1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
37 struct anon_vma_chain;
40 struct writeback_control;
44 extern int sysctl_page_lock_unfairness;
46 void init_mm_internals(void);
48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
51 static inline void set_max_mapnr(unsigned long limit)
56 static inline void set_max_mapnr(unsigned long limit) { }
59 extern atomic_long_t _totalram_pages;
60 static inline unsigned long totalram_pages(void)
62 return (unsigned long)atomic_long_read(&_totalram_pages);
65 static inline void totalram_pages_inc(void)
67 atomic_long_inc(&_totalram_pages);
70 static inline void totalram_pages_dec(void)
72 atomic_long_dec(&_totalram_pages);
75 static inline void totalram_pages_add(long count)
77 atomic_long_add(count, &_totalram_pages);
80 extern void * high_memory;
81 extern int page_cluster;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
100 #include <asm/page.h>
101 #include <asm/processor.h>
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
115 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
119 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
123 #define lm_alias(x) __va(__pa_symbol(x))
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X) (0)
138 * On some architectures it is expensive to call memset() for small sizes.
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
150 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151 static inline void __mm_zero_struct_page(struct page *page)
153 unsigned long *_pp = (void *)page;
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
160 switch (sizeof(struct page)) {
181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
200 #define MAPCOUNT_ELF_CORE_MARGIN (5)
201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 extern int sysctl_max_map_count;
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
246 extern unsigned int kobjsize(const void *objp);
250 * vm_flags in vm_area_struct, see mm_types.h.
251 * When changing, update also include/trace/events/mmflags.h
253 #define VM_NONE 0x00000000
255 #define VM_READ 0x00000001 /* currently active flags */
256 #define VM_WRITE 0x00000002
257 #define VM_EXEC 0x00000004
258 #define VM_SHARED 0x00000008
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262 #define VM_MAYWRITE 0x00000020
263 #define VM_MAYEXEC 0x00000040
264 #define VM_MAYSHARE 0x00000080
266 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
267 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293 # define VM_SOFTDIRTY 0
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
318 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
321 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
323 # define VM_PKEY_BIT4 0
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
327 #if defined(CONFIG_X86)
328 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
345 #if defined(CONFIG_ARM64_MTE)
346 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
349 # define VM_MTE VM_NONE
350 # define VM_MTE_ALLOWED VM_NONE
354 # define VM_GROWSUP VM_NONE
357 /* Bits set in the VMA until the stack is in its final location */
358 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
360 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
362 /* Common data flag combinations */
363 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
370 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
374 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
378 #ifdef CONFIG_STACK_GROWSUP
379 #define VM_STACK VM_GROWSUP
381 #define VM_STACK VM_GROWSDOWN
384 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
386 /* VMA basic access permission flags */
387 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
391 * Special vmas that are non-mergable, non-mlock()able.
393 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
395 /* This mask prevents VMA from being scanned with khugepaged */
396 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
398 /* This mask defines which mm->def_flags a process can inherit its parent */
399 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
401 /* This mask is used to clear all the VMA flags used by mlock */
402 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
404 /* Arch-specific flags to clear when updating VM flags on protection change */
405 #ifndef VM_ARCH_CLEAR
406 # define VM_ARCH_CLEAR VM_NONE
408 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
414 extern pgprot_t protection_map[16];
417 * Fault flag definitions.
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
449 #define FAULT_FLAG_WRITE 0x01
450 #define FAULT_FLAG_MKWRITE 0x02
451 #define FAULT_FLAG_ALLOW_RETRY 0x04
452 #define FAULT_FLAG_RETRY_NOWAIT 0x08
453 #define FAULT_FLAG_KILLABLE 0x10
454 #define FAULT_FLAG_TRIED 0x20
455 #define FAULT_FLAG_USER 0x40
456 #define FAULT_FLAG_REMOTE 0x80
457 #define FAULT_FLAG_INSTRUCTION 0x100
458 #define FAULT_FLAG_INTERRUPTIBLE 0x200
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
464 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
471 * This is mostly used for places where we want to try to avoid taking
472 * the mmap_lock for too long a time when waiting for another condition
473 * to change, in which case we can try to be polite to release the
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
480 static inline bool fault_flag_allow_retry_first(unsigned int flags)
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
486 #define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
499 * vm_fault is filled by the pagefault handler and passed to the vma's
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
506 * pgoff should be used in favour of virtual_address, if possible.
509 struct vm_area_struct *vma; /* Target VMA */
510 unsigned int flags; /* FAULT_FLAG_xxx flags */
511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
512 pgoff_t pgoff; /* Logical page offset based on vma */
513 unsigned long address; /* Faulting virtual address */
514 pmd_t *pmd; /* Pointer to pmd entry matching
516 pud_t *pud; /* Pointer to pud entry matching
519 pte_t orig_pte; /* Value of PTE at the time of fault */
521 struct page *cow_page; /* Page handler may use for COW fault */
522 struct page *page; /* ->fault handlers should return a
523 * page here, unless VM_FAULT_NOPAGE
524 * is set (which is also implied by
527 /* These three entries are valid only while holding ptl lock */
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
545 /* page entry size for vm->huge_fault() */
546 enum page_entry_size {
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
555 * to the functions called when a no-page or a wp-page exception occurs.
557 struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
560 int (*split)(struct vm_area_struct * area, unsigned long addr);
561 int (*mremap)(struct vm_area_struct * area);
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
565 void (*map_pages)(struct vm_fault *vmf,
566 pgoff_t start_pgoff, pgoff_t end_pgoff);
567 unsigned long (*pagesize)(struct vm_area_struct * area);
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
576 /* called by access_process_vm when get_user_pages() fails, typically
577 * for use by special VMAs that can switch between memory and hardware
579 int (*access)(struct vm_area_struct *vma, unsigned long addr,
580 void *buf, int len, int write);
582 /* Called by the /proc/PID/maps code to ask the vma whether it
583 * has a special name. Returning non-NULL will also cause this
584 * vma to be dumped unconditionally. */
585 const char *(*name)(struct vm_area_struct *vma);
589 * set_policy() op must add a reference to any non-NULL @new mempolicy
590 * to hold the policy upon return. Caller should pass NULL @new to
591 * remove a policy and fall back to surrounding context--i.e. do not
592 * install a MPOL_DEFAULT policy, nor the task or system default
595 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
598 * get_policy() op must add reference [mpol_get()] to any policy at
599 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
600 * in mm/mempolicy.c will do this automatically.
601 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
602 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
603 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
604 * must return NULL--i.e., do not "fallback" to task or system default
607 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 * Called by vm_normal_page() for special PTEs to find the
612 * page for @addr. This is useful if the default behavior
613 * (using pte_page()) would not find the correct page.
615 struct page *(*find_special_page)(struct vm_area_struct *vma,
619 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621 static const struct vm_operations_struct dummy_vm_ops = {};
623 memset(vma, 0, sizeof(*vma));
625 vma->vm_ops = &dummy_vm_ops;
626 INIT_LIST_HEAD(&vma->anon_vma_chain);
629 static inline void vma_set_anonymous(struct vm_area_struct *vma)
634 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
639 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
646 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
647 VM_STACK_INCOMPLETE_SETUP)
653 static inline bool vma_is_foreign(struct vm_area_struct *vma)
658 if (current->mm != vma->vm_mm)
664 static inline bool vma_is_accessible(struct vm_area_struct *vma)
666 return vma->vm_flags & VM_ACCESS_FLAGS;
671 * The vma_is_shmem is not inline because it is used only by slow
672 * paths in userfault.
674 bool vma_is_shmem(struct vm_area_struct *vma);
676 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
679 int vma_is_stack_for_current(struct vm_area_struct *vma);
681 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
682 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
687 #include <linux/huge_mm.h>
690 * Methods to modify the page usage count.
692 * What counts for a page usage:
693 * - cache mapping (page->mapping)
694 * - private data (page->private)
695 * - page mapped in a task's page tables, each mapping
696 * is counted separately
698 * Also, many kernel routines increase the page count before a critical
699 * routine so they can be sure the page doesn't go away from under them.
703 * Drop a ref, return true if the refcount fell to zero (the page has no users)
705 static inline int put_page_testzero(struct page *page)
707 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
708 return page_ref_dec_and_test(page);
712 * Try to grab a ref unless the page has a refcount of zero, return false if
714 * This can be called when MMU is off so it must not access
715 * any of the virtual mappings.
717 static inline int get_page_unless_zero(struct page *page)
719 return page_ref_add_unless(page, 1, 0);
722 extern int page_is_ram(unsigned long pfn);
730 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
733 /* Support for virtually mapped pages */
734 struct page *vmalloc_to_page(const void *addr);
735 unsigned long vmalloc_to_pfn(const void *addr);
738 * Determine if an address is within the vmalloc range
740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
741 * is no special casing required.
744 #ifndef is_ioremap_addr
745 #define is_ioremap_addr(x) is_vmalloc_addr(x)
749 extern bool is_vmalloc_addr(const void *x);
750 extern int is_vmalloc_or_module_addr(const void *x);
752 static inline bool is_vmalloc_addr(const void *x)
756 static inline int is_vmalloc_or_module_addr(const void *x)
762 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
763 static inline void *kvmalloc(size_t size, gfp_t flags)
765 return kvmalloc_node(size, flags, NUMA_NO_NODE);
767 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
769 return kvmalloc_node(size, flags | __GFP_ZERO, node);
771 static inline void *kvzalloc(size_t size, gfp_t flags)
773 return kvmalloc(size, flags | __GFP_ZERO);
776 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
780 if (unlikely(check_mul_overflow(n, size, &bytes)))
783 return kvmalloc(bytes, flags);
786 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
788 return kvmalloc_array(n, size, flags | __GFP_ZERO);
791 extern void kvfree(const void *addr);
792 extern void kvfree_sensitive(const void *addr, size_t len);
794 static inline int head_compound_mapcount(struct page *head)
796 return atomic_read(compound_mapcount_ptr(head)) + 1;
800 * Mapcount of compound page as a whole, does not include mapped sub-pages.
802 * Must be called only for compound pages or any their tail sub-pages.
804 static inline int compound_mapcount(struct page *page)
806 VM_BUG_ON_PAGE(!PageCompound(page), page);
807 page = compound_head(page);
808 return head_compound_mapcount(page);
812 * The atomic page->_mapcount, starts from -1: so that transitions
813 * both from it and to it can be tracked, using atomic_inc_and_test
814 * and atomic_add_negative(-1).
816 static inline void page_mapcount_reset(struct page *page)
818 atomic_set(&(page)->_mapcount, -1);
821 int __page_mapcount(struct page *page);
824 * Mapcount of 0-order page; when compound sub-page, includes
825 * compound_mapcount().
827 * Result is undefined for pages which cannot be mapped into userspace.
828 * For example SLAB or special types of pages. See function page_has_type().
829 * They use this place in struct page differently.
831 static inline int page_mapcount(struct page *page)
833 if (unlikely(PageCompound(page)))
834 return __page_mapcount(page);
835 return atomic_read(&page->_mapcount) + 1;
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 int total_mapcount(struct page *page);
840 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
842 static inline int total_mapcount(struct page *page)
844 return page_mapcount(page);
846 static inline int page_trans_huge_mapcount(struct page *page,
849 int mapcount = page_mapcount(page);
851 *total_mapcount = mapcount;
856 static inline struct page *virt_to_head_page(const void *x)
858 struct page *page = virt_to_page(x);
860 return compound_head(page);
863 void __put_page(struct page *page);
865 void put_pages_list(struct list_head *pages);
867 void split_page(struct page *page, unsigned int order);
870 * Compound pages have a destructor function. Provide a
871 * prototype for that function and accessor functions.
872 * These are _only_ valid on the head of a compound page.
874 typedef void compound_page_dtor(struct page *);
876 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
877 enum compound_dtor_id {
880 #ifdef CONFIG_HUGETLB_PAGE
883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
888 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
890 static inline void set_compound_page_dtor(struct page *page,
891 enum compound_dtor_id compound_dtor)
893 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
894 page[1].compound_dtor = compound_dtor;
897 static inline void destroy_compound_page(struct page *page)
899 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
900 compound_page_dtors[page[1].compound_dtor](page);
903 static inline unsigned int compound_order(struct page *page)
907 return page[1].compound_order;
910 static inline bool hpage_pincount_available(struct page *page)
913 * Can the page->hpage_pinned_refcount field be used? That field is in
914 * the 3rd page of the compound page, so the smallest (2-page) compound
915 * pages cannot support it.
917 page = compound_head(page);
918 return PageCompound(page) && compound_order(page) > 1;
921 static inline int head_compound_pincount(struct page *head)
923 return atomic_read(compound_pincount_ptr(head));
926 static inline int compound_pincount(struct page *page)
928 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
929 page = compound_head(page);
930 return head_compound_pincount(page);
933 static inline void set_compound_order(struct page *page, unsigned int order)
935 page[1].compound_order = order;
936 page[1].compound_nr = 1U << order;
939 /* Returns the number of pages in this potentially compound page. */
940 static inline unsigned long compound_nr(struct page *page)
944 return page[1].compound_nr;
947 /* Returns the number of bytes in this potentially compound page. */
948 static inline unsigned long page_size(struct page *page)
950 return PAGE_SIZE << compound_order(page);
953 /* Returns the number of bits needed for the number of bytes in a page */
954 static inline unsigned int page_shift(struct page *page)
956 return PAGE_SHIFT + compound_order(page);
959 void free_compound_page(struct page *page);
963 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
964 * servicing faults for write access. In the normal case, do always want
965 * pte_mkwrite. But get_user_pages can cause write faults for mappings
966 * that do not have writing enabled, when used by access_process_vm.
968 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
970 if (likely(vma->vm_flags & VM_WRITE))
971 pte = pte_mkwrite(pte);
975 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
976 vm_fault_t finish_fault(struct vm_fault *vmf);
977 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
981 * Multiple processes may "see" the same page. E.g. for untouched
982 * mappings of /dev/null, all processes see the same page full of
983 * zeroes, and text pages of executables and shared libraries have
984 * only one copy in memory, at most, normally.
986 * For the non-reserved pages, page_count(page) denotes a reference count.
987 * page_count() == 0 means the page is free. page->lru is then used for
988 * freelist management in the buddy allocator.
989 * page_count() > 0 means the page has been allocated.
991 * Pages are allocated by the slab allocator in order to provide memory
992 * to kmalloc and kmem_cache_alloc. In this case, the management of the
993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
994 * unless a particular usage is carefully commented. (the responsibility of
995 * freeing the kmalloc memory is the caller's, of course).
997 * A page may be used by anyone else who does a __get_free_page().
998 * In this case, page_count still tracks the references, and should only
999 * be used through the normal accessor functions. The top bits of page->flags
1000 * and page->virtual store page management information, but all other fields
1001 * are unused and could be used privately, carefully. The management of this
1002 * page is the responsibility of the one who allocated it, and those who have
1003 * subsequently been given references to it.
1005 * The other pages (we may call them "pagecache pages") are completely
1006 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007 * The following discussion applies only to them.
1009 * A pagecache page contains an opaque `private' member, which belongs to the
1010 * page's address_space. Usually, this is the address of a circular list of
1011 * the page's disk buffers. PG_private must be set to tell the VM to call
1012 * into the filesystem to release these pages.
1014 * A page may belong to an inode's memory mapping. In this case, page->mapping
1015 * is the pointer to the inode, and page->index is the file offset of the page,
1016 * in units of PAGE_SIZE.
1018 * If pagecache pages are not associated with an inode, they are said to be
1019 * anonymous pages. These may become associated with the swapcache, and in that
1020 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1022 * In either case (swapcache or inode backed), the pagecache itself holds one
1023 * reference to the page. Setting PG_private should also increment the
1024 * refcount. The each user mapping also has a reference to the page.
1026 * The pagecache pages are stored in a per-mapping radix tree, which is
1027 * rooted at mapping->i_pages, and indexed by offset.
1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1031 * All pagecache pages may be subject to I/O:
1032 * - inode pages may need to be read from disk,
1033 * - inode pages which have been modified and are MAP_SHARED may need
1034 * to be written back to the inode on disk,
1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036 * modified may need to be swapped out to swap space and (later) to be read
1041 * The zone field is never updated after free_area_init_core()
1042 * sets it, so none of the operations on it need to be atomic.
1045 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1046 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1047 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1048 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1049 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1050 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1053 * Define the bit shifts to access each section. For non-existent
1054 * sections we define the shift as 0; that plus a 0 mask ensures
1055 * the compiler will optimise away reference to them.
1057 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1059 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1060 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1061 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1063 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064 #ifdef NODE_NOT_IN_PAGE_FLAGS
1065 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1066 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067 SECTIONS_PGOFF : ZONES_PGOFF)
1069 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1070 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1071 NODES_PGOFF : ZONES_PGOFF)
1074 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1076 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1077 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1078 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1079 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1080 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1081 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1083 static inline enum zone_type page_zonenum(const struct page *page)
1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1089 #ifdef CONFIG_ZONE_DEVICE
1090 static inline bool is_zone_device_page(const struct page *page)
1092 return page_zonenum(page) == ZONE_DEVICE;
1094 extern void memmap_init_zone_device(struct zone *, unsigned long,
1095 unsigned long, struct dev_pagemap *);
1097 static inline bool is_zone_device_page(const struct page *page)
1103 #ifdef CONFIG_DEV_PAGEMAP_OPS
1104 void free_devmap_managed_page(struct page *page);
1105 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1107 static inline bool page_is_devmap_managed(struct page *page)
1109 if (!static_branch_unlikely(&devmap_managed_key))
1111 if (!is_zone_device_page(page))
1113 switch (page->pgmap->type) {
1114 case MEMORY_DEVICE_PRIVATE:
1115 case MEMORY_DEVICE_FS_DAX:
1123 void put_devmap_managed_page(struct page *page);
1125 #else /* CONFIG_DEV_PAGEMAP_OPS */
1126 static inline bool page_is_devmap_managed(struct page *page)
1131 static inline void put_devmap_managed_page(struct page *page)
1134 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1136 static inline bool is_device_private_page(const struct page *page)
1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140 is_zone_device_page(page) &&
1141 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1144 static inline bool is_pci_p2pdma_page(const struct page *page)
1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148 is_zone_device_page(page) &&
1149 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1152 /* 127: arbitrary random number, small enough to assemble well */
1153 #define page_ref_zero_or_close_to_overflow(page) \
1154 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1156 static inline void get_page(struct page *page)
1158 page = compound_head(page);
1160 * Getting a normal page or the head of a compound page
1161 * requires to already have an elevated page->_refcount.
1163 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1167 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1169 static inline __must_check bool try_get_page(struct page *page)
1171 page = compound_head(page);
1172 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1178 static inline void put_page(struct page *page)
1180 page = compound_head(page);
1183 * For devmap managed pages we need to catch refcount transition from
1184 * 2 to 1, when refcount reach one it means the page is free and we
1185 * need to inform the device driver through callback. See
1186 * include/linux/memremap.h and HMM for details.
1188 if (page_is_devmap_managed(page)) {
1189 put_devmap_managed_page(page);
1193 if (put_page_testzero(page))
1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199 * the page's refcount so that two separate items are tracked: the original page
1200 * reference count, and also a new count of how many pin_user_pages() calls were
1201 * made against the page. ("gup-pinned" is another term for the latter).
1203 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204 * distinct from normal pages. As such, the unpin_user_page() call (and its
1205 * variants) must be used in order to release gup-pinned pages.
1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211 * simpler, due to the fact that adding an even power of two to the page
1212 * refcount has the effect of using only the upper N bits, for the code that
1213 * counts up using the bias value. This means that the lower bits are left for
1214 * the exclusive use of the original code that increments and decrements by one
1215 * (or at least, by much smaller values than the bias value).
1217 * Of course, once the lower bits overflow into the upper bits (and this is
1218 * OK, because subtraction recovers the original values), then visual inspection
1219 * no longer suffices to directly view the separate counts. However, for normal
1220 * applications that don't have huge page reference counts, this won't be an
1223 * Locking: the lockless algorithm described in page_cache_get_speculative()
1224 * and page_cache_gup_pin_speculative() provides safe operation for
1225 * get_user_pages and page_mkclean and other calls that race to set up page
1228 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1230 void unpin_user_page(struct page *page);
1231 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1233 void unpin_user_pages(struct page **pages, unsigned long npages);
1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1238 * This function checks if a page has been pinned via a call to
1239 * pin_user_pages*().
1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242 * because it means "definitely not pinned for DMA", but true means "probably
1243 * pinned for DMA, but possibly a false positive due to having at least
1244 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1246 * False positives are OK, because: a) it's unlikely for a page to get that many
1247 * refcounts, and b) all the callers of this routine are expected to be able to
1248 * deal gracefully with a false positive.
1250 * For huge pages, the result will be exactly correct. That's because we have
1251 * more tracking data available: the 3rd struct page in the compound page is
1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1255 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1257 * @page: pointer to page to be queried.
1258 * @Return: True, if it is likely that the page has been "dma-pinned".
1259 * False, if the page is definitely not dma-pinned.
1261 static inline bool page_maybe_dma_pinned(struct page *page)
1263 if (hpage_pincount_available(page))
1264 return compound_pincount(page) > 0;
1267 * page_ref_count() is signed. If that refcount overflows, then
1268 * page_ref_count() returns a negative value, and callers will avoid
1269 * further incrementing the refcount.
1271 * Here, for that overflow case, use the signed bit to count a little
1272 * bit higher via unsigned math, and thus still get an accurate result.
1274 return ((unsigned int)page_ref_count(compound_head(page))) >=
1275 GUP_PIN_COUNTING_BIAS;
1278 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279 #define SECTION_IN_PAGE_FLAGS
1283 * The identification function is mainly used by the buddy allocator for
1284 * determining if two pages could be buddies. We are not really identifying
1285 * the zone since we could be using the section number id if we do not have
1286 * node id available in page flags.
1287 * We only guarantee that it will return the same value for two combinable
1290 static inline int page_zone_id(struct page *page)
1292 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1295 #ifdef NODE_NOT_IN_PAGE_FLAGS
1296 extern int page_to_nid(const struct page *page);
1298 static inline int page_to_nid(const struct page *page)
1300 struct page *p = (struct page *)page;
1302 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1306 #ifdef CONFIG_NUMA_BALANCING
1307 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1309 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1312 static inline int cpupid_to_pid(int cpupid)
1314 return cpupid & LAST__PID_MASK;
1317 static inline int cpupid_to_cpu(int cpupid)
1319 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1322 static inline int cpupid_to_nid(int cpupid)
1324 return cpu_to_node(cpupid_to_cpu(cpupid));
1327 static inline bool cpupid_pid_unset(int cpupid)
1329 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1332 static inline bool cpupid_cpu_unset(int cpupid)
1334 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1337 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1339 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1342 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1343 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1346 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1349 static inline int page_cpupid_last(struct page *page)
1351 return page->_last_cpupid;
1353 static inline void page_cpupid_reset_last(struct page *page)
1355 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1358 static inline int page_cpupid_last(struct page *page)
1360 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1363 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1365 static inline void page_cpupid_reset_last(struct page *page)
1367 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1369 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370 #else /* !CONFIG_NUMA_BALANCING */
1371 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1373 return page_to_nid(page); /* XXX */
1376 static inline int page_cpupid_last(struct page *page)
1378 return page_to_nid(page); /* XXX */
1381 static inline int cpupid_to_nid(int cpupid)
1386 static inline int cpupid_to_pid(int cpupid)
1391 static inline int cpupid_to_cpu(int cpupid)
1396 static inline int cpu_pid_to_cpupid(int nid, int pid)
1401 static inline bool cpupid_pid_unset(int cpupid)
1406 static inline void page_cpupid_reset_last(struct page *page)
1410 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1414 #endif /* CONFIG_NUMA_BALANCING */
1416 #ifdef CONFIG_KASAN_SW_TAGS
1417 static inline u8 page_kasan_tag(const struct page *page)
1419 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1422 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1424 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1425 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1428 static inline void page_kasan_tag_reset(struct page *page)
1430 page_kasan_tag_set(page, 0xff);
1433 static inline u8 page_kasan_tag(const struct page *page)
1438 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1439 static inline void page_kasan_tag_reset(struct page *page) { }
1442 static inline struct zone *page_zone(const struct page *page)
1444 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1447 static inline pg_data_t *page_pgdat(const struct page *page)
1449 return NODE_DATA(page_to_nid(page));
1452 #ifdef SECTION_IN_PAGE_FLAGS
1453 static inline void set_page_section(struct page *page, unsigned long section)
1455 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1456 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1459 static inline unsigned long page_to_section(const struct page *page)
1461 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1465 static inline void set_page_zone(struct page *page, enum zone_type zone)
1467 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1468 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1471 static inline void set_page_node(struct page *page, unsigned long node)
1473 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1474 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1477 static inline void set_page_links(struct page *page, enum zone_type zone,
1478 unsigned long node, unsigned long pfn)
1480 set_page_zone(page, zone);
1481 set_page_node(page, node);
1482 #ifdef SECTION_IN_PAGE_FLAGS
1483 set_page_section(page, pfn_to_section_nr(pfn));
1488 static inline struct mem_cgroup *page_memcg(struct page *page)
1490 return page->mem_cgroup;
1492 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1494 WARN_ON_ONCE(!rcu_read_lock_held());
1495 return READ_ONCE(page->mem_cgroup);
1498 static inline struct mem_cgroup *page_memcg(struct page *page)
1502 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1504 WARN_ON_ONCE(!rcu_read_lock_held());
1510 * Some inline functions in vmstat.h depend on page_zone()
1512 #include <linux/vmstat.h>
1514 static __always_inline void *lowmem_page_address(const struct page *page)
1516 return page_to_virt(page);
1519 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1520 #define HASHED_PAGE_VIRTUAL
1523 #if defined(WANT_PAGE_VIRTUAL)
1524 static inline void *page_address(const struct page *page)
1526 return page->virtual;
1528 static inline void set_page_address(struct page *page, void *address)
1530 page->virtual = address;
1532 #define page_address_init() do { } while(0)
1535 #if defined(HASHED_PAGE_VIRTUAL)
1536 void *page_address(const struct page *page);
1537 void set_page_address(struct page *page, void *virtual);
1538 void page_address_init(void);
1541 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1542 #define page_address(page) lowmem_page_address(page)
1543 #define set_page_address(page, address) do { } while(0)
1544 #define page_address_init() do { } while(0)
1547 extern void *page_rmapping(struct page *page);
1548 extern struct anon_vma *page_anon_vma(struct page *page);
1549 extern struct address_space *page_mapping(struct page *page);
1551 extern struct address_space *__page_file_mapping(struct page *);
1554 struct address_space *page_file_mapping(struct page *page)
1556 if (unlikely(PageSwapCache(page)))
1557 return __page_file_mapping(page);
1559 return page->mapping;
1562 extern pgoff_t __page_file_index(struct page *page);
1565 * Return the pagecache index of the passed page. Regular pagecache pages
1566 * use ->index whereas swapcache pages use swp_offset(->private)
1568 static inline pgoff_t page_index(struct page *page)
1570 if (unlikely(PageSwapCache(page)))
1571 return __page_file_index(page);
1575 bool page_mapped(struct page *page);
1576 struct address_space *page_mapping(struct page *page);
1577 struct address_space *page_mapping_file(struct page *page);
1580 * Return true only if the page has been allocated with
1581 * ALLOC_NO_WATERMARKS and the low watermark was not
1582 * met implying that the system is under some pressure.
1584 static inline bool page_is_pfmemalloc(struct page *page)
1587 * Page index cannot be this large so this must be
1588 * a pfmemalloc page.
1590 return page->index == -1UL;
1594 * Only to be called by the page allocator on a freshly allocated
1597 static inline void set_page_pfmemalloc(struct page *page)
1602 static inline void clear_page_pfmemalloc(struct page *page)
1608 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1610 extern void pagefault_out_of_memory(void);
1612 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1613 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1616 * Flags passed to show_mem() and show_free_areas() to suppress output in
1619 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1621 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1624 extern bool can_do_mlock(void);
1626 static inline bool can_do_mlock(void) { return false; }
1628 extern int user_shm_lock(size_t, struct user_struct *);
1629 extern void user_shm_unlock(size_t, struct user_struct *);
1632 * Parameter block passed down to zap_pte_range in exceptional cases.
1634 struct zap_details {
1635 struct address_space *check_mapping; /* Check page->mapping if set */
1636 pgoff_t first_index; /* Lowest page->index to unmap */
1637 pgoff_t last_index; /* Highest page->index to unmap */
1640 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1645 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1646 unsigned long size);
1647 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1648 unsigned long size);
1649 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1650 unsigned long start, unsigned long end);
1652 struct mmu_notifier_range;
1654 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1655 unsigned long end, unsigned long floor, unsigned long ceiling);
1657 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1658 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1659 struct mmu_notifier_range *range,
1660 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1661 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1662 unsigned long *pfn);
1663 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1664 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1665 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1666 void *buf, int len, int write);
1668 extern void truncate_pagecache(struct inode *inode, loff_t new);
1669 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1670 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1671 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1672 int truncate_inode_page(struct address_space *mapping, struct page *page);
1673 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1674 int invalidate_inode_page(struct page *page);
1677 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1678 unsigned long address, unsigned int flags,
1679 struct pt_regs *regs);
1680 extern int fixup_user_fault(struct mm_struct *mm,
1681 unsigned long address, unsigned int fault_flags,
1683 void unmap_mapping_pages(struct address_space *mapping,
1684 pgoff_t start, pgoff_t nr, bool even_cows);
1685 void unmap_mapping_range(struct address_space *mapping,
1686 loff_t const holebegin, loff_t const holelen, int even_cows);
1688 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1689 unsigned long address, unsigned int flags,
1690 struct pt_regs *regs)
1692 /* should never happen if there's no MMU */
1694 return VM_FAULT_SIGBUS;
1696 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1697 unsigned int fault_flags, bool *unlocked)
1699 /* should never happen if there's no MMU */
1703 static inline void unmap_mapping_pages(struct address_space *mapping,
1704 pgoff_t start, pgoff_t nr, bool even_cows) { }
1705 static inline void unmap_mapping_range(struct address_space *mapping,
1706 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1709 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1710 loff_t const holebegin, loff_t const holelen)
1712 unmap_mapping_range(mapping, holebegin, holelen, 0);
1715 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1716 void *buf, int len, unsigned int gup_flags);
1717 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1718 void *buf, int len, unsigned int gup_flags);
1719 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1720 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1722 long get_user_pages_remote(struct mm_struct *mm,
1723 unsigned long start, unsigned long nr_pages,
1724 unsigned int gup_flags, struct page **pages,
1725 struct vm_area_struct **vmas, int *locked);
1726 long pin_user_pages_remote(struct mm_struct *mm,
1727 unsigned long start, unsigned long nr_pages,
1728 unsigned int gup_flags, struct page **pages,
1729 struct vm_area_struct **vmas, int *locked);
1730 long get_user_pages(unsigned long start, unsigned long nr_pages,
1731 unsigned int gup_flags, struct page **pages,
1732 struct vm_area_struct **vmas);
1733 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1734 unsigned int gup_flags, struct page **pages,
1735 struct vm_area_struct **vmas);
1736 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1737 unsigned int gup_flags, struct page **pages, int *locked);
1738 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1739 unsigned int gup_flags, struct page **pages, int *locked);
1740 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1741 struct page **pages, unsigned int gup_flags);
1742 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1743 struct page **pages, unsigned int gup_flags);
1745 int get_user_pages_fast(unsigned long start, int nr_pages,
1746 unsigned int gup_flags, struct page **pages);
1747 int pin_user_pages_fast(unsigned long start, int nr_pages,
1748 unsigned int gup_flags, struct page **pages);
1750 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1751 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1752 struct task_struct *task, bool bypass_rlim);
1754 /* Container for pinned pfns / pages */
1755 struct frame_vector {
1756 unsigned int nr_allocated; /* Number of frames we have space for */
1757 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1758 bool got_ref; /* Did we pin pages by getting page ref? */
1759 bool is_pfns; /* Does array contain pages or pfns? */
1760 void *ptrs[]; /* Array of pinned pfns / pages. Use
1761 * pfns_vector_pages() or pfns_vector_pfns()
1765 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1766 void frame_vector_destroy(struct frame_vector *vec);
1767 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1768 unsigned int gup_flags, struct frame_vector *vec);
1769 void put_vaddr_frames(struct frame_vector *vec);
1770 int frame_vector_to_pages(struct frame_vector *vec);
1771 void frame_vector_to_pfns(struct frame_vector *vec);
1773 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1775 return vec->nr_frames;
1778 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1781 int err = frame_vector_to_pages(vec);
1784 return ERR_PTR(err);
1786 return (struct page **)(vec->ptrs);
1789 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1792 frame_vector_to_pfns(vec);
1793 return (unsigned long *)(vec->ptrs);
1797 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1798 struct page **pages);
1799 int get_kernel_page(unsigned long start, int write, struct page **pages);
1800 struct page *get_dump_page(unsigned long addr);
1802 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1803 extern void do_invalidatepage(struct page *page, unsigned int offset,
1804 unsigned int length);
1806 void __set_page_dirty(struct page *, struct address_space *, int warn);
1807 int __set_page_dirty_nobuffers(struct page *page);
1808 int __set_page_dirty_no_writeback(struct page *page);
1809 int redirty_page_for_writepage(struct writeback_control *wbc,
1811 void account_page_dirtied(struct page *page, struct address_space *mapping);
1812 void account_page_cleaned(struct page *page, struct address_space *mapping,
1813 struct bdi_writeback *wb);
1814 int set_page_dirty(struct page *page);
1815 int set_page_dirty_lock(struct page *page);
1816 void __cancel_dirty_page(struct page *page);
1817 static inline void cancel_dirty_page(struct page *page)
1819 /* Avoid atomic ops, locking, etc. when not actually needed. */
1820 if (PageDirty(page))
1821 __cancel_dirty_page(page);
1823 int clear_page_dirty_for_io(struct page *page);
1825 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1827 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1828 unsigned long old_addr, struct vm_area_struct *new_vma,
1829 unsigned long new_addr, unsigned long len,
1830 bool need_rmap_locks);
1833 * Flags used by change_protection(). For now we make it a bitmap so
1834 * that we can pass in multiple flags just like parameters. However
1835 * for now all the callers are only use one of the flags at the same
1838 /* Whether we should allow dirty bit accounting */
1839 #define MM_CP_DIRTY_ACCT (1UL << 0)
1840 /* Whether this protection change is for NUMA hints */
1841 #define MM_CP_PROT_NUMA (1UL << 1)
1842 /* Whether this change is for write protecting */
1843 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1844 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1845 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1846 MM_CP_UFFD_WP_RESOLVE)
1848 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1849 unsigned long end, pgprot_t newprot,
1850 unsigned long cp_flags);
1851 extern int mprotect_fixup(struct vm_area_struct *vma,
1852 struct vm_area_struct **pprev, unsigned long start,
1853 unsigned long end, unsigned long newflags);
1856 * doesn't attempt to fault and will return short.
1858 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1859 unsigned int gup_flags, struct page **pages);
1860 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1861 unsigned int gup_flags, struct page **pages);
1863 static inline bool get_user_page_fast_only(unsigned long addr,
1864 unsigned int gup_flags, struct page **pagep)
1866 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1869 * per-process(per-mm_struct) statistics.
1871 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1873 long val = atomic_long_read(&mm->rss_stat.count[member]);
1875 #ifdef SPLIT_RSS_COUNTING
1877 * counter is updated in asynchronous manner and may go to minus.
1878 * But it's never be expected number for users.
1883 return (unsigned long)val;
1886 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1888 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1890 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1892 mm_trace_rss_stat(mm, member, count);
1895 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1897 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1899 mm_trace_rss_stat(mm, member, count);
1902 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1904 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1906 mm_trace_rss_stat(mm, member, count);
1909 /* Optimized variant when page is already known not to be PageAnon */
1910 static inline int mm_counter_file(struct page *page)
1912 if (PageSwapBacked(page))
1913 return MM_SHMEMPAGES;
1914 return MM_FILEPAGES;
1917 static inline int mm_counter(struct page *page)
1920 return MM_ANONPAGES;
1921 return mm_counter_file(page);
1924 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1926 return get_mm_counter(mm, MM_FILEPAGES) +
1927 get_mm_counter(mm, MM_ANONPAGES) +
1928 get_mm_counter(mm, MM_SHMEMPAGES);
1931 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1933 return max(mm->hiwater_rss, get_mm_rss(mm));
1936 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1938 return max(mm->hiwater_vm, mm->total_vm);
1941 static inline void update_hiwater_rss(struct mm_struct *mm)
1943 unsigned long _rss = get_mm_rss(mm);
1945 if ((mm)->hiwater_rss < _rss)
1946 (mm)->hiwater_rss = _rss;
1949 static inline void update_hiwater_vm(struct mm_struct *mm)
1951 if (mm->hiwater_vm < mm->total_vm)
1952 mm->hiwater_vm = mm->total_vm;
1955 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1957 mm->hiwater_rss = get_mm_rss(mm);
1960 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1961 struct mm_struct *mm)
1963 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1965 if (*maxrss < hiwater_rss)
1966 *maxrss = hiwater_rss;
1969 #if defined(SPLIT_RSS_COUNTING)
1970 void sync_mm_rss(struct mm_struct *mm);
1972 static inline void sync_mm_rss(struct mm_struct *mm)
1977 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1978 static inline int pte_special(pte_t pte)
1983 static inline pte_t pte_mkspecial(pte_t pte)
1989 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1990 static inline int pte_devmap(pte_t pte)
1996 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1998 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2008 #ifdef __PAGETABLE_P4D_FOLDED
2009 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2010 unsigned long address)
2015 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2018 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2019 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2020 unsigned long address)
2024 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2025 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2028 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2030 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2032 if (mm_pud_folded(mm))
2034 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2037 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2039 if (mm_pud_folded(mm))
2041 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2045 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2046 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2047 unsigned long address)
2052 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2053 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2056 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2058 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2060 if (mm_pmd_folded(mm))
2062 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2065 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2067 if (mm_pmd_folded(mm))
2069 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2074 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2076 atomic_long_set(&mm->pgtables_bytes, 0);
2079 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2081 return atomic_long_read(&mm->pgtables_bytes);
2084 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2086 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2089 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2091 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2095 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2096 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2101 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2102 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2105 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2106 int __pte_alloc_kernel(pmd_t *pmd);
2108 #if defined(CONFIG_MMU)
2110 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2111 unsigned long address)
2113 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2114 NULL : p4d_offset(pgd, address);
2117 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2118 unsigned long address)
2120 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2121 NULL : pud_offset(p4d, address);
2124 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2126 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2127 NULL: pmd_offset(pud, address);
2129 #endif /* CONFIG_MMU */
2131 #if USE_SPLIT_PTE_PTLOCKS
2132 #if ALLOC_SPLIT_PTLOCKS
2133 void __init ptlock_cache_init(void);
2134 extern bool ptlock_alloc(struct page *page);
2135 extern void ptlock_free(struct page *page);
2137 static inline spinlock_t *ptlock_ptr(struct page *page)
2141 #else /* ALLOC_SPLIT_PTLOCKS */
2142 static inline void ptlock_cache_init(void)
2146 static inline bool ptlock_alloc(struct page *page)
2151 static inline void ptlock_free(struct page *page)
2155 static inline spinlock_t *ptlock_ptr(struct page *page)
2159 #endif /* ALLOC_SPLIT_PTLOCKS */
2161 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2163 return ptlock_ptr(pmd_page(*pmd));
2166 static inline bool ptlock_init(struct page *page)
2169 * prep_new_page() initialize page->private (and therefore page->ptl)
2170 * with 0. Make sure nobody took it in use in between.
2172 * It can happen if arch try to use slab for page table allocation:
2173 * slab code uses page->slab_cache, which share storage with page->ptl.
2175 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2176 if (!ptlock_alloc(page))
2178 spin_lock_init(ptlock_ptr(page));
2182 #else /* !USE_SPLIT_PTE_PTLOCKS */
2184 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2186 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2188 return &mm->page_table_lock;
2190 static inline void ptlock_cache_init(void) {}
2191 static inline bool ptlock_init(struct page *page) { return true; }
2192 static inline void ptlock_free(struct page *page) {}
2193 #endif /* USE_SPLIT_PTE_PTLOCKS */
2195 static inline void pgtable_init(void)
2197 ptlock_cache_init();
2198 pgtable_cache_init();
2201 static inline bool pgtable_pte_page_ctor(struct page *page)
2203 if (!ptlock_init(page))
2205 __SetPageTable(page);
2206 inc_zone_page_state(page, NR_PAGETABLE);
2210 static inline void pgtable_pte_page_dtor(struct page *page)
2213 __ClearPageTable(page);
2214 dec_zone_page_state(page, NR_PAGETABLE);
2217 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2219 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2220 pte_t *__pte = pte_offset_map(pmd, address); \
2226 #define pte_unmap_unlock(pte, ptl) do { \
2231 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2233 #define pte_alloc_map(mm, pmd, address) \
2234 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2236 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2237 (pte_alloc(mm, pmd) ? \
2238 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2240 #define pte_alloc_kernel(pmd, address) \
2241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2242 NULL: pte_offset_kernel(pmd, address))
2244 #if USE_SPLIT_PMD_PTLOCKS
2246 static struct page *pmd_to_page(pmd_t *pmd)
2248 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2249 return virt_to_page((void *)((unsigned long) pmd & mask));
2252 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2254 return ptlock_ptr(pmd_to_page(pmd));
2257 static inline bool pmd_ptlock_init(struct page *page)
2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260 page->pmd_huge_pte = NULL;
2262 return ptlock_init(page);
2265 static inline void pmd_ptlock_free(struct page *page)
2267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2268 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2273 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2277 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2279 return &mm->page_table_lock;
2282 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2283 static inline void pmd_ptlock_free(struct page *page) {}
2285 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2289 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2291 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2296 static inline bool pgtable_pmd_page_ctor(struct page *page)
2298 if (!pmd_ptlock_init(page))
2300 __SetPageTable(page);
2301 inc_zone_page_state(page, NR_PAGETABLE);
2305 static inline void pgtable_pmd_page_dtor(struct page *page)
2307 pmd_ptlock_free(page);
2308 __ClearPageTable(page);
2309 dec_zone_page_state(page, NR_PAGETABLE);
2313 * No scalability reason to split PUD locks yet, but follow the same pattern
2314 * as the PMD locks to make it easier if we decide to. The VM should not be
2315 * considered ready to switch to split PUD locks yet; there may be places
2316 * which need to be converted from page_table_lock.
2318 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2320 return &mm->page_table_lock;
2323 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2325 spinlock_t *ptl = pud_lockptr(mm, pud);
2331 extern void __init pagecache_init(void);
2332 extern void __init free_area_init_memoryless_node(int nid);
2333 extern void free_initmem(void);
2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2337 * into the buddy system. The freed pages will be poisoned with pattern
2338 * "poison" if it's within range [0, UCHAR_MAX].
2339 * Return pages freed into the buddy system.
2341 extern unsigned long free_reserved_area(void *start, void *end,
2342 int poison, const char *s);
2344 #ifdef CONFIG_HIGHMEM
2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2347 * and totalram_pages.
2349 extern void free_highmem_page(struct page *page);
2352 extern void adjust_managed_page_count(struct page *page, long count);
2353 extern void mem_init_print_info(const char *str);
2355 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2357 /* Free the reserved page into the buddy system, so it gets managed. */
2358 static inline void __free_reserved_page(struct page *page)
2360 ClearPageReserved(page);
2361 init_page_count(page);
2365 static inline void free_reserved_page(struct page *page)
2367 __free_reserved_page(page);
2368 adjust_managed_page_count(page, 1);
2371 static inline void mark_page_reserved(struct page *page)
2373 SetPageReserved(page);
2374 adjust_managed_page_count(page, -1);
2378 * Default method to free all the __init memory into the buddy system.
2379 * The freed pages will be poisoned with pattern "poison" if it's within
2380 * range [0, UCHAR_MAX].
2381 * Return pages freed into the buddy system.
2383 static inline unsigned long free_initmem_default(int poison)
2385 extern char __init_begin[], __init_end[];
2387 return free_reserved_area(&__init_begin, &__init_end,
2388 poison, "unused kernel");
2391 static inline unsigned long get_num_physpages(void)
2394 unsigned long phys_pages = 0;
2396 for_each_online_node(nid)
2397 phys_pages += node_present_pages(nid);
2403 * Using memblock node mappings, an architecture may initialise its
2404 * zones, allocate the backing mem_map and account for memory holes in an
2405 * architecture independent manner.
2407 * An architecture is expected to register range of page frames backed by
2408 * physical memory with memblock_add[_node]() before calling
2409 * free_area_init() passing in the PFN each zone ends at. At a basic
2410 * usage, an architecture is expected to do something like
2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2414 * for_each_valid_physical_page_range()
2415 * memblock_add_node(base, size, nid)
2416 * free_area_init(max_zone_pfns);
2418 void free_area_init(unsigned long *max_zone_pfn);
2419 unsigned long node_map_pfn_alignment(void);
2420 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2421 unsigned long end_pfn);
2422 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2423 unsigned long end_pfn);
2424 extern void get_pfn_range_for_nid(unsigned int nid,
2425 unsigned long *start_pfn, unsigned long *end_pfn);
2426 extern unsigned long find_min_pfn_with_active_regions(void);
2428 #ifndef CONFIG_NEED_MULTIPLE_NODES
2429 static inline int early_pfn_to_nid(unsigned long pfn)
2434 /* please see mm/page_alloc.c */
2435 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2436 /* there is a per-arch backend function. */
2437 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2438 struct mminit_pfnnid_cache *state);
2441 extern void set_dma_reserve(unsigned long new_dma_reserve);
2442 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2443 enum meminit_context, struct vmem_altmap *);
2444 extern void setup_per_zone_wmarks(void);
2445 extern int __meminit init_per_zone_wmark_min(void);
2446 extern void mem_init(void);
2447 extern void __init mmap_init(void);
2448 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2449 extern long si_mem_available(void);
2450 extern void si_meminfo(struct sysinfo * val);
2451 extern void si_meminfo_node(struct sysinfo *val, int nid);
2452 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2453 extern unsigned long arch_reserved_kernel_pages(void);
2456 extern __printf(3, 4)
2457 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2459 extern void setup_per_cpu_pageset(void);
2462 extern int min_free_kbytes;
2463 extern int watermark_boost_factor;
2464 extern int watermark_scale_factor;
2465 extern bool arch_has_descending_max_zone_pfns(void);
2468 extern atomic_long_t mmap_pages_allocated;
2469 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2471 /* interval_tree.c */
2472 void vma_interval_tree_insert(struct vm_area_struct *node,
2473 struct rb_root_cached *root);
2474 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2475 struct vm_area_struct *prev,
2476 struct rb_root_cached *root);
2477 void vma_interval_tree_remove(struct vm_area_struct *node,
2478 struct rb_root_cached *root);
2479 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2480 unsigned long start, unsigned long last);
2481 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2482 unsigned long start, unsigned long last);
2484 #define vma_interval_tree_foreach(vma, root, start, last) \
2485 for (vma = vma_interval_tree_iter_first(root, start, last); \
2486 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2488 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2489 struct rb_root_cached *root);
2490 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2491 struct rb_root_cached *root);
2492 struct anon_vma_chain *
2493 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2494 unsigned long start, unsigned long last);
2495 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2496 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2497 #ifdef CONFIG_DEBUG_VM_RB
2498 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2501 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2502 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2503 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2506 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2507 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2508 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2509 struct vm_area_struct *expand);
2510 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2513 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2515 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2516 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2517 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2518 struct mempolicy *, struct vm_userfaultfd_ctx);
2519 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2520 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2521 unsigned long addr, int new_below);
2522 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2523 unsigned long addr, int new_below);
2524 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2525 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2526 struct rb_node **, struct rb_node *);
2527 extern void unlink_file_vma(struct vm_area_struct *);
2528 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2529 unsigned long addr, unsigned long len, pgoff_t pgoff,
2530 bool *need_rmap_locks);
2531 extern void exit_mmap(struct mm_struct *);
2533 static inline int check_data_rlimit(unsigned long rlim,
2535 unsigned long start,
2536 unsigned long end_data,
2537 unsigned long start_data)
2539 if (rlim < RLIM_INFINITY) {
2540 if (((new - start) + (end_data - start_data)) > rlim)
2547 extern int mm_take_all_locks(struct mm_struct *mm);
2548 extern void mm_drop_all_locks(struct mm_struct *mm);
2550 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2551 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2552 extern struct file *get_task_exe_file(struct task_struct *task);
2554 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2555 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2557 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2558 const struct vm_special_mapping *sm);
2559 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2560 unsigned long addr, unsigned long len,
2561 unsigned long flags,
2562 const struct vm_special_mapping *spec);
2563 /* This is an obsolete alternative to _install_special_mapping. */
2564 extern int install_special_mapping(struct mm_struct *mm,
2565 unsigned long addr, unsigned long len,
2566 unsigned long flags, struct page **pages);
2568 unsigned long randomize_stack_top(unsigned long stack_top);
2570 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2572 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2573 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2574 struct list_head *uf);
2575 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2576 unsigned long len, unsigned long prot, unsigned long flags,
2577 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2578 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2579 struct list_head *uf, bool downgrade);
2580 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2581 struct list_head *uf);
2582 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2585 extern int __mm_populate(unsigned long addr, unsigned long len,
2587 static inline void mm_populate(unsigned long addr, unsigned long len)
2590 (void) __mm_populate(addr, len, 1);
2593 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2596 /* These take the mm semaphore themselves */
2597 extern int __must_check vm_brk(unsigned long, unsigned long);
2598 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2599 extern int vm_munmap(unsigned long, size_t);
2600 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2601 unsigned long, unsigned long,
2602 unsigned long, unsigned long);
2604 struct vm_unmapped_area_info {
2605 #define VM_UNMAPPED_AREA_TOPDOWN 1
2606 unsigned long flags;
2607 unsigned long length;
2608 unsigned long low_limit;
2609 unsigned long high_limit;
2610 unsigned long align_mask;
2611 unsigned long align_offset;
2614 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2617 extern void truncate_inode_pages(struct address_space *, loff_t);
2618 extern void truncate_inode_pages_range(struct address_space *,
2619 loff_t lstart, loff_t lend);
2620 extern void truncate_inode_pages_final(struct address_space *);
2622 /* generic vm_area_ops exported for stackable file systems */
2623 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2624 extern void filemap_map_pages(struct vm_fault *vmf,
2625 pgoff_t start_pgoff, pgoff_t end_pgoff);
2626 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2628 /* mm/page-writeback.c */
2629 int __must_check write_one_page(struct page *page);
2630 void task_dirty_inc(struct task_struct *tsk);
2632 extern unsigned long stack_guard_gap;
2633 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2634 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2636 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2637 extern int expand_downwards(struct vm_area_struct *vma,
2638 unsigned long address);
2640 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2642 #define expand_upwards(vma, address) (0)
2645 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2646 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2647 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2648 struct vm_area_struct **pprev);
2650 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2651 NULL if none. Assume start_addr < end_addr. */
2652 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2654 struct vm_area_struct * vma = find_vma(mm,start_addr);
2656 if (vma && end_addr <= vma->vm_start)
2661 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2663 unsigned long vm_start = vma->vm_start;
2665 if (vma->vm_flags & VM_GROWSDOWN) {
2666 vm_start -= stack_guard_gap;
2667 if (vm_start > vma->vm_start)
2673 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2675 unsigned long vm_end = vma->vm_end;
2677 if (vma->vm_flags & VM_GROWSUP) {
2678 vm_end += stack_guard_gap;
2679 if (vm_end < vma->vm_end)
2680 vm_end = -PAGE_SIZE;
2685 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2687 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2690 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2691 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2692 unsigned long vm_start, unsigned long vm_end)
2694 struct vm_area_struct *vma = find_vma(mm, vm_start);
2696 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2702 static inline bool range_in_vma(struct vm_area_struct *vma,
2703 unsigned long start, unsigned long end)
2705 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2709 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2710 void vma_set_page_prot(struct vm_area_struct *vma);
2712 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2716 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2718 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2722 #ifdef CONFIG_NUMA_BALANCING
2723 unsigned long change_prot_numa(struct vm_area_struct *vma,
2724 unsigned long start, unsigned long end);
2727 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2728 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2729 unsigned long pfn, unsigned long size, pgprot_t);
2730 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2731 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2732 struct page **pages, unsigned long *num);
2733 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2737 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2739 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2740 unsigned long pfn, pgprot_t pgprot);
2741 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2743 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2744 pfn_t pfn, pgprot_t pgprot);
2745 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2746 unsigned long addr, pfn_t pfn);
2747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2749 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2750 unsigned long addr, struct page *page)
2752 int err = vm_insert_page(vma, addr, page);
2755 return VM_FAULT_OOM;
2756 if (err < 0 && err != -EBUSY)
2757 return VM_FAULT_SIGBUS;
2759 return VM_FAULT_NOPAGE;
2762 static inline vm_fault_t vmf_error(int err)
2765 return VM_FAULT_OOM;
2766 return VM_FAULT_SIGBUS;
2769 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2770 unsigned int foll_flags);
2772 #define FOLL_WRITE 0x01 /* check pte is writable */
2773 #define FOLL_TOUCH 0x02 /* mark page accessed */
2774 #define FOLL_GET 0x04 /* do get_page on page */
2775 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2776 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2777 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2778 * and return without waiting upon it */
2779 #define FOLL_POPULATE 0x40 /* fault in page */
2780 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2781 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2782 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2783 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2784 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2785 #define FOLL_MLOCK 0x1000 /* lock present pages */
2786 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2787 #define FOLL_COW 0x4000 /* internal GUP flag */
2788 #define FOLL_ANON 0x8000 /* don't do file mappings */
2789 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2790 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2791 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2792 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2795 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2796 * other. Here is what they mean, and how to use them:
2798 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2799 * period _often_ under userspace control. This is in contrast to
2800 * iov_iter_get_pages(), whose usages are transient.
2802 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2803 * lifetime enforced by the filesystem and we need guarantees that longterm
2804 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2805 * the filesystem. Ideas for this coordination include revoking the longterm
2806 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2807 * added after the problem with filesystems was found FS DAX VMAs are
2808 * specifically failed. Filesystem pages are still subject to bugs and use of
2809 * FOLL_LONGTERM should be avoided on those pages.
2811 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2812 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2813 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2814 * is due to an incompatibility with the FS DAX check and
2815 * FAULT_FLAG_ALLOW_RETRY.
2817 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2818 * that region. And so, CMA attempts to migrate the page before pinning, when
2819 * FOLL_LONGTERM is specified.
2821 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2822 * but an additional pin counting system) will be invoked. This is intended for
2823 * anything that gets a page reference and then touches page data (for example,
2824 * Direct IO). This lets the filesystem know that some non-file-system entity is
2825 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2826 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2827 * a call to unpin_user_page().
2829 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2830 * and separate refcounting mechanisms, however, and that means that each has
2831 * its own acquire and release mechanisms:
2833 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2835 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2837 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2838 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2839 * calls applied to them, and that's perfectly OK. This is a constraint on the
2840 * callers, not on the pages.)
2842 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2843 * directly by the caller. That's in order to help avoid mismatches when
2844 * releasing pages: get_user_pages*() pages must be released via put_page(),
2845 * while pin_user_pages*() pages must be released via unpin_user_page().
2847 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2850 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2852 if (vm_fault & VM_FAULT_OOM)
2854 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2855 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2856 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2861 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2862 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2863 unsigned long size, pte_fn_t fn, void *data);
2864 extern int apply_to_existing_page_range(struct mm_struct *mm,
2865 unsigned long address, unsigned long size,
2866 pte_fn_t fn, void *data);
2868 #ifdef CONFIG_PAGE_POISONING
2869 extern bool page_poisoning_enabled(void);
2870 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2872 static inline bool page_poisoning_enabled(void) { return false; }
2873 static inline void kernel_poison_pages(struct page *page, int numpages,
2877 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2878 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2880 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2882 static inline bool want_init_on_alloc(gfp_t flags)
2884 if (static_branch_unlikely(&init_on_alloc) &&
2885 !page_poisoning_enabled())
2887 return flags & __GFP_ZERO;
2890 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2891 DECLARE_STATIC_KEY_TRUE(init_on_free);
2893 DECLARE_STATIC_KEY_FALSE(init_on_free);
2895 static inline bool want_init_on_free(void)
2897 return static_branch_unlikely(&init_on_free) &&
2898 !page_poisoning_enabled();
2901 #ifdef CONFIG_DEBUG_PAGEALLOC
2902 extern void init_debug_pagealloc(void);
2904 static inline void init_debug_pagealloc(void) {}
2906 extern bool _debug_pagealloc_enabled_early;
2907 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2909 static inline bool debug_pagealloc_enabled(void)
2911 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2912 _debug_pagealloc_enabled_early;
2916 * For use in fast paths after init_debug_pagealloc() has run, or when a
2917 * false negative result is not harmful when called too early.
2919 static inline bool debug_pagealloc_enabled_static(void)
2921 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2924 return static_branch_unlikely(&_debug_pagealloc_enabled);
2927 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2928 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2931 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2932 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2935 kernel_map_pages(struct page *page, int numpages, int enable)
2937 __kernel_map_pages(page, numpages, enable);
2939 #ifdef CONFIG_HIBERNATION
2940 extern bool kernel_page_present(struct page *page);
2941 #endif /* CONFIG_HIBERNATION */
2942 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2944 kernel_map_pages(struct page *page, int numpages, int enable) {}
2945 #ifdef CONFIG_HIBERNATION
2946 static inline bool kernel_page_present(struct page *page) { return true; }
2947 #endif /* CONFIG_HIBERNATION */
2948 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2950 #ifdef __HAVE_ARCH_GATE_AREA
2951 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2952 extern int in_gate_area_no_mm(unsigned long addr);
2953 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2955 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2959 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2960 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2964 #endif /* __HAVE_ARCH_GATE_AREA */
2966 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2968 #ifdef CONFIG_SYSCTL
2969 extern int sysctl_drop_caches;
2970 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2974 void drop_slab(void);
2975 void drop_slab_node(int nid);
2978 #define randomize_va_space 0
2980 extern int randomize_va_space;
2983 const char * arch_vma_name(struct vm_area_struct *vma);
2985 void print_vma_addr(char *prefix, unsigned long rip);
2987 static inline void print_vma_addr(char *prefix, unsigned long rip)
2992 void *sparse_buffer_alloc(unsigned long size);
2993 struct page * __populate_section_memmap(unsigned long pfn,
2994 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2995 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2996 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2997 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2998 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2999 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3000 struct vmem_altmap *altmap);
3001 void *vmemmap_alloc_block(unsigned long size, int node);
3003 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3004 struct vmem_altmap *altmap);
3005 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3006 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3007 int node, struct vmem_altmap *altmap);
3008 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3009 struct vmem_altmap *altmap);
3010 void vmemmap_populate_print_last(void);
3011 #ifdef CONFIG_MEMORY_HOTPLUG
3012 void vmemmap_free(unsigned long start, unsigned long end,
3013 struct vmem_altmap *altmap);
3015 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3016 unsigned long nr_pages);
3019 MF_COUNT_INCREASED = 1 << 0,
3020 MF_ACTION_REQUIRED = 1 << 1,
3021 MF_MUST_KILL = 1 << 2,
3022 MF_SOFT_OFFLINE = 1 << 3,
3024 extern int memory_failure(unsigned long pfn, int flags);
3025 extern void memory_failure_queue(unsigned long pfn, int flags);
3026 extern void memory_failure_queue_kick(int cpu);
3027 extern int unpoison_memory(unsigned long pfn);
3028 extern int sysctl_memory_failure_early_kill;
3029 extern int sysctl_memory_failure_recovery;
3030 extern void shake_page(struct page *p, int access);
3031 extern atomic_long_t num_poisoned_pages __read_mostly;
3032 extern int soft_offline_page(unsigned long pfn, int flags);
3036 * Error handlers for various types of pages.
3039 MF_IGNORED, /* Error: cannot be handled */
3040 MF_FAILED, /* Error: handling failed */
3041 MF_DELAYED, /* Will be handled later */
3042 MF_RECOVERED, /* Successfully recovered */
3045 enum mf_action_page_type {
3047 MF_MSG_KERNEL_HIGH_ORDER,
3049 MF_MSG_DIFFERENT_COMPOUND,
3050 MF_MSG_POISONED_HUGE,
3053 MF_MSG_NON_PMD_HUGE,
3054 MF_MSG_UNMAP_FAILED,
3055 MF_MSG_DIRTY_SWAPCACHE,
3056 MF_MSG_CLEAN_SWAPCACHE,
3057 MF_MSG_DIRTY_MLOCKED_LRU,
3058 MF_MSG_CLEAN_MLOCKED_LRU,
3059 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3060 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3063 MF_MSG_TRUNCATED_LRU,
3071 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3072 extern void clear_huge_page(struct page *page,
3073 unsigned long addr_hint,
3074 unsigned int pages_per_huge_page);
3075 extern void copy_user_huge_page(struct page *dst, struct page *src,
3076 unsigned long addr_hint,
3077 struct vm_area_struct *vma,
3078 unsigned int pages_per_huge_page);
3079 extern long copy_huge_page_from_user(struct page *dst_page,
3080 const void __user *usr_src,
3081 unsigned int pages_per_huge_page,
3082 bool allow_pagefault);
3085 * vma_is_special_huge - Are transhuge page-table entries considered special?
3086 * @vma: Pointer to the struct vm_area_struct to consider
3088 * Whether transhuge page-table entries are considered "special" following
3089 * the definition in vm_normal_page().
3091 * Return: true if transhuge page-table entries should be considered special,
3094 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3096 return vma_is_dax(vma) || (vma->vm_file &&
3097 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3100 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3102 #ifdef CONFIG_DEBUG_PAGEALLOC
3103 extern unsigned int _debug_guardpage_minorder;
3104 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3106 static inline unsigned int debug_guardpage_minorder(void)
3108 return _debug_guardpage_minorder;
3111 static inline bool debug_guardpage_enabled(void)
3113 return static_branch_unlikely(&_debug_guardpage_enabled);
3116 static inline bool page_is_guard(struct page *page)
3118 if (!debug_guardpage_enabled())
3121 return PageGuard(page);
3124 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3125 static inline bool debug_guardpage_enabled(void) { return false; }
3126 static inline bool page_is_guard(struct page *page) { return false; }
3127 #endif /* CONFIG_DEBUG_PAGEALLOC */
3129 #if MAX_NUMNODES > 1
3130 void __init setup_nr_node_ids(void);
3132 static inline void setup_nr_node_ids(void) {}
3135 extern int memcmp_pages(struct page *page1, struct page *page2);
3137 static inline int pages_identical(struct page *page1, struct page *page2)
3139 return !memcmp_pages(page1, page2);
3142 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3143 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3144 pgoff_t first_index, pgoff_t nr,
3145 pgoff_t bitmap_pgoff,
3146 unsigned long *bitmap,
3150 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3151 pgoff_t first_index, pgoff_t nr);
3154 extern int sysctl_nr_trim_pages;
3156 #endif /* __KERNEL__ */
3157 #endif /* _LINUX_MM_H */