2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
28 #include <linux/part_stat.h>
29 #include <linux/blk-crypto.h>
31 #define DM_MSG_PREFIX "core"
34 * Cookies are numeric values sent with CHANGE and REMOVE
35 * uevents while resuming, removing or renaming the device.
37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
38 #define DM_COOKIE_LENGTH 24
40 static const char *_name = DM_NAME;
42 static unsigned int major = 0;
43 static unsigned int _major = 0;
45 static DEFINE_IDR(_minor_idr);
47 static DEFINE_SPINLOCK(_minor_lock);
49 static void do_deferred_remove(struct work_struct *w);
51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 static struct workqueue_struct *deferred_remove_workqueue;
55 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 void dm_issue_global_event(void)
60 atomic_inc(&dm_global_event_nr);
61 wake_up(&dm_global_eventq);
65 * One of these is allocated (on-stack) per original bio.
72 unsigned sector_count;
76 * One of these is allocated per clone bio.
78 #define DM_TIO_MAGIC 7282014
83 unsigned target_bio_nr;
90 * One of these is allocated per original bio.
91 * It contains the first clone used for that original.
93 #define DM_IO_MAGIC 5191977
96 struct mapped_device *md;
100 unsigned long start_time;
101 spinlock_t endio_lock;
102 struct dm_stats_aux stats_aux;
103 /* last member of dm_target_io is 'struct bio' */
104 struct dm_target_io tio;
107 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
110 if (!tio->inside_dm_io)
111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
119 if (io->magic == DM_IO_MAGIC)
120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
121 BUG_ON(io->magic != DM_TIO_MAGIC);
122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 #define MINOR_ALLOCED ((void *)-1)
135 * Bits for the md->flags field.
137 #define DMF_BLOCK_IO_FOR_SUSPEND 0
138 #define DMF_SUSPENDED 1
140 #define DMF_FREEING 3
141 #define DMF_DELETING 4
142 #define DMF_NOFLUSH_SUSPENDING 5
143 #define DMF_DEFERRED_REMOVE 6
144 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DM_NUMA_NODE NUMA_NO_NODE
147 static int dm_numa_node = DM_NUMA_NODE;
150 * For mempools pre-allocation at the table loading time.
152 struct dm_md_mempools {
154 struct bio_set io_bs;
157 struct table_device {
158 struct list_head list;
160 struct dm_dev dm_dev;
164 * Bio-based DM's mempools' reserved IOs set by the user.
166 #define RESERVED_BIO_BASED_IOS 16
167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 int param = READ_ONCE(*module_param);
172 int modified_param = 0;
173 bool modified = true;
176 modified_param = min;
177 else if (param > max)
178 modified_param = max;
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
190 unsigned __dm_get_module_param(unsigned *module_param,
191 unsigned def, unsigned max)
193 unsigned param = READ_ONCE(*module_param);
194 unsigned modified_param = 0;
197 modified_param = def;
198 else if (param > max)
199 modified_param = max;
201 if (modified_param) {
202 (void)cmpxchg(module_param, param, modified_param);
203 param = modified_param;
209 unsigned dm_get_reserved_bio_based_ios(void)
211 return __dm_get_module_param(&reserved_bio_based_ios,
212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 static unsigned dm_get_numa_node(void)
218 return __dm_get_module_param_int(&dm_numa_node,
219 DM_NUMA_NODE, num_online_nodes() - 1);
222 static int __init local_init(void)
226 r = dm_uevent_init();
230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
231 if (!deferred_remove_workqueue) {
233 goto out_uevent_exit;
237 r = register_blkdev(_major, _name);
239 goto out_free_workqueue;
247 destroy_workqueue(deferred_remove_workqueue);
254 static void local_exit(void)
256 flush_scheduled_work();
257 destroy_workqueue(deferred_remove_workqueue);
259 unregister_blkdev(_major, _name);
264 DMINFO("cleaned up");
267 static int (*_inits[])(void) __initdata = {
278 static void (*_exits[])(void) = {
289 static int __init dm_init(void)
291 const int count = ARRAY_SIZE(_inits);
295 for (i = 0; i < count; i++) {
310 static void __exit dm_exit(void)
312 int i = ARRAY_SIZE(_exits);
318 * Should be empty by this point.
320 idr_destroy(&_minor_idr);
324 * Block device functions
326 int dm_deleting_md(struct mapped_device *md)
328 return test_bit(DMF_DELETING, &md->flags);
331 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
333 struct mapped_device *md;
335 spin_lock(&_minor_lock);
337 md = bdev->bd_disk->private_data;
341 if (test_bit(DMF_FREEING, &md->flags) ||
342 dm_deleting_md(md)) {
348 atomic_inc(&md->open_count);
350 spin_unlock(&_minor_lock);
352 return md ? 0 : -ENXIO;
355 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
357 struct mapped_device *md;
359 spin_lock(&_minor_lock);
361 md = disk->private_data;
365 if (atomic_dec_and_test(&md->open_count) &&
366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
367 queue_work(deferred_remove_workqueue, &deferred_remove_work);
371 spin_unlock(&_minor_lock);
374 int dm_open_count(struct mapped_device *md)
376 return atomic_read(&md->open_count);
380 * Guarantees nothing is using the device before it's deleted.
382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
386 spin_lock(&_minor_lock);
388 if (dm_open_count(md)) {
391 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 set_bit(DMF_DELETING, &md->flags);
397 spin_unlock(&_minor_lock);
402 int dm_cancel_deferred_remove(struct mapped_device *md)
406 spin_lock(&_minor_lock);
408 if (test_bit(DMF_DELETING, &md->flags))
411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
413 spin_unlock(&_minor_lock);
418 static void do_deferred_remove(struct work_struct *w)
420 dm_deferred_remove();
423 sector_t dm_get_size(struct mapped_device *md)
425 return get_capacity(md->disk);
428 struct request_queue *dm_get_md_queue(struct mapped_device *md)
433 struct dm_stats *dm_get_stats(struct mapped_device *md)
438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
440 struct mapped_device *md = bdev->bd_disk->private_data;
442 return dm_get_geometry(md, geo);
445 #ifdef CONFIG_BLK_DEV_ZONED
446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
448 struct dm_report_zones_args *args = data;
449 sector_t sector_diff = args->tgt->begin - args->start;
452 * Ignore zones beyond the target range.
454 if (zone->start >= args->start + args->tgt->len)
458 * Remap the start sector and write pointer position of the zone
459 * to match its position in the target range.
461 zone->start += sector_diff;
462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
463 if (zone->cond == BLK_ZONE_COND_FULL)
464 zone->wp = zone->start + zone->len;
465 else if (zone->cond == BLK_ZONE_COND_EMPTY)
466 zone->wp = zone->start;
468 zone->wp += sector_diff;
471 args->next_sector = zone->start + zone->len;
472 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
474 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
477 unsigned int nr_zones, report_zones_cb cb, void *data)
479 struct mapped_device *md = disk->private_data;
480 struct dm_table *map;
482 struct dm_report_zones_args args = {
483 .next_sector = sector,
488 if (dm_suspended_md(md))
491 map = dm_get_live_table(md, &srcu_idx);
496 struct dm_target *tgt;
498 tgt = dm_table_find_target(map, args.next_sector);
499 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
505 ret = tgt->type->report_zones(tgt, &args, nr_zones);
508 } while (args.zone_idx < nr_zones &&
509 args.next_sector < get_capacity(disk));
513 dm_put_live_table(md, srcu_idx);
517 #define dm_blk_report_zones NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 struct block_device **bdev)
522 __acquires(md->io_barrier)
524 struct dm_target *tgt;
525 struct dm_table *map;
530 map = dm_get_live_table(md, srcu_idx);
531 if (!map || !dm_table_get_size(map))
534 /* We only support devices that have a single target */
535 if (dm_table_get_num_targets(map) != 1)
538 tgt = dm_table_get_target(map, 0);
539 if (!tgt->type->prepare_ioctl)
542 if (dm_suspended_md(md))
545 r = tgt->type->prepare_ioctl(tgt, bdev);
546 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
547 dm_put_live_table(md, *srcu_idx);
555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
556 __releases(md->io_barrier)
558 dm_put_live_table(md, srcu_idx);
561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
562 unsigned int cmd, unsigned long arg)
564 struct mapped_device *md = bdev->bd_disk->private_data;
567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
573 * Target determined this ioctl is being issued against a
574 * subset of the parent bdev; require extra privileges.
576 if (!capable(CAP_SYS_RAWIO)) {
578 "%s: sending ioctl %x to DM device without required privilege.",
585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
587 dm_unprepare_ioctl(md, srcu_idx);
591 static void start_io_acct(struct dm_io *io);
593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
596 struct dm_target_io *tio;
599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
603 tio = container_of(clone, struct dm_target_io, clone);
604 tio->inside_dm_io = true;
607 io = container_of(tio, struct dm_io, tio);
608 io->magic = DM_IO_MAGIC;
610 atomic_set(&io->io_count, 1);
613 spin_lock_init(&io->endio_lock);
620 static void free_io(struct mapped_device *md, struct dm_io *io)
622 bio_put(&io->tio.clone);
625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
626 unsigned target_bio_nr, gfp_t gfp_mask)
628 struct dm_target_io *tio;
630 if (!ci->io->tio.io) {
631 /* the dm_target_io embedded in ci->io is available */
634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
638 tio = container_of(clone, struct dm_target_io, clone);
639 tio->inside_dm_io = false;
642 tio->magic = DM_TIO_MAGIC;
645 tio->target_bio_nr = target_bio_nr;
650 static void free_tio(struct dm_target_io *tio)
652 if (tio->inside_dm_io)
654 bio_put(&tio->clone);
657 static bool md_in_flight_bios(struct mapped_device *md)
660 struct hd_struct *part = &dm_disk(md)->part0;
663 for_each_possible_cpu(cpu) {
664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
671 static bool md_in_flight(struct mapped_device *md)
673 if (queue_is_mq(md->queue))
674 return blk_mq_queue_inflight(md->queue);
676 return md_in_flight_bios(md);
679 u64 dm_start_time_ns_from_clone(struct bio *bio)
681 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
682 struct dm_io *io = tio->io;
684 return jiffies_to_nsecs(io->start_time);
686 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
688 static void start_io_acct(struct dm_io *io)
690 struct mapped_device *md = io->md;
691 struct bio *bio = io->orig_bio;
693 io->start_time = bio_start_io_acct(bio);
694 if (unlikely(dm_stats_used(&md->stats)))
695 dm_stats_account_io(&md->stats, bio_data_dir(bio),
696 bio->bi_iter.bi_sector, bio_sectors(bio),
697 false, 0, &io->stats_aux);
700 static void end_io_acct(struct dm_io *io)
702 struct mapped_device *md = io->md;
703 struct bio *bio = io->orig_bio;
704 unsigned long duration = jiffies - io->start_time;
706 bio_end_io_acct(bio, io->start_time);
708 if (unlikely(dm_stats_used(&md->stats)))
709 dm_stats_account_io(&md->stats, bio_data_dir(bio),
710 bio->bi_iter.bi_sector, bio_sectors(bio),
711 true, duration, &io->stats_aux);
713 /* nudge anyone waiting on suspend queue */
714 if (unlikely(wq_has_sleeper(&md->wait)))
719 * Add the bio to the list of deferred io.
721 static void queue_io(struct mapped_device *md, struct bio *bio)
725 spin_lock_irqsave(&md->deferred_lock, flags);
726 bio_list_add(&md->deferred, bio);
727 spin_unlock_irqrestore(&md->deferred_lock, flags);
728 queue_work(md->wq, &md->work);
732 * Everyone (including functions in this file), should use this
733 * function to access the md->map field, and make sure they call
734 * dm_put_live_table() when finished.
736 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
738 *srcu_idx = srcu_read_lock(&md->io_barrier);
740 return srcu_dereference(md->map, &md->io_barrier);
743 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
745 srcu_read_unlock(&md->io_barrier, srcu_idx);
748 void dm_sync_table(struct mapped_device *md)
750 synchronize_srcu(&md->io_barrier);
751 synchronize_rcu_expedited();
755 * A fast alternative to dm_get_live_table/dm_put_live_table.
756 * The caller must not block between these two functions.
758 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 return rcu_dereference(md->map);
764 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
769 static char *_dm_claim_ptr = "I belong to device-mapper";
772 * Open a table device so we can use it as a map destination.
774 static int open_table_device(struct table_device *td, dev_t dev,
775 struct mapped_device *md)
777 struct block_device *bdev;
781 BUG_ON(td->dm_dev.bdev);
783 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
785 return PTR_ERR(bdev);
787 r = bd_link_disk_holder(bdev, dm_disk(md));
789 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
793 td->dm_dev.bdev = bdev;
794 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
799 * Close a table device that we've been using.
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
803 if (!td->dm_dev.bdev)
806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 put_dax(td->dm_dev.dax_dev);
809 td->dm_dev.bdev = NULL;
810 td->dm_dev.dax_dev = NULL;
813 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
816 struct table_device *td;
818 list_for_each_entry(td, l, list)
819 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
825 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
826 struct dm_dev **result)
829 struct table_device *td;
831 mutex_lock(&md->table_devices_lock);
832 td = find_table_device(&md->table_devices, dev, mode);
834 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
836 mutex_unlock(&md->table_devices_lock);
840 td->dm_dev.mode = mode;
841 td->dm_dev.bdev = NULL;
843 if ((r = open_table_device(td, dev, md))) {
844 mutex_unlock(&md->table_devices_lock);
849 format_dev_t(td->dm_dev.name, dev);
851 refcount_set(&td->count, 1);
852 list_add(&td->list, &md->table_devices);
854 refcount_inc(&td->count);
856 mutex_unlock(&md->table_devices_lock);
858 *result = &td->dm_dev;
861 EXPORT_SYMBOL_GPL(dm_get_table_device);
863 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
865 struct table_device *td = container_of(d, struct table_device, dm_dev);
867 mutex_lock(&md->table_devices_lock);
868 if (refcount_dec_and_test(&td->count)) {
869 close_table_device(td, md);
873 mutex_unlock(&md->table_devices_lock);
875 EXPORT_SYMBOL(dm_put_table_device);
877 static void free_table_devices(struct list_head *devices)
879 struct list_head *tmp, *next;
881 list_for_each_safe(tmp, next, devices) {
882 struct table_device *td = list_entry(tmp, struct table_device, list);
884 DMWARN("dm_destroy: %s still exists with %d references",
885 td->dm_dev.name, refcount_read(&td->count));
891 * Get the geometry associated with a dm device
893 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
901 * Set the geometry of a device.
903 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
905 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
907 if (geo->start > sz) {
908 DMWARN("Start sector is beyond the geometry limits.");
917 static int __noflush_suspending(struct mapped_device *md)
919 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
923 * Decrements the number of outstanding ios that a bio has been
924 * cloned into, completing the original io if necc.
926 static void dec_pending(struct dm_io *io, blk_status_t error)
929 blk_status_t io_error;
931 struct mapped_device *md = io->md;
933 /* Push-back supersedes any I/O errors */
934 if (unlikely(error)) {
935 spin_lock_irqsave(&io->endio_lock, flags);
936 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
938 spin_unlock_irqrestore(&io->endio_lock, flags);
941 if (atomic_dec_and_test(&io->io_count)) {
942 if (io->status == BLK_STS_DM_REQUEUE) {
944 * Target requested pushing back the I/O.
946 spin_lock_irqsave(&md->deferred_lock, flags);
947 if (__noflush_suspending(md))
948 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
949 bio_list_add_head(&md->deferred, io->orig_bio);
951 /* noflush suspend was interrupted. */
952 io->status = BLK_STS_IOERR;
953 spin_unlock_irqrestore(&md->deferred_lock, flags);
956 io_error = io->status;
961 if (io_error == BLK_STS_DM_REQUEUE)
964 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
966 * Preflush done for flush with data, reissue
967 * without REQ_PREFLUSH.
969 bio->bi_opf &= ~REQ_PREFLUSH;
972 /* done with normal IO or empty flush */
974 bio->bi_status = io_error;
980 void disable_discard(struct mapped_device *md)
982 struct queue_limits *limits = dm_get_queue_limits(md);
984 /* device doesn't really support DISCARD, disable it */
985 limits->max_discard_sectors = 0;
986 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
989 void disable_write_same(struct mapped_device *md)
991 struct queue_limits *limits = dm_get_queue_limits(md);
993 /* device doesn't really support WRITE SAME, disable it */
994 limits->max_write_same_sectors = 0;
997 void disable_write_zeroes(struct mapped_device *md)
999 struct queue_limits *limits = dm_get_queue_limits(md);
1001 /* device doesn't really support WRITE ZEROES, disable it */
1002 limits->max_write_zeroes_sectors = 0;
1005 static void clone_endio(struct bio *bio)
1007 blk_status_t error = bio->bi_status;
1008 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1009 struct dm_io *io = tio->io;
1010 struct mapped_device *md = tio->io->md;
1011 dm_endio_fn endio = tio->ti->type->end_io;
1013 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1014 if (bio_op(bio) == REQ_OP_DISCARD &&
1015 !bio->bi_disk->queue->limits.max_discard_sectors)
1016 disable_discard(md);
1017 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1018 !bio->bi_disk->queue->limits.max_write_same_sectors)
1019 disable_write_same(md);
1020 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1021 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1022 disable_write_zeroes(md);
1026 int r = endio(tio->ti, bio, &error);
1028 case DM_ENDIO_REQUEUE:
1029 error = BLK_STS_DM_REQUEUE;
1033 case DM_ENDIO_INCOMPLETE:
1034 /* The target will handle the io */
1037 DMWARN("unimplemented target endio return value: %d", r);
1043 dec_pending(io, error);
1047 * Return maximum size of I/O possible at the supplied sector up to the current
1050 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1052 sector_t target_offset = dm_target_offset(ti, sector);
1054 return ti->len - target_offset;
1057 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1059 sector_t len = max_io_len_target_boundary(sector, ti);
1060 sector_t offset, max_len;
1063 * Does the target need to split even further?
1065 if (ti->max_io_len) {
1066 offset = dm_target_offset(ti, sector);
1067 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1068 max_len = sector_div(offset, ti->max_io_len);
1070 max_len = offset & (ti->max_io_len - 1);
1071 max_len = ti->max_io_len - max_len;
1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1082 if (len > UINT_MAX) {
1083 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1084 (unsigned long long)len, UINT_MAX);
1085 ti->error = "Maximum size of target IO is too large";
1089 ti->max_io_len = (uint32_t) len;
1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1096 sector_t sector, int *srcu_idx)
1097 __acquires(md->io_barrier)
1099 struct dm_table *map;
1100 struct dm_target *ti;
1102 map = dm_get_live_table(md, srcu_idx);
1106 ti = dm_table_find_target(map, sector);
1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1114 long nr_pages, void **kaddr, pfn_t *pfn)
1116 struct mapped_device *md = dax_get_private(dax_dev);
1117 sector_t sector = pgoff * PAGE_SECTORS;
1118 struct dm_target *ti;
1119 long len, ret = -EIO;
1122 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1126 if (!ti->type->direct_access)
1128 len = max_io_len(sector, ti) / PAGE_SECTORS;
1131 nr_pages = min(len, nr_pages);
1132 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1135 dm_put_live_table(md, srcu_idx);
1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1141 int blocksize, sector_t start, sector_t len)
1143 struct mapped_device *md = dax_get_private(dax_dev);
1144 struct dm_table *map;
1148 map = dm_get_live_table(md, &srcu_idx);
1152 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1154 dm_put_live_table(md, srcu_idx);
1159 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1160 void *addr, size_t bytes, struct iov_iter *i)
1162 struct mapped_device *md = dax_get_private(dax_dev);
1163 sector_t sector = pgoff * PAGE_SECTORS;
1164 struct dm_target *ti;
1168 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1172 if (!ti->type->dax_copy_from_iter) {
1173 ret = copy_from_iter(addr, bytes, i);
1176 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1178 dm_put_live_table(md, srcu_idx);
1183 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1184 void *addr, size_t bytes, struct iov_iter *i)
1186 struct mapped_device *md = dax_get_private(dax_dev);
1187 sector_t sector = pgoff * PAGE_SECTORS;
1188 struct dm_target *ti;
1192 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1196 if (!ti->type->dax_copy_to_iter) {
1197 ret = copy_to_iter(addr, bytes, i);
1200 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1202 dm_put_live_table(md, srcu_idx);
1207 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1210 struct mapped_device *md = dax_get_private(dax_dev);
1211 sector_t sector = pgoff * PAGE_SECTORS;
1212 struct dm_target *ti;
1216 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1220 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1222 * ->zero_page_range() is mandatory dax operation. If we are
1223 * here, something is wrong.
1225 dm_put_live_table(md, srcu_idx);
1228 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1231 dm_put_live_table(md, srcu_idx);
1237 * A target may call dm_accept_partial_bio only from the map routine. It is
1238 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1239 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1241 * dm_accept_partial_bio informs the dm that the target only wants to process
1242 * additional n_sectors sectors of the bio and the rest of the data should be
1243 * sent in a next bio.
1245 * A diagram that explains the arithmetics:
1246 * +--------------------+---------------+-------+
1248 * +--------------------+---------------+-------+
1250 * <-------------- *tio->len_ptr --------------->
1251 * <------- bi_size ------->
1254 * Region 1 was already iterated over with bio_advance or similar function.
1255 * (it may be empty if the target doesn't use bio_advance)
1256 * Region 2 is the remaining bio size that the target wants to process.
1257 * (it may be empty if region 1 is non-empty, although there is no reason
1259 * The target requires that region 3 is to be sent in the next bio.
1261 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1262 * the partially processed part (the sum of regions 1+2) must be the same for all
1263 * copies of the bio.
1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1267 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1268 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1269 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1270 BUG_ON(bi_size > *tio->len_ptr);
1271 BUG_ON(n_sectors > bi_size);
1272 *tio->len_ptr -= bi_size - n_sectors;
1273 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1275 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1277 static blk_qc_t __map_bio(struct dm_target_io *tio)
1281 struct bio *clone = &tio->clone;
1282 struct dm_io *io = tio->io;
1283 struct mapped_device *md = io->md;
1284 struct dm_target *ti = tio->ti;
1285 blk_qc_t ret = BLK_QC_T_NONE;
1287 clone->bi_end_io = clone_endio;
1290 * Map the clone. If r == 0 we don't need to do
1291 * anything, the target has assumed ownership of
1294 atomic_inc(&io->io_count);
1295 sector = clone->bi_iter.bi_sector;
1297 r = ti->type->map(ti, clone);
1299 case DM_MAPIO_SUBMITTED:
1301 case DM_MAPIO_REMAPPED:
1302 /* the bio has been remapped so dispatch it */
1303 trace_block_bio_remap(clone->bi_disk->queue, clone,
1304 bio_dev(io->orig_bio), sector);
1305 if (md->type == DM_TYPE_NVME_BIO_BASED)
1306 ret = direct_make_request(clone);
1308 ret = generic_make_request(clone);
1312 dec_pending(io, BLK_STS_IOERR);
1314 case DM_MAPIO_REQUEUE:
1316 dec_pending(io, BLK_STS_DM_REQUEUE);
1319 DMWARN("unimplemented target map return value: %d", r);
1326 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1328 bio->bi_iter.bi_sector = sector;
1329 bio->bi_iter.bi_size = to_bytes(len);
1333 * Creates a bio that consists of range of complete bvecs.
1335 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1336 sector_t sector, unsigned len)
1338 struct bio *clone = &tio->clone;
1340 __bio_clone_fast(clone, bio);
1342 bio_crypt_clone(clone, bio, GFP_NOIO);
1344 if (bio_integrity(bio)) {
1347 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1348 !dm_target_passes_integrity(tio->ti->type))) {
1349 DMWARN("%s: the target %s doesn't support integrity data.",
1350 dm_device_name(tio->io->md),
1351 tio->ti->type->name);
1355 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1360 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1361 clone->bi_iter.bi_size = to_bytes(len);
1363 if (bio_integrity(bio))
1364 bio_integrity_trim(clone);
1369 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1370 struct dm_target *ti, unsigned num_bios)
1372 struct dm_target_io *tio;
1378 if (num_bios == 1) {
1379 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1380 bio_list_add(blist, &tio->clone);
1384 for (try = 0; try < 2; try++) {
1389 mutex_lock(&ci->io->md->table_devices_lock);
1390 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1391 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1395 bio_list_add(blist, &tio->clone);
1398 mutex_unlock(&ci->io->md->table_devices_lock);
1399 if (bio_nr == num_bios)
1402 while ((bio = bio_list_pop(blist))) {
1403 tio = container_of(bio, struct dm_target_io, clone);
1409 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1410 struct dm_target_io *tio, unsigned *len)
1412 struct bio *clone = &tio->clone;
1416 __bio_clone_fast(clone, ci->bio);
1418 bio_setup_sector(clone, ci->sector, *len);
1420 return __map_bio(tio);
1423 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1424 unsigned num_bios, unsigned *len)
1426 struct bio_list blist = BIO_EMPTY_LIST;
1428 struct dm_target_io *tio;
1430 alloc_multiple_bios(&blist, ci, ti, num_bios);
1432 while ((bio = bio_list_pop(&blist))) {
1433 tio = container_of(bio, struct dm_target_io, clone);
1434 (void) __clone_and_map_simple_bio(ci, tio, len);
1438 static int __send_empty_flush(struct clone_info *ci)
1440 unsigned target_nr = 0;
1441 struct dm_target *ti;
1444 * Empty flush uses a statically initialized bio, as the base for
1445 * cloning. However, blkg association requires that a bdev is
1446 * associated with a gendisk, which doesn't happen until the bdev is
1447 * opened. So, blkg association is done at issue time of the flush
1448 * rather than when the device is created in alloc_dev().
1450 bio_set_dev(ci->bio, ci->io->md->bdev);
1452 BUG_ON(bio_has_data(ci->bio));
1453 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1454 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1456 bio_disassociate_blkg(ci->bio);
1461 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1462 sector_t sector, unsigned *len)
1464 struct bio *bio = ci->bio;
1465 struct dm_target_io *tio;
1468 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1470 r = clone_bio(tio, bio, sector, *len);
1475 (void) __map_bio(tio);
1480 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1482 static unsigned get_num_discard_bios(struct dm_target *ti)
1484 return ti->num_discard_bios;
1487 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1489 return ti->num_secure_erase_bios;
1492 static unsigned get_num_write_same_bios(struct dm_target *ti)
1494 return ti->num_write_same_bios;
1497 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1499 return ti->num_write_zeroes_bios;
1502 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1508 * Even though the device advertised support for this type of
1509 * request, that does not mean every target supports it, and
1510 * reconfiguration might also have changed that since the
1511 * check was performed.
1516 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1518 __send_duplicate_bios(ci, ti, num_bios, &len);
1521 ci->sector_count -= len;
1526 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1528 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1531 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1533 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1536 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1538 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1541 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1543 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1546 static bool is_abnormal_io(struct bio *bio)
1550 switch (bio_op(bio)) {
1551 case REQ_OP_DISCARD:
1552 case REQ_OP_SECURE_ERASE:
1553 case REQ_OP_WRITE_SAME:
1554 case REQ_OP_WRITE_ZEROES:
1562 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1565 struct bio *bio = ci->bio;
1567 if (bio_op(bio) == REQ_OP_DISCARD)
1568 *result = __send_discard(ci, ti);
1569 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1570 *result = __send_secure_erase(ci, ti);
1571 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1572 *result = __send_write_same(ci, ti);
1573 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1574 *result = __send_write_zeroes(ci, ti);
1582 * Select the correct strategy for processing a non-flush bio.
1584 static int __split_and_process_non_flush(struct clone_info *ci)
1586 struct dm_target *ti;
1590 ti = dm_table_find_target(ci->map, ci->sector);
1594 if (__process_abnormal_io(ci, ti, &r))
1597 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1599 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1604 ci->sector_count -= len;
1609 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1610 struct dm_table *map, struct bio *bio)
1613 ci->io = alloc_io(md, bio);
1614 ci->sector = bio->bi_iter.bi_sector;
1617 #define __dm_part_stat_sub(part, field, subnd) \
1618 (part_stat_get(part, field) -= (subnd))
1621 * Entry point to split a bio into clones and submit them to the targets.
1623 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1624 struct dm_table *map, struct bio *bio)
1626 struct clone_info ci;
1627 blk_qc_t ret = BLK_QC_T_NONE;
1630 init_clone_info(&ci, md, map, bio);
1632 if (bio->bi_opf & REQ_PREFLUSH) {
1633 struct bio flush_bio;
1636 * Use an on-stack bio for this, it's safe since we don't
1637 * need to reference it after submit. It's just used as
1638 * the basis for the clone(s).
1640 bio_init(&flush_bio, NULL, 0);
1641 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1642 ci.bio = &flush_bio;
1643 ci.sector_count = 0;
1644 error = __send_empty_flush(&ci);
1645 /* dec_pending submits any data associated with flush */
1646 } else if (op_is_zone_mgmt(bio_op(bio))) {
1648 ci.sector_count = 0;
1649 error = __split_and_process_non_flush(&ci);
1652 ci.sector_count = bio_sectors(bio);
1653 while (ci.sector_count && !error) {
1654 error = __split_and_process_non_flush(&ci);
1655 if (current->bio_list && ci.sector_count && !error) {
1657 * Remainder must be passed to generic_make_request()
1658 * so that it gets handled *after* bios already submitted
1659 * have been completely processed.
1660 * We take a clone of the original to store in
1661 * ci.io->orig_bio to be used by end_io_acct() and
1662 * for dec_pending to use for completion handling.
1664 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1665 GFP_NOIO, &md->queue->bio_split);
1666 ci.io->orig_bio = b;
1669 * Adjust IO stats for each split, otherwise upon queue
1670 * reentry there will be redundant IO accounting.
1671 * NOTE: this is a stop-gap fix, a proper fix involves
1672 * significant refactoring of DM core's bio splitting
1673 * (by eliminating DM's splitting and just using bio_split)
1676 __dm_part_stat_sub(&dm_disk(md)->part0,
1677 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1681 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1682 ret = generic_make_request(bio);
1688 /* drop the extra reference count */
1689 dec_pending(ci.io, errno_to_blk_status(error));
1694 * Optimized variant of __split_and_process_bio that leverages the
1695 * fact that targets that use it do _not_ have a need to split bios.
1697 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1698 struct bio *bio, struct dm_target *ti)
1700 struct clone_info ci;
1701 blk_qc_t ret = BLK_QC_T_NONE;
1704 init_clone_info(&ci, md, map, bio);
1706 if (bio->bi_opf & REQ_PREFLUSH) {
1707 struct bio flush_bio;
1710 * Use an on-stack bio for this, it's safe since we don't
1711 * need to reference it after submit. It's just used as
1712 * the basis for the clone(s).
1714 bio_init(&flush_bio, NULL, 0);
1715 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1716 ci.bio = &flush_bio;
1717 ci.sector_count = 0;
1718 error = __send_empty_flush(&ci);
1719 /* dec_pending submits any data associated with flush */
1721 struct dm_target_io *tio;
1724 ci.sector_count = bio_sectors(bio);
1725 if (__process_abnormal_io(&ci, ti, &error))
1728 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1729 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1732 /* drop the extra reference count */
1733 dec_pending(ci.io, errno_to_blk_status(error));
1737 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1739 unsigned len, sector_count;
1741 sector_count = bio_sectors(*bio);
1742 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1744 if (sector_count > len) {
1745 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1747 bio_chain(split, *bio);
1748 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1749 generic_make_request(*bio);
1754 static blk_qc_t dm_process_bio(struct mapped_device *md,
1755 struct dm_table *map, struct bio *bio)
1757 blk_qc_t ret = BLK_QC_T_NONE;
1758 struct dm_target *ti = md->immutable_target;
1760 if (unlikely(!map)) {
1766 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1767 if (unlikely(!ti)) {
1774 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1775 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1778 if (current->bio_list) {
1779 if (is_abnormal_io(bio))
1780 blk_queue_split(md->queue, &bio);
1782 dm_queue_split(md, ti, &bio);
1785 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1786 return __process_bio(md, map, bio, ti);
1788 return __split_and_process_bio(md, map, bio);
1791 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1793 struct mapped_device *md = q->queuedata;
1794 blk_qc_t ret = BLK_QC_T_NONE;
1796 struct dm_table *map;
1798 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1800 * We are called with a live reference on q_usage_counter, but
1801 * that one will be released as soon as we return. Grab an
1802 * extra one as blk_mq_make_request expects to be able to
1803 * consume a reference (which lives until the request is freed
1804 * in case a request is allocated).
1806 percpu_ref_get(&q->q_usage_counter);
1807 return blk_mq_make_request(q, bio);
1810 map = dm_get_live_table(md, &srcu_idx);
1812 /* if we're suspended, we have to queue this io for later */
1813 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1814 dm_put_live_table(md, srcu_idx);
1816 if (!(bio->bi_opf & REQ_RAHEAD))
1823 ret = dm_process_bio(md, map, bio);
1825 dm_put_live_table(md, srcu_idx);
1829 static int dm_any_congested(void *congested_data, int bdi_bits)
1832 struct mapped_device *md = congested_data;
1833 struct dm_table *map;
1835 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1836 if (dm_request_based(md)) {
1838 * With request-based DM we only need to check the
1839 * top-level queue for congestion.
1841 struct backing_dev_info *bdi = md->queue->backing_dev_info;
1842 r = bdi->wb.congested->state & bdi_bits;
1844 map = dm_get_live_table_fast(md);
1846 r = dm_table_any_congested(map, bdi_bits);
1847 dm_put_live_table_fast(md);
1854 /*-----------------------------------------------------------------
1855 * An IDR is used to keep track of allocated minor numbers.
1856 *---------------------------------------------------------------*/
1857 static void free_minor(int minor)
1859 spin_lock(&_minor_lock);
1860 idr_remove(&_minor_idr, minor);
1861 spin_unlock(&_minor_lock);
1865 * See if the device with a specific minor # is free.
1867 static int specific_minor(int minor)
1871 if (minor >= (1 << MINORBITS))
1874 idr_preload(GFP_KERNEL);
1875 spin_lock(&_minor_lock);
1877 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1879 spin_unlock(&_minor_lock);
1882 return r == -ENOSPC ? -EBUSY : r;
1886 static int next_free_minor(int *minor)
1890 idr_preload(GFP_KERNEL);
1891 spin_lock(&_minor_lock);
1893 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1895 spin_unlock(&_minor_lock);
1903 static const struct block_device_operations dm_blk_dops;
1904 static const struct dax_operations dm_dax_ops;
1906 static void dm_wq_work(struct work_struct *work);
1908 static void cleanup_mapped_device(struct mapped_device *md)
1911 destroy_workqueue(md->wq);
1912 bioset_exit(&md->bs);
1913 bioset_exit(&md->io_bs);
1916 kill_dax(md->dax_dev);
1917 put_dax(md->dax_dev);
1922 spin_lock(&_minor_lock);
1923 md->disk->private_data = NULL;
1924 spin_unlock(&_minor_lock);
1925 del_gendisk(md->disk);
1930 blk_cleanup_queue(md->queue);
1932 cleanup_srcu_struct(&md->io_barrier);
1939 mutex_destroy(&md->suspend_lock);
1940 mutex_destroy(&md->type_lock);
1941 mutex_destroy(&md->table_devices_lock);
1943 dm_mq_cleanup_mapped_device(md);
1947 * Allocate and initialise a blank device with a given minor.
1949 static struct mapped_device *alloc_dev(int minor)
1951 int r, numa_node_id = dm_get_numa_node();
1952 struct mapped_device *md;
1955 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1957 DMWARN("unable to allocate device, out of memory.");
1961 if (!try_module_get(THIS_MODULE))
1962 goto bad_module_get;
1964 /* get a minor number for the dev */
1965 if (minor == DM_ANY_MINOR)
1966 r = next_free_minor(&minor);
1968 r = specific_minor(minor);
1972 r = init_srcu_struct(&md->io_barrier);
1974 goto bad_io_barrier;
1976 md->numa_node_id = numa_node_id;
1977 md->init_tio_pdu = false;
1978 md->type = DM_TYPE_NONE;
1979 mutex_init(&md->suspend_lock);
1980 mutex_init(&md->type_lock);
1981 mutex_init(&md->table_devices_lock);
1982 spin_lock_init(&md->deferred_lock);
1983 atomic_set(&md->holders, 1);
1984 atomic_set(&md->open_count, 0);
1985 atomic_set(&md->event_nr, 0);
1986 atomic_set(&md->uevent_seq, 0);
1987 INIT_LIST_HEAD(&md->uevent_list);
1988 INIT_LIST_HEAD(&md->table_devices);
1989 spin_lock_init(&md->uevent_lock);
1992 * default to bio-based required ->make_request_fn until DM
1993 * table is loaded and md->type established. If request-based
1994 * table is loaded: blk-mq will override accordingly.
1996 md->queue = blk_alloc_queue(dm_make_request, numa_node_id);
1999 md->queue->queuedata = md;
2001 md->disk = alloc_disk_node(1, md->numa_node_id);
2005 init_waitqueue_head(&md->wait);
2006 INIT_WORK(&md->work, dm_wq_work);
2007 init_waitqueue_head(&md->eventq);
2008 init_completion(&md->kobj_holder.completion);
2010 md->disk->major = _major;
2011 md->disk->first_minor = minor;
2012 md->disk->fops = &dm_blk_dops;
2013 md->disk->queue = md->queue;
2014 md->disk->private_data = md;
2015 sprintf(md->disk->disk_name, "dm-%d", minor);
2017 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
2018 md->dax_dev = alloc_dax(md, md->disk->disk_name,
2020 if (IS_ERR(md->dax_dev))
2024 add_disk_no_queue_reg(md->disk);
2025 format_dev_t(md->name, MKDEV(_major, minor));
2027 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2031 md->bdev = bdget_disk(md->disk, 0);
2035 dm_stats_init(&md->stats);
2037 /* Populate the mapping, nobody knows we exist yet */
2038 spin_lock(&_minor_lock);
2039 old_md = idr_replace(&_minor_idr, md, minor);
2040 spin_unlock(&_minor_lock);
2042 BUG_ON(old_md != MINOR_ALLOCED);
2047 cleanup_mapped_device(md);
2051 module_put(THIS_MODULE);
2057 static void unlock_fs(struct mapped_device *md);
2059 static void free_dev(struct mapped_device *md)
2061 int minor = MINOR(disk_devt(md->disk));
2065 cleanup_mapped_device(md);
2067 free_table_devices(&md->table_devices);
2068 dm_stats_cleanup(&md->stats);
2071 module_put(THIS_MODULE);
2075 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2077 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2080 if (dm_table_bio_based(t)) {
2082 * The md may already have mempools that need changing.
2083 * If so, reload bioset because front_pad may have changed
2084 * because a different table was loaded.
2086 bioset_exit(&md->bs);
2087 bioset_exit(&md->io_bs);
2089 } else if (bioset_initialized(&md->bs)) {
2091 * There's no need to reload with request-based dm
2092 * because the size of front_pad doesn't change.
2093 * Note for future: If you are to reload bioset,
2094 * prep-ed requests in the queue may refer
2095 * to bio from the old bioset, so you must walk
2096 * through the queue to unprep.
2102 bioset_initialized(&md->bs) ||
2103 bioset_initialized(&md->io_bs));
2105 ret = bioset_init_from_src(&md->bs, &p->bs);
2108 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2110 bioset_exit(&md->bs);
2112 /* mempool bind completed, no longer need any mempools in the table */
2113 dm_table_free_md_mempools(t);
2118 * Bind a table to the device.
2120 static void event_callback(void *context)
2122 unsigned long flags;
2124 struct mapped_device *md = (struct mapped_device *) context;
2126 spin_lock_irqsave(&md->uevent_lock, flags);
2127 list_splice_init(&md->uevent_list, &uevents);
2128 spin_unlock_irqrestore(&md->uevent_lock, flags);
2130 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2132 atomic_inc(&md->event_nr);
2133 wake_up(&md->eventq);
2134 dm_issue_global_event();
2138 * Protected by md->suspend_lock obtained by dm_swap_table().
2140 static void __set_size(struct mapped_device *md, sector_t size)
2142 lockdep_assert_held(&md->suspend_lock);
2144 set_capacity(md->disk, size);
2146 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2150 * Returns old map, which caller must destroy.
2152 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2153 struct queue_limits *limits)
2155 struct dm_table *old_map;
2156 struct request_queue *q = md->queue;
2157 bool request_based = dm_table_request_based(t);
2161 lockdep_assert_held(&md->suspend_lock);
2163 size = dm_table_get_size(t);
2166 * Wipe any geometry if the size of the table changed.
2168 if (size != dm_get_size(md))
2169 memset(&md->geometry, 0, sizeof(md->geometry));
2171 __set_size(md, size);
2173 dm_table_event_callback(t, event_callback, md);
2176 * The queue hasn't been stopped yet, if the old table type wasn't
2177 * for request-based during suspension. So stop it to prevent
2178 * I/O mapping before resume.
2179 * This must be done before setting the queue restrictions,
2180 * because request-based dm may be run just after the setting.
2185 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2187 * Leverage the fact that request-based DM targets and
2188 * NVMe bio based targets are immutable singletons
2189 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2190 * and __process_bio.
2192 md->immutable_target = dm_table_get_immutable_target(t);
2195 ret = __bind_mempools(md, t);
2197 old_map = ERR_PTR(ret);
2201 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2202 rcu_assign_pointer(md->map, (void *)t);
2203 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2205 dm_table_set_restrictions(t, q, limits);
2214 * Returns unbound table for the caller to free.
2216 static struct dm_table *__unbind(struct mapped_device *md)
2218 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2223 dm_table_event_callback(map, NULL, NULL);
2224 RCU_INIT_POINTER(md->map, NULL);
2231 * Constructor for a new device.
2233 int dm_create(int minor, struct mapped_device **result)
2236 struct mapped_device *md;
2238 md = alloc_dev(minor);
2242 r = dm_sysfs_init(md);
2253 * Functions to manage md->type.
2254 * All are required to hold md->type_lock.
2256 void dm_lock_md_type(struct mapped_device *md)
2258 mutex_lock(&md->type_lock);
2261 void dm_unlock_md_type(struct mapped_device *md)
2263 mutex_unlock(&md->type_lock);
2266 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2268 BUG_ON(!mutex_is_locked(&md->type_lock));
2272 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2277 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2279 return md->immutable_target_type;
2283 * The queue_limits are only valid as long as you have a reference
2286 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2288 BUG_ON(!atomic_read(&md->holders));
2289 return &md->queue->limits;
2291 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2293 static void dm_init_congested_fn(struct mapped_device *md)
2295 md->queue->backing_dev_info->congested_data = md;
2296 md->queue->backing_dev_info->congested_fn = dm_any_congested;
2300 * Setup the DM device's queue based on md's type
2302 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2305 struct queue_limits limits;
2306 enum dm_queue_mode type = dm_get_md_type(md);
2309 case DM_TYPE_REQUEST_BASED:
2310 r = dm_mq_init_request_queue(md, t);
2312 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2315 dm_init_congested_fn(md);
2317 case DM_TYPE_BIO_BASED:
2318 case DM_TYPE_DAX_BIO_BASED:
2319 case DM_TYPE_NVME_BIO_BASED:
2320 dm_init_congested_fn(md);
2327 r = dm_calculate_queue_limits(t, &limits);
2329 DMERR("Cannot calculate initial queue limits");
2332 dm_table_set_restrictions(t, md->queue, &limits);
2333 blk_register_queue(md->disk);
2338 struct mapped_device *dm_get_md(dev_t dev)
2340 struct mapped_device *md;
2341 unsigned minor = MINOR(dev);
2343 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2346 spin_lock(&_minor_lock);
2348 md = idr_find(&_minor_idr, minor);
2349 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2350 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2356 spin_unlock(&_minor_lock);
2360 EXPORT_SYMBOL_GPL(dm_get_md);
2362 void *dm_get_mdptr(struct mapped_device *md)
2364 return md->interface_ptr;
2367 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2369 md->interface_ptr = ptr;
2372 void dm_get(struct mapped_device *md)
2374 atomic_inc(&md->holders);
2375 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2378 int dm_hold(struct mapped_device *md)
2380 spin_lock(&_minor_lock);
2381 if (test_bit(DMF_FREEING, &md->flags)) {
2382 spin_unlock(&_minor_lock);
2386 spin_unlock(&_minor_lock);
2389 EXPORT_SYMBOL_GPL(dm_hold);
2391 const char *dm_device_name(struct mapped_device *md)
2395 EXPORT_SYMBOL_GPL(dm_device_name);
2397 static void __dm_destroy(struct mapped_device *md, bool wait)
2399 struct dm_table *map;
2404 spin_lock(&_minor_lock);
2405 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2406 set_bit(DMF_FREEING, &md->flags);
2407 spin_unlock(&_minor_lock);
2409 blk_set_queue_dying(md->queue);
2412 * Take suspend_lock so that presuspend and postsuspend methods
2413 * do not race with internal suspend.
2415 mutex_lock(&md->suspend_lock);
2416 map = dm_get_live_table(md, &srcu_idx);
2417 if (!dm_suspended_md(md)) {
2418 dm_table_presuspend_targets(map);
2419 set_bit(DMF_SUSPENDED, &md->flags);
2420 dm_table_postsuspend_targets(map);
2422 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2423 dm_put_live_table(md, srcu_idx);
2424 mutex_unlock(&md->suspend_lock);
2427 * Rare, but there may be I/O requests still going to complete,
2428 * for example. Wait for all references to disappear.
2429 * No one should increment the reference count of the mapped_device,
2430 * after the mapped_device state becomes DMF_FREEING.
2433 while (atomic_read(&md->holders))
2435 else if (atomic_read(&md->holders))
2436 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2437 dm_device_name(md), atomic_read(&md->holders));
2440 dm_table_destroy(__unbind(md));
2444 void dm_destroy(struct mapped_device *md)
2446 __dm_destroy(md, true);
2449 void dm_destroy_immediate(struct mapped_device *md)
2451 __dm_destroy(md, false);
2454 void dm_put(struct mapped_device *md)
2456 atomic_dec(&md->holders);
2458 EXPORT_SYMBOL_GPL(dm_put);
2460 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2466 prepare_to_wait(&md->wait, &wait, task_state);
2468 if (!md_in_flight(md))
2471 if (signal_pending_state(task_state, current)) {
2478 finish_wait(&md->wait, &wait);
2484 * Process the deferred bios
2486 static void dm_wq_work(struct work_struct *work)
2488 struct mapped_device *md = container_of(work, struct mapped_device,
2492 struct dm_table *map;
2494 map = dm_get_live_table(md, &srcu_idx);
2496 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2497 spin_lock_irq(&md->deferred_lock);
2498 c = bio_list_pop(&md->deferred);
2499 spin_unlock_irq(&md->deferred_lock);
2504 if (dm_request_based(md))
2505 (void) generic_make_request(c);
2507 (void) dm_process_bio(md, map, c);
2510 dm_put_live_table(md, srcu_idx);
2513 static void dm_queue_flush(struct mapped_device *md)
2515 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2516 smp_mb__after_atomic();
2517 queue_work(md->wq, &md->work);
2521 * Swap in a new table, returning the old one for the caller to destroy.
2523 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2525 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2526 struct queue_limits limits;
2529 mutex_lock(&md->suspend_lock);
2531 /* device must be suspended */
2532 if (!dm_suspended_md(md))
2536 * If the new table has no data devices, retain the existing limits.
2537 * This helps multipath with queue_if_no_path if all paths disappear,
2538 * then new I/O is queued based on these limits, and then some paths
2541 if (dm_table_has_no_data_devices(table)) {
2542 live_map = dm_get_live_table_fast(md);
2544 limits = md->queue->limits;
2545 dm_put_live_table_fast(md);
2549 r = dm_calculate_queue_limits(table, &limits);
2556 map = __bind(md, table, &limits);
2557 dm_issue_global_event();
2560 mutex_unlock(&md->suspend_lock);
2565 * Functions to lock and unlock any filesystem running on the
2568 static int lock_fs(struct mapped_device *md)
2572 WARN_ON(md->frozen_sb);
2574 md->frozen_sb = freeze_bdev(md->bdev);
2575 if (IS_ERR(md->frozen_sb)) {
2576 r = PTR_ERR(md->frozen_sb);
2577 md->frozen_sb = NULL;
2581 set_bit(DMF_FROZEN, &md->flags);
2586 static void unlock_fs(struct mapped_device *md)
2588 if (!test_bit(DMF_FROZEN, &md->flags))
2591 thaw_bdev(md->bdev, md->frozen_sb);
2592 md->frozen_sb = NULL;
2593 clear_bit(DMF_FROZEN, &md->flags);
2597 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2598 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2599 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2601 * If __dm_suspend returns 0, the device is completely quiescent
2602 * now. There is no request-processing activity. All new requests
2603 * are being added to md->deferred list.
2605 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2606 unsigned suspend_flags, long task_state,
2607 int dmf_suspended_flag)
2609 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2610 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2613 lockdep_assert_held(&md->suspend_lock);
2616 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2617 * This flag is cleared before dm_suspend returns.
2620 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2622 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2625 * This gets reverted if there's an error later and the targets
2626 * provide the .presuspend_undo hook.
2628 dm_table_presuspend_targets(map);
2631 * Flush I/O to the device.
2632 * Any I/O submitted after lock_fs() may not be flushed.
2633 * noflush takes precedence over do_lockfs.
2634 * (lock_fs() flushes I/Os and waits for them to complete.)
2636 if (!noflush && do_lockfs) {
2639 dm_table_presuspend_undo_targets(map);
2645 * Here we must make sure that no processes are submitting requests
2646 * to target drivers i.e. no one may be executing
2647 * __split_and_process_bio. This is called from dm_request and
2650 * To get all processes out of __split_and_process_bio in dm_request,
2651 * we take the write lock. To prevent any process from reentering
2652 * __split_and_process_bio from dm_request and quiesce the thread
2653 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2654 * flush_workqueue(md->wq).
2656 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2658 synchronize_srcu(&md->io_barrier);
2661 * Stop md->queue before flushing md->wq in case request-based
2662 * dm defers requests to md->wq from md->queue.
2664 if (dm_request_based(md))
2665 dm_stop_queue(md->queue);
2667 flush_workqueue(md->wq);
2670 * At this point no more requests are entering target request routines.
2671 * We call dm_wait_for_completion to wait for all existing requests
2674 r = dm_wait_for_completion(md, task_state);
2676 set_bit(dmf_suspended_flag, &md->flags);
2679 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2681 synchronize_srcu(&md->io_barrier);
2683 /* were we interrupted ? */
2687 if (dm_request_based(md))
2688 dm_start_queue(md->queue);
2691 dm_table_presuspend_undo_targets(map);
2692 /* pushback list is already flushed, so skip flush */
2699 * We need to be able to change a mapping table under a mounted
2700 * filesystem. For example we might want to move some data in
2701 * the background. Before the table can be swapped with
2702 * dm_bind_table, dm_suspend must be called to flush any in
2703 * flight bios and ensure that any further io gets deferred.
2706 * Suspend mechanism in request-based dm.
2708 * 1. Flush all I/Os by lock_fs() if needed.
2709 * 2. Stop dispatching any I/O by stopping the request_queue.
2710 * 3. Wait for all in-flight I/Os to be completed or requeued.
2712 * To abort suspend, start the request_queue.
2714 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2716 struct dm_table *map = NULL;
2720 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2722 if (dm_suspended_md(md)) {
2727 if (dm_suspended_internally_md(md)) {
2728 /* already internally suspended, wait for internal resume */
2729 mutex_unlock(&md->suspend_lock);
2730 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2736 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2738 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2742 dm_table_postsuspend_targets(map);
2745 mutex_unlock(&md->suspend_lock);
2749 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2752 int r = dm_table_resume_targets(map);
2760 * Flushing deferred I/Os must be done after targets are resumed
2761 * so that mapping of targets can work correctly.
2762 * Request-based dm is queueing the deferred I/Os in its request_queue.
2764 if (dm_request_based(md))
2765 dm_start_queue(md->queue);
2772 int dm_resume(struct mapped_device *md)
2775 struct dm_table *map = NULL;
2779 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2781 if (!dm_suspended_md(md))
2784 if (dm_suspended_internally_md(md)) {
2785 /* already internally suspended, wait for internal resume */
2786 mutex_unlock(&md->suspend_lock);
2787 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2793 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2794 if (!map || !dm_table_get_size(map))
2797 r = __dm_resume(md, map);
2801 clear_bit(DMF_SUSPENDED, &md->flags);
2803 mutex_unlock(&md->suspend_lock);
2809 * Internal suspend/resume works like userspace-driven suspend. It waits
2810 * until all bios finish and prevents issuing new bios to the target drivers.
2811 * It may be used only from the kernel.
2814 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2816 struct dm_table *map = NULL;
2818 lockdep_assert_held(&md->suspend_lock);
2820 if (md->internal_suspend_count++)
2821 return; /* nested internal suspend */
2823 if (dm_suspended_md(md)) {
2824 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2825 return; /* nest suspend */
2828 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2831 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2832 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2833 * would require changing .presuspend to return an error -- avoid this
2834 * until there is a need for more elaborate variants of internal suspend.
2836 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2837 DMF_SUSPENDED_INTERNALLY);
2839 dm_table_postsuspend_targets(map);
2842 static void __dm_internal_resume(struct mapped_device *md)
2844 BUG_ON(!md->internal_suspend_count);
2846 if (--md->internal_suspend_count)
2847 return; /* resume from nested internal suspend */
2849 if (dm_suspended_md(md))
2850 goto done; /* resume from nested suspend */
2853 * NOTE: existing callers don't need to call dm_table_resume_targets
2854 * (which may fail -- so best to avoid it for now by passing NULL map)
2856 (void) __dm_resume(md, NULL);
2859 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2860 smp_mb__after_atomic();
2861 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2864 void dm_internal_suspend_noflush(struct mapped_device *md)
2866 mutex_lock(&md->suspend_lock);
2867 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2868 mutex_unlock(&md->suspend_lock);
2870 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2872 void dm_internal_resume(struct mapped_device *md)
2874 mutex_lock(&md->suspend_lock);
2875 __dm_internal_resume(md);
2876 mutex_unlock(&md->suspend_lock);
2878 EXPORT_SYMBOL_GPL(dm_internal_resume);
2881 * Fast variants of internal suspend/resume hold md->suspend_lock,
2882 * which prevents interaction with userspace-driven suspend.
2885 void dm_internal_suspend_fast(struct mapped_device *md)
2887 mutex_lock(&md->suspend_lock);
2888 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2891 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2892 synchronize_srcu(&md->io_barrier);
2893 flush_workqueue(md->wq);
2894 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2896 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2898 void dm_internal_resume_fast(struct mapped_device *md)
2900 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2906 mutex_unlock(&md->suspend_lock);
2908 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2910 /*-----------------------------------------------------------------
2911 * Event notification.
2912 *---------------------------------------------------------------*/
2913 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2916 char udev_cookie[DM_COOKIE_LENGTH];
2917 char *envp[] = { udev_cookie, NULL };
2920 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2922 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2923 DM_COOKIE_ENV_VAR_NAME, cookie);
2924 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2929 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2931 return atomic_add_return(1, &md->uevent_seq);
2934 uint32_t dm_get_event_nr(struct mapped_device *md)
2936 return atomic_read(&md->event_nr);
2939 int dm_wait_event(struct mapped_device *md, int event_nr)
2941 return wait_event_interruptible(md->eventq,
2942 (event_nr != atomic_read(&md->event_nr)));
2945 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2947 unsigned long flags;
2949 spin_lock_irqsave(&md->uevent_lock, flags);
2950 list_add(elist, &md->uevent_list);
2951 spin_unlock_irqrestore(&md->uevent_lock, flags);
2955 * The gendisk is only valid as long as you have a reference
2958 struct gendisk *dm_disk(struct mapped_device *md)
2962 EXPORT_SYMBOL_GPL(dm_disk);
2964 struct kobject *dm_kobject(struct mapped_device *md)
2966 return &md->kobj_holder.kobj;
2969 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2971 struct mapped_device *md;
2973 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2975 spin_lock(&_minor_lock);
2976 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2982 spin_unlock(&_minor_lock);
2987 int dm_suspended_md(struct mapped_device *md)
2989 return test_bit(DMF_SUSPENDED, &md->flags);
2992 int dm_suspended_internally_md(struct mapped_device *md)
2994 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2997 int dm_test_deferred_remove_flag(struct mapped_device *md)
2999 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3002 int dm_suspended(struct dm_target *ti)
3004 return dm_suspended_md(dm_table_get_md(ti->table));
3006 EXPORT_SYMBOL_GPL(dm_suspended);
3008 int dm_noflush_suspending(struct dm_target *ti)
3010 return __noflush_suspending(dm_table_get_md(ti->table));
3012 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3014 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3015 unsigned integrity, unsigned per_io_data_size,
3016 unsigned min_pool_size)
3018 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3019 unsigned int pool_size = 0;
3020 unsigned int front_pad, io_front_pad;
3027 case DM_TYPE_BIO_BASED:
3028 case DM_TYPE_DAX_BIO_BASED:
3029 case DM_TYPE_NVME_BIO_BASED:
3030 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3031 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3032 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3033 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3036 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3039 case DM_TYPE_REQUEST_BASED:
3040 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3041 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3042 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3048 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3052 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3058 dm_free_md_mempools(pools);
3063 void dm_free_md_mempools(struct dm_md_mempools *pools)
3068 bioset_exit(&pools->bs);
3069 bioset_exit(&pools->io_bs);
3081 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3084 struct mapped_device *md = bdev->bd_disk->private_data;
3085 struct dm_table *table;
3086 struct dm_target *ti;
3087 int ret = -ENOTTY, srcu_idx;
3089 table = dm_get_live_table(md, &srcu_idx);
3090 if (!table || !dm_table_get_size(table))
3093 /* We only support devices that have a single target */
3094 if (dm_table_get_num_targets(table) != 1)
3096 ti = dm_table_get_target(table, 0);
3099 if (!ti->type->iterate_devices)
3102 ret = ti->type->iterate_devices(ti, fn, data);
3104 dm_put_live_table(md, srcu_idx);
3109 * For register / unregister we need to manually call out to every path.
3111 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3112 sector_t start, sector_t len, void *data)
3114 struct dm_pr *pr = data;
3115 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3117 if (!ops || !ops->pr_register)
3119 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3122 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3133 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3134 if (ret && new_key) {
3135 /* unregister all paths if we failed to register any path */
3136 pr.old_key = new_key;
3139 pr.fail_early = false;
3140 dm_call_pr(bdev, __dm_pr_register, &pr);
3146 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3149 struct mapped_device *md = bdev->bd_disk->private_data;
3150 const struct pr_ops *ops;
3153 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3157 ops = bdev->bd_disk->fops->pr_ops;
3158 if (ops && ops->pr_reserve)
3159 r = ops->pr_reserve(bdev, key, type, flags);
3163 dm_unprepare_ioctl(md, srcu_idx);
3167 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3169 struct mapped_device *md = bdev->bd_disk->private_data;
3170 const struct pr_ops *ops;
3173 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3177 ops = bdev->bd_disk->fops->pr_ops;
3178 if (ops && ops->pr_release)
3179 r = ops->pr_release(bdev, key, type);
3183 dm_unprepare_ioctl(md, srcu_idx);
3187 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3188 enum pr_type type, bool abort)
3190 struct mapped_device *md = bdev->bd_disk->private_data;
3191 const struct pr_ops *ops;
3194 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3198 ops = bdev->bd_disk->fops->pr_ops;
3199 if (ops && ops->pr_preempt)
3200 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3204 dm_unprepare_ioctl(md, srcu_idx);
3208 static int dm_pr_clear(struct block_device *bdev, u64 key)
3210 struct mapped_device *md = bdev->bd_disk->private_data;
3211 const struct pr_ops *ops;
3214 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3218 ops = bdev->bd_disk->fops->pr_ops;
3219 if (ops && ops->pr_clear)
3220 r = ops->pr_clear(bdev, key);
3224 dm_unprepare_ioctl(md, srcu_idx);
3228 static const struct pr_ops dm_pr_ops = {
3229 .pr_register = dm_pr_register,
3230 .pr_reserve = dm_pr_reserve,
3231 .pr_release = dm_pr_release,
3232 .pr_preempt = dm_pr_preempt,
3233 .pr_clear = dm_pr_clear,
3236 static const struct block_device_operations dm_blk_dops = {
3237 .open = dm_blk_open,
3238 .release = dm_blk_close,
3239 .ioctl = dm_blk_ioctl,
3240 .getgeo = dm_blk_getgeo,
3241 .report_zones = dm_blk_report_zones,
3242 .pr_ops = &dm_pr_ops,
3243 .owner = THIS_MODULE
3246 static const struct dax_operations dm_dax_ops = {
3247 .direct_access = dm_dax_direct_access,
3248 .dax_supported = dm_dax_supported,
3249 .copy_from_iter = dm_dax_copy_from_iter,
3250 .copy_to_iter = dm_dax_copy_to_iter,
3251 .zero_page_range = dm_dax_zero_page_range,
3257 module_init(dm_init);
3258 module_exit(dm_exit);
3260 module_param(major, uint, 0);
3261 MODULE_PARM_DESC(major, "The major number of the device mapper");
3263 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3266 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3269 MODULE_DESCRIPTION(DM_NAME " driver");
3271 MODULE_LICENSE("GPL");