]> Git Repo - linux.git/blob - net/core/dev.c
skbuff: allow 'slow_gro' for skb carring sock reference
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /******************************************************************************
680  *
681  *                    Device Boot-time Settings Routines
682  *
683  ******************************************************************************/
684
685 /* Boot time configuration table */
686 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687
688 /**
689  *      netdev_boot_setup_add   - add new setup entry
690  *      @name: name of the device
691  *      @map: configured settings for the device
692  *
693  *      Adds new setup entry to the dev_boot_setup list.  The function
694  *      returns 0 on error and 1 on success.  This is a generic routine to
695  *      all netdevices.
696  */
697 static int netdev_boot_setup_add(char *name, struct ifmap *map)
698 {
699         struct netdev_boot_setup *s;
700         int i;
701
702         s = dev_boot_setup;
703         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
704                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
705                         memset(s[i].name, 0, sizeof(s[i].name));
706                         strlcpy(s[i].name, name, IFNAMSIZ);
707                         memcpy(&s[i].map, map, sizeof(s[i].map));
708                         break;
709                 }
710         }
711
712         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
713 }
714
715 /**
716  * netdev_boot_setup_check      - check boot time settings
717  * @dev: the netdevice
718  *
719  * Check boot time settings for the device.
720  * The found settings are set for the device to be used
721  * later in the device probing.
722  * Returns 0 if no settings found, 1 if they are.
723  */
724 int netdev_boot_setup_check(struct net_device *dev)
725 {
726         struct netdev_boot_setup *s = dev_boot_setup;
727         int i;
728
729         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
730                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
731                     !strcmp(dev->name, s[i].name)) {
732                         dev->irq = s[i].map.irq;
733                         dev->base_addr = s[i].map.base_addr;
734                         dev->mem_start = s[i].map.mem_start;
735                         dev->mem_end = s[i].map.mem_end;
736                         return 1;
737                 }
738         }
739         return 0;
740 }
741 EXPORT_SYMBOL(netdev_boot_setup_check);
742
743
744 /**
745  * netdev_boot_base     - get address from boot time settings
746  * @prefix: prefix for network device
747  * @unit: id for network device
748  *
749  * Check boot time settings for the base address of device.
750  * The found settings are set for the device to be used
751  * later in the device probing.
752  * Returns 0 if no settings found.
753  */
754 unsigned long netdev_boot_base(const char *prefix, int unit)
755 {
756         const struct netdev_boot_setup *s = dev_boot_setup;
757         char name[IFNAMSIZ];
758         int i;
759
760         sprintf(name, "%s%d", prefix, unit);
761
762         /*
763          * If device already registered then return base of 1
764          * to indicate not to probe for this interface
765          */
766         if (__dev_get_by_name(&init_net, name))
767                 return 1;
768
769         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
770                 if (!strcmp(name, s[i].name))
771                         return s[i].map.base_addr;
772         return 0;
773 }
774
775 /*
776  * Saves at boot time configured settings for any netdevice.
777  */
778 int __init netdev_boot_setup(char *str)
779 {
780         int ints[5];
781         struct ifmap map;
782
783         str = get_options(str, ARRAY_SIZE(ints), ints);
784         if (!str || !*str)
785                 return 0;
786
787         /* Save settings */
788         memset(&map, 0, sizeof(map));
789         if (ints[0] > 0)
790                 map.irq = ints[1];
791         if (ints[0] > 1)
792                 map.base_addr = ints[2];
793         if (ints[0] > 2)
794                 map.mem_start = ints[3];
795         if (ints[0] > 3)
796                 map.mem_end = ints[4];
797
798         /* Add new entry to the list */
799         return netdev_boot_setup_add(str, &map);
800 }
801
802 __setup("netdev=", netdev_boot_setup);
803
804 /*******************************************************************************
805  *
806  *                          Device Interface Subroutines
807  *
808  *******************************************************************************/
809
810 /**
811  *      dev_get_iflink  - get 'iflink' value of a interface
812  *      @dev: targeted interface
813  *
814  *      Indicates the ifindex the interface is linked to.
815  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
816  */
817
818 int dev_get_iflink(const struct net_device *dev)
819 {
820         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
821                 return dev->netdev_ops->ndo_get_iflink(dev);
822
823         return dev->ifindex;
824 }
825 EXPORT_SYMBOL(dev_get_iflink);
826
827 /**
828  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
829  *      @dev: targeted interface
830  *      @skb: The packet.
831  *
832  *      For better visibility of tunnel traffic OVS needs to retrieve
833  *      egress tunnel information for a packet. Following API allows
834  *      user to get this info.
835  */
836 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
837 {
838         struct ip_tunnel_info *info;
839
840         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
841                 return -EINVAL;
842
843         info = skb_tunnel_info_unclone(skb);
844         if (!info)
845                 return -ENOMEM;
846         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847                 return -EINVAL;
848
849         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
850 }
851 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
852
853 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
854 {
855         int k = stack->num_paths++;
856
857         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
858                 return NULL;
859
860         return &stack->path[k];
861 }
862
863 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
864                           struct net_device_path_stack *stack)
865 {
866         const struct net_device *last_dev;
867         struct net_device_path_ctx ctx = {
868                 .dev    = dev,
869                 .daddr  = daddr,
870         };
871         struct net_device_path *path;
872         int ret = 0;
873
874         stack->num_paths = 0;
875         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
876                 last_dev = ctx.dev;
877                 path = dev_fwd_path(stack);
878                 if (!path)
879                         return -1;
880
881                 memset(path, 0, sizeof(struct net_device_path));
882                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
883                 if (ret < 0)
884                         return -1;
885
886                 if (WARN_ON_ONCE(last_dev == ctx.dev))
887                         return -1;
888         }
889         path = dev_fwd_path(stack);
890         if (!path)
891                 return -1;
892         path->type = DEV_PATH_ETHERNET;
893         path->dev = ctx.dev;
894
895         return ret;
896 }
897 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
898
899 /**
900  *      __dev_get_by_name       - find a device by its name
901  *      @net: the applicable net namespace
902  *      @name: name to find
903  *
904  *      Find an interface by name. Must be called under RTNL semaphore
905  *      or @dev_base_lock. If the name is found a pointer to the device
906  *      is returned. If the name is not found then %NULL is returned. The
907  *      reference counters are not incremented so the caller must be
908  *      careful with locks.
909  */
910
911 struct net_device *__dev_get_by_name(struct net *net, const char *name)
912 {
913         struct netdev_name_node *node_name;
914
915         node_name = netdev_name_node_lookup(net, name);
916         return node_name ? node_name->dev : NULL;
917 }
918 EXPORT_SYMBOL(__dev_get_by_name);
919
920 /**
921  * dev_get_by_name_rcu  - find a device by its name
922  * @net: the applicable net namespace
923  * @name: name to find
924  *
925  * Find an interface by name.
926  * If the name is found a pointer to the device is returned.
927  * If the name is not found then %NULL is returned.
928  * The reference counters are not incremented so the caller must be
929  * careful with locks. The caller must hold RCU lock.
930  */
931
932 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
933 {
934         struct netdev_name_node *node_name;
935
936         node_name = netdev_name_node_lookup_rcu(net, name);
937         return node_name ? node_name->dev : NULL;
938 }
939 EXPORT_SYMBOL(dev_get_by_name_rcu);
940
941 /**
942  *      dev_get_by_name         - find a device by its name
943  *      @net: the applicable net namespace
944  *      @name: name to find
945  *
946  *      Find an interface by name. This can be called from any
947  *      context and does its own locking. The returned handle has
948  *      the usage count incremented and the caller must use dev_put() to
949  *      release it when it is no longer needed. %NULL is returned if no
950  *      matching device is found.
951  */
952
953 struct net_device *dev_get_by_name(struct net *net, const char *name)
954 {
955         struct net_device *dev;
956
957         rcu_read_lock();
958         dev = dev_get_by_name_rcu(net, name);
959         if (dev)
960                 dev_hold(dev);
961         rcu_read_unlock();
962         return dev;
963 }
964 EXPORT_SYMBOL(dev_get_by_name);
965
966 /**
967  *      __dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns %NULL if the device
972  *      is not found or a pointer to the device. The device has not
973  *      had its reference counter increased so the caller must be careful
974  *      about locking. The caller must hold either the RTNL semaphore
975  *      or @dev_base_lock.
976  */
977
978 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
979 {
980         struct net_device *dev;
981         struct hlist_head *head = dev_index_hash(net, ifindex);
982
983         hlist_for_each_entry(dev, head, index_hlist)
984                 if (dev->ifindex == ifindex)
985                         return dev;
986
987         return NULL;
988 }
989 EXPORT_SYMBOL(__dev_get_by_index);
990
991 /**
992  *      dev_get_by_index_rcu - find a device by its ifindex
993  *      @net: the applicable net namespace
994  *      @ifindex: index of device
995  *
996  *      Search for an interface by index. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not
998  *      had its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1003 {
1004         struct net_device *dev;
1005         struct hlist_head *head = dev_index_hash(net, ifindex);
1006
1007         hlist_for_each_entry_rcu(dev, head, index_hlist)
1008                 if (dev->ifindex == ifindex)
1009                         return dev;
1010
1011         return NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_index_rcu);
1014
1015
1016 /**
1017  *      dev_get_by_index - find a device by its ifindex
1018  *      @net: the applicable net namespace
1019  *      @ifindex: index of device
1020  *
1021  *      Search for an interface by index. Returns NULL if the device
1022  *      is not found or a pointer to the device. The device returned has
1023  *      had a reference added and the pointer is safe until the user calls
1024  *      dev_put to indicate they have finished with it.
1025  */
1026
1027 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1028 {
1029         struct net_device *dev;
1030
1031         rcu_read_lock();
1032         dev = dev_get_by_index_rcu(net, ifindex);
1033         if (dev)
1034                 dev_hold(dev);
1035         rcu_read_unlock();
1036         return dev;
1037 }
1038 EXPORT_SYMBOL(dev_get_by_index);
1039
1040 /**
1041  *      dev_get_by_napi_id - find a device by napi_id
1042  *      @napi_id: ID of the NAPI struct
1043  *
1044  *      Search for an interface by NAPI ID. Returns %NULL if the device
1045  *      is not found or a pointer to the device. The device has not had
1046  *      its reference counter increased so the caller must be careful
1047  *      about locking. The caller must hold RCU lock.
1048  */
1049
1050 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1051 {
1052         struct napi_struct *napi;
1053
1054         WARN_ON_ONCE(!rcu_read_lock_held());
1055
1056         if (napi_id < MIN_NAPI_ID)
1057                 return NULL;
1058
1059         napi = napi_by_id(napi_id);
1060
1061         return napi ? napi->dev : NULL;
1062 }
1063 EXPORT_SYMBOL(dev_get_by_napi_id);
1064
1065 /**
1066  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1067  *      @net: network namespace
1068  *      @name: a pointer to the buffer where the name will be stored.
1069  *      @ifindex: the ifindex of the interface to get the name from.
1070  */
1071 int netdev_get_name(struct net *net, char *name, int ifindex)
1072 {
1073         struct net_device *dev;
1074         int ret;
1075
1076         down_read(&devnet_rename_sem);
1077         rcu_read_lock();
1078
1079         dev = dev_get_by_index_rcu(net, ifindex);
1080         if (!dev) {
1081                 ret = -ENODEV;
1082                 goto out;
1083         }
1084
1085         strcpy(name, dev->name);
1086
1087         ret = 0;
1088 out:
1089         rcu_read_unlock();
1090         up_read(&devnet_rename_sem);
1091         return ret;
1092 }
1093
1094 /**
1095  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1096  *      @net: the applicable net namespace
1097  *      @type: media type of device
1098  *      @ha: hardware address
1099  *
1100  *      Search for an interface by MAC address. Returns NULL if the device
1101  *      is not found or a pointer to the device.
1102  *      The caller must hold RCU or RTNL.
1103  *      The returned device has not had its ref count increased
1104  *      and the caller must therefore be careful about locking
1105  *
1106  */
1107
1108 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1109                                        const char *ha)
1110 {
1111         struct net_device *dev;
1112
1113         for_each_netdev_rcu(net, dev)
1114                 if (dev->type == type &&
1115                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1116                         return dev;
1117
1118         return NULL;
1119 }
1120 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1121
1122 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1123 {
1124         struct net_device *dev, *ret = NULL;
1125
1126         rcu_read_lock();
1127         for_each_netdev_rcu(net, dev)
1128                 if (dev->type == type) {
1129                         dev_hold(dev);
1130                         ret = dev;
1131                         break;
1132                 }
1133         rcu_read_unlock();
1134         return ret;
1135 }
1136 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1137
1138 /**
1139  *      __dev_get_by_flags - find any device with given flags
1140  *      @net: the applicable net namespace
1141  *      @if_flags: IFF_* values
1142  *      @mask: bitmask of bits in if_flags to check
1143  *
1144  *      Search for any interface with the given flags. Returns NULL if a device
1145  *      is not found or a pointer to the device. Must be called inside
1146  *      rtnl_lock(), and result refcount is unchanged.
1147  */
1148
1149 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1150                                       unsigned short mask)
1151 {
1152         struct net_device *dev, *ret;
1153
1154         ASSERT_RTNL();
1155
1156         ret = NULL;
1157         for_each_netdev(net, dev) {
1158                 if (((dev->flags ^ if_flags) & mask) == 0) {
1159                         ret = dev;
1160                         break;
1161                 }
1162         }
1163         return ret;
1164 }
1165 EXPORT_SYMBOL(__dev_get_by_flags);
1166
1167 /**
1168  *      dev_valid_name - check if name is okay for network device
1169  *      @name: name string
1170  *
1171  *      Network device names need to be valid file names to
1172  *      allow sysfs to work.  We also disallow any kind of
1173  *      whitespace.
1174  */
1175 bool dev_valid_name(const char *name)
1176 {
1177         if (*name == '\0')
1178                 return false;
1179         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1180                 return false;
1181         if (!strcmp(name, ".") || !strcmp(name, ".."))
1182                 return false;
1183
1184         while (*name) {
1185                 if (*name == '/' || *name == ':' || isspace(*name))
1186                         return false;
1187                 name++;
1188         }
1189         return true;
1190 }
1191 EXPORT_SYMBOL(dev_valid_name);
1192
1193 /**
1194  *      __dev_alloc_name - allocate a name for a device
1195  *      @net: network namespace to allocate the device name in
1196  *      @name: name format string
1197  *      @buf:  scratch buffer and result name string
1198  *
1199  *      Passed a format string - eg "lt%d" it will try and find a suitable
1200  *      id. It scans list of devices to build up a free map, then chooses
1201  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1202  *      while allocating the name and adding the device in order to avoid
1203  *      duplicates.
1204  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1205  *      Returns the number of the unit assigned or a negative errno code.
1206  */
1207
1208 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1209 {
1210         int i = 0;
1211         const char *p;
1212         const int max_netdevices = 8*PAGE_SIZE;
1213         unsigned long *inuse;
1214         struct net_device *d;
1215
1216         if (!dev_valid_name(name))
1217                 return -EINVAL;
1218
1219         p = strchr(name, '%');
1220         if (p) {
1221                 /*
1222                  * Verify the string as this thing may have come from
1223                  * the user.  There must be either one "%d" and no other "%"
1224                  * characters.
1225                  */
1226                 if (p[1] != 'd' || strchr(p + 2, '%'))
1227                         return -EINVAL;
1228
1229                 /* Use one page as a bit array of possible slots */
1230                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1231                 if (!inuse)
1232                         return -ENOMEM;
1233
1234                 for_each_netdev(net, d) {
1235                         struct netdev_name_node *name_node;
1236                         list_for_each_entry(name_node, &d->name_node->list, list) {
1237                                 if (!sscanf(name_node->name, name, &i))
1238                                         continue;
1239                                 if (i < 0 || i >= max_netdevices)
1240                                         continue;
1241
1242                                 /*  avoid cases where sscanf is not exact inverse of printf */
1243                                 snprintf(buf, IFNAMSIZ, name, i);
1244                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1245                                         set_bit(i, inuse);
1246                         }
1247                         if (!sscanf(d->name, name, &i))
1248                                 continue;
1249                         if (i < 0 || i >= max_netdevices)
1250                                 continue;
1251
1252                         /*  avoid cases where sscanf is not exact inverse of printf */
1253                         snprintf(buf, IFNAMSIZ, name, i);
1254                         if (!strncmp(buf, d->name, IFNAMSIZ))
1255                                 set_bit(i, inuse);
1256                 }
1257
1258                 i = find_first_zero_bit(inuse, max_netdevices);
1259                 free_page((unsigned long) inuse);
1260         }
1261
1262         snprintf(buf, IFNAMSIZ, name, i);
1263         if (!__dev_get_by_name(net, buf))
1264                 return i;
1265
1266         /* It is possible to run out of possible slots
1267          * when the name is long and there isn't enough space left
1268          * for the digits, or if all bits are used.
1269          */
1270         return -ENFILE;
1271 }
1272
1273 static int dev_alloc_name_ns(struct net *net,
1274                              struct net_device *dev,
1275                              const char *name)
1276 {
1277         char buf[IFNAMSIZ];
1278         int ret;
1279
1280         BUG_ON(!net);
1281         ret = __dev_alloc_name(net, name, buf);
1282         if (ret >= 0)
1283                 strlcpy(dev->name, buf, IFNAMSIZ);
1284         return ret;
1285 }
1286
1287 /**
1288  *      dev_alloc_name - allocate a name for a device
1289  *      @dev: device
1290  *      @name: name format string
1291  *
1292  *      Passed a format string - eg "lt%d" it will try and find a suitable
1293  *      id. It scans list of devices to build up a free map, then chooses
1294  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1295  *      while allocating the name and adding the device in order to avoid
1296  *      duplicates.
1297  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1298  *      Returns the number of the unit assigned or a negative errno code.
1299  */
1300
1301 int dev_alloc_name(struct net_device *dev, const char *name)
1302 {
1303         return dev_alloc_name_ns(dev_net(dev), dev, name);
1304 }
1305 EXPORT_SYMBOL(dev_alloc_name);
1306
1307 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1308                               const char *name)
1309 {
1310         BUG_ON(!net);
1311
1312         if (!dev_valid_name(name))
1313                 return -EINVAL;
1314
1315         if (strchr(name, '%'))
1316                 return dev_alloc_name_ns(net, dev, name);
1317         else if (__dev_get_by_name(net, name))
1318                 return -EEXIST;
1319         else if (dev->name != name)
1320                 strlcpy(dev->name, name, IFNAMSIZ);
1321
1322         return 0;
1323 }
1324
1325 /**
1326  *      dev_change_name - change name of a device
1327  *      @dev: device
1328  *      @newname: name (or format string) must be at least IFNAMSIZ
1329  *
1330  *      Change name of a device, can pass format strings "eth%d".
1331  *      for wildcarding.
1332  */
1333 int dev_change_name(struct net_device *dev, const char *newname)
1334 {
1335         unsigned char old_assign_type;
1336         char oldname[IFNAMSIZ];
1337         int err = 0;
1338         int ret;
1339         struct net *net;
1340
1341         ASSERT_RTNL();
1342         BUG_ON(!dev_net(dev));
1343
1344         net = dev_net(dev);
1345
1346         /* Some auto-enslaved devices e.g. failover slaves are
1347          * special, as userspace might rename the device after
1348          * the interface had been brought up and running since
1349          * the point kernel initiated auto-enslavement. Allow
1350          * live name change even when these slave devices are
1351          * up and running.
1352          *
1353          * Typically, users of these auto-enslaving devices
1354          * don't actually care about slave name change, as
1355          * they are supposed to operate on master interface
1356          * directly.
1357          */
1358         if (dev->flags & IFF_UP &&
1359             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1360                 return -EBUSY;
1361
1362         down_write(&devnet_rename_sem);
1363
1364         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1365                 up_write(&devnet_rename_sem);
1366                 return 0;
1367         }
1368
1369         memcpy(oldname, dev->name, IFNAMSIZ);
1370
1371         err = dev_get_valid_name(net, dev, newname);
1372         if (err < 0) {
1373                 up_write(&devnet_rename_sem);
1374                 return err;
1375         }
1376
1377         if (oldname[0] && !strchr(oldname, '%'))
1378                 netdev_info(dev, "renamed from %s\n", oldname);
1379
1380         old_assign_type = dev->name_assign_type;
1381         dev->name_assign_type = NET_NAME_RENAMED;
1382
1383 rollback:
1384         ret = device_rename(&dev->dev, dev->name);
1385         if (ret) {
1386                 memcpy(dev->name, oldname, IFNAMSIZ);
1387                 dev->name_assign_type = old_assign_type;
1388                 up_write(&devnet_rename_sem);
1389                 return ret;
1390         }
1391
1392         up_write(&devnet_rename_sem);
1393
1394         netdev_adjacent_rename_links(dev, oldname);
1395
1396         write_lock_bh(&dev_base_lock);
1397         netdev_name_node_del(dev->name_node);
1398         write_unlock_bh(&dev_base_lock);
1399
1400         synchronize_rcu();
1401
1402         write_lock_bh(&dev_base_lock);
1403         netdev_name_node_add(net, dev->name_node);
1404         write_unlock_bh(&dev_base_lock);
1405
1406         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1407         ret = notifier_to_errno(ret);
1408
1409         if (ret) {
1410                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1411                 if (err >= 0) {
1412                         err = ret;
1413                         down_write(&devnet_rename_sem);
1414                         memcpy(dev->name, oldname, IFNAMSIZ);
1415                         memcpy(oldname, newname, IFNAMSIZ);
1416                         dev->name_assign_type = old_assign_type;
1417                         old_assign_type = NET_NAME_RENAMED;
1418                         goto rollback;
1419                 } else {
1420                         pr_err("%s: name change rollback failed: %d\n",
1421                                dev->name, ret);
1422                 }
1423         }
1424
1425         return err;
1426 }
1427
1428 /**
1429  *      dev_set_alias - change ifalias of a device
1430  *      @dev: device
1431  *      @alias: name up to IFALIASZ
1432  *      @len: limit of bytes to copy from info
1433  *
1434  *      Set ifalias for a device,
1435  */
1436 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1437 {
1438         struct dev_ifalias *new_alias = NULL;
1439
1440         if (len >= IFALIASZ)
1441                 return -EINVAL;
1442
1443         if (len) {
1444                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1445                 if (!new_alias)
1446                         return -ENOMEM;
1447
1448                 memcpy(new_alias->ifalias, alias, len);
1449                 new_alias->ifalias[len] = 0;
1450         }
1451
1452         mutex_lock(&ifalias_mutex);
1453         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1454                                         mutex_is_locked(&ifalias_mutex));
1455         mutex_unlock(&ifalias_mutex);
1456
1457         if (new_alias)
1458                 kfree_rcu(new_alias, rcuhead);
1459
1460         return len;
1461 }
1462 EXPORT_SYMBOL(dev_set_alias);
1463
1464 /**
1465  *      dev_get_alias - get ifalias of a device
1466  *      @dev: device
1467  *      @name: buffer to store name of ifalias
1468  *      @len: size of buffer
1469  *
1470  *      get ifalias for a device.  Caller must make sure dev cannot go
1471  *      away,  e.g. rcu read lock or own a reference count to device.
1472  */
1473 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1474 {
1475         const struct dev_ifalias *alias;
1476         int ret = 0;
1477
1478         rcu_read_lock();
1479         alias = rcu_dereference(dev->ifalias);
1480         if (alias)
1481                 ret = snprintf(name, len, "%s", alias->ifalias);
1482         rcu_read_unlock();
1483
1484         return ret;
1485 }
1486
1487 /**
1488  *      netdev_features_change - device changes features
1489  *      @dev: device to cause notification
1490  *
1491  *      Called to indicate a device has changed features.
1492  */
1493 void netdev_features_change(struct net_device *dev)
1494 {
1495         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1496 }
1497 EXPORT_SYMBOL(netdev_features_change);
1498
1499 /**
1500  *      netdev_state_change - device changes state
1501  *      @dev: device to cause notification
1502  *
1503  *      Called to indicate a device has changed state. This function calls
1504  *      the notifier chains for netdev_chain and sends a NEWLINK message
1505  *      to the routing socket.
1506  */
1507 void netdev_state_change(struct net_device *dev)
1508 {
1509         if (dev->flags & IFF_UP) {
1510                 struct netdev_notifier_change_info change_info = {
1511                         .info.dev = dev,
1512                 };
1513
1514                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1515                                               &change_info.info);
1516                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1517         }
1518 }
1519 EXPORT_SYMBOL(netdev_state_change);
1520
1521 /**
1522  * __netdev_notify_peers - notify network peers about existence of @dev,
1523  * to be called when rtnl lock is already held.
1524  * @dev: network device
1525  *
1526  * Generate traffic such that interested network peers are aware of
1527  * @dev, such as by generating a gratuitous ARP. This may be used when
1528  * a device wants to inform the rest of the network about some sort of
1529  * reconfiguration such as a failover event or virtual machine
1530  * migration.
1531  */
1532 void __netdev_notify_peers(struct net_device *dev)
1533 {
1534         ASSERT_RTNL();
1535         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1536         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1537 }
1538 EXPORT_SYMBOL(__netdev_notify_peers);
1539
1540 /**
1541  * netdev_notify_peers - notify network peers about existence of @dev
1542  * @dev: network device
1543  *
1544  * Generate traffic such that interested network peers are aware of
1545  * @dev, such as by generating a gratuitous ARP. This may be used when
1546  * a device wants to inform the rest of the network about some sort of
1547  * reconfiguration such as a failover event or virtual machine
1548  * migration.
1549  */
1550 void netdev_notify_peers(struct net_device *dev)
1551 {
1552         rtnl_lock();
1553         __netdev_notify_peers(dev);
1554         rtnl_unlock();
1555 }
1556 EXPORT_SYMBOL(netdev_notify_peers);
1557
1558 static int napi_threaded_poll(void *data);
1559
1560 static int napi_kthread_create(struct napi_struct *n)
1561 {
1562         int err = 0;
1563
1564         /* Create and wake up the kthread once to put it in
1565          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1566          * warning and work with loadavg.
1567          */
1568         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1569                                 n->dev->name, n->napi_id);
1570         if (IS_ERR(n->thread)) {
1571                 err = PTR_ERR(n->thread);
1572                 pr_err("kthread_run failed with err %d\n", err);
1573                 n->thread = NULL;
1574         }
1575
1576         return err;
1577 }
1578
1579 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1580 {
1581         const struct net_device_ops *ops = dev->netdev_ops;
1582         int ret;
1583
1584         ASSERT_RTNL();
1585
1586         if (!netif_device_present(dev)) {
1587                 /* may be detached because parent is runtime-suspended */
1588                 if (dev->dev.parent)
1589                         pm_runtime_resume(dev->dev.parent);
1590                 if (!netif_device_present(dev))
1591                         return -ENODEV;
1592         }
1593
1594         /* Block netpoll from trying to do any rx path servicing.
1595          * If we don't do this there is a chance ndo_poll_controller
1596          * or ndo_poll may be running while we open the device
1597          */
1598         netpoll_poll_disable(dev);
1599
1600         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1601         ret = notifier_to_errno(ret);
1602         if (ret)
1603                 return ret;
1604
1605         set_bit(__LINK_STATE_START, &dev->state);
1606
1607         if (ops->ndo_validate_addr)
1608                 ret = ops->ndo_validate_addr(dev);
1609
1610         if (!ret && ops->ndo_open)
1611                 ret = ops->ndo_open(dev);
1612
1613         netpoll_poll_enable(dev);
1614
1615         if (ret)
1616                 clear_bit(__LINK_STATE_START, &dev->state);
1617         else {
1618                 dev->flags |= IFF_UP;
1619                 dev_set_rx_mode(dev);
1620                 dev_activate(dev);
1621                 add_device_randomness(dev->dev_addr, dev->addr_len);
1622         }
1623
1624         return ret;
1625 }
1626
1627 /**
1628  *      dev_open        - prepare an interface for use.
1629  *      @dev: device to open
1630  *      @extack: netlink extended ack
1631  *
1632  *      Takes a device from down to up state. The device's private open
1633  *      function is invoked and then the multicast lists are loaded. Finally
1634  *      the device is moved into the up state and a %NETDEV_UP message is
1635  *      sent to the netdev notifier chain.
1636  *
1637  *      Calling this function on an active interface is a nop. On a failure
1638  *      a negative errno code is returned.
1639  */
1640 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1641 {
1642         int ret;
1643
1644         if (dev->flags & IFF_UP)
1645                 return 0;
1646
1647         ret = __dev_open(dev, extack);
1648         if (ret < 0)
1649                 return ret;
1650
1651         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1652         call_netdevice_notifiers(NETDEV_UP, dev);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL(dev_open);
1657
1658 static void __dev_close_many(struct list_head *head)
1659 {
1660         struct net_device *dev;
1661
1662         ASSERT_RTNL();
1663         might_sleep();
1664
1665         list_for_each_entry(dev, head, close_list) {
1666                 /* Temporarily disable netpoll until the interface is down */
1667                 netpoll_poll_disable(dev);
1668
1669                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1670
1671                 clear_bit(__LINK_STATE_START, &dev->state);
1672
1673                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1674                  * can be even on different cpu. So just clear netif_running().
1675                  *
1676                  * dev->stop() will invoke napi_disable() on all of it's
1677                  * napi_struct instances on this device.
1678                  */
1679                 smp_mb__after_atomic(); /* Commit netif_running(). */
1680         }
1681
1682         dev_deactivate_many(head);
1683
1684         list_for_each_entry(dev, head, close_list) {
1685                 const struct net_device_ops *ops = dev->netdev_ops;
1686
1687                 /*
1688                  *      Call the device specific close. This cannot fail.
1689                  *      Only if device is UP
1690                  *
1691                  *      We allow it to be called even after a DETACH hot-plug
1692                  *      event.
1693                  */
1694                 if (ops->ndo_stop)
1695                         ops->ndo_stop(dev);
1696
1697                 dev->flags &= ~IFF_UP;
1698                 netpoll_poll_enable(dev);
1699         }
1700 }
1701
1702 static void __dev_close(struct net_device *dev)
1703 {
1704         LIST_HEAD(single);
1705
1706         list_add(&dev->close_list, &single);
1707         __dev_close_many(&single);
1708         list_del(&single);
1709 }
1710
1711 void dev_close_many(struct list_head *head, bool unlink)
1712 {
1713         struct net_device *dev, *tmp;
1714
1715         /* Remove the devices that don't need to be closed */
1716         list_for_each_entry_safe(dev, tmp, head, close_list)
1717                 if (!(dev->flags & IFF_UP))
1718                         list_del_init(&dev->close_list);
1719
1720         __dev_close_many(head);
1721
1722         list_for_each_entry_safe(dev, tmp, head, close_list) {
1723                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1724                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1725                 if (unlink)
1726                         list_del_init(&dev->close_list);
1727         }
1728 }
1729 EXPORT_SYMBOL(dev_close_many);
1730
1731 /**
1732  *      dev_close - shutdown an interface.
1733  *      @dev: device to shutdown
1734  *
1735  *      This function moves an active device into down state. A
1736  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1737  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1738  *      chain.
1739  */
1740 void dev_close(struct net_device *dev)
1741 {
1742         if (dev->flags & IFF_UP) {
1743                 LIST_HEAD(single);
1744
1745                 list_add(&dev->close_list, &single);
1746                 dev_close_many(&single, true);
1747                 list_del(&single);
1748         }
1749 }
1750 EXPORT_SYMBOL(dev_close);
1751
1752
1753 /**
1754  *      dev_disable_lro - disable Large Receive Offload on a device
1755  *      @dev: device
1756  *
1757  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1758  *      called under RTNL.  This is needed if received packets may be
1759  *      forwarded to another interface.
1760  */
1761 void dev_disable_lro(struct net_device *dev)
1762 {
1763         struct net_device *lower_dev;
1764         struct list_head *iter;
1765
1766         dev->wanted_features &= ~NETIF_F_LRO;
1767         netdev_update_features(dev);
1768
1769         if (unlikely(dev->features & NETIF_F_LRO))
1770                 netdev_WARN(dev, "failed to disable LRO!\n");
1771
1772         netdev_for_each_lower_dev(dev, lower_dev, iter)
1773                 dev_disable_lro(lower_dev);
1774 }
1775 EXPORT_SYMBOL(dev_disable_lro);
1776
1777 /**
1778  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1779  *      @dev: device
1780  *
1781  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1782  *      called under RTNL.  This is needed if Generic XDP is installed on
1783  *      the device.
1784  */
1785 static void dev_disable_gro_hw(struct net_device *dev)
1786 {
1787         dev->wanted_features &= ~NETIF_F_GRO_HW;
1788         netdev_update_features(dev);
1789
1790         if (unlikely(dev->features & NETIF_F_GRO_HW))
1791                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1792 }
1793
1794 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1795 {
1796 #define N(val)                                          \
1797         case NETDEV_##val:                              \
1798                 return "NETDEV_" __stringify(val);
1799         switch (cmd) {
1800         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1801         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1802         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1803         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1804         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1805         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1806         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1807         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1808         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1809         N(PRE_CHANGEADDR)
1810         }
1811 #undef N
1812         return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815
1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817                                    struct net_device *dev)
1818 {
1819         struct netdev_notifier_info info = {
1820                 .dev = dev,
1821         };
1822
1823         return nb->notifier_call(nb, val, &info);
1824 }
1825
1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827                                              struct net_device *dev)
1828 {
1829         int err;
1830
1831         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832         err = notifier_to_errno(err);
1833         if (err)
1834                 return err;
1835
1836         if (!(dev->flags & IFF_UP))
1837                 return 0;
1838
1839         call_netdevice_notifier(nb, NETDEV_UP, dev);
1840         return 0;
1841 }
1842
1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844                                                 struct net_device *dev)
1845 {
1846         if (dev->flags & IFF_UP) {
1847                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848                                         dev);
1849                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850         }
1851         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853
1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855                                                  struct net *net)
1856 {
1857         struct net_device *dev;
1858         int err;
1859
1860         for_each_netdev(net, dev) {
1861                 err = call_netdevice_register_notifiers(nb, dev);
1862                 if (err)
1863                         goto rollback;
1864         }
1865         return 0;
1866
1867 rollback:
1868         for_each_netdev_continue_reverse(net, dev)
1869                 call_netdevice_unregister_notifiers(nb, dev);
1870         return err;
1871 }
1872
1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874                                                     struct net *net)
1875 {
1876         struct net_device *dev;
1877
1878         for_each_netdev(net, dev)
1879                 call_netdevice_unregister_notifiers(nb, dev);
1880 }
1881
1882 static int dev_boot_phase = 1;
1883
1884 /**
1885  * register_netdevice_notifier - register a network notifier block
1886  * @nb: notifier
1887  *
1888  * Register a notifier to be called when network device events occur.
1889  * The notifier passed is linked into the kernel structures and must
1890  * not be reused until it has been unregistered. A negative errno code
1891  * is returned on a failure.
1892  *
1893  * When registered all registration and up events are replayed
1894  * to the new notifier to allow device to have a race free
1895  * view of the network device list.
1896  */
1897
1898 int register_netdevice_notifier(struct notifier_block *nb)
1899 {
1900         struct net *net;
1901         int err;
1902
1903         /* Close race with setup_net() and cleanup_net() */
1904         down_write(&pernet_ops_rwsem);
1905         rtnl_lock();
1906         err = raw_notifier_chain_register(&netdev_chain, nb);
1907         if (err)
1908                 goto unlock;
1909         if (dev_boot_phase)
1910                 goto unlock;
1911         for_each_net(net) {
1912                 err = call_netdevice_register_net_notifiers(nb, net);
1913                 if (err)
1914                         goto rollback;
1915         }
1916
1917 unlock:
1918         rtnl_unlock();
1919         up_write(&pernet_ops_rwsem);
1920         return err;
1921
1922 rollback:
1923         for_each_net_continue_reverse(net)
1924                 call_netdevice_unregister_net_notifiers(nb, net);
1925
1926         raw_notifier_chain_unregister(&netdev_chain, nb);
1927         goto unlock;
1928 }
1929 EXPORT_SYMBOL(register_netdevice_notifier);
1930
1931 /**
1932  * unregister_netdevice_notifier - unregister a network notifier block
1933  * @nb: notifier
1934  *
1935  * Unregister a notifier previously registered by
1936  * register_netdevice_notifier(). The notifier is unlinked into the
1937  * kernel structures and may then be reused. A negative errno code
1938  * is returned on a failure.
1939  *
1940  * After unregistering unregister and down device events are synthesized
1941  * for all devices on the device list to the removed notifier to remove
1942  * the need for special case cleanup code.
1943  */
1944
1945 int unregister_netdevice_notifier(struct notifier_block *nb)
1946 {
1947         struct net *net;
1948         int err;
1949
1950         /* Close race with setup_net() and cleanup_net() */
1951         down_write(&pernet_ops_rwsem);
1952         rtnl_lock();
1953         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1954         if (err)
1955                 goto unlock;
1956
1957         for_each_net(net)
1958                 call_netdevice_unregister_net_notifiers(nb, net);
1959
1960 unlock:
1961         rtnl_unlock();
1962         up_write(&pernet_ops_rwsem);
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier);
1966
1967 static int __register_netdevice_notifier_net(struct net *net,
1968                                              struct notifier_block *nb,
1969                                              bool ignore_call_fail)
1970 {
1971         int err;
1972
1973         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1974         if (err)
1975                 return err;
1976         if (dev_boot_phase)
1977                 return 0;
1978
1979         err = call_netdevice_register_net_notifiers(nb, net);
1980         if (err && !ignore_call_fail)
1981                 goto chain_unregister;
1982
1983         return 0;
1984
1985 chain_unregister:
1986         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1987         return err;
1988 }
1989
1990 static int __unregister_netdevice_notifier_net(struct net *net,
1991                                                struct notifier_block *nb)
1992 {
1993         int err;
1994
1995         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1996         if (err)
1997                 return err;
1998
1999         call_netdevice_unregister_net_notifiers(nb, net);
2000         return 0;
2001 }
2002
2003 /**
2004  * register_netdevice_notifier_net - register a per-netns network notifier block
2005  * @net: network namespace
2006  * @nb: notifier
2007  *
2008  * Register a notifier to be called when network device events occur.
2009  * The notifier passed is linked into the kernel structures and must
2010  * not be reused until it has been unregistered. A negative errno code
2011  * is returned on a failure.
2012  *
2013  * When registered all registration and up events are replayed
2014  * to the new notifier to allow device to have a race free
2015  * view of the network device list.
2016  */
2017
2018 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2019 {
2020         int err;
2021
2022         rtnl_lock();
2023         err = __register_netdevice_notifier_net(net, nb, false);
2024         rtnl_unlock();
2025         return err;
2026 }
2027 EXPORT_SYMBOL(register_netdevice_notifier_net);
2028
2029 /**
2030  * unregister_netdevice_notifier_net - unregister a per-netns
2031  *                                     network notifier block
2032  * @net: network namespace
2033  * @nb: notifier
2034  *
2035  * Unregister a notifier previously registered by
2036  * register_netdevice_notifier(). The notifier is unlinked into the
2037  * kernel structures and may then be reused. A negative errno code
2038  * is returned on a failure.
2039  *
2040  * After unregistering unregister and down device events are synthesized
2041  * for all devices on the device list to the removed notifier to remove
2042  * the need for special case cleanup code.
2043  */
2044
2045 int unregister_netdevice_notifier_net(struct net *net,
2046                                       struct notifier_block *nb)
2047 {
2048         int err;
2049
2050         rtnl_lock();
2051         err = __unregister_netdevice_notifier_net(net, nb);
2052         rtnl_unlock();
2053         return err;
2054 }
2055 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2056
2057 int register_netdevice_notifier_dev_net(struct net_device *dev,
2058                                         struct notifier_block *nb,
2059                                         struct netdev_net_notifier *nn)
2060 {
2061         int err;
2062
2063         rtnl_lock();
2064         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2065         if (!err) {
2066                 nn->nb = nb;
2067                 list_add(&nn->list, &dev->net_notifier_list);
2068         }
2069         rtnl_unlock();
2070         return err;
2071 }
2072 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2073
2074 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2075                                           struct notifier_block *nb,
2076                                           struct netdev_net_notifier *nn)
2077 {
2078         int err;
2079
2080         rtnl_lock();
2081         list_del(&nn->list);
2082         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2083         rtnl_unlock();
2084         return err;
2085 }
2086 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2087
2088 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2089                                              struct net *net)
2090 {
2091         struct netdev_net_notifier *nn;
2092
2093         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2094                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2095                 __register_netdevice_notifier_net(net, nn->nb, true);
2096         }
2097 }
2098
2099 /**
2100  *      call_netdevice_notifiers_info - call all network notifier blocks
2101  *      @val: value passed unmodified to notifier function
2102  *      @info: notifier information data
2103  *
2104  *      Call all network notifier blocks.  Parameters and return value
2105  *      are as for raw_notifier_call_chain().
2106  */
2107
2108 static int call_netdevice_notifiers_info(unsigned long val,
2109                                          struct netdev_notifier_info *info)
2110 {
2111         struct net *net = dev_net(info->dev);
2112         int ret;
2113
2114         ASSERT_RTNL();
2115
2116         /* Run per-netns notifier block chain first, then run the global one.
2117          * Hopefully, one day, the global one is going to be removed after
2118          * all notifier block registrators get converted to be per-netns.
2119          */
2120         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2121         if (ret & NOTIFY_STOP_MASK)
2122                 return ret;
2123         return raw_notifier_call_chain(&netdev_chain, val, info);
2124 }
2125
2126 static int call_netdevice_notifiers_extack(unsigned long val,
2127                                            struct net_device *dev,
2128                                            struct netlink_ext_ack *extack)
2129 {
2130         struct netdev_notifier_info info = {
2131                 .dev = dev,
2132                 .extack = extack,
2133         };
2134
2135         return call_netdevice_notifiers_info(val, &info);
2136 }
2137
2138 /**
2139  *      call_netdevice_notifiers - call all network notifier blocks
2140  *      @val: value passed unmodified to notifier function
2141  *      @dev: net_device pointer passed unmodified to notifier function
2142  *
2143  *      Call all network notifier blocks.  Parameters and return value
2144  *      are as for raw_notifier_call_chain().
2145  */
2146
2147 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2148 {
2149         return call_netdevice_notifiers_extack(val, dev, NULL);
2150 }
2151 EXPORT_SYMBOL(call_netdevice_notifiers);
2152
2153 /**
2154  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2155  *      @val: value passed unmodified to notifier function
2156  *      @dev: net_device pointer passed unmodified to notifier function
2157  *      @arg: additional u32 argument passed to the notifier function
2158  *
2159  *      Call all network notifier blocks.  Parameters and return value
2160  *      are as for raw_notifier_call_chain().
2161  */
2162 static int call_netdevice_notifiers_mtu(unsigned long val,
2163                                         struct net_device *dev, u32 arg)
2164 {
2165         struct netdev_notifier_info_ext info = {
2166                 .info.dev = dev,
2167                 .ext.mtu = arg,
2168         };
2169
2170         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2171
2172         return call_netdevice_notifiers_info(val, &info.info);
2173 }
2174
2175 #ifdef CONFIG_NET_INGRESS
2176 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2177
2178 void net_inc_ingress_queue(void)
2179 {
2180         static_branch_inc(&ingress_needed_key);
2181 }
2182 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2183
2184 void net_dec_ingress_queue(void)
2185 {
2186         static_branch_dec(&ingress_needed_key);
2187 }
2188 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2189 #endif
2190
2191 #ifdef CONFIG_NET_EGRESS
2192 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2193
2194 void net_inc_egress_queue(void)
2195 {
2196         static_branch_inc(&egress_needed_key);
2197 }
2198 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2199
2200 void net_dec_egress_queue(void)
2201 {
2202         static_branch_dec(&egress_needed_key);
2203 }
2204 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2205 #endif
2206
2207 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2208 #ifdef CONFIG_JUMP_LABEL
2209 static atomic_t netstamp_needed_deferred;
2210 static atomic_t netstamp_wanted;
2211 static void netstamp_clear(struct work_struct *work)
2212 {
2213         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2214         int wanted;
2215
2216         wanted = atomic_add_return(deferred, &netstamp_wanted);
2217         if (wanted > 0)
2218                 static_branch_enable(&netstamp_needed_key);
2219         else
2220                 static_branch_disable(&netstamp_needed_key);
2221 }
2222 static DECLARE_WORK(netstamp_work, netstamp_clear);
2223 #endif
2224
2225 void net_enable_timestamp(void)
2226 {
2227 #ifdef CONFIG_JUMP_LABEL
2228         int wanted;
2229
2230         while (1) {
2231                 wanted = atomic_read(&netstamp_wanted);
2232                 if (wanted <= 0)
2233                         break;
2234                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2235                         return;
2236         }
2237         atomic_inc(&netstamp_needed_deferred);
2238         schedule_work(&netstamp_work);
2239 #else
2240         static_branch_inc(&netstamp_needed_key);
2241 #endif
2242 }
2243 EXPORT_SYMBOL(net_enable_timestamp);
2244
2245 void net_disable_timestamp(void)
2246 {
2247 #ifdef CONFIG_JUMP_LABEL
2248         int wanted;
2249
2250         while (1) {
2251                 wanted = atomic_read(&netstamp_wanted);
2252                 if (wanted <= 1)
2253                         break;
2254                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2255                         return;
2256         }
2257         atomic_dec(&netstamp_needed_deferred);
2258         schedule_work(&netstamp_work);
2259 #else
2260         static_branch_dec(&netstamp_needed_key);
2261 #endif
2262 }
2263 EXPORT_SYMBOL(net_disable_timestamp);
2264
2265 static inline void net_timestamp_set(struct sk_buff *skb)
2266 {
2267         skb->tstamp = 0;
2268         if (static_branch_unlikely(&netstamp_needed_key))
2269                 __net_timestamp(skb);
2270 }
2271
2272 #define net_timestamp_check(COND, SKB)                          \
2273         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2274                 if ((COND) && !(SKB)->tstamp)                   \
2275                         __net_timestamp(SKB);                   \
2276         }                                                       \
2277
2278 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2279 {
2280         return __is_skb_forwardable(dev, skb, true);
2281 }
2282 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2283
2284 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2285                               bool check_mtu)
2286 {
2287         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2288
2289         if (likely(!ret)) {
2290                 skb->protocol = eth_type_trans(skb, dev);
2291                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2292         }
2293
2294         return ret;
2295 }
2296
2297 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2298 {
2299         return __dev_forward_skb2(dev, skb, true);
2300 }
2301 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2302
2303 /**
2304  * dev_forward_skb - loopback an skb to another netif
2305  *
2306  * @dev: destination network device
2307  * @skb: buffer to forward
2308  *
2309  * return values:
2310  *      NET_RX_SUCCESS  (no congestion)
2311  *      NET_RX_DROP     (packet was dropped, but freed)
2312  *
2313  * dev_forward_skb can be used for injecting an skb from the
2314  * start_xmit function of one device into the receive queue
2315  * of another device.
2316  *
2317  * The receiving device may be in another namespace, so
2318  * we have to clear all information in the skb that could
2319  * impact namespace isolation.
2320  */
2321 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2322 {
2323         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2324 }
2325 EXPORT_SYMBOL_GPL(dev_forward_skb);
2326
2327 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2328 {
2329         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2330 }
2331
2332 static inline int deliver_skb(struct sk_buff *skb,
2333                               struct packet_type *pt_prev,
2334                               struct net_device *orig_dev)
2335 {
2336         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2337                 return -ENOMEM;
2338         refcount_inc(&skb->users);
2339         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2340 }
2341
2342 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2343                                           struct packet_type **pt,
2344                                           struct net_device *orig_dev,
2345                                           __be16 type,
2346                                           struct list_head *ptype_list)
2347 {
2348         struct packet_type *ptype, *pt_prev = *pt;
2349
2350         list_for_each_entry_rcu(ptype, ptype_list, list) {
2351                 if (ptype->type != type)
2352                         continue;
2353                 if (pt_prev)
2354                         deliver_skb(skb, pt_prev, orig_dev);
2355                 pt_prev = ptype;
2356         }
2357         *pt = pt_prev;
2358 }
2359
2360 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2361 {
2362         if (!ptype->af_packet_priv || !skb->sk)
2363                 return false;
2364
2365         if (ptype->id_match)
2366                 return ptype->id_match(ptype, skb->sk);
2367         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2368                 return true;
2369
2370         return false;
2371 }
2372
2373 /**
2374  * dev_nit_active - return true if any network interface taps are in use
2375  *
2376  * @dev: network device to check for the presence of taps
2377  */
2378 bool dev_nit_active(struct net_device *dev)
2379 {
2380         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2381 }
2382 EXPORT_SYMBOL_GPL(dev_nit_active);
2383
2384 /*
2385  *      Support routine. Sends outgoing frames to any network
2386  *      taps currently in use.
2387  */
2388
2389 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2390 {
2391         struct packet_type *ptype;
2392         struct sk_buff *skb2 = NULL;
2393         struct packet_type *pt_prev = NULL;
2394         struct list_head *ptype_list = &ptype_all;
2395
2396         rcu_read_lock();
2397 again:
2398         list_for_each_entry_rcu(ptype, ptype_list, list) {
2399                 if (ptype->ignore_outgoing)
2400                         continue;
2401
2402                 /* Never send packets back to the socket
2403                  * they originated from - MvS ([email protected])
2404                  */
2405                 if (skb_loop_sk(ptype, skb))
2406                         continue;
2407
2408                 if (pt_prev) {
2409                         deliver_skb(skb2, pt_prev, skb->dev);
2410                         pt_prev = ptype;
2411                         continue;
2412                 }
2413
2414                 /* need to clone skb, done only once */
2415                 skb2 = skb_clone(skb, GFP_ATOMIC);
2416                 if (!skb2)
2417                         goto out_unlock;
2418
2419                 net_timestamp_set(skb2);
2420
2421                 /* skb->nh should be correctly
2422                  * set by sender, so that the second statement is
2423                  * just protection against buggy protocols.
2424                  */
2425                 skb_reset_mac_header(skb2);
2426
2427                 if (skb_network_header(skb2) < skb2->data ||
2428                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2429                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2430                                              ntohs(skb2->protocol),
2431                                              dev->name);
2432                         skb_reset_network_header(skb2);
2433                 }
2434
2435                 skb2->transport_header = skb2->network_header;
2436                 skb2->pkt_type = PACKET_OUTGOING;
2437                 pt_prev = ptype;
2438         }
2439
2440         if (ptype_list == &ptype_all) {
2441                 ptype_list = &dev->ptype_all;
2442                 goto again;
2443         }
2444 out_unlock:
2445         if (pt_prev) {
2446                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2447                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2448                 else
2449                         kfree_skb(skb2);
2450         }
2451         rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2454
2455 /**
2456  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2457  * @dev: Network device
2458  * @txq: number of queues available
2459  *
2460  * If real_num_tx_queues is changed the tc mappings may no longer be
2461  * valid. To resolve this verify the tc mapping remains valid and if
2462  * not NULL the mapping. With no priorities mapping to this
2463  * offset/count pair it will no longer be used. In the worst case TC0
2464  * is invalid nothing can be done so disable priority mappings. If is
2465  * expected that drivers will fix this mapping if they can before
2466  * calling netif_set_real_num_tx_queues.
2467  */
2468 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2469 {
2470         int i;
2471         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2472
2473         /* If TC0 is invalidated disable TC mapping */
2474         if (tc->offset + tc->count > txq) {
2475                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2476                 dev->num_tc = 0;
2477                 return;
2478         }
2479
2480         /* Invalidated prio to tc mappings set to TC0 */
2481         for (i = 1; i < TC_BITMASK + 1; i++) {
2482                 int q = netdev_get_prio_tc_map(dev, i);
2483
2484                 tc = &dev->tc_to_txq[q];
2485                 if (tc->offset + tc->count > txq) {
2486                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2487                                 i, q);
2488                         netdev_set_prio_tc_map(dev, i, 0);
2489                 }
2490         }
2491 }
2492
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2494 {
2495         if (dev->num_tc) {
2496                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2497                 int i;
2498
2499                 /* walk through the TCs and see if it falls into any of them */
2500                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2501                         if ((txq - tc->offset) < tc->count)
2502                                 return i;
2503                 }
2504
2505                 /* didn't find it, just return -1 to indicate no match */
2506                 return -1;
2507         }
2508
2509         return 0;
2510 }
2511 EXPORT_SYMBOL(netdev_txq_to_tc);
2512
2513 #ifdef CONFIG_XPS
2514 static struct static_key xps_needed __read_mostly;
2515 static struct static_key xps_rxqs_needed __read_mostly;
2516 static DEFINE_MUTEX(xps_map_mutex);
2517 #define xmap_dereference(P)             \
2518         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2519
2520 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2521                              struct xps_dev_maps *old_maps, int tci, u16 index)
2522 {
2523         struct xps_map *map = NULL;
2524         int pos;
2525
2526         if (dev_maps)
2527                 map = xmap_dereference(dev_maps->attr_map[tci]);
2528         if (!map)
2529                 return false;
2530
2531         for (pos = map->len; pos--;) {
2532                 if (map->queues[pos] != index)
2533                         continue;
2534
2535                 if (map->len > 1) {
2536                         map->queues[pos] = map->queues[--map->len];
2537                         break;
2538                 }
2539
2540                 if (old_maps)
2541                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2542                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2543                 kfree_rcu(map, rcu);
2544                 return false;
2545         }
2546
2547         return true;
2548 }
2549
2550 static bool remove_xps_queue_cpu(struct net_device *dev,
2551                                  struct xps_dev_maps *dev_maps,
2552                                  int cpu, u16 offset, u16 count)
2553 {
2554         int num_tc = dev_maps->num_tc;
2555         bool active = false;
2556         int tci;
2557
2558         for (tci = cpu * num_tc; num_tc--; tci++) {
2559                 int i, j;
2560
2561                 for (i = count, j = offset; i--; j++) {
2562                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2563                                 break;
2564                 }
2565
2566                 active |= i < 0;
2567         }
2568
2569         return active;
2570 }
2571
2572 static void reset_xps_maps(struct net_device *dev,
2573                            struct xps_dev_maps *dev_maps,
2574                            enum xps_map_type type)
2575 {
2576         static_key_slow_dec_cpuslocked(&xps_needed);
2577         if (type == XPS_RXQS)
2578                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2579
2580         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2581
2582         kfree_rcu(dev_maps, rcu);
2583 }
2584
2585 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2586                            u16 offset, u16 count)
2587 {
2588         struct xps_dev_maps *dev_maps;
2589         bool active = false;
2590         int i, j;
2591
2592         dev_maps = xmap_dereference(dev->xps_maps[type]);
2593         if (!dev_maps)
2594                 return;
2595
2596         for (j = 0; j < dev_maps->nr_ids; j++)
2597                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2598         if (!active)
2599                 reset_xps_maps(dev, dev_maps, type);
2600
2601         if (type == XPS_CPUS) {
2602                 for (i = offset + (count - 1); count--; i--)
2603                         netdev_queue_numa_node_write(
2604                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2605         }
2606 }
2607
2608 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2609                                    u16 count)
2610 {
2611         if (!static_key_false(&xps_needed))
2612                 return;
2613
2614         cpus_read_lock();
2615         mutex_lock(&xps_map_mutex);
2616
2617         if (static_key_false(&xps_rxqs_needed))
2618                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2619
2620         clean_xps_maps(dev, XPS_CPUS, offset, count);
2621
2622         mutex_unlock(&xps_map_mutex);
2623         cpus_read_unlock();
2624 }
2625
2626 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2627 {
2628         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2629 }
2630
2631 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2632                                       u16 index, bool is_rxqs_map)
2633 {
2634         struct xps_map *new_map;
2635         int alloc_len = XPS_MIN_MAP_ALLOC;
2636         int i, pos;
2637
2638         for (pos = 0; map && pos < map->len; pos++) {
2639                 if (map->queues[pos] != index)
2640                         continue;
2641                 return map;
2642         }
2643
2644         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2645         if (map) {
2646                 if (pos < map->alloc_len)
2647                         return map;
2648
2649                 alloc_len = map->alloc_len * 2;
2650         }
2651
2652         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2653          *  map
2654          */
2655         if (is_rxqs_map)
2656                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2657         else
2658                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2659                                        cpu_to_node(attr_index));
2660         if (!new_map)
2661                 return NULL;
2662
2663         for (i = 0; i < pos; i++)
2664                 new_map->queues[i] = map->queues[i];
2665         new_map->alloc_len = alloc_len;
2666         new_map->len = pos;
2667
2668         return new_map;
2669 }
2670
2671 /* Copy xps maps at a given index */
2672 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2673                               struct xps_dev_maps *new_dev_maps, int index,
2674                               int tc, bool skip_tc)
2675 {
2676         int i, tci = index * dev_maps->num_tc;
2677         struct xps_map *map;
2678
2679         /* copy maps belonging to foreign traffic classes */
2680         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2681                 if (i == tc && skip_tc)
2682                         continue;
2683
2684                 /* fill in the new device map from the old device map */
2685                 map = xmap_dereference(dev_maps->attr_map[tci]);
2686                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687         }
2688 }
2689
2690 /* Must be called under cpus_read_lock */
2691 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2692                           u16 index, enum xps_map_type type)
2693 {
2694         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2695         const unsigned long *online_mask = NULL;
2696         bool active = false, copy = false;
2697         int i, j, tci, numa_node_id = -2;
2698         int maps_sz, num_tc = 1, tc = 0;
2699         struct xps_map *map, *new_map;
2700         unsigned int nr_ids;
2701
2702         if (dev->num_tc) {
2703                 /* Do not allow XPS on subordinate device directly */
2704                 num_tc = dev->num_tc;
2705                 if (num_tc < 0)
2706                         return -EINVAL;
2707
2708                 /* If queue belongs to subordinate dev use its map */
2709                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2710
2711                 tc = netdev_txq_to_tc(dev, index);
2712                 if (tc < 0)
2713                         return -EINVAL;
2714         }
2715
2716         mutex_lock(&xps_map_mutex);
2717
2718         dev_maps = xmap_dereference(dev->xps_maps[type]);
2719         if (type == XPS_RXQS) {
2720                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2721                 nr_ids = dev->num_rx_queues;
2722         } else {
2723                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2724                 if (num_possible_cpus() > 1)
2725                         online_mask = cpumask_bits(cpu_online_mask);
2726                 nr_ids = nr_cpu_ids;
2727         }
2728
2729         if (maps_sz < L1_CACHE_BYTES)
2730                 maps_sz = L1_CACHE_BYTES;
2731
2732         /* The old dev_maps could be larger or smaller than the one we're
2733          * setting up now, as dev->num_tc or nr_ids could have been updated in
2734          * between. We could try to be smart, but let's be safe instead and only
2735          * copy foreign traffic classes if the two map sizes match.
2736          */
2737         if (dev_maps &&
2738             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2739                 copy = true;
2740
2741         /* allocate memory for queue storage */
2742         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2743              j < nr_ids;) {
2744                 if (!new_dev_maps) {
2745                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2746                         if (!new_dev_maps) {
2747                                 mutex_unlock(&xps_map_mutex);
2748                                 return -ENOMEM;
2749                         }
2750
2751                         new_dev_maps->nr_ids = nr_ids;
2752                         new_dev_maps->num_tc = num_tc;
2753                 }
2754
2755                 tci = j * num_tc + tc;
2756                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2757
2758                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2759                 if (!map)
2760                         goto error;
2761
2762                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2763         }
2764
2765         if (!new_dev_maps)
2766                 goto out_no_new_maps;
2767
2768         if (!dev_maps) {
2769                 /* Increment static keys at most once per type */
2770                 static_key_slow_inc_cpuslocked(&xps_needed);
2771                 if (type == XPS_RXQS)
2772                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2773         }
2774
2775         for (j = 0; j < nr_ids; j++) {
2776                 bool skip_tc = false;
2777
2778                 tci = j * num_tc + tc;
2779                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2780                     netif_attr_test_online(j, online_mask, nr_ids)) {
2781                         /* add tx-queue to CPU/rx-queue maps */
2782                         int pos = 0;
2783
2784                         skip_tc = true;
2785
2786                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2787                         while ((pos < map->len) && (map->queues[pos] != index))
2788                                 pos++;
2789
2790                         if (pos == map->len)
2791                                 map->queues[map->len++] = index;
2792 #ifdef CONFIG_NUMA
2793                         if (type == XPS_CPUS) {
2794                                 if (numa_node_id == -2)
2795                                         numa_node_id = cpu_to_node(j);
2796                                 else if (numa_node_id != cpu_to_node(j))
2797                                         numa_node_id = -1;
2798                         }
2799 #endif
2800                 }
2801
2802                 if (copy)
2803                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2804                                           skip_tc);
2805         }
2806
2807         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2808
2809         /* Cleanup old maps */
2810         if (!dev_maps)
2811                 goto out_no_old_maps;
2812
2813         for (j = 0; j < dev_maps->nr_ids; j++) {
2814                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2815                         map = xmap_dereference(dev_maps->attr_map[tci]);
2816                         if (!map)
2817                                 continue;
2818
2819                         if (copy) {
2820                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2821                                 if (map == new_map)
2822                                         continue;
2823                         }
2824
2825                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2826                         kfree_rcu(map, rcu);
2827                 }
2828         }
2829
2830         old_dev_maps = dev_maps;
2831
2832 out_no_old_maps:
2833         dev_maps = new_dev_maps;
2834         active = true;
2835
2836 out_no_new_maps:
2837         if (type == XPS_CPUS)
2838                 /* update Tx queue numa node */
2839                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2840                                              (numa_node_id >= 0) ?
2841                                              numa_node_id : NUMA_NO_NODE);
2842
2843         if (!dev_maps)
2844                 goto out_no_maps;
2845
2846         /* removes tx-queue from unused CPUs/rx-queues */
2847         for (j = 0; j < dev_maps->nr_ids; j++) {
2848                 tci = j * dev_maps->num_tc;
2849
2850                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2851                         if (i == tc &&
2852                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2853                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2854                                 continue;
2855
2856                         active |= remove_xps_queue(dev_maps,
2857                                                    copy ? old_dev_maps : NULL,
2858                                                    tci, index);
2859                 }
2860         }
2861
2862         if (old_dev_maps)
2863                 kfree_rcu(old_dev_maps, rcu);
2864
2865         /* free map if not active */
2866         if (!active)
2867                 reset_xps_maps(dev, dev_maps, type);
2868
2869 out_no_maps:
2870         mutex_unlock(&xps_map_mutex);
2871
2872         return 0;
2873 error:
2874         /* remove any maps that we added */
2875         for (j = 0; j < nr_ids; j++) {
2876                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2877                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878                         map = copy ?
2879                               xmap_dereference(dev_maps->attr_map[tci]) :
2880                               NULL;
2881                         if (new_map && new_map != map)
2882                                 kfree(new_map);
2883                 }
2884         }
2885
2886         mutex_unlock(&xps_map_mutex);
2887
2888         kfree(new_dev_maps);
2889         return -ENOMEM;
2890 }
2891 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2892
2893 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2894                         u16 index)
2895 {
2896         int ret;
2897
2898         cpus_read_lock();
2899         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2900         cpus_read_unlock();
2901
2902         return ret;
2903 }
2904 EXPORT_SYMBOL(netif_set_xps_queue);
2905
2906 #endif
2907 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2908 {
2909         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2910
2911         /* Unbind any subordinate channels */
2912         while (txq-- != &dev->_tx[0]) {
2913                 if (txq->sb_dev)
2914                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2915         }
2916 }
2917
2918 void netdev_reset_tc(struct net_device *dev)
2919 {
2920 #ifdef CONFIG_XPS
2921         netif_reset_xps_queues_gt(dev, 0);
2922 #endif
2923         netdev_unbind_all_sb_channels(dev);
2924
2925         /* Reset TC configuration of device */
2926         dev->num_tc = 0;
2927         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2928         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2929 }
2930 EXPORT_SYMBOL(netdev_reset_tc);
2931
2932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2933 {
2934         if (tc >= dev->num_tc)
2935                 return -EINVAL;
2936
2937 #ifdef CONFIG_XPS
2938         netif_reset_xps_queues(dev, offset, count);
2939 #endif
2940         dev->tc_to_txq[tc].count = count;
2941         dev->tc_to_txq[tc].offset = offset;
2942         return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_set_tc_queue);
2945
2946 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2947 {
2948         if (num_tc > TC_MAX_QUEUE)
2949                 return -EINVAL;
2950
2951 #ifdef CONFIG_XPS
2952         netif_reset_xps_queues_gt(dev, 0);
2953 #endif
2954         netdev_unbind_all_sb_channels(dev);
2955
2956         dev->num_tc = num_tc;
2957         return 0;
2958 }
2959 EXPORT_SYMBOL(netdev_set_num_tc);
2960
2961 void netdev_unbind_sb_channel(struct net_device *dev,
2962                               struct net_device *sb_dev)
2963 {
2964         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2965
2966 #ifdef CONFIG_XPS
2967         netif_reset_xps_queues_gt(sb_dev, 0);
2968 #endif
2969         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2970         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2971
2972         while (txq-- != &dev->_tx[0]) {
2973                 if (txq->sb_dev == sb_dev)
2974                         txq->sb_dev = NULL;
2975         }
2976 }
2977 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2978
2979 int netdev_bind_sb_channel_queue(struct net_device *dev,
2980                                  struct net_device *sb_dev,
2981                                  u8 tc, u16 count, u16 offset)
2982 {
2983         /* Make certain the sb_dev and dev are already configured */
2984         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2985                 return -EINVAL;
2986
2987         /* We cannot hand out queues we don't have */
2988         if ((offset + count) > dev->real_num_tx_queues)
2989                 return -EINVAL;
2990
2991         /* Record the mapping */
2992         sb_dev->tc_to_txq[tc].count = count;
2993         sb_dev->tc_to_txq[tc].offset = offset;
2994
2995         /* Provide a way for Tx queue to find the tc_to_txq map or
2996          * XPS map for itself.
2997          */
2998         while (count--)
2999                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3000
3001         return 0;
3002 }
3003 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3004
3005 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3006 {
3007         /* Do not use a multiqueue device to represent a subordinate channel */
3008         if (netif_is_multiqueue(dev))
3009                 return -ENODEV;
3010
3011         /* We allow channels 1 - 32767 to be used for subordinate channels.
3012          * Channel 0 is meant to be "native" mode and used only to represent
3013          * the main root device. We allow writing 0 to reset the device back
3014          * to normal mode after being used as a subordinate channel.
3015          */
3016         if (channel > S16_MAX)
3017                 return -EINVAL;
3018
3019         dev->num_tc = -channel;
3020
3021         return 0;
3022 }
3023 EXPORT_SYMBOL(netdev_set_sb_channel);
3024
3025 /*
3026  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3027  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3028  */
3029 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3030 {
3031         bool disabling;
3032         int rc;
3033
3034         disabling = txq < dev->real_num_tx_queues;
3035
3036         if (txq < 1 || txq > dev->num_tx_queues)
3037                 return -EINVAL;
3038
3039         if (dev->reg_state == NETREG_REGISTERED ||
3040             dev->reg_state == NETREG_UNREGISTERING) {
3041                 ASSERT_RTNL();
3042
3043                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3044                                                   txq);
3045                 if (rc)
3046                         return rc;
3047
3048                 if (dev->num_tc)
3049                         netif_setup_tc(dev, txq);
3050
3051                 dev->real_num_tx_queues = txq;
3052
3053                 if (disabling) {
3054                         synchronize_net();
3055                         qdisc_reset_all_tx_gt(dev, txq);
3056 #ifdef CONFIG_XPS
3057                         netif_reset_xps_queues_gt(dev, txq);
3058 #endif
3059                 }
3060         } else {
3061                 dev->real_num_tx_queues = txq;
3062         }
3063
3064         return 0;
3065 }
3066 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3067
3068 #ifdef CONFIG_SYSFS
3069 /**
3070  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3071  *      @dev: Network device
3072  *      @rxq: Actual number of RX queues
3073  *
3074  *      This must be called either with the rtnl_lock held or before
3075  *      registration of the net device.  Returns 0 on success, or a
3076  *      negative error code.  If called before registration, it always
3077  *      succeeds.
3078  */
3079 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3080 {
3081         int rc;
3082
3083         if (rxq < 1 || rxq > dev->num_rx_queues)
3084                 return -EINVAL;
3085
3086         if (dev->reg_state == NETREG_REGISTERED) {
3087                 ASSERT_RTNL();
3088
3089                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3090                                                   rxq);
3091                 if (rc)
3092                         return rc;
3093         }
3094
3095         dev->real_num_rx_queues = rxq;
3096         return 0;
3097 }
3098 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3099 #endif
3100
3101 /**
3102  * netif_get_num_default_rss_queues - default number of RSS queues
3103  *
3104  * This routine should set an upper limit on the number of RSS queues
3105  * used by default by multiqueue devices.
3106  */
3107 int netif_get_num_default_rss_queues(void)
3108 {
3109         return is_kdump_kernel() ?
3110                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3111 }
3112 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3113
3114 static void __netif_reschedule(struct Qdisc *q)
3115 {
3116         struct softnet_data *sd;
3117         unsigned long flags;
3118
3119         local_irq_save(flags);
3120         sd = this_cpu_ptr(&softnet_data);
3121         q->next_sched = NULL;
3122         *sd->output_queue_tailp = q;
3123         sd->output_queue_tailp = &q->next_sched;
3124         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3125         local_irq_restore(flags);
3126 }
3127
3128 void __netif_schedule(struct Qdisc *q)
3129 {
3130         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3131                 __netif_reschedule(q);
3132 }
3133 EXPORT_SYMBOL(__netif_schedule);
3134
3135 struct dev_kfree_skb_cb {
3136         enum skb_free_reason reason;
3137 };
3138
3139 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3140 {
3141         return (struct dev_kfree_skb_cb *)skb->cb;
3142 }
3143
3144 void netif_schedule_queue(struct netdev_queue *txq)
3145 {
3146         rcu_read_lock();
3147         if (!netif_xmit_stopped(txq)) {
3148                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3149
3150                 __netif_schedule(q);
3151         }
3152         rcu_read_unlock();
3153 }
3154 EXPORT_SYMBOL(netif_schedule_queue);
3155
3156 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3157 {
3158         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3159                 struct Qdisc *q;
3160
3161                 rcu_read_lock();
3162                 q = rcu_dereference(dev_queue->qdisc);
3163                 __netif_schedule(q);
3164                 rcu_read_unlock();
3165         }
3166 }
3167 EXPORT_SYMBOL(netif_tx_wake_queue);
3168
3169 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3170 {
3171         unsigned long flags;
3172
3173         if (unlikely(!skb))
3174                 return;
3175
3176         if (likely(refcount_read(&skb->users) == 1)) {
3177                 smp_rmb();
3178                 refcount_set(&skb->users, 0);
3179         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3180                 return;
3181         }
3182         get_kfree_skb_cb(skb)->reason = reason;
3183         local_irq_save(flags);
3184         skb->next = __this_cpu_read(softnet_data.completion_queue);
3185         __this_cpu_write(softnet_data.completion_queue, skb);
3186         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3187         local_irq_restore(flags);
3188 }
3189 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3190
3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3192 {
3193         if (in_irq() || irqs_disabled())
3194                 __dev_kfree_skb_irq(skb, reason);
3195         else
3196                 dev_kfree_skb(skb);
3197 }
3198 EXPORT_SYMBOL(__dev_kfree_skb_any);
3199
3200
3201 /**
3202  * netif_device_detach - mark device as removed
3203  * @dev: network device
3204  *
3205  * Mark device as removed from system and therefore no longer available.
3206  */
3207 void netif_device_detach(struct net_device *dev)
3208 {
3209         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3210             netif_running(dev)) {
3211                 netif_tx_stop_all_queues(dev);
3212         }
3213 }
3214 EXPORT_SYMBOL(netif_device_detach);
3215
3216 /**
3217  * netif_device_attach - mark device as attached
3218  * @dev: network device
3219  *
3220  * Mark device as attached from system and restart if needed.
3221  */
3222 void netif_device_attach(struct net_device *dev)
3223 {
3224         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3225             netif_running(dev)) {
3226                 netif_tx_wake_all_queues(dev);
3227                 __netdev_watchdog_up(dev);
3228         }
3229 }
3230 EXPORT_SYMBOL(netif_device_attach);
3231
3232 /*
3233  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3234  * to be used as a distribution range.
3235  */
3236 static u16 skb_tx_hash(const struct net_device *dev,
3237                        const struct net_device *sb_dev,
3238                        struct sk_buff *skb)
3239 {
3240         u32 hash;
3241         u16 qoffset = 0;
3242         u16 qcount = dev->real_num_tx_queues;
3243
3244         if (dev->num_tc) {
3245                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3246
3247                 qoffset = sb_dev->tc_to_txq[tc].offset;
3248                 qcount = sb_dev->tc_to_txq[tc].count;
3249         }
3250
3251         if (skb_rx_queue_recorded(skb)) {
3252                 hash = skb_get_rx_queue(skb);
3253                 if (hash >= qoffset)
3254                         hash -= qoffset;
3255                 while (unlikely(hash >= qcount))
3256                         hash -= qcount;
3257                 return hash + qoffset;
3258         }
3259
3260         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261 }
3262
3263 static void skb_warn_bad_offload(const struct sk_buff *skb)
3264 {
3265         static const netdev_features_t null_features;
3266         struct net_device *dev = skb->dev;
3267         const char *name = "";
3268
3269         if (!net_ratelimit())
3270                 return;
3271
3272         if (dev) {
3273                 if (dev->dev.parent)
3274                         name = dev_driver_string(dev->dev.parent);
3275                 else
3276                         name = netdev_name(dev);
3277         }
3278         skb_dump(KERN_WARNING, skb, false);
3279         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3280              name, dev ? &dev->features : &null_features,
3281              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3282 }
3283
3284 /*
3285  * Invalidate hardware checksum when packet is to be mangled, and
3286  * complete checksum manually on outgoing path.
3287  */
3288 int skb_checksum_help(struct sk_buff *skb)
3289 {
3290         __wsum csum;
3291         int ret = 0, offset;
3292
3293         if (skb->ip_summed == CHECKSUM_COMPLETE)
3294                 goto out_set_summed;
3295
3296         if (unlikely(skb_is_gso(skb))) {
3297                 skb_warn_bad_offload(skb);
3298                 return -EINVAL;
3299         }
3300
3301         /* Before computing a checksum, we should make sure no frag could
3302          * be modified by an external entity : checksum could be wrong.
3303          */
3304         if (skb_has_shared_frag(skb)) {
3305                 ret = __skb_linearize(skb);
3306                 if (ret)
3307                         goto out;
3308         }
3309
3310         offset = skb_checksum_start_offset(skb);
3311         BUG_ON(offset >= skb_headlen(skb));
3312         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3313
3314         offset += skb->csum_offset;
3315         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3316
3317         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3318         if (ret)
3319                 goto out;
3320
3321         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3322 out_set_summed:
3323         skb->ip_summed = CHECKSUM_NONE;
3324 out:
3325         return ret;
3326 }
3327 EXPORT_SYMBOL(skb_checksum_help);
3328
3329 int skb_crc32c_csum_help(struct sk_buff *skb)
3330 {
3331         __le32 crc32c_csum;
3332         int ret = 0, offset, start;
3333
3334         if (skb->ip_summed != CHECKSUM_PARTIAL)
3335                 goto out;
3336
3337         if (unlikely(skb_is_gso(skb)))
3338                 goto out;
3339
3340         /* Before computing a checksum, we should make sure no frag could
3341          * be modified by an external entity : checksum could be wrong.
3342          */
3343         if (unlikely(skb_has_shared_frag(skb))) {
3344                 ret = __skb_linearize(skb);
3345                 if (ret)
3346                         goto out;
3347         }
3348         start = skb_checksum_start_offset(skb);
3349         offset = start + offsetof(struct sctphdr, checksum);
3350         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3351                 ret = -EINVAL;
3352                 goto out;
3353         }
3354
3355         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3356         if (ret)
3357                 goto out;
3358
3359         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3360                                                   skb->len - start, ~(__u32)0,
3361                                                   crc32c_csum_stub));
3362         *(__le32 *)(skb->data + offset) = crc32c_csum;
3363         skb->ip_summed = CHECKSUM_NONE;
3364         skb->csum_not_inet = 0;
3365 out:
3366         return ret;
3367 }
3368
3369 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3370 {
3371         __be16 type = skb->protocol;
3372
3373         /* Tunnel gso handlers can set protocol to ethernet. */
3374         if (type == htons(ETH_P_TEB)) {
3375                 struct ethhdr *eth;
3376
3377                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3378                         return 0;
3379
3380                 eth = (struct ethhdr *)skb->data;
3381                 type = eth->h_proto;
3382         }
3383
3384         return __vlan_get_protocol(skb, type, depth);
3385 }
3386
3387 /**
3388  *      skb_mac_gso_segment - mac layer segmentation handler.
3389  *      @skb: buffer to segment
3390  *      @features: features for the output path (see dev->features)
3391  */
3392 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3393                                     netdev_features_t features)
3394 {
3395         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3396         struct packet_offload *ptype;
3397         int vlan_depth = skb->mac_len;
3398         __be16 type = skb_network_protocol(skb, &vlan_depth);
3399
3400         if (unlikely(!type))
3401                 return ERR_PTR(-EINVAL);
3402
3403         __skb_pull(skb, vlan_depth);
3404
3405         rcu_read_lock();
3406         list_for_each_entry_rcu(ptype, &offload_base, list) {
3407                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3408                         segs = ptype->callbacks.gso_segment(skb, features);
3409                         break;
3410                 }
3411         }
3412         rcu_read_unlock();
3413
3414         __skb_push(skb, skb->data - skb_mac_header(skb));
3415
3416         return segs;
3417 }
3418 EXPORT_SYMBOL(skb_mac_gso_segment);
3419
3420
3421 /* openvswitch calls this on rx path, so we need a different check.
3422  */
3423 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3424 {
3425         if (tx_path)
3426                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3427                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3428
3429         return skb->ip_summed == CHECKSUM_NONE;
3430 }
3431
3432 /**
3433  *      __skb_gso_segment - Perform segmentation on skb.
3434  *      @skb: buffer to segment
3435  *      @features: features for the output path (see dev->features)
3436  *      @tx_path: whether it is called in TX path
3437  *
3438  *      This function segments the given skb and returns a list of segments.
3439  *
3440  *      It may return NULL if the skb requires no segmentation.  This is
3441  *      only possible when GSO is used for verifying header integrity.
3442  *
3443  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3444  */
3445 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3446                                   netdev_features_t features, bool tx_path)
3447 {
3448         struct sk_buff *segs;
3449
3450         if (unlikely(skb_needs_check(skb, tx_path))) {
3451                 int err;
3452
3453                 /* We're going to init ->check field in TCP or UDP header */
3454                 err = skb_cow_head(skb, 0);
3455                 if (err < 0)
3456                         return ERR_PTR(err);
3457         }
3458
3459         /* Only report GSO partial support if it will enable us to
3460          * support segmentation on this frame without needing additional
3461          * work.
3462          */
3463         if (features & NETIF_F_GSO_PARTIAL) {
3464                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3465                 struct net_device *dev = skb->dev;
3466
3467                 partial_features |= dev->features & dev->gso_partial_features;
3468                 if (!skb_gso_ok(skb, features | partial_features))
3469                         features &= ~NETIF_F_GSO_PARTIAL;
3470         }
3471
3472         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3473                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3474
3475         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3476         SKB_GSO_CB(skb)->encap_level = 0;
3477
3478         skb_reset_mac_header(skb);
3479         skb_reset_mac_len(skb);
3480
3481         segs = skb_mac_gso_segment(skb, features);
3482
3483         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3484                 skb_warn_bad_offload(skb);
3485
3486         return segs;
3487 }
3488 EXPORT_SYMBOL(__skb_gso_segment);
3489
3490 /* Take action when hardware reception checksum errors are detected. */
3491 #ifdef CONFIG_BUG
3492 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3493 {
3494         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3495         skb_dump(KERN_ERR, skb, true);
3496         dump_stack();
3497 }
3498
3499 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3500 {
3501         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3502 }
3503 EXPORT_SYMBOL(netdev_rx_csum_fault);
3504 #endif
3505
3506 /* XXX: check that highmem exists at all on the given machine. */
3507 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3508 {
3509 #ifdef CONFIG_HIGHMEM
3510         int i;
3511
3512         if (!(dev->features & NETIF_F_HIGHDMA)) {
3513                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3515
3516                         if (PageHighMem(skb_frag_page(frag)))
3517                                 return 1;
3518                 }
3519         }
3520 #endif
3521         return 0;
3522 }
3523
3524 /* If MPLS offload request, verify we are testing hardware MPLS features
3525  * instead of standard features for the netdev.
3526  */
3527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3529                                            netdev_features_t features,
3530                                            __be16 type)
3531 {
3532         if (eth_p_mpls(type))
3533                 features &= skb->dev->mpls_features;
3534
3535         return features;
3536 }
3537 #else
3538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3539                                            netdev_features_t features,
3540                                            __be16 type)
3541 {
3542         return features;
3543 }
3544 #endif
3545
3546 static netdev_features_t harmonize_features(struct sk_buff *skb,
3547         netdev_features_t features)
3548 {
3549         __be16 type;
3550
3551         type = skb_network_protocol(skb, NULL);
3552         features = net_mpls_features(skb, features, type);
3553
3554         if (skb->ip_summed != CHECKSUM_NONE &&
3555             !can_checksum_protocol(features, type)) {
3556                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3557         }
3558         if (illegal_highdma(skb->dev, skb))
3559                 features &= ~NETIF_F_SG;
3560
3561         return features;
3562 }
3563
3564 netdev_features_t passthru_features_check(struct sk_buff *skb,
3565                                           struct net_device *dev,
3566                                           netdev_features_t features)
3567 {
3568         return features;
3569 }
3570 EXPORT_SYMBOL(passthru_features_check);
3571
3572 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3573                                              struct net_device *dev,
3574                                              netdev_features_t features)
3575 {
3576         return vlan_features_check(skb, features);
3577 }
3578
3579 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3580                                             struct net_device *dev,
3581                                             netdev_features_t features)
3582 {
3583         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3584
3585         if (gso_segs > dev->gso_max_segs)
3586                 return features & ~NETIF_F_GSO_MASK;
3587
3588         if (!skb_shinfo(skb)->gso_type) {
3589                 skb_warn_bad_offload(skb);
3590                 return features & ~NETIF_F_GSO_MASK;
3591         }
3592
3593         /* Support for GSO partial features requires software
3594          * intervention before we can actually process the packets
3595          * so we need to strip support for any partial features now
3596          * and we can pull them back in after we have partially
3597          * segmented the frame.
3598          */
3599         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3600                 features &= ~dev->gso_partial_features;
3601
3602         /* Make sure to clear the IPv4 ID mangling feature if the
3603          * IPv4 header has the potential to be fragmented.
3604          */
3605         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3606                 struct iphdr *iph = skb->encapsulation ?
3607                                     inner_ip_hdr(skb) : ip_hdr(skb);
3608
3609                 if (!(iph->frag_off & htons(IP_DF)))
3610                         features &= ~NETIF_F_TSO_MANGLEID;
3611         }
3612
3613         return features;
3614 }
3615
3616 netdev_features_t netif_skb_features(struct sk_buff *skb)
3617 {
3618         struct net_device *dev = skb->dev;
3619         netdev_features_t features = dev->features;
3620
3621         if (skb_is_gso(skb))
3622                 features = gso_features_check(skb, dev, features);
3623
3624         /* If encapsulation offload request, verify we are testing
3625          * hardware encapsulation features instead of standard
3626          * features for the netdev
3627          */
3628         if (skb->encapsulation)
3629                 features &= dev->hw_enc_features;
3630
3631         if (skb_vlan_tagged(skb))
3632                 features = netdev_intersect_features(features,
3633                                                      dev->vlan_features |
3634                                                      NETIF_F_HW_VLAN_CTAG_TX |
3635                                                      NETIF_F_HW_VLAN_STAG_TX);
3636
3637         if (dev->netdev_ops->ndo_features_check)
3638                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3639                                                                 features);
3640         else
3641                 features &= dflt_features_check(skb, dev, features);
3642
3643         return harmonize_features(skb, features);
3644 }
3645 EXPORT_SYMBOL(netif_skb_features);
3646
3647 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3648                     struct netdev_queue *txq, bool more)
3649 {
3650         unsigned int len;
3651         int rc;
3652
3653         if (dev_nit_active(dev))
3654                 dev_queue_xmit_nit(skb, dev);
3655
3656         len = skb->len;
3657         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3658         trace_net_dev_start_xmit(skb, dev);
3659         rc = netdev_start_xmit(skb, dev, txq, more);
3660         trace_net_dev_xmit(skb, rc, dev, len);
3661
3662         return rc;
3663 }
3664
3665 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3666                                     struct netdev_queue *txq, int *ret)
3667 {
3668         struct sk_buff *skb = first;
3669         int rc = NETDEV_TX_OK;
3670
3671         while (skb) {
3672                 struct sk_buff *next = skb->next;
3673
3674                 skb_mark_not_on_list(skb);
3675                 rc = xmit_one(skb, dev, txq, next != NULL);
3676                 if (unlikely(!dev_xmit_complete(rc))) {
3677                         skb->next = next;
3678                         goto out;
3679                 }
3680
3681                 skb = next;
3682                 if (netif_tx_queue_stopped(txq) && skb) {
3683                         rc = NETDEV_TX_BUSY;
3684                         break;
3685                 }
3686         }
3687
3688 out:
3689         *ret = rc;
3690         return skb;
3691 }
3692
3693 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3694                                           netdev_features_t features)
3695 {
3696         if (skb_vlan_tag_present(skb) &&
3697             !vlan_hw_offload_capable(features, skb->vlan_proto))
3698                 skb = __vlan_hwaccel_push_inside(skb);
3699         return skb;
3700 }
3701
3702 int skb_csum_hwoffload_help(struct sk_buff *skb,
3703                             const netdev_features_t features)
3704 {
3705         if (unlikely(skb_csum_is_sctp(skb)))
3706                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3707                         skb_crc32c_csum_help(skb);
3708
3709         if (features & NETIF_F_HW_CSUM)
3710                 return 0;
3711
3712         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3713                 switch (skb->csum_offset) {
3714                 case offsetof(struct tcphdr, check):
3715                 case offsetof(struct udphdr, check):
3716                         return 0;
3717                 }
3718         }
3719
3720         return skb_checksum_help(skb);
3721 }
3722 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3723
3724 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3725 {
3726         netdev_features_t features;
3727
3728         features = netif_skb_features(skb);
3729         skb = validate_xmit_vlan(skb, features);
3730         if (unlikely(!skb))
3731                 goto out_null;
3732
3733         skb = sk_validate_xmit_skb(skb, dev);
3734         if (unlikely(!skb))
3735                 goto out_null;
3736
3737         if (netif_needs_gso(skb, features)) {
3738                 struct sk_buff *segs;
3739
3740                 segs = skb_gso_segment(skb, features);
3741                 if (IS_ERR(segs)) {
3742                         goto out_kfree_skb;
3743                 } else if (segs) {
3744                         consume_skb(skb);
3745                         skb = segs;
3746                 }
3747         } else {
3748                 if (skb_needs_linearize(skb, features) &&
3749                     __skb_linearize(skb))
3750                         goto out_kfree_skb;
3751
3752                 /* If packet is not checksummed and device does not
3753                  * support checksumming for this protocol, complete
3754                  * checksumming here.
3755                  */
3756                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757                         if (skb->encapsulation)
3758                                 skb_set_inner_transport_header(skb,
3759                                                                skb_checksum_start_offset(skb));
3760                         else
3761                                 skb_set_transport_header(skb,
3762                                                          skb_checksum_start_offset(skb));
3763                         if (skb_csum_hwoffload_help(skb, features))
3764                                 goto out_kfree_skb;
3765                 }
3766         }
3767
3768         skb = validate_xmit_xfrm(skb, features, again);
3769
3770         return skb;
3771
3772 out_kfree_skb:
3773         kfree_skb(skb);
3774 out_null:
3775         atomic_long_inc(&dev->tx_dropped);
3776         return NULL;
3777 }
3778
3779 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3780 {
3781         struct sk_buff *next, *head = NULL, *tail;
3782
3783         for (; skb != NULL; skb = next) {
3784                 next = skb->next;
3785                 skb_mark_not_on_list(skb);
3786
3787                 /* in case skb wont be segmented, point to itself */
3788                 skb->prev = skb;
3789
3790                 skb = validate_xmit_skb(skb, dev, again);
3791                 if (!skb)
3792                         continue;
3793
3794                 if (!head)
3795                         head = skb;
3796                 else
3797                         tail->next = skb;
3798                 /* If skb was segmented, skb->prev points to
3799                  * the last segment. If not, it still contains skb.
3800                  */
3801                 tail = skb->prev;
3802         }
3803         return head;
3804 }
3805 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3806
3807 static void qdisc_pkt_len_init(struct sk_buff *skb)
3808 {
3809         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3810
3811         qdisc_skb_cb(skb)->pkt_len = skb->len;
3812
3813         /* To get more precise estimation of bytes sent on wire,
3814          * we add to pkt_len the headers size of all segments
3815          */
3816         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3817                 unsigned int hdr_len;
3818                 u16 gso_segs = shinfo->gso_segs;
3819
3820                 /* mac layer + network layer */
3821                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3822
3823                 /* + transport layer */
3824                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3825                         const struct tcphdr *th;
3826                         struct tcphdr _tcphdr;
3827
3828                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3829                                                 sizeof(_tcphdr), &_tcphdr);
3830                         if (likely(th))
3831                                 hdr_len += __tcp_hdrlen(th);
3832                 } else {
3833                         struct udphdr _udphdr;
3834
3835                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3836                                                sizeof(_udphdr), &_udphdr))
3837                                 hdr_len += sizeof(struct udphdr);
3838                 }
3839
3840                 if (shinfo->gso_type & SKB_GSO_DODGY)
3841                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3842                                                 shinfo->gso_size);
3843
3844                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3845         }
3846 }
3847
3848 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3849                              struct sk_buff **to_free,
3850                              struct netdev_queue *txq)
3851 {
3852         int rc;
3853
3854         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3855         if (rc == NET_XMIT_SUCCESS)
3856                 trace_qdisc_enqueue(q, txq, skb);
3857         return rc;
3858 }
3859
3860 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3861                                  struct net_device *dev,
3862                                  struct netdev_queue *txq)
3863 {
3864         spinlock_t *root_lock = qdisc_lock(q);
3865         struct sk_buff *to_free = NULL;
3866         bool contended;
3867         int rc;
3868
3869         qdisc_calculate_pkt_len(skb, q);
3870
3871         if (q->flags & TCQ_F_NOLOCK) {
3872                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3873                     qdisc_run_begin(q)) {
3874                         /* Retest nolock_qdisc_is_empty() within the protection
3875                          * of q->seqlock to protect from racing with requeuing.
3876                          */
3877                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3878                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3879                                 __qdisc_run(q);
3880                                 qdisc_run_end(q);
3881
3882                                 goto no_lock_out;
3883                         }
3884
3885                         qdisc_bstats_cpu_update(q, skb);
3886                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3887                             !nolock_qdisc_is_empty(q))
3888                                 __qdisc_run(q);
3889
3890                         qdisc_run_end(q);
3891                         return NET_XMIT_SUCCESS;
3892                 }
3893
3894                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3895                 qdisc_run(q);
3896
3897 no_lock_out:
3898                 if (unlikely(to_free))
3899                         kfree_skb_list(to_free);
3900                 return rc;
3901         }
3902
3903         /*
3904          * Heuristic to force contended enqueues to serialize on a
3905          * separate lock before trying to get qdisc main lock.
3906          * This permits qdisc->running owner to get the lock more
3907          * often and dequeue packets faster.
3908          */
3909         contended = qdisc_is_running(q);
3910         if (unlikely(contended))
3911                 spin_lock(&q->busylock);
3912
3913         spin_lock(root_lock);
3914         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3915                 __qdisc_drop(skb, &to_free);
3916                 rc = NET_XMIT_DROP;
3917         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3918                    qdisc_run_begin(q)) {
3919                 /*
3920                  * This is a work-conserving queue; there are no old skbs
3921                  * waiting to be sent out; and the qdisc is not running -
3922                  * xmit the skb directly.
3923                  */
3924
3925                 qdisc_bstats_update(q, skb);
3926
3927                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3928                         if (unlikely(contended)) {
3929                                 spin_unlock(&q->busylock);
3930                                 contended = false;
3931                         }
3932                         __qdisc_run(q);
3933                 }
3934
3935                 qdisc_run_end(q);
3936                 rc = NET_XMIT_SUCCESS;
3937         } else {
3938                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3939                 if (qdisc_run_begin(q)) {
3940                         if (unlikely(contended)) {
3941                                 spin_unlock(&q->busylock);
3942                                 contended = false;
3943                         }
3944                         __qdisc_run(q);
3945                         qdisc_run_end(q);
3946                 }
3947         }
3948         spin_unlock(root_lock);
3949         if (unlikely(to_free))
3950                 kfree_skb_list(to_free);
3951         if (unlikely(contended))
3952                 spin_unlock(&q->busylock);
3953         return rc;
3954 }
3955
3956 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957 static void skb_update_prio(struct sk_buff *skb)
3958 {
3959         const struct netprio_map *map;
3960         const struct sock *sk;
3961         unsigned int prioidx;
3962
3963         if (skb->priority)
3964                 return;
3965         map = rcu_dereference_bh(skb->dev->priomap);
3966         if (!map)
3967                 return;
3968         sk = skb_to_full_sk(skb);
3969         if (!sk)
3970                 return;
3971
3972         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3973
3974         if (prioidx < map->priomap_len)
3975                 skb->priority = map->priomap[prioidx];
3976 }
3977 #else
3978 #define skb_update_prio(skb)
3979 #endif
3980
3981 /**
3982  *      dev_loopback_xmit - loop back @skb
3983  *      @net: network namespace this loopback is happening in
3984  *      @sk:  sk needed to be a netfilter okfn
3985  *      @skb: buffer to transmit
3986  */
3987 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3988 {
3989         skb_reset_mac_header(skb);
3990         __skb_pull(skb, skb_network_offset(skb));
3991         skb->pkt_type = PACKET_LOOPBACK;
3992         skb->ip_summed = CHECKSUM_UNNECESSARY;
3993         WARN_ON(!skb_dst(skb));
3994         skb_dst_force(skb);
3995         netif_rx_ni(skb);
3996         return 0;
3997 }
3998 EXPORT_SYMBOL(dev_loopback_xmit);
3999
4000 #ifdef CONFIG_NET_EGRESS
4001 static struct sk_buff *
4002 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4003 {
4004         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
4005         struct tcf_result cl_res;
4006
4007         if (!miniq)
4008                 return skb;
4009
4010         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
4011         qdisc_skb_cb(skb)->mru = 0;
4012         qdisc_skb_cb(skb)->post_ct = false;
4013         mini_qdisc_bstats_cpu_update(miniq, skb);
4014
4015         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4016         case TC_ACT_OK:
4017         case TC_ACT_RECLASSIFY:
4018                 skb->tc_index = TC_H_MIN(cl_res.classid);
4019                 break;
4020         case TC_ACT_SHOT:
4021                 mini_qdisc_qstats_cpu_drop(miniq);
4022                 *ret = NET_XMIT_DROP;
4023                 kfree_skb(skb);
4024                 return NULL;
4025         case TC_ACT_STOLEN:
4026         case TC_ACT_QUEUED:
4027         case TC_ACT_TRAP:
4028                 *ret = NET_XMIT_SUCCESS;
4029                 consume_skb(skb);
4030                 return NULL;
4031         case TC_ACT_REDIRECT:
4032                 /* No need to push/pop skb's mac_header here on egress! */
4033                 skb_do_redirect(skb);
4034                 *ret = NET_XMIT_SUCCESS;
4035                 return NULL;
4036         default:
4037                 break;
4038         }
4039
4040         return skb;
4041 }
4042 #endif /* CONFIG_NET_EGRESS */
4043
4044 #ifdef CONFIG_XPS
4045 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4046                                struct xps_dev_maps *dev_maps, unsigned int tci)
4047 {
4048         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4049         struct xps_map *map;
4050         int queue_index = -1;
4051
4052         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4053                 return queue_index;
4054
4055         tci *= dev_maps->num_tc;
4056         tci += tc;
4057
4058         map = rcu_dereference(dev_maps->attr_map[tci]);
4059         if (map) {
4060                 if (map->len == 1)
4061                         queue_index = map->queues[0];
4062                 else
4063                         queue_index = map->queues[reciprocal_scale(
4064                                                 skb_get_hash(skb), map->len)];
4065                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4066                         queue_index = -1;
4067         }
4068         return queue_index;
4069 }
4070 #endif
4071
4072 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4073                          struct sk_buff *skb)
4074 {
4075 #ifdef CONFIG_XPS
4076         struct xps_dev_maps *dev_maps;
4077         struct sock *sk = skb->sk;
4078         int queue_index = -1;
4079
4080         if (!static_key_false(&xps_needed))
4081                 return -1;
4082
4083         rcu_read_lock();
4084         if (!static_key_false(&xps_rxqs_needed))
4085                 goto get_cpus_map;
4086
4087         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4088         if (dev_maps) {
4089                 int tci = sk_rx_queue_get(sk);
4090
4091                 if (tci >= 0)
4092                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4093                                                           tci);
4094         }
4095
4096 get_cpus_map:
4097         if (queue_index < 0) {
4098                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4099                 if (dev_maps) {
4100                         unsigned int tci = skb->sender_cpu - 1;
4101
4102                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4103                                                           tci);
4104                 }
4105         }
4106         rcu_read_unlock();
4107
4108         return queue_index;
4109 #else
4110         return -1;
4111 #endif
4112 }
4113
4114 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4115                      struct net_device *sb_dev)
4116 {
4117         return 0;
4118 }
4119 EXPORT_SYMBOL(dev_pick_tx_zero);
4120
4121 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4122                        struct net_device *sb_dev)
4123 {
4124         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4125 }
4126 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4127
4128 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4129                      struct net_device *sb_dev)
4130 {
4131         struct sock *sk = skb->sk;
4132         int queue_index = sk_tx_queue_get(sk);
4133
4134         sb_dev = sb_dev ? : dev;
4135
4136         if (queue_index < 0 || skb->ooo_okay ||
4137             queue_index >= dev->real_num_tx_queues) {
4138                 int new_index = get_xps_queue(dev, sb_dev, skb);
4139
4140                 if (new_index < 0)
4141                         new_index = skb_tx_hash(dev, sb_dev, skb);
4142
4143                 if (queue_index != new_index && sk &&
4144                     sk_fullsock(sk) &&
4145                     rcu_access_pointer(sk->sk_dst_cache))
4146                         sk_tx_queue_set(sk, new_index);
4147
4148                 queue_index = new_index;
4149         }
4150
4151         return queue_index;
4152 }
4153 EXPORT_SYMBOL(netdev_pick_tx);
4154
4155 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4156                                          struct sk_buff *skb,
4157                                          struct net_device *sb_dev)
4158 {
4159         int queue_index = 0;
4160
4161 #ifdef CONFIG_XPS
4162         u32 sender_cpu = skb->sender_cpu - 1;
4163
4164         if (sender_cpu >= (u32)NR_CPUS)
4165                 skb->sender_cpu = raw_smp_processor_id() + 1;
4166 #endif
4167
4168         if (dev->real_num_tx_queues != 1) {
4169                 const struct net_device_ops *ops = dev->netdev_ops;
4170
4171                 if (ops->ndo_select_queue)
4172                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4173                 else
4174                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4175
4176                 queue_index = netdev_cap_txqueue(dev, queue_index);
4177         }
4178
4179         skb_set_queue_mapping(skb, queue_index);
4180         return netdev_get_tx_queue(dev, queue_index);
4181 }
4182
4183 /**
4184  *      __dev_queue_xmit - transmit a buffer
4185  *      @skb: buffer to transmit
4186  *      @sb_dev: suboordinate device used for L2 forwarding offload
4187  *
4188  *      Queue a buffer for transmission to a network device. The caller must
4189  *      have set the device and priority and built the buffer before calling
4190  *      this function. The function can be called from an interrupt.
4191  *
4192  *      A negative errno code is returned on a failure. A success does not
4193  *      guarantee the frame will be transmitted as it may be dropped due
4194  *      to congestion or traffic shaping.
4195  *
4196  * -----------------------------------------------------------------------------------
4197  *      I notice this method can also return errors from the queue disciplines,
4198  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4199  *      be positive.
4200  *
4201  *      Regardless of the return value, the skb is consumed, so it is currently
4202  *      difficult to retry a send to this method.  (You can bump the ref count
4203  *      before sending to hold a reference for retry if you are careful.)
4204  *
4205  *      When calling this method, interrupts MUST be enabled.  This is because
4206  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4207  *          --BLG
4208  */
4209 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4210 {
4211         struct net_device *dev = skb->dev;
4212         struct netdev_queue *txq;
4213         struct Qdisc *q;
4214         int rc = -ENOMEM;
4215         bool again = false;
4216
4217         skb_reset_mac_header(skb);
4218
4219         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4220                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4221
4222         /* Disable soft irqs for various locks below. Also
4223          * stops preemption for RCU.
4224          */
4225         rcu_read_lock_bh();
4226
4227         skb_update_prio(skb);
4228
4229         qdisc_pkt_len_init(skb);
4230 #ifdef CONFIG_NET_CLS_ACT
4231         skb->tc_at_ingress = 0;
4232 # ifdef CONFIG_NET_EGRESS
4233         if (static_branch_unlikely(&egress_needed_key)) {
4234                 skb = sch_handle_egress(skb, &rc, dev);
4235                 if (!skb)
4236                         goto out;
4237         }
4238 # endif
4239 #endif
4240         /* If device/qdisc don't need skb->dst, release it right now while
4241          * its hot in this cpu cache.
4242          */
4243         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4244                 skb_dst_drop(skb);
4245         else
4246                 skb_dst_force(skb);
4247
4248         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4249         q = rcu_dereference_bh(txq->qdisc);
4250
4251         trace_net_dev_queue(skb);
4252         if (q->enqueue) {
4253                 rc = __dev_xmit_skb(skb, q, dev, txq);
4254                 goto out;
4255         }
4256
4257         /* The device has no queue. Common case for software devices:
4258          * loopback, all the sorts of tunnels...
4259
4260          * Really, it is unlikely that netif_tx_lock protection is necessary
4261          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4262          * counters.)
4263          * However, it is possible, that they rely on protection
4264          * made by us here.
4265
4266          * Check this and shot the lock. It is not prone from deadlocks.
4267          *Either shot noqueue qdisc, it is even simpler 8)
4268          */
4269         if (dev->flags & IFF_UP) {
4270                 int cpu = smp_processor_id(); /* ok because BHs are off */
4271
4272                 if (txq->xmit_lock_owner != cpu) {
4273                         if (dev_xmit_recursion())
4274                                 goto recursion_alert;
4275
4276                         skb = validate_xmit_skb(skb, dev, &again);
4277                         if (!skb)
4278                                 goto out;
4279
4280                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281                         HARD_TX_LOCK(dev, txq, cpu);
4282
4283                         if (!netif_xmit_stopped(txq)) {
4284                                 dev_xmit_recursion_inc();
4285                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4286                                 dev_xmit_recursion_dec();
4287                                 if (dev_xmit_complete(rc)) {
4288                                         HARD_TX_UNLOCK(dev, txq);
4289                                         goto out;
4290                                 }
4291                         }
4292                         HARD_TX_UNLOCK(dev, txq);
4293                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4294                                              dev->name);
4295                 } else {
4296                         /* Recursion is detected! It is possible,
4297                          * unfortunately
4298                          */
4299 recursion_alert:
4300                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4301                                              dev->name);
4302                 }
4303         }
4304
4305         rc = -ENETDOWN;
4306         rcu_read_unlock_bh();
4307
4308         atomic_long_inc(&dev->tx_dropped);
4309         kfree_skb_list(skb);
4310         return rc;
4311 out:
4312         rcu_read_unlock_bh();
4313         return rc;
4314 }
4315
4316 int dev_queue_xmit(struct sk_buff *skb)
4317 {
4318         return __dev_queue_xmit(skb, NULL);
4319 }
4320 EXPORT_SYMBOL(dev_queue_xmit);
4321
4322 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4323 {
4324         return __dev_queue_xmit(skb, sb_dev);
4325 }
4326 EXPORT_SYMBOL(dev_queue_xmit_accel);
4327
4328 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4329 {
4330         struct net_device *dev = skb->dev;
4331         struct sk_buff *orig_skb = skb;
4332         struct netdev_queue *txq;
4333         int ret = NETDEV_TX_BUSY;
4334         bool again = false;
4335
4336         if (unlikely(!netif_running(dev) ||
4337                      !netif_carrier_ok(dev)))
4338                 goto drop;
4339
4340         skb = validate_xmit_skb_list(skb, dev, &again);
4341         if (skb != orig_skb)
4342                 goto drop;
4343
4344         skb_set_queue_mapping(skb, queue_id);
4345         txq = skb_get_tx_queue(dev, skb);
4346         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4347
4348         local_bh_disable();
4349
4350         dev_xmit_recursion_inc();
4351         HARD_TX_LOCK(dev, txq, smp_processor_id());
4352         if (!netif_xmit_frozen_or_drv_stopped(txq))
4353                 ret = netdev_start_xmit(skb, dev, txq, false);
4354         HARD_TX_UNLOCK(dev, txq);
4355         dev_xmit_recursion_dec();
4356
4357         local_bh_enable();
4358         return ret;
4359 drop:
4360         atomic_long_inc(&dev->tx_dropped);
4361         kfree_skb_list(skb);
4362         return NET_XMIT_DROP;
4363 }
4364 EXPORT_SYMBOL(__dev_direct_xmit);
4365
4366 /*************************************************************************
4367  *                      Receiver routines
4368  *************************************************************************/
4369
4370 int netdev_max_backlog __read_mostly = 1000;
4371 EXPORT_SYMBOL(netdev_max_backlog);
4372
4373 int netdev_tstamp_prequeue __read_mostly = 1;
4374 int netdev_budget __read_mostly = 300;
4375 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4376 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4377 int weight_p __read_mostly = 64;           /* old backlog weight */
4378 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4379 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4380 int dev_rx_weight __read_mostly = 64;
4381 int dev_tx_weight __read_mostly = 64;
4382 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4383 int gro_normal_batch __read_mostly = 8;
4384
4385 /* Called with irq disabled */
4386 static inline void ____napi_schedule(struct softnet_data *sd,
4387                                      struct napi_struct *napi)
4388 {
4389         struct task_struct *thread;
4390
4391         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4392                 /* Paired with smp_mb__before_atomic() in
4393                  * napi_enable()/dev_set_threaded().
4394                  * Use READ_ONCE() to guarantee a complete
4395                  * read on napi->thread. Only call
4396                  * wake_up_process() when it's not NULL.
4397                  */
4398                 thread = READ_ONCE(napi->thread);
4399                 if (thread) {
4400                         /* Avoid doing set_bit() if the thread is in
4401                          * INTERRUPTIBLE state, cause napi_thread_wait()
4402                          * makes sure to proceed with napi polling
4403                          * if the thread is explicitly woken from here.
4404                          */
4405                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4406                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4407                         wake_up_process(thread);
4408                         return;
4409                 }
4410         }
4411
4412         list_add_tail(&napi->poll_list, &sd->poll_list);
4413         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4414 }
4415
4416 #ifdef CONFIG_RPS
4417
4418 /* One global table that all flow-based protocols share. */
4419 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4420 EXPORT_SYMBOL(rps_sock_flow_table);
4421 u32 rps_cpu_mask __read_mostly;
4422 EXPORT_SYMBOL(rps_cpu_mask);
4423
4424 struct static_key_false rps_needed __read_mostly;
4425 EXPORT_SYMBOL(rps_needed);
4426 struct static_key_false rfs_needed __read_mostly;
4427 EXPORT_SYMBOL(rfs_needed);
4428
4429 static struct rps_dev_flow *
4430 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431             struct rps_dev_flow *rflow, u16 next_cpu)
4432 {
4433         if (next_cpu < nr_cpu_ids) {
4434 #ifdef CONFIG_RFS_ACCEL
4435                 struct netdev_rx_queue *rxqueue;
4436                 struct rps_dev_flow_table *flow_table;
4437                 struct rps_dev_flow *old_rflow;
4438                 u32 flow_id;
4439                 u16 rxq_index;
4440                 int rc;
4441
4442                 /* Should we steer this flow to a different hardware queue? */
4443                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4444                     !(dev->features & NETIF_F_NTUPLE))
4445                         goto out;
4446                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4447                 if (rxq_index == skb_get_rx_queue(skb))
4448                         goto out;
4449
4450                 rxqueue = dev->_rx + rxq_index;
4451                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4452                 if (!flow_table)
4453                         goto out;
4454                 flow_id = skb_get_hash(skb) & flow_table->mask;
4455                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4456                                                         rxq_index, flow_id);
4457                 if (rc < 0)
4458                         goto out;
4459                 old_rflow = rflow;
4460                 rflow = &flow_table->flows[flow_id];
4461                 rflow->filter = rc;
4462                 if (old_rflow->filter == rflow->filter)
4463                         old_rflow->filter = RPS_NO_FILTER;
4464         out:
4465 #endif
4466                 rflow->last_qtail =
4467                         per_cpu(softnet_data, next_cpu).input_queue_head;
4468         }
4469
4470         rflow->cpu = next_cpu;
4471         return rflow;
4472 }
4473
4474 /*
4475  * get_rps_cpu is called from netif_receive_skb and returns the target
4476  * CPU from the RPS map of the receiving queue for a given skb.
4477  * rcu_read_lock must be held on entry.
4478  */
4479 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480                        struct rps_dev_flow **rflowp)
4481 {
4482         const struct rps_sock_flow_table *sock_flow_table;
4483         struct netdev_rx_queue *rxqueue = dev->_rx;
4484         struct rps_dev_flow_table *flow_table;
4485         struct rps_map *map;
4486         int cpu = -1;
4487         u32 tcpu;
4488         u32 hash;
4489
4490         if (skb_rx_queue_recorded(skb)) {
4491                 u16 index = skb_get_rx_queue(skb);
4492
4493                 if (unlikely(index >= dev->real_num_rx_queues)) {
4494                         WARN_ONCE(dev->real_num_rx_queues > 1,
4495                                   "%s received packet on queue %u, but number "
4496                                   "of RX queues is %u\n",
4497                                   dev->name, index, dev->real_num_rx_queues);
4498                         goto done;
4499                 }
4500                 rxqueue += index;
4501         }
4502
4503         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4504
4505         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4506         map = rcu_dereference(rxqueue->rps_map);
4507         if (!flow_table && !map)
4508                 goto done;
4509
4510         skb_reset_network_header(skb);
4511         hash = skb_get_hash(skb);
4512         if (!hash)
4513                 goto done;
4514
4515         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4516         if (flow_table && sock_flow_table) {
4517                 struct rps_dev_flow *rflow;
4518                 u32 next_cpu;
4519                 u32 ident;
4520
4521                 /* First check into global flow table if there is a match */
4522                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4523                 if ((ident ^ hash) & ~rps_cpu_mask)
4524                         goto try_rps;
4525
4526                 next_cpu = ident & rps_cpu_mask;
4527
4528                 /* OK, now we know there is a match,
4529                  * we can look at the local (per receive queue) flow table
4530                  */
4531                 rflow = &flow_table->flows[hash & flow_table->mask];
4532                 tcpu = rflow->cpu;
4533
4534                 /*
4535                  * If the desired CPU (where last recvmsg was done) is
4536                  * different from current CPU (one in the rx-queue flow
4537                  * table entry), switch if one of the following holds:
4538                  *   - Current CPU is unset (>= nr_cpu_ids).
4539                  *   - Current CPU is offline.
4540                  *   - The current CPU's queue tail has advanced beyond the
4541                  *     last packet that was enqueued using this table entry.
4542                  *     This guarantees that all previous packets for the flow
4543                  *     have been dequeued, thus preserving in order delivery.
4544                  */
4545                 if (unlikely(tcpu != next_cpu) &&
4546                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4547                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4548                       rflow->last_qtail)) >= 0)) {
4549                         tcpu = next_cpu;
4550                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4551                 }
4552
4553                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4554                         *rflowp = rflow;
4555                         cpu = tcpu;
4556                         goto done;
4557                 }
4558         }
4559
4560 try_rps:
4561
4562         if (map) {
4563                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4564                 if (cpu_online(tcpu)) {
4565                         cpu = tcpu;
4566                         goto done;
4567                 }
4568         }
4569
4570 done:
4571         return cpu;
4572 }
4573
4574 #ifdef CONFIG_RFS_ACCEL
4575
4576 /**
4577  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4578  * @dev: Device on which the filter was set
4579  * @rxq_index: RX queue index
4580  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4581  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4582  *
4583  * Drivers that implement ndo_rx_flow_steer() should periodically call
4584  * this function for each installed filter and remove the filters for
4585  * which it returns %true.
4586  */
4587 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4588                          u32 flow_id, u16 filter_id)
4589 {
4590         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4591         struct rps_dev_flow_table *flow_table;
4592         struct rps_dev_flow *rflow;
4593         bool expire = true;
4594         unsigned int cpu;
4595
4596         rcu_read_lock();
4597         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598         if (flow_table && flow_id <= flow_table->mask) {
4599                 rflow = &flow_table->flows[flow_id];
4600                 cpu = READ_ONCE(rflow->cpu);
4601                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4602                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4603                            rflow->last_qtail) <
4604                      (int)(10 * flow_table->mask)))
4605                         expire = false;
4606         }
4607         rcu_read_unlock();
4608         return expire;
4609 }
4610 EXPORT_SYMBOL(rps_may_expire_flow);
4611
4612 #endif /* CONFIG_RFS_ACCEL */
4613
4614 /* Called from hardirq (IPI) context */
4615 static void rps_trigger_softirq(void *data)
4616 {
4617         struct softnet_data *sd = data;
4618
4619         ____napi_schedule(sd, &sd->backlog);
4620         sd->received_rps++;
4621 }
4622
4623 #endif /* CONFIG_RPS */
4624
4625 /*
4626  * Check if this softnet_data structure is another cpu one
4627  * If yes, queue it to our IPI list and return 1
4628  * If no, return 0
4629  */
4630 static int rps_ipi_queued(struct softnet_data *sd)
4631 {
4632 #ifdef CONFIG_RPS
4633         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4634
4635         if (sd != mysd) {
4636                 sd->rps_ipi_next = mysd->rps_ipi_list;
4637                 mysd->rps_ipi_list = sd;
4638
4639                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4640                 return 1;
4641         }
4642 #endif /* CONFIG_RPS */
4643         return 0;
4644 }
4645
4646 #ifdef CONFIG_NET_FLOW_LIMIT
4647 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4648 #endif
4649
4650 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4651 {
4652 #ifdef CONFIG_NET_FLOW_LIMIT
4653         struct sd_flow_limit *fl;
4654         struct softnet_data *sd;
4655         unsigned int old_flow, new_flow;
4656
4657         if (qlen < (netdev_max_backlog >> 1))
4658                 return false;
4659
4660         sd = this_cpu_ptr(&softnet_data);
4661
4662         rcu_read_lock();
4663         fl = rcu_dereference(sd->flow_limit);
4664         if (fl) {
4665                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4666                 old_flow = fl->history[fl->history_head];
4667                 fl->history[fl->history_head] = new_flow;
4668
4669                 fl->history_head++;
4670                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4671
4672                 if (likely(fl->buckets[old_flow]))
4673                         fl->buckets[old_flow]--;
4674
4675                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4676                         fl->count++;
4677                         rcu_read_unlock();
4678                         return true;
4679                 }
4680         }
4681         rcu_read_unlock();
4682 #endif
4683         return false;
4684 }
4685
4686 /*
4687  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4688  * queue (may be a remote CPU queue).
4689  */
4690 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4691                               unsigned int *qtail)
4692 {
4693         struct softnet_data *sd;
4694         unsigned long flags;
4695         unsigned int qlen;
4696
4697         sd = &per_cpu(softnet_data, cpu);
4698
4699         local_irq_save(flags);
4700
4701         rps_lock(sd);
4702         if (!netif_running(skb->dev))
4703                 goto drop;
4704         qlen = skb_queue_len(&sd->input_pkt_queue);
4705         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4706                 if (qlen) {
4707 enqueue:
4708                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4709                         input_queue_tail_incr_save(sd, qtail);
4710                         rps_unlock(sd);
4711                         local_irq_restore(flags);
4712                         return NET_RX_SUCCESS;
4713                 }
4714
4715                 /* Schedule NAPI for backlog device
4716                  * We can use non atomic operation since we own the queue lock
4717                  */
4718                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4719                         if (!rps_ipi_queued(sd))
4720                                 ____napi_schedule(sd, &sd->backlog);
4721                 }
4722                 goto enqueue;
4723         }
4724
4725 drop:
4726         sd->dropped++;
4727         rps_unlock(sd);
4728
4729         local_irq_restore(flags);
4730
4731         atomic_long_inc(&skb->dev->rx_dropped);
4732         kfree_skb(skb);
4733         return NET_RX_DROP;
4734 }
4735
4736 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4737 {
4738         struct net_device *dev = skb->dev;
4739         struct netdev_rx_queue *rxqueue;
4740
4741         rxqueue = dev->_rx;
4742
4743         if (skb_rx_queue_recorded(skb)) {
4744                 u16 index = skb_get_rx_queue(skb);
4745
4746                 if (unlikely(index >= dev->real_num_rx_queues)) {
4747                         WARN_ONCE(dev->real_num_rx_queues > 1,
4748                                   "%s received packet on queue %u, but number "
4749                                   "of RX queues is %u\n",
4750                                   dev->name, index, dev->real_num_rx_queues);
4751
4752                         return rxqueue; /* Return first rxqueue */
4753                 }
4754                 rxqueue += index;
4755         }
4756         return rxqueue;
4757 }
4758
4759 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4760                              struct bpf_prog *xdp_prog)
4761 {
4762         void *orig_data, *orig_data_end, *hard_start;
4763         struct netdev_rx_queue *rxqueue;
4764         bool orig_bcast, orig_host;
4765         u32 mac_len, frame_sz;
4766         __be16 orig_eth_type;
4767         struct ethhdr *eth;
4768         u32 metalen, act;
4769         int off;
4770
4771         /* The XDP program wants to see the packet starting at the MAC
4772          * header.
4773          */
4774         mac_len = skb->data - skb_mac_header(skb);
4775         hard_start = skb->data - skb_headroom(skb);
4776
4777         /* SKB "head" area always have tailroom for skb_shared_info */
4778         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4779         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4780
4781         rxqueue = netif_get_rxqueue(skb);
4782         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4783         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4784                          skb_headlen(skb) + mac_len, true);
4785
4786         orig_data_end = xdp->data_end;
4787         orig_data = xdp->data;
4788         eth = (struct ethhdr *)xdp->data;
4789         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4790         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4791         orig_eth_type = eth->h_proto;
4792
4793         act = bpf_prog_run_xdp(xdp_prog, xdp);
4794
4795         /* check if bpf_xdp_adjust_head was used */
4796         off = xdp->data - orig_data;
4797         if (off) {
4798                 if (off > 0)
4799                         __skb_pull(skb, off);
4800                 else if (off < 0)
4801                         __skb_push(skb, -off);
4802
4803                 skb->mac_header += off;
4804                 skb_reset_network_header(skb);
4805         }
4806
4807         /* check if bpf_xdp_adjust_tail was used */
4808         off = xdp->data_end - orig_data_end;
4809         if (off != 0) {
4810                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4811                 skb->len += off; /* positive on grow, negative on shrink */
4812         }
4813
4814         /* check if XDP changed eth hdr such SKB needs update */
4815         eth = (struct ethhdr *)xdp->data;
4816         if ((orig_eth_type != eth->h_proto) ||
4817             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4818                                                   skb->dev->dev_addr)) ||
4819             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4820                 __skb_push(skb, ETH_HLEN);
4821                 skb->pkt_type = PACKET_HOST;
4822                 skb->protocol = eth_type_trans(skb, skb->dev);
4823         }
4824
4825         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4826          * before calling us again on redirect path. We do not call do_redirect
4827          * as we leave that up to the caller.
4828          *
4829          * Caller is responsible for managing lifetime of skb (i.e. calling
4830          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4831          */
4832         switch (act) {
4833         case XDP_REDIRECT:
4834         case XDP_TX:
4835                 __skb_push(skb, mac_len);
4836                 break;
4837         case XDP_PASS:
4838                 metalen = xdp->data - xdp->data_meta;
4839                 if (metalen)
4840                         skb_metadata_set(skb, metalen);
4841                 break;
4842         }
4843
4844         return act;
4845 }
4846
4847 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4848                                      struct xdp_buff *xdp,
4849                                      struct bpf_prog *xdp_prog)
4850 {
4851         u32 act = XDP_DROP;
4852
4853         /* Reinjected packets coming from act_mirred or similar should
4854          * not get XDP generic processing.
4855          */
4856         if (skb_is_redirected(skb))
4857                 return XDP_PASS;
4858
4859         /* XDP packets must be linear and must have sufficient headroom
4860          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4861          * native XDP provides, thus we need to do it here as well.
4862          */
4863         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4864             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4865                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4866                 int troom = skb->tail + skb->data_len - skb->end;
4867
4868                 /* In case we have to go down the path and also linearize,
4869                  * then lets do the pskb_expand_head() work just once here.
4870                  */
4871                 if (pskb_expand_head(skb,
4872                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4873                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4874                         goto do_drop;
4875                 if (skb_linearize(skb))
4876                         goto do_drop;
4877         }
4878
4879         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4880         switch (act) {
4881         case XDP_REDIRECT:
4882         case XDP_TX:
4883         case XDP_PASS:
4884                 break;
4885         default:
4886                 bpf_warn_invalid_xdp_action(act);
4887                 fallthrough;
4888         case XDP_ABORTED:
4889                 trace_xdp_exception(skb->dev, xdp_prog, act);
4890                 fallthrough;
4891         case XDP_DROP:
4892         do_drop:
4893                 kfree_skb(skb);
4894                 break;
4895         }
4896
4897         return act;
4898 }
4899
4900 /* When doing generic XDP we have to bypass the qdisc layer and the
4901  * network taps in order to match in-driver-XDP behavior.
4902  */
4903 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4904 {
4905         struct net_device *dev = skb->dev;
4906         struct netdev_queue *txq;
4907         bool free_skb = true;
4908         int cpu, rc;
4909
4910         txq = netdev_core_pick_tx(dev, skb, NULL);
4911         cpu = smp_processor_id();
4912         HARD_TX_LOCK(dev, txq, cpu);
4913         if (!netif_xmit_stopped(txq)) {
4914                 rc = netdev_start_xmit(skb, dev, txq, 0);
4915                 if (dev_xmit_complete(rc))
4916                         free_skb = false;
4917         }
4918         HARD_TX_UNLOCK(dev, txq);
4919         if (free_skb) {
4920                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4921                 kfree_skb(skb);
4922         }
4923 }
4924
4925 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4926
4927 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4928 {
4929         if (xdp_prog) {
4930                 struct xdp_buff xdp;
4931                 u32 act;
4932                 int err;
4933
4934                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4935                 if (act != XDP_PASS) {
4936                         switch (act) {
4937                         case XDP_REDIRECT:
4938                                 err = xdp_do_generic_redirect(skb->dev, skb,
4939                                                               &xdp, xdp_prog);
4940                                 if (err)
4941                                         goto out_redir;
4942                                 break;
4943                         case XDP_TX:
4944                                 generic_xdp_tx(skb, xdp_prog);
4945                                 break;
4946                         }
4947                         return XDP_DROP;
4948                 }
4949         }
4950         return XDP_PASS;
4951 out_redir:
4952         kfree_skb(skb);
4953         return XDP_DROP;
4954 }
4955 EXPORT_SYMBOL_GPL(do_xdp_generic);
4956
4957 static int netif_rx_internal(struct sk_buff *skb)
4958 {
4959         int ret;
4960
4961         net_timestamp_check(netdev_tstamp_prequeue, skb);
4962
4963         trace_netif_rx(skb);
4964
4965 #ifdef CONFIG_RPS
4966         if (static_branch_unlikely(&rps_needed)) {
4967                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4968                 int cpu;
4969
4970                 preempt_disable();
4971                 rcu_read_lock();
4972
4973                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4974                 if (cpu < 0)
4975                         cpu = smp_processor_id();
4976
4977                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4978
4979                 rcu_read_unlock();
4980                 preempt_enable();
4981         } else
4982 #endif
4983         {
4984                 unsigned int qtail;
4985
4986                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4987                 put_cpu();
4988         }
4989         return ret;
4990 }
4991
4992 /**
4993  *      netif_rx        -       post buffer to the network code
4994  *      @skb: buffer to post
4995  *
4996  *      This function receives a packet from a device driver and queues it for
4997  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4998  *      may be dropped during processing for congestion control or by the
4999  *      protocol layers.
5000  *
5001  *      return values:
5002  *      NET_RX_SUCCESS  (no congestion)
5003  *      NET_RX_DROP     (packet was dropped)
5004  *
5005  */
5006
5007 int netif_rx(struct sk_buff *skb)
5008 {
5009         int ret;
5010
5011         trace_netif_rx_entry(skb);
5012
5013         ret = netif_rx_internal(skb);
5014         trace_netif_rx_exit(ret);
5015
5016         return ret;
5017 }
5018 EXPORT_SYMBOL(netif_rx);
5019
5020 int netif_rx_ni(struct sk_buff *skb)
5021 {
5022         int err;
5023
5024         trace_netif_rx_ni_entry(skb);
5025
5026         preempt_disable();
5027         err = netif_rx_internal(skb);
5028         if (local_softirq_pending())
5029                 do_softirq();
5030         preempt_enable();
5031         trace_netif_rx_ni_exit(err);
5032
5033         return err;
5034 }
5035 EXPORT_SYMBOL(netif_rx_ni);
5036
5037 int netif_rx_any_context(struct sk_buff *skb)
5038 {
5039         /*
5040          * If invoked from contexts which do not invoke bottom half
5041          * processing either at return from interrupt or when softrqs are
5042          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5043          * directly.
5044          */
5045         if (in_interrupt())
5046                 return netif_rx(skb);
5047         else
5048                 return netif_rx_ni(skb);
5049 }
5050 EXPORT_SYMBOL(netif_rx_any_context);
5051
5052 static __latent_entropy void net_tx_action(struct softirq_action *h)
5053 {
5054         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5055
5056         if (sd->completion_queue) {
5057                 struct sk_buff *clist;
5058
5059                 local_irq_disable();
5060                 clist = sd->completion_queue;
5061                 sd->completion_queue = NULL;
5062                 local_irq_enable();
5063
5064                 while (clist) {
5065                         struct sk_buff *skb = clist;
5066
5067                         clist = clist->next;
5068
5069                         WARN_ON(refcount_read(&skb->users));
5070                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5071                                 trace_consume_skb(skb);
5072                         else
5073                                 trace_kfree_skb(skb, net_tx_action);
5074
5075                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5076                                 __kfree_skb(skb);
5077                         else
5078                                 __kfree_skb_defer(skb);
5079                 }
5080         }
5081
5082         if (sd->output_queue) {
5083                 struct Qdisc *head;
5084
5085                 local_irq_disable();
5086                 head = sd->output_queue;
5087                 sd->output_queue = NULL;
5088                 sd->output_queue_tailp = &sd->output_queue;
5089                 local_irq_enable();
5090
5091                 rcu_read_lock();
5092
5093                 while (head) {
5094                         struct Qdisc *q = head;
5095                         spinlock_t *root_lock = NULL;
5096
5097                         head = head->next_sched;
5098
5099                         /* We need to make sure head->next_sched is read
5100                          * before clearing __QDISC_STATE_SCHED
5101                          */
5102                         smp_mb__before_atomic();
5103
5104                         if (!(q->flags & TCQ_F_NOLOCK)) {
5105                                 root_lock = qdisc_lock(q);
5106                                 spin_lock(root_lock);
5107                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5108                                                      &q->state))) {
5109                                 /* There is a synchronize_net() between
5110                                  * STATE_DEACTIVATED flag being set and
5111                                  * qdisc_reset()/some_qdisc_is_busy() in
5112                                  * dev_deactivate(), so we can safely bail out
5113                                  * early here to avoid data race between
5114                                  * qdisc_deactivate() and some_qdisc_is_busy()
5115                                  * for lockless qdisc.
5116                                  */
5117                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5118                                 continue;
5119                         }
5120
5121                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5122                         qdisc_run(q);
5123                         if (root_lock)
5124                                 spin_unlock(root_lock);
5125                 }
5126
5127                 rcu_read_unlock();
5128         }
5129
5130         xfrm_dev_backlog(sd);
5131 }
5132
5133 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5134 /* This hook is defined here for ATM LANE */
5135 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5136                              unsigned char *addr) __read_mostly;
5137 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5138 #endif
5139
5140 static inline struct sk_buff *
5141 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5142                    struct net_device *orig_dev, bool *another)
5143 {
5144 #ifdef CONFIG_NET_CLS_ACT
5145         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5146         struct tcf_result cl_res;
5147
5148         /* If there's at least one ingress present somewhere (so
5149          * we get here via enabled static key), remaining devices
5150          * that are not configured with an ingress qdisc will bail
5151          * out here.
5152          */
5153         if (!miniq)
5154                 return skb;
5155
5156         if (*pt_prev) {
5157                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5158                 *pt_prev = NULL;
5159         }
5160
5161         qdisc_skb_cb(skb)->pkt_len = skb->len;
5162         qdisc_skb_cb(skb)->mru = 0;
5163         qdisc_skb_cb(skb)->post_ct = false;
5164         skb->tc_at_ingress = 1;
5165         mini_qdisc_bstats_cpu_update(miniq, skb);
5166
5167         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5168                                      &cl_res, false)) {
5169         case TC_ACT_OK:
5170         case TC_ACT_RECLASSIFY:
5171                 skb->tc_index = TC_H_MIN(cl_res.classid);
5172                 break;
5173         case TC_ACT_SHOT:
5174                 mini_qdisc_qstats_cpu_drop(miniq);
5175                 kfree_skb(skb);
5176                 return NULL;
5177         case TC_ACT_STOLEN:
5178         case TC_ACT_QUEUED:
5179         case TC_ACT_TRAP:
5180                 consume_skb(skb);
5181                 return NULL;
5182         case TC_ACT_REDIRECT:
5183                 /* skb_mac_header check was done by cls/act_bpf, so
5184                  * we can safely push the L2 header back before
5185                  * redirecting to another netdev
5186                  */
5187                 __skb_push(skb, skb->mac_len);
5188                 if (skb_do_redirect(skb) == -EAGAIN) {
5189                         __skb_pull(skb, skb->mac_len);
5190                         *another = true;
5191                         break;
5192                 }
5193                 return NULL;
5194         case TC_ACT_CONSUMED:
5195                 return NULL;
5196         default:
5197                 break;
5198         }
5199 #endif /* CONFIG_NET_CLS_ACT */
5200         return skb;
5201 }
5202
5203 /**
5204  *      netdev_is_rx_handler_busy - check if receive handler is registered
5205  *      @dev: device to check
5206  *
5207  *      Check if a receive handler is already registered for a given device.
5208  *      Return true if there one.
5209  *
5210  *      The caller must hold the rtnl_mutex.
5211  */
5212 bool netdev_is_rx_handler_busy(struct net_device *dev)
5213 {
5214         ASSERT_RTNL();
5215         return dev && rtnl_dereference(dev->rx_handler);
5216 }
5217 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5218
5219 /**
5220  *      netdev_rx_handler_register - register receive handler
5221  *      @dev: device to register a handler for
5222  *      @rx_handler: receive handler to register
5223  *      @rx_handler_data: data pointer that is used by rx handler
5224  *
5225  *      Register a receive handler for a device. This handler will then be
5226  *      called from __netif_receive_skb. A negative errno code is returned
5227  *      on a failure.
5228  *
5229  *      The caller must hold the rtnl_mutex.
5230  *
5231  *      For a general description of rx_handler, see enum rx_handler_result.
5232  */
5233 int netdev_rx_handler_register(struct net_device *dev,
5234                                rx_handler_func_t *rx_handler,
5235                                void *rx_handler_data)
5236 {
5237         if (netdev_is_rx_handler_busy(dev))
5238                 return -EBUSY;
5239
5240         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5241                 return -EINVAL;
5242
5243         /* Note: rx_handler_data must be set before rx_handler */
5244         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5245         rcu_assign_pointer(dev->rx_handler, rx_handler);
5246
5247         return 0;
5248 }
5249 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5250
5251 /**
5252  *      netdev_rx_handler_unregister - unregister receive handler
5253  *      @dev: device to unregister a handler from
5254  *
5255  *      Unregister a receive handler from a device.
5256  *
5257  *      The caller must hold the rtnl_mutex.
5258  */
5259 void netdev_rx_handler_unregister(struct net_device *dev)
5260 {
5261
5262         ASSERT_RTNL();
5263         RCU_INIT_POINTER(dev->rx_handler, NULL);
5264         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5265          * section has a guarantee to see a non NULL rx_handler_data
5266          * as well.
5267          */
5268         synchronize_net();
5269         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5270 }
5271 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5272
5273 /*
5274  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5275  * the special handling of PFMEMALLOC skbs.
5276  */
5277 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5278 {
5279         switch (skb->protocol) {
5280         case htons(ETH_P_ARP):
5281         case htons(ETH_P_IP):
5282         case htons(ETH_P_IPV6):
5283         case htons(ETH_P_8021Q):
5284         case htons(ETH_P_8021AD):
5285                 return true;
5286         default:
5287                 return false;
5288         }
5289 }
5290
5291 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5292                              int *ret, struct net_device *orig_dev)
5293 {
5294         if (nf_hook_ingress_active(skb)) {
5295                 int ingress_retval;
5296
5297                 if (*pt_prev) {
5298                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5299                         *pt_prev = NULL;
5300                 }
5301
5302                 rcu_read_lock();
5303                 ingress_retval = nf_hook_ingress(skb);
5304                 rcu_read_unlock();
5305                 return ingress_retval;
5306         }
5307         return 0;
5308 }
5309
5310 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5311                                     struct packet_type **ppt_prev)
5312 {
5313         struct packet_type *ptype, *pt_prev;
5314         rx_handler_func_t *rx_handler;
5315         struct sk_buff *skb = *pskb;
5316         struct net_device *orig_dev;
5317         bool deliver_exact = false;
5318         int ret = NET_RX_DROP;
5319         __be16 type;
5320
5321         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5322
5323         trace_netif_receive_skb(skb);
5324
5325         orig_dev = skb->dev;
5326
5327         skb_reset_network_header(skb);
5328         if (!skb_transport_header_was_set(skb))
5329                 skb_reset_transport_header(skb);
5330         skb_reset_mac_len(skb);
5331
5332         pt_prev = NULL;
5333
5334 another_round:
5335         skb->skb_iif = skb->dev->ifindex;
5336
5337         __this_cpu_inc(softnet_data.processed);
5338
5339         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5340                 int ret2;
5341
5342                 migrate_disable();
5343                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5344                 migrate_enable();
5345
5346                 if (ret2 != XDP_PASS) {
5347                         ret = NET_RX_DROP;
5348                         goto out;
5349                 }
5350         }
5351
5352         if (eth_type_vlan(skb->protocol)) {
5353                 skb = skb_vlan_untag(skb);
5354                 if (unlikely(!skb))
5355                         goto out;
5356         }
5357
5358         if (skb_skip_tc_classify(skb))
5359                 goto skip_classify;
5360
5361         if (pfmemalloc)
5362                 goto skip_taps;
5363
5364         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5365                 if (pt_prev)
5366                         ret = deliver_skb(skb, pt_prev, orig_dev);
5367                 pt_prev = ptype;
5368         }
5369
5370         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5371                 if (pt_prev)
5372                         ret = deliver_skb(skb, pt_prev, orig_dev);
5373                 pt_prev = ptype;
5374         }
5375
5376 skip_taps:
5377 #ifdef CONFIG_NET_INGRESS
5378         if (static_branch_unlikely(&ingress_needed_key)) {
5379                 bool another = false;
5380
5381                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5382                                          &another);
5383                 if (another)
5384                         goto another_round;
5385                 if (!skb)
5386                         goto out;
5387
5388                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5389                         goto out;
5390         }
5391 #endif
5392         skb_reset_redirect(skb);
5393 skip_classify:
5394         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5395                 goto drop;
5396
5397         if (skb_vlan_tag_present(skb)) {
5398                 if (pt_prev) {
5399                         ret = deliver_skb(skb, pt_prev, orig_dev);
5400                         pt_prev = NULL;
5401                 }
5402                 if (vlan_do_receive(&skb))
5403                         goto another_round;
5404                 else if (unlikely(!skb))
5405                         goto out;
5406         }
5407
5408         rx_handler = rcu_dereference(skb->dev->rx_handler);
5409         if (rx_handler) {
5410                 if (pt_prev) {
5411                         ret = deliver_skb(skb, pt_prev, orig_dev);
5412                         pt_prev = NULL;
5413                 }
5414                 switch (rx_handler(&skb)) {
5415                 case RX_HANDLER_CONSUMED:
5416                         ret = NET_RX_SUCCESS;
5417                         goto out;
5418                 case RX_HANDLER_ANOTHER:
5419                         goto another_round;
5420                 case RX_HANDLER_EXACT:
5421                         deliver_exact = true;
5422                         break;
5423                 case RX_HANDLER_PASS:
5424                         break;
5425                 default:
5426                         BUG();
5427                 }
5428         }
5429
5430         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5431 check_vlan_id:
5432                 if (skb_vlan_tag_get_id(skb)) {
5433                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5434                          * find vlan device.
5435                          */
5436                         skb->pkt_type = PACKET_OTHERHOST;
5437                 } else if (eth_type_vlan(skb->protocol)) {
5438                         /* Outer header is 802.1P with vlan 0, inner header is
5439                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5440                          * not find vlan dev for vlan id 0.
5441                          */
5442                         __vlan_hwaccel_clear_tag(skb);
5443                         skb = skb_vlan_untag(skb);
5444                         if (unlikely(!skb))
5445                                 goto out;
5446                         if (vlan_do_receive(&skb))
5447                                 /* After stripping off 802.1P header with vlan 0
5448                                  * vlan dev is found for inner header.
5449                                  */
5450                                 goto another_round;
5451                         else if (unlikely(!skb))
5452                                 goto out;
5453                         else
5454                                 /* We have stripped outer 802.1P vlan 0 header.
5455                                  * But could not find vlan dev.
5456                                  * check again for vlan id to set OTHERHOST.
5457                                  */
5458                                 goto check_vlan_id;
5459                 }
5460                 /* Note: we might in the future use prio bits
5461                  * and set skb->priority like in vlan_do_receive()
5462                  * For the time being, just ignore Priority Code Point
5463                  */
5464                 __vlan_hwaccel_clear_tag(skb);
5465         }
5466
5467         type = skb->protocol;
5468
5469         /* deliver only exact match when indicated */
5470         if (likely(!deliver_exact)) {
5471                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5472                                        &ptype_base[ntohs(type) &
5473                                                    PTYPE_HASH_MASK]);
5474         }
5475
5476         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5477                                &orig_dev->ptype_specific);
5478
5479         if (unlikely(skb->dev != orig_dev)) {
5480                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5481                                        &skb->dev->ptype_specific);
5482         }
5483
5484         if (pt_prev) {
5485                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5486                         goto drop;
5487                 *ppt_prev = pt_prev;
5488         } else {
5489 drop:
5490                 if (!deliver_exact)
5491                         atomic_long_inc(&skb->dev->rx_dropped);
5492                 else
5493                         atomic_long_inc(&skb->dev->rx_nohandler);
5494                 kfree_skb(skb);
5495                 /* Jamal, now you will not able to escape explaining
5496                  * me how you were going to use this. :-)
5497                  */
5498                 ret = NET_RX_DROP;
5499         }
5500
5501 out:
5502         /* The invariant here is that if *ppt_prev is not NULL
5503          * then skb should also be non-NULL.
5504          *
5505          * Apparently *ppt_prev assignment above holds this invariant due to
5506          * skb dereferencing near it.
5507          */
5508         *pskb = skb;
5509         return ret;
5510 }
5511
5512 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5513 {
5514         struct net_device *orig_dev = skb->dev;
5515         struct packet_type *pt_prev = NULL;
5516         int ret;
5517
5518         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5519         if (pt_prev)
5520                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5521                                          skb->dev, pt_prev, orig_dev);
5522         return ret;
5523 }
5524
5525 /**
5526  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5527  *      @skb: buffer to process
5528  *
5529  *      More direct receive version of netif_receive_skb().  It should
5530  *      only be used by callers that have a need to skip RPS and Generic XDP.
5531  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5532  *
5533  *      This function may only be called from softirq context and interrupts
5534  *      should be enabled.
5535  *
5536  *      Return values (usually ignored):
5537  *      NET_RX_SUCCESS: no congestion
5538  *      NET_RX_DROP: packet was dropped
5539  */
5540 int netif_receive_skb_core(struct sk_buff *skb)
5541 {
5542         int ret;
5543
5544         rcu_read_lock();
5545         ret = __netif_receive_skb_one_core(skb, false);
5546         rcu_read_unlock();
5547
5548         return ret;
5549 }
5550 EXPORT_SYMBOL(netif_receive_skb_core);
5551
5552 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5553                                                   struct packet_type *pt_prev,
5554                                                   struct net_device *orig_dev)
5555 {
5556         struct sk_buff *skb, *next;
5557
5558         if (!pt_prev)
5559                 return;
5560         if (list_empty(head))
5561                 return;
5562         if (pt_prev->list_func != NULL)
5563                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5564                                    ip_list_rcv, head, pt_prev, orig_dev);
5565         else
5566                 list_for_each_entry_safe(skb, next, head, list) {
5567                         skb_list_del_init(skb);
5568                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5569                 }
5570 }
5571
5572 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5573 {
5574         /* Fast-path assumptions:
5575          * - There is no RX handler.
5576          * - Only one packet_type matches.
5577          * If either of these fails, we will end up doing some per-packet
5578          * processing in-line, then handling the 'last ptype' for the whole
5579          * sublist.  This can't cause out-of-order delivery to any single ptype,
5580          * because the 'last ptype' must be constant across the sublist, and all
5581          * other ptypes are handled per-packet.
5582          */
5583         /* Current (common) ptype of sublist */
5584         struct packet_type *pt_curr = NULL;
5585         /* Current (common) orig_dev of sublist */
5586         struct net_device *od_curr = NULL;
5587         struct list_head sublist;
5588         struct sk_buff *skb, *next;
5589
5590         INIT_LIST_HEAD(&sublist);
5591         list_for_each_entry_safe(skb, next, head, list) {
5592                 struct net_device *orig_dev = skb->dev;
5593                 struct packet_type *pt_prev = NULL;
5594
5595                 skb_list_del_init(skb);
5596                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5597                 if (!pt_prev)
5598                         continue;
5599                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5600                         /* dispatch old sublist */
5601                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5602                         /* start new sublist */
5603                         INIT_LIST_HEAD(&sublist);
5604                         pt_curr = pt_prev;
5605                         od_curr = orig_dev;
5606                 }
5607                 list_add_tail(&skb->list, &sublist);
5608         }
5609
5610         /* dispatch final sublist */
5611         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5612 }
5613
5614 static int __netif_receive_skb(struct sk_buff *skb)
5615 {
5616         int ret;
5617
5618         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5619                 unsigned int noreclaim_flag;
5620
5621                 /*
5622                  * PFMEMALLOC skbs are special, they should
5623                  * - be delivered to SOCK_MEMALLOC sockets only
5624                  * - stay away from userspace
5625                  * - have bounded memory usage
5626                  *
5627                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5628                  * context down to all allocation sites.
5629                  */
5630                 noreclaim_flag = memalloc_noreclaim_save();
5631                 ret = __netif_receive_skb_one_core(skb, true);
5632                 memalloc_noreclaim_restore(noreclaim_flag);
5633         } else
5634                 ret = __netif_receive_skb_one_core(skb, false);
5635
5636         return ret;
5637 }
5638
5639 static void __netif_receive_skb_list(struct list_head *head)
5640 {
5641         unsigned long noreclaim_flag = 0;
5642         struct sk_buff *skb, *next;
5643         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5644
5645         list_for_each_entry_safe(skb, next, head, list) {
5646                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5647                         struct list_head sublist;
5648
5649                         /* Handle the previous sublist */
5650                         list_cut_before(&sublist, head, &skb->list);
5651                         if (!list_empty(&sublist))
5652                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5653                         pfmemalloc = !pfmemalloc;
5654                         /* See comments in __netif_receive_skb */
5655                         if (pfmemalloc)
5656                                 noreclaim_flag = memalloc_noreclaim_save();
5657                         else
5658                                 memalloc_noreclaim_restore(noreclaim_flag);
5659                 }
5660         }
5661         /* Handle the remaining sublist */
5662         if (!list_empty(head))
5663                 __netif_receive_skb_list_core(head, pfmemalloc);
5664         /* Restore pflags */
5665         if (pfmemalloc)
5666                 memalloc_noreclaim_restore(noreclaim_flag);
5667 }
5668
5669 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5670 {
5671         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5672         struct bpf_prog *new = xdp->prog;
5673         int ret = 0;
5674
5675         switch (xdp->command) {
5676         case XDP_SETUP_PROG:
5677                 rcu_assign_pointer(dev->xdp_prog, new);
5678                 if (old)
5679                         bpf_prog_put(old);
5680
5681                 if (old && !new) {
5682                         static_branch_dec(&generic_xdp_needed_key);
5683                 } else if (new && !old) {
5684                         static_branch_inc(&generic_xdp_needed_key);
5685                         dev_disable_lro(dev);
5686                         dev_disable_gro_hw(dev);
5687                 }
5688                 break;
5689
5690         default:
5691                 ret = -EINVAL;
5692                 break;
5693         }
5694
5695         return ret;
5696 }
5697
5698 static int netif_receive_skb_internal(struct sk_buff *skb)
5699 {
5700         int ret;
5701
5702         net_timestamp_check(netdev_tstamp_prequeue, skb);
5703
5704         if (skb_defer_rx_timestamp(skb))
5705                 return NET_RX_SUCCESS;
5706
5707         rcu_read_lock();
5708 #ifdef CONFIG_RPS
5709         if (static_branch_unlikely(&rps_needed)) {
5710                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5711                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5712
5713                 if (cpu >= 0) {
5714                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5715                         rcu_read_unlock();
5716                         return ret;
5717                 }
5718         }
5719 #endif
5720         ret = __netif_receive_skb(skb);
5721         rcu_read_unlock();
5722         return ret;
5723 }
5724
5725 static void netif_receive_skb_list_internal(struct list_head *head)
5726 {
5727         struct sk_buff *skb, *next;
5728         struct list_head sublist;
5729
5730         INIT_LIST_HEAD(&sublist);
5731         list_for_each_entry_safe(skb, next, head, list) {
5732                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5733                 skb_list_del_init(skb);
5734                 if (!skb_defer_rx_timestamp(skb))
5735                         list_add_tail(&skb->list, &sublist);
5736         }
5737         list_splice_init(&sublist, head);
5738
5739         rcu_read_lock();
5740 #ifdef CONFIG_RPS
5741         if (static_branch_unlikely(&rps_needed)) {
5742                 list_for_each_entry_safe(skb, next, head, list) {
5743                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5744                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5745
5746                         if (cpu >= 0) {
5747                                 /* Will be handled, remove from list */
5748                                 skb_list_del_init(skb);
5749                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5750                         }
5751                 }
5752         }
5753 #endif
5754         __netif_receive_skb_list(head);
5755         rcu_read_unlock();
5756 }
5757
5758 /**
5759  *      netif_receive_skb - process receive buffer from network
5760  *      @skb: buffer to process
5761  *
5762  *      netif_receive_skb() is the main receive data processing function.
5763  *      It always succeeds. The buffer may be dropped during processing
5764  *      for congestion control or by the protocol layers.
5765  *
5766  *      This function may only be called from softirq context and interrupts
5767  *      should be enabled.
5768  *
5769  *      Return values (usually ignored):
5770  *      NET_RX_SUCCESS: no congestion
5771  *      NET_RX_DROP: packet was dropped
5772  */
5773 int netif_receive_skb(struct sk_buff *skb)
5774 {
5775         int ret;
5776
5777         trace_netif_receive_skb_entry(skb);
5778
5779         ret = netif_receive_skb_internal(skb);
5780         trace_netif_receive_skb_exit(ret);
5781
5782         return ret;
5783 }
5784 EXPORT_SYMBOL(netif_receive_skb);
5785
5786 /**
5787  *      netif_receive_skb_list - process many receive buffers from network
5788  *      @head: list of skbs to process.
5789  *
5790  *      Since return value of netif_receive_skb() is normally ignored, and
5791  *      wouldn't be meaningful for a list, this function returns void.
5792  *
5793  *      This function may only be called from softirq context and interrupts
5794  *      should be enabled.
5795  */
5796 void netif_receive_skb_list(struct list_head *head)
5797 {
5798         struct sk_buff *skb;
5799
5800         if (list_empty(head))
5801                 return;
5802         if (trace_netif_receive_skb_list_entry_enabled()) {
5803                 list_for_each_entry(skb, head, list)
5804                         trace_netif_receive_skb_list_entry(skb);
5805         }
5806         netif_receive_skb_list_internal(head);
5807         trace_netif_receive_skb_list_exit(0);
5808 }
5809 EXPORT_SYMBOL(netif_receive_skb_list);
5810
5811 static DEFINE_PER_CPU(struct work_struct, flush_works);
5812
5813 /* Network device is going away, flush any packets still pending */
5814 static void flush_backlog(struct work_struct *work)
5815 {
5816         struct sk_buff *skb, *tmp;
5817         struct softnet_data *sd;
5818
5819         local_bh_disable();
5820         sd = this_cpu_ptr(&softnet_data);
5821
5822         local_irq_disable();
5823         rps_lock(sd);
5824         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5825                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5826                         __skb_unlink(skb, &sd->input_pkt_queue);
5827                         dev_kfree_skb_irq(skb);
5828                         input_queue_head_incr(sd);
5829                 }
5830         }
5831         rps_unlock(sd);
5832         local_irq_enable();
5833
5834         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5835                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5836                         __skb_unlink(skb, &sd->process_queue);
5837                         kfree_skb(skb);
5838                         input_queue_head_incr(sd);
5839                 }
5840         }
5841         local_bh_enable();
5842 }
5843
5844 static bool flush_required(int cpu)
5845 {
5846 #if IS_ENABLED(CONFIG_RPS)
5847         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5848         bool do_flush;
5849
5850         local_irq_disable();
5851         rps_lock(sd);
5852
5853         /* as insertion into process_queue happens with the rps lock held,
5854          * process_queue access may race only with dequeue
5855          */
5856         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5857                    !skb_queue_empty_lockless(&sd->process_queue);
5858         rps_unlock(sd);
5859         local_irq_enable();
5860
5861         return do_flush;
5862 #endif
5863         /* without RPS we can't safely check input_pkt_queue: during a
5864          * concurrent remote skb_queue_splice() we can detect as empty both
5865          * input_pkt_queue and process_queue even if the latter could end-up
5866          * containing a lot of packets.
5867          */
5868         return true;
5869 }
5870
5871 static void flush_all_backlogs(void)
5872 {
5873         static cpumask_t flush_cpus;
5874         unsigned int cpu;
5875
5876         /* since we are under rtnl lock protection we can use static data
5877          * for the cpumask and avoid allocating on stack the possibly
5878          * large mask
5879          */
5880         ASSERT_RTNL();
5881
5882         get_online_cpus();
5883
5884         cpumask_clear(&flush_cpus);
5885         for_each_online_cpu(cpu) {
5886                 if (flush_required(cpu)) {
5887                         queue_work_on(cpu, system_highpri_wq,
5888                                       per_cpu_ptr(&flush_works, cpu));
5889                         cpumask_set_cpu(cpu, &flush_cpus);
5890                 }
5891         }
5892
5893         /* we can have in flight packet[s] on the cpus we are not flushing,
5894          * synchronize_net() in unregister_netdevice_many() will take care of
5895          * them
5896          */
5897         for_each_cpu(cpu, &flush_cpus)
5898                 flush_work(per_cpu_ptr(&flush_works, cpu));
5899
5900         put_online_cpus();
5901 }
5902
5903 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5904 static void gro_normal_list(struct napi_struct *napi)
5905 {
5906         if (!napi->rx_count)
5907                 return;
5908         netif_receive_skb_list_internal(&napi->rx_list);
5909         INIT_LIST_HEAD(&napi->rx_list);
5910         napi->rx_count = 0;
5911 }
5912
5913 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5914  * pass the whole batch up to the stack.
5915  */
5916 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5917 {
5918         list_add_tail(&skb->list, &napi->rx_list);
5919         napi->rx_count += segs;
5920         if (napi->rx_count >= gro_normal_batch)
5921                 gro_normal_list(napi);
5922 }
5923
5924 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5925 {
5926         struct packet_offload *ptype;
5927         __be16 type = skb->protocol;
5928         struct list_head *head = &offload_base;
5929         int err = -ENOENT;
5930
5931         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5932
5933         if (NAPI_GRO_CB(skb)->count == 1) {
5934                 skb_shinfo(skb)->gso_size = 0;
5935                 goto out;
5936         }
5937
5938         rcu_read_lock();
5939         list_for_each_entry_rcu(ptype, head, list) {
5940                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5941                         continue;
5942
5943                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5944                                          ipv6_gro_complete, inet_gro_complete,
5945                                          skb, 0);
5946                 break;
5947         }
5948         rcu_read_unlock();
5949
5950         if (err) {
5951                 WARN_ON(&ptype->list == head);
5952                 kfree_skb(skb);
5953                 return NET_RX_SUCCESS;
5954         }
5955
5956 out:
5957         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5958         return NET_RX_SUCCESS;
5959 }
5960
5961 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5962                                    bool flush_old)
5963 {
5964         struct list_head *head = &napi->gro_hash[index].list;
5965         struct sk_buff *skb, *p;
5966
5967         list_for_each_entry_safe_reverse(skb, p, head, list) {
5968                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5969                         return;
5970                 skb_list_del_init(skb);
5971                 napi_gro_complete(napi, skb);
5972                 napi->gro_hash[index].count--;
5973         }
5974
5975         if (!napi->gro_hash[index].count)
5976                 __clear_bit(index, &napi->gro_bitmask);
5977 }
5978
5979 /* napi->gro_hash[].list contains packets ordered by age.
5980  * youngest packets at the head of it.
5981  * Complete skbs in reverse order to reduce latencies.
5982  */
5983 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5984 {
5985         unsigned long bitmask = napi->gro_bitmask;
5986         unsigned int i, base = ~0U;
5987
5988         while ((i = ffs(bitmask)) != 0) {
5989                 bitmask >>= i;
5990                 base += i;
5991                 __napi_gro_flush_chain(napi, base, flush_old);
5992         }
5993 }
5994 EXPORT_SYMBOL(napi_gro_flush);
5995
5996 static void gro_list_prepare(const struct list_head *head,
5997                              const struct sk_buff *skb)
5998 {
5999         unsigned int maclen = skb->dev->hard_header_len;
6000         u32 hash = skb_get_hash_raw(skb);
6001         struct sk_buff *p;
6002
6003         list_for_each_entry(p, head, list) {
6004                 unsigned long diffs;
6005
6006                 NAPI_GRO_CB(p)->flush = 0;
6007
6008                 if (hash != skb_get_hash_raw(p)) {
6009                         NAPI_GRO_CB(p)->same_flow = 0;
6010                         continue;
6011                 }
6012
6013                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6014                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6015                 if (skb_vlan_tag_present(p))
6016                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6017                 diffs |= skb_metadata_differs(p, skb);
6018                 if (maclen == ETH_HLEN)
6019                         diffs |= compare_ether_header(skb_mac_header(p),
6020                                                       skb_mac_header(skb));
6021                 else if (!diffs)
6022                         diffs = memcmp(skb_mac_header(p),
6023                                        skb_mac_header(skb),
6024                                        maclen);
6025
6026                 /* in most common scenarions _state is 0
6027                  * otherwise we are already on some slower paths
6028                  * either skip all the infrequent tests altogether or
6029                  * avoid trying too hard to skip each of them individually
6030                  */
6031                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
6032 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6033                         struct tc_skb_ext *skb_ext;
6034                         struct tc_skb_ext *p_ext;
6035 #endif
6036
6037                         diffs |= p->sk != skb->sk;
6038                         diffs |= skb_metadata_dst_cmp(p, skb);
6039                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6040
6041 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6042                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6043                         p_ext = skb_ext_find(p, TC_SKB_EXT);
6044
6045                         diffs |= (!!p_ext) ^ (!!skb_ext);
6046                         if (!diffs && unlikely(skb_ext))
6047                                 diffs |= p_ext->chain ^ skb_ext->chain;
6048 #endif
6049                 }
6050
6051                 NAPI_GRO_CB(p)->same_flow = !diffs;
6052         }
6053 }
6054
6055 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6056 {
6057         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6058         const skb_frag_t *frag0 = &pinfo->frags[0];
6059
6060         NAPI_GRO_CB(skb)->data_offset = 0;
6061         NAPI_GRO_CB(skb)->frag0 = NULL;
6062         NAPI_GRO_CB(skb)->frag0_len = 0;
6063
6064         if (!skb_headlen(skb) && pinfo->nr_frags &&
6065             !PageHighMem(skb_frag_page(frag0)) &&
6066             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6067                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6068                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6069                                                     skb_frag_size(frag0),
6070                                                     skb->end - skb->tail);
6071         }
6072 }
6073
6074 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6075 {
6076         struct skb_shared_info *pinfo = skb_shinfo(skb);
6077
6078         BUG_ON(skb->end - skb->tail < grow);
6079
6080         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6081
6082         skb->data_len -= grow;
6083         skb->tail += grow;
6084
6085         skb_frag_off_add(&pinfo->frags[0], grow);
6086         skb_frag_size_sub(&pinfo->frags[0], grow);
6087
6088         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6089                 skb_frag_unref(skb, 0);
6090                 memmove(pinfo->frags, pinfo->frags + 1,
6091                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6092         }
6093 }
6094
6095 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6096 {
6097         struct sk_buff *oldest;
6098
6099         oldest = list_last_entry(head, struct sk_buff, list);
6100
6101         /* We are called with head length >= MAX_GRO_SKBS, so this is
6102          * impossible.
6103          */
6104         if (WARN_ON_ONCE(!oldest))
6105                 return;
6106
6107         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6108          * SKB to the chain.
6109          */
6110         skb_list_del_init(oldest);
6111         napi_gro_complete(napi, oldest);
6112 }
6113
6114 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6115 {
6116         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6117         struct gro_list *gro_list = &napi->gro_hash[bucket];
6118         struct list_head *head = &offload_base;
6119         struct packet_offload *ptype;
6120         __be16 type = skb->protocol;
6121         struct sk_buff *pp = NULL;
6122         enum gro_result ret;
6123         int same_flow;
6124         int grow;
6125
6126         if (netif_elide_gro(skb->dev))
6127                 goto normal;
6128
6129         gro_list_prepare(&gro_list->list, skb);
6130
6131         rcu_read_lock();
6132         list_for_each_entry_rcu(ptype, head, list) {
6133                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6134                         continue;
6135
6136                 skb_set_network_header(skb, skb_gro_offset(skb));
6137                 skb_reset_mac_len(skb);
6138                 NAPI_GRO_CB(skb)->same_flow = 0;
6139                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6140                 NAPI_GRO_CB(skb)->free = 0;
6141                 NAPI_GRO_CB(skb)->encap_mark = 0;
6142                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6143                 NAPI_GRO_CB(skb)->is_fou = 0;
6144                 NAPI_GRO_CB(skb)->is_atomic = 1;
6145                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6146
6147                 /* Setup for GRO checksum validation */
6148                 switch (skb->ip_summed) {
6149                 case CHECKSUM_COMPLETE:
6150                         NAPI_GRO_CB(skb)->csum = skb->csum;
6151                         NAPI_GRO_CB(skb)->csum_valid = 1;
6152                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6153                         break;
6154                 case CHECKSUM_UNNECESSARY:
6155                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6156                         NAPI_GRO_CB(skb)->csum_valid = 0;
6157                         break;
6158                 default:
6159                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6160                         NAPI_GRO_CB(skb)->csum_valid = 0;
6161                 }
6162
6163                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6164                                         ipv6_gro_receive, inet_gro_receive,
6165                                         &gro_list->list, skb);
6166                 break;
6167         }
6168         rcu_read_unlock();
6169
6170         if (&ptype->list == head)
6171                 goto normal;
6172
6173         if (PTR_ERR(pp) == -EINPROGRESS) {
6174                 ret = GRO_CONSUMED;
6175                 goto ok;
6176         }
6177
6178         same_flow = NAPI_GRO_CB(skb)->same_flow;
6179         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6180
6181         if (pp) {
6182                 skb_list_del_init(pp);
6183                 napi_gro_complete(napi, pp);
6184                 gro_list->count--;
6185         }
6186
6187         if (same_flow)
6188                 goto ok;
6189
6190         if (NAPI_GRO_CB(skb)->flush)
6191                 goto normal;
6192
6193         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6194                 gro_flush_oldest(napi, &gro_list->list);
6195         else
6196                 gro_list->count++;
6197
6198         NAPI_GRO_CB(skb)->count = 1;
6199         NAPI_GRO_CB(skb)->age = jiffies;
6200         NAPI_GRO_CB(skb)->last = skb;
6201         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6202         list_add(&skb->list, &gro_list->list);
6203         ret = GRO_HELD;
6204
6205 pull:
6206         grow = skb_gro_offset(skb) - skb_headlen(skb);
6207         if (grow > 0)
6208                 gro_pull_from_frag0(skb, grow);
6209 ok:
6210         if (gro_list->count) {
6211                 if (!test_bit(bucket, &napi->gro_bitmask))
6212                         __set_bit(bucket, &napi->gro_bitmask);
6213         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6214                 __clear_bit(bucket, &napi->gro_bitmask);
6215         }
6216
6217         return ret;
6218
6219 normal:
6220         ret = GRO_NORMAL;
6221         goto pull;
6222 }
6223
6224 struct packet_offload *gro_find_receive_by_type(__be16 type)
6225 {
6226         struct list_head *offload_head = &offload_base;
6227         struct packet_offload *ptype;
6228
6229         list_for_each_entry_rcu(ptype, offload_head, list) {
6230                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6231                         continue;
6232                 return ptype;
6233         }
6234         return NULL;
6235 }
6236 EXPORT_SYMBOL(gro_find_receive_by_type);
6237
6238 struct packet_offload *gro_find_complete_by_type(__be16 type)
6239 {
6240         struct list_head *offload_head = &offload_base;
6241         struct packet_offload *ptype;
6242
6243         list_for_each_entry_rcu(ptype, offload_head, list) {
6244                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6245                         continue;
6246                 return ptype;
6247         }
6248         return NULL;
6249 }
6250 EXPORT_SYMBOL(gro_find_complete_by_type);
6251
6252 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6253                                     struct sk_buff *skb,
6254                                     gro_result_t ret)
6255 {
6256         switch (ret) {
6257         case GRO_NORMAL:
6258                 gro_normal_one(napi, skb, 1);
6259                 break;
6260
6261         case GRO_MERGED_FREE:
6262                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6263                         napi_skb_free_stolen_head(skb);
6264                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6265                         __kfree_skb(skb);
6266                 else
6267                         __kfree_skb_defer(skb);
6268                 break;
6269
6270         case GRO_HELD:
6271         case GRO_MERGED:
6272         case GRO_CONSUMED:
6273                 break;
6274         }
6275
6276         return ret;
6277 }
6278
6279 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6280 {
6281         gro_result_t ret;
6282
6283         skb_mark_napi_id(skb, napi);
6284         trace_napi_gro_receive_entry(skb);
6285
6286         skb_gro_reset_offset(skb, 0);
6287
6288         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6289         trace_napi_gro_receive_exit(ret);
6290
6291         return ret;
6292 }
6293 EXPORT_SYMBOL(napi_gro_receive);
6294
6295 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6296 {
6297         if (unlikely(skb->pfmemalloc)) {
6298                 consume_skb(skb);
6299                 return;
6300         }
6301         __skb_pull(skb, skb_headlen(skb));
6302         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6303         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6304         __vlan_hwaccel_clear_tag(skb);
6305         skb->dev = napi->dev;
6306         skb->skb_iif = 0;
6307
6308         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6309         skb->pkt_type = PACKET_HOST;
6310
6311         skb->encapsulation = 0;
6312         skb_shinfo(skb)->gso_type = 0;
6313         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6314         if (unlikely(skb->slow_gro)) {
6315                 skb_orphan(skb);
6316                 skb_ext_reset(skb);
6317                 nf_reset_ct(skb);
6318                 skb->slow_gro = 0;
6319         }
6320
6321         napi->skb = skb;
6322 }
6323
6324 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6325 {
6326         struct sk_buff *skb = napi->skb;
6327
6328         if (!skb) {
6329                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6330                 if (skb) {
6331                         napi->skb = skb;
6332                         skb_mark_napi_id(skb, napi);
6333                 }
6334         }
6335         return skb;
6336 }
6337 EXPORT_SYMBOL(napi_get_frags);
6338
6339 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6340                                       struct sk_buff *skb,
6341                                       gro_result_t ret)
6342 {
6343         switch (ret) {
6344         case GRO_NORMAL:
6345         case GRO_HELD:
6346                 __skb_push(skb, ETH_HLEN);
6347                 skb->protocol = eth_type_trans(skb, skb->dev);
6348                 if (ret == GRO_NORMAL)
6349                         gro_normal_one(napi, skb, 1);
6350                 break;
6351
6352         case GRO_MERGED_FREE:
6353                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6354                         napi_skb_free_stolen_head(skb);
6355                 else
6356                         napi_reuse_skb(napi, skb);
6357                 break;
6358
6359         case GRO_MERGED:
6360         case GRO_CONSUMED:
6361                 break;
6362         }
6363
6364         return ret;
6365 }
6366
6367 /* Upper GRO stack assumes network header starts at gro_offset=0
6368  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6369  * We copy ethernet header into skb->data to have a common layout.
6370  */
6371 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6372 {
6373         struct sk_buff *skb = napi->skb;
6374         const struct ethhdr *eth;
6375         unsigned int hlen = sizeof(*eth);
6376
6377         napi->skb = NULL;
6378
6379         skb_reset_mac_header(skb);
6380         skb_gro_reset_offset(skb, hlen);
6381
6382         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6383                 eth = skb_gro_header_slow(skb, hlen, 0);
6384                 if (unlikely(!eth)) {
6385                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6386                                              __func__, napi->dev->name);
6387                         napi_reuse_skb(napi, skb);
6388                         return NULL;
6389                 }
6390         } else {
6391                 eth = (const struct ethhdr *)skb->data;
6392                 gro_pull_from_frag0(skb, hlen);
6393                 NAPI_GRO_CB(skb)->frag0 += hlen;
6394                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6395         }
6396         __skb_pull(skb, hlen);
6397
6398         /*
6399          * This works because the only protocols we care about don't require
6400          * special handling.
6401          * We'll fix it up properly in napi_frags_finish()
6402          */
6403         skb->protocol = eth->h_proto;
6404
6405         return skb;
6406 }
6407
6408 gro_result_t napi_gro_frags(struct napi_struct *napi)
6409 {
6410         gro_result_t ret;
6411         struct sk_buff *skb = napi_frags_skb(napi);
6412
6413         trace_napi_gro_frags_entry(skb);
6414
6415         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6416         trace_napi_gro_frags_exit(ret);
6417
6418         return ret;
6419 }
6420 EXPORT_SYMBOL(napi_gro_frags);
6421
6422 /* Compute the checksum from gro_offset and return the folded value
6423  * after adding in any pseudo checksum.
6424  */
6425 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6426 {
6427         __wsum wsum;
6428         __sum16 sum;
6429
6430         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6431
6432         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6433         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6434         /* See comments in __skb_checksum_complete(). */
6435         if (likely(!sum)) {
6436                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6437                     !skb->csum_complete_sw)
6438                         netdev_rx_csum_fault(skb->dev, skb);
6439         }
6440
6441         NAPI_GRO_CB(skb)->csum = wsum;
6442         NAPI_GRO_CB(skb)->csum_valid = 1;
6443
6444         return sum;
6445 }
6446 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6447
6448 static void net_rps_send_ipi(struct softnet_data *remsd)
6449 {
6450 #ifdef CONFIG_RPS
6451         while (remsd) {
6452                 struct softnet_data *next = remsd->rps_ipi_next;
6453
6454                 if (cpu_online(remsd->cpu))
6455                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6456                 remsd = next;
6457         }
6458 #endif
6459 }
6460
6461 /*
6462  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6463  * Note: called with local irq disabled, but exits with local irq enabled.
6464  */
6465 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6466 {
6467 #ifdef CONFIG_RPS
6468         struct softnet_data *remsd = sd->rps_ipi_list;
6469
6470         if (remsd) {
6471                 sd->rps_ipi_list = NULL;
6472
6473                 local_irq_enable();
6474
6475                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6476                 net_rps_send_ipi(remsd);
6477         } else
6478 #endif
6479                 local_irq_enable();
6480 }
6481
6482 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6483 {
6484 #ifdef CONFIG_RPS
6485         return sd->rps_ipi_list != NULL;
6486 #else
6487         return false;
6488 #endif
6489 }
6490
6491 static int process_backlog(struct napi_struct *napi, int quota)
6492 {
6493         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6494         bool again = true;
6495         int work = 0;
6496
6497         /* Check if we have pending ipi, its better to send them now,
6498          * not waiting net_rx_action() end.
6499          */
6500         if (sd_has_rps_ipi_waiting(sd)) {
6501                 local_irq_disable();
6502                 net_rps_action_and_irq_enable(sd);
6503         }
6504
6505         napi->weight = dev_rx_weight;
6506         while (again) {
6507                 struct sk_buff *skb;
6508
6509                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6510                         rcu_read_lock();
6511                         __netif_receive_skb(skb);
6512                         rcu_read_unlock();
6513                         input_queue_head_incr(sd);
6514                         if (++work >= quota)
6515                                 return work;
6516
6517                 }
6518
6519                 local_irq_disable();
6520                 rps_lock(sd);
6521                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6522                         /*
6523                          * Inline a custom version of __napi_complete().
6524                          * only current cpu owns and manipulates this napi,
6525                          * and NAPI_STATE_SCHED is the only possible flag set
6526                          * on backlog.
6527                          * We can use a plain write instead of clear_bit(),
6528                          * and we dont need an smp_mb() memory barrier.
6529                          */
6530                         napi->state = 0;
6531                         again = false;
6532                 } else {
6533                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6534                                                    &sd->process_queue);
6535                 }
6536                 rps_unlock(sd);
6537                 local_irq_enable();
6538         }
6539
6540         return work;
6541 }
6542
6543 /**
6544  * __napi_schedule - schedule for receive
6545  * @n: entry to schedule
6546  *
6547  * The entry's receive function will be scheduled to run.
6548  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6549  */
6550 void __napi_schedule(struct napi_struct *n)
6551 {
6552         unsigned long flags;
6553
6554         local_irq_save(flags);
6555         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556         local_irq_restore(flags);
6557 }
6558 EXPORT_SYMBOL(__napi_schedule);
6559
6560 /**
6561  *      napi_schedule_prep - check if napi can be scheduled
6562  *      @n: napi context
6563  *
6564  * Test if NAPI routine is already running, and if not mark
6565  * it as running.  This is used as a condition variable to
6566  * insure only one NAPI poll instance runs.  We also make
6567  * sure there is no pending NAPI disable.
6568  */
6569 bool napi_schedule_prep(struct napi_struct *n)
6570 {
6571         unsigned long val, new;
6572
6573         do {
6574                 val = READ_ONCE(n->state);
6575                 if (unlikely(val & NAPIF_STATE_DISABLE))
6576                         return false;
6577                 new = val | NAPIF_STATE_SCHED;
6578
6579                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6580                  * This was suggested by Alexander Duyck, as compiler
6581                  * emits better code than :
6582                  * if (val & NAPIF_STATE_SCHED)
6583                  *     new |= NAPIF_STATE_MISSED;
6584                  */
6585                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6586                                                    NAPIF_STATE_MISSED;
6587         } while (cmpxchg(&n->state, val, new) != val);
6588
6589         return !(val & NAPIF_STATE_SCHED);
6590 }
6591 EXPORT_SYMBOL(napi_schedule_prep);
6592
6593 /**
6594  * __napi_schedule_irqoff - schedule for receive
6595  * @n: entry to schedule
6596  *
6597  * Variant of __napi_schedule() assuming hard irqs are masked.
6598  *
6599  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6600  * because the interrupt disabled assumption might not be true
6601  * due to force-threaded interrupts and spinlock substitution.
6602  */
6603 void __napi_schedule_irqoff(struct napi_struct *n)
6604 {
6605         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6606                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6607         else
6608                 __napi_schedule(n);
6609 }
6610 EXPORT_SYMBOL(__napi_schedule_irqoff);
6611
6612 bool napi_complete_done(struct napi_struct *n, int work_done)
6613 {
6614         unsigned long flags, val, new, timeout = 0;
6615         bool ret = true;
6616
6617         /*
6618          * 1) Don't let napi dequeue from the cpu poll list
6619          *    just in case its running on a different cpu.
6620          * 2) If we are busy polling, do nothing here, we have
6621          *    the guarantee we will be called later.
6622          */
6623         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6624                                  NAPIF_STATE_IN_BUSY_POLL)))
6625                 return false;
6626
6627         if (work_done) {
6628                 if (n->gro_bitmask)
6629                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6630                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6631         }
6632         if (n->defer_hard_irqs_count > 0) {
6633                 n->defer_hard_irqs_count--;
6634                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6635                 if (timeout)
6636                         ret = false;
6637         }
6638         if (n->gro_bitmask) {
6639                 /* When the NAPI instance uses a timeout and keeps postponing
6640                  * it, we need to bound somehow the time packets are kept in
6641                  * the GRO layer
6642                  */
6643                 napi_gro_flush(n, !!timeout);
6644         }
6645
6646         gro_normal_list(n);
6647
6648         if (unlikely(!list_empty(&n->poll_list))) {
6649                 /* If n->poll_list is not empty, we need to mask irqs */
6650                 local_irq_save(flags);
6651                 list_del_init(&n->poll_list);
6652                 local_irq_restore(flags);
6653         }
6654
6655         do {
6656                 val = READ_ONCE(n->state);
6657
6658                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6659
6660                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6661                               NAPIF_STATE_SCHED_THREADED |
6662                               NAPIF_STATE_PREFER_BUSY_POLL);
6663
6664                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6665                  * because we will call napi->poll() one more time.
6666                  * This C code was suggested by Alexander Duyck to help gcc.
6667                  */
6668                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6669                                                     NAPIF_STATE_SCHED;
6670         } while (cmpxchg(&n->state, val, new) != val);
6671
6672         if (unlikely(val & NAPIF_STATE_MISSED)) {
6673                 __napi_schedule(n);
6674                 return false;
6675         }
6676
6677         if (timeout)
6678                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6679                               HRTIMER_MODE_REL_PINNED);
6680         return ret;
6681 }
6682 EXPORT_SYMBOL(napi_complete_done);
6683
6684 /* must be called under rcu_read_lock(), as we dont take a reference */
6685 static struct napi_struct *napi_by_id(unsigned int napi_id)
6686 {
6687         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6688         struct napi_struct *napi;
6689
6690         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6691                 if (napi->napi_id == napi_id)
6692                         return napi;
6693
6694         return NULL;
6695 }
6696
6697 #if defined(CONFIG_NET_RX_BUSY_POLL)
6698
6699 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6700 {
6701         if (!skip_schedule) {
6702                 gro_normal_list(napi);
6703                 __napi_schedule(napi);
6704                 return;
6705         }
6706
6707         if (napi->gro_bitmask) {
6708                 /* flush too old packets
6709                  * If HZ < 1000, flush all packets.
6710                  */
6711                 napi_gro_flush(napi, HZ >= 1000);
6712         }
6713
6714         gro_normal_list(napi);
6715         clear_bit(NAPI_STATE_SCHED, &napi->state);
6716 }
6717
6718 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6719                            u16 budget)
6720 {
6721         bool skip_schedule = false;
6722         unsigned long timeout;
6723         int rc;
6724
6725         /* Busy polling means there is a high chance device driver hard irq
6726          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6727          * set in napi_schedule_prep().
6728          * Since we are about to call napi->poll() once more, we can safely
6729          * clear NAPI_STATE_MISSED.
6730          *
6731          * Note: x86 could use a single "lock and ..." instruction
6732          * to perform these two clear_bit()
6733          */
6734         clear_bit(NAPI_STATE_MISSED, &napi->state);
6735         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6736
6737         local_bh_disable();
6738
6739         if (prefer_busy_poll) {
6740                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6741                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6742                 if (napi->defer_hard_irqs_count && timeout) {
6743                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6744                         skip_schedule = true;
6745                 }
6746         }
6747
6748         /* All we really want here is to re-enable device interrupts.
6749          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6750          */
6751         rc = napi->poll(napi, budget);
6752         /* We can't gro_normal_list() here, because napi->poll() might have
6753          * rearmed the napi (napi_complete_done()) in which case it could
6754          * already be running on another CPU.
6755          */
6756         trace_napi_poll(napi, rc, budget);
6757         netpoll_poll_unlock(have_poll_lock);
6758         if (rc == budget)
6759                 __busy_poll_stop(napi, skip_schedule);
6760         local_bh_enable();
6761 }
6762
6763 void napi_busy_loop(unsigned int napi_id,
6764                     bool (*loop_end)(void *, unsigned long),
6765                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6766 {
6767         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6768         int (*napi_poll)(struct napi_struct *napi, int budget);
6769         void *have_poll_lock = NULL;
6770         struct napi_struct *napi;
6771
6772 restart:
6773         napi_poll = NULL;
6774
6775         rcu_read_lock();
6776
6777         napi = napi_by_id(napi_id);
6778         if (!napi)
6779                 goto out;
6780
6781         preempt_disable();
6782         for (;;) {
6783                 int work = 0;
6784
6785                 local_bh_disable();
6786                 if (!napi_poll) {
6787                         unsigned long val = READ_ONCE(napi->state);
6788
6789                         /* If multiple threads are competing for this napi,
6790                          * we avoid dirtying napi->state as much as we can.
6791                          */
6792                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6793                                    NAPIF_STATE_IN_BUSY_POLL)) {
6794                                 if (prefer_busy_poll)
6795                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6796                                 goto count;
6797                         }
6798                         if (cmpxchg(&napi->state, val,
6799                                     val | NAPIF_STATE_IN_BUSY_POLL |
6800                                           NAPIF_STATE_SCHED) != val) {
6801                                 if (prefer_busy_poll)
6802                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6803                                 goto count;
6804                         }
6805                         have_poll_lock = netpoll_poll_lock(napi);
6806                         napi_poll = napi->poll;
6807                 }
6808                 work = napi_poll(napi, budget);
6809                 trace_napi_poll(napi, work, budget);
6810                 gro_normal_list(napi);
6811 count:
6812                 if (work > 0)
6813                         __NET_ADD_STATS(dev_net(napi->dev),
6814                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6815                 local_bh_enable();
6816
6817                 if (!loop_end || loop_end(loop_end_arg, start_time))
6818                         break;
6819
6820                 if (unlikely(need_resched())) {
6821                         if (napi_poll)
6822                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6823                         preempt_enable();
6824                         rcu_read_unlock();
6825                         cond_resched();
6826                         if (loop_end(loop_end_arg, start_time))
6827                                 return;
6828                         goto restart;
6829                 }
6830                 cpu_relax();
6831         }
6832         if (napi_poll)
6833                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6834         preempt_enable();
6835 out:
6836         rcu_read_unlock();
6837 }
6838 EXPORT_SYMBOL(napi_busy_loop);
6839
6840 #endif /* CONFIG_NET_RX_BUSY_POLL */
6841
6842 static void napi_hash_add(struct napi_struct *napi)
6843 {
6844         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6845                 return;
6846
6847         spin_lock(&napi_hash_lock);
6848
6849         /* 0..NR_CPUS range is reserved for sender_cpu use */
6850         do {
6851                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6852                         napi_gen_id = MIN_NAPI_ID;
6853         } while (napi_by_id(napi_gen_id));
6854         napi->napi_id = napi_gen_id;
6855
6856         hlist_add_head_rcu(&napi->napi_hash_node,
6857                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6858
6859         spin_unlock(&napi_hash_lock);
6860 }
6861
6862 /* Warning : caller is responsible to make sure rcu grace period
6863  * is respected before freeing memory containing @napi
6864  */
6865 static void napi_hash_del(struct napi_struct *napi)
6866 {
6867         spin_lock(&napi_hash_lock);
6868
6869         hlist_del_init_rcu(&napi->napi_hash_node);
6870
6871         spin_unlock(&napi_hash_lock);
6872 }
6873
6874 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6875 {
6876         struct napi_struct *napi;
6877
6878         napi = container_of(timer, struct napi_struct, timer);
6879
6880         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6881          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6882          */
6883         if (!napi_disable_pending(napi) &&
6884             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6885                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6886                 __napi_schedule_irqoff(napi);
6887         }
6888
6889         return HRTIMER_NORESTART;
6890 }
6891
6892 static void init_gro_hash(struct napi_struct *napi)
6893 {
6894         int i;
6895
6896         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6897                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6898                 napi->gro_hash[i].count = 0;
6899         }
6900         napi->gro_bitmask = 0;
6901 }
6902
6903 int dev_set_threaded(struct net_device *dev, bool threaded)
6904 {
6905         struct napi_struct *napi;
6906         int err = 0;
6907
6908         if (dev->threaded == threaded)
6909                 return 0;
6910
6911         if (threaded) {
6912                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6913                         if (!napi->thread) {
6914                                 err = napi_kthread_create(napi);
6915                                 if (err) {
6916                                         threaded = false;
6917                                         break;
6918                                 }
6919                         }
6920                 }
6921         }
6922
6923         dev->threaded = threaded;
6924
6925         /* Make sure kthread is created before THREADED bit
6926          * is set.
6927          */
6928         smp_mb__before_atomic();
6929
6930         /* Setting/unsetting threaded mode on a napi might not immediately
6931          * take effect, if the current napi instance is actively being
6932          * polled. In this case, the switch between threaded mode and
6933          * softirq mode will happen in the next round of napi_schedule().
6934          * This should not cause hiccups/stalls to the live traffic.
6935          */
6936         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6937                 if (threaded)
6938                         set_bit(NAPI_STATE_THREADED, &napi->state);
6939                 else
6940                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6941         }
6942
6943         return err;
6944 }
6945 EXPORT_SYMBOL(dev_set_threaded);
6946
6947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6948                     int (*poll)(struct napi_struct *, int), int weight)
6949 {
6950         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6951                 return;
6952
6953         INIT_LIST_HEAD(&napi->poll_list);
6954         INIT_HLIST_NODE(&napi->napi_hash_node);
6955         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6956         napi->timer.function = napi_watchdog;
6957         init_gro_hash(napi);
6958         napi->skb = NULL;
6959         INIT_LIST_HEAD(&napi->rx_list);
6960         napi->rx_count = 0;
6961         napi->poll = poll;
6962         if (weight > NAPI_POLL_WEIGHT)
6963                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6964                                 weight);
6965         napi->weight = weight;
6966         napi->dev = dev;
6967 #ifdef CONFIG_NETPOLL
6968         napi->poll_owner = -1;
6969 #endif
6970         set_bit(NAPI_STATE_SCHED, &napi->state);
6971         set_bit(NAPI_STATE_NPSVC, &napi->state);
6972         list_add_rcu(&napi->dev_list, &dev->napi_list);
6973         napi_hash_add(napi);
6974         /* Create kthread for this napi if dev->threaded is set.
6975          * Clear dev->threaded if kthread creation failed so that
6976          * threaded mode will not be enabled in napi_enable().
6977          */
6978         if (dev->threaded && napi_kthread_create(napi))
6979                 dev->threaded = 0;
6980 }
6981 EXPORT_SYMBOL(netif_napi_add);
6982
6983 void napi_disable(struct napi_struct *n)
6984 {
6985         might_sleep();
6986         set_bit(NAPI_STATE_DISABLE, &n->state);
6987
6988         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6989                 msleep(1);
6990         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6991                 msleep(1);
6992
6993         hrtimer_cancel(&n->timer);
6994
6995         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6996         clear_bit(NAPI_STATE_DISABLE, &n->state);
6997         clear_bit(NAPI_STATE_THREADED, &n->state);
6998 }
6999 EXPORT_SYMBOL(napi_disable);
7000
7001 /**
7002  *      napi_enable - enable NAPI scheduling
7003  *      @n: NAPI context
7004  *
7005  * Resume NAPI from being scheduled on this context.
7006  * Must be paired with napi_disable.
7007  */
7008 void napi_enable(struct napi_struct *n)
7009 {
7010         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
7011         smp_mb__before_atomic();
7012         clear_bit(NAPI_STATE_SCHED, &n->state);
7013         clear_bit(NAPI_STATE_NPSVC, &n->state);
7014         if (n->dev->threaded && n->thread)
7015                 set_bit(NAPI_STATE_THREADED, &n->state);
7016 }
7017 EXPORT_SYMBOL(napi_enable);
7018
7019 static void flush_gro_hash(struct napi_struct *napi)
7020 {
7021         int i;
7022
7023         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7024                 struct sk_buff *skb, *n;
7025
7026                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7027                         kfree_skb(skb);
7028                 napi->gro_hash[i].count = 0;
7029         }
7030 }
7031
7032 /* Must be called in process context */
7033 void __netif_napi_del(struct napi_struct *napi)
7034 {
7035         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7036                 return;
7037
7038         napi_hash_del(napi);
7039         list_del_rcu(&napi->dev_list);
7040         napi_free_frags(napi);
7041
7042         flush_gro_hash(napi);
7043         napi->gro_bitmask = 0;
7044
7045         if (napi->thread) {
7046                 kthread_stop(napi->thread);
7047                 napi->thread = NULL;
7048         }
7049 }
7050 EXPORT_SYMBOL(__netif_napi_del);
7051
7052 static int __napi_poll(struct napi_struct *n, bool *repoll)
7053 {
7054         int work, weight;
7055
7056         weight = n->weight;
7057
7058         /* This NAPI_STATE_SCHED test is for avoiding a race
7059          * with netpoll's poll_napi().  Only the entity which
7060          * obtains the lock and sees NAPI_STATE_SCHED set will
7061          * actually make the ->poll() call.  Therefore we avoid
7062          * accidentally calling ->poll() when NAPI is not scheduled.
7063          */
7064         work = 0;
7065         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7066                 work = n->poll(n, weight);
7067                 trace_napi_poll(n, work, weight);
7068         }
7069
7070         if (unlikely(work > weight))
7071                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7072                             n->poll, work, weight);
7073
7074         if (likely(work < weight))
7075                 return work;
7076
7077         /* Drivers must not modify the NAPI state if they
7078          * consume the entire weight.  In such cases this code
7079          * still "owns" the NAPI instance and therefore can
7080          * move the instance around on the list at-will.
7081          */
7082         if (unlikely(napi_disable_pending(n))) {
7083                 napi_complete(n);
7084                 return work;
7085         }
7086
7087         /* The NAPI context has more processing work, but busy-polling
7088          * is preferred. Exit early.
7089          */
7090         if (napi_prefer_busy_poll(n)) {
7091                 if (napi_complete_done(n, work)) {
7092                         /* If timeout is not set, we need to make sure
7093                          * that the NAPI is re-scheduled.
7094                          */
7095                         napi_schedule(n);
7096                 }
7097                 return work;
7098         }
7099
7100         if (n->gro_bitmask) {
7101                 /* flush too old packets
7102                  * If HZ < 1000, flush all packets.
7103                  */
7104                 napi_gro_flush(n, HZ >= 1000);
7105         }
7106
7107         gro_normal_list(n);
7108
7109         /* Some drivers may have called napi_schedule
7110          * prior to exhausting their budget.
7111          */
7112         if (unlikely(!list_empty(&n->poll_list))) {
7113                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7114                              n->dev ? n->dev->name : "backlog");
7115                 return work;
7116         }
7117
7118         *repoll = true;
7119
7120         return work;
7121 }
7122
7123 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7124 {
7125         bool do_repoll = false;
7126         void *have;
7127         int work;
7128
7129         list_del_init(&n->poll_list);
7130
7131         have = netpoll_poll_lock(n);
7132
7133         work = __napi_poll(n, &do_repoll);
7134
7135         if (do_repoll)
7136                 list_add_tail(&n->poll_list, repoll);
7137
7138         netpoll_poll_unlock(have);
7139
7140         return work;
7141 }
7142
7143 static int napi_thread_wait(struct napi_struct *napi)
7144 {
7145         bool woken = false;
7146
7147         set_current_state(TASK_INTERRUPTIBLE);
7148
7149         while (!kthread_should_stop()) {
7150                 /* Testing SCHED_THREADED bit here to make sure the current
7151                  * kthread owns this napi and could poll on this napi.
7152                  * Testing SCHED bit is not enough because SCHED bit might be
7153                  * set by some other busy poll thread or by napi_disable().
7154                  */
7155                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7156                         WARN_ON(!list_empty(&napi->poll_list));
7157                         __set_current_state(TASK_RUNNING);
7158                         return 0;
7159                 }
7160
7161                 schedule();
7162                 /* woken being true indicates this thread owns this napi. */
7163                 woken = true;
7164                 set_current_state(TASK_INTERRUPTIBLE);
7165         }
7166         __set_current_state(TASK_RUNNING);
7167
7168         return -1;
7169 }
7170
7171 static int napi_threaded_poll(void *data)
7172 {
7173         struct napi_struct *napi = data;
7174         void *have;
7175
7176         while (!napi_thread_wait(napi)) {
7177                 for (;;) {
7178                         bool repoll = false;
7179
7180                         local_bh_disable();
7181
7182                         have = netpoll_poll_lock(napi);
7183                         __napi_poll(napi, &repoll);
7184                         netpoll_poll_unlock(have);
7185
7186                         local_bh_enable();
7187
7188                         if (!repoll)
7189                                 break;
7190
7191                         cond_resched();
7192                 }
7193         }
7194         return 0;
7195 }
7196
7197 static __latent_entropy void net_rx_action(struct softirq_action *h)
7198 {
7199         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7200         unsigned long time_limit = jiffies +
7201                 usecs_to_jiffies(netdev_budget_usecs);
7202         int budget = netdev_budget;
7203         LIST_HEAD(list);
7204         LIST_HEAD(repoll);
7205
7206         local_irq_disable();
7207         list_splice_init(&sd->poll_list, &list);
7208         local_irq_enable();
7209
7210         for (;;) {
7211                 struct napi_struct *n;
7212
7213                 if (list_empty(&list)) {
7214                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7215                                 return;
7216                         break;
7217                 }
7218
7219                 n = list_first_entry(&list, struct napi_struct, poll_list);
7220                 budget -= napi_poll(n, &repoll);
7221
7222                 /* If softirq window is exhausted then punt.
7223                  * Allow this to run for 2 jiffies since which will allow
7224                  * an average latency of 1.5/HZ.
7225                  */
7226                 if (unlikely(budget <= 0 ||
7227                              time_after_eq(jiffies, time_limit))) {
7228                         sd->time_squeeze++;
7229                         break;
7230                 }
7231         }
7232
7233         local_irq_disable();
7234
7235         list_splice_tail_init(&sd->poll_list, &list);
7236         list_splice_tail(&repoll, &list);
7237         list_splice(&list, &sd->poll_list);
7238         if (!list_empty(&sd->poll_list))
7239                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7240
7241         net_rps_action_and_irq_enable(sd);
7242 }
7243
7244 struct netdev_adjacent {
7245         struct net_device *dev;
7246
7247         /* upper master flag, there can only be one master device per list */
7248         bool master;
7249
7250         /* lookup ignore flag */
7251         bool ignore;
7252
7253         /* counter for the number of times this device was added to us */
7254         u16 ref_nr;
7255
7256         /* private field for the users */
7257         void *private;
7258
7259         struct list_head list;
7260         struct rcu_head rcu;
7261 };
7262
7263 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7264                                                  struct list_head *adj_list)
7265 {
7266         struct netdev_adjacent *adj;
7267
7268         list_for_each_entry(adj, adj_list, list) {
7269                 if (adj->dev == adj_dev)
7270                         return adj;
7271         }
7272         return NULL;
7273 }
7274
7275 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7276                                     struct netdev_nested_priv *priv)
7277 {
7278         struct net_device *dev = (struct net_device *)priv->data;
7279
7280         return upper_dev == dev;
7281 }
7282
7283 /**
7284  * netdev_has_upper_dev - Check if device is linked to an upper device
7285  * @dev: device
7286  * @upper_dev: upper device to check
7287  *
7288  * Find out if a device is linked to specified upper device and return true
7289  * in case it is. Note that this checks only immediate upper device,
7290  * not through a complete stack of devices. The caller must hold the RTNL lock.
7291  */
7292 bool netdev_has_upper_dev(struct net_device *dev,
7293                           struct net_device *upper_dev)
7294 {
7295         struct netdev_nested_priv priv = {
7296                 .data = (void *)upper_dev,
7297         };
7298
7299         ASSERT_RTNL();
7300
7301         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7302                                              &priv);
7303 }
7304 EXPORT_SYMBOL(netdev_has_upper_dev);
7305
7306 /**
7307  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7308  * @dev: device
7309  * @upper_dev: upper device to check
7310  *
7311  * Find out if a device is linked to specified upper device and return true
7312  * in case it is. Note that this checks the entire upper device chain.
7313  * The caller must hold rcu lock.
7314  */
7315
7316 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7317                                   struct net_device *upper_dev)
7318 {
7319         struct netdev_nested_priv priv = {
7320                 .data = (void *)upper_dev,
7321         };
7322
7323         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7324                                                &priv);
7325 }
7326 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7327
7328 /**
7329  * netdev_has_any_upper_dev - Check if device is linked to some device
7330  * @dev: device
7331  *
7332  * Find out if a device is linked to an upper device and return true in case
7333  * it is. The caller must hold the RTNL lock.
7334  */
7335 bool netdev_has_any_upper_dev(struct net_device *dev)
7336 {
7337         ASSERT_RTNL();
7338
7339         return !list_empty(&dev->adj_list.upper);
7340 }
7341 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7342
7343 /**
7344  * netdev_master_upper_dev_get - Get master upper device
7345  * @dev: device
7346  *
7347  * Find a master upper device and return pointer to it or NULL in case
7348  * it's not there. The caller must hold the RTNL lock.
7349  */
7350 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7351 {
7352         struct netdev_adjacent *upper;
7353
7354         ASSERT_RTNL();
7355
7356         if (list_empty(&dev->adj_list.upper))
7357                 return NULL;
7358
7359         upper = list_first_entry(&dev->adj_list.upper,
7360                                  struct netdev_adjacent, list);
7361         if (likely(upper->master))
7362                 return upper->dev;
7363         return NULL;
7364 }
7365 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7366
7367 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7368 {
7369         struct netdev_adjacent *upper;
7370
7371         ASSERT_RTNL();
7372
7373         if (list_empty(&dev->adj_list.upper))
7374                 return NULL;
7375
7376         upper = list_first_entry(&dev->adj_list.upper,
7377                                  struct netdev_adjacent, list);
7378         if (likely(upper->master) && !upper->ignore)
7379                 return upper->dev;
7380         return NULL;
7381 }
7382
7383 /**
7384  * netdev_has_any_lower_dev - Check if device is linked to some device
7385  * @dev: device
7386  *
7387  * Find out if a device is linked to a lower device and return true in case
7388  * it is. The caller must hold the RTNL lock.
7389  */
7390 static bool netdev_has_any_lower_dev(struct net_device *dev)
7391 {
7392         ASSERT_RTNL();
7393
7394         return !list_empty(&dev->adj_list.lower);
7395 }
7396
7397 void *netdev_adjacent_get_private(struct list_head *adj_list)
7398 {
7399         struct netdev_adjacent *adj;
7400
7401         adj = list_entry(adj_list, struct netdev_adjacent, list);
7402
7403         return adj->private;
7404 }
7405 EXPORT_SYMBOL(netdev_adjacent_get_private);
7406
7407 /**
7408  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7409  * @dev: device
7410  * @iter: list_head ** of the current position
7411  *
7412  * Gets the next device from the dev's upper list, starting from iter
7413  * position. The caller must hold RCU read lock.
7414  */
7415 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7416                                                  struct list_head **iter)
7417 {
7418         struct netdev_adjacent *upper;
7419
7420         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7421
7422         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7423
7424         if (&upper->list == &dev->adj_list.upper)
7425                 return NULL;
7426
7427         *iter = &upper->list;
7428
7429         return upper->dev;
7430 }
7431 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7432
7433 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7434                                                   struct list_head **iter,
7435                                                   bool *ignore)
7436 {
7437         struct netdev_adjacent *upper;
7438
7439         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7440
7441         if (&upper->list == &dev->adj_list.upper)
7442                 return NULL;
7443
7444         *iter = &upper->list;
7445         *ignore = upper->ignore;
7446
7447         return upper->dev;
7448 }
7449
7450 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7451                                                     struct list_head **iter)
7452 {
7453         struct netdev_adjacent *upper;
7454
7455         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7456
7457         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7458
7459         if (&upper->list == &dev->adj_list.upper)
7460                 return NULL;
7461
7462         *iter = &upper->list;
7463
7464         return upper->dev;
7465 }
7466
7467 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7468                                        int (*fn)(struct net_device *dev,
7469                                          struct netdev_nested_priv *priv),
7470                                        struct netdev_nested_priv *priv)
7471 {
7472         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7473         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7474         int ret, cur = 0;
7475         bool ignore;
7476
7477         now = dev;
7478         iter = &dev->adj_list.upper;
7479
7480         while (1) {
7481                 if (now != dev) {
7482                         ret = fn(now, priv);
7483                         if (ret)
7484                                 return ret;
7485                 }
7486
7487                 next = NULL;
7488                 while (1) {
7489                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7490                         if (!udev)
7491                                 break;
7492                         if (ignore)
7493                                 continue;
7494
7495                         next = udev;
7496                         niter = &udev->adj_list.upper;
7497                         dev_stack[cur] = now;
7498                         iter_stack[cur++] = iter;
7499                         break;
7500                 }
7501
7502                 if (!next) {
7503                         if (!cur)
7504                                 return 0;
7505                         next = dev_stack[--cur];
7506                         niter = iter_stack[cur];
7507                 }
7508
7509                 now = next;
7510                 iter = niter;
7511         }
7512
7513         return 0;
7514 }
7515
7516 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7517                                   int (*fn)(struct net_device *dev,
7518                                             struct netdev_nested_priv *priv),
7519                                   struct netdev_nested_priv *priv)
7520 {
7521         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7522         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7523         int ret, cur = 0;
7524
7525         now = dev;
7526         iter = &dev->adj_list.upper;
7527
7528         while (1) {
7529                 if (now != dev) {
7530                         ret = fn(now, priv);
7531                         if (ret)
7532                                 return ret;
7533                 }
7534
7535                 next = NULL;
7536                 while (1) {
7537                         udev = netdev_next_upper_dev_rcu(now, &iter);
7538                         if (!udev)
7539                                 break;
7540
7541                         next = udev;
7542                         niter = &udev->adj_list.upper;
7543                         dev_stack[cur] = now;
7544                         iter_stack[cur++] = iter;
7545                         break;
7546                 }
7547
7548                 if (!next) {
7549                         if (!cur)
7550                                 return 0;
7551                         next = dev_stack[--cur];
7552                         niter = iter_stack[cur];
7553                 }
7554
7555                 now = next;
7556                 iter = niter;
7557         }
7558
7559         return 0;
7560 }
7561 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7562
7563 static bool __netdev_has_upper_dev(struct net_device *dev,
7564                                    struct net_device *upper_dev)
7565 {
7566         struct netdev_nested_priv priv = {
7567                 .flags = 0,
7568                 .data = (void *)upper_dev,
7569         };
7570
7571         ASSERT_RTNL();
7572
7573         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7574                                            &priv);
7575 }
7576
7577 /**
7578  * netdev_lower_get_next_private - Get the next ->private from the
7579  *                                 lower neighbour list
7580  * @dev: device
7581  * @iter: list_head ** of the current position
7582  *
7583  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7584  * list, starting from iter position. The caller must hold either hold the
7585  * RTNL lock or its own locking that guarantees that the neighbour lower
7586  * list will remain unchanged.
7587  */
7588 void *netdev_lower_get_next_private(struct net_device *dev,
7589                                     struct list_head **iter)
7590 {
7591         struct netdev_adjacent *lower;
7592
7593         lower = list_entry(*iter, struct netdev_adjacent, list);
7594
7595         if (&lower->list == &dev->adj_list.lower)
7596                 return NULL;
7597
7598         *iter = lower->list.next;
7599
7600         return lower->private;
7601 }
7602 EXPORT_SYMBOL(netdev_lower_get_next_private);
7603
7604 /**
7605  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7606  *                                     lower neighbour list, RCU
7607  *                                     variant
7608  * @dev: device
7609  * @iter: list_head ** of the current position
7610  *
7611  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7612  * list, starting from iter position. The caller must hold RCU read lock.
7613  */
7614 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7615                                         struct list_head **iter)
7616 {
7617         struct netdev_adjacent *lower;
7618
7619         WARN_ON_ONCE(!rcu_read_lock_held());
7620
7621         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7622
7623         if (&lower->list == &dev->adj_list.lower)
7624                 return NULL;
7625
7626         *iter = &lower->list;
7627
7628         return lower->private;
7629 }
7630 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7631
7632 /**
7633  * netdev_lower_get_next - Get the next device from the lower neighbour
7634  *                         list
7635  * @dev: device
7636  * @iter: list_head ** of the current position
7637  *
7638  * Gets the next netdev_adjacent from the dev's lower neighbour
7639  * list, starting from iter position. The caller must hold RTNL lock or
7640  * its own locking that guarantees that the neighbour lower
7641  * list will remain unchanged.
7642  */
7643 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7644 {
7645         struct netdev_adjacent *lower;
7646
7647         lower = list_entry(*iter, struct netdev_adjacent, list);
7648
7649         if (&lower->list == &dev->adj_list.lower)
7650                 return NULL;
7651
7652         *iter = lower->list.next;
7653
7654         return lower->dev;
7655 }
7656 EXPORT_SYMBOL(netdev_lower_get_next);
7657
7658 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7659                                                 struct list_head **iter)
7660 {
7661         struct netdev_adjacent *lower;
7662
7663         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7664
7665         if (&lower->list == &dev->adj_list.lower)
7666                 return NULL;
7667
7668         *iter = &lower->list;
7669
7670         return lower->dev;
7671 }
7672
7673 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7674                                                   struct list_head **iter,
7675                                                   bool *ignore)
7676 {
7677         struct netdev_adjacent *lower;
7678
7679         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7680
7681         if (&lower->list == &dev->adj_list.lower)
7682                 return NULL;
7683
7684         *iter = &lower->list;
7685         *ignore = lower->ignore;
7686
7687         return lower->dev;
7688 }
7689
7690 int netdev_walk_all_lower_dev(struct net_device *dev,
7691                               int (*fn)(struct net_device *dev,
7692                                         struct netdev_nested_priv *priv),
7693                               struct netdev_nested_priv *priv)
7694 {
7695         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7696         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7697         int ret, cur = 0;
7698
7699         now = dev;
7700         iter = &dev->adj_list.lower;
7701
7702         while (1) {
7703                 if (now != dev) {
7704                         ret = fn(now, priv);
7705                         if (ret)
7706                                 return ret;
7707                 }
7708
7709                 next = NULL;
7710                 while (1) {
7711                         ldev = netdev_next_lower_dev(now, &iter);
7712                         if (!ldev)
7713                                 break;
7714
7715                         next = ldev;
7716                         niter = &ldev->adj_list.lower;
7717                         dev_stack[cur] = now;
7718                         iter_stack[cur++] = iter;
7719                         break;
7720                 }
7721
7722                 if (!next) {
7723                         if (!cur)
7724                                 return 0;
7725                         next = dev_stack[--cur];
7726                         niter = iter_stack[cur];
7727                 }
7728
7729                 now = next;
7730                 iter = niter;
7731         }
7732
7733         return 0;
7734 }
7735 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7736
7737 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7738                                        int (*fn)(struct net_device *dev,
7739                                          struct netdev_nested_priv *priv),
7740                                        struct netdev_nested_priv *priv)
7741 {
7742         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7743         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7744         int ret, cur = 0;
7745         bool ignore;
7746
7747         now = dev;
7748         iter = &dev->adj_list.lower;
7749
7750         while (1) {
7751                 if (now != dev) {
7752                         ret = fn(now, priv);
7753                         if (ret)
7754                                 return ret;
7755                 }
7756
7757                 next = NULL;
7758                 while (1) {
7759                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7760                         if (!ldev)
7761                                 break;
7762                         if (ignore)
7763                                 continue;
7764
7765                         next = ldev;
7766                         niter = &ldev->adj_list.lower;
7767                         dev_stack[cur] = now;
7768                         iter_stack[cur++] = iter;
7769                         break;
7770                 }
7771
7772                 if (!next) {
7773                         if (!cur)
7774                                 return 0;
7775                         next = dev_stack[--cur];
7776                         niter = iter_stack[cur];
7777                 }
7778
7779                 now = next;
7780                 iter = niter;
7781         }
7782
7783         return 0;
7784 }
7785
7786 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7787                                              struct list_head **iter)
7788 {
7789         struct netdev_adjacent *lower;
7790
7791         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7792         if (&lower->list == &dev->adj_list.lower)
7793                 return NULL;
7794
7795         *iter = &lower->list;
7796
7797         return lower->dev;
7798 }
7799 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7800
7801 static u8 __netdev_upper_depth(struct net_device *dev)
7802 {
7803         struct net_device *udev;
7804         struct list_head *iter;
7805         u8 max_depth = 0;
7806         bool ignore;
7807
7808         for (iter = &dev->adj_list.upper,
7809              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7810              udev;
7811              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7812                 if (ignore)
7813                         continue;
7814                 if (max_depth < udev->upper_level)
7815                         max_depth = udev->upper_level;
7816         }
7817
7818         return max_depth;
7819 }
7820
7821 static u8 __netdev_lower_depth(struct net_device *dev)
7822 {
7823         struct net_device *ldev;
7824         struct list_head *iter;
7825         u8 max_depth = 0;
7826         bool ignore;
7827
7828         for (iter = &dev->adj_list.lower,
7829              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7830              ldev;
7831              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7832                 if (ignore)
7833                         continue;
7834                 if (max_depth < ldev->lower_level)
7835                         max_depth = ldev->lower_level;
7836         }
7837
7838         return max_depth;
7839 }
7840
7841 static int __netdev_update_upper_level(struct net_device *dev,
7842                                        struct netdev_nested_priv *__unused)
7843 {
7844         dev->upper_level = __netdev_upper_depth(dev) + 1;
7845         return 0;
7846 }
7847
7848 static int __netdev_update_lower_level(struct net_device *dev,
7849                                        struct netdev_nested_priv *priv)
7850 {
7851         dev->lower_level = __netdev_lower_depth(dev) + 1;
7852
7853 #ifdef CONFIG_LOCKDEP
7854         if (!priv)
7855                 return 0;
7856
7857         if (priv->flags & NESTED_SYNC_IMM)
7858                 dev->nested_level = dev->lower_level - 1;
7859         if (priv->flags & NESTED_SYNC_TODO)
7860                 net_unlink_todo(dev);
7861 #endif
7862         return 0;
7863 }
7864
7865 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7866                                   int (*fn)(struct net_device *dev,
7867                                             struct netdev_nested_priv *priv),
7868                                   struct netdev_nested_priv *priv)
7869 {
7870         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7871         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7872         int ret, cur = 0;
7873
7874         now = dev;
7875         iter = &dev->adj_list.lower;
7876
7877         while (1) {
7878                 if (now != dev) {
7879                         ret = fn(now, priv);
7880                         if (ret)
7881                                 return ret;
7882                 }
7883
7884                 next = NULL;
7885                 while (1) {
7886                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7887                         if (!ldev)
7888                                 break;
7889
7890                         next = ldev;
7891                         niter = &ldev->adj_list.lower;
7892                         dev_stack[cur] = now;
7893                         iter_stack[cur++] = iter;
7894                         break;
7895                 }
7896
7897                 if (!next) {
7898                         if (!cur)
7899                                 return 0;
7900                         next = dev_stack[--cur];
7901                         niter = iter_stack[cur];
7902                 }
7903
7904                 now = next;
7905                 iter = niter;
7906         }
7907
7908         return 0;
7909 }
7910 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7911
7912 /**
7913  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7914  *                                     lower neighbour list, RCU
7915  *                                     variant
7916  * @dev: device
7917  *
7918  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7919  * list. The caller must hold RCU read lock.
7920  */
7921 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7922 {
7923         struct netdev_adjacent *lower;
7924
7925         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7926                         struct netdev_adjacent, list);
7927         if (lower)
7928                 return lower->private;
7929         return NULL;
7930 }
7931 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7932
7933 /**
7934  * netdev_master_upper_dev_get_rcu - Get master upper device
7935  * @dev: device
7936  *
7937  * Find a master upper device and return pointer to it or NULL in case
7938  * it's not there. The caller must hold the RCU read lock.
7939  */
7940 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7941 {
7942         struct netdev_adjacent *upper;
7943
7944         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7945                                        struct netdev_adjacent, list);
7946         if (upper && likely(upper->master))
7947                 return upper->dev;
7948         return NULL;
7949 }
7950 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7951
7952 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7953                               struct net_device *adj_dev,
7954                               struct list_head *dev_list)
7955 {
7956         char linkname[IFNAMSIZ+7];
7957
7958         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7959                 "upper_%s" : "lower_%s", adj_dev->name);
7960         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7961                                  linkname);
7962 }
7963 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7964                                char *name,
7965                                struct list_head *dev_list)
7966 {
7967         char linkname[IFNAMSIZ+7];
7968
7969         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7970                 "upper_%s" : "lower_%s", name);
7971         sysfs_remove_link(&(dev->dev.kobj), linkname);
7972 }
7973
7974 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7975                                                  struct net_device *adj_dev,
7976                                                  struct list_head *dev_list)
7977 {
7978         return (dev_list == &dev->adj_list.upper ||
7979                 dev_list == &dev->adj_list.lower) &&
7980                 net_eq(dev_net(dev), dev_net(adj_dev));
7981 }
7982
7983 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7984                                         struct net_device *adj_dev,
7985                                         struct list_head *dev_list,
7986                                         void *private, bool master)
7987 {
7988         struct netdev_adjacent *adj;
7989         int ret;
7990
7991         adj = __netdev_find_adj(adj_dev, dev_list);
7992
7993         if (adj) {
7994                 adj->ref_nr += 1;
7995                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7996                          dev->name, adj_dev->name, adj->ref_nr);
7997
7998                 return 0;
7999         }
8000
8001         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8002         if (!adj)
8003                 return -ENOMEM;
8004
8005         adj->dev = adj_dev;
8006         adj->master = master;
8007         adj->ref_nr = 1;
8008         adj->private = private;
8009         adj->ignore = false;
8010         dev_hold(adj_dev);
8011
8012         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8013                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8014
8015         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8016                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8017                 if (ret)
8018                         goto free_adj;
8019         }
8020
8021         /* Ensure that master link is always the first item in list. */
8022         if (master) {
8023                 ret = sysfs_create_link(&(dev->dev.kobj),
8024                                         &(adj_dev->dev.kobj), "master");
8025                 if (ret)
8026                         goto remove_symlinks;
8027
8028                 list_add_rcu(&adj->list, dev_list);
8029         } else {
8030                 list_add_tail_rcu(&adj->list, dev_list);
8031         }
8032
8033         return 0;
8034
8035 remove_symlinks:
8036         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8037                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8038 free_adj:
8039         kfree(adj);
8040         dev_put(adj_dev);
8041
8042         return ret;
8043 }
8044
8045 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8046                                          struct net_device *adj_dev,
8047                                          u16 ref_nr,
8048                                          struct list_head *dev_list)
8049 {
8050         struct netdev_adjacent *adj;
8051
8052         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8053                  dev->name, adj_dev->name, ref_nr);
8054
8055         adj = __netdev_find_adj(adj_dev, dev_list);
8056
8057         if (!adj) {
8058                 pr_err("Adjacency does not exist for device %s from %s\n",
8059                        dev->name, adj_dev->name);
8060                 WARN_ON(1);
8061                 return;
8062         }
8063
8064         if (adj->ref_nr > ref_nr) {
8065                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8066                          dev->name, adj_dev->name, ref_nr,
8067                          adj->ref_nr - ref_nr);
8068                 adj->ref_nr -= ref_nr;
8069                 return;
8070         }
8071
8072         if (adj->master)
8073                 sysfs_remove_link(&(dev->dev.kobj), "master");
8074
8075         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8076                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8077
8078         list_del_rcu(&adj->list);
8079         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8080                  adj_dev->name, dev->name, adj_dev->name);
8081         dev_put(adj_dev);
8082         kfree_rcu(adj, rcu);
8083 }
8084
8085 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8086                                             struct net_device *upper_dev,
8087                                             struct list_head *up_list,
8088                                             struct list_head *down_list,
8089                                             void *private, bool master)
8090 {
8091         int ret;
8092
8093         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8094                                            private, master);
8095         if (ret)
8096                 return ret;
8097
8098         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8099                                            private, false);
8100         if (ret) {
8101                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8102                 return ret;
8103         }
8104
8105         return 0;
8106 }
8107
8108 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8109                                                struct net_device *upper_dev,
8110                                                u16 ref_nr,
8111                                                struct list_head *up_list,
8112                                                struct list_head *down_list)
8113 {
8114         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8115         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8116 }
8117
8118 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8119                                                 struct net_device *upper_dev,
8120                                                 void *private, bool master)
8121 {
8122         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8123                                                 &dev->adj_list.upper,
8124                                                 &upper_dev->adj_list.lower,
8125                                                 private, master);
8126 }
8127
8128 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8129                                                    struct net_device *upper_dev)
8130 {
8131         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8132                                            &dev->adj_list.upper,
8133                                            &upper_dev->adj_list.lower);
8134 }
8135
8136 static int __netdev_upper_dev_link(struct net_device *dev,
8137                                    struct net_device *upper_dev, bool master,
8138                                    void *upper_priv, void *upper_info,
8139                                    struct netdev_nested_priv *priv,
8140                                    struct netlink_ext_ack *extack)
8141 {
8142         struct netdev_notifier_changeupper_info changeupper_info = {
8143                 .info = {
8144                         .dev = dev,
8145                         .extack = extack,
8146                 },
8147                 .upper_dev = upper_dev,
8148                 .master = master,
8149                 .linking = true,
8150                 .upper_info = upper_info,
8151         };
8152         struct net_device *master_dev;
8153         int ret = 0;
8154
8155         ASSERT_RTNL();
8156
8157         if (dev == upper_dev)
8158                 return -EBUSY;
8159
8160         /* To prevent loops, check if dev is not upper device to upper_dev. */
8161         if (__netdev_has_upper_dev(upper_dev, dev))
8162                 return -EBUSY;
8163
8164         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8165                 return -EMLINK;
8166
8167         if (!master) {
8168                 if (__netdev_has_upper_dev(dev, upper_dev))
8169                         return -EEXIST;
8170         } else {
8171                 master_dev = __netdev_master_upper_dev_get(dev);
8172                 if (master_dev)
8173                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8174         }
8175
8176         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8177                                             &changeupper_info.info);
8178         ret = notifier_to_errno(ret);
8179         if (ret)
8180                 return ret;
8181
8182         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8183                                                    master);
8184         if (ret)
8185                 return ret;
8186
8187         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8188                                             &changeupper_info.info);
8189         ret = notifier_to_errno(ret);
8190         if (ret)
8191                 goto rollback;
8192
8193         __netdev_update_upper_level(dev, NULL);
8194         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8195
8196         __netdev_update_lower_level(upper_dev, priv);
8197         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8198                                     priv);
8199
8200         return 0;
8201
8202 rollback:
8203         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8204
8205         return ret;
8206 }
8207
8208 /**
8209  * netdev_upper_dev_link - Add a link to the upper device
8210  * @dev: device
8211  * @upper_dev: new upper device
8212  * @extack: netlink extended ack
8213  *
8214  * Adds a link to device which is upper to this one. The caller must hold
8215  * the RTNL lock. On a failure a negative errno code is returned.
8216  * On success the reference counts are adjusted and the function
8217  * returns zero.
8218  */
8219 int netdev_upper_dev_link(struct net_device *dev,
8220                           struct net_device *upper_dev,
8221                           struct netlink_ext_ack *extack)
8222 {
8223         struct netdev_nested_priv priv = {
8224                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8225                 .data = NULL,
8226         };
8227
8228         return __netdev_upper_dev_link(dev, upper_dev, false,
8229                                        NULL, NULL, &priv, extack);
8230 }
8231 EXPORT_SYMBOL(netdev_upper_dev_link);
8232
8233 /**
8234  * netdev_master_upper_dev_link - Add a master link to the upper device
8235  * @dev: device
8236  * @upper_dev: new upper device
8237  * @upper_priv: upper device private
8238  * @upper_info: upper info to be passed down via notifier
8239  * @extack: netlink extended ack
8240  *
8241  * Adds a link to device which is upper to this one. In this case, only
8242  * one master upper device can be linked, although other non-master devices
8243  * might be linked as well. The caller must hold the RTNL lock.
8244  * On a failure a negative errno code is returned. On success the reference
8245  * counts are adjusted and the function returns zero.
8246  */
8247 int netdev_master_upper_dev_link(struct net_device *dev,
8248                                  struct net_device *upper_dev,
8249                                  void *upper_priv, void *upper_info,
8250                                  struct netlink_ext_ack *extack)
8251 {
8252         struct netdev_nested_priv priv = {
8253                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8254                 .data = NULL,
8255         };
8256
8257         return __netdev_upper_dev_link(dev, upper_dev, true,
8258                                        upper_priv, upper_info, &priv, extack);
8259 }
8260 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8261
8262 static void __netdev_upper_dev_unlink(struct net_device *dev,
8263                                       struct net_device *upper_dev,
8264                                       struct netdev_nested_priv *priv)
8265 {
8266         struct netdev_notifier_changeupper_info changeupper_info = {
8267                 .info = {
8268                         .dev = dev,
8269                 },
8270                 .upper_dev = upper_dev,
8271                 .linking = false,
8272         };
8273
8274         ASSERT_RTNL();
8275
8276         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8277
8278         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8279                                       &changeupper_info.info);
8280
8281         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8282
8283         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8284                                       &changeupper_info.info);
8285
8286         __netdev_update_upper_level(dev, NULL);
8287         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8288
8289         __netdev_update_lower_level(upper_dev, priv);
8290         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8291                                     priv);
8292 }
8293
8294 /**
8295  * netdev_upper_dev_unlink - Removes a link to upper device
8296  * @dev: device
8297  * @upper_dev: new upper device
8298  *
8299  * Removes a link to device which is upper to this one. The caller must hold
8300  * the RTNL lock.
8301  */
8302 void netdev_upper_dev_unlink(struct net_device *dev,
8303                              struct net_device *upper_dev)
8304 {
8305         struct netdev_nested_priv priv = {
8306                 .flags = NESTED_SYNC_TODO,
8307                 .data = NULL,
8308         };
8309
8310         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8311 }
8312 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8313
8314 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8315                                       struct net_device *lower_dev,
8316                                       bool val)
8317 {
8318         struct netdev_adjacent *adj;
8319
8320         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8321         if (adj)
8322                 adj->ignore = val;
8323
8324         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8325         if (adj)
8326                 adj->ignore = val;
8327 }
8328
8329 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8330                                         struct net_device *lower_dev)
8331 {
8332         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8333 }
8334
8335 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8336                                        struct net_device *lower_dev)
8337 {
8338         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8339 }
8340
8341 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8342                                    struct net_device *new_dev,
8343                                    struct net_device *dev,
8344                                    struct netlink_ext_ack *extack)
8345 {
8346         struct netdev_nested_priv priv = {
8347                 .flags = 0,
8348                 .data = NULL,
8349         };
8350         int err;
8351
8352         if (!new_dev)
8353                 return 0;
8354
8355         if (old_dev && new_dev != old_dev)
8356                 netdev_adjacent_dev_disable(dev, old_dev);
8357         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8358                                       extack);
8359         if (err) {
8360                 if (old_dev && new_dev != old_dev)
8361                         netdev_adjacent_dev_enable(dev, old_dev);
8362                 return err;
8363         }
8364
8365         return 0;
8366 }
8367 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8368
8369 void netdev_adjacent_change_commit(struct net_device *old_dev,
8370                                    struct net_device *new_dev,
8371                                    struct net_device *dev)
8372 {
8373         struct netdev_nested_priv priv = {
8374                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8375                 .data = NULL,
8376         };
8377
8378         if (!new_dev || !old_dev)
8379                 return;
8380
8381         if (new_dev == old_dev)
8382                 return;
8383
8384         netdev_adjacent_dev_enable(dev, old_dev);
8385         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8386 }
8387 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8388
8389 void netdev_adjacent_change_abort(struct net_device *old_dev,
8390                                   struct net_device *new_dev,
8391                                   struct net_device *dev)
8392 {
8393         struct netdev_nested_priv priv = {
8394                 .flags = 0,
8395                 .data = NULL,
8396         };
8397
8398         if (!new_dev)
8399                 return;
8400
8401         if (old_dev && new_dev != old_dev)
8402                 netdev_adjacent_dev_enable(dev, old_dev);
8403
8404         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8405 }
8406 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8407
8408 /**
8409  * netdev_bonding_info_change - Dispatch event about slave change
8410  * @dev: device
8411  * @bonding_info: info to dispatch
8412  *
8413  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8414  * The caller must hold the RTNL lock.
8415  */
8416 void netdev_bonding_info_change(struct net_device *dev,
8417                                 struct netdev_bonding_info *bonding_info)
8418 {
8419         struct netdev_notifier_bonding_info info = {
8420                 .info.dev = dev,
8421         };
8422
8423         memcpy(&info.bonding_info, bonding_info,
8424                sizeof(struct netdev_bonding_info));
8425         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8426                                       &info.info);
8427 }
8428 EXPORT_SYMBOL(netdev_bonding_info_change);
8429
8430 /**
8431  * netdev_get_xmit_slave - Get the xmit slave of master device
8432  * @dev: device
8433  * @skb: The packet
8434  * @all_slaves: assume all the slaves are active
8435  *
8436  * The reference counters are not incremented so the caller must be
8437  * careful with locks. The caller must hold RCU lock.
8438  * %NULL is returned if no slave is found.
8439  */
8440
8441 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8442                                          struct sk_buff *skb,
8443                                          bool all_slaves)
8444 {
8445         const struct net_device_ops *ops = dev->netdev_ops;
8446
8447         if (!ops->ndo_get_xmit_slave)
8448                 return NULL;
8449         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8450 }
8451 EXPORT_SYMBOL(netdev_get_xmit_slave);
8452
8453 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8454                                                   struct sock *sk)
8455 {
8456         const struct net_device_ops *ops = dev->netdev_ops;
8457
8458         if (!ops->ndo_sk_get_lower_dev)
8459                 return NULL;
8460         return ops->ndo_sk_get_lower_dev(dev, sk);
8461 }
8462
8463 /**
8464  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8465  * @dev: device
8466  * @sk: the socket
8467  *
8468  * %NULL is returned if no lower device is found.
8469  */
8470
8471 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8472                                             struct sock *sk)
8473 {
8474         struct net_device *lower;
8475
8476         lower = netdev_sk_get_lower_dev(dev, sk);
8477         while (lower) {
8478                 dev = lower;
8479                 lower = netdev_sk_get_lower_dev(dev, sk);
8480         }
8481
8482         return dev;
8483 }
8484 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8485
8486 static void netdev_adjacent_add_links(struct net_device *dev)
8487 {
8488         struct netdev_adjacent *iter;
8489
8490         struct net *net = dev_net(dev);
8491
8492         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8493                 if (!net_eq(net, dev_net(iter->dev)))
8494                         continue;
8495                 netdev_adjacent_sysfs_add(iter->dev, dev,
8496                                           &iter->dev->adj_list.lower);
8497                 netdev_adjacent_sysfs_add(dev, iter->dev,
8498                                           &dev->adj_list.upper);
8499         }
8500
8501         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8502                 if (!net_eq(net, dev_net(iter->dev)))
8503                         continue;
8504                 netdev_adjacent_sysfs_add(iter->dev, dev,
8505                                           &iter->dev->adj_list.upper);
8506                 netdev_adjacent_sysfs_add(dev, iter->dev,
8507                                           &dev->adj_list.lower);
8508         }
8509 }
8510
8511 static void netdev_adjacent_del_links(struct net_device *dev)
8512 {
8513         struct netdev_adjacent *iter;
8514
8515         struct net *net = dev_net(dev);
8516
8517         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8518                 if (!net_eq(net, dev_net(iter->dev)))
8519                         continue;
8520                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8521                                           &iter->dev->adj_list.lower);
8522                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8523                                           &dev->adj_list.upper);
8524         }
8525
8526         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8527                 if (!net_eq(net, dev_net(iter->dev)))
8528                         continue;
8529                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8530                                           &iter->dev->adj_list.upper);
8531                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8532                                           &dev->adj_list.lower);
8533         }
8534 }
8535
8536 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8537 {
8538         struct netdev_adjacent *iter;
8539
8540         struct net *net = dev_net(dev);
8541
8542         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8543                 if (!net_eq(net, dev_net(iter->dev)))
8544                         continue;
8545                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8546                                           &iter->dev->adj_list.lower);
8547                 netdev_adjacent_sysfs_add(iter->dev, dev,
8548                                           &iter->dev->adj_list.lower);
8549         }
8550
8551         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8552                 if (!net_eq(net, dev_net(iter->dev)))
8553                         continue;
8554                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8555                                           &iter->dev->adj_list.upper);
8556                 netdev_adjacent_sysfs_add(iter->dev, dev,
8557                                           &iter->dev->adj_list.upper);
8558         }
8559 }
8560
8561 void *netdev_lower_dev_get_private(struct net_device *dev,
8562                                    struct net_device *lower_dev)
8563 {
8564         struct netdev_adjacent *lower;
8565
8566         if (!lower_dev)
8567                 return NULL;
8568         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8569         if (!lower)
8570                 return NULL;
8571
8572         return lower->private;
8573 }
8574 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8575
8576
8577 /**
8578  * netdev_lower_state_changed - Dispatch event about lower device state change
8579  * @lower_dev: device
8580  * @lower_state_info: state to dispatch
8581  *
8582  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8583  * The caller must hold the RTNL lock.
8584  */
8585 void netdev_lower_state_changed(struct net_device *lower_dev,
8586                                 void *lower_state_info)
8587 {
8588         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8589                 .info.dev = lower_dev,
8590         };
8591
8592         ASSERT_RTNL();
8593         changelowerstate_info.lower_state_info = lower_state_info;
8594         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8595                                       &changelowerstate_info.info);
8596 }
8597 EXPORT_SYMBOL(netdev_lower_state_changed);
8598
8599 static void dev_change_rx_flags(struct net_device *dev, int flags)
8600 {
8601         const struct net_device_ops *ops = dev->netdev_ops;
8602
8603         if (ops->ndo_change_rx_flags)
8604                 ops->ndo_change_rx_flags(dev, flags);
8605 }
8606
8607 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8608 {
8609         unsigned int old_flags = dev->flags;
8610         kuid_t uid;
8611         kgid_t gid;
8612
8613         ASSERT_RTNL();
8614
8615         dev->flags |= IFF_PROMISC;
8616         dev->promiscuity += inc;
8617         if (dev->promiscuity == 0) {
8618                 /*
8619                  * Avoid overflow.
8620                  * If inc causes overflow, untouch promisc and return error.
8621                  */
8622                 if (inc < 0)
8623                         dev->flags &= ~IFF_PROMISC;
8624                 else {
8625                         dev->promiscuity -= inc;
8626                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8627                                 dev->name);
8628                         return -EOVERFLOW;
8629                 }
8630         }
8631         if (dev->flags != old_flags) {
8632                 pr_info("device %s %s promiscuous mode\n",
8633                         dev->name,
8634                         dev->flags & IFF_PROMISC ? "entered" : "left");
8635                 if (audit_enabled) {
8636                         current_uid_gid(&uid, &gid);
8637                         audit_log(audit_context(), GFP_ATOMIC,
8638                                   AUDIT_ANOM_PROMISCUOUS,
8639                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8640                                   dev->name, (dev->flags & IFF_PROMISC),
8641                                   (old_flags & IFF_PROMISC),
8642                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8643                                   from_kuid(&init_user_ns, uid),
8644                                   from_kgid(&init_user_ns, gid),
8645                                   audit_get_sessionid(current));
8646                 }
8647
8648                 dev_change_rx_flags(dev, IFF_PROMISC);
8649         }
8650         if (notify)
8651                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8652         return 0;
8653 }
8654
8655 /**
8656  *      dev_set_promiscuity     - update promiscuity count on a device
8657  *      @dev: device
8658  *      @inc: modifier
8659  *
8660  *      Add or remove promiscuity from a device. While the count in the device
8661  *      remains above zero the interface remains promiscuous. Once it hits zero
8662  *      the device reverts back to normal filtering operation. A negative inc
8663  *      value is used to drop promiscuity on the device.
8664  *      Return 0 if successful or a negative errno code on error.
8665  */
8666 int dev_set_promiscuity(struct net_device *dev, int inc)
8667 {
8668         unsigned int old_flags = dev->flags;
8669         int err;
8670
8671         err = __dev_set_promiscuity(dev, inc, true);
8672         if (err < 0)
8673                 return err;
8674         if (dev->flags != old_flags)
8675                 dev_set_rx_mode(dev);
8676         return err;
8677 }
8678 EXPORT_SYMBOL(dev_set_promiscuity);
8679
8680 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8681 {
8682         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8683
8684         ASSERT_RTNL();
8685
8686         dev->flags |= IFF_ALLMULTI;
8687         dev->allmulti += inc;
8688         if (dev->allmulti == 0) {
8689                 /*
8690                  * Avoid overflow.
8691                  * If inc causes overflow, untouch allmulti and return error.
8692                  */
8693                 if (inc < 0)
8694                         dev->flags &= ~IFF_ALLMULTI;
8695                 else {
8696                         dev->allmulti -= inc;
8697                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8698                                 dev->name);
8699                         return -EOVERFLOW;
8700                 }
8701         }
8702         if (dev->flags ^ old_flags) {
8703                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8704                 dev_set_rx_mode(dev);
8705                 if (notify)
8706                         __dev_notify_flags(dev, old_flags,
8707                                            dev->gflags ^ old_gflags);
8708         }
8709         return 0;
8710 }
8711
8712 /**
8713  *      dev_set_allmulti        - update allmulti count on a device
8714  *      @dev: device
8715  *      @inc: modifier
8716  *
8717  *      Add or remove reception of all multicast frames to a device. While the
8718  *      count in the device remains above zero the interface remains listening
8719  *      to all interfaces. Once it hits zero the device reverts back to normal
8720  *      filtering operation. A negative @inc value is used to drop the counter
8721  *      when releasing a resource needing all multicasts.
8722  *      Return 0 if successful or a negative errno code on error.
8723  */
8724
8725 int dev_set_allmulti(struct net_device *dev, int inc)
8726 {
8727         return __dev_set_allmulti(dev, inc, true);
8728 }
8729 EXPORT_SYMBOL(dev_set_allmulti);
8730
8731 /*
8732  *      Upload unicast and multicast address lists to device and
8733  *      configure RX filtering. When the device doesn't support unicast
8734  *      filtering it is put in promiscuous mode while unicast addresses
8735  *      are present.
8736  */
8737 void __dev_set_rx_mode(struct net_device *dev)
8738 {
8739         const struct net_device_ops *ops = dev->netdev_ops;
8740
8741         /* dev_open will call this function so the list will stay sane. */
8742         if (!(dev->flags&IFF_UP))
8743                 return;
8744
8745         if (!netif_device_present(dev))
8746                 return;
8747
8748         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8749                 /* Unicast addresses changes may only happen under the rtnl,
8750                  * therefore calling __dev_set_promiscuity here is safe.
8751                  */
8752                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8753                         __dev_set_promiscuity(dev, 1, false);
8754                         dev->uc_promisc = true;
8755                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8756                         __dev_set_promiscuity(dev, -1, false);
8757                         dev->uc_promisc = false;
8758                 }
8759         }
8760
8761         if (ops->ndo_set_rx_mode)
8762                 ops->ndo_set_rx_mode(dev);
8763 }
8764
8765 void dev_set_rx_mode(struct net_device *dev)
8766 {
8767         netif_addr_lock_bh(dev);
8768         __dev_set_rx_mode(dev);
8769         netif_addr_unlock_bh(dev);
8770 }
8771
8772 /**
8773  *      dev_get_flags - get flags reported to userspace
8774  *      @dev: device
8775  *
8776  *      Get the combination of flag bits exported through APIs to userspace.
8777  */
8778 unsigned int dev_get_flags(const struct net_device *dev)
8779 {
8780         unsigned int flags;
8781
8782         flags = (dev->flags & ~(IFF_PROMISC |
8783                                 IFF_ALLMULTI |
8784                                 IFF_RUNNING |
8785                                 IFF_LOWER_UP |
8786                                 IFF_DORMANT)) |
8787                 (dev->gflags & (IFF_PROMISC |
8788                                 IFF_ALLMULTI));
8789
8790         if (netif_running(dev)) {
8791                 if (netif_oper_up(dev))
8792                         flags |= IFF_RUNNING;
8793                 if (netif_carrier_ok(dev))
8794                         flags |= IFF_LOWER_UP;
8795                 if (netif_dormant(dev))
8796                         flags |= IFF_DORMANT;
8797         }
8798
8799         return flags;
8800 }
8801 EXPORT_SYMBOL(dev_get_flags);
8802
8803 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8804                        struct netlink_ext_ack *extack)
8805 {
8806         unsigned int old_flags = dev->flags;
8807         int ret;
8808
8809         ASSERT_RTNL();
8810
8811         /*
8812          *      Set the flags on our device.
8813          */
8814
8815         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8816                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8817                                IFF_AUTOMEDIA)) |
8818                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8819                                     IFF_ALLMULTI));
8820
8821         /*
8822          *      Load in the correct multicast list now the flags have changed.
8823          */
8824
8825         if ((old_flags ^ flags) & IFF_MULTICAST)
8826                 dev_change_rx_flags(dev, IFF_MULTICAST);
8827
8828         dev_set_rx_mode(dev);
8829
8830         /*
8831          *      Have we downed the interface. We handle IFF_UP ourselves
8832          *      according to user attempts to set it, rather than blindly
8833          *      setting it.
8834          */
8835
8836         ret = 0;
8837         if ((old_flags ^ flags) & IFF_UP) {
8838                 if (old_flags & IFF_UP)
8839                         __dev_close(dev);
8840                 else
8841                         ret = __dev_open(dev, extack);
8842         }
8843
8844         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8845                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8846                 unsigned int old_flags = dev->flags;
8847
8848                 dev->gflags ^= IFF_PROMISC;
8849
8850                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8851                         if (dev->flags != old_flags)
8852                                 dev_set_rx_mode(dev);
8853         }
8854
8855         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8856          * is important. Some (broken) drivers set IFF_PROMISC, when
8857          * IFF_ALLMULTI is requested not asking us and not reporting.
8858          */
8859         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8860                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8861
8862                 dev->gflags ^= IFF_ALLMULTI;
8863                 __dev_set_allmulti(dev, inc, false);
8864         }
8865
8866         return ret;
8867 }
8868
8869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8870                         unsigned int gchanges)
8871 {
8872         unsigned int changes = dev->flags ^ old_flags;
8873
8874         if (gchanges)
8875                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8876
8877         if (changes & IFF_UP) {
8878                 if (dev->flags & IFF_UP)
8879                         call_netdevice_notifiers(NETDEV_UP, dev);
8880                 else
8881                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8882         }
8883
8884         if (dev->flags & IFF_UP &&
8885             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8886                 struct netdev_notifier_change_info change_info = {
8887                         .info = {
8888                                 .dev = dev,
8889                         },
8890                         .flags_changed = changes,
8891                 };
8892
8893                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8894         }
8895 }
8896
8897 /**
8898  *      dev_change_flags - change device settings
8899  *      @dev: device
8900  *      @flags: device state flags
8901  *      @extack: netlink extended ack
8902  *
8903  *      Change settings on device based state flags. The flags are
8904  *      in the userspace exported format.
8905  */
8906 int dev_change_flags(struct net_device *dev, unsigned int flags,
8907                      struct netlink_ext_ack *extack)
8908 {
8909         int ret;
8910         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8911
8912         ret = __dev_change_flags(dev, flags, extack);
8913         if (ret < 0)
8914                 return ret;
8915
8916         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8917         __dev_notify_flags(dev, old_flags, changes);
8918         return ret;
8919 }
8920 EXPORT_SYMBOL(dev_change_flags);
8921
8922 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8923 {
8924         const struct net_device_ops *ops = dev->netdev_ops;
8925
8926         if (ops->ndo_change_mtu)
8927                 return ops->ndo_change_mtu(dev, new_mtu);
8928
8929         /* Pairs with all the lockless reads of dev->mtu in the stack */
8930         WRITE_ONCE(dev->mtu, new_mtu);
8931         return 0;
8932 }
8933 EXPORT_SYMBOL(__dev_set_mtu);
8934
8935 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8936                      struct netlink_ext_ack *extack)
8937 {
8938         /* MTU must be positive, and in range */
8939         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8940                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8941                 return -EINVAL;
8942         }
8943
8944         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8945                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8946                 return -EINVAL;
8947         }
8948         return 0;
8949 }
8950
8951 /**
8952  *      dev_set_mtu_ext - Change maximum transfer unit
8953  *      @dev: device
8954  *      @new_mtu: new transfer unit
8955  *      @extack: netlink extended ack
8956  *
8957  *      Change the maximum transfer size of the network device.
8958  */
8959 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8960                     struct netlink_ext_ack *extack)
8961 {
8962         int err, orig_mtu;
8963
8964         if (new_mtu == dev->mtu)
8965                 return 0;
8966
8967         err = dev_validate_mtu(dev, new_mtu, extack);
8968         if (err)
8969                 return err;
8970
8971         if (!netif_device_present(dev))
8972                 return -ENODEV;
8973
8974         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8975         err = notifier_to_errno(err);
8976         if (err)
8977                 return err;
8978
8979         orig_mtu = dev->mtu;
8980         err = __dev_set_mtu(dev, new_mtu);
8981
8982         if (!err) {
8983                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8984                                                    orig_mtu);
8985                 err = notifier_to_errno(err);
8986                 if (err) {
8987                         /* setting mtu back and notifying everyone again,
8988                          * so that they have a chance to revert changes.
8989                          */
8990                         __dev_set_mtu(dev, orig_mtu);
8991                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8992                                                      new_mtu);
8993                 }
8994         }
8995         return err;
8996 }
8997
8998 int dev_set_mtu(struct net_device *dev, int new_mtu)
8999 {
9000         struct netlink_ext_ack extack;
9001         int err;
9002
9003         memset(&extack, 0, sizeof(extack));
9004         err = dev_set_mtu_ext(dev, new_mtu, &extack);
9005         if (err && extack._msg)
9006                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9007         return err;
9008 }
9009 EXPORT_SYMBOL(dev_set_mtu);
9010
9011 /**
9012  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
9013  *      @dev: device
9014  *      @new_len: new tx queue length
9015  */
9016 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9017 {
9018         unsigned int orig_len = dev->tx_queue_len;
9019         int res;
9020
9021         if (new_len != (unsigned int)new_len)
9022                 return -ERANGE;
9023
9024         if (new_len != orig_len) {
9025                 dev->tx_queue_len = new_len;
9026                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9027                 res = notifier_to_errno(res);
9028                 if (res)
9029                         goto err_rollback;
9030                 res = dev_qdisc_change_tx_queue_len(dev);
9031                 if (res)
9032                         goto err_rollback;
9033         }
9034
9035         return 0;
9036
9037 err_rollback:
9038         netdev_err(dev, "refused to change device tx_queue_len\n");
9039         dev->tx_queue_len = orig_len;
9040         return res;
9041 }
9042
9043 /**
9044  *      dev_set_group - Change group this device belongs to
9045  *      @dev: device
9046  *      @new_group: group this device should belong to
9047  */
9048 void dev_set_group(struct net_device *dev, int new_group)
9049 {
9050         dev->group = new_group;
9051 }
9052 EXPORT_SYMBOL(dev_set_group);
9053
9054 /**
9055  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9056  *      @dev: device
9057  *      @addr: new address
9058  *      @extack: netlink extended ack
9059  */
9060 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9061                               struct netlink_ext_ack *extack)
9062 {
9063         struct netdev_notifier_pre_changeaddr_info info = {
9064                 .info.dev = dev,
9065                 .info.extack = extack,
9066                 .dev_addr = addr,
9067         };
9068         int rc;
9069
9070         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9071         return notifier_to_errno(rc);
9072 }
9073 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9074
9075 /**
9076  *      dev_set_mac_address - Change Media Access Control Address
9077  *      @dev: device
9078  *      @sa: new address
9079  *      @extack: netlink extended ack
9080  *
9081  *      Change the hardware (MAC) address of the device
9082  */
9083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9084                         struct netlink_ext_ack *extack)
9085 {
9086         const struct net_device_ops *ops = dev->netdev_ops;
9087         int err;
9088
9089         if (!ops->ndo_set_mac_address)
9090                 return -EOPNOTSUPP;
9091         if (sa->sa_family != dev->type)
9092                 return -EINVAL;
9093         if (!netif_device_present(dev))
9094                 return -ENODEV;
9095         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9096         if (err)
9097                 return err;
9098         err = ops->ndo_set_mac_address(dev, sa);
9099         if (err)
9100                 return err;
9101         dev->addr_assign_type = NET_ADDR_SET;
9102         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9103         add_device_randomness(dev->dev_addr, dev->addr_len);
9104         return 0;
9105 }
9106 EXPORT_SYMBOL(dev_set_mac_address);
9107
9108 static DECLARE_RWSEM(dev_addr_sem);
9109
9110 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9111                              struct netlink_ext_ack *extack)
9112 {
9113         int ret;
9114
9115         down_write(&dev_addr_sem);
9116         ret = dev_set_mac_address(dev, sa, extack);
9117         up_write(&dev_addr_sem);
9118         return ret;
9119 }
9120 EXPORT_SYMBOL(dev_set_mac_address_user);
9121
9122 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9123 {
9124         size_t size = sizeof(sa->sa_data);
9125         struct net_device *dev;
9126         int ret = 0;
9127
9128         down_read(&dev_addr_sem);
9129         rcu_read_lock();
9130
9131         dev = dev_get_by_name_rcu(net, dev_name);
9132         if (!dev) {
9133                 ret = -ENODEV;
9134                 goto unlock;
9135         }
9136         if (!dev->addr_len)
9137                 memset(sa->sa_data, 0, size);
9138         else
9139                 memcpy(sa->sa_data, dev->dev_addr,
9140                        min_t(size_t, size, dev->addr_len));
9141         sa->sa_family = dev->type;
9142
9143 unlock:
9144         rcu_read_unlock();
9145         up_read(&dev_addr_sem);
9146         return ret;
9147 }
9148 EXPORT_SYMBOL(dev_get_mac_address);
9149
9150 /**
9151  *      dev_change_carrier - Change device carrier
9152  *      @dev: device
9153  *      @new_carrier: new value
9154  *
9155  *      Change device carrier
9156  */
9157 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9158 {
9159         const struct net_device_ops *ops = dev->netdev_ops;
9160
9161         if (!ops->ndo_change_carrier)
9162                 return -EOPNOTSUPP;
9163         if (!netif_device_present(dev))
9164                 return -ENODEV;
9165         return ops->ndo_change_carrier(dev, new_carrier);
9166 }
9167 EXPORT_SYMBOL(dev_change_carrier);
9168
9169 /**
9170  *      dev_get_phys_port_id - Get device physical port ID
9171  *      @dev: device
9172  *      @ppid: port ID
9173  *
9174  *      Get device physical port ID
9175  */
9176 int dev_get_phys_port_id(struct net_device *dev,
9177                          struct netdev_phys_item_id *ppid)
9178 {
9179         const struct net_device_ops *ops = dev->netdev_ops;
9180
9181         if (!ops->ndo_get_phys_port_id)
9182                 return -EOPNOTSUPP;
9183         return ops->ndo_get_phys_port_id(dev, ppid);
9184 }
9185 EXPORT_SYMBOL(dev_get_phys_port_id);
9186
9187 /**
9188  *      dev_get_phys_port_name - Get device physical port name
9189  *      @dev: device
9190  *      @name: port name
9191  *      @len: limit of bytes to copy to name
9192  *
9193  *      Get device physical port name
9194  */
9195 int dev_get_phys_port_name(struct net_device *dev,
9196                            char *name, size_t len)
9197 {
9198         const struct net_device_ops *ops = dev->netdev_ops;
9199         int err;
9200
9201         if (ops->ndo_get_phys_port_name) {
9202                 err = ops->ndo_get_phys_port_name(dev, name, len);
9203                 if (err != -EOPNOTSUPP)
9204                         return err;
9205         }
9206         return devlink_compat_phys_port_name_get(dev, name, len);
9207 }
9208 EXPORT_SYMBOL(dev_get_phys_port_name);
9209
9210 /**
9211  *      dev_get_port_parent_id - Get the device's port parent identifier
9212  *      @dev: network device
9213  *      @ppid: pointer to a storage for the port's parent identifier
9214  *      @recurse: allow/disallow recursion to lower devices
9215  *
9216  *      Get the devices's port parent identifier
9217  */
9218 int dev_get_port_parent_id(struct net_device *dev,
9219                            struct netdev_phys_item_id *ppid,
9220                            bool recurse)
9221 {
9222         const struct net_device_ops *ops = dev->netdev_ops;
9223         struct netdev_phys_item_id first = { };
9224         struct net_device *lower_dev;
9225         struct list_head *iter;
9226         int err;
9227
9228         if (ops->ndo_get_port_parent_id) {
9229                 err = ops->ndo_get_port_parent_id(dev, ppid);
9230                 if (err != -EOPNOTSUPP)
9231                         return err;
9232         }
9233
9234         err = devlink_compat_switch_id_get(dev, ppid);
9235         if (!err || err != -EOPNOTSUPP)
9236                 return err;
9237
9238         if (!recurse)
9239                 return -EOPNOTSUPP;
9240
9241         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9242                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9243                 if (err)
9244                         break;
9245                 if (!first.id_len)
9246                         first = *ppid;
9247                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9248                         return -EOPNOTSUPP;
9249         }
9250
9251         return err;
9252 }
9253 EXPORT_SYMBOL(dev_get_port_parent_id);
9254
9255 /**
9256  *      netdev_port_same_parent_id - Indicate if two network devices have
9257  *      the same port parent identifier
9258  *      @a: first network device
9259  *      @b: second network device
9260  */
9261 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9262 {
9263         struct netdev_phys_item_id a_id = { };
9264         struct netdev_phys_item_id b_id = { };
9265
9266         if (dev_get_port_parent_id(a, &a_id, true) ||
9267             dev_get_port_parent_id(b, &b_id, true))
9268                 return false;
9269
9270         return netdev_phys_item_id_same(&a_id, &b_id);
9271 }
9272 EXPORT_SYMBOL(netdev_port_same_parent_id);
9273
9274 /**
9275  *      dev_change_proto_down - update protocol port state information
9276  *      @dev: device
9277  *      @proto_down: new value
9278  *
9279  *      This info can be used by switch drivers to set the phys state of the
9280  *      port.
9281  */
9282 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9283 {
9284         const struct net_device_ops *ops = dev->netdev_ops;
9285
9286         if (!ops->ndo_change_proto_down)
9287                 return -EOPNOTSUPP;
9288         if (!netif_device_present(dev))
9289                 return -ENODEV;
9290         return ops->ndo_change_proto_down(dev, proto_down);
9291 }
9292 EXPORT_SYMBOL(dev_change_proto_down);
9293
9294 /**
9295  *      dev_change_proto_down_generic - generic implementation for
9296  *      ndo_change_proto_down that sets carrier according to
9297  *      proto_down.
9298  *
9299  *      @dev: device
9300  *      @proto_down: new value
9301  */
9302 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9303 {
9304         if (proto_down)
9305                 netif_carrier_off(dev);
9306         else
9307                 netif_carrier_on(dev);
9308         dev->proto_down = proto_down;
9309         return 0;
9310 }
9311 EXPORT_SYMBOL(dev_change_proto_down_generic);
9312
9313 /**
9314  *      dev_change_proto_down_reason - proto down reason
9315  *
9316  *      @dev: device
9317  *      @mask: proto down mask
9318  *      @value: proto down value
9319  */
9320 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9321                                   u32 value)
9322 {
9323         int b;
9324
9325         if (!mask) {
9326                 dev->proto_down_reason = value;
9327         } else {
9328                 for_each_set_bit(b, &mask, 32) {
9329                         if (value & (1 << b))
9330                                 dev->proto_down_reason |= BIT(b);
9331                         else
9332                                 dev->proto_down_reason &= ~BIT(b);
9333                 }
9334         }
9335 }
9336 EXPORT_SYMBOL(dev_change_proto_down_reason);
9337
9338 struct bpf_xdp_link {
9339         struct bpf_link link;
9340         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9341         int flags;
9342 };
9343
9344 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9345 {
9346         if (flags & XDP_FLAGS_HW_MODE)
9347                 return XDP_MODE_HW;
9348         if (flags & XDP_FLAGS_DRV_MODE)
9349                 return XDP_MODE_DRV;
9350         if (flags & XDP_FLAGS_SKB_MODE)
9351                 return XDP_MODE_SKB;
9352         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9353 }
9354
9355 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9356 {
9357         switch (mode) {
9358         case XDP_MODE_SKB:
9359                 return generic_xdp_install;
9360         case XDP_MODE_DRV:
9361         case XDP_MODE_HW:
9362                 return dev->netdev_ops->ndo_bpf;
9363         default:
9364                 return NULL;
9365         }
9366 }
9367
9368 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9369                                          enum bpf_xdp_mode mode)
9370 {
9371         return dev->xdp_state[mode].link;
9372 }
9373
9374 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9375                                      enum bpf_xdp_mode mode)
9376 {
9377         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9378
9379         if (link)
9380                 return link->link.prog;
9381         return dev->xdp_state[mode].prog;
9382 }
9383
9384 static u8 dev_xdp_prog_count(struct net_device *dev)
9385 {
9386         u8 count = 0;
9387         int i;
9388
9389         for (i = 0; i < __MAX_XDP_MODE; i++)
9390                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9391                         count++;
9392         return count;
9393 }
9394
9395 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9396 {
9397         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9398
9399         return prog ? prog->aux->id : 0;
9400 }
9401
9402 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9403                              struct bpf_xdp_link *link)
9404 {
9405         dev->xdp_state[mode].link = link;
9406         dev->xdp_state[mode].prog = NULL;
9407 }
9408
9409 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9410                              struct bpf_prog *prog)
9411 {
9412         dev->xdp_state[mode].link = NULL;
9413         dev->xdp_state[mode].prog = prog;
9414 }
9415
9416 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9417                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9418                            u32 flags, struct bpf_prog *prog)
9419 {
9420         struct netdev_bpf xdp;
9421         int err;
9422
9423         memset(&xdp, 0, sizeof(xdp));
9424         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9425         xdp.extack = extack;
9426         xdp.flags = flags;
9427         xdp.prog = prog;
9428
9429         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9430          * "moved" into driver), so they don't increment it on their own, but
9431          * they do decrement refcnt when program is detached or replaced.
9432          * Given net_device also owns link/prog, we need to bump refcnt here
9433          * to prevent drivers from underflowing it.
9434          */
9435         if (prog)
9436                 bpf_prog_inc(prog);
9437         err = bpf_op(dev, &xdp);
9438         if (err) {
9439                 if (prog)
9440                         bpf_prog_put(prog);
9441                 return err;
9442         }
9443
9444         if (mode != XDP_MODE_HW)
9445                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9446
9447         return 0;
9448 }
9449
9450 static void dev_xdp_uninstall(struct net_device *dev)
9451 {
9452         struct bpf_xdp_link *link;
9453         struct bpf_prog *prog;
9454         enum bpf_xdp_mode mode;
9455         bpf_op_t bpf_op;
9456
9457         ASSERT_RTNL();
9458
9459         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9460                 prog = dev_xdp_prog(dev, mode);
9461                 if (!prog)
9462                         continue;
9463
9464                 bpf_op = dev_xdp_bpf_op(dev, mode);
9465                 if (!bpf_op)
9466                         continue;
9467
9468                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9469
9470                 /* auto-detach link from net device */
9471                 link = dev_xdp_link(dev, mode);
9472                 if (link)
9473                         link->dev = NULL;
9474                 else
9475                         bpf_prog_put(prog);
9476
9477                 dev_xdp_set_link(dev, mode, NULL);
9478         }
9479 }
9480
9481 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9482                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9483                           struct bpf_prog *old_prog, u32 flags)
9484 {
9485         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9486         struct bpf_prog *cur_prog;
9487         enum bpf_xdp_mode mode;
9488         bpf_op_t bpf_op;
9489         int err;
9490
9491         ASSERT_RTNL();
9492
9493         /* either link or prog attachment, never both */
9494         if (link && (new_prog || old_prog))
9495                 return -EINVAL;
9496         /* link supports only XDP mode flags */
9497         if (link && (flags & ~XDP_FLAGS_MODES)) {
9498                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9499                 return -EINVAL;
9500         }
9501         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9502         if (num_modes > 1) {
9503                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9504                 return -EINVAL;
9505         }
9506         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9507         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9508                 NL_SET_ERR_MSG(extack,
9509                                "More than one program loaded, unset mode is ambiguous");
9510                 return -EINVAL;
9511         }
9512         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9513         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9514                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9515                 return -EINVAL;
9516         }
9517
9518         mode = dev_xdp_mode(dev, flags);
9519         /* can't replace attached link */
9520         if (dev_xdp_link(dev, mode)) {
9521                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9522                 return -EBUSY;
9523         }
9524
9525         cur_prog = dev_xdp_prog(dev, mode);
9526         /* can't replace attached prog with link */
9527         if (link && cur_prog) {
9528                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9529                 return -EBUSY;
9530         }
9531         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9532                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9533                 return -EEXIST;
9534         }
9535
9536         /* put effective new program into new_prog */
9537         if (link)
9538                 new_prog = link->link.prog;
9539
9540         if (new_prog) {
9541                 bool offload = mode == XDP_MODE_HW;
9542                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9543                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9544
9545                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9546                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9547                         return -EBUSY;
9548                 }
9549                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9550                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9551                         return -EEXIST;
9552                 }
9553                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9554                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9555                         return -EINVAL;
9556                 }
9557                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9558                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9559                         return -EINVAL;
9560                 }
9561                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9562                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9563                         return -EINVAL;
9564                 }
9565         }
9566
9567         /* don't call drivers if the effective program didn't change */
9568         if (new_prog != cur_prog) {
9569                 bpf_op = dev_xdp_bpf_op(dev, mode);
9570                 if (!bpf_op) {
9571                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9572                         return -EOPNOTSUPP;
9573                 }
9574
9575                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9576                 if (err)
9577                         return err;
9578         }
9579
9580         if (link)
9581                 dev_xdp_set_link(dev, mode, link);
9582         else
9583                 dev_xdp_set_prog(dev, mode, new_prog);
9584         if (cur_prog)
9585                 bpf_prog_put(cur_prog);
9586
9587         return 0;
9588 }
9589
9590 static int dev_xdp_attach_link(struct net_device *dev,
9591                                struct netlink_ext_ack *extack,
9592                                struct bpf_xdp_link *link)
9593 {
9594         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9595 }
9596
9597 static int dev_xdp_detach_link(struct net_device *dev,
9598                                struct netlink_ext_ack *extack,
9599                                struct bpf_xdp_link *link)
9600 {
9601         enum bpf_xdp_mode mode;
9602         bpf_op_t bpf_op;
9603
9604         ASSERT_RTNL();
9605
9606         mode = dev_xdp_mode(dev, link->flags);
9607         if (dev_xdp_link(dev, mode) != link)
9608                 return -EINVAL;
9609
9610         bpf_op = dev_xdp_bpf_op(dev, mode);
9611         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9612         dev_xdp_set_link(dev, mode, NULL);
9613         return 0;
9614 }
9615
9616 static void bpf_xdp_link_release(struct bpf_link *link)
9617 {
9618         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619
9620         rtnl_lock();
9621
9622         /* if racing with net_device's tear down, xdp_link->dev might be
9623          * already NULL, in which case link was already auto-detached
9624          */
9625         if (xdp_link->dev) {
9626                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9627                 xdp_link->dev = NULL;
9628         }
9629
9630         rtnl_unlock();
9631 }
9632
9633 static int bpf_xdp_link_detach(struct bpf_link *link)
9634 {
9635         bpf_xdp_link_release(link);
9636         return 0;
9637 }
9638
9639 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9640 {
9641         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9642
9643         kfree(xdp_link);
9644 }
9645
9646 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9647                                      struct seq_file *seq)
9648 {
9649         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9650         u32 ifindex = 0;
9651
9652         rtnl_lock();
9653         if (xdp_link->dev)
9654                 ifindex = xdp_link->dev->ifindex;
9655         rtnl_unlock();
9656
9657         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9658 }
9659
9660 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9661                                        struct bpf_link_info *info)
9662 {
9663         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9664         u32 ifindex = 0;
9665
9666         rtnl_lock();
9667         if (xdp_link->dev)
9668                 ifindex = xdp_link->dev->ifindex;
9669         rtnl_unlock();
9670
9671         info->xdp.ifindex = ifindex;
9672         return 0;
9673 }
9674
9675 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9676                                struct bpf_prog *old_prog)
9677 {
9678         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9679         enum bpf_xdp_mode mode;
9680         bpf_op_t bpf_op;
9681         int err = 0;
9682
9683         rtnl_lock();
9684
9685         /* link might have been auto-released already, so fail */
9686         if (!xdp_link->dev) {
9687                 err = -ENOLINK;
9688                 goto out_unlock;
9689         }
9690
9691         if (old_prog && link->prog != old_prog) {
9692                 err = -EPERM;
9693                 goto out_unlock;
9694         }
9695         old_prog = link->prog;
9696         if (old_prog == new_prog) {
9697                 /* no-op, don't disturb drivers */
9698                 bpf_prog_put(new_prog);
9699                 goto out_unlock;
9700         }
9701
9702         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9703         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9704         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9705                               xdp_link->flags, new_prog);
9706         if (err)
9707                 goto out_unlock;
9708
9709         old_prog = xchg(&link->prog, new_prog);
9710         bpf_prog_put(old_prog);
9711
9712 out_unlock:
9713         rtnl_unlock();
9714         return err;
9715 }
9716
9717 static const struct bpf_link_ops bpf_xdp_link_lops = {
9718         .release = bpf_xdp_link_release,
9719         .dealloc = bpf_xdp_link_dealloc,
9720         .detach = bpf_xdp_link_detach,
9721         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9722         .fill_link_info = bpf_xdp_link_fill_link_info,
9723         .update_prog = bpf_xdp_link_update,
9724 };
9725
9726 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9727 {
9728         struct net *net = current->nsproxy->net_ns;
9729         struct bpf_link_primer link_primer;
9730         struct bpf_xdp_link *link;
9731         struct net_device *dev;
9732         int err, fd;
9733
9734         rtnl_lock();
9735         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9736         if (!dev) {
9737                 rtnl_unlock();
9738                 return -EINVAL;
9739         }
9740
9741         link = kzalloc(sizeof(*link), GFP_USER);
9742         if (!link) {
9743                 err = -ENOMEM;
9744                 goto unlock;
9745         }
9746
9747         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9748         link->dev = dev;
9749         link->flags = attr->link_create.flags;
9750
9751         err = bpf_link_prime(&link->link, &link_primer);
9752         if (err) {
9753                 kfree(link);
9754                 goto unlock;
9755         }
9756
9757         err = dev_xdp_attach_link(dev, NULL, link);
9758         rtnl_unlock();
9759
9760         if (err) {
9761                 link->dev = NULL;
9762                 bpf_link_cleanup(&link_primer);
9763                 goto out_put_dev;
9764         }
9765
9766         fd = bpf_link_settle(&link_primer);
9767         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9768         dev_put(dev);
9769         return fd;
9770
9771 unlock:
9772         rtnl_unlock();
9773
9774 out_put_dev:
9775         dev_put(dev);
9776         return err;
9777 }
9778
9779 /**
9780  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9781  *      @dev: device
9782  *      @extack: netlink extended ack
9783  *      @fd: new program fd or negative value to clear
9784  *      @expected_fd: old program fd that userspace expects to replace or clear
9785  *      @flags: xdp-related flags
9786  *
9787  *      Set or clear a bpf program for a device
9788  */
9789 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9790                       int fd, int expected_fd, u32 flags)
9791 {
9792         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9793         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9794         int err;
9795
9796         ASSERT_RTNL();
9797
9798         if (fd >= 0) {
9799                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9800                                                  mode != XDP_MODE_SKB);
9801                 if (IS_ERR(new_prog))
9802                         return PTR_ERR(new_prog);
9803         }
9804
9805         if (expected_fd >= 0) {
9806                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9807                                                  mode != XDP_MODE_SKB);
9808                 if (IS_ERR(old_prog)) {
9809                         err = PTR_ERR(old_prog);
9810                         old_prog = NULL;
9811                         goto err_out;
9812                 }
9813         }
9814
9815         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9816
9817 err_out:
9818         if (err && new_prog)
9819                 bpf_prog_put(new_prog);
9820         if (old_prog)
9821                 bpf_prog_put(old_prog);
9822         return err;
9823 }
9824
9825 /**
9826  *      dev_new_index   -       allocate an ifindex
9827  *      @net: the applicable net namespace
9828  *
9829  *      Returns a suitable unique value for a new device interface
9830  *      number.  The caller must hold the rtnl semaphore or the
9831  *      dev_base_lock to be sure it remains unique.
9832  */
9833 static int dev_new_index(struct net *net)
9834 {
9835         int ifindex = net->ifindex;
9836
9837         for (;;) {
9838                 if (++ifindex <= 0)
9839                         ifindex = 1;
9840                 if (!__dev_get_by_index(net, ifindex))
9841                         return net->ifindex = ifindex;
9842         }
9843 }
9844
9845 /* Delayed registration/unregisteration */
9846 static LIST_HEAD(net_todo_list);
9847 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9848
9849 static void net_set_todo(struct net_device *dev)
9850 {
9851         list_add_tail(&dev->todo_list, &net_todo_list);
9852         dev_net(dev)->dev_unreg_count++;
9853 }
9854
9855 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9856         struct net_device *upper, netdev_features_t features)
9857 {
9858         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9859         netdev_features_t feature;
9860         int feature_bit;
9861
9862         for_each_netdev_feature(upper_disables, feature_bit) {
9863                 feature = __NETIF_F_BIT(feature_bit);
9864                 if (!(upper->wanted_features & feature)
9865                     && (features & feature)) {
9866                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9867                                    &feature, upper->name);
9868                         features &= ~feature;
9869                 }
9870         }
9871
9872         return features;
9873 }
9874
9875 static void netdev_sync_lower_features(struct net_device *upper,
9876         struct net_device *lower, netdev_features_t features)
9877 {
9878         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9879         netdev_features_t feature;
9880         int feature_bit;
9881
9882         for_each_netdev_feature(upper_disables, feature_bit) {
9883                 feature = __NETIF_F_BIT(feature_bit);
9884                 if (!(features & feature) && (lower->features & feature)) {
9885                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9886                                    &feature, lower->name);
9887                         lower->wanted_features &= ~feature;
9888                         __netdev_update_features(lower);
9889
9890                         if (unlikely(lower->features & feature))
9891                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9892                                             &feature, lower->name);
9893                         else
9894                                 netdev_features_change(lower);
9895                 }
9896         }
9897 }
9898
9899 static netdev_features_t netdev_fix_features(struct net_device *dev,
9900         netdev_features_t features)
9901 {
9902         /* Fix illegal checksum combinations */
9903         if ((features & NETIF_F_HW_CSUM) &&
9904             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9905                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9906                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9907         }
9908
9909         /* TSO requires that SG is present as well. */
9910         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9911                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9912                 features &= ~NETIF_F_ALL_TSO;
9913         }
9914
9915         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9916                                         !(features & NETIF_F_IP_CSUM)) {
9917                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9918                 features &= ~NETIF_F_TSO;
9919                 features &= ~NETIF_F_TSO_ECN;
9920         }
9921
9922         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9923                                          !(features & NETIF_F_IPV6_CSUM)) {
9924                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9925                 features &= ~NETIF_F_TSO6;
9926         }
9927
9928         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9929         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9930                 features &= ~NETIF_F_TSO_MANGLEID;
9931
9932         /* TSO ECN requires that TSO is present as well. */
9933         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9934                 features &= ~NETIF_F_TSO_ECN;
9935
9936         /* Software GSO depends on SG. */
9937         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9938                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9939                 features &= ~NETIF_F_GSO;
9940         }
9941
9942         /* GSO partial features require GSO partial be set */
9943         if ((features & dev->gso_partial_features) &&
9944             !(features & NETIF_F_GSO_PARTIAL)) {
9945                 netdev_dbg(dev,
9946                            "Dropping partially supported GSO features since no GSO partial.\n");
9947                 features &= ~dev->gso_partial_features;
9948         }
9949
9950         if (!(features & NETIF_F_RXCSUM)) {
9951                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9952                  * successfully merged by hardware must also have the
9953                  * checksum verified by hardware.  If the user does not
9954                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9955                  */
9956                 if (features & NETIF_F_GRO_HW) {
9957                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9958                         features &= ~NETIF_F_GRO_HW;
9959                 }
9960         }
9961
9962         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9963         if (features & NETIF_F_RXFCS) {
9964                 if (features & NETIF_F_LRO) {
9965                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9966                         features &= ~NETIF_F_LRO;
9967                 }
9968
9969                 if (features & NETIF_F_GRO_HW) {
9970                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9971                         features &= ~NETIF_F_GRO_HW;
9972                 }
9973         }
9974
9975         if (features & NETIF_F_HW_TLS_TX) {
9976                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9977                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9978                 bool hw_csum = features & NETIF_F_HW_CSUM;
9979
9980                 if (!ip_csum && !hw_csum) {
9981                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9982                         features &= ~NETIF_F_HW_TLS_TX;
9983                 }
9984         }
9985
9986         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9987                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9988                 features &= ~NETIF_F_HW_TLS_RX;
9989         }
9990
9991         return features;
9992 }
9993
9994 int __netdev_update_features(struct net_device *dev)
9995 {
9996         struct net_device *upper, *lower;
9997         netdev_features_t features;
9998         struct list_head *iter;
9999         int err = -1;
10000
10001         ASSERT_RTNL();
10002
10003         features = netdev_get_wanted_features(dev);
10004
10005         if (dev->netdev_ops->ndo_fix_features)
10006                 features = dev->netdev_ops->ndo_fix_features(dev, features);
10007
10008         /* driver might be less strict about feature dependencies */
10009         features = netdev_fix_features(dev, features);
10010
10011         /* some features can't be enabled if they're off on an upper device */
10012         netdev_for_each_upper_dev_rcu(dev, upper, iter)
10013                 features = netdev_sync_upper_features(dev, upper, features);
10014
10015         if (dev->features == features)
10016                 goto sync_lower;
10017
10018         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10019                 &dev->features, &features);
10020
10021         if (dev->netdev_ops->ndo_set_features)
10022                 err = dev->netdev_ops->ndo_set_features(dev, features);
10023         else
10024                 err = 0;
10025
10026         if (unlikely(err < 0)) {
10027                 netdev_err(dev,
10028                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
10029                         err, &features, &dev->features);
10030                 /* return non-0 since some features might have changed and
10031                  * it's better to fire a spurious notification than miss it
10032                  */
10033                 return -1;
10034         }
10035
10036 sync_lower:
10037         /* some features must be disabled on lower devices when disabled
10038          * on an upper device (think: bonding master or bridge)
10039          */
10040         netdev_for_each_lower_dev(dev, lower, iter)
10041                 netdev_sync_lower_features(dev, lower, features);
10042
10043         if (!err) {
10044                 netdev_features_t diff = features ^ dev->features;
10045
10046                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10047                         /* udp_tunnel_{get,drop}_rx_info both need
10048                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10049                          * device, or they won't do anything.
10050                          * Thus we need to update dev->features
10051                          * *before* calling udp_tunnel_get_rx_info,
10052                          * but *after* calling udp_tunnel_drop_rx_info.
10053                          */
10054                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10055                                 dev->features = features;
10056                                 udp_tunnel_get_rx_info(dev);
10057                         } else {
10058                                 udp_tunnel_drop_rx_info(dev);
10059                         }
10060                 }
10061
10062                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10063                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10064                                 dev->features = features;
10065                                 err |= vlan_get_rx_ctag_filter_info(dev);
10066                         } else {
10067                                 vlan_drop_rx_ctag_filter_info(dev);
10068                         }
10069                 }
10070
10071                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10072                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10073                                 dev->features = features;
10074                                 err |= vlan_get_rx_stag_filter_info(dev);
10075                         } else {
10076                                 vlan_drop_rx_stag_filter_info(dev);
10077                         }
10078                 }
10079
10080                 dev->features = features;
10081         }
10082
10083         return err < 0 ? 0 : 1;
10084 }
10085
10086 /**
10087  *      netdev_update_features - recalculate device features
10088  *      @dev: the device to check
10089  *
10090  *      Recalculate dev->features set and send notifications if it
10091  *      has changed. Should be called after driver or hardware dependent
10092  *      conditions might have changed that influence the features.
10093  */
10094 void netdev_update_features(struct net_device *dev)
10095 {
10096         if (__netdev_update_features(dev))
10097                 netdev_features_change(dev);
10098 }
10099 EXPORT_SYMBOL(netdev_update_features);
10100
10101 /**
10102  *      netdev_change_features - recalculate device features
10103  *      @dev: the device to check
10104  *
10105  *      Recalculate dev->features set and send notifications even
10106  *      if they have not changed. Should be called instead of
10107  *      netdev_update_features() if also dev->vlan_features might
10108  *      have changed to allow the changes to be propagated to stacked
10109  *      VLAN devices.
10110  */
10111 void netdev_change_features(struct net_device *dev)
10112 {
10113         __netdev_update_features(dev);
10114         netdev_features_change(dev);
10115 }
10116 EXPORT_SYMBOL(netdev_change_features);
10117
10118 /**
10119  *      netif_stacked_transfer_operstate -      transfer operstate
10120  *      @rootdev: the root or lower level device to transfer state from
10121  *      @dev: the device to transfer operstate to
10122  *
10123  *      Transfer operational state from root to device. This is normally
10124  *      called when a stacking relationship exists between the root
10125  *      device and the device(a leaf device).
10126  */
10127 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10128                                         struct net_device *dev)
10129 {
10130         if (rootdev->operstate == IF_OPER_DORMANT)
10131                 netif_dormant_on(dev);
10132         else
10133                 netif_dormant_off(dev);
10134
10135         if (rootdev->operstate == IF_OPER_TESTING)
10136                 netif_testing_on(dev);
10137         else
10138                 netif_testing_off(dev);
10139
10140         if (netif_carrier_ok(rootdev))
10141                 netif_carrier_on(dev);
10142         else
10143                 netif_carrier_off(dev);
10144 }
10145 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10146
10147 static int netif_alloc_rx_queues(struct net_device *dev)
10148 {
10149         unsigned int i, count = dev->num_rx_queues;
10150         struct netdev_rx_queue *rx;
10151         size_t sz = count * sizeof(*rx);
10152         int err = 0;
10153
10154         BUG_ON(count < 1);
10155
10156         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10157         if (!rx)
10158                 return -ENOMEM;
10159
10160         dev->_rx = rx;
10161
10162         for (i = 0; i < count; i++) {
10163                 rx[i].dev = dev;
10164
10165                 /* XDP RX-queue setup */
10166                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10167                 if (err < 0)
10168                         goto err_rxq_info;
10169         }
10170         return 0;
10171
10172 err_rxq_info:
10173         /* Rollback successful reg's and free other resources */
10174         while (i--)
10175                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10176         kvfree(dev->_rx);
10177         dev->_rx = NULL;
10178         return err;
10179 }
10180
10181 static void netif_free_rx_queues(struct net_device *dev)
10182 {
10183         unsigned int i, count = dev->num_rx_queues;
10184
10185         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10186         if (!dev->_rx)
10187                 return;
10188
10189         for (i = 0; i < count; i++)
10190                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10191
10192         kvfree(dev->_rx);
10193 }
10194
10195 static void netdev_init_one_queue(struct net_device *dev,
10196                                   struct netdev_queue *queue, void *_unused)
10197 {
10198         /* Initialize queue lock */
10199         spin_lock_init(&queue->_xmit_lock);
10200         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10201         queue->xmit_lock_owner = -1;
10202         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10203         queue->dev = dev;
10204 #ifdef CONFIG_BQL
10205         dql_init(&queue->dql, HZ);
10206 #endif
10207 }
10208
10209 static void netif_free_tx_queues(struct net_device *dev)
10210 {
10211         kvfree(dev->_tx);
10212 }
10213
10214 static int netif_alloc_netdev_queues(struct net_device *dev)
10215 {
10216         unsigned int count = dev->num_tx_queues;
10217         struct netdev_queue *tx;
10218         size_t sz = count * sizeof(*tx);
10219
10220         if (count < 1 || count > 0xffff)
10221                 return -EINVAL;
10222
10223         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10224         if (!tx)
10225                 return -ENOMEM;
10226
10227         dev->_tx = tx;
10228
10229         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10230         spin_lock_init(&dev->tx_global_lock);
10231
10232         return 0;
10233 }
10234
10235 void netif_tx_stop_all_queues(struct net_device *dev)
10236 {
10237         unsigned int i;
10238
10239         for (i = 0; i < dev->num_tx_queues; i++) {
10240                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10241
10242                 netif_tx_stop_queue(txq);
10243         }
10244 }
10245 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10246
10247 /**
10248  *      register_netdevice      - register a network device
10249  *      @dev: device to register
10250  *
10251  *      Take a completed network device structure and add it to the kernel
10252  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10253  *      chain. 0 is returned on success. A negative errno code is returned
10254  *      on a failure to set up the device, or if the name is a duplicate.
10255  *
10256  *      Callers must hold the rtnl semaphore. You may want
10257  *      register_netdev() instead of this.
10258  *
10259  *      BUGS:
10260  *      The locking appears insufficient to guarantee two parallel registers
10261  *      will not get the same name.
10262  */
10263
10264 int register_netdevice(struct net_device *dev)
10265 {
10266         int ret;
10267         struct net *net = dev_net(dev);
10268
10269         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10270                      NETDEV_FEATURE_COUNT);
10271         BUG_ON(dev_boot_phase);
10272         ASSERT_RTNL();
10273
10274         might_sleep();
10275
10276         /* When net_device's are persistent, this will be fatal. */
10277         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10278         BUG_ON(!net);
10279
10280         ret = ethtool_check_ops(dev->ethtool_ops);
10281         if (ret)
10282                 return ret;
10283
10284         spin_lock_init(&dev->addr_list_lock);
10285         netdev_set_addr_lockdep_class(dev);
10286
10287         ret = dev_get_valid_name(net, dev, dev->name);
10288         if (ret < 0)
10289                 goto out;
10290
10291         ret = -ENOMEM;
10292         dev->name_node = netdev_name_node_head_alloc(dev);
10293         if (!dev->name_node)
10294                 goto out;
10295
10296         /* Init, if this function is available */
10297         if (dev->netdev_ops->ndo_init) {
10298                 ret = dev->netdev_ops->ndo_init(dev);
10299                 if (ret) {
10300                         if (ret > 0)
10301                                 ret = -EIO;
10302                         goto err_free_name;
10303                 }
10304         }
10305
10306         if (((dev->hw_features | dev->features) &
10307              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10308             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10309              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10310                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10311                 ret = -EINVAL;
10312                 goto err_uninit;
10313         }
10314
10315         ret = -EBUSY;
10316         if (!dev->ifindex)
10317                 dev->ifindex = dev_new_index(net);
10318         else if (__dev_get_by_index(net, dev->ifindex))
10319                 goto err_uninit;
10320
10321         /* Transfer changeable features to wanted_features and enable
10322          * software offloads (GSO and GRO).
10323          */
10324         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10325         dev->features |= NETIF_F_SOFT_FEATURES;
10326
10327         if (dev->udp_tunnel_nic_info) {
10328                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10329                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10330         }
10331
10332         dev->wanted_features = dev->features & dev->hw_features;
10333
10334         if (!(dev->flags & IFF_LOOPBACK))
10335                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10336
10337         /* If IPv4 TCP segmentation offload is supported we should also
10338          * allow the device to enable segmenting the frame with the option
10339          * of ignoring a static IP ID value.  This doesn't enable the
10340          * feature itself but allows the user to enable it later.
10341          */
10342         if (dev->hw_features & NETIF_F_TSO)
10343                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10344         if (dev->vlan_features & NETIF_F_TSO)
10345                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10346         if (dev->mpls_features & NETIF_F_TSO)
10347                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10348         if (dev->hw_enc_features & NETIF_F_TSO)
10349                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10350
10351         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10352          */
10353         dev->vlan_features |= NETIF_F_HIGHDMA;
10354
10355         /* Make NETIF_F_SG inheritable to tunnel devices.
10356          */
10357         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10358
10359         /* Make NETIF_F_SG inheritable to MPLS.
10360          */
10361         dev->mpls_features |= NETIF_F_SG;
10362
10363         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10364         ret = notifier_to_errno(ret);
10365         if (ret)
10366                 goto err_uninit;
10367
10368         ret = netdev_register_kobject(dev);
10369         if (ret) {
10370                 dev->reg_state = NETREG_UNREGISTERED;
10371                 goto err_uninit;
10372         }
10373         dev->reg_state = NETREG_REGISTERED;
10374
10375         __netdev_update_features(dev);
10376
10377         /*
10378          *      Default initial state at registry is that the
10379          *      device is present.
10380          */
10381
10382         set_bit(__LINK_STATE_PRESENT, &dev->state);
10383
10384         linkwatch_init_dev(dev);
10385
10386         dev_init_scheduler(dev);
10387         dev_hold(dev);
10388         list_netdevice(dev);
10389         add_device_randomness(dev->dev_addr, dev->addr_len);
10390
10391         /* If the device has permanent device address, driver should
10392          * set dev_addr and also addr_assign_type should be set to
10393          * NET_ADDR_PERM (default value).
10394          */
10395         if (dev->addr_assign_type == NET_ADDR_PERM)
10396                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10397
10398         /* Notify protocols, that a new device appeared. */
10399         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10400         ret = notifier_to_errno(ret);
10401         if (ret) {
10402                 /* Expect explicit free_netdev() on failure */
10403                 dev->needs_free_netdev = false;
10404                 unregister_netdevice_queue(dev, NULL);
10405                 goto out;
10406         }
10407         /*
10408          *      Prevent userspace races by waiting until the network
10409          *      device is fully setup before sending notifications.
10410          */
10411         if (!dev->rtnl_link_ops ||
10412             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10413                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10414
10415 out:
10416         return ret;
10417
10418 err_uninit:
10419         if (dev->netdev_ops->ndo_uninit)
10420                 dev->netdev_ops->ndo_uninit(dev);
10421         if (dev->priv_destructor)
10422                 dev->priv_destructor(dev);
10423 err_free_name:
10424         netdev_name_node_free(dev->name_node);
10425         goto out;
10426 }
10427 EXPORT_SYMBOL(register_netdevice);
10428
10429 /**
10430  *      init_dummy_netdev       - init a dummy network device for NAPI
10431  *      @dev: device to init
10432  *
10433  *      This takes a network device structure and initialize the minimum
10434  *      amount of fields so it can be used to schedule NAPI polls without
10435  *      registering a full blown interface. This is to be used by drivers
10436  *      that need to tie several hardware interfaces to a single NAPI
10437  *      poll scheduler due to HW limitations.
10438  */
10439 int init_dummy_netdev(struct net_device *dev)
10440 {
10441         /* Clear everything. Note we don't initialize spinlocks
10442          * are they aren't supposed to be taken by any of the
10443          * NAPI code and this dummy netdev is supposed to be
10444          * only ever used for NAPI polls
10445          */
10446         memset(dev, 0, sizeof(struct net_device));
10447
10448         /* make sure we BUG if trying to hit standard
10449          * register/unregister code path
10450          */
10451         dev->reg_state = NETREG_DUMMY;
10452
10453         /* NAPI wants this */
10454         INIT_LIST_HEAD(&dev->napi_list);
10455
10456         /* a dummy interface is started by default */
10457         set_bit(__LINK_STATE_PRESENT, &dev->state);
10458         set_bit(__LINK_STATE_START, &dev->state);
10459
10460         /* napi_busy_loop stats accounting wants this */
10461         dev_net_set(dev, &init_net);
10462
10463         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10464          * because users of this 'device' dont need to change
10465          * its refcount.
10466          */
10467
10468         return 0;
10469 }
10470 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10471
10472
10473 /**
10474  *      register_netdev - register a network device
10475  *      @dev: device to register
10476  *
10477  *      Take a completed network device structure and add it to the kernel
10478  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10479  *      chain. 0 is returned on success. A negative errno code is returned
10480  *      on a failure to set up the device, or if the name is a duplicate.
10481  *
10482  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10483  *      and expands the device name if you passed a format string to
10484  *      alloc_netdev.
10485  */
10486 int register_netdev(struct net_device *dev)
10487 {
10488         int err;
10489
10490         if (rtnl_lock_killable())
10491                 return -EINTR;
10492         err = register_netdevice(dev);
10493         rtnl_unlock();
10494         return err;
10495 }
10496 EXPORT_SYMBOL(register_netdev);
10497
10498 int netdev_refcnt_read(const struct net_device *dev)
10499 {
10500 #ifdef CONFIG_PCPU_DEV_REFCNT
10501         int i, refcnt = 0;
10502
10503         for_each_possible_cpu(i)
10504                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10505         return refcnt;
10506 #else
10507         return refcount_read(&dev->dev_refcnt);
10508 #endif
10509 }
10510 EXPORT_SYMBOL(netdev_refcnt_read);
10511
10512 int netdev_unregister_timeout_secs __read_mostly = 10;
10513
10514 #define WAIT_REFS_MIN_MSECS 1
10515 #define WAIT_REFS_MAX_MSECS 250
10516 /**
10517  * netdev_wait_allrefs - wait until all references are gone.
10518  * @dev: target net_device
10519  *
10520  * This is called when unregistering network devices.
10521  *
10522  * Any protocol or device that holds a reference should register
10523  * for netdevice notification, and cleanup and put back the
10524  * reference if they receive an UNREGISTER event.
10525  * We can get stuck here if buggy protocols don't correctly
10526  * call dev_put.
10527  */
10528 static void netdev_wait_allrefs(struct net_device *dev)
10529 {
10530         unsigned long rebroadcast_time, warning_time;
10531         int wait = 0, refcnt;
10532
10533         linkwatch_forget_dev(dev);
10534
10535         rebroadcast_time = warning_time = jiffies;
10536         refcnt = netdev_refcnt_read(dev);
10537
10538         while (refcnt != 1) {
10539                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10540                         rtnl_lock();
10541
10542                         /* Rebroadcast unregister notification */
10543                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10544
10545                         __rtnl_unlock();
10546                         rcu_barrier();
10547                         rtnl_lock();
10548
10549                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10550                                      &dev->state)) {
10551                                 /* We must not have linkwatch events
10552                                  * pending on unregister. If this
10553                                  * happens, we simply run the queue
10554                                  * unscheduled, resulting in a noop
10555                                  * for this device.
10556                                  */
10557                                 linkwatch_run_queue();
10558                         }
10559
10560                         __rtnl_unlock();
10561
10562                         rebroadcast_time = jiffies;
10563                 }
10564
10565                 if (!wait) {
10566                         rcu_barrier();
10567                         wait = WAIT_REFS_MIN_MSECS;
10568                 } else {
10569                         msleep(wait);
10570                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10571                 }
10572
10573                 refcnt = netdev_refcnt_read(dev);
10574
10575                 if (refcnt != 1 &&
10576                     time_after(jiffies, warning_time +
10577                                netdev_unregister_timeout_secs * HZ)) {
10578                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10579                                  dev->name, refcnt);
10580                         warning_time = jiffies;
10581                 }
10582         }
10583 }
10584
10585 /* The sequence is:
10586  *
10587  *      rtnl_lock();
10588  *      ...
10589  *      register_netdevice(x1);
10590  *      register_netdevice(x2);
10591  *      ...
10592  *      unregister_netdevice(y1);
10593  *      unregister_netdevice(y2);
10594  *      ...
10595  *      rtnl_unlock();
10596  *      free_netdev(y1);
10597  *      free_netdev(y2);
10598  *
10599  * We are invoked by rtnl_unlock().
10600  * This allows us to deal with problems:
10601  * 1) We can delete sysfs objects which invoke hotplug
10602  *    without deadlocking with linkwatch via keventd.
10603  * 2) Since we run with the RTNL semaphore not held, we can sleep
10604  *    safely in order to wait for the netdev refcnt to drop to zero.
10605  *
10606  * We must not return until all unregister events added during
10607  * the interval the lock was held have been completed.
10608  */
10609 void netdev_run_todo(void)
10610 {
10611         struct list_head list;
10612 #ifdef CONFIG_LOCKDEP
10613         struct list_head unlink_list;
10614
10615         list_replace_init(&net_unlink_list, &unlink_list);
10616
10617         while (!list_empty(&unlink_list)) {
10618                 struct net_device *dev = list_first_entry(&unlink_list,
10619                                                           struct net_device,
10620                                                           unlink_list);
10621                 list_del_init(&dev->unlink_list);
10622                 dev->nested_level = dev->lower_level - 1;
10623         }
10624 #endif
10625
10626         /* Snapshot list, allow later requests */
10627         list_replace_init(&net_todo_list, &list);
10628
10629         __rtnl_unlock();
10630
10631
10632         /* Wait for rcu callbacks to finish before next phase */
10633         if (!list_empty(&list))
10634                 rcu_barrier();
10635
10636         while (!list_empty(&list)) {
10637                 struct net_device *dev
10638                         = list_first_entry(&list, struct net_device, todo_list);
10639                 list_del(&dev->todo_list);
10640
10641                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10642                         pr_err("network todo '%s' but state %d\n",
10643                                dev->name, dev->reg_state);
10644                         dump_stack();
10645                         continue;
10646                 }
10647
10648                 dev->reg_state = NETREG_UNREGISTERED;
10649
10650                 netdev_wait_allrefs(dev);
10651
10652                 /* paranoia */
10653                 BUG_ON(netdev_refcnt_read(dev) != 1);
10654                 BUG_ON(!list_empty(&dev->ptype_all));
10655                 BUG_ON(!list_empty(&dev->ptype_specific));
10656                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10657                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10658 #if IS_ENABLED(CONFIG_DECNET)
10659                 WARN_ON(dev->dn_ptr);
10660 #endif
10661                 if (dev->priv_destructor)
10662                         dev->priv_destructor(dev);
10663                 if (dev->needs_free_netdev)
10664                         free_netdev(dev);
10665
10666                 /* Report a network device has been unregistered */
10667                 rtnl_lock();
10668                 dev_net(dev)->dev_unreg_count--;
10669                 __rtnl_unlock();
10670                 wake_up(&netdev_unregistering_wq);
10671
10672                 /* Free network device */
10673                 kobject_put(&dev->dev.kobj);
10674         }
10675 }
10676
10677 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10678  * all the same fields in the same order as net_device_stats, with only
10679  * the type differing, but rtnl_link_stats64 may have additional fields
10680  * at the end for newer counters.
10681  */
10682 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10683                              const struct net_device_stats *netdev_stats)
10684 {
10685 #if BITS_PER_LONG == 64
10686         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10687         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10688         /* zero out counters that only exist in rtnl_link_stats64 */
10689         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10690                sizeof(*stats64) - sizeof(*netdev_stats));
10691 #else
10692         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10693         const unsigned long *src = (const unsigned long *)netdev_stats;
10694         u64 *dst = (u64 *)stats64;
10695
10696         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10697         for (i = 0; i < n; i++)
10698                 dst[i] = src[i];
10699         /* zero out counters that only exist in rtnl_link_stats64 */
10700         memset((char *)stats64 + n * sizeof(u64), 0,
10701                sizeof(*stats64) - n * sizeof(u64));
10702 #endif
10703 }
10704 EXPORT_SYMBOL(netdev_stats_to_stats64);
10705
10706 /**
10707  *      dev_get_stats   - get network device statistics
10708  *      @dev: device to get statistics from
10709  *      @storage: place to store stats
10710  *
10711  *      Get network statistics from device. Return @storage.
10712  *      The device driver may provide its own method by setting
10713  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10714  *      otherwise the internal statistics structure is used.
10715  */
10716 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10717                                         struct rtnl_link_stats64 *storage)
10718 {
10719         const struct net_device_ops *ops = dev->netdev_ops;
10720
10721         if (ops->ndo_get_stats64) {
10722                 memset(storage, 0, sizeof(*storage));
10723                 ops->ndo_get_stats64(dev, storage);
10724         } else if (ops->ndo_get_stats) {
10725                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10726         } else {
10727                 netdev_stats_to_stats64(storage, &dev->stats);
10728         }
10729         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10730         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10731         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10732         return storage;
10733 }
10734 EXPORT_SYMBOL(dev_get_stats);
10735
10736 /**
10737  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10738  *      @s: place to store stats
10739  *      @netstats: per-cpu network stats to read from
10740  *
10741  *      Read per-cpu network statistics and populate the related fields in @s.
10742  */
10743 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10744                            const struct pcpu_sw_netstats __percpu *netstats)
10745 {
10746         int cpu;
10747
10748         for_each_possible_cpu(cpu) {
10749                 const struct pcpu_sw_netstats *stats;
10750                 struct pcpu_sw_netstats tmp;
10751                 unsigned int start;
10752
10753                 stats = per_cpu_ptr(netstats, cpu);
10754                 do {
10755                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10756                         tmp.rx_packets = stats->rx_packets;
10757                         tmp.rx_bytes   = stats->rx_bytes;
10758                         tmp.tx_packets = stats->tx_packets;
10759                         tmp.tx_bytes   = stats->tx_bytes;
10760                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10761
10762                 s->rx_packets += tmp.rx_packets;
10763                 s->rx_bytes   += tmp.rx_bytes;
10764                 s->tx_packets += tmp.tx_packets;
10765                 s->tx_bytes   += tmp.tx_bytes;
10766         }
10767 }
10768 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10769
10770 /**
10771  *      dev_get_tstats64 - ndo_get_stats64 implementation
10772  *      @dev: device to get statistics from
10773  *      @s: place to store stats
10774  *
10775  *      Populate @s from dev->stats and dev->tstats. Can be used as
10776  *      ndo_get_stats64() callback.
10777  */
10778 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10779 {
10780         netdev_stats_to_stats64(s, &dev->stats);
10781         dev_fetch_sw_netstats(s, dev->tstats);
10782 }
10783 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10784
10785 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10786 {
10787         struct netdev_queue *queue = dev_ingress_queue(dev);
10788
10789 #ifdef CONFIG_NET_CLS_ACT
10790         if (queue)
10791                 return queue;
10792         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10793         if (!queue)
10794                 return NULL;
10795         netdev_init_one_queue(dev, queue, NULL);
10796         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10797         queue->qdisc_sleeping = &noop_qdisc;
10798         rcu_assign_pointer(dev->ingress_queue, queue);
10799 #endif
10800         return queue;
10801 }
10802
10803 static const struct ethtool_ops default_ethtool_ops;
10804
10805 void netdev_set_default_ethtool_ops(struct net_device *dev,
10806                                     const struct ethtool_ops *ops)
10807 {
10808         if (dev->ethtool_ops == &default_ethtool_ops)
10809                 dev->ethtool_ops = ops;
10810 }
10811 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10812
10813 void netdev_freemem(struct net_device *dev)
10814 {
10815         char *addr = (char *)dev - dev->padded;
10816
10817         kvfree(addr);
10818 }
10819
10820 /**
10821  * alloc_netdev_mqs - allocate network device
10822  * @sizeof_priv: size of private data to allocate space for
10823  * @name: device name format string
10824  * @name_assign_type: origin of device name
10825  * @setup: callback to initialize device
10826  * @txqs: the number of TX subqueues to allocate
10827  * @rxqs: the number of RX subqueues to allocate
10828  *
10829  * Allocates a struct net_device with private data area for driver use
10830  * and performs basic initialization.  Also allocates subqueue structs
10831  * for each queue on the device.
10832  */
10833 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10834                 unsigned char name_assign_type,
10835                 void (*setup)(struct net_device *),
10836                 unsigned int txqs, unsigned int rxqs)
10837 {
10838         struct net_device *dev;
10839         unsigned int alloc_size;
10840         struct net_device *p;
10841
10842         BUG_ON(strlen(name) >= sizeof(dev->name));
10843
10844         if (txqs < 1) {
10845                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10846                 return NULL;
10847         }
10848
10849         if (rxqs < 1) {
10850                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10851                 return NULL;
10852         }
10853
10854         alloc_size = sizeof(struct net_device);
10855         if (sizeof_priv) {
10856                 /* ensure 32-byte alignment of private area */
10857                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10858                 alloc_size += sizeof_priv;
10859         }
10860         /* ensure 32-byte alignment of whole construct */
10861         alloc_size += NETDEV_ALIGN - 1;
10862
10863         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10864         if (!p)
10865                 return NULL;
10866
10867         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10868         dev->padded = (char *)dev - (char *)p;
10869
10870 #ifdef CONFIG_PCPU_DEV_REFCNT
10871         dev->pcpu_refcnt = alloc_percpu(int);
10872         if (!dev->pcpu_refcnt)
10873                 goto free_dev;
10874         dev_hold(dev);
10875 #else
10876         refcount_set(&dev->dev_refcnt, 1);
10877 #endif
10878
10879         if (dev_addr_init(dev))
10880                 goto free_pcpu;
10881
10882         dev_mc_init(dev);
10883         dev_uc_init(dev);
10884
10885         dev_net_set(dev, &init_net);
10886
10887         dev->gso_max_size = GSO_MAX_SIZE;
10888         dev->gso_max_segs = GSO_MAX_SEGS;
10889         dev->upper_level = 1;
10890         dev->lower_level = 1;
10891 #ifdef CONFIG_LOCKDEP
10892         dev->nested_level = 0;
10893         INIT_LIST_HEAD(&dev->unlink_list);
10894 #endif
10895
10896         INIT_LIST_HEAD(&dev->napi_list);
10897         INIT_LIST_HEAD(&dev->unreg_list);
10898         INIT_LIST_HEAD(&dev->close_list);
10899         INIT_LIST_HEAD(&dev->link_watch_list);
10900         INIT_LIST_HEAD(&dev->adj_list.upper);
10901         INIT_LIST_HEAD(&dev->adj_list.lower);
10902         INIT_LIST_HEAD(&dev->ptype_all);
10903         INIT_LIST_HEAD(&dev->ptype_specific);
10904         INIT_LIST_HEAD(&dev->net_notifier_list);
10905 #ifdef CONFIG_NET_SCHED
10906         hash_init(dev->qdisc_hash);
10907 #endif
10908         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10909         setup(dev);
10910
10911         if (!dev->tx_queue_len) {
10912                 dev->priv_flags |= IFF_NO_QUEUE;
10913                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10914         }
10915
10916         dev->num_tx_queues = txqs;
10917         dev->real_num_tx_queues = txqs;
10918         if (netif_alloc_netdev_queues(dev))
10919                 goto free_all;
10920
10921         dev->num_rx_queues = rxqs;
10922         dev->real_num_rx_queues = rxqs;
10923         if (netif_alloc_rx_queues(dev))
10924                 goto free_all;
10925
10926         strcpy(dev->name, name);
10927         dev->name_assign_type = name_assign_type;
10928         dev->group = INIT_NETDEV_GROUP;
10929         if (!dev->ethtool_ops)
10930                 dev->ethtool_ops = &default_ethtool_ops;
10931
10932         nf_hook_ingress_init(dev);
10933
10934         return dev;
10935
10936 free_all:
10937         free_netdev(dev);
10938         return NULL;
10939
10940 free_pcpu:
10941 #ifdef CONFIG_PCPU_DEV_REFCNT
10942         free_percpu(dev->pcpu_refcnt);
10943 free_dev:
10944 #endif
10945         netdev_freemem(dev);
10946         return NULL;
10947 }
10948 EXPORT_SYMBOL(alloc_netdev_mqs);
10949
10950 /**
10951  * free_netdev - free network device
10952  * @dev: device
10953  *
10954  * This function does the last stage of destroying an allocated device
10955  * interface. The reference to the device object is released. If this
10956  * is the last reference then it will be freed.Must be called in process
10957  * context.
10958  */
10959 void free_netdev(struct net_device *dev)
10960 {
10961         struct napi_struct *p, *n;
10962
10963         might_sleep();
10964
10965         /* When called immediately after register_netdevice() failed the unwind
10966          * handling may still be dismantling the device. Handle that case by
10967          * deferring the free.
10968          */
10969         if (dev->reg_state == NETREG_UNREGISTERING) {
10970                 ASSERT_RTNL();
10971                 dev->needs_free_netdev = true;
10972                 return;
10973         }
10974
10975         netif_free_tx_queues(dev);
10976         netif_free_rx_queues(dev);
10977
10978         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10979
10980         /* Flush device addresses */
10981         dev_addr_flush(dev);
10982
10983         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10984                 netif_napi_del(p);
10985
10986 #ifdef CONFIG_PCPU_DEV_REFCNT
10987         free_percpu(dev->pcpu_refcnt);
10988         dev->pcpu_refcnt = NULL;
10989 #endif
10990         free_percpu(dev->xdp_bulkq);
10991         dev->xdp_bulkq = NULL;
10992
10993         /*  Compatibility with error handling in drivers */
10994         if (dev->reg_state == NETREG_UNINITIALIZED) {
10995                 netdev_freemem(dev);
10996                 return;
10997         }
10998
10999         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11000         dev->reg_state = NETREG_RELEASED;
11001
11002         /* will free via device release */
11003         put_device(&dev->dev);
11004 }
11005 EXPORT_SYMBOL(free_netdev);
11006
11007 /**
11008  *      synchronize_net -  Synchronize with packet receive processing
11009  *
11010  *      Wait for packets currently being received to be done.
11011  *      Does not block later packets from starting.
11012  */
11013 void synchronize_net(void)
11014 {
11015         might_sleep();
11016         if (rtnl_is_locked())
11017                 synchronize_rcu_expedited();
11018         else
11019                 synchronize_rcu();
11020 }
11021 EXPORT_SYMBOL(synchronize_net);
11022
11023 /**
11024  *      unregister_netdevice_queue - remove device from the kernel
11025  *      @dev: device
11026  *      @head: list
11027  *
11028  *      This function shuts down a device interface and removes it
11029  *      from the kernel tables.
11030  *      If head not NULL, device is queued to be unregistered later.
11031  *
11032  *      Callers must hold the rtnl semaphore.  You may want
11033  *      unregister_netdev() instead of this.
11034  */
11035
11036 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11037 {
11038         ASSERT_RTNL();
11039
11040         if (head) {
11041                 list_move_tail(&dev->unreg_list, head);
11042         } else {
11043                 LIST_HEAD(single);
11044
11045                 list_add(&dev->unreg_list, &single);
11046                 unregister_netdevice_many(&single);
11047         }
11048 }
11049 EXPORT_SYMBOL(unregister_netdevice_queue);
11050
11051 /**
11052  *      unregister_netdevice_many - unregister many devices
11053  *      @head: list of devices
11054  *
11055  *  Note: As most callers use a stack allocated list_head,
11056  *  we force a list_del() to make sure stack wont be corrupted later.
11057  */
11058 void unregister_netdevice_many(struct list_head *head)
11059 {
11060         struct net_device *dev, *tmp;
11061         LIST_HEAD(close_head);
11062
11063         BUG_ON(dev_boot_phase);
11064         ASSERT_RTNL();
11065
11066         if (list_empty(head))
11067                 return;
11068
11069         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11070                 /* Some devices call without registering
11071                  * for initialization unwind. Remove those
11072                  * devices and proceed with the remaining.
11073                  */
11074                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11075                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11076                                  dev->name, dev);
11077
11078                         WARN_ON(1);
11079                         list_del(&dev->unreg_list);
11080                         continue;
11081                 }
11082                 dev->dismantle = true;
11083                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11084         }
11085
11086         /* If device is running, close it first. */
11087         list_for_each_entry(dev, head, unreg_list)
11088                 list_add_tail(&dev->close_list, &close_head);
11089         dev_close_many(&close_head, true);
11090
11091         list_for_each_entry(dev, head, unreg_list) {
11092                 /* And unlink it from device chain. */
11093                 unlist_netdevice(dev);
11094
11095                 dev->reg_state = NETREG_UNREGISTERING;
11096         }
11097         flush_all_backlogs();
11098
11099         synchronize_net();
11100
11101         list_for_each_entry(dev, head, unreg_list) {
11102                 struct sk_buff *skb = NULL;
11103
11104                 /* Shutdown queueing discipline. */
11105                 dev_shutdown(dev);
11106
11107                 dev_xdp_uninstall(dev);
11108
11109                 /* Notify protocols, that we are about to destroy
11110                  * this device. They should clean all the things.
11111                  */
11112                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11113
11114                 if (!dev->rtnl_link_ops ||
11115                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11116                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11117                                                      GFP_KERNEL, NULL, 0);
11118
11119                 /*
11120                  *      Flush the unicast and multicast chains
11121                  */
11122                 dev_uc_flush(dev);
11123                 dev_mc_flush(dev);
11124
11125                 netdev_name_node_alt_flush(dev);
11126                 netdev_name_node_free(dev->name_node);
11127
11128                 if (dev->netdev_ops->ndo_uninit)
11129                         dev->netdev_ops->ndo_uninit(dev);
11130
11131                 if (skb)
11132                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11133
11134                 /* Notifier chain MUST detach us all upper devices. */
11135                 WARN_ON(netdev_has_any_upper_dev(dev));
11136                 WARN_ON(netdev_has_any_lower_dev(dev));
11137
11138                 /* Remove entries from kobject tree */
11139                 netdev_unregister_kobject(dev);
11140 #ifdef CONFIG_XPS
11141                 /* Remove XPS queueing entries */
11142                 netif_reset_xps_queues_gt(dev, 0);
11143 #endif
11144         }
11145
11146         synchronize_net();
11147
11148         list_for_each_entry(dev, head, unreg_list) {
11149                 dev_put(dev);
11150                 net_set_todo(dev);
11151         }
11152
11153         list_del(head);
11154 }
11155 EXPORT_SYMBOL(unregister_netdevice_many);
11156
11157 /**
11158  *      unregister_netdev - remove device from the kernel
11159  *      @dev: device
11160  *
11161  *      This function shuts down a device interface and removes it
11162  *      from the kernel tables.
11163  *
11164  *      This is just a wrapper for unregister_netdevice that takes
11165  *      the rtnl semaphore.  In general you want to use this and not
11166  *      unregister_netdevice.
11167  */
11168 void unregister_netdev(struct net_device *dev)
11169 {
11170         rtnl_lock();
11171         unregister_netdevice(dev);
11172         rtnl_unlock();
11173 }
11174 EXPORT_SYMBOL(unregister_netdev);
11175
11176 /**
11177  *      __dev_change_net_namespace - move device to different nethost namespace
11178  *      @dev: device
11179  *      @net: network namespace
11180  *      @pat: If not NULL name pattern to try if the current device name
11181  *            is already taken in the destination network namespace.
11182  *      @new_ifindex: If not zero, specifies device index in the target
11183  *                    namespace.
11184  *
11185  *      This function shuts down a device interface and moves it
11186  *      to a new network namespace. On success 0 is returned, on
11187  *      a failure a netagive errno code is returned.
11188  *
11189  *      Callers must hold the rtnl semaphore.
11190  */
11191
11192 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11193                                const char *pat, int new_ifindex)
11194 {
11195         struct net *net_old = dev_net(dev);
11196         int err, new_nsid;
11197
11198         ASSERT_RTNL();
11199
11200         /* Don't allow namespace local devices to be moved. */
11201         err = -EINVAL;
11202         if (dev->features & NETIF_F_NETNS_LOCAL)
11203                 goto out;
11204
11205         /* Ensure the device has been registrered */
11206         if (dev->reg_state != NETREG_REGISTERED)
11207                 goto out;
11208
11209         /* Get out if there is nothing todo */
11210         err = 0;
11211         if (net_eq(net_old, net))
11212                 goto out;
11213
11214         /* Pick the destination device name, and ensure
11215          * we can use it in the destination network namespace.
11216          */
11217         err = -EEXIST;
11218         if (__dev_get_by_name(net, dev->name)) {
11219                 /* We get here if we can't use the current device name */
11220                 if (!pat)
11221                         goto out;
11222                 err = dev_get_valid_name(net, dev, pat);
11223                 if (err < 0)
11224                         goto out;
11225         }
11226
11227         /* Check that new_ifindex isn't used yet. */
11228         err = -EBUSY;
11229         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11230                 goto out;
11231
11232         /*
11233          * And now a mini version of register_netdevice unregister_netdevice.
11234          */
11235
11236         /* If device is running close it first. */
11237         dev_close(dev);
11238
11239         /* And unlink it from device chain */
11240         unlist_netdevice(dev);
11241
11242         synchronize_net();
11243
11244         /* Shutdown queueing discipline. */
11245         dev_shutdown(dev);
11246
11247         /* Notify protocols, that we are about to destroy
11248          * this device. They should clean all the things.
11249          *
11250          * Note that dev->reg_state stays at NETREG_REGISTERED.
11251          * This is wanted because this way 8021q and macvlan know
11252          * the device is just moving and can keep their slaves up.
11253          */
11254         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11255         rcu_barrier();
11256
11257         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11258         /* If there is an ifindex conflict assign a new one */
11259         if (!new_ifindex) {
11260                 if (__dev_get_by_index(net, dev->ifindex))
11261                         new_ifindex = dev_new_index(net);
11262                 else
11263                         new_ifindex = dev->ifindex;
11264         }
11265
11266         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11267                             new_ifindex);
11268
11269         /*
11270          *      Flush the unicast and multicast chains
11271          */
11272         dev_uc_flush(dev);
11273         dev_mc_flush(dev);
11274
11275         /* Send a netdev-removed uevent to the old namespace */
11276         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11277         netdev_adjacent_del_links(dev);
11278
11279         /* Move per-net netdevice notifiers that are following the netdevice */
11280         move_netdevice_notifiers_dev_net(dev, net);
11281
11282         /* Actually switch the network namespace */
11283         dev_net_set(dev, net);
11284         dev->ifindex = new_ifindex;
11285
11286         /* Send a netdev-add uevent to the new namespace */
11287         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11288         netdev_adjacent_add_links(dev);
11289
11290         /* Fixup kobjects */
11291         err = device_rename(&dev->dev, dev->name);
11292         WARN_ON(err);
11293
11294         /* Adapt owner in case owning user namespace of target network
11295          * namespace is different from the original one.
11296          */
11297         err = netdev_change_owner(dev, net_old, net);
11298         WARN_ON(err);
11299
11300         /* Add the device back in the hashes */
11301         list_netdevice(dev);
11302
11303         /* Notify protocols, that a new device appeared. */
11304         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11305
11306         /*
11307          *      Prevent userspace races by waiting until the network
11308          *      device is fully setup before sending notifications.
11309          */
11310         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11311
11312         synchronize_net();
11313         err = 0;
11314 out:
11315         return err;
11316 }
11317 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11318
11319 static int dev_cpu_dead(unsigned int oldcpu)
11320 {
11321         struct sk_buff **list_skb;
11322         struct sk_buff *skb;
11323         unsigned int cpu;
11324         struct softnet_data *sd, *oldsd, *remsd = NULL;
11325
11326         local_irq_disable();
11327         cpu = smp_processor_id();
11328         sd = &per_cpu(softnet_data, cpu);
11329         oldsd = &per_cpu(softnet_data, oldcpu);
11330
11331         /* Find end of our completion_queue. */
11332         list_skb = &sd->completion_queue;
11333         while (*list_skb)
11334                 list_skb = &(*list_skb)->next;
11335         /* Append completion queue from offline CPU. */
11336         *list_skb = oldsd->completion_queue;
11337         oldsd->completion_queue = NULL;
11338
11339         /* Append output queue from offline CPU. */
11340         if (oldsd->output_queue) {
11341                 *sd->output_queue_tailp = oldsd->output_queue;
11342                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11343                 oldsd->output_queue = NULL;
11344                 oldsd->output_queue_tailp = &oldsd->output_queue;
11345         }
11346         /* Append NAPI poll list from offline CPU, with one exception :
11347          * process_backlog() must be called by cpu owning percpu backlog.
11348          * We properly handle process_queue & input_pkt_queue later.
11349          */
11350         while (!list_empty(&oldsd->poll_list)) {
11351                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11352                                                             struct napi_struct,
11353                                                             poll_list);
11354
11355                 list_del_init(&napi->poll_list);
11356                 if (napi->poll == process_backlog)
11357                         napi->state = 0;
11358                 else
11359                         ____napi_schedule(sd, napi);
11360         }
11361
11362         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11363         local_irq_enable();
11364
11365 #ifdef CONFIG_RPS
11366         remsd = oldsd->rps_ipi_list;
11367         oldsd->rps_ipi_list = NULL;
11368 #endif
11369         /* send out pending IPI's on offline CPU */
11370         net_rps_send_ipi(remsd);
11371
11372         /* Process offline CPU's input_pkt_queue */
11373         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11374                 netif_rx_ni(skb);
11375                 input_queue_head_incr(oldsd);
11376         }
11377         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11378                 netif_rx_ni(skb);
11379                 input_queue_head_incr(oldsd);
11380         }
11381
11382         return 0;
11383 }
11384
11385 /**
11386  *      netdev_increment_features - increment feature set by one
11387  *      @all: current feature set
11388  *      @one: new feature set
11389  *      @mask: mask feature set
11390  *
11391  *      Computes a new feature set after adding a device with feature set
11392  *      @one to the master device with current feature set @all.  Will not
11393  *      enable anything that is off in @mask. Returns the new feature set.
11394  */
11395 netdev_features_t netdev_increment_features(netdev_features_t all,
11396         netdev_features_t one, netdev_features_t mask)
11397 {
11398         if (mask & NETIF_F_HW_CSUM)
11399                 mask |= NETIF_F_CSUM_MASK;
11400         mask |= NETIF_F_VLAN_CHALLENGED;
11401
11402         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11403         all &= one | ~NETIF_F_ALL_FOR_ALL;
11404
11405         /* If one device supports hw checksumming, set for all. */
11406         if (all & NETIF_F_HW_CSUM)
11407                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11408
11409         return all;
11410 }
11411 EXPORT_SYMBOL(netdev_increment_features);
11412
11413 static struct hlist_head * __net_init netdev_create_hash(void)
11414 {
11415         int i;
11416         struct hlist_head *hash;
11417
11418         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11419         if (hash != NULL)
11420                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11421                         INIT_HLIST_HEAD(&hash[i]);
11422
11423         return hash;
11424 }
11425
11426 /* Initialize per network namespace state */
11427 static int __net_init netdev_init(struct net *net)
11428 {
11429         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11430                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11431
11432         if (net != &init_net)
11433                 INIT_LIST_HEAD(&net->dev_base_head);
11434
11435         net->dev_name_head = netdev_create_hash();
11436         if (net->dev_name_head == NULL)
11437                 goto err_name;
11438
11439         net->dev_index_head = netdev_create_hash();
11440         if (net->dev_index_head == NULL)
11441                 goto err_idx;
11442
11443         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11444
11445         return 0;
11446
11447 err_idx:
11448         kfree(net->dev_name_head);
11449 err_name:
11450         return -ENOMEM;
11451 }
11452
11453 /**
11454  *      netdev_drivername - network driver for the device
11455  *      @dev: network device
11456  *
11457  *      Determine network driver for device.
11458  */
11459 const char *netdev_drivername(const struct net_device *dev)
11460 {
11461         const struct device_driver *driver;
11462         const struct device *parent;
11463         const char *empty = "";
11464
11465         parent = dev->dev.parent;
11466         if (!parent)
11467                 return empty;
11468
11469         driver = parent->driver;
11470         if (driver && driver->name)
11471                 return driver->name;
11472         return empty;
11473 }
11474
11475 static void __netdev_printk(const char *level, const struct net_device *dev,
11476                             struct va_format *vaf)
11477 {
11478         if (dev && dev->dev.parent) {
11479                 dev_printk_emit(level[1] - '0',
11480                                 dev->dev.parent,
11481                                 "%s %s %s%s: %pV",
11482                                 dev_driver_string(dev->dev.parent),
11483                                 dev_name(dev->dev.parent),
11484                                 netdev_name(dev), netdev_reg_state(dev),
11485                                 vaf);
11486         } else if (dev) {
11487                 printk("%s%s%s: %pV",
11488                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11489         } else {
11490                 printk("%s(NULL net_device): %pV", level, vaf);
11491         }
11492 }
11493
11494 void netdev_printk(const char *level, const struct net_device *dev,
11495                    const char *format, ...)
11496 {
11497         struct va_format vaf;
11498         va_list args;
11499
11500         va_start(args, format);
11501
11502         vaf.fmt = format;
11503         vaf.va = &args;
11504
11505         __netdev_printk(level, dev, &vaf);
11506
11507         va_end(args);
11508 }
11509 EXPORT_SYMBOL(netdev_printk);
11510
11511 #define define_netdev_printk_level(func, level)                 \
11512 void func(const struct net_device *dev, const char *fmt, ...)   \
11513 {                                                               \
11514         struct va_format vaf;                                   \
11515         va_list args;                                           \
11516                                                                 \
11517         va_start(args, fmt);                                    \
11518                                                                 \
11519         vaf.fmt = fmt;                                          \
11520         vaf.va = &args;                                         \
11521                                                                 \
11522         __netdev_printk(level, dev, &vaf);                      \
11523                                                                 \
11524         va_end(args);                                           \
11525 }                                                               \
11526 EXPORT_SYMBOL(func);
11527
11528 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11529 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11530 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11531 define_netdev_printk_level(netdev_err, KERN_ERR);
11532 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11533 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11534 define_netdev_printk_level(netdev_info, KERN_INFO);
11535
11536 static void __net_exit netdev_exit(struct net *net)
11537 {
11538         kfree(net->dev_name_head);
11539         kfree(net->dev_index_head);
11540         if (net != &init_net)
11541                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11542 }
11543
11544 static struct pernet_operations __net_initdata netdev_net_ops = {
11545         .init = netdev_init,
11546         .exit = netdev_exit,
11547 };
11548
11549 static void __net_exit default_device_exit(struct net *net)
11550 {
11551         struct net_device *dev, *aux;
11552         /*
11553          * Push all migratable network devices back to the
11554          * initial network namespace
11555          */
11556         rtnl_lock();
11557         for_each_netdev_safe(net, dev, aux) {
11558                 int err;
11559                 char fb_name[IFNAMSIZ];
11560
11561                 /* Ignore unmoveable devices (i.e. loopback) */
11562                 if (dev->features & NETIF_F_NETNS_LOCAL)
11563                         continue;
11564
11565                 /* Leave virtual devices for the generic cleanup */
11566                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11567                         continue;
11568
11569                 /* Push remaining network devices to init_net */
11570                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11571                 if (__dev_get_by_name(&init_net, fb_name))
11572                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11573                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11574                 if (err) {
11575                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11576                                  __func__, dev->name, err);
11577                         BUG();
11578                 }
11579         }
11580         rtnl_unlock();
11581 }
11582
11583 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11584 {
11585         /* Return with the rtnl_lock held when there are no network
11586          * devices unregistering in any network namespace in net_list.
11587          */
11588         struct net *net;
11589         bool unregistering;
11590         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11591
11592         add_wait_queue(&netdev_unregistering_wq, &wait);
11593         for (;;) {
11594                 unregistering = false;
11595                 rtnl_lock();
11596                 list_for_each_entry(net, net_list, exit_list) {
11597                         if (net->dev_unreg_count > 0) {
11598                                 unregistering = true;
11599                                 break;
11600                         }
11601                 }
11602                 if (!unregistering)
11603                         break;
11604                 __rtnl_unlock();
11605
11606                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11607         }
11608         remove_wait_queue(&netdev_unregistering_wq, &wait);
11609 }
11610
11611 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11612 {
11613         /* At exit all network devices most be removed from a network
11614          * namespace.  Do this in the reverse order of registration.
11615          * Do this across as many network namespaces as possible to
11616          * improve batching efficiency.
11617          */
11618         struct net_device *dev;
11619         struct net *net;
11620         LIST_HEAD(dev_kill_list);
11621
11622         /* To prevent network device cleanup code from dereferencing
11623          * loopback devices or network devices that have been freed
11624          * wait here for all pending unregistrations to complete,
11625          * before unregistring the loopback device and allowing the
11626          * network namespace be freed.
11627          *
11628          * The netdev todo list containing all network devices
11629          * unregistrations that happen in default_device_exit_batch
11630          * will run in the rtnl_unlock() at the end of
11631          * default_device_exit_batch.
11632          */
11633         rtnl_lock_unregistering(net_list);
11634         list_for_each_entry(net, net_list, exit_list) {
11635                 for_each_netdev_reverse(net, dev) {
11636                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11637                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11638                         else
11639                                 unregister_netdevice_queue(dev, &dev_kill_list);
11640                 }
11641         }
11642         unregister_netdevice_many(&dev_kill_list);
11643         rtnl_unlock();
11644 }
11645
11646 static struct pernet_operations __net_initdata default_device_ops = {
11647         .exit = default_device_exit,
11648         .exit_batch = default_device_exit_batch,
11649 };
11650
11651 /*
11652  *      Initialize the DEV module. At boot time this walks the device list and
11653  *      unhooks any devices that fail to initialise (normally hardware not
11654  *      present) and leaves us with a valid list of present and active devices.
11655  *
11656  */
11657
11658 /*
11659  *       This is called single threaded during boot, so no need
11660  *       to take the rtnl semaphore.
11661  */
11662 static int __init net_dev_init(void)
11663 {
11664         int i, rc = -ENOMEM;
11665
11666         BUG_ON(!dev_boot_phase);
11667
11668         if (dev_proc_init())
11669                 goto out;
11670
11671         if (netdev_kobject_init())
11672                 goto out;
11673
11674         INIT_LIST_HEAD(&ptype_all);
11675         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11676                 INIT_LIST_HEAD(&ptype_base[i]);
11677
11678         INIT_LIST_HEAD(&offload_base);
11679
11680         if (register_pernet_subsys(&netdev_net_ops))
11681                 goto out;
11682
11683         /*
11684          *      Initialise the packet receive queues.
11685          */
11686
11687         for_each_possible_cpu(i) {
11688                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11689                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11690
11691                 INIT_WORK(flush, flush_backlog);
11692
11693                 skb_queue_head_init(&sd->input_pkt_queue);
11694                 skb_queue_head_init(&sd->process_queue);
11695 #ifdef CONFIG_XFRM_OFFLOAD
11696                 skb_queue_head_init(&sd->xfrm_backlog);
11697 #endif
11698                 INIT_LIST_HEAD(&sd->poll_list);
11699                 sd->output_queue_tailp = &sd->output_queue;
11700 #ifdef CONFIG_RPS
11701                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11702                 sd->cpu = i;
11703 #endif
11704
11705                 init_gro_hash(&sd->backlog);
11706                 sd->backlog.poll = process_backlog;
11707                 sd->backlog.weight = weight_p;
11708         }
11709
11710         dev_boot_phase = 0;
11711
11712         /* The loopback device is special if any other network devices
11713          * is present in a network namespace the loopback device must
11714          * be present. Since we now dynamically allocate and free the
11715          * loopback device ensure this invariant is maintained by
11716          * keeping the loopback device as the first device on the
11717          * list of network devices.  Ensuring the loopback devices
11718          * is the first device that appears and the last network device
11719          * that disappears.
11720          */
11721         if (register_pernet_device(&loopback_net_ops))
11722                 goto out;
11723
11724         if (register_pernet_device(&default_device_ops))
11725                 goto out;
11726
11727         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11728         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11729
11730         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11731                                        NULL, dev_cpu_dead);
11732         WARN_ON(rc < 0);
11733         rc = 0;
11734 out:
11735         return rc;
11736 }
11737
11738 subsys_initcall(net_dev_init);
This page took 0.684414 seconds and 4 git commands to generate.