2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
37 #include "extent_map.h"
39 #include "transaction.h"
40 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
79 struct list_head hash_list;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache;
87 * for scheduling work in the helper threads
89 struct btrfs_work work;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list;
108 * flags that tell us if it is safe to
109 * merge with this bio
113 /* size of each individual stripe on disk */
116 /* number of data stripes (no p/q) */
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
128 enum btrfs_rbio_ops operation;
130 /* first bad stripe */
133 /* second bad stripe (for raid6 use) */
138 * number of pages needed to represent the full
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
154 atomic_t stripes_pending;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page **stripe_pages;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page **bio_pages;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap;
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
210 if (info->stripe_hash_table)
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
223 table = vzalloc(table_size);
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
233 for (i = 0; i < num_entries; i++) {
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
252 * once the caching is done, we set the cache ready
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
262 ret = alloc_rbio_pages(rbio);
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
273 memcpy(d, s, PAGE_CACHE_SIZE);
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
283 * we hash on the first logical address of the stripe
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
287 u64 num = rbio->bbio->raid_map[0];
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
295 * shifting off the lower bits fixes things.
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
319 d = dest->stripe_pages[i];
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
333 * must be called with dest->rbio_list_lock held
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
356 * check the bit again under the hash table lock.
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
373 spin_lock(&rbio->bio_list_lock);
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
402 __free_raid_bio(rbio);
406 * prune a given rbio from the cache
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
410 struct btrfs_stripe_hash_table *table;
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
416 table = rbio->fs_info->stripe_hash_table;
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
424 * remove everything in the cache
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
428 struct btrfs_stripe_hash_table *table;
430 struct btrfs_raid_bio *rbio;
432 table = info->stripe_hash_table;
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
439 __remove_rbio_from_cache(rbio);
441 spin_unlock_irqrestore(&table->cache_lock, flags);
445 * remove all cached entries and free the hash table
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
450 if (!info->stripe_hash_table)
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
465 * If the size of the rbio cache is too big, we
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
470 struct btrfs_stripe_hash_table *table;
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
476 table = rbio->fs_info->stripe_hash_table;
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
492 spin_unlock(&rbio->bio_list_lock);
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
502 __remove_rbio_from_cache(found);
505 spin_unlock_irqrestore(&table->cache_lock, flags);
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
517 void *dest = pages[src_cnt];
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
537 unsigned long size = rbio->bio_list_bytes;
540 if (size != rbio->nr_data * rbio->stripe_len)
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbio's though, other functions
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
613 * helper to index into the pstripe
615 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
617 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
618 return rbio->stripe_pages[index];
622 * helper to index into the qstripe, returns null
623 * if there is no qstripe
625 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
627 if (rbio->nr_data + 1 == rbio->real_stripes)
630 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
632 return rbio->stripe_pages[index];
636 * The first stripe in the table for a logical address
637 * has the lock. rbios are added in one of three ways:
639 * 1) Nobody has the stripe locked yet. The rbio is given
640 * the lock and 0 is returned. The caller must start the IO
643 * 2) Someone has the stripe locked, but we're able to merge
644 * with the lock owner. The rbio is freed and the IO will
645 * start automatically along with the existing rbio. 1 is returned.
647 * 3) Someone has the stripe locked, but we're not able to merge.
648 * The rbio is added to the lock owner's plug list, or merged into
649 * an rbio already on the plug list. When the lock owner unlocks,
650 * the next rbio on the list is run and the IO is started automatically.
653 * If we return 0, the caller still owns the rbio and must continue with
654 * IO submission. If we return 1, the caller must assume the rbio has
655 * already been freed.
657 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
659 int bucket = rbio_bucket(rbio);
660 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
661 struct btrfs_raid_bio *cur;
662 struct btrfs_raid_bio *pending;
665 struct btrfs_raid_bio *freeit = NULL;
666 struct btrfs_raid_bio *cache_drop = NULL;
670 spin_lock_irqsave(&h->lock, flags);
671 list_for_each_entry(cur, &h->hash_list, hash_list) {
673 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
674 spin_lock(&cur->bio_list_lock);
676 /* can we steal this cached rbio's pages? */
677 if (bio_list_empty(&cur->bio_list) &&
678 list_empty(&cur->plug_list) &&
679 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
680 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
681 list_del_init(&cur->hash_list);
682 atomic_dec(&cur->refs);
684 steal_rbio(cur, rbio);
686 spin_unlock(&cur->bio_list_lock);
691 /* can we merge into the lock owner? */
692 if (rbio_can_merge(cur, rbio)) {
693 merge_rbio(cur, rbio);
694 spin_unlock(&cur->bio_list_lock);
702 * we couldn't merge with the running
703 * rbio, see if we can merge with the
704 * pending ones. We don't have to
705 * check for rmw_locked because there
706 * is no way they are inside finish_rmw
709 list_for_each_entry(pending, &cur->plug_list,
711 if (rbio_can_merge(pending, rbio)) {
712 merge_rbio(pending, rbio);
713 spin_unlock(&cur->bio_list_lock);
720 /* no merging, put us on the tail of the plug list,
721 * our rbio will be started with the currently
722 * running rbio unlocks
724 list_add_tail(&rbio->plug_list, &cur->plug_list);
725 spin_unlock(&cur->bio_list_lock);
731 atomic_inc(&rbio->refs);
732 list_add(&rbio->hash_list, &h->hash_list);
734 spin_unlock_irqrestore(&h->lock, flags);
736 remove_rbio_from_cache(cache_drop);
738 __free_raid_bio(freeit);
743 * called as rmw or parity rebuild is completed. If the plug list has more
744 * rbios waiting for this stripe, the next one on the list will be started
746 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
749 struct btrfs_stripe_hash *h;
753 bucket = rbio_bucket(rbio);
754 h = rbio->fs_info->stripe_hash_table->table + bucket;
756 if (list_empty(&rbio->plug_list))
759 spin_lock_irqsave(&h->lock, flags);
760 spin_lock(&rbio->bio_list_lock);
762 if (!list_empty(&rbio->hash_list)) {
764 * if we're still cached and there is no other IO
765 * to perform, just leave this rbio here for others
766 * to steal from later
768 if (list_empty(&rbio->plug_list) &&
769 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
771 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
772 BUG_ON(!bio_list_empty(&rbio->bio_list));
776 list_del_init(&rbio->hash_list);
777 atomic_dec(&rbio->refs);
780 * we use the plug list to hold all the rbios
781 * waiting for the chance to lock this stripe.
782 * hand the lock over to one of them.
784 if (!list_empty(&rbio->plug_list)) {
785 struct btrfs_raid_bio *next;
786 struct list_head *head = rbio->plug_list.next;
788 next = list_entry(head, struct btrfs_raid_bio,
791 list_del_init(&rbio->plug_list);
793 list_add(&next->hash_list, &h->hash_list);
794 atomic_inc(&next->refs);
795 spin_unlock(&rbio->bio_list_lock);
796 spin_unlock_irqrestore(&h->lock, flags);
798 if (next->operation == BTRFS_RBIO_READ_REBUILD)
799 async_read_rebuild(next);
800 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
801 steal_rbio(rbio, next);
802 async_read_rebuild(next);
803 } else if (next->operation == BTRFS_RBIO_WRITE) {
804 steal_rbio(rbio, next);
805 async_rmw_stripe(next);
806 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
807 steal_rbio(rbio, next);
808 async_scrub_parity(next);
813 * The barrier for this waitqueue_active is not needed,
814 * we're protected by h->lock and can't miss a wakeup.
816 } else if (waitqueue_active(&h->wait)) {
817 spin_unlock(&rbio->bio_list_lock);
818 spin_unlock_irqrestore(&h->lock, flags);
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
829 remove_rbio_from_cache(rbio);
832 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
836 WARN_ON(atomic_read(&rbio->refs) < 0);
837 if (!atomic_dec_and_test(&rbio->refs))
840 WARN_ON(!list_empty(&rbio->stripe_cache));
841 WARN_ON(!list_empty(&rbio->hash_list));
842 WARN_ON(!bio_list_empty(&rbio->bio_list));
844 for (i = 0; i < rbio->nr_pages; i++) {
845 if (rbio->stripe_pages[i]) {
846 __free_page(rbio->stripe_pages[i]);
847 rbio->stripe_pages[i] = NULL;
851 btrfs_put_bbio(rbio->bbio);
855 static void free_raid_bio(struct btrfs_raid_bio *rbio)
858 __free_raid_bio(rbio);
862 * this frees the rbio and runs through all the bios in the
863 * bio_list and calls end_io on them
865 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
867 struct bio *cur = bio_list_get(&rbio->bio_list);
870 if (rbio->generic_bio_cnt)
871 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
885 * end io function used by finish_rmw. When we finally
886 * get here, we've written a full stripe
888 static void raid_write_end_io(struct bio *bio)
890 struct btrfs_raid_bio *rbio = bio->bi_private;
891 int err = bio->bi_error;
894 fail_bio_stripe(rbio, bio);
898 if (!atomic_dec_and_test(&rbio->stripes_pending))
903 /* OK, we have read all the stripes we need to. */
904 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
907 rbio_orig_end_io(rbio, err);
911 * the read/modify/write code wants to use the original bio for
912 * any pages it included, and then use the rbio for everything
913 * else. This function decides if a given index (stripe number)
914 * and page number in that stripe fall inside the original bio
917 * if you set bio_list_only, you'll get a NULL back for any ranges
918 * that are outside the bio_list
920 * This doesn't take any refs on anything, you get a bare page pointer
921 * and the caller must bump refs as required.
923 * You must call index_rbio_pages once before you can trust
924 * the answers from this function.
926 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
927 int index, int pagenr, int bio_list_only)
930 struct page *p = NULL;
932 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
934 spin_lock_irq(&rbio->bio_list_lock);
935 p = rbio->bio_pages[chunk_page];
936 spin_unlock_irq(&rbio->bio_list_lock);
938 if (p || bio_list_only)
941 return rbio->stripe_pages[chunk_page];
945 * number of pages we need for the entire stripe across all the
948 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
950 unsigned long nr = stripe_len * nr_stripes;
951 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
955 * allocation and initial setup for the btrfs_raid_bio. Not
956 * this does not allocate any pages for rbio->pages.
958 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
959 struct btrfs_bio *bbio, u64 stripe_len)
961 struct btrfs_raid_bio *rbio;
963 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
964 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
965 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
968 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
969 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
972 return ERR_PTR(-ENOMEM);
974 bio_list_init(&rbio->bio_list);
975 INIT_LIST_HEAD(&rbio->plug_list);
976 spin_lock_init(&rbio->bio_list_lock);
977 INIT_LIST_HEAD(&rbio->stripe_cache);
978 INIT_LIST_HEAD(&rbio->hash_list);
980 rbio->fs_info = root->fs_info;
981 rbio->stripe_len = stripe_len;
982 rbio->nr_pages = num_pages;
983 rbio->real_stripes = real_stripes;
984 rbio->stripe_npages = stripe_npages;
987 atomic_set(&rbio->refs, 1);
988 atomic_set(&rbio->error, 0);
989 atomic_set(&rbio->stripes_pending, 0);
992 * the stripe_pages and bio_pages array point to the extra
993 * memory we allocated past the end of the rbio
996 rbio->stripe_pages = p;
997 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
998 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1000 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1001 nr_data = real_stripes - 1;
1002 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1003 nr_data = real_stripes - 2;
1007 rbio->nr_data = nr_data;
1011 /* allocate pages for all the stripes in the bio, including parity */
1012 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1017 for (i = 0; i < rbio->nr_pages; i++) {
1018 if (rbio->stripe_pages[i])
1020 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1023 rbio->stripe_pages[i] = page;
1024 ClearPageUptodate(page);
1029 /* allocate pages for just the p/q stripes */
1030 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1035 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1037 for (; i < rbio->nr_pages; i++) {
1038 if (rbio->stripe_pages[i])
1040 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043 rbio->stripe_pages[i] = page;
1049 * add a single page from a specific stripe into our list of bios for IO
1050 * this will try to merge into existing bios if possible, and returns
1051 * zero if all went well.
1053 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1054 struct bio_list *bio_list,
1057 unsigned long page_index,
1058 unsigned long bio_max_len)
1060 struct bio *last = bio_list->tail;
1064 struct btrfs_bio_stripe *stripe;
1067 stripe = &rbio->bbio->stripes[stripe_nr];
1068 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1070 /* if the device is missing, just fail this stripe */
1071 if (!stripe->dev->bdev)
1072 return fail_rbio_index(rbio, stripe_nr);
1074 /* see if we can add this page onto our existing bio */
1076 last_end = (u64)last->bi_iter.bi_sector << 9;
1077 last_end += last->bi_iter.bi_size;
1080 * we can't merge these if they are from different
1081 * devices or if they are not contiguous
1083 if (last_end == disk_start && stripe->dev->bdev &&
1085 last->bi_bdev == stripe->dev->bdev) {
1086 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1087 if (ret == PAGE_CACHE_SIZE)
1092 /* put a new bio on the list */
1093 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1097 bio->bi_iter.bi_size = 0;
1098 bio->bi_bdev = stripe->dev->bdev;
1099 bio->bi_iter.bi_sector = disk_start >> 9;
1101 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1102 bio_list_add(bio_list, bio);
1107 * while we're doing the read/modify/write cycle, we could
1108 * have errors in reading pages off the disk. This checks
1109 * for errors and if we're not able to read the page it'll
1110 * trigger parity reconstruction. The rmw will be finished
1111 * after we've reconstructed the failed stripes
1113 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1115 if (rbio->faila >= 0 || rbio->failb >= 0) {
1116 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1117 __raid56_parity_recover(rbio);
1124 * these are just the pages from the rbio array, not from anything
1125 * the FS sent down to us
1127 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1130 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1132 return rbio->stripe_pages[index];
1136 * helper function to walk our bio list and populate the bio_pages array with
1137 * the result. This seems expensive, but it is faster than constantly
1138 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * This must be called before you trust the answers from page_in_rbio
1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1147 unsigned long stripe_offset;
1148 unsigned long page_index;
1152 spin_lock_irq(&rbio->bio_list_lock);
1153 bio_list_for_each(bio, &rbio->bio_list) {
1154 start = (u64)bio->bi_iter.bi_sector << 9;
1155 stripe_offset = start - rbio->bbio->raid_map[0];
1156 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1158 for (i = 0; i < bio->bi_vcnt; i++) {
1159 p = bio->bi_io_vec[i].bv_page;
1160 rbio->bio_pages[page_index + i] = p;
1163 spin_unlock_irq(&rbio->bio_list_lock);
1167 * this is called from one of two situations. We either
1168 * have a full stripe from the higher layers, or we've read all
1169 * the missing bits off disk.
1171 * This will calculate the parity and then send down any
1174 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176 struct btrfs_bio *bbio = rbio->bbio;
1177 void *pointers[rbio->real_stripes];
1178 int stripe_len = rbio->stripe_len;
1179 int nr_data = rbio->nr_data;
1184 struct bio_list bio_list;
1186 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1189 bio_list_init(&bio_list);
1191 if (rbio->real_stripes - rbio->nr_data == 1) {
1192 p_stripe = rbio->real_stripes - 1;
1193 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1194 p_stripe = rbio->real_stripes - 2;
1195 q_stripe = rbio->real_stripes - 1;
1200 /* at this point we either have a full stripe,
1201 * or we've read the full stripe from the drive.
1202 * recalculate the parity and write the new results.
1204 * We're not allowed to add any new bios to the
1205 * bio list here, anyone else that wants to
1206 * change this stripe needs to do their own rmw.
1208 spin_lock_irq(&rbio->bio_list_lock);
1209 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1210 spin_unlock_irq(&rbio->bio_list_lock);
1212 atomic_set(&rbio->error, 0);
1215 * now that we've set rmw_locked, run through the
1216 * bio list one last time and map the page pointers
1218 * We don't cache full rbios because we're assuming
1219 * the higher layers are unlikely to use this area of
1220 * the disk again soon. If they do use it again,
1221 * hopefully they will send another full bio.
1223 index_rbio_pages(rbio);
1224 if (!rbio_is_full(rbio))
1225 cache_rbio_pages(rbio);
1227 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1229 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1231 /* first collect one page from each data stripe */
1232 for (stripe = 0; stripe < nr_data; stripe++) {
1233 p = page_in_rbio(rbio, stripe, pagenr, 0);
1234 pointers[stripe] = kmap(p);
1237 /* then add the parity stripe */
1238 p = rbio_pstripe_page(rbio, pagenr);
1240 pointers[stripe++] = kmap(p);
1242 if (q_stripe != -1) {
1245 * raid6, add the qstripe and call the
1246 * library function to fill in our p/q
1248 p = rbio_qstripe_page(rbio, pagenr);
1250 pointers[stripe++] = kmap(p);
1252 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1256 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1257 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1261 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1262 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1266 * time to start writing. Make bios for everything from the
1267 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1270 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1271 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1273 if (stripe < rbio->nr_data) {
1274 page = page_in_rbio(rbio, stripe, pagenr, 1);
1278 page = rbio_stripe_page(rbio, stripe, pagenr);
1281 ret = rbio_add_io_page(rbio, &bio_list,
1282 page, stripe, pagenr, rbio->stripe_len);
1288 if (likely(!bbio->num_tgtdevs))
1291 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1292 if (!bbio->tgtdev_map[stripe])
1295 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1297 if (stripe < rbio->nr_data) {
1298 page = page_in_rbio(rbio, stripe, pagenr, 1);
1302 page = rbio_stripe_page(rbio, stripe, pagenr);
1305 ret = rbio_add_io_page(rbio, &bio_list, page,
1306 rbio->bbio->tgtdev_map[stripe],
1307 pagenr, rbio->stripe_len);
1314 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1315 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1318 bio = bio_list_pop(&bio_list);
1322 bio->bi_private = rbio;
1323 bio->bi_end_io = raid_write_end_io;
1324 submit_bio(WRITE, bio);
1329 rbio_orig_end_io(rbio, -EIO);
1333 * helper to find the stripe number for a given bio. Used to figure out which
1334 * stripe has failed. This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1337 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1340 u64 physical = bio->bi_iter.bi_sector;
1343 struct btrfs_bio_stripe *stripe;
1347 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1348 stripe = &rbio->bbio->stripes[i];
1349 stripe_start = stripe->physical;
1350 if (physical >= stripe_start &&
1351 physical < stripe_start + rbio->stripe_len &&
1352 bio->bi_bdev == stripe->dev->bdev) {
1360 * helper to find the stripe number for a given
1361 * bio (before mapping). Used to figure out which stripe has
1362 * failed. This looks up based on logical block numbers.
1364 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1367 u64 logical = bio->bi_iter.bi_sector;
1373 for (i = 0; i < rbio->nr_data; i++) {
1374 stripe_start = rbio->bbio->raid_map[i];
1375 if (logical >= stripe_start &&
1376 logical < stripe_start + rbio->stripe_len) {
1384 * returns -EIO if we had too many failures
1386 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1388 unsigned long flags;
1391 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1393 /* we already know this stripe is bad, move on */
1394 if (rbio->faila == failed || rbio->failb == failed)
1397 if (rbio->faila == -1) {
1398 /* first failure on this rbio */
1399 rbio->faila = failed;
1400 atomic_inc(&rbio->error);
1401 } else if (rbio->failb == -1) {
1402 /* second failure on this rbio */
1403 rbio->failb = failed;
1404 atomic_inc(&rbio->error);
1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1415 * helper to fail a stripe based on a physical disk
1418 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1421 int failed = find_bio_stripe(rbio, bio);
1426 return fail_rbio_index(rbio, failed);
1430 * this sets each page in the bio uptodate. It should only be used on private
1431 * rbio pages, nothing that comes in from the higher layers
1433 static void set_bio_pages_uptodate(struct bio *bio)
1438 for (i = 0; i < bio->bi_vcnt; i++) {
1439 p = bio->bi_io_vec[i].bv_page;
1445 * end io for the read phase of the rmw cycle. All the bios here are physical
1446 * stripe bios we've read from the disk so we can recalculate the parity of the
1449 * This will usually kick off finish_rmw once all the bios are read in, but it
1450 * may trigger parity reconstruction if we had any errors along the way
1452 static void raid_rmw_end_io(struct bio *bio)
1454 struct btrfs_raid_bio *rbio = bio->bi_private;
1457 fail_bio_stripe(rbio, bio);
1459 set_bio_pages_uptodate(bio);
1463 if (!atomic_dec_and_test(&rbio->stripes_pending))
1466 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1470 * this will normally call finish_rmw to start our write
1471 * but if there are any failed stripes we'll reconstruct
1474 validate_rbio_for_rmw(rbio);
1479 rbio_orig_end_io(rbio, -EIO);
1482 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1484 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1485 rmw_work, NULL, NULL);
1487 btrfs_queue_work(rbio->fs_info->rmw_workers,
1491 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1493 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1494 read_rebuild_work, NULL, NULL);
1496 btrfs_queue_work(rbio->fs_info->rmw_workers,
1501 * the stripe must be locked by the caller. It will
1502 * unlock after all the writes are done
1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1506 int bios_to_read = 0;
1507 struct bio_list bio_list;
1509 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1514 bio_list_init(&bio_list);
1516 ret = alloc_rbio_pages(rbio);
1520 index_rbio_pages(rbio);
1522 atomic_set(&rbio->error, 0);
1524 * build a list of bios to read all the missing parts of this
1527 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1528 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1531 * we want to find all the pages missing from
1532 * the rbio and read them from the disk. If
1533 * page_in_rbio finds a page in the bio list
1534 * we don't need to read it off the stripe.
1536 page = page_in_rbio(rbio, stripe, pagenr, 1);
1540 page = rbio_stripe_page(rbio, stripe, pagenr);
1542 * the bio cache may have handed us an uptodate
1543 * page. If so, be happy and use it
1545 if (PageUptodate(page))
1548 ret = rbio_add_io_page(rbio, &bio_list, page,
1549 stripe, pagenr, rbio->stripe_len);
1555 bios_to_read = bio_list_size(&bio_list);
1556 if (!bios_to_read) {
1558 * this can happen if others have merged with
1559 * us, it means there is nothing left to read.
1560 * But if there are missing devices it may not be
1561 * safe to do the full stripe write yet.
1567 * the bbio may be freed once we submit the last bio. Make sure
1568 * not to touch it after that
1570 atomic_set(&rbio->stripes_pending, bios_to_read);
1572 bio = bio_list_pop(&bio_list);
1576 bio->bi_private = rbio;
1577 bio->bi_end_io = raid_rmw_end_io;
1579 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1580 BTRFS_WQ_ENDIO_RAID56);
1582 submit_bio(READ, bio);
1584 /* the actual write will happen once the reads are done */
1588 rbio_orig_end_io(rbio, -EIO);
1592 validate_rbio_for_rmw(rbio);
1597 * if the upper layers pass in a full stripe, we thank them by only allocating
1598 * enough pages to hold the parity, and sending it all down quickly.
1600 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1604 ret = alloc_rbio_parity_pages(rbio);
1606 __free_raid_bio(rbio);
1610 ret = lock_stripe_add(rbio);
1617 * partial stripe writes get handed over to async helpers.
1618 * We're really hoping to merge a few more writes into this
1619 * rbio before calculating new parity
1621 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1625 ret = lock_stripe_add(rbio);
1627 async_rmw_stripe(rbio);
1632 * sometimes while we were reading from the drive to
1633 * recalculate parity, enough new bios come into create
1634 * a full stripe. So we do a check here to see if we can
1635 * go directly to finish_rmw
1637 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1639 /* head off into rmw land if we don't have a full stripe */
1640 if (!rbio_is_full(rbio))
1641 return partial_stripe_write(rbio);
1642 return full_stripe_write(rbio);
1646 * We use plugging call backs to collect full stripes.
1647 * Any time we get a partial stripe write while plugged
1648 * we collect it into a list. When the unplug comes down,
1649 * we sort the list by logical block number and merge
1650 * everything we can into the same rbios
1652 struct btrfs_plug_cb {
1653 struct blk_plug_cb cb;
1654 struct btrfs_fs_info *info;
1655 struct list_head rbio_list;
1656 struct btrfs_work work;
1660 * rbios on the plug list are sorted for easier merging.
1662 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1664 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1666 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1668 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1669 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1671 if (a_sector < b_sector)
1673 if (a_sector > b_sector)
1678 static void run_plug(struct btrfs_plug_cb *plug)
1680 struct btrfs_raid_bio *cur;
1681 struct btrfs_raid_bio *last = NULL;
1684 * sort our plug list then try to merge
1685 * everything we can in hopes of creating full
1688 list_sort(NULL, &plug->rbio_list, plug_cmp);
1689 while (!list_empty(&plug->rbio_list)) {
1690 cur = list_entry(plug->rbio_list.next,
1691 struct btrfs_raid_bio, plug_list);
1692 list_del_init(&cur->plug_list);
1694 if (rbio_is_full(cur)) {
1695 /* we have a full stripe, send it down */
1696 full_stripe_write(cur);
1700 if (rbio_can_merge(last, cur)) {
1701 merge_rbio(last, cur);
1702 __free_raid_bio(cur);
1706 __raid56_parity_write(last);
1711 __raid56_parity_write(last);
1717 * if the unplug comes from schedule, we have to push the
1718 * work off to a helper thread
1720 static void unplug_work(struct btrfs_work *work)
1722 struct btrfs_plug_cb *plug;
1723 plug = container_of(work, struct btrfs_plug_cb, work);
1727 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1729 struct btrfs_plug_cb *plug;
1730 plug = container_of(cb, struct btrfs_plug_cb, cb);
1732 if (from_schedule) {
1733 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1734 unplug_work, NULL, NULL);
1735 btrfs_queue_work(plug->info->rmw_workers,
1743 * our main entry point for writes from the rest of the FS.
1745 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1746 struct btrfs_bio *bbio, u64 stripe_len)
1748 struct btrfs_raid_bio *rbio;
1749 struct btrfs_plug_cb *plug = NULL;
1750 struct blk_plug_cb *cb;
1753 rbio = alloc_rbio(root, bbio, stripe_len);
1755 btrfs_put_bbio(bbio);
1756 return PTR_ERR(rbio);
1758 bio_list_add(&rbio->bio_list, bio);
1759 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1760 rbio->operation = BTRFS_RBIO_WRITE;
1762 btrfs_bio_counter_inc_noblocked(root->fs_info);
1763 rbio->generic_bio_cnt = 1;
1766 * don't plug on full rbios, just get them out the door
1767 * as quickly as we can
1769 if (rbio_is_full(rbio)) {
1770 ret = full_stripe_write(rbio);
1772 btrfs_bio_counter_dec(root->fs_info);
1776 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1779 plug = container_of(cb, struct btrfs_plug_cb, cb);
1781 plug->info = root->fs_info;
1782 INIT_LIST_HEAD(&plug->rbio_list);
1784 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1787 ret = __raid56_parity_write(rbio);
1789 btrfs_bio_counter_dec(root->fs_info);
1795 * all parity reconstruction happens here. We've read in everything
1796 * we can find from the drives and this does the heavy lifting of
1797 * sorting the good from the bad.
1799 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1803 int faila = -1, failb = -1;
1804 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1809 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1815 faila = rbio->faila;
1816 failb = rbio->failb;
1818 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1819 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1820 spin_lock_irq(&rbio->bio_list_lock);
1821 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1822 spin_unlock_irq(&rbio->bio_list_lock);
1825 index_rbio_pages(rbio);
1827 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1829 * Now we just use bitmap to mark the horizontal stripes in
1830 * which we have data when doing parity scrub.
1832 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1833 !test_bit(pagenr, rbio->dbitmap))
1836 /* setup our array of pointers with pages
1839 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1841 * if we're rebuilding a read, we have to use
1842 * pages from the bio list
1844 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1845 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1846 (stripe == faila || stripe == failb)) {
1847 page = page_in_rbio(rbio, stripe, pagenr, 0);
1849 page = rbio_stripe_page(rbio, stripe, pagenr);
1851 pointers[stripe] = kmap(page);
1854 /* all raid6 handling here */
1855 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1857 * single failure, rebuild from parity raid5
1861 if (faila == rbio->nr_data) {
1863 * Just the P stripe has failed, without
1864 * a bad data or Q stripe.
1865 * TODO, we should redo the xor here.
1871 * a single failure in raid6 is rebuilt
1872 * in the pstripe code below
1877 /* make sure our ps and qs are in order */
1878 if (faila > failb) {
1884 /* if the q stripe is failed, do a pstripe reconstruction
1886 * If both the q stripe and the P stripe are failed, we're
1887 * here due to a crc mismatch and we can't give them the
1890 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1891 if (rbio->bbio->raid_map[faila] ==
1897 * otherwise we have one bad data stripe and
1898 * a good P stripe. raid5!
1903 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1904 raid6_datap_recov(rbio->real_stripes,
1905 PAGE_SIZE, faila, pointers);
1907 raid6_2data_recov(rbio->real_stripes,
1908 PAGE_SIZE, faila, failb,
1914 /* rebuild from P stripe here (raid5 or raid6) */
1915 BUG_ON(failb != -1);
1917 /* Copy parity block into failed block to start with */
1918 memcpy(pointers[faila],
1919 pointers[rbio->nr_data],
1922 /* rearrange the pointer array */
1923 p = pointers[faila];
1924 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1925 pointers[stripe] = pointers[stripe + 1];
1926 pointers[rbio->nr_data - 1] = p;
1928 /* xor in the rest */
1929 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1931 /* if we're doing this rebuild as part of an rmw, go through
1932 * and set all of our private rbio pages in the
1933 * failed stripes as uptodate. This way finish_rmw will
1934 * know they can be trusted. If this was a read reconstruction,
1935 * other endio functions will fiddle the uptodate bits
1937 if (rbio->operation == BTRFS_RBIO_WRITE) {
1938 for (i = 0; i < nr_pages; i++) {
1940 page = rbio_stripe_page(rbio, faila, i);
1941 SetPageUptodate(page);
1944 page = rbio_stripe_page(rbio, failb, i);
1945 SetPageUptodate(page);
1949 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1951 * if we're rebuilding a read, we have to use
1952 * pages from the bio list
1954 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1955 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1956 (stripe == faila || stripe == failb)) {
1957 page = page_in_rbio(rbio, stripe, pagenr, 0);
1959 page = rbio_stripe_page(rbio, stripe, pagenr);
1970 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1972 cache_rbio_pages(rbio);
1974 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1976 rbio_orig_end_io(rbio, err);
1977 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1978 rbio_orig_end_io(rbio, err);
1979 } else if (err == 0) {
1983 if (rbio->operation == BTRFS_RBIO_WRITE)
1985 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1986 finish_parity_scrub(rbio, 0);
1990 rbio_orig_end_io(rbio, err);
1995 * This is called only for stripes we've read from disk to
1996 * reconstruct the parity.
1998 static void raid_recover_end_io(struct bio *bio)
2000 struct btrfs_raid_bio *rbio = bio->bi_private;
2003 * we only read stripe pages off the disk, set them
2004 * up to date if there were no errors
2007 fail_bio_stripe(rbio, bio);
2009 set_bio_pages_uptodate(bio);
2012 if (!atomic_dec_and_test(&rbio->stripes_pending))
2015 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2016 rbio_orig_end_io(rbio, -EIO);
2018 __raid_recover_end_io(rbio);
2022 * reads everything we need off the disk to reconstruct
2023 * the parity. endio handlers trigger final reconstruction
2024 * when the IO is done.
2026 * This is used both for reads from the higher layers and for
2027 * parity construction required to finish a rmw cycle.
2029 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2031 int bios_to_read = 0;
2032 struct bio_list bio_list;
2034 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2039 bio_list_init(&bio_list);
2041 ret = alloc_rbio_pages(rbio);
2045 atomic_set(&rbio->error, 0);
2048 * read everything that hasn't failed. Thanks to the
2049 * stripe cache, it is possible that some or all of these
2050 * pages are going to be uptodate.
2052 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2053 if (rbio->faila == stripe || rbio->failb == stripe) {
2054 atomic_inc(&rbio->error);
2058 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2062 * the rmw code may have already read this
2065 p = rbio_stripe_page(rbio, stripe, pagenr);
2066 if (PageUptodate(p))
2069 ret = rbio_add_io_page(rbio, &bio_list,
2070 rbio_stripe_page(rbio, stripe, pagenr),
2071 stripe, pagenr, rbio->stripe_len);
2077 bios_to_read = bio_list_size(&bio_list);
2078 if (!bios_to_read) {
2080 * we might have no bios to read just because the pages
2081 * were up to date, or we might have no bios to read because
2082 * the devices were gone.
2084 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2085 __raid_recover_end_io(rbio);
2093 * the bbio may be freed once we submit the last bio. Make sure
2094 * not to touch it after that
2096 atomic_set(&rbio->stripes_pending, bios_to_read);
2098 bio = bio_list_pop(&bio_list);
2102 bio->bi_private = rbio;
2103 bio->bi_end_io = raid_recover_end_io;
2105 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2106 BTRFS_WQ_ENDIO_RAID56);
2108 submit_bio(READ, bio);
2114 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2115 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2116 rbio_orig_end_io(rbio, -EIO);
2121 * the main entry point for reads from the higher layers. This
2122 * is really only called when the normal read path had a failure,
2123 * so we assume the bio they send down corresponds to a failed part
2126 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2127 struct btrfs_bio *bbio, u64 stripe_len,
2128 int mirror_num, int generic_io)
2130 struct btrfs_raid_bio *rbio;
2133 rbio = alloc_rbio(root, bbio, stripe_len);
2136 btrfs_put_bbio(bbio);
2137 return PTR_ERR(rbio);
2140 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2141 bio_list_add(&rbio->bio_list, bio);
2142 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2144 rbio->faila = find_logical_bio_stripe(rbio, bio);
2145 if (rbio->faila == -1) {
2148 btrfs_put_bbio(bbio);
2154 btrfs_bio_counter_inc_noblocked(root->fs_info);
2155 rbio->generic_bio_cnt = 1;
2157 btrfs_get_bbio(bbio);
2161 * reconstruct from the q stripe if they are
2162 * asking for mirror 3
2164 if (mirror_num == 3)
2165 rbio->failb = rbio->real_stripes - 2;
2167 ret = lock_stripe_add(rbio);
2170 * __raid56_parity_recover will end the bio with
2171 * any errors it hits. We don't want to return
2172 * its error value up the stack because our caller
2173 * will end up calling bio_endio with any nonzero
2177 __raid56_parity_recover(rbio);
2179 * our rbio has been added to the list of
2180 * rbios that will be handled after the
2181 * currently lock owner is done
2187 static void rmw_work(struct btrfs_work *work)
2189 struct btrfs_raid_bio *rbio;
2191 rbio = container_of(work, struct btrfs_raid_bio, work);
2192 raid56_rmw_stripe(rbio);
2195 static void read_rebuild_work(struct btrfs_work *work)
2197 struct btrfs_raid_bio *rbio;
2199 rbio = container_of(work, struct btrfs_raid_bio, work);
2200 __raid56_parity_recover(rbio);
2204 * The following code is used to scrub/replace the parity stripe
2206 * Note: We need make sure all the pages that add into the scrub/replace
2207 * raid bio are correct and not be changed during the scrub/replace. That
2208 * is those pages just hold metadata or file data with checksum.
2211 struct btrfs_raid_bio *
2212 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2213 struct btrfs_bio *bbio, u64 stripe_len,
2214 struct btrfs_device *scrub_dev,
2215 unsigned long *dbitmap, int stripe_nsectors)
2217 struct btrfs_raid_bio *rbio;
2220 rbio = alloc_rbio(root, bbio, stripe_len);
2223 bio_list_add(&rbio->bio_list, bio);
2225 * This is a special bio which is used to hold the completion handler
2226 * and make the scrub rbio is similar to the other types
2228 ASSERT(!bio->bi_iter.bi_size);
2229 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2231 for (i = 0; i < rbio->real_stripes; i++) {
2232 if (bbio->stripes[i].dev == scrub_dev) {
2238 /* Now we just support the sectorsize equals to page size */
2239 ASSERT(root->sectorsize == PAGE_SIZE);
2240 ASSERT(rbio->stripe_npages == stripe_nsectors);
2241 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2246 /* Used for both parity scrub and missing. */
2247 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2253 ASSERT(logical >= rbio->bbio->raid_map[0]);
2254 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2255 rbio->stripe_len * rbio->nr_data);
2256 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2257 index = stripe_offset >> PAGE_CACHE_SHIFT;
2258 rbio->bio_pages[index] = page;
2262 * We just scrub the parity that we have correct data on the same horizontal,
2263 * so we needn't allocate all pages for all the stripes.
2265 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2272 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2273 for (i = 0; i < rbio->real_stripes; i++) {
2274 index = i * rbio->stripe_npages + bit;
2275 if (rbio->stripe_pages[index])
2278 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2281 rbio->stripe_pages[index] = page;
2282 ClearPageUptodate(page);
2289 * end io function used by finish_rmw. When we finally
2290 * get here, we've written a full stripe
2292 static void raid_write_parity_end_io(struct bio *bio)
2294 struct btrfs_raid_bio *rbio = bio->bi_private;
2295 int err = bio->bi_error;
2298 fail_bio_stripe(rbio, bio);
2302 if (!atomic_dec_and_test(&rbio->stripes_pending))
2307 if (atomic_read(&rbio->error))
2310 rbio_orig_end_io(rbio, err);
2313 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2316 struct btrfs_bio *bbio = rbio->bbio;
2317 void *pointers[rbio->real_stripes];
2318 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2319 int nr_data = rbio->nr_data;
2324 struct page *p_page = NULL;
2325 struct page *q_page = NULL;
2326 struct bio_list bio_list;
2331 bio_list_init(&bio_list);
2333 if (rbio->real_stripes - rbio->nr_data == 1) {
2334 p_stripe = rbio->real_stripes - 1;
2335 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2336 p_stripe = rbio->real_stripes - 2;
2337 q_stripe = rbio->real_stripes - 1;
2342 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2344 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2348 * Because the higher layers(scrubber) are unlikely to
2349 * use this area of the disk again soon, so don't cache
2352 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2357 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2360 SetPageUptodate(p_page);
2362 if (q_stripe != -1) {
2363 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2365 __free_page(p_page);
2368 SetPageUptodate(q_page);
2371 atomic_set(&rbio->error, 0);
2373 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2376 /* first collect one page from each data stripe */
2377 for (stripe = 0; stripe < nr_data; stripe++) {
2378 p = page_in_rbio(rbio, stripe, pagenr, 0);
2379 pointers[stripe] = kmap(p);
2382 /* then add the parity stripe */
2383 pointers[stripe++] = kmap(p_page);
2385 if (q_stripe != -1) {
2388 * raid6, add the qstripe and call the
2389 * library function to fill in our p/q
2391 pointers[stripe++] = kmap(q_page);
2393 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2397 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2398 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2401 /* Check scrubbing pairty and repair it */
2402 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2404 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2405 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2407 /* Parity is right, needn't writeback */
2408 bitmap_clear(rbio->dbitmap, pagenr, 1);
2411 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2412 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2415 __free_page(p_page);
2417 __free_page(q_page);
2421 * time to start writing. Make bios for everything from the
2422 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2425 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2428 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2429 ret = rbio_add_io_page(rbio, &bio_list,
2430 page, rbio->scrubp, pagenr, rbio->stripe_len);
2438 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2441 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2442 ret = rbio_add_io_page(rbio, &bio_list, page,
2443 bbio->tgtdev_map[rbio->scrubp],
2444 pagenr, rbio->stripe_len);
2450 nr_data = bio_list_size(&bio_list);
2452 /* Every parity is right */
2453 rbio_orig_end_io(rbio, 0);
2457 atomic_set(&rbio->stripes_pending, nr_data);
2460 bio = bio_list_pop(&bio_list);
2464 bio->bi_private = rbio;
2465 bio->bi_end_io = raid_write_parity_end_io;
2466 submit_bio(WRITE, bio);
2471 rbio_orig_end_io(rbio, -EIO);
2474 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2476 if (stripe >= 0 && stripe < rbio->nr_data)
2482 * While we're doing the parity check and repair, we could have errors
2483 * in reading pages off the disk. This checks for errors and if we're
2484 * not able to read the page it'll trigger parity reconstruction. The
2485 * parity scrub will be finished after we've reconstructed the failed
2488 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2490 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2493 if (rbio->faila >= 0 || rbio->failb >= 0) {
2494 int dfail = 0, failp = -1;
2496 if (is_data_stripe(rbio, rbio->faila))
2498 else if (is_parity_stripe(rbio->faila))
2499 failp = rbio->faila;
2501 if (is_data_stripe(rbio, rbio->failb))
2503 else if (is_parity_stripe(rbio->failb))
2504 failp = rbio->failb;
2507 * Because we can not use a scrubbing parity to repair
2508 * the data, so the capability of the repair is declined.
2509 * (In the case of RAID5, we can not repair anything)
2511 if (dfail > rbio->bbio->max_errors - 1)
2515 * If all data is good, only parity is correctly, just
2516 * repair the parity.
2519 finish_parity_scrub(rbio, 0);
2524 * Here means we got one corrupted data stripe and one
2525 * corrupted parity on RAID6, if the corrupted parity
2526 * is scrubbing parity, luckly, use the other one to repair
2527 * the data, or we can not repair the data stripe.
2529 if (failp != rbio->scrubp)
2532 __raid_recover_end_io(rbio);
2534 finish_parity_scrub(rbio, 1);
2539 rbio_orig_end_io(rbio, -EIO);
2543 * end io for the read phase of the rmw cycle. All the bios here are physical
2544 * stripe bios we've read from the disk so we can recalculate the parity of the
2547 * This will usually kick off finish_rmw once all the bios are read in, but it
2548 * may trigger parity reconstruction if we had any errors along the way
2550 static void raid56_parity_scrub_end_io(struct bio *bio)
2552 struct btrfs_raid_bio *rbio = bio->bi_private;
2555 fail_bio_stripe(rbio, bio);
2557 set_bio_pages_uptodate(bio);
2561 if (!atomic_dec_and_test(&rbio->stripes_pending))
2565 * this will normally call finish_rmw to start our write
2566 * but if there are any failed stripes we'll reconstruct
2569 validate_rbio_for_parity_scrub(rbio);
2572 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2574 int bios_to_read = 0;
2575 struct bio_list bio_list;
2581 ret = alloc_rbio_essential_pages(rbio);
2585 bio_list_init(&bio_list);
2587 atomic_set(&rbio->error, 0);
2589 * build a list of bios to read all the missing parts of this
2592 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2593 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2596 * we want to find all the pages missing from
2597 * the rbio and read them from the disk. If
2598 * page_in_rbio finds a page in the bio list
2599 * we don't need to read it off the stripe.
2601 page = page_in_rbio(rbio, stripe, pagenr, 1);
2605 page = rbio_stripe_page(rbio, stripe, pagenr);
2607 * the bio cache may have handed us an uptodate
2608 * page. If so, be happy and use it
2610 if (PageUptodate(page))
2613 ret = rbio_add_io_page(rbio, &bio_list, page,
2614 stripe, pagenr, rbio->stripe_len);
2620 bios_to_read = bio_list_size(&bio_list);
2621 if (!bios_to_read) {
2623 * this can happen if others have merged with
2624 * us, it means there is nothing left to read.
2625 * But if there are missing devices it may not be
2626 * safe to do the full stripe write yet.
2632 * the bbio may be freed once we submit the last bio. Make sure
2633 * not to touch it after that
2635 atomic_set(&rbio->stripes_pending, bios_to_read);
2637 bio = bio_list_pop(&bio_list);
2641 bio->bi_private = rbio;
2642 bio->bi_end_io = raid56_parity_scrub_end_io;
2644 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2645 BTRFS_WQ_ENDIO_RAID56);
2647 submit_bio(READ, bio);
2649 /* the actual write will happen once the reads are done */
2653 rbio_orig_end_io(rbio, -EIO);
2657 validate_rbio_for_parity_scrub(rbio);
2660 static void scrub_parity_work(struct btrfs_work *work)
2662 struct btrfs_raid_bio *rbio;
2664 rbio = container_of(work, struct btrfs_raid_bio, work);
2665 raid56_parity_scrub_stripe(rbio);
2668 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2670 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2671 scrub_parity_work, NULL, NULL);
2673 btrfs_queue_work(rbio->fs_info->rmw_workers,
2677 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2679 if (!lock_stripe_add(rbio))
2680 async_scrub_parity(rbio);
2683 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2685 struct btrfs_raid_bio *
2686 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2687 struct btrfs_bio *bbio, u64 length)
2689 struct btrfs_raid_bio *rbio;
2691 rbio = alloc_rbio(root, bbio, length);
2695 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2696 bio_list_add(&rbio->bio_list, bio);
2698 * This is a special bio which is used to hold the completion handler
2699 * and make the scrub rbio is similar to the other types
2701 ASSERT(!bio->bi_iter.bi_size);
2703 rbio->faila = find_logical_bio_stripe(rbio, bio);
2704 if (rbio->faila == -1) {
2713 static void missing_raid56_work(struct btrfs_work *work)
2715 struct btrfs_raid_bio *rbio;
2717 rbio = container_of(work, struct btrfs_raid_bio, work);
2718 __raid56_parity_recover(rbio);
2721 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2723 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2724 missing_raid56_work, NULL, NULL);
2726 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2729 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2731 if (!lock_stripe_add(rbio))
2732 async_missing_raid56(rbio);