933 EXPORT_SYMBOL(__dev_set_mtu);
8935 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8936 struct netlink_ext_ack *extack)
8938 /* MTU must be positive, and in range */
8939 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8940 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8944 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8945 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8952 * dev_set_mtu_ext - Change maximum transfer unit
8954 * @new_mtu: new transfer unit
8955 * @extack: netlink extended ack
8957 * Change the maximum transfer size of the network device.
8959 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8960 struct netlink_ext_ack *extack)
8964 if (new_mtu == dev->mtu)
8967 err = dev_validate_mtu(dev, new_mtu, extack);
8971 if (!netif_device_present(dev))
8974 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8975 err = notifier_to_errno(err);
8979 orig_mtu = dev->mtu;
8980 err = __dev_set_mtu(dev, new_mtu);
8983 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8985 err = notifier_to_errno(err);
8987 /* setting mtu back and notifying everyone again,
8988 * so that they have a chance to revert changes.
8990 __dev_set_mtu(dev, orig_mtu);
8991 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8998 int dev_set_mtu(struct net_device *dev, int new_mtu)
9000 struct netlink_ext_ack extack;
9003 memset(&extack, 0, sizeof(extack));
9004 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9005 if (err && extack._msg)
9006 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9009 EXPORT_SYMBOL(dev_set_mtu);
9012 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9014 * @new_len: new tx queue length
9016 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9018 unsigned int orig_len = dev->tx_queue_len;
9021 if (new_len != (unsigned int)new_len)
9024 if (new_len != orig_len) {
9025 dev->tx_queue_len = new_len;
9026 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9027 res = notifier_to_errno(res);
9030 res = dev_qdisc_change_tx_queue_len(dev);
9038 netdev_err(dev, "refused to change device tx_queue_len\n");
9039 dev->tx_queue_len = orig_len;
9044 * dev_set_group - Change group this device belongs to
9046 * @new_group: group this device should belong to
9048 void dev_set_group(struct net_device *dev, int new_group)
9050 dev->group = new_group;
9052 EXPORT_SYMBOL(dev_set_group);
9055 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9057 * @addr: new address
9058 * @extack: netlink extended ack
9060 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9061 struct netlink_ext_ack *extack)
9063 struct netdev_notifier_pre_changeaddr_info info = {
9065 .info.extack = extack,
9070 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9071 return notifier_to_errno(rc);
9073 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9076 * dev_set_mac_address - Change Media Access Control Address
9079 * @extack: netlink extended ack
9081 * Change the hardware (MAC) address of the device
9083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9084 struct netlink_ext_ack *extack)
9086 const struct net_device_ops *ops = dev->netdev_ops;
9089 if (!ops->ndo_set_mac_address)
9091 if (sa->sa_family != dev->type)
9093 if (!netif_device_present(dev))
9095 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9098 err = ops->ndo_set_mac_address(dev, sa);
9101 dev->addr_assign_type = NET_ADDR_SET;
9102 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9103 add_device_randomness(dev->dev_addr, dev->addr_len);
9106 EXPORT_SYMBOL(dev_set_mac_address);
9108 static DECLARE_RWSEM(dev_addr_sem);
9110 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9111 struct netlink_ext_ack *extack)
9115 down_write(&dev_addr_sem);
9116 ret = dev_set_mac_address(dev, sa, extack);
9117 up_write(&dev_addr_sem);
9120 EXPORT_SYMBOL(dev_set_mac_address_user);
9122 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9124 size_t size = sizeof(sa->sa_data);
9125 struct net_device *dev;
9128 down_read(&dev_addr_sem);
9131 dev = dev_get_by_name_rcu(net, dev_name);
9137 memset(sa->sa_data, 0, size);
9139 memcpy(sa->sa_data, dev->dev_addr,
9140 min_t(size_t, size, dev->addr_len));
9141 sa->sa_family = dev->type;
9145 up_read(&dev_addr_sem);
9148 EXPORT_SYMBOL(dev_get_mac_address);
9151 * dev_change_carrier - Change device carrier
9153 * @new_carrier: new value
9155 * Change device carrier
9157 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9159 const struct net_device_ops *ops = dev->netdev_ops;
9161 if (!ops->ndo_change_carrier)
9163 if (!netif_device_present(dev))
9165 return ops->ndo_change_carrier(dev, new_carrier);
9167 EXPORT_SYMBOL(dev_change_carrier);
9170 * dev_get_phys_port_id - Get device physical port ID
9174 * Get device physical port ID
9176 int dev_get_phys_port_id(struct net_device *dev,
9177 struct netdev_phys_item_id *ppid)
9179 const struct net_device_ops *ops = dev->netdev_ops;
9181 if (!ops->ndo_get_phys_port_id)
9183 return ops->ndo_get_phys_port_id(dev, ppid);
9185 EXPORT_SYMBOL(dev_get_phys_port_id);
9188 * dev_get_phys_port_name - Get device physical port name
9191 * @len: limit of bytes to copy to name
9193 * Get device physical port name
9195 int dev_get_phys_port_name(struct net_device *dev,
9196 char *name, size_t len)
9198 const struct net_device_ops *ops = dev->netdev_ops;
9201 if (ops->ndo_get_phys_port_name) {
9202 err = ops->ndo_get_phys_port_name(dev, name, len);
9203 if (err != -EOPNOTSUPP)
9206 return devlink_compat_phys_port_name_get(dev, name, len);
9208 EXPORT_SYMBOL(dev_get_phys_port_name);
9211 * dev_get_port_parent_id - Get the device's port parent identifier
9212 * @dev: network device
9213 * @ppid: pointer to a storage for the port's parent identifier
9214 * @recurse: allow/disallow recursion to lower devices
9216 * Get the devices's port parent identifier
9218 int dev_get_port_parent_id(struct net_device *dev,
9219 struct netdev_phys_item_id *ppid,
9222 const struct net_device_ops *ops = dev->netdev_ops;
9223 struct netdev_phys_item_id first = { };
9224 struct net_device *lower_dev;
9225 struct list_head *iter;
9228 if (ops->ndo_get_port_parent_id) {
9229 err = ops->ndo_get_port_parent_id(dev, ppid);
9230 if (err != -EOPNOTSUPP)
9234 err = devlink_compat_switch_id_get(dev, ppid);
9235 if (!err || err != -EOPNOTSUPP)
9241 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9242 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9247 else if (memcmp(&first, ppid, sizeof(*ppid)))
9253 EXPORT_SYMBOL(dev_get_port_parent_id);
9256 * netdev_port_same_parent_id - Indicate if two network devices have
9257 * the same port parent identifier
9258 * @a: first network device
9259 * @b: second network device
9261 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9263 struct netdev_phys_item_id a_id = { };
9264 struct netdev_phys_item_id b_id = { };
9266 if (dev_get_port_parent_id(a, &a_id, true) ||
9267 dev_get_port_parent_id(b, &b_id, true))
9270 return netdev_phys_item_id_same(&a_id, &b_id);
9272 EXPORT_SYMBOL(netdev_port_same_parent_id);
9275 * dev_change_proto_down - update protocol port state information
9277 * @proto_down: new value
9279 * This info can be used by switch drivers to set the phys state of the
9282 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9284 const struct net_device_ops *ops = dev->netdev_ops;
9286 if (!ops->ndo_change_proto_down)
9288 if (!netif_device_present(dev))
9290 return ops->ndo_change_proto_down(dev, proto_down);
9292 EXPORT_SYMBOL(dev_change_proto_down);
9295 * dev_change_proto_down_generic - generic implementation for
9296 * ndo_change_proto_down that sets carrier according to
9300 * @proto_down: new value
9302 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9305 netif_carrier_off(dev);
9307 netif_carrier_on(dev);
9308 dev->proto_down = proto_down;
9311 EXPORT_SYMBOL(dev_change_proto_down_generic);
9314 * dev_change_proto_down_reason - proto down reason
9317 * @mask: proto down mask
9318 * @value: proto down value
9320 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9326 dev->proto_down_reason = value;
9328 for_each_set_bit(b, &mask, 32) {
9329 if (value & (1 << b))
9330 dev->proto_down_reason |= BIT(b);
9332 dev->proto_down_reason &= ~BIT(b);
9336 EXPORT_SYMBOL(dev_change_proto_down_reason);
9338 struct bpf_xdp_link {
9339 struct bpf_link link;
9340 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9344 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9346 if (flags & XDP_FLAGS_HW_MODE)
9348 if (flags & XDP_FLAGS_DRV_MODE)
9349 return XDP_MODE_DRV;
9350 if (flags & XDP_FLAGS_SKB_MODE)
9351 return XDP_MODE_SKB;
9352 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9355 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9359 return generic_xdp_install;
9362 return dev->netdev_ops->ndo_bpf;
9368 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9369 enum bpf_xdp_mode mode)
9371 return dev->xdp_state[mode].link;
9374 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9375 enum bpf_xdp_mode mode)
9377 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9380 return link->link.prog;
9381 return dev->xdp_state[mode].prog;
9384 static u8 dev_xdp_prog_count(struct net_device *dev)
9389 for (i = 0; i < __MAX_XDP_MODE; i++)
9390 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9395 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9397 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9399 return prog ? prog->aux->id : 0;
9402 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9403 struct bpf_xdp_link *link)
9405 dev->xdp_state[mode].link = link;
9406 dev->xdp_state[mode].prog = NULL;
9409 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9410 struct bpf_prog *prog)
9412 dev->xdp_state[mode].link = NULL;
9413 dev->xdp_state[mode].prog = prog;
9416 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9417 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9418 u32 flags, struct bpf_prog *prog)
9420 struct netdev_bpf xdp;
9423 memset(&xdp, 0, sizeof(xdp));
9424 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9425 xdp.extack = extack;
9429 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9430 * "moved" into driver), so they don't increment it on their own, but
9431 * they do decrement refcnt when program is detached or replaced.
9432 * Given net_device also owns link/prog, we need to bump refcnt here
9433 * to prevent drivers from underflowing it.
9437 err = bpf_op(dev, &xdp);
9444 if (mode != XDP_MODE_HW)
9445 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9450 static void dev_xdp_uninstall(struct net_device *dev)
9452 struct bpf_xdp_link *link;
9453 struct bpf_prog *prog;
9454 enum bpf_xdp_mode mode;
9459 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9460 prog = dev_xdp_prog(dev, mode);
9464 bpf_op = dev_xdp_bpf_op(dev, mode);
9468 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9470 /* auto-detach link from net device */
9471 link = dev_xdp_link(dev, mode);
9477 dev_xdp_set_link(dev, mode, NULL);
9481 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9482 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9483 struct bpf_prog *old_prog, u32 flags)
9485 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9486 struct bpf_prog *cur_prog;
9487 enum bpf_xdp_mode mode;
9493 /* either link or prog attachment, never both */
9494 if (link && (new_prog || old_prog))
9496 /* link supports only XDP mode flags */
9497 if (link && (flags & ~XDP_FLAGS_MODES)) {
9498 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9501 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9502 if (num_modes > 1) {
9503 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9506 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9507 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9508 NL_SET_ERR_MSG(extack,
9509 "More than one program loaded, unset mode is ambiguous");
9512 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9513 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9514 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9518 mode = dev_xdp_mode(dev, flags);
9519 /* can't replace attached link */
9520 if (dev_xdp_link(dev, mode)) {
9521 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9525 cur_prog = dev_xdp_prog(dev, mode);
9526 /* can't replace attached prog with link */
9527 if (link && cur_prog) {
9528 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9531 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9532 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9536 /* put effective new program into new_prog */
9538 new_prog = link->link.prog;
9541 bool offload = mode == XDP_MODE_HW;
9542 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9543 ? XDP_MODE_DRV : XDP_MODE_SKB;
9545 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9546 NL_SET_ERR_MSG(extack, "XDP program already attached");
9549 if (!offload && dev_xdp_prog(dev, other_mode)) {
9550 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9553 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9554 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9557 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9558 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9561 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9562 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9567 /* don't call drivers if the effective program didn't change */
9568 if (new_prog != cur_prog) {
9569 bpf_op = dev_xdp_bpf_op(dev, mode);
9571 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9575 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9581 dev_xdp_set_link(dev, mode, link);
9583 dev_xdp_set_prog(dev, mode, new_prog);
9585 bpf_prog_put(cur_prog);
9590 static int dev_xdp_attach_link(struct net_device *dev,
9591 struct netlink_ext_ack *extack,
9592 struct bpf_xdp_link *link)
9594 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9597 static int dev_xdp_detach_link(struct net_device *dev,
9598 struct netlink_ext_ack *extack,
9599 struct bpf_xdp_link *link)
9601 enum bpf_xdp_mode mode;
9606 mode = dev_xdp_mode(dev, link->flags);
9607 if (dev_xdp_link(dev, mode) != link)
9610 bpf_op = dev_xdp_bpf_op(dev, mode);
9611 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9612 dev_xdp_set_link(dev, mode, NULL);
9616 static void bpf_xdp_link_release(struct bpf_link *link)
9618 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9622 /* if racing with net_device's tear down, xdp_link->dev might be
9623 * already NULL, in which case link was already auto-detached
9625 if (xdp_link->dev) {
9626 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9627 xdp_link->dev = NULL;
9633 static int bpf_xdp_link_detach(struct bpf_link *link)
9635 bpf_xdp_link_release(link);
9639 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9641 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9646 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9647 struct seq_file *seq)
9649 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9654 ifindex = xdp_link->dev->ifindex;
9657 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9660 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9661 struct bpf_link_info *info)
9663 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9668 ifindex = xdp_link->dev->ifindex;
9671 info->xdp.ifindex = ifindex;
9675 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9676 struct bpf_prog *old_prog)
9678 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9679 enum bpf_xdp_mode mode;
9685 /* link might have been auto-released already, so fail */
9686 if (!xdp_link->dev) {
9691 if (old_prog && link->prog != old_prog) {
9695 old_prog = link->prog;
9696 if (old_prog == new_prog) {
9697 /* no-op, don't disturb drivers */
9698 bpf_prog_put(new_prog);
9702 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9703 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9704 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9705 xdp_link->flags, new_prog);
9709 old_prog = xchg(&link->prog, new_prog);
9710 bpf_prog_put(old_prog);
9717 static const struct bpf_link_ops bpf_xdp_link_lops = {
9718 .release = bpf_xdp_link_release,
9719 .dealloc = bpf_xdp_link_dealloc,
9720 .detach = bpf_xdp_link_detach,
9721 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9722 .fill_link_info = bpf_xdp_link_fill_link_info,
9723 .update_prog = bpf_xdp_link_update,
9726 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9728 struct net *net = current->nsproxy->net_ns;
9729 struct bpf_link_primer link_primer;
9730 struct bpf_xdp_link *link;
9731 struct net_device *dev;
9735 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9741 link = kzalloc(sizeof(*link), GFP_USER);
9747 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9749 link->flags = attr->link_create.flags;
9751 err = bpf_link_prime(&link->link, &link_primer);
9757 err = dev_xdp_attach_link(dev, NULL, link);
9762 bpf_link_cleanup(&link_primer);
9766 fd = bpf_link_settle(&link_primer);
9767 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9780 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9782 * @extack: netlink extended ack
9783 * @fd: new program fd or negative value to clear
9784 * @expected_fd: old program fd that userspace expects to replace or clear
9785 * @flags: xdp-related flags
9787 * Set or clear a bpf program for a device
9789 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9790 int fd, int expected_fd, u32 flags)
9792 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9793 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9799 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9800 mode != XDP_MODE_SKB);
9801 if (IS_ERR(new_prog))
9802 return PTR_ERR(new_prog);
9805 if (expected_fd >= 0) {
9806 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9807 mode != XDP_MODE_SKB);
9808 if (IS_ERR(old_prog)) {
9809 err = PTR_ERR(old_prog);
9815 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9818 if (err && new_prog)
9819 bpf_prog_put(new_prog);
9821 bpf_prog_put(old_prog);
9826 * dev_new_index - allocate an ifindex
9827 * @net: the applicable net namespace
9829 * Returns a suitable unique value for a new device interface
9830 * number. The caller must hold the rtnl semaphore or the
9831 * dev_base_lock to be sure it remains unique.
9833 static int dev_new_index(struct net *net)
9835 int ifindex = net->ifindex;
9840 if (!__dev_get_by_index(net, ifindex))
9841 return net->ifindex = ifindex;
9845 /* Delayed registration/unregisteration */
9846 static LIST_HEAD(net_todo_list);
9847 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9849 static void net_set_todo(struct net_device *dev)
9851 list_add_tail(&dev->todo_list, &net_todo_list);
9852 dev_net(dev)->dev_unreg_count++;
9855 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9856 struct net_device *upper, netdev_features_t features)
9858 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9859 netdev_features_t feature;
9862 for_each_netdev_feature(upper_disables, feature_bit) {
9863 feature = __NETIF_F_BIT(feature_bit);
9864 if (!(upper->wanted_features & feature)
9865 && (features & feature)) {
9866 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9867 &feature, upper->name);
9868 features &= ~feature;
9875 static void netdev_sync_lower_features(struct net_device *upper,
9876 struct net_device *lower, netdev_features_t features)
9878 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9879 netdev_features_t feature;
9882 for_each_netdev_feature(upper_disables, feature_bit) {
9883 feature = __NETIF_F_BIT(feature_bit);
9884 if (!(features & feature) && (lower->features & feature)) {
9885 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9886 &feature, lower->name);
9887 lower->wanted_features &= ~feature;
9888 __netdev_update_features(lower);
9890 if (unlikely(lower->features & feature))
9891 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9892 &feature, lower->name);
9894 netdev_features_change(lower);
9899 static netdev_features_t netdev_fix_features(struct net_device *dev,
9900 netdev_features_t features)
9902 /* Fix illegal checksum combinations */
9903 if ((features & NETIF_F_HW_CSUM) &&
9904 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9905 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9906 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9909 /* TSO requires that SG is present as well. */
9910 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9911 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9912 features &= ~NETIF_F_ALL_TSO;
9915 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9916 !(features & NETIF_F_IP_CSUM)) {
9917 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9918 features &= ~NETIF_F_TSO;
9919 features &= ~NETIF_F_TSO_ECN;
9922 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9923 !(features & NETIF_F_IPV6_CSUM)) {
9924 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9925 features &= ~NETIF_F_TSO6;
9928 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9929 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9930 features &= ~NETIF_F_TSO_MANGLEID;
9932 /* TSO ECN requires that TSO is present as well. */
9933 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9934 features &= ~NETIF_F_TSO_ECN;
9936 /* Software GSO depends on SG. */
9937 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9938 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9939 features &= ~NETIF_F_GSO;
9942 /* GSO partial features require GSO partial be set */
9943 if ((features & dev->gso_partial_features) &&
9944 !(features & NETIF_F_GSO_PARTIAL)) {
9946 "Dropping partially supported GSO features since no GSO partial.\n");
9947 features &= ~dev->gso_partial_features;
9950 if (!(features & NETIF_F_RXCSUM)) {
9951 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9952 * successfully merged by hardware must also have the
9953 * checksum verified by hardware. If the user does not
9954 * want to enable RXCSUM, logically, we should disable GRO_HW.
9956 if (features & NETIF_F_GRO_HW) {
9957 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9958 features &= ~NETIF_F_GRO_HW;
9962 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9963 if (features & NETIF_F_RXFCS) {
9964 if (features & NETIF_F_LRO) {
9965 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9966 features &= ~NETIF_F_LRO;
9969 if (features & NETIF_F_GRO_HW) {
9970 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9971 features &= ~NETIF_F_GRO_HW;
9975 if (features & NETIF_F_HW_TLS_TX) {
9976 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9977 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9978 bool hw_csum = features & NETIF_F_HW_CSUM;
9980 if (!ip_csum && !hw_csum) {
9981 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9982 features &= ~NETIF_F_HW_TLS_TX;
9986 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9987 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9988 features &= ~NETIF_F_HW_TLS_RX;
9994 int __netdev_update_features(struct net_device *dev)
9996 struct net_device *upper, *lower;
9997 netdev_features_t features;
9998 struct list_head *iter;
10003 features = netdev_get_wanted_features(dev);
10005 if (dev->netdev_ops->ndo_fix_features)
10006 features = dev->netdev_ops->ndo_fix_features(dev, features);
10008 /* driver might be less strict about feature dependencies */
10009 features = netdev_fix_features(dev, features);
10011 /* some features can't be enabled if they're off on an upper device */
10012 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10013 features = netdev_sync_upper_features(dev, upper, features);
10015 if (dev->features == features)
10018 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10019 &dev->features, &features);
10021 if (dev->netdev_ops->ndo_set_features)
10022 err = dev->netdev_ops->ndo_set_features(dev, features);
10026 if (unlikely(err < 0)) {
10028 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10029 err, &features, &dev->features);
10030 /* return non-0 since some features might have changed and
10031 * it's better to fire a spurious notification than miss it
10037 /* some features must be disabled on lower devices when disabled
10038 * on an upper device (think: bonding master or bridge)
10040 netdev_for_each_lower_dev(dev, lower, iter)
10041 netdev_sync_lower_features(dev, lower, features);
10044 netdev_features_t diff = features ^ dev->features;
10046 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10047 /* udp_tunnel_{get,drop}_rx_info both need
10048 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10049 * device, or they won't do anything.
10050 * Thus we need to update dev->features
10051 * *before* calling udp_tunnel_get_rx_info,
10052 * but *after* calling udp_tunnel_drop_rx_info.
10054 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10055 dev->features = features;
10056 udp_tunnel_get_rx_info(dev);
10058 udp_tunnel_drop_rx_info(dev);
10062 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10063 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10064 dev->features = features;
10065 err |= vlan_get_rx_ctag_filter_info(dev);
10067 vlan_drop_rx_ctag_filter_info(dev);
10071 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10072 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10073 dev->features = features;
10074 err |= vlan_get_rx_stag_filter_info(dev);
10076 vlan_drop_rx_stag_filter_info(dev);
10080 dev->features = features;
10083 return err < 0 ? 0 : 1;
10087 * netdev_update_features - recalculate device features
10088 * @dev: the device to check
10090 * Recalculate dev->features set and send notifications if it
10091 * has changed. Should be called after driver or hardware dependent
10092 * conditions might have changed that influence the features.
10094 void netdev_update_features(struct net_device *dev)
10096 if (__netdev_update_features(dev))
10097 netdev_features_change(dev);
10099 EXPORT_SYMBOL(netdev_update_features);
10102 * netdev_change_features - recalculate device features
10103 * @dev: the device to check
10105 * Recalculate dev->features set and send notifications even
10106 * if they have not changed. Should be called instead of
10107 * netdev_update_features() if also dev->vlan_features might
10108 * have changed to allow the changes to be propagated to stacked
10111 void netdev_change_features(struct net_device *dev)
10113 __netdev_update_features(dev);
10114 netdev_features_change(dev);
10116 EXPORT_SYMBOL(netdev_change_features);
10119 * netif_stacked_transfer_operstate - transfer operstate
10120 * @rootdev: the root or lower level device to transfer state from
10121 * @dev: the device to transfer operstate to
10123 * Transfer operational state from root to device. This is normally
10124 * called when a stacking relationship exists between the root
10125 * device and the device(a leaf device).
10127 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10128 struct net_device *dev)
10130 if (rootdev->operstate == IF_OPER_DORMANT)
10131 netif_dormant_on(dev);
10133 netif_dormant_off(dev);
10135 if (rootdev->operstate == IF_OPER_TESTING)
10136 netif_testing_on(dev);
10138 netif_testing_off(dev);
10140 if (netif_carrier_ok(rootdev))
10141 netif_carrier_on(dev);
10143 netif_carrier_off(dev);
10145 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10147 static int netif_alloc_rx_queues(struct net_device *dev)
10149 unsigned int i, count = dev->num_rx_queues;
10150 struct netdev_rx_queue *rx;
10151 size_t sz = count * sizeof(*rx);
10156 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10162 for (i = 0; i < count; i++) {
10165 /* XDP RX-queue setup */
10166 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10173 /* Rollback successful reg's and free other resources */
10175 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10181 static void netif_free_rx_queues(struct net_device *dev)
10183 unsigned int i, count = dev->num_rx_queues;
10185 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10189 for (i = 0; i < count; i++)
10190 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10195 static void netdev_init_one_queue(struct net_device *dev,
10196 struct netdev_queue *queue, void *_unused)
10198 /* Initialize queue lock */
10199 spin_lock_init(&queue->_xmit_lock);
10200 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10201 queue->xmit_lock_owner = -1;
10202 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10205 dql_init(&queue->dql, HZ);
10209 static void netif_free_tx_queues(struct net_device *dev)
10214 static int netif_alloc_netdev_queues(struct net_device *dev)
10216 unsigned int count = dev->num_tx_queues;
10217 struct netdev_queue *tx;
10218 size_t sz = count * sizeof(*tx);
10220 if (count < 1 || count > 0xffff)
10223 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10229 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10230 spin_lock_init(&dev->tx_global_lock);
10235 void netif_tx_stop_all_queues(struct net_device *dev)
10239 for (i = 0; i < dev->num_tx_queues; i++) {
10240 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10242 netif_tx_stop_queue(txq);
10245 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10248 * register_netdevice - register a network device
10249 * @dev: device to register
10251 * Take a completed network device structure and add it to the kernel
10252 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10253 * chain. 0 is returned on success. A negative errno code is returned
10254 * on a failure to set up the device, or if the name is a duplicate.
10256 * Callers must hold the rtnl semaphore. You may want
10257 * register_netdev() instead of this.
10260 * The locking appears insufficient to guarantee two parallel registers
10261 * will not get the same name.
10264 int register_netdevice(struct net_device *dev)
10267 struct net *net = dev_net(dev);
10269 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10270 NETDEV_FEATURE_COUNT);
10271 BUG_ON(dev_boot_phase);
10276 /* When net_device's are persistent, this will be fatal. */
10277 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10280 ret = ethtool_check_ops(dev->ethtool_ops);
10284 spin_lock_init(&dev->addr_list_lock);
10285 netdev_set_addr_lockdep_class(dev);
10287 ret = dev_get_valid_name(net, dev, dev->name);
10292 dev->name_node = netdev_name_node_head_alloc(dev);
10293 if (!dev->name_node)
10296 /* Init, if this function is available */
10297 if (dev->netdev_ops->ndo_init) {
10298 ret = dev->netdev_ops->ndo_init(dev);
10302 goto err_free_name;
10306 if (((dev->hw_features | dev->features) &
10307 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10308 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10309 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10310 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10317 dev->ifindex = dev_new_index(net);
10318 else if (__dev_get_by_index(net, dev->ifindex))
10321 /* Transfer changeable features to wanted_features and enable
10322 * software offloads (GSO and GRO).
10324 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10325 dev->features |= NETIF_F_SOFT_FEATURES;
10327 if (dev->udp_tunnel_nic_info) {
10328 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10329 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10332 dev->wanted_features = dev->features & dev->hw_features;
10334 if (!(dev->flags & IFF_LOOPBACK))
10335 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10337 /* If IPv4 TCP segmentation offload is supported we should also
10338 * allow the device to enable segmenting the frame with the option
10339 * of ignoring a static IP ID value. This doesn't enable the
10340 * feature itself but allows the user to enable it later.
10342 if (dev->hw_features & NETIF_F_TSO)
10343 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10344 if (dev->vlan_features & NETIF_F_TSO)
10345 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10346 if (dev->mpls_features & NETIF_F_TSO)
10347 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10348 if (dev->hw_enc_features & NETIF_F_TSO)
10349 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10351 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10353 dev->vlan_features |= NETIF_F_HIGHDMA;
10355 /* Make NETIF_F_SG inheritable to tunnel devices.
10357 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10359 /* Make NETIF_F_SG inheritable to MPLS.
10361 dev->mpls_features |= NETIF_F_SG;
10363 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10364 ret = notifier_to_errno(ret);
10368 ret = netdev_register_kobject(dev);
10370 dev->reg_state = NETREG_UNREGISTERED;
10373 dev->reg_state = NETREG_REGISTERED;
10375 __netdev_update_features(dev);
10378 * Default initial state at registry is that the
10379 * device is present.
10382 set_bit(__LINK_STATE_PRESENT, &dev->state);
10384 linkwatch_init_dev(dev);
10386 dev_init_scheduler(dev);
10388 list_netdevice(dev);
10389 add_device_randomness(dev->dev_addr, dev->addr_len);
10391 /* If the device has permanent device address, driver should
10392 * set dev_addr and also addr_assign_type should be set to
10393 * NET_ADDR_PERM (default value).
10395 if (dev->addr_assign_type == NET_ADDR_PERM)
10396 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10398 /* Notify protocols, that a new device appeared. */
10399 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10400 ret = notifier_to_errno(ret);
10402 /* Expect explicit free_netdev() on failure */
10403 dev->needs_free_netdev = false;
10404 unregister_netdevice_queue(dev, NULL);
10408 * Prevent userspace races by waiting until the network
10409 * device is fully setup before sending notifications.
10411 if (!dev->rtnl_link_ops ||
10412 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10413 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10419 if (dev->netdev_ops->ndo_uninit)
10420 dev->netdev_ops->ndo_uninit(dev);
10421 if (dev->priv_destructor)
10422 dev->priv_destructor(dev);
10424 netdev_name_node_free(dev->name_node);
10427 EXPORT_SYMBOL(register_netdevice);
10430 * init_dummy_netdev - init a dummy network device for NAPI
10431 * @dev: device to init
10433 * This takes a network device structure and initialize the minimum
10434 * amount of fields so it can be used to schedule NAPI polls without
10435 * registering a full blown interface. This is to be used by drivers
10436 * that need to tie several hardware interfaces to a single NAPI
10437 * poll scheduler due to HW limitations.
10439 int init_dummy_netdev(struct net_device *dev)
10441 /* Clear everything. Note we don't initialize spinlocks
10442 * are they aren't supposed to be taken by any of the
10443 * NAPI code and this dummy netdev is supposed to be
10444 * only ever used for NAPI polls
10446 memset(dev, 0, sizeof(struct net_device));
10448 /* make sure we BUG if trying to hit standard
10449 * register/unregister code path
10451 dev->reg_state = NETREG_DUMMY;
10453 /* NAPI wants this */
10454 INIT_LIST_HEAD(&dev->napi_list);
10456 /* a dummy interface is started by default */
10457 set_bit(__LINK_STATE_PRESENT, &dev->state);
10458 set_bit(__LINK_STATE_START, &dev->state);
10460 /* napi_busy_loop stats accounting wants this */
10461 dev_net_set(dev, &init_net);
10463 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10464 * because users of this 'device' dont need to change
10470 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10474 * register_netdev - register a network device
10475 * @dev: device to register
10477 * Take a completed network device structure and add it to the kernel
10478 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10479 * chain. 0 is returned on success. A negative errno code is returned
10480 * on a failure to set up the device, or if the name is a duplicate.
10482 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10483 * and expands the device name if you passed a format string to
10486 int register_netdev(struct net_device *dev)
10490 if (rtnl_lock_killable())
10492 err = register_netdevice(dev);
10496 EXPORT_SYMBOL(register_netdev);
10498 int netdev_refcnt_read(const struct net_device *dev)
10500 #ifdef CONFIG_PCPU_DEV_REFCNT
10503 for_each_possible_cpu(i)
10504 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10507 return refcount_read(&dev->dev_refcnt);
10510 EXPORT_SYMBOL(netdev_refcnt_read);
10512 int netdev_unregister_timeout_secs __read_mostly = 10;
10514 #define WAIT_REFS_MIN_MSECS 1
10515 #define WAIT_REFS_MAX_MSECS 250
10517 * netdev_wait_allrefs - wait until all references are gone.
10518 * @dev: target net_device
10520 * This is called when unregistering network devices.
10522 * Any protocol or device that holds a reference should register
10523 * for netdevice notification, and cleanup and put back the
10524 * reference if they receive an UNREGISTER event.
10525 * We can get stuck here if buggy protocols don't correctly
10528 static void netdev_wait_allrefs(struct net_device *dev)
10530 unsigned long rebroadcast_time, warning_time;
10531 int wait = 0, refcnt;
10533 linkwatch_forget_dev(dev);
10535 rebroadcast_time = warning_time = jiffies;
10536 refcnt = netdev_refcnt_read(dev);
10538 while (refcnt != 1) {
10539 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10542 /* Rebroadcast unregister notification */
10543 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10549 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10551 /* We must not have linkwatch events
10552 * pending on unregister. If this
10553 * happens, we simply run the queue
10554 * unscheduled, resulting in a noop
10557 linkwatch_run_queue();
10562 rebroadcast_time = jiffies;
10567 wait = WAIT_REFS_MIN_MSECS;
10570 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10573 refcnt = netdev_refcnt_read(dev);
10576 time_after(jiffies, warning_time +
10577 netdev_unregister_timeout_secs * HZ)) {
10578 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10579 dev->name, refcnt);
10580 warning_time = jiffies;
10585 /* The sequence is:
10589 * register_netdevice(x1);
10590 * register_netdevice(x2);
10592 * unregister_netdevice(y1);
10593 * unregister_netdevice(y2);
10599 * We are invoked by rtnl_unlock().
10600 * This allows us to deal with problems:
10601 * 1) We can delete sysfs objects which invoke hotplug
10602 * without deadlocking with linkwatch via keventd.
10603 * 2) Since we run with the RTNL semaphore not held, we can sleep
10604 * safely in order to wait for the netdev refcnt to drop to zero.
10606 * We must not return until all unregister events added during
10607 * the interval the lock was held have been completed.
10609 void netdev_run_todo(void)
10611 struct list_head list;
10612 #ifdef CONFIG_LOCKDEP
10613 struct list_head unlink_list;
10615 list_replace_init(&net_unlink_list, &unlink_list);
10617 while (!list_empty(&unlink_list)) {
10618 struct net_device *dev = list_first_entry(&unlink_list,
10621 list_del_init(&dev->unlink_list);
10622 dev->nested_level = dev->lower_level - 1;
10626 /* Snapshot list, allow later requests */
10627 list_replace_init(&net_todo_list, &list);
10632 /* Wait for rcu callbacks to finish before next phase */
10633 if (!list_empty(&list))
10636 while (!list_empty(&list)) {
10637 struct net_device *dev
10638 = list_first_entry(&list, struct net_device, todo_list);
10639 list_del(&dev->todo_list);
10641 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10642 pr_err("network todo '%s' but state %d\n",
10643 dev->name, dev->reg_state);
10648 dev->reg_state = NETREG_UNREGISTERED;
10650 netdev_wait_allrefs(dev);
10653 BUG_ON(netdev_refcnt_read(dev) != 1);
10654 BUG_ON(!list_empty(&dev->ptype_all));
10655 BUG_ON(!list_empty(&dev->ptype_specific));
10656 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10657 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10658 #if IS_ENABLED(CONFIG_DECNET)
10659 WARN_ON(dev->dn_ptr);
10661 if (dev->priv_destructor)
10662 dev->priv_destructor(dev);
10663 if (dev->needs_free_netdev)
10666 /* Report a network device has been unregistered */
10668 dev_net(dev)->dev_unreg_count--;
10670 wake_up(&netdev_unregistering_wq);
10672 /* Free network device */
10673 kobject_put(&dev->dev.kobj);
10677 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10678 * all the same fields in the same order as net_device_stats, with only
10679 * the type differing, but rtnl_link_stats64 may have additional fields
10680 * at the end for newer counters.
10682 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10683 const struct net_device_stats *netdev_stats)
10685 #if BITS_PER_LONG == 64
10686 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10687 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10688 /* zero out counters that only exist in rtnl_link_stats64 */
10689 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10690 sizeof(*stats64) - sizeof(*netdev_stats));
10692 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10693 const unsigned long *src = (const unsigned long *)netdev_stats;
10694 u64 *dst = (u64 *)stats64;
10696 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10697 for (i = 0; i < n; i++)
10699 /* zero out counters that only exist in rtnl_link_stats64 */
10700 memset((char *)stats64 + n * sizeof(u64), 0,
10701 sizeof(*stats64) - n * sizeof(u64));
10704 EXPORT_SYMBOL(netdev_stats_to_stats64);
10707 * dev_get_stats - get network device statistics
10708 * @dev: device to get statistics from
10709 * @storage: place to store stats
10711 * Get network statistics from device. Return @storage.
10712 * The device driver may provide its own method by setting
10713 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10714 * otherwise the internal statistics structure is used.
10716 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10717 struct rtnl_link_stats64 *storage)
10719 const struct net_device_ops *ops = dev->netdev_ops;
10721 if (ops->ndo_get_stats64) {
10722 memset(storage, 0, sizeof(*storage));
10723 ops->ndo_get_stats64(dev, storage);
10724 } else if (ops->ndo_get_stats) {
10725 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10727 netdev_stats_to_stats64(storage, &dev->stats);
10729 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10730 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10731 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10734 EXPORT_SYMBOL(dev_get_stats);
10737 * dev_fetch_sw_netstats - get per-cpu network device statistics
10738 * @s: place to store stats
10739 * @netstats: per-cpu network stats to read from
10741 * Read per-cpu network statistics and populate the related fields in @s.
10743 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10744 const struct pcpu_sw_netstats __percpu *netstats)
10748 for_each_possible_cpu(cpu) {
10749 const struct pcpu_sw_netstats *stats;
10750 struct pcpu_sw_netstats tmp;
10751 unsigned int start;
10753 stats = per_cpu_ptr(netstats, cpu);
10755 start = u64_stats_fetch_begin_irq(&stats->syncp);
10756 tmp.rx_packets = stats->rx_packets;
10757 tmp.rx_bytes = stats->rx_bytes;
10758 tmp.tx_packets = stats->tx_packets;
10759 tmp.tx_bytes = stats->tx_bytes;
10760 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10762 s->rx_packets += tmp.rx_packets;
10763 s->rx_bytes += tmp.rx_bytes;
10764 s->tx_packets += tmp.tx_packets;
10765 s->tx_bytes += tmp.tx_bytes;
10768 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10771 * dev_get_tstats64 - ndo_get_stats64 implementation
10772 * @dev: device to get statistics from
10773 * @s: place to store stats
10775 * Populate @s from dev->stats and dev->tstats. Can be used as
10776 * ndo_get_stats64() callback.
10778 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10780 netdev_stats_to_stats64(s, &dev->stats);
10781 dev_fetch_sw_netstats(s, dev->tstats);
10783 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10785 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10787 struct netdev_queue *queue = dev_ingress_queue(dev);
10789 #ifdef CONFIG_NET_CLS_ACT
10792 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10795 netdev_init_one_queue(dev, queue, NULL);
10796 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10797 queue->qdisc_sleeping = &noop_qdisc;
10798 rcu_assign_pointer(dev->ingress_queue, queue);
10803 static const struct ethtool_ops default_ethtool_ops;
10805 void netdev_set_default_ethtool_ops(struct net_device *dev,
10806 const struct ethtool_ops *ops)
10808 if (dev->ethtool_ops == &default_ethtool_ops)
10809 dev->ethtool_ops = ops;
10811 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10813 void netdev_freemem(struct net_device *dev)
10815 char *addr = (char *)dev - dev->padded;
10821 * alloc_netdev_mqs - allocate network device
10822 * @sizeof_priv: size of private data to allocate space for
10823 * @name: device name format string
10824 * @name_assign_type: origin of device name
10825 * @setup: callback to initialize device
10826 * @txqs: the number of TX subqueues to allocate
10827 * @rxqs: the number of RX subqueues to allocate
10829 * Allocates a struct net_device with private data area for driver use
10830 * and performs basic initialization. Also allocates subqueue structs
10831 * for each queue on the device.
10833 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10834 unsigned char name_assign_type,
10835 void (*setup)(struct net_device *),
10836 unsigned int txqs, unsigned int rxqs)
10838 struct net_device *dev;
10839 unsigned int alloc_size;
10840 struct net_device *p;
10842 BUG_ON(strlen(name) >= sizeof(dev->name));
10845 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10850 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10854 alloc_size = sizeof(struct net_device);
10856 /* ensure 32-byte alignment of private area */
10857 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10858 alloc_size += sizeof_priv;
10860 /* ensure 32-byte alignment of whole construct */
10861 alloc_size += NETDEV_ALIGN - 1;
10863 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10867 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10868 dev->padded = (char *)dev - (char *)p;
10870 #ifdef CONFIG_PCPU_DEV_REFCNT
10871 dev->pcpu_refcnt = alloc_percpu(int);
10872 if (!dev->pcpu_refcnt)
10876 refcount_set(&dev->dev_refcnt, 1);
10879 if (dev_addr_init(dev))
10885 dev_net_set(dev, &init_net);
10887 dev->gso_max_size = GSO_MAX_SIZE;
10888 dev->gso_max_segs = GSO_MAX_SEGS;
10889 dev->upper_level = 1;
10890 dev->lower_level = 1;
10891 #ifdef CONFIG_LOCKDEP
10892 dev->nested_level = 0;
10893 INIT_LIST_HEAD(&dev->unlink_list);
10896 INIT_LIST_HEAD(&dev->napi_list);
10897 INIT_LIST_HEAD(&dev->unreg_list);
10898 INIT_LIST_HEAD(&dev->close_list);
10899 INIT_LIST_HEAD(&dev->link_watch_list);
10900 INIT_LIST_HEAD(&dev->adj_list.upper);
10901 INIT_LIST_HEAD(&dev->adj_list.lower);
10902 INIT_LIST_HEAD(&dev->ptype_all);
10903 INIT_LIST_HEAD(&dev->ptype_specific);
10904 INIT_LIST_HEAD(&dev->net_notifier_list);
10905 #ifdef CONFIG_NET_SCHED
10906 hash_init(dev->qdisc_hash);
10908 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10911 if (!dev->tx_queue_len) {
10912 dev->priv_flags |= IFF_NO_QUEUE;
10913 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10916 dev->num_tx_queues = txqs;
10917 dev->real_num_tx_queues = txqs;
10918 if (netif_alloc_netdev_queues(dev))
10921 dev->num_rx_queues = rxqs;
10922 dev->real_num_rx_queues = rxqs;
10923 if (netif_alloc_rx_queues(dev))
10926 strcpy(dev->name, name);
10927 dev->name_assign_type = name_assign_type;
10928 dev->group = INIT_NETDEV_GROUP;
10929 if (!dev->ethtool_ops)
10930 dev->ethtool_ops = &default_ethtool_ops;
10932 nf_hook_ingress_init(dev);
10941 #ifdef CONFIG_PCPU_DEV_REFCNT
10942 free_percpu(dev->pcpu_refcnt);
10945 netdev_freemem(dev);
10948 EXPORT_SYMBOL(alloc_netdev_mqs);
10951 * free_netdev - free network device
10954 * This function does the last stage of destroying an allocated device
10955 * interface. The reference to the device object is released. If this
10956 * is the last reference then it will be freed.Must be called in process
10959 void free_netdev(struct net_device *dev)
10961 struct napi_struct *p, *n;
10965 /* When called immediately after register_netdevice() failed the unwind
10966 * handling may still be dismantling the device. Handle that case by
10967 * deferring the free.
10969 if (dev->reg_state == NETREG_UNREGISTERING) {
10971 dev->needs_free_netdev = true;
10975 netif_free_tx_queues(dev);
10976 netif_free_rx_queues(dev);
10978 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10980 /* Flush device addresses */
10981 dev_addr_flush(dev);
10983 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10986 #ifdef CONFIG_PCPU_DEV_REFCNT
10987 free_percpu(dev->pcpu_refcnt);
10988 dev->pcpu_refcnt = NULL;
10990 free_percpu(dev->xdp_bulkq);
10991 dev->xdp_bulkq = NULL;
10993 /* Compatibility with error handling in drivers */
10994 if (dev->reg_state == NETREG_UNINITIALIZED) {
10995 netdev_freemem(dev);
10999 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11000 dev->reg_state = NETREG_RELEASED;
11002 /* will free via device release */
11003 put_device(&dev->dev);
11005 EXPORT_SYMBOL(free_netdev);
11008 * synchronize_net - Synchronize with packet receive processing
11010 * Wait for packets currently being received to be done.
11011 * Does not block later packets from starting.
11013 void synchronize_net(void)
11016 if (rtnl_is_locked())
11017 synchronize_rcu_expedited();
11021 EXPORT_SYMBOL(synchronize_net);
11024 * unregister_netdevice_queue - remove device from the kernel
11028 * This function shuts down a device interface and removes it
11029 * from the kernel tables.
11030 * If head not NULL, device is queued to be unregistered later.
11032 * Callers must hold the rtnl semaphore. You may want
11033 * unregister_netdev() instead of this.
11036 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11041 list_move_tail(&dev->unreg_list, head);
11045 list_add(&dev->unreg_list, &single);
11046 unregister_netdevice_many(&single);
11049 EXPORT_SYMBOL(unregister_netdevice_queue);
11052 * unregister_netdevice_many - unregister many devices
11053 * @head: list of devices
11055 * Note: As most callers use a stack allocated list_head,
11056 * we force a list_del() to make sure stack wont be corrupted later.
11058 void unregister_netdevice_many(struct list_head *head)
11060 struct net_device *dev, *tmp;
11061 LIST_HEAD(close_head);
11063 BUG_ON(dev_boot_phase);
11066 if (list_empty(head))
11069 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11070 /* Some devices call without registering
11071 * for initialization unwind. Remove those
11072 * devices and proceed with the remaining.
11074 if (dev->reg_state == NETREG_UNINITIALIZED) {
11075 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11079 list_del(&dev->unreg_list);
11082 dev->dismantle = true;
11083 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11086 /* If device is running, close it first. */
11087 list_for_each_entry(dev, head, unreg_list)
11088 list_add_tail(&dev->close_list, &close_head);
11089 dev_close_many(&close_head, true);
11091 list_for_each_entry(dev, head, unreg_list) {
11092 /* And unlink it from device chain. */
11093 unlist_netdevice(dev);
11095 dev->reg_state = NETREG_UNREGISTERING;
11097 flush_all_backlogs();
11101 list_for_each_entry(dev, head, unreg_list) {
11102 struct sk_buff *skb = NULL;
11104 /* Shutdown queueing discipline. */
11107 dev_xdp_uninstall(dev);
11109 /* Notify protocols, that we are about to destroy
11110 * this device. They should clean all the things.
11112 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11114 if (!dev->rtnl_link_ops ||
11115 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11116 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11117 GFP_KERNEL, NULL, 0);
11120 * Flush the unicast and multicast chains
11125 netdev_name_node_alt_flush(dev);
11126 netdev_name_node_free(dev->name_node);
11128 if (dev->netdev_ops->ndo_uninit)
11129 dev->netdev_ops->ndo_uninit(dev);
11132 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11134 /* Notifier chain MUST detach us all upper devices. */
11135 WARN_ON(netdev_has_any_upper_dev(dev));
11136 WARN_ON(netdev_has_any_lower_dev(dev));
11138 /* Remove entries from kobject tree */
11139 netdev_unregister_kobject(dev);
11141 /* Remove XPS queueing entries */
11142 netif_reset_xps_queues_gt(dev, 0);
11148 list_for_each_entry(dev, head, unreg_list) {
11155 EXPORT_SYMBOL(unregister_netdevice_many);
11158 * unregister_netdev - remove device from the kernel
11161 * This function shuts down a device interface and removes it
11162 * from the kernel tables.
11164 * This is just a wrapper for unregister_netdevice that takes
11165 * the rtnl semaphore. In general you want to use this and not
11166 * unregister_netdevice.
11168 void unregister_netdev(struct net_device *dev)
11171 unregister_netdevice(dev);
11174 EXPORT_SYMBOL(unregister_netdev);
11177 * __dev_change_net_namespace - move device to different nethost namespace
11179 * @net: network namespace
11180 * @pat: If not NULL name pattern to try if the current device name
11181 * is already taken in the destination network namespace.
11182 * @new_ifindex: If not zero, specifies device index in the target
11185 * This function shuts down a device interface and moves it
11186 * to a new network namespace. On success 0 is returned, on
11187 * a failure a netagive errno code is returned.
11189 * Callers must hold the rtnl semaphore.
11192 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11193 const char *pat, int new_ifindex)
11195 struct net *net_old = dev_net(dev);
11200 /* Don't allow namespace local devices to be moved. */
11202 if (dev->features & NETIF_F_NETNS_LOCAL)
11205 /* Ensure the device has been registrered */
11206 if (dev->reg_state != NETREG_REGISTERED)
11209 /* Get out if there is nothing todo */
11211 if (net_eq(net_old, net))
11214 /* Pick the destination device name, and ensure
11215 * we can use it in the destination network namespace.
11218 if (__dev_get_by_name(net, dev->name)) {
11219 /* We get here if we can't use the current device name */
11222 err = dev_get_valid_name(net, dev, pat);
11227 /* Check that new_ifindex isn't used yet. */
11229 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11233 * And now a mini version of register_netdevice unregister_netdevice.
11236 /* If device is running close it first. */
11239 /* And unlink it from device chain */
11240 unlist_netdevice(dev);
11244 /* Shutdown queueing discipline. */
11247 /* Notify protocols, that we are about to destroy
11248 * this device. They should clean all the things.
11250 * Note that dev->reg_state stays at NETREG_REGISTERED.
11251 * This is wanted because this way 8021q and macvlan know
11252 * the device is just moving and can keep their slaves up.
11254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11257 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11258 /* If there is an ifindex conflict assign a new one */
11259 if (!new_ifindex) {
11260 if (__dev_get_by_index(net, dev->ifindex))
11261 new_ifindex = dev_new_index(net);
11263 new_ifindex = dev->ifindex;
11266 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11270 * Flush the unicast and multicast chains
11275 /* Send a netdev-removed uevent to the old namespace */
11276 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11277 netdev_adjacent_del_links(dev);
11279 /* Move per-net netdevice notifiers that are following the netdevice */
11280 move_netdevice_notifiers_dev_net(dev, net);
11282 /* Actually switch the network namespace */
11283 dev_net_set(dev, net);
11284 dev->ifindex = new_ifindex;
11286 /* Send a netdev-add uevent to the new namespace */
11287 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11288 netdev_adjacent_add_links(dev);
11290 /* Fixup kobjects */
11291 err = device_rename(&dev->dev, dev->name);
11294 /* Adapt owner in case owning user namespace of target network
11295 * namespace is different from the original one.
11297 err = netdev_change_owner(dev, net_old, net);
11300 /* Add the device back in the hashes */
11301 list_netdevice(dev);
11303 /* Notify protocols, that a new device appeared. */
11304 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11307 * Prevent userspace races by waiting until the network
11308 * device is fully setup before sending notifications.
11310 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11317 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11319 static int dev_cpu_dead(unsigned int oldcpu)
11321 struct sk_buff **list_skb;
11322 struct sk_buff *skb;
11324 struct softnet_data *sd, *oldsd, *remsd = NULL;
11326 local_irq_disable();
11327 cpu = smp_processor_id();
11328 sd = &per_cpu(softnet_data, cpu);
11329 oldsd = &per_cpu(softnet_data, oldcpu);
11331 /* Find end of our completion_queue. */
11332 list_skb = &sd->completion_queue;
11334 list_skb = &(*list_skb)->next;
11335 /* Append completion queue from offline CPU. */
11336 *list_skb = oldsd->completion_queue;
11337 oldsd->completion_queue = NULL;
11339 /* Append output queue from offline CPU. */
11340 if (oldsd->output_queue) {
11341 *sd->output_queue_tailp = oldsd->output_queue;
11342 sd->output_queue_tailp = oldsd->output_queue_tailp;
11343 oldsd->output_queue = NULL;
11344 oldsd->output_queue_tailp = &oldsd->output_queue;
11346 /* Append NAPI poll list from offline CPU, with one exception :
11347 * process_backlog() must be called by cpu owning percpu backlog.
11348 * We properly handle process_queue & input_pkt_queue later.
11350 while (!list_empty(&oldsd->poll_list)) {
11351 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11352 struct napi_struct,
11355 list_del_init(&napi->poll_list);
11356 if (napi->poll == process_backlog)
11359 ____napi_schedule(sd, napi);
11362 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11363 local_irq_enable();
11366 remsd = oldsd->rps_ipi_list;
11367 oldsd->rps_ipi_list = NULL;
11369 /* send out pending IPI's on offline CPU */
11370 net_rps_send_ipi(remsd);
11372 /* Process offline CPU's input_pkt_queue */
11373 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11375 input_queue_head_incr(oldsd);
11377 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11379 input_queue_head_incr(oldsd);
11386 * netdev_increment_features - increment feature set by one
11387 * @all: current feature set
11388 * @one: new feature set
11389 * @mask: mask feature set
11391 * Computes a new feature set after adding a device with feature set
11392 * @one to the master device with current feature set @all. Will not
11393 * enable anything that is off in @mask. Returns the new feature set.
11395 netdev_features_t netdev_increment_features(netdev_features_t all,
11396 netdev_features_t one, netdev_features_t mask)
11398 if (mask & NETIF_F_HW_CSUM)
11399 mask |= NETIF_F_CSUM_MASK;
11400 mask |= NETIF_F_VLAN_CHALLENGED;
11402 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11403 all &= one | ~NETIF_F_ALL_FOR_ALL;
11405 /* If one device supports hw checksumming, set for all. */
11406 if (all & NETIF_F_HW_CSUM)
11407 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11411 EXPORT_SYMBOL(netdev_increment_features);
11413 static struct hlist_head * __net_init netdev_create_hash(void)
11416 struct hlist_head *hash;
11418 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11420 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11421 INIT_HLIST_HEAD(&hash[i]);
11426 /* Initialize per network namespace state */
11427 static int __net_init netdev_init(struct net *net)
11429 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11430 8 * sizeof_field(struct napi_struct, gro_bitmask));
11432 if (net != &init_net)
11433 INIT_LIST_HEAD(&net->dev_base_head);
11435 net->dev_name_head = netdev_create_hash();
11436 if (net->dev_name_head == NULL)
11439 net->dev_index_head = netdev_create_hash();
11440 if (net->dev_index_head == NULL)
11443 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11448 kfree(net->dev_name_head);
11454 * netdev_drivername - network driver for the device
11455 * @dev: network device
11457 * Determine network driver for device.
11459 const char *netdev_drivername(const struct net_device *dev)
11461 const struct device_driver *driver;
11462 const struct device *parent;
11463 const char *empty = "";
11465 parent = dev->dev.parent;
11469 driver = parent->driver;
11470 if (driver && driver->name)
11471 return driver->name;
11475 static void __netdev_printk(const char *level, const struct net_device *dev,
11476 struct va_format *vaf)
11478 if (dev && dev->dev.parent) {
11479 dev_printk_emit(level[1] - '0',
11482 dev_driver_string(dev->dev.parent),
11483 dev_name(dev->dev.parent),
11484 netdev_name(dev), netdev_reg_state(dev),
11487 printk("%s%s%s: %pV",
11488 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11490 printk("%s(NULL net_device): %pV", level, vaf);
11494 void netdev_printk(const char *level, const struct net_device *dev,
11495 const char *format, ...)
11497 struct va_format vaf;
11500 va_start(args, format);
11505 __netdev_printk(level, dev, &vaf);
11509 EXPORT_SYMBOL(netdev_printk);
11511 #define define_netdev_printk_level(func, level) \
11512 void func(const struct net_device *dev, const char *fmt, ...) \
11514 struct va_format vaf; \
11517 va_start(args, fmt); \
11522 __netdev_printk(level, dev, &vaf); \
11526 EXPORT_SYMBOL(func);
11528 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11529 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11530 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11531 define_netdev_printk_level(netdev_err, KERN_ERR);
11532 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11533 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11534 define_netdev_printk_level(netdev_info, KERN_INFO);
11536 static void __net_exit netdev_exit(struct net *net)
11538 kfree(net->dev_name_head);
11539 kfree(net->dev_index_head);
11540 if (net != &init_net)
11541 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11544 static struct pernet_operations __net_initdata netdev_net_ops = {
11545 .init = netdev_init,
11546 .exit = netdev_exit,
11549 static void __net_exit default_device_exit(struct net *net)
11551 struct net_device *dev, *aux;
11553 * Push all migratable network devices back to the
11554 * initial network namespace
11557 for_each_netdev_safe(net, dev, aux) {
11559 char fb_name[IFNAMSIZ];
11561 /* Ignore unmoveable devices (i.e. loopback) */
11562 if (dev->features & NETIF_F_NETNS_LOCAL)
11565 /* Leave virtual devices for the generic cleanup */
11566 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11569 /* Push remaining network devices to init_net */
11570 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11571 if (__dev_get_by_name(&init_net, fb_name))
11572 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11573 err = dev_change_net_namespace(dev, &init_net, fb_name);
11575 pr_emerg("%s: failed to move %s to init_net: %d\n",
11576 __func__, dev->name, err);
11583 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11585 /* Return with the rtnl_lock held when there are no network
11586 * devices unregistering in any network namespace in net_list.
11589 bool unregistering;
11590 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11592 add_wait_queue(&netdev_unregistering_wq, &wait);
11594 unregistering = false;
11596 list_for_each_entry(net, net_list, exit_list) {
11597 if (net->dev_unreg_count > 0) {
11598 unregistering = true;
11602 if (!unregistering)
11606 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11608 remove_wait_queue(&netdev_unregistering_wq, &wait);
11611 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11613 /* At exit all network devices most be removed from a network
11614 * namespace. Do this in the reverse order of registration.
11615 * Do this across as many network namespaces as possible to
11616 * improve batching efficiency.
11618 struct net_device *dev;
11620 LIST_HEAD(dev_kill_list);
11622 /* To prevent network device cleanup code from dereferencing
11623 * loopback devices or network devices that have been freed
11624 * wait here for all pending unregistrations to complete,
11625 * before unregistring the loopback device and allowing the
11626 * network namespace be freed.
11628 * The netdev todo list containing all network devices
11629 * unregistrations that happen in default_device_exit_batch
11630 * will run in the rtnl_unlock() at the end of
11631 * default_device_exit_batch.
11633 rtnl_lock_unregistering(net_list);
11634 list_for_each_entry(net, net_list, exit_list) {
11635 for_each_netdev_reverse(net, dev) {
11636 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11637 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11639 unregister_netdevice_queue(dev, &dev_kill_list);
11642 unregister_netdevice_many(&dev_kill_list);
11646 static struct pernet_operations __net_initdata default_device_ops = {
11647 .exit = default_device_exit,
11648 .exit_batch = default_device_exit_batch,
11652 * Initialize the DEV module. At boot time this walks the device list and
11653 * unhooks any devices that fail to initialise (normally hardware not
11654 * present) and leaves us with a valid list of present and active devices.
11659 * This is called single threaded during boot, so no need
11660 * to take the rtnl semaphore.
11662 static int __init net_dev_init(void)
11664 int i, rc = -ENOMEM;
11666 BUG_ON(!dev_boot_phase);
11668 if (dev_proc_init())
11671 if (netdev_kobject_init())
11674 INIT_LIST_HEAD(&ptype_all);
11675 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11676 INIT_LIST_HEAD(&ptype_base[i]);
11678 INIT_LIST_HEAD(&offload_base);
11680 if (register_pernet_subsys(&netdev_net_ops))
11684 * Initialise the packet receive queues.
11687 for_each_possible_cpu(i) {
11688 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11689 struct softnet_data *sd = &per_cpu(softnet_data, i);
11691 INIT_WORK(flush, flush_backlog);
11693 skb_queue_head_init(&sd->input_pkt_queue);
11694 skb_queue_head_init(&sd->process_queue);
11695 #ifdef CONFIG_XFRM_OFFLOAD
11696 skb_queue_head_init(&sd->xfrm_backlog);
11698 INIT_LIST_HEAD(&sd->poll_list);
11699 sd->output_queue_tailp = &sd->output_queue;
11701 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11705 init_gro_hash(&sd->backlog);
11706 sd->backlog.poll = process_backlog;
11707 sd->backlog.weight = weight_p;
11710 dev_boot_phase = 0;
11712 /* The loopback device is special if any other network devices
11713 * is present in a network namespace the loopback device must
11714 * be present. Since we now dynamically allocate and free the
11715 * loopback device ensure this invariant is maintained by
11716 * keeping the loopback device as the first device on the
11717 * list of network devices. Ensuring the loopback devices
11718 * is the first device that appears and the last network device
11721 if (register_pernet_device(&loopback_net_ops))
11724 if (register_pernet_device(&default_device_ops))
11727 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11728 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11730 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11731 NULL, dev_cpu_dead);
11738 subsys_initcall(net_dev_init);