1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 #include <linux/migrate.h>
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 /* zero numa counters within a zone */
39 static void zero_zone_numa_counters(struct zone *zone)
43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_event[item], 0);
45 for_each_online_cpu(cpu) {
46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 atomic_long_set(&vm_numa_event[item], 0);
70 static void invalid_numa_statistics(void)
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
76 static DEFINE_MUTEX(vm_numa_stat_lock);
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
83 mutex_lock(&vm_numa_stat_lock);
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
90 if (oldval == sysctl_vm_numa_stat)
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
102 mutex_unlock(&vm_numa_stat_lock);
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
111 static void sum_vm_events(unsigned long *ret)
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
131 void all_vm_events(unsigned long *ret)
137 EXPORT_SYMBOL_GPL(all_vm_events);
140 * Fold the foreign cpu events into our own.
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
145 void vm_events_fold_cpu(int cpu)
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 * Manage combined zone based / global counters
161 * vm_stat contains the global counters
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_node_stat);
170 static void fold_vm_zone_numa_events(struct zone *zone)
172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
174 enum numa_stat_item item;
176 for_each_online_cpu(cpu) {
177 struct per_cpu_zonestat *pzstats;
179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 zone_numa_event_add(zone_numa_events[item], zone, item);
188 void fold_vm_numa_events(void)
192 for_each_populated_zone(zone)
193 fold_vm_zone_numa_events(zone);
199 int calculate_pressure_threshold(struct zone *zone)
202 int watermark_distance;
205 * As vmstats are not up to date, there is drift between the estimated
206 * and real values. For high thresholds and a high number of CPUs, it
207 * is possible for the min watermark to be breached while the estimated
208 * value looks fine. The pressure threshold is a reduced value such
209 * that even the maximum amount of drift will not accidentally breach
212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216 * Maximum threshold is 125
218 threshold = min(125, threshold);
223 int calculate_normal_threshold(struct zone *zone)
226 int mem; /* memory in 128 MB units */
229 * The threshold scales with the number of processors and the amount
230 * of memory per zone. More memory means that we can defer updates for
231 * longer, more processors could lead to more contention.
232 * fls() is used to have a cheap way of logarithmic scaling.
234 * Some sample thresholds:
236 * Threshold Processors (fls) Zonesize fls(mem)+1
237 * ------------------------------------------------------------------
254 * 125 1024 10 8-16 GB 8
255 * 125 1024 10 16-32 GB 9
258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263 * Maximum threshold is 125
265 threshold = min(125, threshold);
271 * Refresh the thresholds for each zone.
273 void refresh_zone_stat_thresholds(void)
275 struct pglist_data *pgdat;
280 /* Zero current pgdat thresholds */
281 for_each_online_pgdat(pgdat) {
282 for_each_online_cpu(cpu) {
283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
287 for_each_populated_zone(zone) {
288 struct pglist_data *pgdat = zone->zone_pgdat;
289 unsigned long max_drift, tolerate_drift;
291 threshold = calculate_normal_threshold(zone);
293 for_each_online_cpu(cpu) {
296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 /* Base nodestat threshold on the largest populated zone. */
300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 = max(threshold, pgdat_threshold);
306 * Only set percpu_drift_mark if there is a danger that
307 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 * the min watermark could be breached by an allocation
310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 max_drift = num_online_cpus() * threshold;
312 if (max_drift > tolerate_drift)
313 zone->percpu_drift_mark = high_wmark_pages(zone) +
318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 int (*calculate_pressure)(struct zone *))
326 for (i = 0; i < pgdat->nr_zones; i++) {
327 zone = &pgdat->node_zones[i];
328 if (!zone->percpu_drift_mark)
331 threshold = (*calculate_pressure)(zone);
332 for_each_online_cpu(cpu)
333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
339 * For use when we know that interrupts are disabled,
340 * or when we know that preemption is disabled and that
341 * particular counter cannot be updated from interrupt context.
343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 s8 __percpu *p = pcp->vm_stat_diff + item;
352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 * atomicity is provided by IRQs being disabled -- either explicitly
354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 * CPU migrations and preemption potentially corrupts a counter so
356 * disable preemption.
358 if (IS_ENABLED(CONFIG_PREEMPT_RT))
361 x = delta + __this_cpu_read(*p);
363 t = __this_cpu_read(pcp->stat_threshold);
365 if (unlikely(abs(x) > t)) {
366 zone_page_state_add(x, zone, item);
369 __this_cpu_write(*p, x);
371 if (IS_ENABLED(CONFIG_PREEMPT_RT))
374 EXPORT_SYMBOL(__mod_zone_page_state);
376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 s8 __percpu *p = pcp->vm_node_stat_diff + item;
384 if (vmstat_item_in_bytes(item)) {
386 * Only cgroups use subpage accounting right now; at
387 * the global level, these items still change in
388 * multiples of whole pages. Store them as pages
389 * internally to keep the per-cpu counters compact.
391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 delta >>= PAGE_SHIFT;
395 /* See __mod_node_page_state */
396 if (IS_ENABLED(CONFIG_PREEMPT_RT))
399 x = delta + __this_cpu_read(*p);
401 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(abs(x) > t)) {
404 node_page_state_add(x, pgdat, item);
407 __this_cpu_write(*p, x);
409 if (IS_ENABLED(CONFIG_PREEMPT_RT))
412 EXPORT_SYMBOL(__mod_node_page_state);
415 * Optimized increment and decrement functions.
417 * These are only for a single page and therefore can take a struct page *
418 * argument instead of struct zone *. This allows the inclusion of the code
419 * generated for page_zone(page) into the optimized functions.
421 * No overflow check is necessary and therefore the differential can be
422 * incremented or decremented in place which may allow the compilers to
423 * generate better code.
424 * The increment or decrement is known and therefore one boundary check can
427 * NOTE: These functions are very performance sensitive. Change only
430 * Some processors have inc/dec instructions that are atomic vs an interrupt.
431 * However, the code must first determine the differential location in a zone
432 * based on the processor number and then inc/dec the counter. There is no
433 * guarantee without disabling preemption that the processor will not change
434 * in between and therefore the atomicity vs. interrupt cannot be exploited
435 * in a useful way here.
437 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
439 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
440 s8 __percpu *p = pcp->vm_stat_diff + item;
443 /* See __mod_node_page_state */
444 if (IS_ENABLED(CONFIG_PREEMPT_RT))
447 v = __this_cpu_inc_return(*p);
448 t = __this_cpu_read(pcp->stat_threshold);
449 if (unlikely(v > t)) {
450 s8 overstep = t >> 1;
452 zone_page_state_add(v + overstep, zone, item);
453 __this_cpu_write(*p, -overstep);
456 if (IS_ENABLED(CONFIG_PREEMPT_RT))
460 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
462 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
463 s8 __percpu *p = pcp->vm_node_stat_diff + item;
466 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
468 /* See __mod_node_page_state */
469 if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 v = __this_cpu_inc_return(*p);
473 t = __this_cpu_read(pcp->stat_threshold);
474 if (unlikely(v > t)) {
475 s8 overstep = t >> 1;
477 node_page_state_add(v + overstep, pgdat, item);
478 __this_cpu_write(*p, -overstep);
481 if (IS_ENABLED(CONFIG_PREEMPT_RT))
485 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
487 __inc_zone_state(page_zone(page), item);
489 EXPORT_SYMBOL(__inc_zone_page_state);
491 void __inc_node_page_state(struct page *page, enum node_stat_item item)
493 __inc_node_state(page_pgdat(page), item);
495 EXPORT_SYMBOL(__inc_node_page_state);
497 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
499 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
500 s8 __percpu *p = pcp->vm_stat_diff + item;
503 /* See __mod_node_page_state */
504 if (IS_ENABLED(CONFIG_PREEMPT_RT))
507 v = __this_cpu_dec_return(*p);
508 t = __this_cpu_read(pcp->stat_threshold);
509 if (unlikely(v < - t)) {
510 s8 overstep = t >> 1;
512 zone_page_state_add(v - overstep, zone, item);
513 __this_cpu_write(*p, overstep);
516 if (IS_ENABLED(CONFIG_PREEMPT_RT))
520 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
522 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
523 s8 __percpu *p = pcp->vm_node_stat_diff + item;
526 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
528 /* See __mod_node_page_state */
529 if (IS_ENABLED(CONFIG_PREEMPT_RT))
532 v = __this_cpu_dec_return(*p);
533 t = __this_cpu_read(pcp->stat_threshold);
534 if (unlikely(v < - t)) {
535 s8 overstep = t >> 1;
537 node_page_state_add(v - overstep, pgdat, item);
538 __this_cpu_write(*p, overstep);
541 if (IS_ENABLED(CONFIG_PREEMPT_RT))
545 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
547 __dec_zone_state(page_zone(page), item);
549 EXPORT_SYMBOL(__dec_zone_page_state);
551 void __dec_node_page_state(struct page *page, enum node_stat_item item)
553 __dec_node_state(page_pgdat(page), item);
555 EXPORT_SYMBOL(__dec_node_page_state);
557 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
559 * If we have cmpxchg_local support then we do not need to incur the overhead
560 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
562 * mod_state() modifies the zone counter state through atomic per cpu
565 * Overstep mode specifies how overstep should handled:
567 * 1 Overstepping half of threshold
568 * -1 Overstepping minus half of threshold
570 static inline void mod_zone_state(struct zone *zone,
571 enum zone_stat_item item, long delta, int overstep_mode)
573 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
574 s8 __percpu *p = pcp->vm_stat_diff + item;
578 z = 0; /* overflow to zone counters */
581 * The fetching of the stat_threshold is racy. We may apply
582 * a counter threshold to the wrong the cpu if we get
583 * rescheduled while executing here. However, the next
584 * counter update will apply the threshold again and
585 * therefore bring the counter under the threshold again.
587 * Most of the time the thresholds are the same anyways
588 * for all cpus in a zone.
590 t = this_cpu_read(pcp->stat_threshold);
592 o = this_cpu_read(*p);
596 int os = overstep_mode * (t >> 1) ;
598 /* Overflow must be added to zone counters */
602 } while (this_cpu_cmpxchg(*p, o, n) != o);
605 zone_page_state_add(z, zone, item);
608 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
611 mod_zone_state(zone, item, delta, 0);
613 EXPORT_SYMBOL(mod_zone_page_state);
615 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
617 mod_zone_state(page_zone(page), item, 1, 1);
619 EXPORT_SYMBOL(inc_zone_page_state);
621 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
623 mod_zone_state(page_zone(page), item, -1, -1);
625 EXPORT_SYMBOL(dec_zone_page_state);
627 static inline void mod_node_state(struct pglist_data *pgdat,
628 enum node_stat_item item, int delta, int overstep_mode)
630 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
631 s8 __percpu *p = pcp->vm_node_stat_diff + item;
634 if (vmstat_item_in_bytes(item)) {
636 * Only cgroups use subpage accounting right now; at
637 * the global level, these items still change in
638 * multiples of whole pages. Store them as pages
639 * internally to keep the per-cpu counters compact.
641 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
642 delta >>= PAGE_SHIFT;
646 z = 0; /* overflow to node counters */
649 * The fetching of the stat_threshold is racy. We may apply
650 * a counter threshold to the wrong the cpu if we get
651 * rescheduled while executing here. However, the next
652 * counter update will apply the threshold again and
653 * therefore bring the counter under the threshold again.
655 * Most of the time the thresholds are the same anyways
656 * for all cpus in a node.
658 t = this_cpu_read(pcp->stat_threshold);
660 o = this_cpu_read(*p);
664 int os = overstep_mode * (t >> 1) ;
666 /* Overflow must be added to node counters */
670 } while (this_cpu_cmpxchg(*p, o, n) != o);
673 node_page_state_add(z, pgdat, item);
676 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
679 mod_node_state(pgdat, item, delta, 0);
681 EXPORT_SYMBOL(mod_node_page_state);
683 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
685 mod_node_state(pgdat, item, 1, 1);
688 void inc_node_page_state(struct page *page, enum node_stat_item item)
690 mod_node_state(page_pgdat(page), item, 1, 1);
692 EXPORT_SYMBOL(inc_node_page_state);
694 void dec_node_page_state(struct page *page, enum node_stat_item item)
696 mod_node_state(page_pgdat(page), item, -1, -1);
698 EXPORT_SYMBOL(dec_node_page_state);
701 * Use interrupt disable to serialize counter updates
703 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
708 local_irq_save(flags);
709 __mod_zone_page_state(zone, item, delta);
710 local_irq_restore(flags);
712 EXPORT_SYMBOL(mod_zone_page_state);
714 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
719 zone = page_zone(page);
720 local_irq_save(flags);
721 __inc_zone_state(zone, item);
722 local_irq_restore(flags);
724 EXPORT_SYMBOL(inc_zone_page_state);
726 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
730 local_irq_save(flags);
731 __dec_zone_page_state(page, item);
732 local_irq_restore(flags);
734 EXPORT_SYMBOL(dec_zone_page_state);
736 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
740 local_irq_save(flags);
741 __inc_node_state(pgdat, item);
742 local_irq_restore(flags);
744 EXPORT_SYMBOL(inc_node_state);
746 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
751 local_irq_save(flags);
752 __mod_node_page_state(pgdat, item, delta);
753 local_irq_restore(flags);
755 EXPORT_SYMBOL(mod_node_page_state);
757 void inc_node_page_state(struct page *page, enum node_stat_item item)
760 struct pglist_data *pgdat;
762 pgdat = page_pgdat(page);
763 local_irq_save(flags);
764 __inc_node_state(pgdat, item);
765 local_irq_restore(flags);
767 EXPORT_SYMBOL(inc_node_page_state);
769 void dec_node_page_state(struct page *page, enum node_stat_item item)
773 local_irq_save(flags);
774 __dec_node_page_state(page, item);
775 local_irq_restore(flags);
777 EXPORT_SYMBOL(dec_node_page_state);
781 * Fold a differential into the global counters.
782 * Returns the number of counters updated.
784 static int fold_diff(int *zone_diff, int *node_diff)
789 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
791 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
795 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
797 atomic_long_add(node_diff[i], &vm_node_stat[i]);
804 * Update the zone counters for the current cpu.
806 * Note that refresh_cpu_vm_stats strives to only access
807 * node local memory. The per cpu pagesets on remote zones are placed
808 * in the memory local to the processor using that pageset. So the
809 * loop over all zones will access a series of cachelines local to
812 * The call to zone_page_state_add updates the cachelines with the
813 * statistics in the remote zone struct as well as the global cachelines
814 * with the global counters. These could cause remote node cache line
815 * bouncing and will have to be only done when necessary.
817 * The function returns the number of global counters updated.
819 static int refresh_cpu_vm_stats(bool do_pagesets)
821 struct pglist_data *pgdat;
824 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
825 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
828 for_each_populated_zone(zone) {
829 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
831 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
834 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
837 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
840 atomic_long_add(v, &zone->vm_stat[i]);
841 global_zone_diff[i] += v;
843 /* 3 seconds idle till flush */
844 __this_cpu_write(pcp->expire, 3);
853 * Deal with draining the remote pageset of this
856 * Check if there are pages remaining in this pageset
857 * if not then there is nothing to expire.
859 if (!__this_cpu_read(pcp->expire) ||
860 !__this_cpu_read(pcp->count))
864 * We never drain zones local to this processor.
866 if (zone_to_nid(zone) == numa_node_id()) {
867 __this_cpu_write(pcp->expire, 0);
871 if (__this_cpu_dec_return(pcp->expire))
874 if (__this_cpu_read(pcp->count)) {
875 drain_zone_pages(zone, this_cpu_ptr(pcp));
882 for_each_online_pgdat(pgdat) {
883 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
885 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
888 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
890 atomic_long_add(v, &pgdat->vm_stat[i]);
891 global_node_diff[i] += v;
896 changes += fold_diff(global_zone_diff, global_node_diff);
901 * Fold the data for an offline cpu into the global array.
902 * There cannot be any access by the offline cpu and therefore
903 * synchronization is simplified.
905 void cpu_vm_stats_fold(int cpu)
907 struct pglist_data *pgdat;
910 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
911 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
913 for_each_populated_zone(zone) {
914 struct per_cpu_zonestat *pzstats;
916 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
918 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
919 if (pzstats->vm_stat_diff[i]) {
922 v = pzstats->vm_stat_diff[i];
923 pzstats->vm_stat_diff[i] = 0;
924 atomic_long_add(v, &zone->vm_stat[i]);
925 global_zone_diff[i] += v;
929 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
930 if (pzstats->vm_numa_event[i]) {
933 v = pzstats->vm_numa_event[i];
934 pzstats->vm_numa_event[i] = 0;
935 zone_numa_event_add(v, zone, i);
941 for_each_online_pgdat(pgdat) {
942 struct per_cpu_nodestat *p;
944 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
946 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
947 if (p->vm_node_stat_diff[i]) {
950 v = p->vm_node_stat_diff[i];
951 p->vm_node_stat_diff[i] = 0;
952 atomic_long_add(v, &pgdat->vm_stat[i]);
953 global_node_diff[i] += v;
957 fold_diff(global_zone_diff, global_node_diff);
961 * this is only called if !populated_zone(zone), which implies no other users of
962 * pset->vm_stat_diff[] exist.
964 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
969 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
970 if (pzstats->vm_stat_diff[i]) {
971 v = pzstats->vm_stat_diff[i];
972 pzstats->vm_stat_diff[i] = 0;
973 zone_page_state_add(v, zone, i);
978 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
979 if (pzstats->vm_numa_event[i]) {
980 v = pzstats->vm_numa_event[i];
981 pzstats->vm_numa_event[i] = 0;
982 zone_numa_event_add(v, zone, i);
991 * Determine the per node value of a stat item. This function
992 * is called frequently in a NUMA machine, so try to be as
993 * frugal as possible.
995 unsigned long sum_zone_node_page_state(int node,
996 enum zone_stat_item item)
998 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1002 for (i = 0; i < MAX_NR_ZONES; i++)
1003 count += zone_page_state(zones + i, item);
1008 /* Determine the per node value of a numa stat item. */
1009 unsigned long sum_zone_numa_event_state(int node,
1010 enum numa_stat_item item)
1012 struct zone *zones = NODE_DATA(node)->node_zones;
1013 unsigned long count = 0;
1016 for (i = 0; i < MAX_NR_ZONES; i++)
1017 count += zone_numa_event_state(zones + i, item);
1023 * Determine the per node value of a stat item.
1025 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1026 enum node_stat_item item)
1028 long x = atomic_long_read(&pgdat->vm_stat[item]);
1036 unsigned long node_page_state(struct pglist_data *pgdat,
1037 enum node_stat_item item)
1039 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1041 return node_page_state_pages(pgdat, item);
1045 #ifdef CONFIG_COMPACTION
1047 struct contig_page_info {
1048 unsigned long free_pages;
1049 unsigned long free_blocks_total;
1050 unsigned long free_blocks_suitable;
1054 * Calculate the number of free pages in a zone, how many contiguous
1055 * pages are free and how many are large enough to satisfy an allocation of
1056 * the target size. Note that this function makes no attempt to estimate
1057 * how many suitable free blocks there *might* be if MOVABLE pages were
1058 * migrated. Calculating that is possible, but expensive and can be
1059 * figured out from userspace
1061 static void fill_contig_page_info(struct zone *zone,
1062 unsigned int suitable_order,
1063 struct contig_page_info *info)
1067 info->free_pages = 0;
1068 info->free_blocks_total = 0;
1069 info->free_blocks_suitable = 0;
1071 for (order = 0; order < MAX_ORDER; order++) {
1072 unsigned long blocks;
1075 * Count number of free blocks.
1077 * Access to nr_free is lockless as nr_free is used only for
1078 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1080 blocks = data_race(zone->free_area[order].nr_free);
1081 info->free_blocks_total += blocks;
1083 /* Count free base pages */
1084 info->free_pages += blocks << order;
1086 /* Count the suitable free blocks */
1087 if (order >= suitable_order)
1088 info->free_blocks_suitable += blocks <<
1089 (order - suitable_order);
1094 * A fragmentation index only makes sense if an allocation of a requested
1095 * size would fail. If that is true, the fragmentation index indicates
1096 * whether external fragmentation or a lack of memory was the problem.
1097 * The value can be used to determine if page reclaim or compaction
1100 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1102 unsigned long requested = 1UL << order;
1104 if (WARN_ON_ONCE(order >= MAX_ORDER))
1107 if (!info->free_blocks_total)
1110 /* Fragmentation index only makes sense when a request would fail */
1111 if (info->free_blocks_suitable)
1115 * Index is between 0 and 1 so return within 3 decimal places
1117 * 0 => allocation would fail due to lack of memory
1118 * 1 => allocation would fail due to fragmentation
1120 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1124 * Calculates external fragmentation within a zone wrt the given order.
1125 * It is defined as the percentage of pages found in blocks of size
1126 * less than 1 << order. It returns values in range [0, 100].
1128 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1130 struct contig_page_info info;
1132 fill_contig_page_info(zone, order, &info);
1133 if (info.free_pages == 0)
1136 return div_u64((info.free_pages -
1137 (info.free_blocks_suitable << order)) * 100,
1141 /* Same as __fragmentation index but allocs contig_page_info on stack */
1142 int fragmentation_index(struct zone *zone, unsigned int order)
1144 struct contig_page_info info;
1146 fill_contig_page_info(zone, order, &info);
1147 return __fragmentation_index(order, &info);
1151 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1152 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1153 #ifdef CONFIG_ZONE_DMA
1154 #define TEXT_FOR_DMA(xx) xx "_dma",
1156 #define TEXT_FOR_DMA(xx)
1159 #ifdef CONFIG_ZONE_DMA32
1160 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1162 #define TEXT_FOR_DMA32(xx)
1165 #ifdef CONFIG_HIGHMEM
1166 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1168 #define TEXT_FOR_HIGHMEM(xx)
1171 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1172 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1174 const char * const vmstat_text[] = {
1175 /* enum zone_stat_item counters */
1177 "nr_zone_inactive_anon",
1178 "nr_zone_active_anon",
1179 "nr_zone_inactive_file",
1180 "nr_zone_active_file",
1181 "nr_zone_unevictable",
1182 "nr_zone_write_pending",
1185 #if IS_ENABLED(CONFIG_ZSMALLOC)
1190 /* enum numa_stat_item counters */
1200 /* enum node_stat_item counters */
1206 "nr_slab_reclaimable",
1207 "nr_slab_unreclaimable",
1211 "workingset_refault_anon",
1212 "workingset_refault_file",
1213 "workingset_activate_anon",
1214 "workingset_activate_file",
1215 "workingset_restore_anon",
1216 "workingset_restore_file",
1217 "workingset_nodereclaim",
1223 "nr_writeback_temp",
1225 "nr_shmem_hugepages",
1226 "nr_shmem_pmdmapped",
1227 "nr_file_hugepages",
1228 "nr_file_pmdmapped",
1229 "nr_anon_transparent_hugepages",
1231 "nr_vmscan_immediate_reclaim",
1234 "nr_throttled_written",
1235 "nr_kernel_misc_reclaimable",
1236 "nr_foll_pin_acquired",
1237 "nr_foll_pin_released",
1239 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1240 "nr_shadow_call_stack",
1242 "nr_page_table_pages",
1246 #ifdef CONFIG_NUMA_BALANCING
1247 "pgpromote_success",
1250 /* enum writeback_stat_item counters */
1251 "nr_dirty_threshold",
1252 "nr_dirty_background_threshold",
1254 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 /* enum vm_event_item counters */
1261 TEXTS_FOR_ZONES("pgalloc")
1262 TEXTS_FOR_ZONES("allocstall")
1263 TEXTS_FOR_ZONES("pgskip")
1282 "pgscan_direct_throttle",
1289 "zone_reclaim_failed",
1293 "kswapd_inodesteal",
1294 "kswapd_low_wmark_hit_quickly",
1295 "kswapd_high_wmark_hit_quickly",
1304 #ifdef CONFIG_NUMA_BALANCING
1306 "numa_huge_pte_updates",
1308 "numa_hint_faults_local",
1309 "numa_pages_migrated",
1311 #ifdef CONFIG_MIGRATION
1312 "pgmigrate_success",
1314 "thp_migration_success",
1315 "thp_migration_fail",
1316 "thp_migration_split",
1318 #ifdef CONFIG_COMPACTION
1319 "compact_migrate_scanned",
1320 "compact_free_scanned",
1325 "compact_daemon_wake",
1326 "compact_daemon_migrate_scanned",
1327 "compact_daemon_free_scanned",
1330 #ifdef CONFIG_HUGETLB_PAGE
1331 "htlb_buddy_alloc_success",
1332 "htlb_buddy_alloc_fail",
1335 "cma_alloc_success",
1338 "unevictable_pgs_culled",
1339 "unevictable_pgs_scanned",
1340 "unevictable_pgs_rescued",
1341 "unevictable_pgs_mlocked",
1342 "unevictable_pgs_munlocked",
1343 "unevictable_pgs_cleared",
1344 "unevictable_pgs_stranded",
1346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1348 "thp_fault_fallback",
1349 "thp_fault_fallback_charge",
1350 "thp_collapse_alloc",
1351 "thp_collapse_alloc_failed",
1353 "thp_file_fallback",
1354 "thp_file_fallback_charge",
1357 "thp_split_page_failed",
1358 "thp_deferred_split_page",
1360 "thp_scan_exceed_none_pte",
1361 "thp_scan_exceed_swap_pte",
1362 "thp_scan_exceed_share_pte",
1363 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1366 "thp_zero_page_alloc",
1367 "thp_zero_page_alloc_failed",
1369 "thp_swpout_fallback",
1371 #ifdef CONFIG_MEMORY_BALLOON
1374 #ifdef CONFIG_BALLOON_COMPACTION
1377 #endif /* CONFIG_MEMORY_BALLOON */
1378 #ifdef CONFIG_DEBUG_TLBFLUSH
1379 "nr_tlb_remote_flush",
1380 "nr_tlb_remote_flush_received",
1381 "nr_tlb_local_flush_all",
1382 "nr_tlb_local_flush_one",
1383 #endif /* CONFIG_DEBUG_TLBFLUSH */
1385 #ifdef CONFIG_DEBUG_VM_VMACACHE
1386 "vmacache_find_calls",
1387 "vmacache_find_hits",
1397 "direct_map_level2_splits",
1398 "direct_map_level3_splits",
1400 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1402 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1404 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1405 defined(CONFIG_PROC_FS)
1406 static void *frag_start(struct seq_file *m, loff_t *pos)
1411 for (pgdat = first_online_pgdat();
1413 pgdat = next_online_pgdat(pgdat))
1419 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1421 pg_data_t *pgdat = (pg_data_t *)arg;
1424 return next_online_pgdat(pgdat);
1427 static void frag_stop(struct seq_file *m, void *arg)
1432 * Walk zones in a node and print using a callback.
1433 * If @assert_populated is true, only use callback for zones that are populated.
1435 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1436 bool assert_populated, bool nolock,
1437 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1440 struct zone *node_zones = pgdat->node_zones;
1441 unsigned long flags;
1443 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1444 if (assert_populated && !populated_zone(zone))
1448 spin_lock_irqsave(&zone->lock, flags);
1449 print(m, pgdat, zone);
1451 spin_unlock_irqrestore(&zone->lock, flags);
1456 #ifdef CONFIG_PROC_FS
1457 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1462 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1463 for (order = 0; order < MAX_ORDER; ++order)
1465 * Access to nr_free is lockless as nr_free is used only for
1466 * printing purposes. Use data_race to avoid KCSAN warning.
1468 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1473 * This walks the free areas for each zone.
1475 static int frag_show(struct seq_file *m, void *arg)
1477 pg_data_t *pgdat = (pg_data_t *)arg;
1478 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1482 static void pagetypeinfo_showfree_print(struct seq_file *m,
1483 pg_data_t *pgdat, struct zone *zone)
1487 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1488 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1491 migratetype_names[mtype]);
1492 for (order = 0; order < MAX_ORDER; ++order) {
1493 unsigned long freecount = 0;
1494 struct free_area *area;
1495 struct list_head *curr;
1496 bool overflow = false;
1498 area = &(zone->free_area[order]);
1500 list_for_each(curr, &area->free_list[mtype]) {
1502 * Cap the free_list iteration because it might
1503 * be really large and we are under a spinlock
1504 * so a long time spent here could trigger a
1505 * hard lockup detector. Anyway this is a
1506 * debugging tool so knowing there is a handful
1507 * of pages of this order should be more than
1510 if (++freecount >= 100000) {
1515 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1516 spin_unlock_irq(&zone->lock);
1518 spin_lock_irq(&zone->lock);
1524 /* Print out the free pages at each order for each migatetype */
1525 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1528 pg_data_t *pgdat = (pg_data_t *)arg;
1531 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1532 for (order = 0; order < MAX_ORDER; ++order)
1533 seq_printf(m, "%6d ", order);
1536 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1539 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1540 pg_data_t *pgdat, struct zone *zone)
1544 unsigned long start_pfn = zone->zone_start_pfn;
1545 unsigned long end_pfn = zone_end_pfn(zone);
1546 unsigned long count[MIGRATE_TYPES] = { 0, };
1548 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1551 page = pfn_to_online_page(pfn);
1555 if (page_zone(page) != zone)
1558 mtype = get_pageblock_migratetype(page);
1560 if (mtype < MIGRATE_TYPES)
1565 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1566 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1567 seq_printf(m, "%12lu ", count[mtype]);
1571 /* Print out the number of pageblocks for each migratetype */
1572 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1575 pg_data_t *pgdat = (pg_data_t *)arg;
1577 seq_printf(m, "\n%-23s", "Number of blocks type ");
1578 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 seq_printf(m, "%12s ", migratetype_names[mtype]);
1581 walk_zones_in_node(m, pgdat, true, false,
1582 pagetypeinfo_showblockcount_print);
1586 * Print out the number of pageblocks for each migratetype that contain pages
1587 * of other types. This gives an indication of how well fallbacks are being
1588 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1589 * to determine what is going on
1591 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1593 #ifdef CONFIG_PAGE_OWNER
1596 if (!static_branch_unlikely(&page_owner_inited))
1599 drain_all_pages(NULL);
1601 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1602 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1603 seq_printf(m, "%12s ", migratetype_names[mtype]);
1606 walk_zones_in_node(m, pgdat, true, true,
1607 pagetypeinfo_showmixedcount_print);
1608 #endif /* CONFIG_PAGE_OWNER */
1612 * This prints out statistics in relation to grouping pages by mobility.
1613 * It is expensive to collect so do not constantly read the file.
1615 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1617 pg_data_t *pgdat = (pg_data_t *)arg;
1619 /* check memoryless node */
1620 if (!node_state(pgdat->node_id, N_MEMORY))
1623 seq_printf(m, "Page block order: %d\n", pageblock_order);
1624 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1626 pagetypeinfo_showfree(m, pgdat);
1627 pagetypeinfo_showblockcount(m, pgdat);
1628 pagetypeinfo_showmixedcount(m, pgdat);
1633 static const struct seq_operations fragmentation_op = {
1634 .start = frag_start,
1640 static const struct seq_operations pagetypeinfo_op = {
1641 .start = frag_start,
1644 .show = pagetypeinfo_show,
1647 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1651 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652 struct zone *compare = &pgdat->node_zones[zid];
1654 if (populated_zone(compare))
1655 return zone == compare;
1661 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1665 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1666 if (is_zone_first_populated(pgdat, zone)) {
1667 seq_printf(m, "\n per-node stats");
1668 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1669 unsigned long pages = node_page_state_pages(pgdat, i);
1671 if (vmstat_item_print_in_thp(i))
1672 pages /= HPAGE_PMD_NR;
1673 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1687 zone_page_state(zone, NR_FREE_PAGES),
1688 zone->watermark_boost,
1689 min_wmark_pages(zone),
1690 low_wmark_pages(zone),
1691 high_wmark_pages(zone),
1692 zone->spanned_pages,
1693 zone->present_pages,
1694 zone_managed_pages(zone),
1695 zone_cma_pages(zone));
1698 "\n protection: (%ld",
1699 zone->lowmem_reserve[0]);
1700 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1701 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704 /* If unpopulated, no other information is useful */
1705 if (!populated_zone(zone)) {
1710 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1711 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1712 zone_page_state(zone, i));
1715 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1716 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1717 zone_numa_event_state(zone, i));
1720 seq_printf(m, "\n pagesets");
1721 for_each_online_cpu(i) {
1722 struct per_cpu_pages *pcp;
1723 struct per_cpu_zonestat __maybe_unused *pzstats;
1725 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1736 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1737 seq_printf(m, "\n vm stats threshold: %d",
1738 pzstats->stat_threshold);
1742 "\n node_unreclaimable: %u"
1743 "\n start_pfn: %lu",
1744 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1745 zone->zone_start_pfn);
1750 * Output information about zones in @pgdat. All zones are printed regardless
1751 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1752 * set of all zones and userspace would not be aware of such zones if they are
1753 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1755 static int zoneinfo_show(struct seq_file *m, void *arg)
1757 pg_data_t *pgdat = (pg_data_t *)arg;
1758 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1762 static const struct seq_operations zoneinfo_op = {
1763 .start = frag_start, /* iterate over all zones. The same as in
1767 .show = zoneinfo_show,
1770 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1771 NR_VM_NUMA_EVENT_ITEMS + \
1772 NR_VM_NODE_STAT_ITEMS + \
1773 NR_VM_WRITEBACK_STAT_ITEMS + \
1774 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1775 NR_VM_EVENT_ITEMS : 0))
1777 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1782 if (*pos >= NR_VMSTAT_ITEMS)
1785 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1786 fold_vm_numa_events();
1787 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1790 return ERR_PTR(-ENOMEM);
1791 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1792 v[i] = global_zone_page_state(i);
1793 v += NR_VM_ZONE_STAT_ITEMS;
1796 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1797 v[i] = global_numa_event_state(i);
1798 v += NR_VM_NUMA_EVENT_ITEMS;
1801 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1802 v[i] = global_node_page_state_pages(i);
1803 if (vmstat_item_print_in_thp(i))
1804 v[i] /= HPAGE_PMD_NR;
1806 v += NR_VM_NODE_STAT_ITEMS;
1808 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1809 v + NR_DIRTY_THRESHOLD);
1810 v += NR_VM_WRITEBACK_STAT_ITEMS;
1812 #ifdef CONFIG_VM_EVENT_COUNTERS
1814 v[PGPGIN] /= 2; /* sectors -> kbytes */
1817 return (unsigned long *)m->private + *pos;
1820 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1823 if (*pos >= NR_VMSTAT_ITEMS)
1825 return (unsigned long *)m->private + *pos;
1828 static int vmstat_show(struct seq_file *m, void *arg)
1830 unsigned long *l = arg;
1831 unsigned long off = l - (unsigned long *)m->private;
1833 seq_puts(m, vmstat_text[off]);
1834 seq_put_decimal_ull(m, " ", *l);
1837 if (off == NR_VMSTAT_ITEMS - 1) {
1839 * We've come to the end - add any deprecated counters to avoid
1840 * breaking userspace which might depend on them being present.
1842 seq_puts(m, "nr_unstable 0\n");
1847 static void vmstat_stop(struct seq_file *m, void *arg)
1853 static const struct seq_operations vmstat_op = {
1854 .start = vmstat_start,
1855 .next = vmstat_next,
1856 .stop = vmstat_stop,
1857 .show = vmstat_show,
1859 #endif /* CONFIG_PROC_FS */
1862 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1863 int sysctl_stat_interval __read_mostly = HZ;
1865 #ifdef CONFIG_PROC_FS
1866 static void refresh_vm_stats(struct work_struct *work)
1868 refresh_cpu_vm_stats(true);
1871 int vmstat_refresh(struct ctl_table *table, int write,
1872 void *buffer, size_t *lenp, loff_t *ppos)
1879 * The regular update, every sysctl_stat_interval, may come later
1880 * than expected: leaving a significant amount in per_cpu buckets.
1881 * This is particularly misleading when checking a quantity of HUGE
1882 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1883 * which can equally be echo'ed to or cat'ted from (by root),
1884 * can be used to update the stats just before reading them.
1886 * Oh, and since global_zone_page_state() etc. are so careful to hide
1887 * transiently negative values, report an error here if any of
1888 * the stats is negative, so we know to go looking for imbalance.
1890 err = schedule_on_each_cpu(refresh_vm_stats);
1893 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1895 * Skip checking stats known to go negative occasionally.
1898 case NR_ZONE_WRITE_PENDING:
1899 case NR_FREE_CMA_PAGES:
1902 val = atomic_long_read(&vm_zone_stat[i]);
1904 pr_warn("%s: %s %ld\n",
1905 __func__, zone_stat_name(i), val);
1908 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1910 * Skip checking stats known to go negative occasionally.
1916 val = atomic_long_read(&vm_node_stat[i]);
1918 pr_warn("%s: %s %ld\n",
1919 __func__, node_stat_name(i), val);
1928 #endif /* CONFIG_PROC_FS */
1930 static void vmstat_update(struct work_struct *w)
1932 if (refresh_cpu_vm_stats(true)) {
1934 * Counters were updated so we expect more updates
1935 * to occur in the future. Keep on running the
1936 * update worker thread.
1938 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1939 this_cpu_ptr(&vmstat_work),
1940 round_jiffies_relative(sysctl_stat_interval));
1945 * Check if the diffs for a certain cpu indicate that
1946 * an update is needed.
1948 static bool need_update(int cpu)
1950 pg_data_t *last_pgdat = NULL;
1953 for_each_populated_zone(zone) {
1954 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1955 struct per_cpu_nodestat *n;
1958 * The fast way of checking if there are any vmstat diffs.
1960 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1963 if (last_pgdat == zone->zone_pgdat)
1965 last_pgdat = zone->zone_pgdat;
1966 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1967 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1974 * Switch off vmstat processing and then fold all the remaining differentials
1975 * until the diffs stay at zero. The function is used by NOHZ and can only be
1976 * invoked when tick processing is not active.
1978 void quiet_vmstat(void)
1980 if (system_state != SYSTEM_RUNNING)
1983 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1986 if (!need_update(smp_processor_id()))
1990 * Just refresh counters and do not care about the pending delayed
1991 * vmstat_update. It doesn't fire that often to matter and canceling
1992 * it would be too expensive from this path.
1993 * vmstat_shepherd will take care about that for us.
1995 refresh_cpu_vm_stats(false);
1999 * Shepherd worker thread that checks the
2000 * differentials of processors that have their worker
2001 * threads for vm statistics updates disabled because of
2004 static void vmstat_shepherd(struct work_struct *w);
2006 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2008 static void vmstat_shepherd(struct work_struct *w)
2013 /* Check processors whose vmstat worker threads have been disabled */
2014 for_each_online_cpu(cpu) {
2015 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2017 if (!delayed_work_pending(dw) && need_update(cpu))
2018 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2024 schedule_delayed_work(&shepherd,
2025 round_jiffies_relative(sysctl_stat_interval));
2028 static void __init start_shepherd_timer(void)
2032 for_each_possible_cpu(cpu)
2033 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2036 schedule_delayed_work(&shepherd,
2037 round_jiffies_relative(sysctl_stat_interval));
2040 static void __init init_cpu_node_state(void)
2044 for_each_online_node(node) {
2045 if (cpumask_weight(cpumask_of_node(node)) > 0)
2046 node_set_state(node, N_CPU);
2050 static int vmstat_cpu_online(unsigned int cpu)
2052 refresh_zone_stat_thresholds();
2054 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2055 node_set_state(cpu_to_node(cpu), N_CPU);
2056 set_migration_target_nodes();
2062 static int vmstat_cpu_down_prep(unsigned int cpu)
2064 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2068 static int vmstat_cpu_dead(unsigned int cpu)
2070 const struct cpumask *node_cpus;
2073 node = cpu_to_node(cpu);
2075 refresh_zone_stat_thresholds();
2076 node_cpus = cpumask_of_node(node);
2077 if (cpumask_weight(node_cpus) > 0)
2080 node_clear_state(node, N_CPU);
2081 set_migration_target_nodes();
2088 struct workqueue_struct *mm_percpu_wq;
2090 void __init init_mm_internals(void)
2092 int ret __maybe_unused;
2094 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2097 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098 NULL, vmstat_cpu_dead);
2100 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2102 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2104 vmstat_cpu_down_prep);
2106 pr_err("vmstat: failed to register 'online' hotplug state\n");
2109 init_cpu_node_state();
2112 start_shepherd_timer();
2114 #if defined(CONFIG_MIGRATION) && defined(CONFIG_HOTPLUG_CPU)
2115 migrate_on_reclaim_init();
2117 #ifdef CONFIG_PROC_FS
2118 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2119 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2120 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2121 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2125 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2128 * Return an index indicating how much of the available free memory is
2129 * unusable for an allocation of the requested size.
2131 static int unusable_free_index(unsigned int order,
2132 struct contig_page_info *info)
2134 /* No free memory is interpreted as all free memory is unusable */
2135 if (info->free_pages == 0)
2139 * Index should be a value between 0 and 1. Return a value to 3
2142 * 0 => no fragmentation
2143 * 1 => high fragmentation
2145 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2149 static void unusable_show_print(struct seq_file *m,
2150 pg_data_t *pgdat, struct zone *zone)
2154 struct contig_page_info info;
2156 seq_printf(m, "Node %d, zone %8s ",
2159 for (order = 0; order < MAX_ORDER; ++order) {
2160 fill_contig_page_info(zone, order, &info);
2161 index = unusable_free_index(order, &info);
2162 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2169 * Display unusable free space index
2171 * The unusable free space index measures how much of the available free
2172 * memory cannot be used to satisfy an allocation of a given size and is a
2173 * value between 0 and 1. The higher the value, the more of free memory is
2174 * unusable and by implication, the worse the external fragmentation is. This
2175 * can be expressed as a percentage by multiplying by 100.
2177 static int unusable_show(struct seq_file *m, void *arg)
2179 pg_data_t *pgdat = (pg_data_t *)arg;
2181 /* check memoryless node */
2182 if (!node_state(pgdat->node_id, N_MEMORY))
2185 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2190 static const struct seq_operations unusable_sops = {
2191 .start = frag_start,
2194 .show = unusable_show,
2197 DEFINE_SEQ_ATTRIBUTE(unusable);
2199 static void extfrag_show_print(struct seq_file *m,
2200 pg_data_t *pgdat, struct zone *zone)
2205 /* Alloc on stack as interrupts are disabled for zone walk */
2206 struct contig_page_info info;
2208 seq_printf(m, "Node %d, zone %8s ",
2211 for (order = 0; order < MAX_ORDER; ++order) {
2212 fill_contig_page_info(zone, order, &info);
2213 index = __fragmentation_index(order, &info);
2214 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2221 * Display fragmentation index for orders that allocations would fail for
2223 static int extfrag_show(struct seq_file *m, void *arg)
2225 pg_data_t *pgdat = (pg_data_t *)arg;
2227 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2232 static const struct seq_operations extfrag_sops = {
2233 .start = frag_start,
2236 .show = extfrag_show,
2239 DEFINE_SEQ_ATTRIBUTE(extfrag);
2241 static int __init extfrag_debug_init(void)
2243 struct dentry *extfrag_debug_root;
2245 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2247 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2250 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2256 module_init(extfrag_debug_init);