1 // SPDX-License-Identifier: GPL-2.0-only
3 // Driver for Cadence QSPI Controller
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
32 #define CQSPI_NAME "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT 16
36 #define CQSPI_NEEDS_WR_DELAY BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE BIT(1)
40 #define CQSPI_SUPPORTS_OCTAL BIT(0)
44 struct cqspi_flash_pdata {
45 struct cqspi_st *cqspi;
60 struct platform_device *pdev;
66 void __iomem *ahb_base;
67 resource_size_t ahb_size;
68 struct completion transfer_complete;
70 struct dma_chan *rx_chan;
71 struct completion rx_dma_complete;
72 dma_addr_t mmap_phys_base;
75 unsigned long master_ref_clk_hz;
84 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
87 struct cqspi_driver_platdata {
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS 500
94 #define CQSPI_READ_TIMEOUT_MS 10
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE 0
98 #define CQSPI_INST_TYPE_DUAL 1
99 #define CQSPI_INST_TYPE_QUAD 2
100 #define CQSPI_INST_TYPE_OCTAL 3
102 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
103 #define CQSPI_DUMMY_BYTES_MAX 4
104 #define CQSPI_DUMMY_CLKS_MAX 31
106 #define CQSPI_STIG_DATA_LEN_MAX 8
109 #define CQSPI_REG_CONFIG 0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
114 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB 19
116 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB 31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
122 #define CQSPI_REG_RD_INSTR 0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
134 #define CQSPI_REG_WR_INSTR 0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
139 #define CQSPI_REG_DELAY 0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB 0
141 #define CQSPI_REG_DELAY_TCHSH_LSB 8
142 #define CQSPI_REG_DELAY_TSD2D_LSB 16
143 #define CQSPI_REG_DELAY_TSHSL_LSB 24
144 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
149 #define CQSPI_REG_READCAPTURE 0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
154 #define CQSPI_REG_SIZE 0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
156 #define CQSPI_REG_SIZE_PAGE_LSB 4
157 #define CQSPI_REG_SIZE_BLOCK_LSB 16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
162 #define CQSPI_REG_SRAMPARTITION 0x18
163 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
165 #define CQSPI_REG_DMA 0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB 0
167 #define CQSPI_REG_DMA_BURST_LSB 8
168 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
169 #define CQSPI_REG_DMA_BURST_MASK 0xFF
171 #define CQSPI_REG_REMAP 0x24
172 #define CQSPI_REG_MODE_BIT 0x28
174 #define CQSPI_REG_SDRAMLEVEL 0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
180 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
183 #define CQSPI_REG_IRQSTATUS 0x40
184 #define CQSPI_REG_IRQMASK 0x44
186 #define CQSPI_REG_INDIRECTRD 0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
191 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
193 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
195 #define CQSPI_REG_CMDCTRL 0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
211 #define CQSPI_REG_INDIRECTWR 0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
216 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
218 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
220 #define CQSPI_REG_CMDADDRESS 0x94
221 #define CQSPI_REG_CMDREADDATALOWER 0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
226 #define CQSPI_REG_POLLING_STATUS 0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
229 #define CQSPI_REG_OP_EXT_LOWER 0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB 24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
232 #define CQSPI_REG_OP_EXT_STIG_LSB 0
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
244 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
245 CQSPI_REG_IRQ_IND_SRAM_FULL | \
246 CQSPI_REG_IRQ_IND_COMP)
248 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
249 CQSPI_REG_IRQ_WATERMARK | \
250 CQSPI_REG_IRQ_UNDERFLOW)
252 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
258 return readl_relaxed_poll_timeout(reg, val,
259 (((clr ? ~val : val) & mask) == mask),
260 10, CQSPI_TIMEOUT_MS * 1000);
263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
265 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
267 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
272 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
274 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
280 struct cqspi_st *cqspi = dev;
281 unsigned int irq_status;
283 /* Read interrupt status */
284 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
286 /* Clear interrupt */
287 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
289 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
292 complete(&cqspi->transfer_complete);
297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
301 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
310 unsigned int dummy_clk;
312 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
319 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
320 const struct spi_mem_op *op)
322 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
323 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
324 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
325 f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
327 switch (op->data.buswidth) {
331 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
334 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
337 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
340 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
346 /* Right now we only support 8-8-8 DTR mode. */
348 switch (op->cmd.buswidth) {
352 f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
358 switch (op->addr.buswidth) {
362 f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
368 switch (op->data.buswidth) {
372 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
382 static int cqspi_wait_idle(struct cqspi_st *cqspi)
384 const unsigned int poll_idle_retry = 3;
385 unsigned int count = 0;
386 unsigned long timeout;
388 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
391 * Read few times in succession to ensure the controller
392 * is indeed idle, that is, the bit does not transition
395 if (cqspi_is_idle(cqspi))
400 if (count >= poll_idle_retry)
403 if (time_after(jiffies, timeout)) {
404 /* Timeout, in busy mode. */
405 dev_err(&cqspi->pdev->dev,
406 "QSPI is still busy after %dms timeout.\n",
415 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
417 void __iomem *reg_base = cqspi->iobase;
420 /* Write the CMDCTRL without start execution. */
421 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
423 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
424 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
426 /* Polling for completion. */
427 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
428 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
430 dev_err(&cqspi->pdev->dev,
431 "Flash command execution timed out.\n");
435 /* Polling QSPI idle status. */
436 return cqspi_wait_idle(cqspi);
439 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
440 const struct spi_mem_op *op,
443 struct cqspi_st *cqspi = f_pdata->cqspi;
444 void __iomem *reg_base = cqspi->iobase;
448 if (op->cmd.nbytes != 2)
451 /* Opcode extension is the LSB. */
452 ext = op->cmd.opcode & 0xff;
454 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
455 reg &= ~(0xff << shift);
457 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
462 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
463 const struct spi_mem_op *op, unsigned int shift,
466 struct cqspi_st *cqspi = f_pdata->cqspi;
467 void __iomem *reg_base = cqspi->iobase;
471 reg = readl(reg_base + CQSPI_REG_CONFIG);
474 * We enable dual byte opcode here. The callers have to set up the
475 * extension opcode based on which type of operation it is.
478 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
479 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
481 /* Set up command opcode extension. */
482 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
486 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
487 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
490 writel(reg, reg_base + CQSPI_REG_CONFIG);
492 return cqspi_wait_idle(cqspi);
495 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
496 const struct spi_mem_op *op)
498 struct cqspi_st *cqspi = f_pdata->cqspi;
499 void __iomem *reg_base = cqspi->iobase;
500 u8 *rxbuf = op->data.buf.in;
502 size_t n_rx = op->data.nbytes;
505 unsigned int dummy_clk;
509 status = cqspi_set_protocol(f_pdata, op);
513 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
518 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
519 dev_err(&cqspi->pdev->dev,
520 "Invalid input argument, len %zu rxbuf 0x%p\n",
526 opcode = op->cmd.opcode >> 8;
528 opcode = op->cmd.opcode;
530 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
532 rdreg = cqspi_calc_rdreg(f_pdata);
533 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
535 dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
536 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
540 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
541 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
543 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
545 /* 0 means 1 byte. */
546 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
547 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
548 status = cqspi_exec_flash_cmd(cqspi, reg);
552 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
554 /* Put the read value into rx_buf */
555 read_len = (n_rx > 4) ? 4 : n_rx;
556 memcpy(rxbuf, ®, read_len);
560 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
562 read_len = n_rx - read_len;
563 memcpy(rxbuf, ®, read_len);
569 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
570 const struct spi_mem_op *op)
572 struct cqspi_st *cqspi = f_pdata->cqspi;
573 void __iomem *reg_base = cqspi->iobase;
575 const u8 *txbuf = op->data.buf.out;
576 size_t n_tx = op->data.nbytes;
582 ret = cqspi_set_protocol(f_pdata, op);
586 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
591 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
592 dev_err(&cqspi->pdev->dev,
593 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
598 reg = cqspi_calc_rdreg(f_pdata);
599 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
602 opcode = op->cmd.opcode >> 8;
604 opcode = op->cmd.opcode;
606 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
608 if (op->addr.nbytes) {
609 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
610 reg |= ((op->addr.nbytes - 1) &
611 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
612 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
614 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
618 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
619 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
620 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
622 write_len = (n_tx > 4) ? 4 : n_tx;
623 memcpy(&data, txbuf, write_len);
625 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
629 write_len = n_tx - 4;
630 memcpy(&data, txbuf, write_len);
631 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
635 return cqspi_exec_flash_cmd(cqspi, reg);
638 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
639 const struct spi_mem_op *op)
641 struct cqspi_st *cqspi = f_pdata->cqspi;
642 void __iomem *reg_base = cqspi->iobase;
643 unsigned int dummy_clk = 0;
648 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
654 opcode = op->cmd.opcode >> 8;
656 opcode = op->cmd.opcode;
658 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659 reg |= cqspi_calc_rdreg(f_pdata);
661 /* Setup dummy clock cycles */
662 dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
664 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
668 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
669 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
671 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
673 /* Set address width */
674 reg = readl(reg_base + CQSPI_REG_SIZE);
675 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676 reg |= (op->addr.nbytes - 1);
677 writel(reg, reg_base + CQSPI_REG_SIZE);
681 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
682 u8 *rxbuf, loff_t from_addr,
685 struct cqspi_st *cqspi = f_pdata->cqspi;
686 struct device *dev = &cqspi->pdev->dev;
687 void __iomem *reg_base = cqspi->iobase;
688 void __iomem *ahb_base = cqspi->ahb_base;
689 unsigned int remaining = n_rx;
690 unsigned int mod_bytes = n_rx % 4;
691 unsigned int bytes_to_read = 0;
692 u8 *rxbuf_end = rxbuf + n_rx;
695 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
698 /* Clear all interrupts. */
699 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
701 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
703 reinit_completion(&cqspi->transfer_complete);
704 writel(CQSPI_REG_INDIRECTRD_START_MASK,
705 reg_base + CQSPI_REG_INDIRECTRD);
707 while (remaining > 0) {
708 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
709 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
712 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
714 if (ret && bytes_to_read == 0) {
715 dev_err(dev, "Indirect read timeout, no bytes\n");
719 while (bytes_to_read != 0) {
720 unsigned int word_remain = round_down(remaining, 4);
722 bytes_to_read *= cqspi->fifo_width;
723 bytes_to_read = bytes_to_read > remaining ?
724 remaining : bytes_to_read;
725 bytes_to_read = round_down(bytes_to_read, 4);
726 /* Read 4 byte word chunks then single bytes */
728 ioread32_rep(ahb_base, rxbuf,
729 (bytes_to_read / 4));
730 } else if (!word_remain && mod_bytes) {
731 unsigned int temp = ioread32(ahb_base);
733 bytes_to_read = mod_bytes;
734 memcpy(rxbuf, &temp, min((unsigned int)
738 rxbuf += bytes_to_read;
739 remaining -= bytes_to_read;
740 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
744 reinit_completion(&cqspi->transfer_complete);
747 /* Check indirect done status */
748 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
749 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
751 dev_err(dev, "Indirect read completion error (%i)\n", ret);
755 /* Disable interrupt */
756 writel(0, reg_base + CQSPI_REG_IRQMASK);
758 /* Clear indirect completion status */
759 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
764 /* Disable interrupt */
765 writel(0, reg_base + CQSPI_REG_IRQMASK);
767 /* Cancel the indirect read */
768 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
769 reg_base + CQSPI_REG_INDIRECTRD);
773 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
774 const struct spi_mem_op *op)
778 struct cqspi_st *cqspi = f_pdata->cqspi;
779 void __iomem *reg_base = cqspi->iobase;
782 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
788 opcode = op->cmd.opcode >> 8;
790 opcode = op->cmd.opcode;
793 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
794 reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
795 reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
796 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
797 reg = cqspi_calc_rdreg(f_pdata);
798 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
802 * Some flashes like the cypress Semper flash expect a 4-byte
803 * dummy address with the Read SR command in DTR mode, but this
804 * controller does not support sending address with the Read SR
805 * command. So, disable write completion polling on the
806 * controller's side. spi-nor will take care of polling the
809 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
810 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
811 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
814 reg = readl(reg_base + CQSPI_REG_SIZE);
815 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
816 reg |= (op->addr.nbytes - 1);
817 writel(reg, reg_base + CQSPI_REG_SIZE);
821 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
822 loff_t to_addr, const u8 *txbuf,
825 struct cqspi_st *cqspi = f_pdata->cqspi;
826 struct device *dev = &cqspi->pdev->dev;
827 void __iomem *reg_base = cqspi->iobase;
828 unsigned int remaining = n_tx;
829 unsigned int write_bytes;
832 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
833 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
835 /* Clear all interrupts. */
836 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
838 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
840 reinit_completion(&cqspi->transfer_complete);
841 writel(CQSPI_REG_INDIRECTWR_START_MASK,
842 reg_base + CQSPI_REG_INDIRECTWR);
844 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
845 * Controller programming sequence, couple of cycles of
846 * QSPI_REF_CLK delay is required for the above bit to
847 * be internally synchronized by the QSPI module. Provide 5
851 ndelay(cqspi->wr_delay);
853 while (remaining > 0) {
854 size_t write_words, mod_bytes;
856 write_bytes = remaining;
857 write_words = write_bytes / 4;
858 mod_bytes = write_bytes % 4;
859 /* Write 4 bytes at a time then single bytes. */
861 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
862 txbuf += (write_words * 4);
865 unsigned int temp = 0xFFFFFFFF;
867 memcpy(&temp, txbuf, mod_bytes);
868 iowrite32(temp, cqspi->ahb_base);
872 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
873 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
874 dev_err(dev, "Indirect write timeout\n");
879 remaining -= write_bytes;
882 reinit_completion(&cqspi->transfer_complete);
885 /* Check indirect done status */
886 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
887 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
889 dev_err(dev, "Indirect write completion error (%i)\n", ret);
893 /* Disable interrupt. */
894 writel(0, reg_base + CQSPI_REG_IRQMASK);
896 /* Clear indirect completion status */
897 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
899 cqspi_wait_idle(cqspi);
904 /* Disable interrupt. */
905 writel(0, reg_base + CQSPI_REG_IRQMASK);
907 /* Cancel the indirect write */
908 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
909 reg_base + CQSPI_REG_INDIRECTWR);
913 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
915 struct cqspi_st *cqspi = f_pdata->cqspi;
916 void __iomem *reg_base = cqspi->iobase;
917 unsigned int chip_select = f_pdata->cs;
920 reg = readl(reg_base + CQSPI_REG_CONFIG);
921 if (cqspi->is_decoded_cs) {
922 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
924 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
926 /* Convert CS if without decoder.
932 chip_select = 0xF & ~(1 << chip_select);
935 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
936 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
937 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
938 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
939 writel(reg, reg_base + CQSPI_REG_CONFIG);
942 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
943 const unsigned int ns_val)
947 ticks = ref_clk_hz / 1000; /* kHz */
948 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
953 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
955 struct cqspi_st *cqspi = f_pdata->cqspi;
956 void __iomem *iobase = cqspi->iobase;
957 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
958 unsigned int tshsl, tchsh, tslch, tsd2d;
962 /* calculate the number of ref ticks for one sclk tick */
963 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
965 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
966 /* this particular value must be at least one sclk */
970 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
971 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
972 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
974 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
975 << CQSPI_REG_DELAY_TSHSL_LSB;
976 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
977 << CQSPI_REG_DELAY_TCHSH_LSB;
978 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
979 << CQSPI_REG_DELAY_TSLCH_LSB;
980 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
981 << CQSPI_REG_DELAY_TSD2D_LSB;
982 writel(reg, iobase + CQSPI_REG_DELAY);
985 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
987 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
988 void __iomem *reg_base = cqspi->iobase;
991 /* Recalculate the baudrate divisor based on QSPI specification. */
992 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
994 reg = readl(reg_base + CQSPI_REG_CONFIG);
995 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
996 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
997 writel(reg, reg_base + CQSPI_REG_CONFIG);
1000 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1002 const unsigned int delay)
1004 void __iomem *reg_base = cqspi->iobase;
1007 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1010 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1012 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1014 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1015 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1017 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1018 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1020 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1023 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1025 void __iomem *reg_base = cqspi->iobase;
1028 reg = readl(reg_base + CQSPI_REG_CONFIG);
1031 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1033 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1035 writel(reg, reg_base + CQSPI_REG_CONFIG);
1038 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1041 struct cqspi_st *cqspi = f_pdata->cqspi;
1042 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1043 int switch_ck = (cqspi->sclk != sclk);
1045 if (switch_cs || switch_ck)
1046 cqspi_controller_enable(cqspi, 0);
1048 /* Switch chip select. */
1050 cqspi->current_cs = f_pdata->cs;
1051 cqspi_chipselect(f_pdata);
1054 /* Setup baudrate divisor and delays */
1057 cqspi_config_baudrate_div(cqspi);
1058 cqspi_delay(f_pdata);
1059 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1060 f_pdata->read_delay);
1063 if (switch_cs || switch_ck)
1064 cqspi_controller_enable(cqspi, 1);
1067 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1068 const struct spi_mem_op *op)
1070 struct cqspi_st *cqspi = f_pdata->cqspi;
1071 loff_t to = op->addr.val;
1072 size_t len = op->data.nbytes;
1073 const u_char *buf = op->data.buf.out;
1076 ret = cqspi_set_protocol(f_pdata, op);
1080 ret = cqspi_write_setup(f_pdata, op);
1085 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1086 * address (all 0s) with the read status register command in DTR mode.
1087 * But this controller does not support sending dummy address bytes to
1088 * the flash when it is polling the write completion register in DTR
1089 * mode. So, we can not use direct mode when in DTR mode for writing
1092 if (!f_pdata->dtr && cqspi->use_direct_mode &&
1093 ((to + len) <= cqspi->ahb_size)) {
1094 memcpy_toio(cqspi->ahb_base + to, buf, len);
1095 return cqspi_wait_idle(cqspi);
1098 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1101 static void cqspi_rx_dma_callback(void *param)
1103 struct cqspi_st *cqspi = param;
1105 complete(&cqspi->rx_dma_complete);
1108 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1109 u_char *buf, loff_t from, size_t len)
1111 struct cqspi_st *cqspi = f_pdata->cqspi;
1112 struct device *dev = &cqspi->pdev->dev;
1113 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1114 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1116 struct dma_async_tx_descriptor *tx;
1117 dma_cookie_t cookie;
1119 struct device *ddev;
1121 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1122 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1126 ddev = cqspi->rx_chan->device->dev;
1127 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1128 if (dma_mapping_error(ddev, dma_dst)) {
1129 dev_err(dev, "dma mapping failed\n");
1132 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1135 dev_err(dev, "device_prep_dma_memcpy error\n");
1140 tx->callback = cqspi_rx_dma_callback;
1141 tx->callback_param = cqspi;
1142 cookie = tx->tx_submit(tx);
1143 reinit_completion(&cqspi->rx_dma_complete);
1145 ret = dma_submit_error(cookie);
1147 dev_err(dev, "dma_submit_error %d\n", cookie);
1152 dma_async_issue_pending(cqspi->rx_chan);
1153 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1154 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1155 dmaengine_terminate_sync(cqspi->rx_chan);
1156 dev_err(dev, "DMA wait_for_completion_timeout\n");
1162 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1167 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1168 const struct spi_mem_op *op)
1170 struct cqspi_st *cqspi = f_pdata->cqspi;
1171 loff_t from = op->addr.val;
1172 size_t len = op->data.nbytes;
1173 u_char *buf = op->data.buf.in;
1176 ret = cqspi_set_protocol(f_pdata, op);
1180 ret = cqspi_read_setup(f_pdata, op);
1184 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1185 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1187 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1190 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1192 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1193 struct cqspi_flash_pdata *f_pdata;
1195 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1196 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1198 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1199 if (!op->addr.nbytes)
1200 return cqspi_command_read(f_pdata, op);
1202 return cqspi_read(f_pdata, op);
1205 if (!op->addr.nbytes || !op->data.buf.out)
1206 return cqspi_command_write(f_pdata, op);
1208 return cqspi_write(f_pdata, op);
1211 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1215 ret = cqspi_mem_process(mem, op);
1217 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1222 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1223 const struct spi_mem_op *op)
1225 bool all_true, all_false;
1227 all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
1229 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1232 /* Mixed DTR modes not supported. */
1233 if (!(all_true || all_false))
1237 return spi_mem_dtr_supports_op(mem, op);
1239 return spi_mem_default_supports_op(mem, op);
1242 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1243 struct cqspi_flash_pdata *f_pdata,
1244 struct device_node *np)
1246 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1247 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1251 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1252 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1256 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1257 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1261 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1262 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1266 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1267 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1271 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1272 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1279 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1281 struct device *dev = &cqspi->pdev->dev;
1282 struct device_node *np = dev->of_node;
1284 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1286 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1287 dev_err(dev, "couldn't determine fifo-depth\n");
1291 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1292 dev_err(dev, "couldn't determine fifo-width\n");
1296 if (of_property_read_u32(np, "cdns,trigger-address",
1297 &cqspi->trigger_address)) {
1298 dev_err(dev, "couldn't determine trigger-address\n");
1302 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1303 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1305 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1310 static void cqspi_controller_init(struct cqspi_st *cqspi)
1314 cqspi_controller_enable(cqspi, 0);
1316 /* Configure the remap address register, no remap */
1317 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1319 /* Disable all interrupts. */
1320 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1322 /* Configure the SRAM split to 1:1 . */
1323 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1325 /* Load indirect trigger address. */
1326 writel(cqspi->trigger_address,
1327 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1329 /* Program read watermark -- 1/2 of the FIFO. */
1330 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1331 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1332 /* Program write watermark -- 1/8 of the FIFO. */
1333 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1334 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1336 /* Disable direct access controller */
1337 if (!cqspi->use_direct_mode) {
1338 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1339 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1340 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1343 cqspi_controller_enable(cqspi, 1);
1346 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1348 dma_cap_mask_t mask;
1351 dma_cap_set(DMA_MEMCPY, mask);
1353 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1354 if (IS_ERR(cqspi->rx_chan)) {
1355 int ret = PTR_ERR(cqspi->rx_chan);
1356 cqspi->rx_chan = NULL;
1357 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1359 init_completion(&cqspi->rx_dma_complete);
1364 static const char *cqspi_get_name(struct spi_mem *mem)
1366 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1367 struct device *dev = &cqspi->pdev->dev;
1369 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1372 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1373 .exec_op = cqspi_exec_mem_op,
1374 .get_name = cqspi_get_name,
1375 .supports_op = cqspi_supports_mem_op,
1378 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1380 struct platform_device *pdev = cqspi->pdev;
1381 struct device *dev = &pdev->dev;
1382 struct device_node *np = dev->of_node;
1383 struct cqspi_flash_pdata *f_pdata;
1387 /* Get flash device data */
1388 for_each_available_child_of_node(dev->of_node, np) {
1389 ret = of_property_read_u32(np, "reg", &cs);
1391 dev_err(dev, "Couldn't determine chip select.\n");
1395 if (cs >= CQSPI_MAX_CHIPSELECT) {
1396 dev_err(dev, "Chip select %d out of range.\n", cs);
1400 f_pdata = &cqspi->f_pdata[cs];
1401 f_pdata->cqspi = cqspi;
1404 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1412 static int cqspi_probe(struct platform_device *pdev)
1414 const struct cqspi_driver_platdata *ddata;
1415 struct reset_control *rstc, *rstc_ocp;
1416 struct device *dev = &pdev->dev;
1417 struct spi_master *master;
1418 struct resource *res_ahb;
1419 struct cqspi_st *cqspi;
1420 struct resource *res;
1424 master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1426 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1429 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1430 master->mem_ops = &cqspi_mem_ops;
1431 master->dev.of_node = pdev->dev.of_node;
1433 cqspi = spi_master_get_devdata(master);
1437 /* Obtain configuration from OF. */
1438 ret = cqspi_of_get_pdata(cqspi);
1440 dev_err(dev, "Cannot get mandatory OF data.\n");
1442 goto probe_master_put;
1445 /* Obtain QSPI clock. */
1446 cqspi->clk = devm_clk_get(dev, NULL);
1447 if (IS_ERR(cqspi->clk)) {
1448 dev_err(dev, "Cannot claim QSPI clock.\n");
1449 ret = PTR_ERR(cqspi->clk);
1450 goto probe_master_put;
1453 /* Obtain and remap controller address. */
1454 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 cqspi->iobase = devm_ioremap_resource(dev, res);
1456 if (IS_ERR(cqspi->iobase)) {
1457 dev_err(dev, "Cannot remap controller address.\n");
1458 ret = PTR_ERR(cqspi->iobase);
1459 goto probe_master_put;
1462 /* Obtain and remap AHB address. */
1463 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1464 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1465 if (IS_ERR(cqspi->ahb_base)) {
1466 dev_err(dev, "Cannot remap AHB address.\n");
1467 ret = PTR_ERR(cqspi->ahb_base);
1468 goto probe_master_put;
1470 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1471 cqspi->ahb_size = resource_size(res_ahb);
1473 init_completion(&cqspi->transfer_complete);
1475 /* Obtain IRQ line. */
1476 irq = platform_get_irq(pdev, 0);
1479 goto probe_master_put;
1482 pm_runtime_enable(dev);
1483 ret = pm_runtime_get_sync(dev);
1485 pm_runtime_put_noidle(dev);
1486 goto probe_master_put;
1489 ret = clk_prepare_enable(cqspi->clk);
1491 dev_err(dev, "Cannot enable QSPI clock.\n");
1492 goto probe_clk_failed;
1495 /* Obtain QSPI reset control */
1496 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1498 ret = PTR_ERR(rstc);
1499 dev_err(dev, "Cannot get QSPI reset.\n");
1500 goto probe_reset_failed;
1503 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1504 if (IS_ERR(rstc_ocp)) {
1505 ret = PTR_ERR(rstc_ocp);
1506 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1507 goto probe_reset_failed;
1510 reset_control_assert(rstc);
1511 reset_control_deassert(rstc);
1513 reset_control_assert(rstc_ocp);
1514 reset_control_deassert(rstc_ocp);
1516 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1517 master->max_speed_hz = cqspi->master_ref_clk_hz;
1518 ddata = of_device_get_match_data(dev);
1520 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1521 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1522 cqspi->master_ref_clk_hz);
1523 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1524 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1525 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1526 cqspi->use_direct_mode = true;
1529 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1532 dev_err(dev, "Cannot request IRQ.\n");
1533 goto probe_reset_failed;
1536 cqspi_wait_idle(cqspi);
1537 cqspi_controller_init(cqspi);
1538 cqspi->current_cs = -1;
1541 master->num_chipselect = cqspi->num_chipselect;
1543 ret = cqspi_setup_flash(cqspi);
1545 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1546 goto probe_setup_failed;
1549 if (cqspi->use_direct_mode) {
1550 ret = cqspi_request_mmap_dma(cqspi);
1551 if (ret == -EPROBE_DEFER)
1552 goto probe_setup_failed;
1555 ret = devm_spi_register_master(dev, master);
1557 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1558 goto probe_setup_failed;
1563 cqspi_controller_enable(cqspi, 0);
1565 clk_disable_unprepare(cqspi->clk);
1567 pm_runtime_put_sync(dev);
1568 pm_runtime_disable(dev);
1570 spi_master_put(master);
1574 static int cqspi_remove(struct platform_device *pdev)
1576 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1578 cqspi_controller_enable(cqspi, 0);
1581 dma_release_channel(cqspi->rx_chan);
1583 clk_disable_unprepare(cqspi->clk);
1585 pm_runtime_put_sync(&pdev->dev);
1586 pm_runtime_disable(&pdev->dev);
1591 #ifdef CONFIG_PM_SLEEP
1592 static int cqspi_suspend(struct device *dev)
1594 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1596 cqspi_controller_enable(cqspi, 0);
1600 static int cqspi_resume(struct device *dev)
1602 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1604 cqspi_controller_enable(cqspi, 1);
1608 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1609 .suspend = cqspi_suspend,
1610 .resume = cqspi_resume,
1613 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1615 #define CQSPI_DEV_PM_OPS NULL
1618 static const struct cqspi_driver_platdata cdns_qspi = {
1619 .quirks = CQSPI_DISABLE_DAC_MODE,
1622 static const struct cqspi_driver_platdata k2g_qspi = {
1623 .quirks = CQSPI_NEEDS_WR_DELAY,
1626 static const struct cqspi_driver_platdata am654_ospi = {
1627 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1628 .quirks = CQSPI_NEEDS_WR_DELAY,
1631 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1632 .quirks = CQSPI_DISABLE_DAC_MODE,
1635 static const struct of_device_id cqspi_dt_ids[] = {
1637 .compatible = "cdns,qspi-nor",
1641 .compatible = "ti,k2g-qspi",
1645 .compatible = "ti,am654-ospi",
1646 .data = &am654_ospi,
1649 .compatible = "intel,lgm-qspi",
1650 .data = &intel_lgm_qspi,
1652 { /* end of table */ }
1655 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1657 static struct platform_driver cqspi_platform_driver = {
1658 .probe = cqspi_probe,
1659 .remove = cqspi_remove,
1662 .pm = CQSPI_DEV_PM_OPS,
1663 .of_match_table = cqspi_dt_ids,
1667 module_platform_driver(cqspi_platform_driver);
1669 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1670 MODULE_LICENSE("GPL v2");
1671 MODULE_ALIAS("platform:" CQSPI_NAME);