1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/posix-timers.h>
33 #include <linux/rseq.h>
34 #include <linux/kcsan.h>
36 /* task_struct member predeclarations (sorted alphabetically): */
38 struct backing_dev_info;
41 struct capture_control;
44 struct futex_pi_state;
49 struct perf_event_context;
51 struct pipe_inode_info;
54 struct robust_list_head;
60 struct sighand_struct;
62 struct task_delay_info;
66 * Task state bitmask. NOTE! These bits are also
67 * encoded in fs/proc/array.c: get_task_state().
69 * We have two separate sets of flags: task->state
70 * is about runnability, while task->exit_state are
71 * about the task exiting. Confusing, but this way
72 * modifying one set can't modify the other one by
76 /* Used in tsk->state: */
77 #define TASK_RUNNING 0x0000
78 #define TASK_INTERRUPTIBLE 0x0001
79 #define TASK_UNINTERRUPTIBLE 0x0002
80 #define __TASK_STOPPED 0x0004
81 #define __TASK_TRACED 0x0008
82 /* Used in tsk->exit_state: */
83 #define EXIT_DEAD 0x0010
84 #define EXIT_ZOMBIE 0x0020
85 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
86 /* Used in tsk->state again: */
87 #define TASK_PARKED 0x0040
88 #define TASK_DEAD 0x0080
89 #define TASK_WAKEKILL 0x0100
90 #define TASK_WAKING 0x0200
91 #define TASK_NOLOAD 0x0400
92 #define TASK_NEW 0x0800
93 #define TASK_STATE_MAX 0x1000
95 /* Convenience macros for the sake of set_current_state: */
96 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
97 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
98 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
100 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
102 /* Convenience macros for the sake of wake_up(): */
103 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
105 /* get_task_state(): */
106 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
107 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
108 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
111 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
113 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
115 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
117 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 (task->flags & PF_FROZEN) == 0 && \
119 (task->state & TASK_NOLOAD) == 0)
121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
124 * Special states are those that do not use the normal wait-loop pattern. See
125 * the comment with set_special_state().
127 #define is_special_task_state(state) \
128 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130 #define __set_current_state(state_value) \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 current->state = (state_value); \
137 #define set_current_state(state_value) \
139 WARN_ON_ONCE(is_special_task_state(state_value));\
140 current->task_state_change = _THIS_IP_; \
141 smp_store_mb(current->state, (state_value)); \
144 #define set_special_state(state_value) \
146 unsigned long flags; /* may shadow */ \
147 WARN_ON_ONCE(!is_special_task_state(state_value)); \
148 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
149 current->task_state_change = _THIS_IP_; \
150 current->state = (state_value); \
151 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
155 * set_current_state() includes a barrier so that the write of current->state
156 * is correctly serialised wrt the caller's subsequent test of whether to
160 * set_current_state(TASK_UNINTERRUPTIBLE);
166 * __set_current_state(TASK_RUNNING);
168 * If the caller does not need such serialisation (because, for instance, the
169 * condition test and condition change and wakeup are under the same lock) then
170 * use __set_current_state().
172 * The above is typically ordered against the wakeup, which does:
174 * need_sleep = false;
175 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
177 * where wake_up_state() executes a full memory barrier before accessing the
180 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
181 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
182 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184 * However, with slightly different timing the wakeup TASK_RUNNING store can
185 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
186 * a problem either because that will result in one extra go around the loop
187 * and our @cond test will save the day.
189 * Also see the comments of try_to_wake_up().
191 #define __set_current_state(state_value) \
192 current->state = (state_value)
194 #define set_current_state(state_value) \
195 smp_store_mb(current->state, (state_value))
198 * set_special_state() should be used for those states when the blocking task
199 * can not use the regular condition based wait-loop. In that case we must
200 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
201 * will not collide with our state change.
203 #define set_special_state(state_value) \
205 unsigned long flags; /* may shadow */ \
206 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
207 current->state = (state_value); \
208 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
213 /* Task command name length: */
214 #define TASK_COMM_LEN 16
216 extern void scheduler_tick(void);
218 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
220 extern long schedule_timeout(long timeout);
221 extern long schedule_timeout_interruptible(long timeout);
222 extern long schedule_timeout_killable(long timeout);
223 extern long schedule_timeout_uninterruptible(long timeout);
224 extern long schedule_timeout_idle(long timeout);
225 asmlinkage void schedule(void);
226 extern void schedule_preempt_disabled(void);
227 asmlinkage void preempt_schedule_irq(void);
229 extern int __must_check io_schedule_prepare(void);
230 extern void io_schedule_finish(int token);
231 extern long io_schedule_timeout(long timeout);
232 extern void io_schedule(void);
235 * struct prev_cputime - snapshot of system and user cputime
236 * @utime: time spent in user mode
237 * @stime: time spent in system mode
238 * @lock: protects the above two fields
240 * Stores previous user/system time values such that we can guarantee
243 struct prev_cputime {
244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
252 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 /* Task runs in userspace in a CPU with VTIME active: */
256 /* Task runs in kernelspace in a CPU with VTIME active: */
262 unsigned long long starttime;
263 enum vtime_state state;
270 * Utilization clamp constraints.
271 * @UCLAMP_MIN: Minimum utilization
272 * @UCLAMP_MAX: Maximum utilization
273 * @UCLAMP_CNT: Utilization clamp constraints count
282 extern struct root_domain def_root_domain;
283 extern struct mutex sched_domains_mutex;
287 #ifdef CONFIG_SCHED_INFO
288 /* Cumulative counters: */
290 /* # of times we have run on this CPU: */
291 unsigned long pcount;
293 /* Time spent waiting on a runqueue: */
294 unsigned long long run_delay;
298 /* When did we last run on a CPU? */
299 unsigned long long last_arrival;
301 /* When were we last queued to run? */
302 unsigned long long last_queued;
304 #endif /* CONFIG_SCHED_INFO */
308 * Integer metrics need fixed point arithmetic, e.g., sched/fair
309 * has a few: load, load_avg, util_avg, freq, and capacity.
311 * We define a basic fixed point arithmetic range, and then formalize
312 * all these metrics based on that basic range.
314 # define SCHED_FIXEDPOINT_SHIFT 10
315 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
317 /* Increase resolution of cpu_capacity calculations */
318 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
319 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
322 unsigned long weight;
327 * struct util_est - Estimation utilization of FAIR tasks
328 * @enqueued: instantaneous estimated utilization of a task/cpu
329 * @ewma: the Exponential Weighted Moving Average (EWMA)
330 * utilization of a task
332 * Support data structure to track an Exponential Weighted Moving Average
333 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
334 * average each time a task completes an activation. Sample's weight is chosen
335 * so that the EWMA will be relatively insensitive to transient changes to the
338 * The enqueued attribute has a slightly different meaning for tasks and cpus:
339 * - task: the task's util_avg at last task dequeue time
340 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
341 * Thus, the util_est.enqueued of a task represents the contribution on the
342 * estimated utilization of the CPU where that task is currently enqueued.
344 * Only for tasks we track a moving average of the past instantaneous
345 * estimated utilization. This allows to absorb sporadic drops in utilization
346 * of an otherwise almost periodic task.
349 unsigned int enqueued;
351 #define UTIL_EST_WEIGHT_SHIFT 2
352 } __attribute__((__aligned__(sizeof(u64))));
355 * The load_avg/util_avg accumulates an infinite geometric series
356 * (see __update_load_avg() in kernel/sched/fair.c).
358 * [load_avg definition]
360 * load_avg = runnable% * scale_load_down(load)
362 * where runnable% is the time ratio that a sched_entity is runnable.
363 * For cfs_rq, it is the aggregated load_avg of all runnable and
364 * blocked sched_entities.
366 * [util_avg definition]
368 * util_avg = running% * SCHED_CAPACITY_SCALE
370 * where running% is the time ratio that a sched_entity is running on
371 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
372 * and blocked sched_entities.
374 * load_avg and util_avg don't direcly factor frequency scaling and CPU
375 * capacity scaling. The scaling is done through the rq_clock_pelt that
376 * is used for computing those signals (see update_rq_clock_pelt())
378 * N.B., the above ratios (runnable% and running%) themselves are in the
379 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
380 * to as large a range as necessary. This is for example reflected by
381 * util_avg's SCHED_CAPACITY_SCALE.
385 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
386 * with the highest load (=88761), always runnable on a single cfs_rq,
387 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 * For all other cases (including 32-bit kernels), struct load_weight's
390 * weight will overflow first before we do, because:
392 * Max(load_avg) <= Max(load.weight)
394 * Then it is the load_weight's responsibility to consider overflow
398 u64 last_update_time;
400 u64 runnable_load_sum;
403 unsigned long load_avg;
404 unsigned long runnable_load_avg;
405 unsigned long util_avg;
406 struct util_est util_est;
407 } ____cacheline_aligned;
409 struct sched_statistics {
410 #ifdef CONFIG_SCHEDSTATS
420 s64 sum_sleep_runtime;
427 u64 nr_migrations_cold;
428 u64 nr_failed_migrations_affine;
429 u64 nr_failed_migrations_running;
430 u64 nr_failed_migrations_hot;
431 u64 nr_forced_migrations;
435 u64 nr_wakeups_migrate;
436 u64 nr_wakeups_local;
437 u64 nr_wakeups_remote;
438 u64 nr_wakeups_affine;
439 u64 nr_wakeups_affine_attempts;
440 u64 nr_wakeups_passive;
445 struct sched_entity {
446 /* For load-balancing: */
447 struct load_weight load;
448 unsigned long runnable_weight;
449 struct rb_node run_node;
450 struct list_head group_node;
454 u64 sum_exec_runtime;
456 u64 prev_sum_exec_runtime;
460 struct sched_statistics statistics;
462 #ifdef CONFIG_FAIR_GROUP_SCHED
464 struct sched_entity *parent;
465 /* rq on which this entity is (to be) queued: */
466 struct cfs_rq *cfs_rq;
467 /* rq "owned" by this entity/group: */
473 * Per entity load average tracking.
475 * Put into separate cache line so it does not
476 * collide with read-mostly values above.
478 struct sched_avg avg;
482 struct sched_rt_entity {
483 struct list_head run_list;
484 unsigned long timeout;
485 unsigned long watchdog_stamp;
486 unsigned int time_slice;
487 unsigned short on_rq;
488 unsigned short on_list;
490 struct sched_rt_entity *back;
491 #ifdef CONFIG_RT_GROUP_SCHED
492 struct sched_rt_entity *parent;
493 /* rq on which this entity is (to be) queued: */
495 /* rq "owned" by this entity/group: */
498 } __randomize_layout;
500 struct sched_dl_entity {
501 struct rb_node rb_node;
504 * Original scheduling parameters. Copied here from sched_attr
505 * during sched_setattr(), they will remain the same until
506 * the next sched_setattr().
508 u64 dl_runtime; /* Maximum runtime for each instance */
509 u64 dl_deadline; /* Relative deadline of each instance */
510 u64 dl_period; /* Separation of two instances (period) */
511 u64 dl_bw; /* dl_runtime / dl_period */
512 u64 dl_density; /* dl_runtime / dl_deadline */
515 * Actual scheduling parameters. Initialized with the values above,
516 * they are continuously updated during task execution. Note that
517 * the remaining runtime could be < 0 in case we are in overrun.
519 s64 runtime; /* Remaining runtime for this instance */
520 u64 deadline; /* Absolute deadline for this instance */
521 unsigned int flags; /* Specifying the scheduler behaviour */
526 * @dl_throttled tells if we exhausted the runtime. If so, the
527 * task has to wait for a replenishment to be performed at the
528 * next firing of dl_timer.
530 * @dl_boosted tells if we are boosted due to DI. If so we are
531 * outside bandwidth enforcement mechanism (but only until we
532 * exit the critical section);
534 * @dl_yielded tells if task gave up the CPU before consuming
535 * all its available runtime during the last job.
537 * @dl_non_contending tells if the task is inactive while still
538 * contributing to the active utilization. In other words, it
539 * indicates if the inactive timer has been armed and its handler
540 * has not been executed yet. This flag is useful to avoid race
541 * conditions between the inactive timer handler and the wakeup
544 * @dl_overrun tells if the task asked to be informed about runtime
547 unsigned int dl_throttled : 1;
548 unsigned int dl_boosted : 1;
549 unsigned int dl_yielded : 1;
550 unsigned int dl_non_contending : 1;
551 unsigned int dl_overrun : 1;
554 * Bandwidth enforcement timer. Each -deadline task has its
555 * own bandwidth to be enforced, thus we need one timer per task.
557 struct hrtimer dl_timer;
560 * Inactive timer, responsible for decreasing the active utilization
561 * at the "0-lag time". When a -deadline task blocks, it contributes
562 * to GRUB's active utilization until the "0-lag time", hence a
563 * timer is needed to decrease the active utilization at the correct
566 struct hrtimer inactive_timer;
569 #ifdef CONFIG_UCLAMP_TASK
570 /* Number of utilization clamp buckets (shorter alias) */
571 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
574 * Utilization clamp for a scheduling entity
575 * @value: clamp value "assigned" to a se
576 * @bucket_id: bucket index corresponding to the "assigned" value
577 * @active: the se is currently refcounted in a rq's bucket
578 * @user_defined: the requested clamp value comes from user-space
580 * The bucket_id is the index of the clamp bucket matching the clamp value
581 * which is pre-computed and stored to avoid expensive integer divisions from
584 * The active bit is set whenever a task has got an "effective" value assigned,
585 * which can be different from the clamp value "requested" from user-space.
586 * This allows to know a task is refcounted in the rq's bucket corresponding
587 * to the "effective" bucket_id.
589 * The user_defined bit is set whenever a task has got a task-specific clamp
590 * value requested from userspace, i.e. the system defaults apply to this task
591 * just as a restriction. This allows to relax default clamps when a less
592 * restrictive task-specific value has been requested, thus allowing to
593 * implement a "nice" semantic. For example, a task running with a 20%
594 * default boost can still drop its own boosting to 0%.
597 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
598 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
599 unsigned int active : 1;
600 unsigned int user_defined : 1;
602 #endif /* CONFIG_UCLAMP_TASK */
608 u8 exp_hint; /* Hint for performance. */
611 u32 s; /* Set of bits. */
614 enum perf_event_task_context {
615 perf_invalid_context = -1,
618 perf_nr_task_contexts,
622 struct wake_q_node *next;
626 #ifdef CONFIG_THREAD_INFO_IN_TASK
628 * For reasons of header soup (see current_thread_info()), this
629 * must be the first element of task_struct.
631 struct thread_info thread_info;
633 /* -1 unrunnable, 0 runnable, >0 stopped: */
637 * This begins the randomizable portion of task_struct. Only
638 * scheduling-critical items should be added above here.
640 randomized_struct_fields_start
644 /* Per task flags (PF_*), defined further below: */
649 struct llist_node wake_entry;
651 #ifdef CONFIG_THREAD_INFO_IN_TASK
655 unsigned int wakee_flips;
656 unsigned long wakee_flip_decay_ts;
657 struct task_struct *last_wakee;
660 * recent_used_cpu is initially set as the last CPU used by a task
661 * that wakes affine another task. Waker/wakee relationships can
662 * push tasks around a CPU where each wakeup moves to the next one.
663 * Tracking a recently used CPU allows a quick search for a recently
664 * used CPU that may be idle.
674 unsigned int rt_priority;
676 const struct sched_class *sched_class;
677 struct sched_entity se;
678 struct sched_rt_entity rt;
679 #ifdef CONFIG_CGROUP_SCHED
680 struct task_group *sched_task_group;
682 struct sched_dl_entity dl;
684 #ifdef CONFIG_UCLAMP_TASK
685 /* Clamp values requested for a scheduling entity */
686 struct uclamp_se uclamp_req[UCLAMP_CNT];
687 /* Effective clamp values used for a scheduling entity */
688 struct uclamp_se uclamp[UCLAMP_CNT];
691 #ifdef CONFIG_PREEMPT_NOTIFIERS
692 /* List of struct preempt_notifier: */
693 struct hlist_head preempt_notifiers;
696 #ifdef CONFIG_BLK_DEV_IO_TRACE
697 unsigned int btrace_seq;
702 const cpumask_t *cpus_ptr;
705 #ifdef CONFIG_PREEMPT_RCU
706 int rcu_read_lock_nesting;
707 union rcu_special rcu_read_unlock_special;
708 struct list_head rcu_node_entry;
709 struct rcu_node *rcu_blocked_node;
710 #endif /* #ifdef CONFIG_PREEMPT_RCU */
712 #ifdef CONFIG_TASKS_RCU
713 unsigned long rcu_tasks_nvcsw;
714 u8 rcu_tasks_holdout;
716 int rcu_tasks_idle_cpu;
717 struct list_head rcu_tasks_holdout_list;
718 #endif /* #ifdef CONFIG_TASKS_RCU */
720 struct sched_info sched_info;
722 struct list_head tasks;
724 struct plist_node pushable_tasks;
725 struct rb_node pushable_dl_tasks;
728 struct mm_struct *mm;
729 struct mm_struct *active_mm;
731 /* Per-thread vma caching: */
732 struct vmacache vmacache;
734 #ifdef SPLIT_RSS_COUNTING
735 struct task_rss_stat rss_stat;
740 /* The signal sent when the parent dies: */
742 /* JOBCTL_*, siglock protected: */
743 unsigned long jobctl;
745 /* Used for emulating ABI behavior of previous Linux versions: */
746 unsigned int personality;
748 /* Scheduler bits, serialized by scheduler locks: */
749 unsigned sched_reset_on_fork:1;
750 unsigned sched_contributes_to_load:1;
751 unsigned sched_migrated:1;
752 unsigned sched_remote_wakeup:1;
754 unsigned sched_psi_wake_requeue:1;
757 /* Force alignment to the next boundary: */
760 /* Unserialized, strictly 'current' */
762 /* Bit to tell LSMs we're in execve(): */
763 unsigned in_execve:1;
764 unsigned in_iowait:1;
765 #ifndef TIF_RESTORE_SIGMASK
766 unsigned restore_sigmask:1;
769 unsigned in_user_fault:1;
771 #ifdef CONFIG_COMPAT_BRK
772 unsigned brk_randomized:1;
774 #ifdef CONFIG_CGROUPS
775 /* disallow userland-initiated cgroup migration */
776 unsigned no_cgroup_migration:1;
777 /* task is frozen/stopped (used by the cgroup freezer) */
780 #ifdef CONFIG_BLK_CGROUP
781 /* to be used once the psi infrastructure lands upstream. */
782 unsigned use_memdelay:1;
785 unsigned long atomic_flags; /* Flags requiring atomic access. */
787 struct restart_block restart_block;
792 #ifdef CONFIG_STACKPROTECTOR
793 /* Canary value for the -fstack-protector GCC feature: */
794 unsigned long stack_canary;
797 * Pointers to the (original) parent process, youngest child, younger sibling,
798 * older sibling, respectively. (p->father can be replaced with
799 * p->real_parent->pid)
802 /* Real parent process: */
803 struct task_struct __rcu *real_parent;
805 /* Recipient of SIGCHLD, wait4() reports: */
806 struct task_struct __rcu *parent;
809 * Children/sibling form the list of natural children:
811 struct list_head children;
812 struct list_head sibling;
813 struct task_struct *group_leader;
816 * 'ptraced' is the list of tasks this task is using ptrace() on.
818 * This includes both natural children and PTRACE_ATTACH targets.
819 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
821 struct list_head ptraced;
822 struct list_head ptrace_entry;
824 /* PID/PID hash table linkage. */
825 struct pid *thread_pid;
826 struct hlist_node pid_links[PIDTYPE_MAX];
827 struct list_head thread_group;
828 struct list_head thread_node;
830 struct completion *vfork_done;
832 /* CLONE_CHILD_SETTID: */
833 int __user *set_child_tid;
835 /* CLONE_CHILD_CLEARTID: */
836 int __user *clear_child_tid;
840 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
845 struct prev_cputime prev_cputime;
846 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
850 #ifdef CONFIG_NO_HZ_FULL
851 atomic_t tick_dep_mask;
853 /* Context switch counts: */
855 unsigned long nivcsw;
857 /* Monotonic time in nsecs: */
860 /* Boot based time in nsecs: */
863 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
864 unsigned long min_flt;
865 unsigned long maj_flt;
867 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
868 struct posix_cputimers posix_cputimers;
870 /* Process credentials: */
872 /* Tracer's credentials at attach: */
873 const struct cred __rcu *ptracer_cred;
875 /* Objective and real subjective task credentials (COW): */
876 const struct cred __rcu *real_cred;
878 /* Effective (overridable) subjective task credentials (COW): */
879 const struct cred __rcu *cred;
882 /* Cached requested key. */
883 struct key *cached_requested_key;
887 * executable name, excluding path.
889 * - normally initialized setup_new_exec()
890 * - access it with [gs]et_task_comm()
891 * - lock it with task_lock()
893 char comm[TASK_COMM_LEN];
895 struct nameidata *nameidata;
897 #ifdef CONFIG_SYSVIPC
898 struct sysv_sem sysvsem;
899 struct sysv_shm sysvshm;
901 #ifdef CONFIG_DETECT_HUNG_TASK
902 unsigned long last_switch_count;
903 unsigned long last_switch_time;
905 /* Filesystem information: */
906 struct fs_struct *fs;
908 /* Open file information: */
909 struct files_struct *files;
912 struct nsproxy *nsproxy;
914 /* Signal handlers: */
915 struct signal_struct *signal;
916 struct sighand_struct *sighand;
918 sigset_t real_blocked;
919 /* Restored if set_restore_sigmask() was used: */
920 sigset_t saved_sigmask;
921 struct sigpending pending;
922 unsigned long sas_ss_sp;
924 unsigned int sas_ss_flags;
926 struct callback_head *task_works;
929 #ifdef CONFIG_AUDITSYSCALL
930 struct audit_context *audit_context;
933 unsigned int sessionid;
935 struct seccomp seccomp;
937 /* Thread group tracking: */
941 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
942 spinlock_t alloc_lock;
944 /* Protection of the PI data structures: */
945 raw_spinlock_t pi_lock;
947 struct wake_q_node wake_q;
949 #ifdef CONFIG_RT_MUTEXES
950 /* PI waiters blocked on a rt_mutex held by this task: */
951 struct rb_root_cached pi_waiters;
952 /* Updated under owner's pi_lock and rq lock */
953 struct task_struct *pi_top_task;
954 /* Deadlock detection and priority inheritance handling: */
955 struct rt_mutex_waiter *pi_blocked_on;
958 #ifdef CONFIG_DEBUG_MUTEXES
959 /* Mutex deadlock detection: */
960 struct mutex_waiter *blocked_on;
963 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
967 #ifdef CONFIG_TRACE_IRQFLAGS
968 unsigned int irq_events;
969 unsigned long hardirq_enable_ip;
970 unsigned long hardirq_disable_ip;
971 unsigned int hardirq_enable_event;
972 unsigned int hardirq_disable_event;
973 int hardirqs_enabled;
975 unsigned long softirq_disable_ip;
976 unsigned long softirq_enable_ip;
977 unsigned int softirq_disable_event;
978 unsigned int softirq_enable_event;
979 int softirqs_enabled;
983 #ifdef CONFIG_LOCKDEP
984 # define MAX_LOCK_DEPTH 48UL
987 unsigned int lockdep_recursion;
988 struct held_lock held_locks[MAX_LOCK_DEPTH];
992 unsigned int in_ubsan;
995 /* Journalling filesystem info: */
998 /* Stacked block device info: */
999 struct bio_list *bio_list;
1002 /* Stack plugging: */
1003 struct blk_plug *plug;
1007 struct reclaim_state *reclaim_state;
1009 struct backing_dev_info *backing_dev_info;
1011 struct io_context *io_context;
1013 #ifdef CONFIG_COMPACTION
1014 struct capture_control *capture_control;
1017 unsigned long ptrace_message;
1018 kernel_siginfo_t *last_siginfo;
1020 struct task_io_accounting ioac;
1022 /* Pressure stall state */
1023 unsigned int psi_flags;
1025 #ifdef CONFIG_TASK_XACCT
1026 /* Accumulated RSS usage: */
1028 /* Accumulated virtual memory usage: */
1030 /* stime + utime since last update: */
1033 #ifdef CONFIG_CPUSETS
1034 /* Protected by ->alloc_lock: */
1035 nodemask_t mems_allowed;
1036 /* Seqence number to catch updates: */
1037 seqcount_t mems_allowed_seq;
1038 int cpuset_mem_spread_rotor;
1039 int cpuset_slab_spread_rotor;
1041 #ifdef CONFIG_CGROUPS
1042 /* Control Group info protected by css_set_lock: */
1043 struct css_set __rcu *cgroups;
1044 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1045 struct list_head cg_list;
1047 #ifdef CONFIG_X86_CPU_RESCTRL
1052 struct robust_list_head __user *robust_list;
1053 #ifdef CONFIG_COMPAT
1054 struct compat_robust_list_head __user *compat_robust_list;
1056 struct list_head pi_state_list;
1057 struct futex_pi_state *pi_state_cache;
1059 #ifdef CONFIG_PERF_EVENTS
1060 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1061 struct mutex perf_event_mutex;
1062 struct list_head perf_event_list;
1064 #ifdef CONFIG_DEBUG_PREEMPT
1065 unsigned long preempt_disable_ip;
1068 /* Protected by alloc_lock: */
1069 struct mempolicy *mempolicy;
1071 short pref_node_fork;
1073 #ifdef CONFIG_NUMA_BALANCING
1075 unsigned int numa_scan_period;
1076 unsigned int numa_scan_period_max;
1077 int numa_preferred_nid;
1078 unsigned long numa_migrate_retry;
1079 /* Migration stamp: */
1081 u64 last_task_numa_placement;
1082 u64 last_sum_exec_runtime;
1083 struct callback_head numa_work;
1086 * This pointer is only modified for current in syscall and
1087 * pagefault context (and for tasks being destroyed), so it can be read
1088 * from any of the following contexts:
1089 * - RCU read-side critical section
1090 * - current->numa_group from everywhere
1091 * - task's runqueue locked, task not running
1093 struct numa_group __rcu *numa_group;
1096 * numa_faults is an array split into four regions:
1097 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1098 * in this precise order.
1100 * faults_memory: Exponential decaying average of faults on a per-node
1101 * basis. Scheduling placement decisions are made based on these
1102 * counts. The values remain static for the duration of a PTE scan.
1103 * faults_cpu: Track the nodes the process was running on when a NUMA
1104 * hinting fault was incurred.
1105 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1106 * during the current scan window. When the scan completes, the counts
1107 * in faults_memory and faults_cpu decay and these values are copied.
1109 unsigned long *numa_faults;
1110 unsigned long total_numa_faults;
1113 * numa_faults_locality tracks if faults recorded during the last
1114 * scan window were remote/local or failed to migrate. The task scan
1115 * period is adapted based on the locality of the faults with different
1116 * weights depending on whether they were shared or private faults
1118 unsigned long numa_faults_locality[3];
1120 unsigned long numa_pages_migrated;
1121 #endif /* CONFIG_NUMA_BALANCING */
1124 struct rseq __user *rseq;
1127 * RmW on rseq_event_mask must be performed atomically
1128 * with respect to preemption.
1130 unsigned long rseq_event_mask;
1133 struct tlbflush_unmap_batch tlb_ubc;
1136 refcount_t rcu_users;
1137 struct rcu_head rcu;
1140 /* Cache last used pipe for splice(): */
1141 struct pipe_inode_info *splice_pipe;
1143 struct page_frag task_frag;
1145 #ifdef CONFIG_TASK_DELAY_ACCT
1146 struct task_delay_info *delays;
1149 #ifdef CONFIG_FAULT_INJECTION
1151 unsigned int fail_nth;
1154 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1155 * balance_dirty_pages() for a dirty throttling pause:
1158 int nr_dirtied_pause;
1159 /* Start of a write-and-pause period: */
1160 unsigned long dirty_paused_when;
1162 #ifdef CONFIG_LATENCYTOP
1163 int latency_record_count;
1164 struct latency_record latency_record[LT_SAVECOUNT];
1167 * Time slack values; these are used to round up poll() and
1168 * select() etc timeout values. These are in nanoseconds.
1171 u64 default_timer_slack_ns;
1174 unsigned int kasan_depth;
1177 struct kcsan_ctx kcsan_ctx;
1180 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1181 /* Index of current stored address in ret_stack: */
1185 /* Stack of return addresses for return function tracing: */
1186 struct ftrace_ret_stack *ret_stack;
1188 /* Timestamp for last schedule: */
1189 unsigned long long ftrace_timestamp;
1192 * Number of functions that haven't been traced
1193 * because of depth overrun:
1195 atomic_t trace_overrun;
1197 /* Pause tracing: */
1198 atomic_t tracing_graph_pause;
1201 #ifdef CONFIG_TRACING
1202 /* State flags for use by tracers: */
1203 unsigned long trace;
1205 /* Bitmask and counter of trace recursion: */
1206 unsigned long trace_recursion;
1207 #endif /* CONFIG_TRACING */
1210 /* Coverage collection mode enabled for this task (0 if disabled): */
1211 unsigned int kcov_mode;
1213 /* Size of the kcov_area: */
1214 unsigned int kcov_size;
1216 /* Buffer for coverage collection: */
1219 /* KCOV descriptor wired with this task or NULL: */
1224 struct mem_cgroup *memcg_in_oom;
1225 gfp_t memcg_oom_gfp_mask;
1226 int memcg_oom_order;
1228 /* Number of pages to reclaim on returning to userland: */
1229 unsigned int memcg_nr_pages_over_high;
1231 /* Used by memcontrol for targeted memcg charge: */
1232 struct mem_cgroup *active_memcg;
1235 #ifdef CONFIG_BLK_CGROUP
1236 struct request_queue *throttle_queue;
1239 #ifdef CONFIG_UPROBES
1240 struct uprobe_task *utask;
1242 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1243 unsigned int sequential_io;
1244 unsigned int sequential_io_avg;
1246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1247 unsigned long task_state_change;
1249 int pagefault_disabled;
1251 struct task_struct *oom_reaper_list;
1253 #ifdef CONFIG_VMAP_STACK
1254 struct vm_struct *stack_vm_area;
1256 #ifdef CONFIG_THREAD_INFO_IN_TASK
1257 /* A live task holds one reference: */
1258 refcount_t stack_refcount;
1260 #ifdef CONFIG_LIVEPATCH
1263 #ifdef CONFIG_SECURITY
1264 /* Used by LSM modules for access restriction: */
1268 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1269 unsigned long lowest_stack;
1270 unsigned long prev_lowest_stack;
1274 * New fields for task_struct should be added above here, so that
1275 * they are included in the randomized portion of task_struct.
1277 randomized_struct_fields_end
1279 /* CPU-specific state of this task: */
1280 struct thread_struct thread;
1283 * WARNING: on x86, 'thread_struct' contains a variable-sized
1284 * structure. It *MUST* be at the end of 'task_struct'.
1286 * Do not put anything below here!
1290 static inline struct pid *task_pid(struct task_struct *task)
1292 return task->thread_pid;
1296 * the helpers to get the task's different pids as they are seen
1297 * from various namespaces
1299 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1300 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1302 * task_xid_nr_ns() : id seen from the ns specified;
1304 * see also pid_nr() etc in include/linux/pid.h
1306 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1308 static inline pid_t task_pid_nr(struct task_struct *tsk)
1313 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1315 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1318 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1320 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1324 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1330 * pid_alive - check that a task structure is not stale
1331 * @p: Task structure to be checked.
1333 * Test if a process is not yet dead (at most zombie state)
1334 * If pid_alive fails, then pointers within the task structure
1335 * can be stale and must not be dereferenced.
1337 * Return: 1 if the process is alive. 0 otherwise.
1339 static inline int pid_alive(const struct task_struct *p)
1341 return p->thread_pid != NULL;
1344 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1346 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1349 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1351 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1355 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1357 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1360 static inline pid_t task_session_vnr(struct task_struct *tsk)
1362 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1365 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1367 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1370 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1372 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1375 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1381 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1387 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1389 return task_ppid_nr_ns(tsk, &init_pid_ns);
1392 /* Obsolete, do not use: */
1393 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1395 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1398 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1399 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1401 static inline unsigned int task_state_index(struct task_struct *tsk)
1403 unsigned int tsk_state = READ_ONCE(tsk->state);
1404 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1406 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1408 if (tsk_state == TASK_IDLE)
1409 state = TASK_REPORT_IDLE;
1414 static inline char task_index_to_char(unsigned int state)
1416 static const char state_char[] = "RSDTtXZPI";
1418 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1420 return state_char[state];
1423 static inline char task_state_to_char(struct task_struct *tsk)
1425 return task_index_to_char(task_state_index(tsk));
1429 * is_global_init - check if a task structure is init. Since init
1430 * is free to have sub-threads we need to check tgid.
1431 * @tsk: Task structure to be checked.
1433 * Check if a task structure is the first user space task the kernel created.
1435 * Return: 1 if the task structure is init. 0 otherwise.
1437 static inline int is_global_init(struct task_struct *tsk)
1439 return task_tgid_nr(tsk) == 1;
1442 extern struct pid *cad_pid;
1447 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1448 #define PF_EXITING 0x00000004 /* Getting shut down */
1449 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1450 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1451 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1452 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1453 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1454 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1455 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1456 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1457 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1458 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1459 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1460 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1461 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1462 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1463 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1464 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1465 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1466 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1467 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1468 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1469 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1470 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1471 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1472 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1473 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1474 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1475 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1476 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1479 * Only the _current_ task can read/write to tsk->flags, but other
1480 * tasks can access tsk->flags in readonly mode for example
1481 * with tsk_used_math (like during threaded core dumping).
1482 * There is however an exception to this rule during ptrace
1483 * or during fork: the ptracer task is allowed to write to the
1484 * child->flags of its traced child (same goes for fork, the parent
1485 * can write to the child->flags), because we're guaranteed the
1486 * child is not running and in turn not changing child->flags
1487 * at the same time the parent does it.
1489 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1490 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1491 #define clear_used_math() clear_stopped_child_used_math(current)
1492 #define set_used_math() set_stopped_child_used_math(current)
1494 #define conditional_stopped_child_used_math(condition, child) \
1495 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1497 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1499 #define copy_to_stopped_child_used_math(child) \
1500 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1502 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1503 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1504 #define used_math() tsk_used_math(current)
1506 static inline bool is_percpu_thread(void)
1509 return (current->flags & PF_NO_SETAFFINITY) &&
1510 (current->nr_cpus_allowed == 1);
1516 /* Per-process atomic flags. */
1517 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1518 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1519 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1520 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1521 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1522 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1523 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1524 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1526 #define TASK_PFA_TEST(name, func) \
1527 static inline bool task_##func(struct task_struct *p) \
1528 { return test_bit(PFA_##name, &p->atomic_flags); }
1530 #define TASK_PFA_SET(name, func) \
1531 static inline void task_set_##func(struct task_struct *p) \
1532 { set_bit(PFA_##name, &p->atomic_flags); }
1534 #define TASK_PFA_CLEAR(name, func) \
1535 static inline void task_clear_##func(struct task_struct *p) \
1536 { clear_bit(PFA_##name, &p->atomic_flags); }
1538 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1539 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1541 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1542 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1543 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1545 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1546 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1547 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1549 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1550 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1551 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1553 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1554 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1555 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1557 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1558 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1560 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1561 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1562 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1564 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1565 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1568 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1570 current->flags &= ~flags;
1571 current->flags |= orig_flags & flags;
1574 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1575 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1577 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1578 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1580 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1583 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1585 if (!cpumask_test_cpu(0, new_mask))
1591 extern int yield_to(struct task_struct *p, bool preempt);
1592 extern void set_user_nice(struct task_struct *p, long nice);
1593 extern int task_prio(const struct task_struct *p);
1596 * task_nice - return the nice value of a given task.
1597 * @p: the task in question.
1599 * Return: The nice value [ -20 ... 0 ... 19 ].
1601 static inline int task_nice(const struct task_struct *p)
1603 return PRIO_TO_NICE((p)->static_prio);
1606 extern int can_nice(const struct task_struct *p, const int nice);
1607 extern int task_curr(const struct task_struct *p);
1608 extern int idle_cpu(int cpu);
1609 extern int available_idle_cpu(int cpu);
1610 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1611 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1612 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1613 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1614 extern struct task_struct *idle_task(int cpu);
1617 * is_idle_task - is the specified task an idle task?
1618 * @p: the task in question.
1620 * Return: 1 if @p is an idle task. 0 otherwise.
1622 static inline bool is_idle_task(const struct task_struct *p)
1624 return !!(p->flags & PF_IDLE);
1627 extern struct task_struct *curr_task(int cpu);
1628 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1632 union thread_union {
1633 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1634 struct task_struct task;
1636 #ifndef CONFIG_THREAD_INFO_IN_TASK
1637 struct thread_info thread_info;
1639 unsigned long stack[THREAD_SIZE/sizeof(long)];
1642 #ifndef CONFIG_THREAD_INFO_IN_TASK
1643 extern struct thread_info init_thread_info;
1646 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1648 #ifdef CONFIG_THREAD_INFO_IN_TASK
1649 static inline struct thread_info *task_thread_info(struct task_struct *task)
1651 return &task->thread_info;
1653 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1654 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1658 * find a task by one of its numerical ids
1660 * find_task_by_pid_ns():
1661 * finds a task by its pid in the specified namespace
1662 * find_task_by_vpid():
1663 * finds a task by its virtual pid
1665 * see also find_vpid() etc in include/linux/pid.h
1668 extern struct task_struct *find_task_by_vpid(pid_t nr);
1669 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1672 * find a task by its virtual pid and get the task struct
1674 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1676 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1677 extern int wake_up_process(struct task_struct *tsk);
1678 extern void wake_up_new_task(struct task_struct *tsk);
1681 extern void kick_process(struct task_struct *tsk);
1683 static inline void kick_process(struct task_struct *tsk) { }
1686 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1688 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1690 __set_task_comm(tsk, from, false);
1693 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1694 #define get_task_comm(buf, tsk) ({ \
1695 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1696 __get_task_comm(buf, sizeof(buf), tsk); \
1700 void scheduler_ipi(void);
1701 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1703 static inline void scheduler_ipi(void) { }
1704 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1711 * Set thread flags in other task's structures.
1712 * See asm/thread_info.h for TIF_xxxx flags available:
1714 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1716 set_ti_thread_flag(task_thread_info(tsk), flag);
1719 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1721 clear_ti_thread_flag(task_thread_info(tsk), flag);
1724 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1727 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1730 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1732 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1735 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1737 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1740 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1742 return test_ti_thread_flag(task_thread_info(tsk), flag);
1745 static inline void set_tsk_need_resched(struct task_struct *tsk)
1747 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1750 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1752 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1755 static inline int test_tsk_need_resched(struct task_struct *tsk)
1757 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1761 * cond_resched() and cond_resched_lock(): latency reduction via
1762 * explicit rescheduling in places that are safe. The return
1763 * value indicates whether a reschedule was done in fact.
1764 * cond_resched_lock() will drop the spinlock before scheduling,
1766 #ifndef CONFIG_PREEMPTION
1767 extern int _cond_resched(void);
1769 static inline int _cond_resched(void) { return 0; }
1772 #define cond_resched() ({ \
1773 ___might_sleep(__FILE__, __LINE__, 0); \
1777 extern int __cond_resched_lock(spinlock_t *lock);
1779 #define cond_resched_lock(lock) ({ \
1780 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1781 __cond_resched_lock(lock); \
1784 static inline void cond_resched_rcu(void)
1786 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1794 * Does a critical section need to be broken due to another
1795 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1796 * but a general need for low latency)
1798 static inline int spin_needbreak(spinlock_t *lock)
1800 #ifdef CONFIG_PREEMPTION
1801 return spin_is_contended(lock);
1807 static __always_inline bool need_resched(void)
1809 return unlikely(tif_need_resched());
1813 * Wrappers for p->thread_info->cpu access. No-op on UP.
1817 static inline unsigned int task_cpu(const struct task_struct *p)
1819 #ifdef CONFIG_THREAD_INFO_IN_TASK
1820 return READ_ONCE(p->cpu);
1822 return READ_ONCE(task_thread_info(p)->cpu);
1826 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1830 static inline unsigned int task_cpu(const struct task_struct *p)
1835 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1839 #endif /* CONFIG_SMP */
1842 * In order to reduce various lock holder preemption latencies provide an
1843 * interface to see if a vCPU is currently running or not.
1845 * This allows us to terminate optimistic spin loops and block, analogous to
1846 * the native optimistic spin heuristic of testing if the lock owner task is
1849 #ifndef vcpu_is_preempted
1850 static inline bool vcpu_is_preempted(int cpu)
1856 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1857 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1859 #ifndef TASK_SIZE_OF
1860 #define TASK_SIZE_OF(tsk) TASK_SIZE
1866 * Map the event mask on the user-space ABI enum rseq_cs_flags
1867 * for direct mask checks.
1869 enum rseq_event_mask_bits {
1870 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1871 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1872 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1875 enum rseq_event_mask {
1876 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1877 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1878 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1881 static inline void rseq_set_notify_resume(struct task_struct *t)
1884 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1887 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1889 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1890 struct pt_regs *regs)
1893 __rseq_handle_notify_resume(ksig, regs);
1896 static inline void rseq_signal_deliver(struct ksignal *ksig,
1897 struct pt_regs *regs)
1900 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1902 rseq_handle_notify_resume(ksig, regs);
1905 /* rseq_preempt() requires preemption to be disabled. */
1906 static inline void rseq_preempt(struct task_struct *t)
1908 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1909 rseq_set_notify_resume(t);
1912 /* rseq_migrate() requires preemption to be disabled. */
1913 static inline void rseq_migrate(struct task_struct *t)
1915 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1916 rseq_set_notify_resume(t);
1920 * If parent process has a registered restartable sequences area, the
1921 * child inherits. Only applies when forking a process, not a thread.
1923 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1925 if (clone_flags & CLONE_THREAD) {
1928 t->rseq_event_mask = 0;
1930 t->rseq = current->rseq;
1931 t->rseq_sig = current->rseq_sig;
1932 t->rseq_event_mask = current->rseq_event_mask;
1936 static inline void rseq_execve(struct task_struct *t)
1940 t->rseq_event_mask = 0;
1945 static inline void rseq_set_notify_resume(struct task_struct *t)
1948 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1949 struct pt_regs *regs)
1952 static inline void rseq_signal_deliver(struct ksignal *ksig,
1953 struct pt_regs *regs)
1956 static inline void rseq_preempt(struct task_struct *t)
1959 static inline void rseq_migrate(struct task_struct *t)
1962 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1965 static inline void rseq_execve(struct task_struct *t)
1971 void __exit_umh(struct task_struct *tsk);
1973 static inline void exit_umh(struct task_struct *tsk)
1975 if (unlikely(tsk->flags & PF_UMH))
1979 #ifdef CONFIG_DEBUG_RSEQ
1981 void rseq_syscall(struct pt_regs *regs);
1985 static inline void rseq_syscall(struct pt_regs *regs)
1991 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1992 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1993 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1995 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1996 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1997 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1999 int sched_trace_rq_cpu(struct rq *rq);
2001 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);