1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
3 * core.h - DesignWare HS OTG Controller common declarations
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
41 #include <linux/acpi.h>
42 #include <linux/phy/phy.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/usb/otg.h>
46 #include <linux/usb/phy.h>
50 * Suggested defines for tracers:
51 * - no_printk: Disable tracing
52 * - pr_info: Print this info to the console
53 * - trace_printk: Print this info to trace buffer (good for verbose logging)
56 #define DWC2_TRACE_SCHEDULER no_printk
57 #define DWC2_TRACE_SCHEDULER_VB no_printk
59 /* Detailed scheduler tracing, but won't overwhelm console */
60 #define dwc2_sch_dbg(hsotg, fmt, ...) \
61 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
62 dev_name(hsotg->dev), ##__VA_ARGS__)
64 /* Verbose scheduler tracing */
65 #define dwc2_sch_vdbg(hsotg, fmt, ...) \
66 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
67 dev_name(hsotg->dev), ##__VA_ARGS__)
69 /* Maximum number of Endpoints/HostChannels */
70 #define MAX_EPS_CHANNELS 16
72 /* dwc2-hsotg declarations */
73 static const char * const dwc2_hsotg_supply_names[] = {
74 "vusb_d", /* digital USB supply, 1.2V */
75 "vusb_a", /* analog USB supply, 1.1V */
78 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
83 * Unfortunately there seems to be a limit of the amount of data that can
84 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
85 * packets (which practically means 1 packet and 63 bytes of data) when the
88 * This means if we are wanting to move >127 bytes of data, we need to
89 * split the transactions up, but just doing one packet at a time does
90 * not work (this may be an implicit DATA0 PID on first packet of the
91 * transaction) and doing 2 packets is outside the controller's limits.
93 * If we try to lower the MPS size for EP0, then no transfers work properly
94 * for EP0, and the system will fail basic enumeration. As no cause for this
95 * has currently been found, we cannot support any large IN transfers for
98 #define EP0_MPS_LIMIT 64
101 struct dwc2_hsotg_req;
104 * struct dwc2_hsotg_ep - driver endpoint definition.
105 * @ep: The gadget layer representation of the endpoint.
106 * @name: The driver generated name for the endpoint.
107 * @queue: Queue of requests for this endpoint.
108 * @parent: Reference back to the parent device structure.
109 * @req: The current request that the endpoint is processing. This is
110 * used to indicate an request has been loaded onto the endpoint
111 * and has yet to be completed (maybe due to data move, or simply
112 * awaiting an ack from the core all the data has been completed).
113 * @debugfs: File entry for debugfs file for this endpoint.
114 * @dir_in: Set to true if this endpoint is of the IN direction, which
115 * means that it is sending data to the Host.
116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
117 * @index: The index for the endpoint registers.
118 * @mc: Multi Count - number of transactions per microframe
119 * @interval: Interval for periodic endpoints, in frames or microframes.
120 * @name: The name array passed to the USB core.
121 * @halted: Set if the endpoint has been halted.
122 * @periodic: Set if this is a periodic ep, such as Interrupt
123 * @isochronous: Set if this is a isochronous ep
124 * @send_zlp: Set if we need to send a zero-length packet.
125 * @desc_list_dma: The DMA address of descriptor chain currently in use.
126 * @desc_list: Pointer to descriptor DMA chain head currently in use.
127 * @desc_count: Count of entries within the DMA descriptor chain of EP.
128 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
129 * @compl_desc: index of next descriptor to be completed by xFerComplete
130 * @total_data: The total number of data bytes done.
131 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
132 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
133 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
134 * @last_load: The offset of data for the last start of request.
135 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
136 * @target_frame: Targeted frame num to setup next ISOC transfer
137 * @frame_overrun: Indicates SOF number overrun in DSTS
139 * This is the driver's state for each registered endpoint, allowing it
140 * to keep track of transactions that need doing. Each endpoint has a
141 * lock to protect the state, to try and avoid using an overall lock
142 * for the host controller as much as possible.
144 * For periodic IN endpoints, we have fifo_size and fifo_load to try
145 * and keep track of the amount of data in the periodic FIFO for each
146 * of these as we don't have a status register that tells us how much
147 * is in each of them. (note, this may actually be useless information
148 * as in shared-fifo mode periodic in acts like a single-frame packet
149 * buffer than a fifo)
151 struct dwc2_hsotg_ep {
153 struct list_head queue;
154 struct dwc2_hsotg *parent;
155 struct dwc2_hsotg_req *req;
156 struct dentry *debugfs;
158 unsigned long total_data;
159 unsigned int size_loaded;
160 unsigned int last_load;
161 unsigned int fifo_load;
162 unsigned short fifo_size;
163 unsigned short fifo_index;
165 unsigned char dir_in;
166 unsigned char map_dir;
171 unsigned int halted:1;
172 unsigned int periodic:1;
173 unsigned int isochronous:1;
174 unsigned int send_zlp:1;
175 unsigned int target_frame;
176 #define TARGET_FRAME_INITIAL 0xFFFFFFFF
179 dma_addr_t desc_list_dma;
180 struct dwc2_dma_desc *desc_list;
183 unsigned int next_desc;
184 unsigned int compl_desc;
190 * struct dwc2_hsotg_req - data transfer request
191 * @req: The USB gadget request
192 * @queue: The list of requests for the endpoint this is queued for.
193 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
195 struct dwc2_hsotg_req {
196 struct usb_request req;
197 struct list_head queue;
201 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
202 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
203 #define call_gadget(_hs, _entry) \
205 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
206 (_hs)->driver && (_hs)->driver->_entry) { \
207 spin_unlock(&_hs->lock); \
208 (_hs)->driver->_entry(&(_hs)->gadget); \
209 spin_lock(&_hs->lock); \
213 #define call_gadget(_hs, _entry) do {} while (0)
217 struct dwc2_host_chan;
221 DWC2_L0, /* On state */
222 DWC2_L1, /* LPM sleep state */
223 DWC2_L2, /* USB suspend state */
224 DWC2_L3, /* Off state */
227 /* Gadget ep0 states */
228 enum dwc2_ep0_state {
237 * struct dwc2_core_params - Parameters for configuring the core
239 * @otg_cap: Specifies the OTG capabilities.
240 * 0 - HNP and SRP capable
241 * 1 - SRP Only capable
242 * 2 - No HNP/SRP capable (always available)
243 * Defaults to best available option (0, 1, then 2)
244 * @host_dma: Specifies whether to use slave or DMA mode for accessing
245 * the data FIFOs. The driver will automatically detect the
246 * value for this parameter if none is specified.
247 * 0 - Slave (always available)
248 * 1 - DMA (default, if available)
249 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
250 * address DMA mode or descriptor DMA mode for accessing
251 * the data FIFOs. The driver will automatically detect the
252 * value for this if none is specified.
254 * 1 - Descriptor DMA (default, if available)
255 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
256 * address DMA mode or descriptor DMA mode for accessing
257 * the data FIFOs in Full Speed mode only. The driver
258 * will automatically detect the value for this if none is
261 * 1 - Descriptor DMA in FS (default, if available)
262 * @speed: Specifies the maximum speed of operation in host and
263 * device mode. The actual speed depends on the speed of
264 * the attached device and the value of phy_type.
266 * (default when phy_type is UTMI+ or ULPI)
268 * (default when phy_type is Full Speed)
269 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
270 * 1 - Allow dynamic FIFO sizing (default, if available)
271 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
272 * are enabled for non-periodic IN endpoints in device
274 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
275 * dynamic FIFO sizing is enabled
277 * Actual maximum value is autodetected and also
279 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
280 * in host mode when dynamic FIFO sizing is enabled
282 * Actual maximum value is autodetected and also
284 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
285 * host mode when dynamic FIFO sizing is enabled
287 * Actual maximum value is autodetected and also
289 * @max_transfer_size: The maximum transfer size supported, in bytes
291 * Actual maximum value is autodetected and also
293 * @max_packet_count: The maximum number of packets in a transfer
295 * Actual maximum value is autodetected and also
297 * @host_channels: The number of host channel registers to use
299 * Actual maximum value is autodetected and also
301 * @phy_type: Specifies the type of PHY interface to use. By default,
302 * the driver will automatically detect the phy_type.
306 * Defaults to best available option (2, 1, then 0)
307 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
308 * is applicable for a phy_type of UTMI+ or ULPI. (For a
309 * ULPI phy_type, this parameter indicates the data width
310 * between the MAC and the ULPI Wrapper.) Also, this
311 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
312 * parameter was set to "8 and 16 bits", meaning that the
313 * core has been configured to work at either data path
315 * 8 or 16 (default 16 if available)
316 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
317 * data rate. This parameter is only applicable if phy_type
319 * 0 - single data rate ULPI interface with 8 bit wide
321 * 1 - double data rate ULPI interface with 4 bit wide
323 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
324 * external supply to drive the VBus
325 * 0 - Internal supply (default)
326 * 1 - External supply
327 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
328 * speed PHY. This parameter is only applicable if phy_type
332 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled.
333 * 0 - Disable (default)
335 * @acg_enable: For enabling Active Clock Gating in the controller
338 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
341 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
342 * when attached to a Full Speed or Low Speed device in
344 * 0 - Don't support low power mode (default)
345 * 1 - Support low power mode
346 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
347 * when connected to a Low Speed device in host
348 * mode. This parameter is applicable only if
349 * host_support_fs_ls_low_power is enabled.
351 * (default when phy_type is UTMI+ or ULPI)
353 * (default when phy_type is Full Speed)
354 * @oc_disable: Flag to disable overcurrent condition.
355 * 0 - Allow overcurrent condition to get detected
356 * 1 - Disable overcurrent condtion to get detected
357 * @ts_dline: Enable Term Select Dline pulsing
360 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
361 * 0 - No (default for core < 2.92a)
362 * 1 - Yes (default for core >= 2.92a)
363 * @ahbcfg: This field allows the default value of the GAHBCFG
364 * register to be overridden
365 * -1 - GAHBCFG value will be set to 0x06
367 * all others - GAHBCFG value will be overridden with
369 * Not all bits can be controlled like this, the
370 * bits defined by GAHBCFG_CTRL_MASK are controlled
371 * by the driver and are ignored in this
372 * configuration value.
373 * @uframe_sched: True to enable the microframe scheduler
374 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
375 * Disable CONIDSTSCHNG controller interrupt in such
379 * @power_down: Specifies whether the controller support power_down.
380 * If power_down is enabled, the controller will enter
381 * power_down in both peripheral and host mode when
384 * 1 - Partial power down
386 * @lpm: Enable LPM support.
389 * @lpm_clock_gating: Enable core PHY clock gating.
392 * @besl: Enable LPM Errata support.
395 * @hird_threshold_en: HIRD or HIRD Threshold enable.
398 * @hird_threshold: Value of BESL or HIRD Threshold.
399 * @ref_clk_per: Indicates in terms of pico seconds the period
406 * 33333 - 30MHz (default)
408 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
409 * the controller should generate an interrupt if the
410 * device had been in L1 state until that period.
411 * This is used by SW to initiate Remote WakeUp in the
412 * controller so as to sync to the uF number from the host.
413 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
415 * 0 - Deactivate the transceiver (default)
416 * 1 - Activate the transceiver
417 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
418 * detection using GGPIO register.
419 * 0 - Deactivate the external level detection (default)
420 * 1 - Activate the external level detection
421 * @g_dma: Enables gadget dma usage (default: autodetect).
422 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
423 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
424 * DWORDS from 16-32768 (default: 2048 if
425 * possible, otherwise autodetect).
426 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
427 * DWORDS from 16-32768 (default: 1024 if
428 * possible, otherwise autodetect).
429 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
430 * mode. Each value corresponds to one EP
431 * starting from EP1 (max 15 values). Sizes are
432 * in DWORDS with possible values from
433 * 16-32768 (default: 256, 256, 256, 256, 768,
434 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
435 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
436 * while full&low speed device connect. And change speed
437 * back to DWC2_SPEED_PARAM_HIGH while device is gone.
440 * @service_interval: Enable service interval based scheduling.
444 * The following parameters may be specified when starting the module. These
445 * parameters define how the DWC_otg controller should be configured. A
446 * value of -1 (or any other out of range value) for any parameter means
447 * to read the value from hardware (if possible) or use the builtin
448 * default described above.
450 struct dwc2_core_params {
452 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
453 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
454 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
457 #define DWC2_PHY_TYPE_PARAM_FS 0
458 #define DWC2_PHY_TYPE_PARAM_UTMI 1
459 #define DWC2_PHY_TYPE_PARAM_ULPI 2
462 #define DWC2_SPEED_PARAM_HIGH 0
463 #define DWC2_SPEED_PARAM_FULL 1
464 #define DWC2_SPEED_PARAM_LOW 2
468 bool phy_ulpi_ext_vbus;
469 bool enable_dynamic_fifo;
470 bool en_multiple_tx_fifo;
477 bool external_id_pin_ctl;
480 #define DWC2_POWER_DOWN_PARAM_NONE 0
481 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1
482 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2
485 bool lpm_clock_gating;
487 bool hird_threshold_en;
488 bool service_interval;
490 bool activate_stm_fs_transceiver;
491 bool activate_stm_id_vb_detection;
493 u16 max_packet_count;
494 u32 max_transfer_size;
497 /* GREFCLK parameters */
499 u16 sof_cnt_wkup_alert;
501 /* Host parameters */
503 bool dma_desc_enable;
504 bool dma_desc_fs_enable;
505 bool host_support_fs_ls_low_power;
506 bool host_ls_low_power_phy_clk;
510 u16 host_rx_fifo_size;
511 u16 host_nperio_tx_fifo_size;
512 u16 host_perio_tx_fifo_size;
514 /* Gadget parameters */
518 u32 g_np_tx_fifo_size;
519 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
521 bool change_speed_quirk;
525 * struct dwc2_hw_params - Autodetected parameters.
527 * These parameters are the various parameters read from hardware
528 * registers during initialization. They typically contain the best
529 * supported or maximum value that can be configured in the
530 * corresponding dwc2_core_params value.
532 * The values that are not in dwc2_core_params are documented below.
534 * @op_mode: Mode of Operation
535 * 0 - HNP- and SRP-Capable OTG (Host & Device)
536 * 1 - SRP-Capable OTG (Host & Device)
537 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
538 * 3 - SRP-Capable Device
540 * 5 - SRP-Capable Host
542 * @arch: Architecture
546 * @ipg_isoc_en: This feature indicates that the controller supports
547 * the worst-case scenario of Rx followed by Rx
548 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi
549 * specification for any token following ISOC OUT token.
552 * @power_optimized: Are power optimizations enabled?
553 * @num_dev_ep: Number of device endpoints available
554 * @num_dev_in_eps: Number of device IN endpoints available
555 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
557 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue
560 * @host_perio_tx_q_depth:
561 * Host Mode Periodic Request Queue Depth
563 * @nperio_tx_q_depth:
564 * Non-Periodic Request Queue Depth
566 * @hs_phy_type: High-speed PHY interface type
567 * 0 - High-speed interface not supported
571 * @fs_phy_type: Full-speed PHY interface type
572 * 0 - Full speed interface not supported
573 * 1 - Dedicated full speed interface
574 * 2 - FS pins shared with UTMI+ pins
575 * 3 - FS pins shared with ULPI pins
576 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
577 * @hibernation: Is hibernation enabled?
578 * @utmi_phy_data_width: UTMI+ PHY data width
582 * @snpsid: Value from SNPSID register
583 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
584 * @g_tx_fifo_size: Power-on values of TxFIFO sizes
585 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
586 * address DMA mode or descriptor DMA mode for accessing
587 * the data FIFOs. The driver will automatically detect the
588 * value for this if none is specified.
590 * 1 - Descriptor DMA (default, if available)
591 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
592 * 1 - Allow dynamic FIFO sizing (default, if available)
593 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
594 * are enabled for non-periodic IN endpoints in device
596 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
597 * in host mode when dynamic FIFO sizing is enabled
599 * Actual maximum value is autodetected and also
601 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
602 * host mode when dynamic FIFO sizing is enabled
604 * Actual maximum value is autodetected and also
606 * @max_transfer_size: The maximum transfer size supported, in bytes
608 * Actual maximum value is autodetected and also
610 * @max_packet_count: The maximum number of packets in a transfer
612 * Actual maximum value is autodetected and also
614 * @host_channels: The number of host channel registers to use
616 * Actual maximum value is autodetected and also
618 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
619 * in device mode when dynamic FIFO sizing is enabled
621 * Actual maximum value is autodetected and also
623 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
624 * speed PHY. This parameter is only applicable if phy_type
628 * @acg_enable: For enabling Active Clock Gating in the controller
631 * @lpm_mode: For enabling Link Power Management in the controller
634 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic
635 * FIFO sizing is enabled 16 to 32768
636 * Actual maximum value is autodetected and also
638 * @service_interval_mode: For enabling service interval based scheduling in the
643 struct dwc2_hw_params {
646 unsigned dma_desc_enable:1;
647 unsigned enable_dynamic_fifo:1;
648 unsigned en_multiple_tx_fifo:1;
649 unsigned rx_fifo_size:16;
650 unsigned host_nperio_tx_fifo_size:16;
651 unsigned dev_nperio_tx_fifo_size:16;
652 unsigned host_perio_tx_fifo_size:16;
653 unsigned nperio_tx_q_depth:3;
654 unsigned host_perio_tx_q_depth:3;
655 unsigned dev_token_q_depth:5;
656 unsigned max_transfer_size:26;
657 unsigned max_packet_count:11;
658 unsigned host_channels:5;
659 unsigned hs_phy_type:2;
660 unsigned fs_phy_type:2;
661 unsigned i2c_enable:1;
662 unsigned acg_enable:1;
663 unsigned num_dev_ep:4;
664 unsigned num_dev_in_eps : 4;
665 unsigned num_dev_perio_in_ep:4;
666 unsigned total_fifo_size:16;
667 unsigned power_optimized:1;
668 unsigned hibernation:1;
669 unsigned utmi_phy_data_width:2;
671 unsigned ipg_isoc_en:1;
672 unsigned service_interval_mode:1;
675 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
678 /* Size of control and EP0 buffers */
679 #define DWC2_CTRL_BUFF_SIZE 8
682 * struct dwc2_gregs_backup - Holds global registers state before
683 * entering partial power down
684 * @gotgctl: Backup of GOTGCTL register
685 * @gintmsk: Backup of GINTMSK register
686 * @gahbcfg: Backup of GAHBCFG register
687 * @gusbcfg: Backup of GUSBCFG register
688 * @grxfsiz: Backup of GRXFSIZ register
689 * @gnptxfsiz: Backup of GNPTXFSIZ register
690 * @gi2cctl: Backup of GI2CCTL register
691 * @glpmcfg: Backup of GLPMCFG register
692 * @gdfifocfg: Backup of GDFIFOCFG register
693 * @pcgcctl: Backup of PCGCCTL register
694 * @pcgcctl1: Backup of PCGCCTL1 register
695 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
696 * @gpwrdn: Backup of GPWRDN register
697 * @valid: True if registers values backuped.
699 struct dwc2_gregs_backup {
716 * struct dwc2_dregs_backup - Holds device registers state before
717 * entering partial power down
718 * @dcfg: Backup of DCFG register
719 * @dctl: Backup of DCTL register
720 * @daintmsk: Backup of DAINTMSK register
721 * @diepmsk: Backup of DIEPMSK register
722 * @doepmsk: Backup of DOEPMSK register
723 * @diepctl: Backup of DIEPCTL register
724 * @dieptsiz: Backup of DIEPTSIZ register
725 * @diepdma: Backup of DIEPDMA register
726 * @doepctl: Backup of DOEPCTL register
727 * @doeptsiz: Backup of DOEPTSIZ register
728 * @doepdma: Backup of DOEPDMA register
729 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
730 * @valid: True if registers values backuped.
732 struct dwc2_dregs_backup {
738 u32 diepctl[MAX_EPS_CHANNELS];
739 u32 dieptsiz[MAX_EPS_CHANNELS];
740 u32 diepdma[MAX_EPS_CHANNELS];
741 u32 doepctl[MAX_EPS_CHANNELS];
742 u32 doeptsiz[MAX_EPS_CHANNELS];
743 u32 doepdma[MAX_EPS_CHANNELS];
744 u32 dtxfsiz[MAX_EPS_CHANNELS];
749 * struct dwc2_hregs_backup - Holds host registers state before
750 * entering partial power down
751 * @hcfg: Backup of HCFG register
752 * @haintmsk: Backup of HAINTMSK register
753 * @hcintmsk: Backup of HCINTMSK register
754 * @hprt0: Backup of HPTR0 register
755 * @hfir: Backup of HFIR register
756 * @hptxfsiz: Backup of HPTXFSIZ register
757 * @valid: True if registers values backuped.
759 struct dwc2_hregs_backup {
762 u32 hcintmsk[MAX_EPS_CHANNELS];
770 * Constants related to high speed periodic scheduling
772 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
773 * reservation point of view it's assumed that the schedule goes right back to
774 * the beginning after the end of the schedule.
776 * What does that mean for scheduling things with a long interval? It means
777 * we'll reserve time for them in every possible microframe that they could
778 * ever be scheduled in. ...but we'll still only actually schedule them as
779 * often as they were requested.
781 * We keep our schedule in a "bitmap" structure. This simplifies having
782 * to keep track of and merge intervals: we just let the bitmap code do most
783 * of the heavy lifting. In a way scheduling is much like memory allocation.
785 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
786 * supposed to schedule for periodic transfers). That's according to spec.
788 * Note that though we only schedule 80% of each microframe, the bitmap that we
789 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
790 * space for each uFrame).
793 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
794 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
795 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
796 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
798 #define DWC2_US_PER_UFRAME 125
799 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
801 #define DWC2_HS_SCHEDULE_UFRAMES 8
802 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
803 DWC2_HS_PERIODIC_US_PER_UFRAME)
806 * Constants related to low speed scheduling
808 * For high speed we schedule every 1us. For low speed that's a bit overkill,
809 * so we make up a unit called a "slice" that's worth 25us. There are 40
810 * slices in a full frame and we can schedule 36 of those (90%) for periodic
813 * Our low speed schedule can be as short as 1 frame or could be longer. When
814 * we only schedule 1 frame it means that we'll need to reserve a time every
815 * frame even for things that only transfer very rarely, so something that runs
816 * every 2048 frames will get time reserved in every frame. Our low speed
817 * schedule can be longer and we'll be able to handle more overlap, but that
818 * will come at increased memory cost and increased time to schedule.
820 * Note: one other advantage of a short low speed schedule is that if we mess
821 * up and miss scheduling we can jump in and use any of the slots that we
822 * happened to reserve.
824 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
825 * the schedule. There will be one schedule per TT.
828 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
830 #define DWC2_US_PER_SLICE 25
831 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
833 #define DWC2_ROUND_US_TO_SLICE(us) \
834 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
837 #define DWC2_LS_PERIODIC_US_PER_FRAME \
839 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
840 (DWC2_LS_PERIODIC_US_PER_FRAME / \
843 #define DWC2_LS_SCHEDULE_FRAMES 1
844 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
845 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
848 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
849 * and periodic schedules
851 * These are common for both host and peripheral modes:
853 * @dev: The struct device pointer
854 * @regs: Pointer to controller regs
855 * @hw_params: Parameters that were autodetected from the
857 * @params: Parameters that define how the core should be configured
858 * @op_state: The operational State, during transitions (a_host=>
859 * a_peripheral and b_device=>b_host) this may not match
860 * the core, but allows the software to determine
862 * @dr_mode: Requested mode of operation, one of following:
863 * - USB_DR_MODE_PERIPHERAL
866 * @role_sw: usb_role_switch handle
867 * @hcd_enabled: Host mode sub-driver initialization indicator.
868 * @gadget_enabled: Peripheral mode sub-driver initialization indicator.
869 * @ll_hw_enabled: Status of low-level hardware resources.
870 * @hibernated: True if core is hibernated
871 * @in_ppd: True if core is partial power down mode.
872 * @bus_suspended: True if bus is suspended
873 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a
875 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
876 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at
877 * suspend if we need USB to wake us up.
878 * @frame_number: Frame number read from the core. For both device
879 * and host modes. The value ranges are from 0
880 * to HFNUM_MAX_FRNUM.
881 * @phy: The otg phy transceiver structure for phy control.
882 * @uphy: The otg phy transceiver structure for old USB phy
884 * @plat: The platform specific configuration data. This can be
885 * removed once all SoCs support usb transceiver.
886 * @supplies: Definition of USB power supplies
887 * @vbus_supply: Regulator supplying vbus.
888 * @usb33d: Optional 3.3v regulator used on some stm32 devices to
889 * supply ID and VBUS detection hardware.
890 * @lock: Spinlock that protects all the driver data structures
891 * @priv: Stores a pointer to the struct usb_hcd
892 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
893 * transfer are in process of being queued
894 * @srp_success: Stores status of SRP request in the case of a FS PHY
895 * with an I2C interface
896 * @wq_otg: Workqueue object used for handling of some interrupts
897 * @wf_otg: Work object for handling Connector ID Status Change
899 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
900 * @lx_state: Lx state of connected device
901 * @gr_backup: Backup of global registers during suspend
902 * @dr_backup: Backup of device registers during suspend
903 * @hr_backup: Backup of host registers during suspend
904 * @needs_byte_swap: Specifies whether the opposite endianness.
906 * These are for host mode:
908 * @flags: Flags for handling root port state changes
909 * @flags.d32: Contain all root port flags
910 * @flags.b: Separate root port flags from each other
911 * @flags.b.port_connect_status_change: True if root port connect status
913 * @flags.b.port_connect_status: True if device connected to root port
914 * @flags.b.port_reset_change: True if root port reset status changed
915 * @flags.b.port_enable_change: True if root port enable status changed
916 * @flags.b.port_suspend_change: True if root port suspend status changed
917 * @flags.b.port_over_current_change: True if root port over current state
919 * @flags.b.port_l1_change: True if root port l1 status changed
920 * @flags.b.reserved: Reserved bits of root port register
921 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
922 * Transfers associated with these QHs are not currently
923 * assigned to a host channel.
924 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
925 * Transfers associated with these QHs are currently
926 * assigned to a host channel.
927 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
928 * non-periodic schedule
929 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
930 * Transfers associated with these QHs are not currently
931 * assigned to a host channel.
932 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
933 * list of QHs for periodic transfers that are _not_
934 * scheduled for the next frame. Each QH in the list has an
935 * interval counter that determines when it needs to be
936 * scheduled for execution. This scheduling mechanism
937 * allows only a simple calculation for periodic bandwidth
938 * used (i.e. must assume that all periodic transfers may
939 * need to execute in the same frame). However, it greatly
940 * simplifies scheduling and should be sufficient for the
941 * vast majority of OTG hosts, which need to connect to a
942 * small number of peripherals at one time. Items move from
943 * this list to periodic_sched_ready when the QH interval
944 * counter is 0 at SOF.
945 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
946 * the next frame, but have not yet been assigned to host
947 * channels. Items move from this list to
948 * periodic_sched_assigned as host channels become
949 * available during the current frame.
950 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
951 * frame that are assigned to host channels. Items move
952 * from this list to periodic_sched_queued as the
953 * transactions for the QH are queued to the DWC_otg
955 * @periodic_sched_queued: List of periodic QHs that have been queued for
956 * execution. Items move from this list to either
957 * periodic_sched_inactive or periodic_sched_ready when the
958 * channel associated with the transfer is released. If the
959 * interval for the QH is 1, the item moves to
960 * periodic_sched_ready because it must be rescheduled for
961 * the next frame. Otherwise, the item moves to
962 * periodic_sched_inactive.
963 * @split_order: List keeping track of channels doing splits, in order.
964 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
965 * This value is in microseconds per (micro)frame. The
966 * assumption is that all periodic transfers may occur in
967 * the same (micro)frame.
968 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
969 * host is in high speed mode; low speed schedules are
970 * stored elsewhere since we need one per TT.
971 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
972 * SOF enable/disable.
973 * @free_hc_list: Free host channels in the controller. This is a list of
974 * struct dwc2_host_chan items.
975 * @periodic_channels: Number of host channels assigned to periodic transfers.
976 * Currently assuming that there is a dedicated host
977 * channel for each periodic transaction and at least one
978 * host channel is available for non-periodic transactions.
979 * @non_periodic_channels: Number of host channels assigned to non-periodic
981 * @available_host_channels: Number of host channels available for the
982 * microframe scheduler to use
983 * @hc_ptr_array: Array of pointers to the host channel descriptors.
984 * Allows accessing a host channel descriptor given the
985 * host channel number. This is useful in interrupt
987 * @status_buf: Buffer used for data received during the status phase of
988 * a control transfer.
989 * @status_buf_dma: DMA address for status_buf
990 * @start_work: Delayed work for handling host A-cable connection
991 * @reset_work: Delayed work for handling a port reset
992 * @phy_reset_work: Work structure for doing a PHY reset
993 * @otg_port: OTG port number
994 * @frame_list: Frame list
995 * @frame_list_dma: Frame list DMA address
996 * @frame_list_sz: Frame list size
997 * @desc_gen_cache: Kmem cache for generic descriptors
998 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
999 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf
1001 * These are for peripheral mode:
1003 * @driver: USB gadget driver
1004 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
1005 * @num_of_eps: Number of available EPs (excluding EP0)
1006 * @debug_root: Root directrory for debugfs.
1007 * @ep0_reply: Request used for ep0 reply.
1008 * @ep0_buff: Buffer for EP0 reply data, if needed.
1009 * @ctrl_buff: Buffer for EP0 control requests.
1010 * @ctrl_req: Request for EP0 control packets.
1011 * @ep0_state: EP0 control transfers state
1012 * @delayed_status: true when gadget driver asks for delayed status
1013 * @test_mode: USB test mode requested by the host
1014 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1015 * remote-wakeup signalling
1016 * @setup_desc_dma: EP0 setup stage desc chain DMA address
1017 * @setup_desc: EP0 setup stage desc chain pointer
1018 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
1019 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
1020 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
1021 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
1022 * @irq: Interrupt request line number
1023 * @clk: Pointer to otg clock
1024 * @reset: Pointer to dwc2 reset controller
1025 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10.
1026 * @regset: A pointer to a struct debugfs_regset32, which contains
1027 * a pointer to an array of register definitions, the
1028 * array size and the base address where the register bank
1030 * @last_frame_num: Number of last frame. Range from 0 to 32768
1031 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1032 * defined, for missed SOFs tracking. Array holds that
1033 * frame numbers, which not equal to last_frame_num +1
1034 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1035 * defined, for missed SOFs tracking.
1036 * If current_frame_number != last_frame_num+1
1037 * then last_frame_num added to this array
1038 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array
1039 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed
1040 * 0 - if missed SOFs frame numbers not dumbed
1041 * @fifo_mem: Total internal RAM for FIFOs (bytes)
1042 * @fifo_map: Each bit intend for concrete fifo. If that bit is set,
1043 * then that fifo is used
1044 * @gadget: Represents a usb gadget device
1045 * @connected: Used in slave mode. True if device connected with host
1046 * @eps_in: The IN endpoints being supplied to the gadget framework
1047 * @eps_out: The OUT endpoints being supplied to the gadget framework
1048 * @new_connection: Used in host mode. True if there are new connected
1050 * @enabled: Indicates the enabling state of controller
1056 /** Params detected from hardware */
1057 struct dwc2_hw_params hw_params;
1058 /** Params to actually use */
1059 struct dwc2_core_params params;
1060 enum usb_otg_state op_state;
1061 enum usb_dr_mode dr_mode;
1062 struct usb_role_switch *role_sw;
1063 unsigned int hcd_enabled:1;
1064 unsigned int gadget_enabled:1;
1065 unsigned int ll_hw_enabled:1;
1066 unsigned int hibernated:1;
1067 unsigned int in_ppd:1;
1069 unsigned int reset_phy_on_wake:1;
1070 unsigned int need_phy_for_wake:1;
1071 unsigned int phy_off_for_suspend:1;
1075 struct usb_phy *uphy;
1076 struct dwc2_hsotg_plat *plat;
1077 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1078 struct regulator *vbus_supply;
1079 struct regulator *usb33d;
1085 struct reset_control *reset;
1086 struct reset_control *reset_ecc;
1088 unsigned int queuing_high_bandwidth:1;
1089 unsigned int srp_success:1;
1091 struct workqueue_struct *wq_otg;
1092 struct work_struct wf_otg;
1093 struct timer_list wkp_timer;
1094 enum dwc2_lx_state lx_state;
1095 struct dwc2_gregs_backup gr_backup;
1096 struct dwc2_dregs_backup dr_backup;
1097 struct dwc2_hregs_backup hr_backup;
1099 struct dentry *debug_root;
1100 struct debugfs_regset32 *regset;
1101 bool needs_byte_swap;
1103 /* DWC OTG HW Release versions */
1104 #define DWC2_CORE_REV_2_71a 0x4f54271a
1105 #define DWC2_CORE_REV_2_72a 0x4f54272a
1106 #define DWC2_CORE_REV_2_80a 0x4f54280a
1107 #define DWC2_CORE_REV_2_90a 0x4f54290a
1108 #define DWC2_CORE_REV_2_91a 0x4f54291a
1109 #define DWC2_CORE_REV_2_92a 0x4f54292a
1110 #define DWC2_CORE_REV_2_94a 0x4f54294a
1111 #define DWC2_CORE_REV_3_00a 0x4f54300a
1112 #define DWC2_CORE_REV_3_10a 0x4f54310a
1113 #define DWC2_CORE_REV_4_00a 0x4f54400a
1114 #define DWC2_CORE_REV_4_20a 0x4f54420a
1115 #define DWC2_FS_IOT_REV_1_00a 0x5531100a
1116 #define DWC2_HS_IOT_REV_1_00a 0x5532100a
1117 #define DWC2_CORE_REV_MASK 0x0000ffff
1119 /* DWC OTG HW Core ID */
1120 #define DWC2_OTG_ID 0x4f540000
1121 #define DWC2_FS_IOT_ID 0x55310000
1122 #define DWC2_HS_IOT_ID 0x55320000
1124 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1125 union dwc2_hcd_internal_flags {
1128 unsigned port_connect_status_change:1;
1129 unsigned port_connect_status:1;
1130 unsigned port_reset_change:1;
1131 unsigned port_enable_change:1;
1132 unsigned port_suspend_change:1;
1133 unsigned port_over_current_change:1;
1134 unsigned port_l1_change:1;
1135 unsigned reserved:25;
1139 struct list_head non_periodic_sched_inactive;
1140 struct list_head non_periodic_sched_waiting;
1141 struct list_head non_periodic_sched_active;
1142 struct list_head *non_periodic_qh_ptr;
1143 struct list_head periodic_sched_inactive;
1144 struct list_head periodic_sched_ready;
1145 struct list_head periodic_sched_assigned;
1146 struct list_head periodic_sched_queued;
1147 struct list_head split_order;
1149 unsigned long hs_periodic_bitmap[
1150 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1151 u16 periodic_qh_count;
1152 bool new_connection;
1156 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1157 #define FRAME_NUM_ARRAY_SIZE 1000
1158 u16 *frame_num_array;
1159 u16 *last_frame_num_array;
1161 int dumped_frame_num_array;
1164 struct list_head free_hc_list;
1165 int periodic_channels;
1166 int non_periodic_channels;
1167 int available_host_channels;
1168 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1170 dma_addr_t status_buf_dma;
1171 #define DWC2_HCD_STATUS_BUF_SIZE 64
1173 struct delayed_work start_work;
1174 struct delayed_work reset_work;
1175 struct work_struct phy_reset_work;
1178 dma_addr_t frame_list_dma;
1180 struct kmem_cache *desc_gen_cache;
1181 struct kmem_cache *desc_hsisoc_cache;
1182 struct kmem_cache *unaligned_cache;
1183 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1185 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1187 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1188 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1189 /* Gadget structures */
1190 struct usb_gadget_driver *driver;
1192 unsigned int dedicated_fifos:1;
1193 unsigned char num_of_eps;
1196 struct usb_request *ep0_reply;
1197 struct usb_request *ctrl_req;
1200 enum dwc2_ep0_state ep0_state;
1201 unsigned delayed_status : 1;
1204 dma_addr_t setup_desc_dma[2];
1205 struct dwc2_dma_desc *setup_desc[2];
1206 dma_addr_t ctrl_in_desc_dma;
1207 struct dwc2_dma_desc *ctrl_in_desc;
1208 dma_addr_t ctrl_out_desc_dma;
1209 struct dwc2_dma_desc *ctrl_out_desc;
1211 struct usb_gadget gadget;
1212 unsigned int enabled:1;
1213 unsigned int connected:1;
1214 unsigned int remote_wakeup_allowed:1;
1215 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1216 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1217 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1220 /* Normal architectures just use readl/write */
1221 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1225 val = readl(hsotg->regs + offset);
1226 if (hsotg->needs_byte_swap)
1232 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1234 if (hsotg->needs_byte_swap)
1235 writel(swab32(value), hsotg->regs + offset);
1237 writel(value, hsotg->regs + offset);
1239 #ifdef DWC2_LOG_WRITES
1240 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1244 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1245 void *buffer, unsigned int count)
1251 u32 x = dwc2_readl(hsotg, offset);
1257 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1258 const void *buffer, unsigned int count)
1261 const u32 *buf = buffer;
1264 dwc2_writel(hsotg, *buf++, offset);
1269 /* Reasons for halting a host channel */
1270 enum dwc2_halt_status {
1271 DWC2_HC_XFER_NO_HALT_STATUS,
1272 DWC2_HC_XFER_COMPLETE,
1273 DWC2_HC_XFER_URB_COMPLETE,
1278 DWC2_HC_XFER_XACT_ERR,
1279 DWC2_HC_XFER_FRAME_OVERRUN,
1280 DWC2_HC_XFER_BABBLE_ERR,
1281 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1282 DWC2_HC_XFER_AHB_ERR,
1283 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1284 DWC2_HC_XFER_URB_DEQUEUE,
1287 /* Core version information */
1288 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1290 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1293 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1295 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1298 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1300 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1304 * The following functions support initialization of the core driver component
1305 * and the DWC_otg controller
1307 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1308 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1309 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1311 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1312 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1313 int reset, int is_host);
1314 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1315 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1317 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1318 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1320 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1322 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1325 * Common core Functions.
1326 * The following functions support managing the DWC_otg controller in either
1327 * device or host mode.
1329 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1330 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1331 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1333 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1334 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1336 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1338 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1339 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1341 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1343 /* This function should be called on every hardware interrupt. */
1344 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1346 /* The device ID match table */
1347 extern const struct of_device_id dwc2_of_match_table[];
1348 extern const struct acpi_device_id dwc2_acpi_match[];
1350 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1351 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1353 /* Common polling functions */
1354 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1356 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1359 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1360 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1363 * The following functions check the controller's OTG operation mode
1364 * capability (GHWCFG2.OTG_MODE).
1366 * These functions can be used before the internal hsotg->hw_params
1367 * are read in and cached so they always read directly from the
1370 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1371 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1372 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1373 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1376 * Returns the mode of operation, host or device
1378 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1380 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1383 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1385 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1388 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1389 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1390 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1391 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1394 * Dump core registers and SPRAM
1396 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1397 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1398 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1400 /* Gadget defines */
1401 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1402 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1403 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1404 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1405 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1406 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1407 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1409 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1410 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1411 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1412 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1413 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1414 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1415 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1416 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1417 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1418 int rem_wakeup, int reset);
1419 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1420 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1422 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1423 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1425 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1426 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1427 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1428 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1429 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1430 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1431 { hsotg->fifo_map = 0; }
1433 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1435 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1437 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1439 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1441 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1443 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1444 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1445 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1446 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1449 #define dwc2_is_device_connected(hsotg) (0)
1450 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1452 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1455 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1457 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1458 int rem_wakeup, int reset)
1460 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1462 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1465 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1466 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1468 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1470 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1472 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1474 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1475 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1476 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1479 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1480 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1481 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1482 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1483 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1484 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1485 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1486 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1487 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1488 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1489 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1490 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1491 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1492 int rem_wakeup, int reset);
1493 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1494 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1495 int rem_wakeup, bool restore);
1496 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1497 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1498 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1499 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1500 { schedule_work(&hsotg->phy_reset_work); }
1502 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1504 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1507 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1508 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1509 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1510 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1511 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1513 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1515 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1517 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1519 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1521 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1523 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1525 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1526 int rem_wakeup, int reset)
1528 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1530 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1531 int rem_wakeup, bool restore)
1533 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1534 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1536 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1538 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1542 #endif /* __DWC2_CORE_H__ */