1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
166 smp_mb__after_atomic();
168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
179 if (flags & FOLL_PIN) {
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
184 refs *= GUP_PIN_COUNTING_BIAS;
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
196 * This might not do anything at all, depending on the flags argument.
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_folio() documentation, with
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
211 struct folio *folio = page_folio(page);
213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
217 if (flags & FOLL_GET)
218 folio_ref_inc(folio);
219 else if (flags & FOLL_PIN) {
221 * Similar to try_grab_folio(): be sure to *also*
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
247 void unpin_user_page(struct page *page)
249 sanity_check_pinned_pages(&page, 1);
250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
252 EXPORT_SYMBOL(unpin_user_page);
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 unsigned long npages, unsigned long i, unsigned int *ntails)
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
261 if (folio_test_large(folio))
262 nr = min_t(unsigned int, npages - i,
263 folio_nr_pages(folio) - folio_page_idx(folio, next));
269 static inline struct folio *gup_folio_next(struct page **list,
270 unsigned long npages, unsigned long i, unsigned int *ntails)
272 struct folio *folio = page_folio(list[i]);
275 for (nr = i + 1; nr < npages; nr++) {
276 if (page_folio(list[nr]) != folio)
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
298 * Please see the unpin_user_page() documentation for details.
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 unpin_user_pages(pages, npages);
318 sanity_check_pinned_pages(pages, npages);
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
341 if (!folio_test_dirty(folio)) {
343 folio_mark_dirty(folio);
346 gup_put_folio(folio, nr, FOLL_PIN);
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
383 folio_mark_dirty(folio);
386 gup_put_folio(folio, nr, FOLL_PIN);
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
409 * unpin_user_pages() - release an array of gup-pinned pages.
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
413 * For each page in the @pages array, release the page using unpin_user_page().
415 * Please see the unpin_user_page() documentation for details.
417 void unpin_user_pages(struct page **pages, unsigned long npages)
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
428 if (WARN_ON(IS_ERR_VALUE(npages)))
431 sanity_check_pinned_pages(pages, npages);
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
437 EXPORT_SYMBOL(unpin_user_pages);
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
451 static struct page *no_page_table(struct vm_area_struct *vma,
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 return ERR_PTR(-EFAULT);
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
471 if (flags & FOLL_TOUCH) {
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
484 /* Proper page table entry exists, but no corresponding struct page */
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
493 /* If the pte is writable, we can write to the page. */
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
523 return !userfaultfd_pte_wp(vma, pte);
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
530 struct mm_struct *mm = vma->vm_mm;
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
542 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 * ARM64 architecture.
545 if (is_vm_hugetlb_page(vma)) {
546 page = follow_huge_pmd_pte(vma, address, flags);
549 return no_page_table(vma, flags);
553 if (unlikely(pmd_bad(*pmd)))
554 return no_page_table(vma, flags);
556 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
558 if (!pte_present(pte)) {
561 * KSM's break_ksm() relies upon recognizing a ksm page
562 * even while it is being migrated, so for that case we
563 * need migration_entry_wait().
565 if (likely(!(flags & FOLL_MIGRATION)))
569 entry = pte_to_swp_entry(pte);
570 if (!is_migration_entry(entry))
572 pte_unmap_unlock(ptep, ptl);
573 migration_entry_wait(mm, pmd, address);
576 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
579 page = vm_normal_page(vma, address, pte);
582 * We only care about anon pages in can_follow_write_pte() and don't
583 * have to worry about pte_devmap() because they are never anon.
585 if ((flags & FOLL_WRITE) &&
586 !can_follow_write_pte(pte, page, vma, flags)) {
591 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
593 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 * case since they are only valid while holding the pgmap
597 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
599 page = pte_page(pte);
602 } else if (unlikely(!page)) {
603 if (flags & FOLL_DUMP) {
604 /* Avoid special (like zero) pages in core dumps */
605 page = ERR_PTR(-EFAULT);
609 if (is_zero_pfn(pte_pfn(pte))) {
610 page = pte_page(pte);
612 ret = follow_pfn_pte(vma, address, ptep, flags);
618 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 page = ERR_PTR(-EMLINK);
623 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 !PageAnonExclusive(page), page);
626 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 if (unlikely(!try_grab_page(page, flags))) {
628 page = ERR_PTR(-ENOMEM);
632 * We need to make the page accessible if and only if we are going
633 * to access its content (the FOLL_PIN case). Please see
634 * Documentation/core-api/pin_user_pages.rst for details.
636 if (flags & FOLL_PIN) {
637 ret = arch_make_page_accessible(page);
639 unpin_user_page(page);
644 if (flags & FOLL_TOUCH) {
645 if ((flags & FOLL_WRITE) &&
646 !pte_dirty(pte) && !PageDirty(page))
647 set_page_dirty(page);
649 * pte_mkyoung() would be more correct here, but atomic care
650 * is needed to avoid losing the dirty bit: it is easier to use
651 * mark_page_accessed().
653 mark_page_accessed(page);
656 pte_unmap_unlock(ptep, ptl);
659 pte_unmap_unlock(ptep, ptl);
662 return no_page_table(vma, flags);
665 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 unsigned long address, pud_t *pudp,
668 struct follow_page_context *ctx)
673 struct mm_struct *mm = vma->vm_mm;
675 pmd = pmd_offset(pudp, address);
677 * The READ_ONCE() will stabilize the pmdval in a register or
678 * on the stack so that it will stop changing under the code.
680 pmdval = READ_ONCE(*pmd);
681 if (pmd_none(pmdval))
682 return no_page_table(vma, flags);
683 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
684 page = follow_huge_pmd_pte(vma, address, flags);
687 return no_page_table(vma, flags);
689 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
690 page = follow_huge_pd(vma, address,
691 __hugepd(pmd_val(pmdval)), flags,
695 return no_page_table(vma, flags);
698 if (!pmd_present(pmdval)) {
700 * Should never reach here, if thp migration is not supported;
701 * Otherwise, it must be a thp migration entry.
703 VM_BUG_ON(!thp_migration_supported() ||
704 !is_pmd_migration_entry(pmdval));
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
709 pmd_migration_entry_wait(mm, pmd);
710 pmdval = READ_ONCE(*pmd);
712 * MADV_DONTNEED may convert the pmd to null because
713 * mmap_lock is held in read mode
715 if (pmd_none(pmdval))
716 return no_page_table(vma, flags);
719 if (pmd_devmap(pmdval)) {
720 ptl = pmd_lock(mm, pmd);
721 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
726 if (likely(!pmd_trans_huge(pmdval)))
727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
730 return no_page_table(vma, flags);
733 ptl = pmd_lock(mm, pmd);
734 if (unlikely(pmd_none(*pmd))) {
736 return no_page_table(vma, flags);
738 if (unlikely(!pmd_present(*pmd))) {
740 if (likely(!(flags & FOLL_MIGRATION)))
741 return no_page_table(vma, flags);
742 pmd_migration_entry_wait(mm, pmd);
745 if (unlikely(!pmd_trans_huge(*pmd))) {
747 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
749 if (flags & FOLL_SPLIT_PMD) {
751 page = pmd_page(*pmd);
752 if (is_huge_zero_page(page)) {
755 split_huge_pmd(vma, pmd, address);
756 if (pmd_trans_unstable(pmd))
760 split_huge_pmd(vma, pmd, address);
761 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
764 return ret ? ERR_PTR(ret) :
765 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
767 page = follow_trans_huge_pmd(vma, address, pmd, flags);
769 ctx->page_mask = HPAGE_PMD_NR - 1;
773 static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 unsigned long address, p4d_t *p4dp,
776 struct follow_page_context *ctx)
781 struct mm_struct *mm = vma->vm_mm;
783 pud = pud_offset(p4dp, address);
785 return no_page_table(vma, flags);
786 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
787 page = follow_huge_pud(mm, address, pud, flags);
790 return no_page_table(vma, flags);
792 if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 page = follow_huge_pd(vma, address,
794 __hugepd(pud_val(*pud)), flags,
798 return no_page_table(vma, flags);
800 if (pud_devmap(*pud)) {
801 ptl = pud_lock(mm, pud);
802 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
807 if (unlikely(pud_bad(*pud)))
808 return no_page_table(vma, flags);
810 return follow_pmd_mask(vma, address, pud, flags, ctx);
813 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 unsigned long address, pgd_t *pgdp,
816 struct follow_page_context *ctx)
821 p4d = p4d_offset(pgdp, address);
823 return no_page_table(vma, flags);
824 BUILD_BUG_ON(p4d_huge(*p4d));
825 if (unlikely(p4d_bad(*p4d)))
826 return no_page_table(vma, flags);
828 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 page = follow_huge_pd(vma, address,
830 __hugepd(p4d_val(*p4d)), flags,
834 return no_page_table(vma, flags);
836 return follow_pud_mask(vma, address, p4d, flags, ctx);
840 * follow_page_mask - look up a page descriptor from a user-virtual address
841 * @vma: vm_area_struct mapping @address
842 * @address: virtual address to look up
843 * @flags: flags modifying lookup behaviour
844 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845 * pointer to output page_mask
847 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
849 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
852 * When getting an anonymous page and the caller has to trigger unsharing
853 * of a shared anonymous page first, -EMLINK is returned. The caller should
854 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855 * relevant with FOLL_PIN and !FOLL_WRITE.
857 * On output, the @ctx->page_mask is set according to the size of the page.
859 * Return: the mapped (struct page *), %NULL if no mapping exists, or
860 * an error pointer if there is a mapping to something not represented
861 * by a page descriptor (see also vm_normal_page()).
863 static struct page *follow_page_mask(struct vm_area_struct *vma,
864 unsigned long address, unsigned int flags,
865 struct follow_page_context *ctx)
869 struct mm_struct *mm = vma->vm_mm;
873 /* make this handle hugepd */
874 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
876 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
880 pgd = pgd_offset(mm, address);
882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 return no_page_table(vma, flags);
885 if (pgd_huge(*pgd)) {
886 page = follow_huge_pgd(mm, address, pgd, flags);
889 return no_page_table(vma, flags);
891 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 page = follow_huge_pd(vma, address,
893 __hugepd(pgd_val(*pgd)), flags,
897 return no_page_table(vma, flags);
900 return follow_p4d_mask(vma, address, pgd, flags, ctx);
903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 unsigned int foll_flags)
906 struct follow_page_context ctx = { NULL };
909 if (vma_is_secretmem(vma))
912 if (foll_flags & FOLL_PIN)
915 page = follow_page_mask(vma, address, foll_flags, &ctx);
917 put_dev_pagemap(ctx.pgmap);
921 static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 unsigned int gup_flags, struct vm_area_struct **vma,
932 /* user gate pages are read-only */
933 if (gup_flags & FOLL_WRITE)
935 if (address > TASK_SIZE)
936 pgd = pgd_offset_k(address);
938 pgd = pgd_offset_gate(mm, address);
941 p4d = p4d_offset(pgd, address);
944 pud = pud_offset(p4d, address);
947 pmd = pmd_offset(pud, address);
948 if (!pmd_present(*pmd))
950 VM_BUG_ON(pmd_trans_huge(*pmd));
951 pte = pte_offset_map(pmd, address);
954 *vma = get_gate_vma(mm);
957 *page = vm_normal_page(*vma, address, *pte);
959 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
961 *page = pte_page(*pte);
963 if (unlikely(!try_grab_page(*page, gup_flags))) {
975 * mmap_lock must be held on entry. If @locked != NULL and *@flags
976 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
977 * is, *@locked will be set to 0 and -EBUSY returned.
979 static int faultin_page(struct vm_area_struct *vma,
980 unsigned long address, unsigned int *flags, bool unshare,
983 unsigned int fault_flags = 0;
986 if (*flags & FOLL_NOFAULT)
988 if (*flags & FOLL_WRITE)
989 fault_flags |= FAULT_FLAG_WRITE;
990 if (*flags & FOLL_REMOTE)
991 fault_flags |= FAULT_FLAG_REMOTE;
993 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
995 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
996 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
997 * That's because some callers may not be prepared to
998 * handle early exits caused by non-fatal signals.
1000 if (*flags & FOLL_INTERRUPTIBLE)
1001 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1003 if (*flags & FOLL_NOWAIT)
1004 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1005 if (*flags & FOLL_TRIED) {
1007 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1010 fault_flags |= FAULT_FLAG_TRIED;
1013 fault_flags |= FAULT_FLAG_UNSHARE;
1014 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1015 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1018 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1020 if (ret & VM_FAULT_COMPLETED) {
1022 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1023 * mmap lock in the page fault handler. Sanity check this.
1025 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1029 * We should do the same as VM_FAULT_RETRY, but let's not
1030 * return -EBUSY since that's not reflecting the reality of
1031 * what has happened - we've just fully completed a page
1032 * fault, with the mmap lock released. Use -EAGAIN to show
1033 * that we want to take the mmap lock _again_.
1038 if (ret & VM_FAULT_ERROR) {
1039 int err = vm_fault_to_errno(ret, *flags);
1046 if (ret & VM_FAULT_RETRY) {
1047 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1055 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1057 vm_flags_t vm_flags = vma->vm_flags;
1058 int write = (gup_flags & FOLL_WRITE);
1059 int foreign = (gup_flags & FOLL_REMOTE);
1061 if (vm_flags & (VM_IO | VM_PFNMAP))
1064 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1067 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1070 if (vma_is_secretmem(vma))
1074 if (!(vm_flags & VM_WRITE)) {
1075 if (!(gup_flags & FOLL_FORCE))
1078 * We used to let the write,force case do COW in a
1079 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1080 * set a breakpoint in a read-only mapping of an
1081 * executable, without corrupting the file (yet only
1082 * when that file had been opened for writing!).
1083 * Anon pages in shared mappings are surprising: now
1086 if (!is_cow_mapping(vm_flags))
1089 } else if (!(vm_flags & VM_READ)) {
1090 if (!(gup_flags & FOLL_FORCE))
1093 * Is there actually any vma we can reach here which does not
1094 * have VM_MAYREAD set?
1096 if (!(vm_flags & VM_MAYREAD))
1100 * gups are always data accesses, not instruction
1101 * fetches, so execute=false here
1103 if (!arch_vma_access_permitted(vma, write, false, foreign))
1109 * __get_user_pages() - pin user pages in memory
1110 * @mm: mm_struct of target mm
1111 * @start: starting user address
1112 * @nr_pages: number of pages from start to pin
1113 * @gup_flags: flags modifying pin behaviour
1114 * @pages: array that receives pointers to the pages pinned.
1115 * Should be at least nr_pages long. Or NULL, if caller
1116 * only intends to ensure the pages are faulted in.
1117 * @vmas: array of pointers to vmas corresponding to each page.
1118 * Or NULL if the caller does not require them.
1119 * @locked: whether we're still with the mmap_lock held
1121 * Returns either number of pages pinned (which may be less than the
1122 * number requested), or an error. Details about the return value:
1124 * -- If nr_pages is 0, returns 0.
1125 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1126 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1127 * pages pinned. Again, this may be less than nr_pages.
1128 * -- 0 return value is possible when the fault would need to be retried.
1130 * The caller is responsible for releasing returned @pages, via put_page().
1132 * @vmas are valid only as long as mmap_lock is held.
1134 * Must be called with mmap_lock held. It may be released. See below.
1136 * __get_user_pages walks a process's page tables and takes a reference to
1137 * each struct page that each user address corresponds to at a given
1138 * instant. That is, it takes the page that would be accessed if a user
1139 * thread accesses the given user virtual address at that instant.
1141 * This does not guarantee that the page exists in the user mappings when
1142 * __get_user_pages returns, and there may even be a completely different
1143 * page there in some cases (eg. if mmapped pagecache has been invalidated
1144 * and subsequently re faulted). However it does guarantee that the page
1145 * won't be freed completely. And mostly callers simply care that the page
1146 * contains data that was valid *at some point in time*. Typically, an IO
1147 * or similar operation cannot guarantee anything stronger anyway because
1148 * locks can't be held over the syscall boundary.
1150 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1151 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1152 * appropriate) must be called after the page is finished with, and
1153 * before put_page is called.
1155 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1156 * released by an up_read(). That can happen if @gup_flags does not
1159 * A caller using such a combination of @locked and @gup_flags
1160 * must therefore hold the mmap_lock for reading only, and recognize
1161 * when it's been released. Otherwise, it must be held for either
1162 * reading or writing and will not be released.
1164 * In most cases, get_user_pages or get_user_pages_fast should be used
1165 * instead of __get_user_pages. __get_user_pages should be used only if
1166 * you need some special @gup_flags.
1168 static long __get_user_pages(struct mm_struct *mm,
1169 unsigned long start, unsigned long nr_pages,
1170 unsigned int gup_flags, struct page **pages,
1171 struct vm_area_struct **vmas, int *locked)
1173 long ret = 0, i = 0;
1174 struct vm_area_struct *vma = NULL;
1175 struct follow_page_context ctx = { NULL };
1180 start = untagged_addr(start);
1182 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1186 unsigned int foll_flags = gup_flags;
1187 unsigned int page_increm;
1189 /* first iteration or cross vma bound */
1190 if (!vma || start >= vma->vm_end) {
1191 vma = find_extend_vma(mm, start);
1192 if (!vma && in_gate_area(mm, start)) {
1193 ret = get_gate_page(mm, start & PAGE_MASK,
1195 pages ? &pages[i] : NULL);
1206 ret = check_vma_flags(vma, gup_flags);
1210 if (is_vm_hugetlb_page(vma)) {
1211 i = follow_hugetlb_page(mm, vma, pages, vmas,
1212 &start, &nr_pages, i,
1214 if (locked && *locked == 0) {
1216 * We've got a VM_FAULT_RETRY
1217 * and we've lost mmap_lock.
1218 * We must stop here.
1220 BUG_ON(gup_flags & FOLL_NOWAIT);
1228 * If we have a pending SIGKILL, don't keep faulting pages and
1229 * potentially allocating memory.
1231 if (fatal_signal_pending(current)) {
1237 page = follow_page_mask(vma, start, foll_flags, &ctx);
1238 if (!page || PTR_ERR(page) == -EMLINK) {
1239 ret = faultin_page(vma, start, &foll_flags,
1240 PTR_ERR(page) == -EMLINK, locked);
1254 } else if (PTR_ERR(page) == -EEXIST) {
1256 * Proper page table entry exists, but no corresponding
1257 * struct page. If the caller expects **pages to be
1258 * filled in, bail out now, because that can't be done
1262 ret = PTR_ERR(page);
1267 } else if (IS_ERR(page)) {
1268 ret = PTR_ERR(page);
1273 flush_anon_page(vma, page, start);
1274 flush_dcache_page(page);
1282 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1283 if (page_increm > nr_pages)
1284 page_increm = nr_pages;
1286 start += page_increm * PAGE_SIZE;
1287 nr_pages -= page_increm;
1291 put_dev_pagemap(ctx.pgmap);
1295 static bool vma_permits_fault(struct vm_area_struct *vma,
1296 unsigned int fault_flags)
1298 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1299 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1300 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1302 if (!(vm_flags & vma->vm_flags))
1306 * The architecture might have a hardware protection
1307 * mechanism other than read/write that can deny access.
1309 * gup always represents data access, not instruction
1310 * fetches, so execute=false here:
1312 if (!arch_vma_access_permitted(vma, write, false, foreign))
1319 * fixup_user_fault() - manually resolve a user page fault
1320 * @mm: mm_struct of target mm
1321 * @address: user address
1322 * @fault_flags:flags to pass down to handle_mm_fault()
1323 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1324 * does not allow retry. If NULL, the caller must guarantee
1325 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1327 * This is meant to be called in the specific scenario where for locking reasons
1328 * we try to access user memory in atomic context (within a pagefault_disable()
1329 * section), this returns -EFAULT, and we want to resolve the user fault before
1332 * Typically this is meant to be used by the futex code.
1334 * The main difference with get_user_pages() is that this function will
1335 * unconditionally call handle_mm_fault() which will in turn perform all the
1336 * necessary SW fixup of the dirty and young bits in the PTE, while
1337 * get_user_pages() only guarantees to update these in the struct page.
1339 * This is important for some architectures where those bits also gate the
1340 * access permission to the page because they are maintained in software. On
1341 * such architectures, gup() will not be enough to make a subsequent access
1344 * This function will not return with an unlocked mmap_lock. So it has not the
1345 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1347 int fixup_user_fault(struct mm_struct *mm,
1348 unsigned long address, unsigned int fault_flags,
1351 struct vm_area_struct *vma;
1354 address = untagged_addr(address);
1357 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1360 vma = find_extend_vma(mm, address);
1361 if (!vma || address < vma->vm_start)
1364 if (!vma_permits_fault(vma, fault_flags))
1367 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1368 fatal_signal_pending(current))
1371 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1373 if (ret & VM_FAULT_COMPLETED) {
1375 * NOTE: it's a pity that we need to retake the lock here
1376 * to pair with the unlock() in the callers. Ideally we
1377 * could tell the callers so they do not need to unlock.
1384 if (ret & VM_FAULT_ERROR) {
1385 int err = vm_fault_to_errno(ret, 0);
1392 if (ret & VM_FAULT_RETRY) {
1395 fault_flags |= FAULT_FLAG_TRIED;
1401 EXPORT_SYMBOL_GPL(fixup_user_fault);
1404 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1405 * specified, it'll also respond to generic signals. The caller of GUP
1406 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1408 static bool gup_signal_pending(unsigned int flags)
1410 if (fatal_signal_pending(current))
1413 if (!(flags & FOLL_INTERRUPTIBLE))
1416 return signal_pending(current);
1420 * Please note that this function, unlike __get_user_pages will not
1421 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1423 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1424 unsigned long start,
1425 unsigned long nr_pages,
1426 struct page **pages,
1427 struct vm_area_struct **vmas,
1431 long ret, pages_done;
1435 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1437 /* check caller initialized locked */
1438 BUG_ON(*locked != 1);
1441 if (flags & FOLL_PIN)
1442 mm_set_has_pinned_flag(&mm->flags);
1445 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1446 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1447 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1448 * for FOLL_GET, not for the newer FOLL_PIN.
1450 * FOLL_PIN always expects pages to be non-null, but no need to assert
1451 * that here, as any failures will be obvious enough.
1453 if (pages && !(flags & FOLL_PIN))
1457 lock_dropped = false;
1459 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1462 /* VM_FAULT_RETRY couldn't trigger, bypass */
1465 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1468 BUG_ON(ret >= nr_pages);
1479 * VM_FAULT_RETRY didn't trigger or it was a
1487 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1488 * For the prefault case (!pages) we only update counts.
1492 start += ret << PAGE_SHIFT;
1493 lock_dropped = true;
1497 * Repeat on the address that fired VM_FAULT_RETRY
1498 * with both FAULT_FLAG_ALLOW_RETRY and
1499 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1500 * by fatal signals of even common signals, depending on
1501 * the caller's request. So we need to check it before we
1502 * start trying again otherwise it can loop forever.
1504 if (gup_signal_pending(flags)) {
1506 pages_done = -EINTR;
1510 ret = mmap_read_lock_killable(mm);
1519 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1520 pages, NULL, locked);
1522 /* Continue to retry until we succeeded */
1540 if (lock_dropped && *locked) {
1542 * We must let the caller know we temporarily dropped the lock
1543 * and so the critical section protected by it was lost.
1545 mmap_read_unlock(mm);
1552 * populate_vma_page_range() - populate a range of pages in the vma.
1554 * @start: start address
1556 * @locked: whether the mmap_lock is still held
1558 * This takes care of mlocking the pages too if VM_LOCKED is set.
1560 * Return either number of pages pinned in the vma, or a negative error
1563 * vma->vm_mm->mmap_lock must be held.
1565 * If @locked is NULL, it may be held for read or write and will
1568 * If @locked is non-NULL, it must held for read only and may be
1569 * released. If it's released, *@locked will be set to 0.
1571 long populate_vma_page_range(struct vm_area_struct *vma,
1572 unsigned long start, unsigned long end, int *locked)
1574 struct mm_struct *mm = vma->vm_mm;
1575 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1579 VM_BUG_ON(!PAGE_ALIGNED(start));
1580 VM_BUG_ON(!PAGE_ALIGNED(end));
1581 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1582 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1583 mmap_assert_locked(mm);
1586 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1587 * faultin_page() to break COW, so it has no work to do here.
1589 if (vma->vm_flags & VM_LOCKONFAULT)
1592 gup_flags = FOLL_TOUCH;
1594 * We want to touch writable mappings with a write fault in order
1595 * to break COW, except for shared mappings because these don't COW
1596 * and we would not want to dirty them for nothing.
1598 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1599 gup_flags |= FOLL_WRITE;
1602 * We want mlock to succeed for regions that have any permissions
1603 * other than PROT_NONE.
1605 if (vma_is_accessible(vma))
1606 gup_flags |= FOLL_FORCE;
1609 * We made sure addr is within a VMA, so the following will
1610 * not result in a stack expansion that recurses back here.
1612 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1613 NULL, NULL, locked);
1619 * faultin_vma_page_range() - populate (prefault) page tables inside the
1620 * given VMA range readable/writable
1622 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1625 * @start: start address
1627 * @write: whether to prefault readable or writable
1628 * @locked: whether the mmap_lock is still held
1630 * Returns either number of processed pages in the vma, or a negative error
1631 * code on error (see __get_user_pages()).
1633 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1634 * covered by the VMA.
1636 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1638 * If @locked is non-NULL, it must held for read only and may be released. If
1639 * it's released, *@locked will be set to 0.
1641 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1642 unsigned long end, bool write, int *locked)
1644 struct mm_struct *mm = vma->vm_mm;
1645 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1649 VM_BUG_ON(!PAGE_ALIGNED(start));
1650 VM_BUG_ON(!PAGE_ALIGNED(end));
1651 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1652 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1653 mmap_assert_locked(mm);
1656 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1657 * the page dirty with FOLL_WRITE -- which doesn't make a
1658 * difference with !FOLL_FORCE, because the page is writable
1659 * in the page table.
1660 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1662 * !FOLL_FORCE: Require proper access permissions.
1664 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1666 gup_flags |= FOLL_WRITE;
1669 * We want to report -EINVAL instead of -EFAULT for any permission
1670 * problems or incompatible mappings.
1672 if (check_vma_flags(vma, gup_flags))
1675 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1676 NULL, NULL, locked);
1682 * __mm_populate - populate and/or mlock pages within a range of address space.
1684 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1685 * flags. VMAs must be already marked with the desired vm_flags, and
1686 * mmap_lock must not be held.
1688 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1690 struct mm_struct *mm = current->mm;
1691 unsigned long end, nstart, nend;
1692 struct vm_area_struct *vma = NULL;
1698 for (nstart = start; nstart < end; nstart = nend) {
1700 * We want to fault in pages for [nstart; end) address range.
1701 * Find first corresponding VMA.
1706 vma = find_vma_intersection(mm, nstart, end);
1707 } else if (nstart >= vma->vm_end)
1708 vma = find_vma_intersection(mm, vma->vm_end, end);
1713 * Set [nstart; nend) to intersection of desired address
1714 * range with the first VMA. Also, skip undesirable VMA types.
1716 nend = min(end, vma->vm_end);
1717 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1719 if (nstart < vma->vm_start)
1720 nstart = vma->vm_start;
1722 * Now fault in a range of pages. populate_vma_page_range()
1723 * double checks the vma flags, so that it won't mlock pages
1724 * if the vma was already munlocked.
1726 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1728 if (ignore_errors) {
1730 continue; /* continue at next VMA */
1734 nend = nstart + ret * PAGE_SIZE;
1738 mmap_read_unlock(mm);
1739 return ret; /* 0 or negative error code */
1741 #else /* CONFIG_MMU */
1742 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1743 unsigned long nr_pages, struct page **pages,
1744 struct vm_area_struct **vmas, int *locked,
1745 unsigned int foll_flags)
1747 struct vm_area_struct *vma;
1748 unsigned long vm_flags;
1751 /* calculate required read or write permissions.
1752 * If FOLL_FORCE is set, we only require the "MAY" flags.
1754 vm_flags = (foll_flags & FOLL_WRITE) ?
1755 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1756 vm_flags &= (foll_flags & FOLL_FORCE) ?
1757 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1759 for (i = 0; i < nr_pages; i++) {
1760 vma = find_vma(mm, start);
1762 goto finish_or_fault;
1764 /* protect what we can, including chardevs */
1765 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1766 !(vm_flags & vma->vm_flags))
1767 goto finish_or_fault;
1770 pages[i] = virt_to_page((void *)start);
1776 start = (start + PAGE_SIZE) & PAGE_MASK;
1782 return i ? : -EFAULT;
1784 #endif /* !CONFIG_MMU */
1787 * fault_in_writeable - fault in userspace address range for writing
1788 * @uaddr: start of address range
1789 * @size: size of address range
1791 * Returns the number of bytes not faulted in (like copy_to_user() and
1792 * copy_from_user()).
1794 size_t fault_in_writeable(char __user *uaddr, size_t size)
1796 char __user *start = uaddr, *end;
1798 if (unlikely(size == 0))
1800 if (!user_write_access_begin(uaddr, size))
1802 if (!PAGE_ALIGNED(uaddr)) {
1803 unsafe_put_user(0, uaddr, out);
1804 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1806 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1807 if (unlikely(end < start))
1809 while (uaddr != end) {
1810 unsafe_put_user(0, uaddr, out);
1815 user_write_access_end();
1816 if (size > uaddr - start)
1817 return size - (uaddr - start);
1820 EXPORT_SYMBOL(fault_in_writeable);
1823 * fault_in_subpage_writeable - fault in an address range for writing
1824 * @uaddr: start of address range
1825 * @size: size of address range
1827 * Fault in a user address range for writing while checking for permissions at
1828 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1829 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1831 * Returns the number of bytes not faulted in (like copy_to_user() and
1832 * copy_from_user()).
1834 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1839 * Attempt faulting in at page granularity first for page table
1840 * permission checking. The arch-specific probe_subpage_writeable()
1841 * functions may not check for this.
1843 faulted_in = size - fault_in_writeable(uaddr, size);
1845 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1847 return size - faulted_in;
1849 EXPORT_SYMBOL(fault_in_subpage_writeable);
1852 * fault_in_safe_writeable - fault in an address range for writing
1853 * @uaddr: start of address range
1854 * @size: length of address range
1856 * Faults in an address range for writing. This is primarily useful when we
1857 * already know that some or all of the pages in the address range aren't in
1860 * Unlike fault_in_writeable(), this function is non-destructive.
1862 * Note that we don't pin or otherwise hold the pages referenced that we fault
1863 * in. There's no guarantee that they'll stay in memory for any duration of
1866 * Returns the number of bytes not faulted in, like copy_to_user() and
1869 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1871 unsigned long start = (unsigned long)uaddr, end;
1872 struct mm_struct *mm = current->mm;
1873 bool unlocked = false;
1875 if (unlikely(size == 0))
1877 end = PAGE_ALIGN(start + size);
1883 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1885 start = (start + PAGE_SIZE) & PAGE_MASK;
1886 } while (start != end);
1887 mmap_read_unlock(mm);
1889 if (size > (unsigned long)uaddr - start)
1890 return size - ((unsigned long)uaddr - start);
1893 EXPORT_SYMBOL(fault_in_safe_writeable);
1896 * fault_in_readable - fault in userspace address range for reading
1897 * @uaddr: start of user address range
1898 * @size: size of user address range
1900 * Returns the number of bytes not faulted in (like copy_to_user() and
1901 * copy_from_user()).
1903 size_t fault_in_readable(const char __user *uaddr, size_t size)
1905 const char __user *start = uaddr, *end;
1908 if (unlikely(size == 0))
1910 if (!user_read_access_begin(uaddr, size))
1912 if (!PAGE_ALIGNED(uaddr)) {
1913 unsafe_get_user(c, uaddr, out);
1914 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1916 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1917 if (unlikely(end < start))
1919 while (uaddr != end) {
1920 unsafe_get_user(c, uaddr, out);
1925 user_read_access_end();
1927 if (size > uaddr - start)
1928 return size - (uaddr - start);
1931 EXPORT_SYMBOL(fault_in_readable);
1934 * get_dump_page() - pin user page in memory while writing it to core dump
1935 * @addr: user address
1937 * Returns struct page pointer of user page pinned for dump,
1938 * to be freed afterwards by put_page().
1940 * Returns NULL on any kind of failure - a hole must then be inserted into
1941 * the corefile, to preserve alignment with its headers; and also returns
1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1943 * allowing a hole to be left in the corefile to save disk space.
1945 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1947 #ifdef CONFIG_ELF_CORE
1948 struct page *get_dump_page(unsigned long addr)
1950 struct mm_struct *mm = current->mm;
1955 if (mmap_read_lock_killable(mm))
1957 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1958 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1960 mmap_read_unlock(mm);
1961 return (ret == 1) ? page : NULL;
1963 #endif /* CONFIG_ELF_CORE */
1965 #ifdef CONFIG_MIGRATION
1967 * Returns the number of collected pages. Return value is always >= 0.
1969 static unsigned long collect_longterm_unpinnable_pages(
1970 struct list_head *movable_page_list,
1971 unsigned long nr_pages,
1972 struct page **pages)
1974 unsigned long i, collected = 0;
1975 struct folio *prev_folio = NULL;
1976 bool drain_allow = true;
1978 for (i = 0; i < nr_pages; i++) {
1979 struct folio *folio = page_folio(pages[i]);
1981 if (folio == prev_folio)
1985 if (folio_is_longterm_pinnable(folio))
1990 if (folio_is_device_coherent(folio))
1993 if (folio_test_hugetlb(folio)) {
1994 isolate_hugetlb(&folio->page, movable_page_list);
1998 if (!folio_test_lru(folio) && drain_allow) {
1999 lru_add_drain_all();
2000 drain_allow = false;
2003 if (!folio_isolate_lru(folio))
2006 list_add_tail(&folio->lru, movable_page_list);
2007 node_stat_mod_folio(folio,
2008 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2009 folio_nr_pages(folio));
2016 * Unpins all pages and migrates device coherent pages and movable_page_list.
2017 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2018 * (or partial success).
2020 static int migrate_longterm_unpinnable_pages(
2021 struct list_head *movable_page_list,
2022 unsigned long nr_pages,
2023 struct page **pages)
2028 for (i = 0; i < nr_pages; i++) {
2029 struct folio *folio = page_folio(pages[i]);
2031 if (folio_is_device_coherent(folio)) {
2033 * Migration will fail if the page is pinned, so convert
2034 * the pin on the source page to a normal reference.
2038 gup_put_folio(folio, 1, FOLL_PIN);
2040 if (migrate_device_coherent_page(&folio->page)) {
2049 * We can't migrate pages with unexpected references, so drop
2050 * the reference obtained by __get_user_pages_locked().
2051 * Migrating pages have been added to movable_page_list after
2052 * calling folio_isolate_lru() which takes a reference so the
2053 * page won't be freed if it's migrating.
2055 unpin_user_page(pages[i]);
2059 if (!list_empty(movable_page_list)) {
2060 struct migration_target_control mtc = {
2061 .nid = NUMA_NO_NODE,
2062 .gfp_mask = GFP_USER | __GFP_NOWARN,
2065 if (migrate_pages(movable_page_list, alloc_migration_target,
2066 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2067 MR_LONGTERM_PIN, NULL)) {
2073 putback_movable_pages(movable_page_list);
2078 for (i = 0; i < nr_pages; i++)
2080 unpin_user_page(pages[i]);
2081 putback_movable_pages(movable_page_list);
2087 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2088 * pages in the range are required to be pinned via FOLL_PIN, before calling
2091 * If any pages in the range are not allowed to be pinned, then this routine
2092 * will migrate those pages away, unpin all the pages in the range and return
2093 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2094 * call this routine again.
2096 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2097 * The caller should give up, and propagate the error back up the call stack.
2099 * If everything is OK and all pages in the range are allowed to be pinned, then
2100 * this routine leaves all pages pinned and returns zero for success.
2102 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2103 struct page **pages)
2105 unsigned long collected;
2106 LIST_HEAD(movable_page_list);
2108 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2113 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2117 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2118 struct page **pages)
2122 #endif /* CONFIG_MIGRATION */
2125 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2126 * allows us to process the FOLL_LONGTERM flag.
2128 static long __gup_longterm_locked(struct mm_struct *mm,
2129 unsigned long start,
2130 unsigned long nr_pages,
2131 struct page **pages,
2132 struct vm_area_struct **vmas,
2133 unsigned int gup_flags)
2136 long rc, nr_pinned_pages;
2138 if (!(gup_flags & FOLL_LONGTERM))
2139 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2143 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2144 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2145 * correct to unconditionally call check_and_migrate_movable_pages()
2146 * which assumes pages have been pinned via FOLL_PIN.
2148 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2150 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2152 flags = memalloc_pin_save();
2154 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2157 if (nr_pinned_pages <= 0) {
2158 rc = nr_pinned_pages;
2161 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2162 } while (rc == -EAGAIN);
2163 memalloc_pin_restore(flags);
2165 return rc ? rc : nr_pinned_pages;
2168 static bool is_valid_gup_flags(unsigned int gup_flags)
2171 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2172 * never directly by the caller, so enforce that with an assertion:
2174 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2177 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2178 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2181 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2188 static long __get_user_pages_remote(struct mm_struct *mm,
2189 unsigned long start, unsigned long nr_pages,
2190 unsigned int gup_flags, struct page **pages,
2191 struct vm_area_struct **vmas, int *locked)
2194 * Parts of FOLL_LONGTERM behavior are incompatible with
2195 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2196 * vmas. However, this only comes up if locked is set, and there are
2197 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2198 * allow what we can.
2200 if (gup_flags & FOLL_LONGTERM) {
2201 if (WARN_ON_ONCE(locked))
2204 * This will check the vmas (even if our vmas arg is NULL)
2205 * and return -ENOTSUPP if DAX isn't allowed in this case:
2207 return __gup_longterm_locked(mm, start, nr_pages, pages,
2208 vmas, gup_flags | FOLL_TOUCH |
2212 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2214 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2218 * get_user_pages_remote() - pin user pages in memory
2219 * @mm: mm_struct of target mm
2220 * @start: starting user address
2221 * @nr_pages: number of pages from start to pin
2222 * @gup_flags: flags modifying lookup behaviour
2223 * @pages: array that receives pointers to the pages pinned.
2224 * Should be at least nr_pages long. Or NULL, if caller
2225 * only intends to ensure the pages are faulted in.
2226 * @vmas: array of pointers to vmas corresponding to each page.
2227 * Or NULL if the caller does not require them.
2228 * @locked: pointer to lock flag indicating whether lock is held and
2229 * subsequently whether VM_FAULT_RETRY functionality can be
2230 * utilised. Lock must initially be held.
2232 * Returns either number of pages pinned (which may be less than the
2233 * number requested), or an error. Details about the return value:
2235 * -- If nr_pages is 0, returns 0.
2236 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2237 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2238 * pages pinned. Again, this may be less than nr_pages.
2240 * The caller is responsible for releasing returned @pages, via put_page().
2242 * @vmas are valid only as long as mmap_lock is held.
2244 * Must be called with mmap_lock held for read or write.
2246 * get_user_pages_remote walks a process's page tables and takes a reference
2247 * to each struct page that each user address corresponds to at a given
2248 * instant. That is, it takes the page that would be accessed if a user
2249 * thread accesses the given user virtual address at that instant.
2251 * This does not guarantee that the page exists in the user mappings when
2252 * get_user_pages_remote returns, and there may even be a completely different
2253 * page there in some cases (eg. if mmapped pagecache has been invalidated
2254 * and subsequently re faulted). However it does guarantee that the page
2255 * won't be freed completely. And mostly callers simply care that the page
2256 * contains data that was valid *at some point in time*. Typically, an IO
2257 * or similar operation cannot guarantee anything stronger anyway because
2258 * locks can't be held over the syscall boundary.
2260 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2261 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2262 * be called after the page is finished with, and before put_page is called.
2264 * get_user_pages_remote is typically used for fewer-copy IO operations,
2265 * to get a handle on the memory by some means other than accesses
2266 * via the user virtual addresses. The pages may be submitted for
2267 * DMA to devices or accessed via their kernel linear mapping (via the
2268 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2270 * See also get_user_pages_fast, for performance critical applications.
2272 * get_user_pages_remote should be phased out in favor of
2273 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2274 * should use get_user_pages_remote because it cannot pass
2275 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2277 long get_user_pages_remote(struct mm_struct *mm,
2278 unsigned long start, unsigned long nr_pages,
2279 unsigned int gup_flags, struct page **pages,
2280 struct vm_area_struct **vmas, int *locked)
2282 if (!is_valid_gup_flags(gup_flags))
2285 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2286 pages, vmas, locked);
2288 EXPORT_SYMBOL(get_user_pages_remote);
2290 #else /* CONFIG_MMU */
2291 long get_user_pages_remote(struct mm_struct *mm,
2292 unsigned long start, unsigned long nr_pages,
2293 unsigned int gup_flags, struct page **pages,
2294 struct vm_area_struct **vmas, int *locked)
2299 static long __get_user_pages_remote(struct mm_struct *mm,
2300 unsigned long start, unsigned long nr_pages,
2301 unsigned int gup_flags, struct page **pages,
2302 struct vm_area_struct **vmas, int *locked)
2306 #endif /* !CONFIG_MMU */
2309 * get_user_pages() - pin user pages in memory
2310 * @start: starting user address
2311 * @nr_pages: number of pages from start to pin
2312 * @gup_flags: flags modifying lookup behaviour
2313 * @pages: array that receives pointers to the pages pinned.
2314 * Should be at least nr_pages long. Or NULL, if caller
2315 * only intends to ensure the pages are faulted in.
2316 * @vmas: array of pointers to vmas corresponding to each page.
2317 * Or NULL if the caller does not require them.
2319 * This is the same as get_user_pages_remote(), just with a less-flexible
2320 * calling convention where we assume that the mm being operated on belongs to
2321 * the current task, and doesn't allow passing of a locked parameter. We also
2322 * obviously don't pass FOLL_REMOTE in here.
2324 long get_user_pages(unsigned long start, unsigned long nr_pages,
2325 unsigned int gup_flags, struct page **pages,
2326 struct vm_area_struct **vmas)
2328 if (!is_valid_gup_flags(gup_flags))
2331 return __gup_longterm_locked(current->mm, start, nr_pages,
2332 pages, vmas, gup_flags | FOLL_TOUCH);
2334 EXPORT_SYMBOL(get_user_pages);
2337 * get_user_pages_unlocked() is suitable to replace the form:
2339 * mmap_read_lock(mm);
2340 * get_user_pages(mm, ..., pages, NULL);
2341 * mmap_read_unlock(mm);
2345 * get_user_pages_unlocked(mm, ..., pages);
2347 * It is functionally equivalent to get_user_pages_fast so
2348 * get_user_pages_fast should be used instead if specific gup_flags
2349 * (e.g. FOLL_FORCE) are not required.
2351 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2352 struct page **pages, unsigned int gup_flags)
2354 struct mm_struct *mm = current->mm;
2359 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2360 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2361 * vmas. As there are no users of this flag in this call we simply
2362 * disallow this option for now.
2364 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2368 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2369 &locked, gup_flags | FOLL_TOUCH);
2371 mmap_read_unlock(mm);
2374 EXPORT_SYMBOL(get_user_pages_unlocked);
2379 * get_user_pages_fast attempts to pin user pages by walking the page
2380 * tables directly and avoids taking locks. Thus the walker needs to be
2381 * protected from page table pages being freed from under it, and should
2382 * block any THP splits.
2384 * One way to achieve this is to have the walker disable interrupts, and
2385 * rely on IPIs from the TLB flushing code blocking before the page table
2386 * pages are freed. This is unsuitable for architectures that do not need
2387 * to broadcast an IPI when invalidating TLBs.
2389 * Another way to achieve this is to batch up page table containing pages
2390 * belonging to more than one mm_user, then rcu_sched a callback to free those
2391 * pages. Disabling interrupts will allow the fast_gup walker to both block
2392 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2393 * (which is a relatively rare event). The code below adopts this strategy.
2395 * Before activating this code, please be aware that the following assumptions
2396 * are currently made:
2398 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2399 * free pages containing page tables or TLB flushing requires IPI broadcast.
2401 * *) ptes can be read atomically by the architecture.
2403 * *) access_ok is sufficient to validate userspace address ranges.
2405 * The last two assumptions can be relaxed by the addition of helper functions.
2407 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2409 #ifdef CONFIG_HAVE_FAST_GUP
2411 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2413 struct page **pages)
2415 while ((*nr) - nr_start) {
2416 struct page *page = pages[--(*nr)];
2418 ClearPageReferenced(page);
2419 if (flags & FOLL_PIN)
2420 unpin_user_page(page);
2426 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2428 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2431 * To pin the page, fast-gup needs to do below in order:
2432 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2434 * For the rest of pgtable operations where pgtable updates can be racy
2435 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2438 * Above will work for all pte-level operations, including THP split.
2440 * For THP collapse, it's a bit more complicated because fast-gup may be
2441 * walking a pgtable page that is being freed (pte is still valid but pmd
2442 * can be cleared already). To avoid race in such condition, we need to
2443 * also check pmd here to make sure pmd doesn't change (corresponds to
2444 * pmdp_collapse_flush() in the THP collapse code path).
2446 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2447 unsigned long end, unsigned int flags,
2448 struct page **pages, int *nr)
2450 struct dev_pagemap *pgmap = NULL;
2451 int nr_start = *nr, ret = 0;
2454 ptem = ptep = pte_offset_map(&pmd, addr);
2456 pte_t pte = ptep_get_lockless(ptep);
2458 struct folio *folio;
2460 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2463 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2466 if (pte_devmap(pte)) {
2467 if (unlikely(flags & FOLL_LONGTERM))
2470 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2471 if (unlikely(!pgmap)) {
2472 undo_dev_pagemap(nr, nr_start, flags, pages);
2475 } else if (pte_special(pte))
2478 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2479 page = pte_page(pte);
2481 folio = try_grab_folio(page, 1, flags);
2485 if (unlikely(page_is_secretmem(page))) {
2486 gup_put_folio(folio, 1, flags);
2490 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2491 unlikely(pte_val(pte) != pte_val(*ptep))) {
2492 gup_put_folio(folio, 1, flags);
2496 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2497 gup_put_folio(folio, 1, flags);
2502 * We need to make the page accessible if and only if we are
2503 * going to access its content (the FOLL_PIN case). Please
2504 * see Documentation/core-api/pin_user_pages.rst for
2507 if (flags & FOLL_PIN) {
2508 ret = arch_make_page_accessible(page);
2510 gup_put_folio(folio, 1, flags);
2514 folio_set_referenced(folio);
2517 } while (ptep++, addr += PAGE_SIZE, addr != end);
2523 put_dev_pagemap(pgmap);
2530 * If we can't determine whether or not a pte is special, then fail immediately
2531 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2534 * For a futex to be placed on a THP tail page, get_futex_key requires a
2535 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2536 * useful to have gup_huge_pmd even if we can't operate on ptes.
2538 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2539 unsigned long end, unsigned int flags,
2540 struct page **pages, int *nr)
2544 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2546 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2547 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2548 unsigned long end, unsigned int flags,
2549 struct page **pages, int *nr)
2552 struct dev_pagemap *pgmap = NULL;
2555 struct page *page = pfn_to_page(pfn);
2557 pgmap = get_dev_pagemap(pfn, pgmap);
2558 if (unlikely(!pgmap)) {
2559 undo_dev_pagemap(nr, nr_start, flags, pages);
2562 SetPageReferenced(page);
2564 if (unlikely(!try_grab_page(page, flags))) {
2565 undo_dev_pagemap(nr, nr_start, flags, pages);
2570 } while (addr += PAGE_SIZE, addr != end);
2572 put_dev_pagemap(pgmap);
2576 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2577 unsigned long end, unsigned int flags,
2578 struct page **pages, int *nr)
2580 unsigned long fault_pfn;
2583 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2584 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2587 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2588 undo_dev_pagemap(nr, nr_start, flags, pages);
2594 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2595 unsigned long end, unsigned int flags,
2596 struct page **pages, int *nr)
2598 unsigned long fault_pfn;
2601 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2602 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2605 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2606 undo_dev_pagemap(nr, nr_start, flags, pages);
2612 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2613 unsigned long end, unsigned int flags,
2614 struct page **pages, int *nr)
2620 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2621 unsigned long end, unsigned int flags,
2622 struct page **pages, int *nr)
2629 static int record_subpages(struct page *page, unsigned long addr,
2630 unsigned long end, struct page **pages)
2634 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2635 pages[nr] = nth_page(page, nr);
2640 #ifdef CONFIG_ARCH_HAS_HUGEPD
2641 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2644 unsigned long __boundary = (addr + sz) & ~(sz-1);
2645 return (__boundary - 1 < end - 1) ? __boundary : end;
2648 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2649 unsigned long end, unsigned int flags,
2650 struct page **pages, int *nr)
2652 unsigned long pte_end;
2654 struct folio *folio;
2658 pte_end = (addr + sz) & ~(sz-1);
2662 pte = huge_ptep_get(ptep);
2664 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2667 /* hugepages are never "special" */
2668 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2670 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2671 refs = record_subpages(page, addr, end, pages + *nr);
2673 folio = try_grab_folio(page, refs, flags);
2677 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2678 gup_put_folio(folio, refs, flags);
2682 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2683 gup_put_folio(folio, refs, flags);
2688 folio_set_referenced(folio);
2692 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2693 unsigned int pdshift, unsigned long end, unsigned int flags,
2694 struct page **pages, int *nr)
2697 unsigned long sz = 1UL << hugepd_shift(hugepd);
2700 ptep = hugepte_offset(hugepd, addr, pdshift);
2702 next = hugepte_addr_end(addr, end, sz);
2703 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2705 } while (ptep++, addr = next, addr != end);
2710 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2711 unsigned int pdshift, unsigned long end, unsigned int flags,
2712 struct page **pages, int *nr)
2716 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2718 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2719 unsigned long end, unsigned int flags,
2720 struct page **pages, int *nr)
2723 struct folio *folio;
2726 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2729 if (pmd_devmap(orig)) {
2730 if (unlikely(flags & FOLL_LONGTERM))
2732 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2736 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2737 refs = record_subpages(page, addr, end, pages + *nr);
2739 folio = try_grab_folio(page, refs, flags);
2743 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2744 gup_put_folio(folio, refs, flags);
2748 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2749 gup_put_folio(folio, refs, flags);
2754 folio_set_referenced(folio);
2758 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2759 unsigned long end, unsigned int flags,
2760 struct page **pages, int *nr)
2763 struct folio *folio;
2766 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2769 if (pud_devmap(orig)) {
2770 if (unlikely(flags & FOLL_LONGTERM))
2772 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2776 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2777 refs = record_subpages(page, addr, end, pages + *nr);
2779 folio = try_grab_folio(page, refs, flags);
2783 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2784 gup_put_folio(folio, refs, flags);
2788 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2789 gup_put_folio(folio, refs, flags);
2794 folio_set_referenced(folio);
2798 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2799 unsigned long end, unsigned int flags,
2800 struct page **pages, int *nr)
2804 struct folio *folio;
2806 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2809 BUILD_BUG_ON(pgd_devmap(orig));
2811 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2812 refs = record_subpages(page, addr, end, pages + *nr);
2814 folio = try_grab_folio(page, refs, flags);
2818 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2819 gup_put_folio(folio, refs, flags);
2824 folio_set_referenced(folio);
2828 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2829 unsigned int flags, struct page **pages, int *nr)
2834 pmdp = pmd_offset_lockless(pudp, pud, addr);
2836 pmd_t pmd = READ_ONCE(*pmdp);
2838 next = pmd_addr_end(addr, end);
2839 if (!pmd_present(pmd))
2842 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2844 if (pmd_protnone(pmd) &&
2845 !gup_can_follow_protnone(flags))
2848 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2852 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2854 * architecture have different format for hugetlbfs
2855 * pmd format and THP pmd format
2857 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2858 PMD_SHIFT, next, flags, pages, nr))
2860 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2862 } while (pmdp++, addr = next, addr != end);
2867 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2868 unsigned int flags, struct page **pages, int *nr)
2873 pudp = pud_offset_lockless(p4dp, p4d, addr);
2875 pud_t pud = READ_ONCE(*pudp);
2877 next = pud_addr_end(addr, end);
2878 if (unlikely(!pud_present(pud)))
2880 if (unlikely(pud_huge(pud))) {
2881 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2884 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2885 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2886 PUD_SHIFT, next, flags, pages, nr))
2888 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2890 } while (pudp++, addr = next, addr != end);
2895 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2896 unsigned int flags, struct page **pages, int *nr)
2901 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2903 p4d_t p4d = READ_ONCE(*p4dp);
2905 next = p4d_addr_end(addr, end);
2908 BUILD_BUG_ON(p4d_huge(p4d));
2909 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2910 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2911 P4D_SHIFT, next, flags, pages, nr))
2913 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2915 } while (p4dp++, addr = next, addr != end);
2920 static void gup_pgd_range(unsigned long addr, unsigned long end,
2921 unsigned int flags, struct page **pages, int *nr)
2926 pgdp = pgd_offset(current->mm, addr);
2928 pgd_t pgd = READ_ONCE(*pgdp);
2930 next = pgd_addr_end(addr, end);
2933 if (unlikely(pgd_huge(pgd))) {
2934 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2937 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2938 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2939 PGDIR_SHIFT, next, flags, pages, nr))
2941 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2943 } while (pgdp++, addr = next, addr != end);
2946 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2947 unsigned int flags, struct page **pages, int *nr)
2950 #endif /* CONFIG_HAVE_FAST_GUP */
2952 #ifndef gup_fast_permitted
2954 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2955 * we need to fall back to the slow version:
2957 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2963 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2964 unsigned int gup_flags, struct page **pages)
2969 * FIXME: FOLL_LONGTERM does not work with
2970 * get_user_pages_unlocked() (see comments in that function)
2972 if (gup_flags & FOLL_LONGTERM) {
2973 mmap_read_lock(current->mm);
2974 ret = __gup_longterm_locked(current->mm,
2976 pages, NULL, gup_flags);
2977 mmap_read_unlock(current->mm);
2979 ret = get_user_pages_unlocked(start, nr_pages,
2986 static unsigned long lockless_pages_from_mm(unsigned long start,
2988 unsigned int gup_flags,
2989 struct page **pages)
2991 unsigned long flags;
2995 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2996 !gup_fast_permitted(start, end))
2999 if (gup_flags & FOLL_PIN) {
3000 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3006 * Disable interrupts. The nested form is used, in order to allow full,
3007 * general purpose use of this routine.
3009 * With interrupts disabled, we block page table pages from being freed
3010 * from under us. See struct mmu_table_batch comments in
3011 * include/asm-generic/tlb.h for more details.
3013 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3014 * that come from THPs splitting.
3016 local_irq_save(flags);
3017 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3018 local_irq_restore(flags);
3021 * When pinning pages for DMA there could be a concurrent write protect
3022 * from fork() via copy_page_range(), in this case always fail fast GUP.
3024 if (gup_flags & FOLL_PIN) {
3025 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3026 unpin_user_pages_lockless(pages, nr_pinned);
3029 sanity_check_pinned_pages(pages, nr_pinned);
3035 static int internal_get_user_pages_fast(unsigned long start,
3036 unsigned long nr_pages,
3037 unsigned int gup_flags,
3038 struct page **pages)
3040 unsigned long len, end;
3041 unsigned long nr_pinned;
3044 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3045 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3046 FOLL_FAST_ONLY | FOLL_NOFAULT)))
3049 if (gup_flags & FOLL_PIN)
3050 mm_set_has_pinned_flag(¤t->mm->flags);
3052 if (!(gup_flags & FOLL_FAST_ONLY))
3053 might_lock_read(¤t->mm->mmap_lock);
3055 start = untagged_addr(start) & PAGE_MASK;
3056 len = nr_pages << PAGE_SHIFT;
3057 if (check_add_overflow(start, len, &end))
3059 if (unlikely(!access_ok((void __user *)start, len)))
3062 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3063 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3066 /* Slow path: try to get the remaining pages with get_user_pages */
3067 start += nr_pinned << PAGE_SHIFT;
3069 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3073 * The caller has to unpin the pages we already pinned so
3074 * returning -errno is not an option
3080 return ret + nr_pinned;
3084 * get_user_pages_fast_only() - pin user pages in memory
3085 * @start: starting user address
3086 * @nr_pages: number of pages from start to pin
3087 * @gup_flags: flags modifying pin behaviour
3088 * @pages: array that receives pointers to the pages pinned.
3089 * Should be at least nr_pages long.
3091 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3093 * Note a difference with get_user_pages_fast: this always returns the
3094 * number of pages pinned, 0 if no pages were pinned.
3096 * If the architecture does not support this function, simply return with no
3099 * Careful, careful! COW breaking can go either way, so a non-write
3100 * access can get ambiguous page results. If you call this function without
3101 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3103 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3104 unsigned int gup_flags, struct page **pages)
3108 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3109 * because gup fast is always a "pin with a +1 page refcount" request.
3111 * FOLL_FAST_ONLY is required in order to match the API description of
3112 * this routine: no fall back to regular ("slow") GUP.
3114 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3116 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3120 * As specified in the API description above, this routine is not
3121 * allowed to return negative values. However, the common core
3122 * routine internal_get_user_pages_fast() *can* return -errno.
3123 * Therefore, correct for that here:
3130 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3133 * get_user_pages_fast() - pin user pages in memory
3134 * @start: starting user address
3135 * @nr_pages: number of pages from start to pin
3136 * @gup_flags: flags modifying pin behaviour
3137 * @pages: array that receives pointers to the pages pinned.
3138 * Should be at least nr_pages long.
3140 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3141 * If not successful, it will fall back to taking the lock and
3142 * calling get_user_pages().
3144 * Returns number of pages pinned. This may be fewer than the number requested.
3145 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3148 int get_user_pages_fast(unsigned long start, int nr_pages,
3149 unsigned int gup_flags, struct page **pages)
3151 if (!is_valid_gup_flags(gup_flags))
3155 * The caller may or may not have explicitly set FOLL_GET; either way is
3156 * OK. However, internally (within mm/gup.c), gup fast variants must set
3157 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3160 gup_flags |= FOLL_GET;
3161 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3163 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3166 * pin_user_pages_fast() - pin user pages in memory without taking locks
3168 * @start: starting user address
3169 * @nr_pages: number of pages from start to pin
3170 * @gup_flags: flags modifying pin behaviour
3171 * @pages: array that receives pointers to the pages pinned.
3172 * Should be at least nr_pages long.
3174 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3175 * get_user_pages_fast() for documentation on the function arguments, because
3176 * the arguments here are identical.
3178 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3179 * see Documentation/core-api/pin_user_pages.rst for further details.
3181 int pin_user_pages_fast(unsigned long start, int nr_pages,
3182 unsigned int gup_flags, struct page **pages)
3184 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3185 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3188 if (WARN_ON_ONCE(!pages))
3191 gup_flags |= FOLL_PIN;
3192 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3194 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3197 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3198 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3200 * The API rules are the same, too: no negative values may be returned.
3202 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3203 unsigned int gup_flags, struct page **pages)
3208 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3209 * rules require returning 0, rather than -errno:
3211 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3214 if (WARN_ON_ONCE(!pages))
3217 * FOLL_FAST_ONLY is required in order to match the API description of
3218 * this routine: no fall back to regular ("slow") GUP.
3220 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3221 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3224 * This routine is not allowed to return negative values. However,
3225 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3226 * correct for that here:
3233 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3236 * pin_user_pages_remote() - pin pages of a remote process
3238 * @mm: mm_struct of target mm
3239 * @start: starting user address
3240 * @nr_pages: number of pages from start to pin
3241 * @gup_flags: flags modifying lookup behaviour
3242 * @pages: array that receives pointers to the pages pinned.
3243 * Should be at least nr_pages long.
3244 * @vmas: array of pointers to vmas corresponding to each page.
3245 * Or NULL if the caller does not require them.
3246 * @locked: pointer to lock flag indicating whether lock is held and
3247 * subsequently whether VM_FAULT_RETRY functionality can be
3248 * utilised. Lock must initially be held.
3250 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3251 * get_user_pages_remote() for documentation on the function arguments, because
3252 * the arguments here are identical.
3254 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3255 * see Documentation/core-api/pin_user_pages.rst for details.
3257 long pin_user_pages_remote(struct mm_struct *mm,
3258 unsigned long start, unsigned long nr_pages,
3259 unsigned int gup_flags, struct page **pages,
3260 struct vm_area_struct **vmas, int *locked)
3262 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3263 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3266 if (WARN_ON_ONCE(!pages))
3269 gup_flags |= FOLL_PIN;
3270 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3271 pages, vmas, locked);
3273 EXPORT_SYMBOL(pin_user_pages_remote);
3276 * pin_user_pages() - pin user pages in memory for use by other devices
3278 * @start: starting user address
3279 * @nr_pages: number of pages from start to pin
3280 * @gup_flags: flags modifying lookup behaviour
3281 * @pages: array that receives pointers to the pages pinned.
3282 * Should be at least nr_pages long.
3283 * @vmas: array of pointers to vmas corresponding to each page.
3284 * Or NULL if the caller does not require them.
3286 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3289 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3290 * see Documentation/core-api/pin_user_pages.rst for details.
3292 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3293 unsigned int gup_flags, struct page **pages,
3294 struct vm_area_struct **vmas)
3296 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3297 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3300 if (WARN_ON_ONCE(!pages))
3303 gup_flags |= FOLL_PIN;
3304 return __gup_longterm_locked(current->mm, start, nr_pages,
3305 pages, vmas, gup_flags);
3307 EXPORT_SYMBOL(pin_user_pages);
3310 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3311 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3312 * FOLL_PIN and rejects FOLL_GET.
3314 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3315 struct page **pages, unsigned int gup_flags)
3317 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3318 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3321 if (WARN_ON_ONCE(!pages))
3324 gup_flags |= FOLL_PIN;
3325 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3327 EXPORT_SYMBOL(pin_user_pages_unlocked);