]> Git Repo - linux.git/blob - arch/powerpc/kernel/process.c
quota: Disable quotactl_path syscall
[linux.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan ([email protected]) and
7  *  Paul Mackerras ([email protected])
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110
111 static int __init enable_strict_msr_control(char *str)
112 {
113         strict_msr_control = true;
114         pr_info("Enabling strict facility control\n");
115
116         return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123         unsigned long oldmsr = mfmsr();
124         unsigned long newmsr;
125
126         newmsr = oldmsr | bits;
127
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr |= MSR_VSX;
130
131         if (oldmsr != newmsr)
132                 mtmsr_isync(newmsr);
133
134         return newmsr;
135 }
136 EXPORT_SYMBOL_GPL(msr_check_and_set);
137
138 /* notrace because it's called by restore_math */
139 void notrace __msr_check_and_clear(unsigned long bits)
140 {
141         unsigned long oldmsr = mfmsr();
142         unsigned long newmsr;
143
144         newmsr = oldmsr & ~bits;
145
146         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147                 newmsr &= ~MSR_VSX;
148
149         if (oldmsr != newmsr)
150                 mtmsr_isync(newmsr);
151 }
152 EXPORT_SYMBOL(__msr_check_and_clear);
153
154 #ifdef CONFIG_PPC_FPU
155 static void __giveup_fpu(struct task_struct *tsk)
156 {
157         unsigned long msr;
158
159         save_fpu(tsk);
160         msr = tsk->thread.regs->msr;
161         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
162         if (cpu_has_feature(CPU_FTR_VSX))
163                 msr &= ~MSR_VSX;
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if (!MSR_TM_ACTIVE(cpumsr) &&
227                      MSR_TM_ACTIVE(current->thread.regs->msr))
228                         return;
229                 __giveup_fpu(current);
230         }
231 }
232 EXPORT_SYMBOL(enable_kernel_fp);
233 #else
234 static inline void __giveup_fpu(struct task_struct *tsk) { }
235 #endif /* CONFIG_PPC_FPU */
236
237 #ifdef CONFIG_ALTIVEC
238 static void __giveup_altivec(struct task_struct *tsk)
239 {
240         unsigned long msr;
241
242         save_altivec(tsk);
243         msr = tsk->thread.regs->msr;
244         msr &= ~MSR_VEC;
245         if (cpu_has_feature(CPU_FTR_VSX))
246                 msr &= ~MSR_VSX;
247         tsk->thread.regs->msr = msr;
248 }
249
250 void giveup_altivec(struct task_struct *tsk)
251 {
252         check_if_tm_restore_required(tsk);
253
254         msr_check_and_set(MSR_VEC);
255         __giveup_altivec(tsk);
256         msr_check_and_clear(MSR_VEC);
257 }
258 EXPORT_SYMBOL(giveup_altivec);
259
260 void enable_kernel_altivec(void)
261 {
262         unsigned long cpumsr;
263
264         WARN_ON(preemptible());
265
266         cpumsr = msr_check_and_set(MSR_VEC);
267
268         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
269                 check_if_tm_restore_required(current);
270                 /*
271                  * If a thread has already been reclaimed then the
272                  * checkpointed registers are on the CPU but have definitely
273                  * been saved by the reclaim code. Don't need to and *cannot*
274                  * giveup as this would save  to the 'live' structure not the
275                  * checkpointed structure.
276                  */
277                 if (!MSR_TM_ACTIVE(cpumsr) &&
278                      MSR_TM_ACTIVE(current->thread.regs->msr))
279                         return;
280                 __giveup_altivec(current);
281         }
282 }
283 EXPORT_SYMBOL(enable_kernel_altivec);
284
285 /*
286  * Make sure the VMX/Altivec register state in the
287  * the thread_struct is up to date for task tsk.
288  */
289 void flush_altivec_to_thread(struct task_struct *tsk)
290 {
291         if (tsk->thread.regs) {
292                 preempt_disable();
293                 if (tsk->thread.regs->msr & MSR_VEC) {
294                         BUG_ON(tsk != current);
295                         giveup_altivec(tsk);
296                 }
297                 preempt_enable();
298         }
299 }
300 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
301 #endif /* CONFIG_ALTIVEC */
302
303 #ifdef CONFIG_VSX
304 static void __giveup_vsx(struct task_struct *tsk)
305 {
306         unsigned long msr = tsk->thread.regs->msr;
307
308         /*
309          * We should never be ssetting MSR_VSX without also setting
310          * MSR_FP and MSR_VEC
311          */
312         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
313
314         /* __giveup_fpu will clear MSR_VSX */
315         if (msr & MSR_FP)
316                 __giveup_fpu(tsk);
317         if (msr & MSR_VEC)
318                 __giveup_altivec(tsk);
319 }
320
321 static void giveup_vsx(struct task_struct *tsk)
322 {
323         check_if_tm_restore_required(tsk);
324
325         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
326         __giveup_vsx(tsk);
327         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
328 }
329
330 void enable_kernel_vsx(void)
331 {
332         unsigned long cpumsr;
333
334         WARN_ON(preemptible());
335
336         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
337
338         if (current->thread.regs &&
339             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
340                 check_if_tm_restore_required(current);
341                 /*
342                  * If a thread has already been reclaimed then the
343                  * checkpointed registers are on the CPU but have definitely
344                  * been saved by the reclaim code. Don't need to and *cannot*
345                  * giveup as this would save  to the 'live' structure not the
346                  * checkpointed structure.
347                  */
348                 if (!MSR_TM_ACTIVE(cpumsr) &&
349                      MSR_TM_ACTIVE(current->thread.regs->msr))
350                         return;
351                 __giveup_vsx(current);
352         }
353 }
354 EXPORT_SYMBOL(enable_kernel_vsx);
355
356 void flush_vsx_to_thread(struct task_struct *tsk)
357 {
358         if (tsk->thread.regs) {
359                 preempt_disable();
360                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
361                         BUG_ON(tsk != current);
362                         giveup_vsx(tsk);
363                 }
364                 preempt_enable();
365         }
366 }
367 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
368 #endif /* CONFIG_VSX */
369
370 #ifdef CONFIG_SPE
371 void giveup_spe(struct task_struct *tsk)
372 {
373         check_if_tm_restore_required(tsk);
374
375         msr_check_and_set(MSR_SPE);
376         __giveup_spe(tsk);
377         msr_check_and_clear(MSR_SPE);
378 }
379 EXPORT_SYMBOL(giveup_spe);
380
381 void enable_kernel_spe(void)
382 {
383         WARN_ON(preemptible());
384
385         msr_check_and_set(MSR_SPE);
386
387         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
388                 check_if_tm_restore_required(current);
389                 __giveup_spe(current);
390         }
391 }
392 EXPORT_SYMBOL(enable_kernel_spe);
393
394 void flush_spe_to_thread(struct task_struct *tsk)
395 {
396         if (tsk->thread.regs) {
397                 preempt_disable();
398                 if (tsk->thread.regs->msr & MSR_SPE) {
399                         BUG_ON(tsk != current);
400                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
401                         giveup_spe(tsk);
402                 }
403                 preempt_enable();
404         }
405 }
406 #endif /* CONFIG_SPE */
407
408 static unsigned long msr_all_available;
409
410 static int __init init_msr_all_available(void)
411 {
412         if (IS_ENABLED(CONFIG_PPC_FPU))
413                 msr_all_available |= MSR_FP;
414         if (cpu_has_feature(CPU_FTR_ALTIVEC))
415                 msr_all_available |= MSR_VEC;
416         if (cpu_has_feature(CPU_FTR_VSX))
417                 msr_all_available |= MSR_VSX;
418         if (cpu_has_feature(CPU_FTR_SPE))
419                 msr_all_available |= MSR_SPE;
420
421         return 0;
422 }
423 early_initcall(init_msr_all_available);
424
425 void giveup_all(struct task_struct *tsk)
426 {
427         unsigned long usermsr;
428
429         if (!tsk->thread.regs)
430                 return;
431
432         check_if_tm_restore_required(tsk);
433
434         usermsr = tsk->thread.regs->msr;
435
436         if ((usermsr & msr_all_available) == 0)
437                 return;
438
439         msr_check_and_set(msr_all_available);
440
441         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
442
443         if (usermsr & MSR_FP)
444                 __giveup_fpu(tsk);
445         if (usermsr & MSR_VEC)
446                 __giveup_altivec(tsk);
447         if (usermsr & MSR_SPE)
448                 __giveup_spe(tsk);
449
450         msr_check_and_clear(msr_all_available);
451 }
452 EXPORT_SYMBOL(giveup_all);
453
454 #ifdef CONFIG_PPC_BOOK3S_64
455 #ifdef CONFIG_PPC_FPU
456 static bool should_restore_fp(void)
457 {
458         if (current->thread.load_fp) {
459                 current->thread.load_fp++;
460                 return true;
461         }
462         return false;
463 }
464
465 static void do_restore_fp(void)
466 {
467         load_fp_state(&current->thread.fp_state);
468 }
469 #else
470 static bool should_restore_fp(void) { return false; }
471 static void do_restore_fp(void) { }
472 #endif /* CONFIG_PPC_FPU */
473
474 #ifdef CONFIG_ALTIVEC
475 static bool should_restore_altivec(void)
476 {
477         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
478                 current->thread.load_vec++;
479                 return true;
480         }
481         return false;
482 }
483
484 static void do_restore_altivec(void)
485 {
486         load_vr_state(&current->thread.vr_state);
487         current->thread.used_vr = 1;
488 }
489 #else
490 static bool should_restore_altivec(void) { return false; }
491 static void do_restore_altivec(void) { }
492 #endif /* CONFIG_ALTIVEC */
493
494 static bool should_restore_vsx(void)
495 {
496         if (cpu_has_feature(CPU_FTR_VSX))
497                 return true;
498         return false;
499 }
500 #ifdef CONFIG_VSX
501 static void do_restore_vsx(void)
502 {
503         current->thread.used_vsr = 1;
504 }
505 #else
506 static void do_restore_vsx(void) { }
507 #endif /* CONFIG_VSX */
508
509 /*
510  * The exception exit path calls restore_math() with interrupts hard disabled
511  * but the soft irq state not "reconciled". ftrace code that calls
512  * local_irq_save/restore causes warnings.
513  *
514  * Rather than complicate the exit path, just don't trace restore_math. This
515  * could be done by having ftrace entry code check for this un-reconciled
516  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
517  * temporarily fix it up for the duration of the ftrace call.
518  */
519 void notrace restore_math(struct pt_regs *regs)
520 {
521         unsigned long msr;
522         unsigned long new_msr = 0;
523
524         msr = regs->msr;
525
526         /*
527          * new_msr tracks the facilities that are to be restored. Only reload
528          * if the bit is not set in the user MSR (if it is set, the registers
529          * are live for the user thread).
530          */
531         if ((!(msr & MSR_FP)) && should_restore_fp())
532                 new_msr |= MSR_FP;
533
534         if ((!(msr & MSR_VEC)) && should_restore_altivec())
535                 new_msr |= MSR_VEC;
536
537         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
538                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
539                         new_msr |= MSR_VSX;
540         }
541
542         if (new_msr) {
543                 unsigned long fpexc_mode = 0;
544
545                 msr_check_and_set(new_msr);
546
547                 if (new_msr & MSR_FP) {
548                         do_restore_fp();
549
550                         // This also covers VSX, because VSX implies FP
551                         fpexc_mode = current->thread.fpexc_mode;
552                 }
553
554                 if (new_msr & MSR_VEC)
555                         do_restore_altivec();
556
557                 if (new_msr & MSR_VSX)
558                         do_restore_vsx();
559
560                 msr_check_and_clear(new_msr);
561
562                 regs->msr |= new_msr | fpexc_mode;
563         }
564 }
565 #endif /* CONFIG_PPC_BOOK3S_64 */
566
567 static void save_all(struct task_struct *tsk)
568 {
569         unsigned long usermsr;
570
571         if (!tsk->thread.regs)
572                 return;
573
574         usermsr = tsk->thread.regs->msr;
575
576         if ((usermsr & msr_all_available) == 0)
577                 return;
578
579         msr_check_and_set(msr_all_available);
580
581         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
582
583         if (usermsr & MSR_FP)
584                 save_fpu(tsk);
585
586         if (usermsr & MSR_VEC)
587                 save_altivec(tsk);
588
589         if (usermsr & MSR_SPE)
590                 __giveup_spe(tsk);
591
592         msr_check_and_clear(msr_all_available);
593 }
594
595 void flush_all_to_thread(struct task_struct *tsk)
596 {
597         if (tsk->thread.regs) {
598                 preempt_disable();
599                 BUG_ON(tsk != current);
600 #ifdef CONFIG_SPE
601                 if (tsk->thread.regs->msr & MSR_SPE)
602                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
603 #endif
604                 save_all(tsk);
605
606                 preempt_enable();
607         }
608 }
609 EXPORT_SYMBOL(flush_all_to_thread);
610
611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
612 void do_send_trap(struct pt_regs *regs, unsigned long address,
613                   unsigned long error_code, int breakpt)
614 {
615         current->thread.trap_nr = TRAP_HWBKPT;
616         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
617                         11, SIGSEGV) == NOTIFY_STOP)
618                 return;
619
620         /* Deliver the signal to userspace */
621         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
622                                     (void __user *)address);
623 }
624 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
625
626 static void do_break_handler(struct pt_regs *regs)
627 {
628         struct arch_hw_breakpoint null_brk = {0};
629         struct arch_hw_breakpoint *info;
630         struct ppc_inst instr = ppc_inst(0);
631         int type = 0;
632         int size = 0;
633         unsigned long ea;
634         int i;
635
636         /*
637          * If underneath hw supports only one watchpoint, we know it
638          * caused exception. 8xx also falls into this category.
639          */
640         if (nr_wp_slots() == 1) {
641                 __set_breakpoint(0, &null_brk);
642                 current->thread.hw_brk[0] = null_brk;
643                 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
644                 return;
645         }
646
647         /* Otherwise findout which DAWR caused exception and disable it. */
648         wp_get_instr_detail(regs, &instr, &type, &size, &ea);
649
650         for (i = 0; i < nr_wp_slots(); i++) {
651                 info = &current->thread.hw_brk[i];
652                 if (!info->address)
653                         continue;
654
655                 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
656                         __set_breakpoint(i, &null_brk);
657                         current->thread.hw_brk[i] = null_brk;
658                         current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
659                 }
660         }
661 }
662
663 DEFINE_INTERRUPT_HANDLER(do_break)
664 {
665         current->thread.trap_nr = TRAP_HWBKPT;
666         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
667                         11, SIGSEGV) == NOTIFY_STOP)
668                 return;
669
670         if (debugger_break_match(regs))
671                 return;
672
673         /*
674          * We reach here only when watchpoint exception is generated by ptrace
675          * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
676          * watchpoint is already handled by hw_breakpoint_handler() so we don't
677          * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
678          * we need to manually handle the watchpoint here.
679          */
680         if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
681                 do_break_handler(regs);
682
683         /* Deliver the signal to userspace */
684         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
685 }
686 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
687
688 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
689
690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
691 /*
692  * Set the debug registers back to their default "safe" values.
693  */
694 static void set_debug_reg_defaults(struct thread_struct *thread)
695 {
696         thread->debug.iac1 = thread->debug.iac2 = 0;
697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
698         thread->debug.iac3 = thread->debug.iac4 = 0;
699 #endif
700         thread->debug.dac1 = thread->debug.dac2 = 0;
701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
702         thread->debug.dvc1 = thread->debug.dvc2 = 0;
703 #endif
704         thread->debug.dbcr0 = 0;
705 #ifdef CONFIG_BOOKE
706         /*
707          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
708          */
709         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
710                         DBCR1_IAC3US | DBCR1_IAC4US;
711         /*
712          * Force Data Address Compare User/Supervisor bits to be User-only
713          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
714          */
715         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
716 #else
717         thread->debug.dbcr1 = 0;
718 #endif
719 }
720
721 static void prime_debug_regs(struct debug_reg *debug)
722 {
723         /*
724          * We could have inherited MSR_DE from userspace, since
725          * it doesn't get cleared on exception entry.  Make sure
726          * MSR_DE is clear before we enable any debug events.
727          */
728         mtmsr(mfmsr() & ~MSR_DE);
729
730         mtspr(SPRN_IAC1, debug->iac1);
731         mtspr(SPRN_IAC2, debug->iac2);
732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
733         mtspr(SPRN_IAC3, debug->iac3);
734         mtspr(SPRN_IAC4, debug->iac4);
735 #endif
736         mtspr(SPRN_DAC1, debug->dac1);
737         mtspr(SPRN_DAC2, debug->dac2);
738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
739         mtspr(SPRN_DVC1, debug->dvc1);
740         mtspr(SPRN_DVC2, debug->dvc2);
741 #endif
742         mtspr(SPRN_DBCR0, debug->dbcr0);
743         mtspr(SPRN_DBCR1, debug->dbcr1);
744 #ifdef CONFIG_BOOKE
745         mtspr(SPRN_DBCR2, debug->dbcr2);
746 #endif
747 }
748 /*
749  * Unless neither the old or new thread are making use of the
750  * debug registers, set the debug registers from the values
751  * stored in the new thread.
752  */
753 void switch_booke_debug_regs(struct debug_reg *new_debug)
754 {
755         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
756                 || (new_debug->dbcr0 & DBCR0_IDM))
757                         prime_debug_regs(new_debug);
758 }
759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
760 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
761 #ifndef CONFIG_HAVE_HW_BREAKPOINT
762 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
763 {
764         preempt_disable();
765         __set_breakpoint(i, brk);
766         preempt_enable();
767 }
768
769 static void set_debug_reg_defaults(struct thread_struct *thread)
770 {
771         int i;
772         struct arch_hw_breakpoint null_brk = {0};
773
774         for (i = 0; i < nr_wp_slots(); i++) {
775                 thread->hw_brk[i] = null_brk;
776                 if (ppc_breakpoint_available())
777                         set_breakpoint(i, &thread->hw_brk[i]);
778         }
779 }
780
781 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
782                                 struct arch_hw_breakpoint *b)
783 {
784         if (a->address != b->address)
785                 return false;
786         if (a->type != b->type)
787                 return false;
788         if (a->len != b->len)
789                 return false;
790         /* no need to check hw_len. it's calculated from address and len */
791         return true;
792 }
793
794 static void switch_hw_breakpoint(struct task_struct *new)
795 {
796         int i;
797
798         for (i = 0; i < nr_wp_slots(); i++) {
799                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
800                                         &new->thread.hw_brk[i])))
801                         continue;
802
803                 __set_breakpoint(i, &new->thread.hw_brk[i]);
804         }
805 }
806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
807 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
808
809 static inline int set_dabr(struct arch_hw_breakpoint *brk)
810 {
811         unsigned long dabr, dabrx;
812
813         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
814         dabrx = ((brk->type >> 3) & 0x7);
815
816         if (ppc_md.set_dabr)
817                 return ppc_md.set_dabr(dabr, dabrx);
818
819         if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
820                 mtspr(SPRN_DAC1, dabr);
821                 if (IS_ENABLED(CONFIG_PPC_47x))
822                         isync();
823                 return 0;
824         } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
825                 mtspr(SPRN_DABR, dabr);
826                 if (cpu_has_feature(CPU_FTR_DABRX))
827                         mtspr(SPRN_DABRX, dabrx);
828                 return 0;
829         } else {
830                 return -EINVAL;
831         }
832 }
833
834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
835 {
836         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
837                                LCTRL1_CRWF_RW;
838         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
839         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
840         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
841
842         if (start_addr == 0)
843                 lctrl2 |= LCTRL2_LW0LA_F;
844         else if (end_addr == 0)
845                 lctrl2 |= LCTRL2_LW0LA_E;
846         else
847                 lctrl2 |= LCTRL2_LW0LA_EandF;
848
849         mtspr(SPRN_LCTRL2, 0);
850
851         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
852                 return 0;
853
854         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
855                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
856         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
857                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
858
859         mtspr(SPRN_CMPE, start_addr - 1);
860         mtspr(SPRN_CMPF, end_addr);
861         mtspr(SPRN_LCTRL1, lctrl1);
862         mtspr(SPRN_LCTRL2, lctrl2);
863
864         return 0;
865 }
866
867 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
868 {
869         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
870
871         if (dawr_enabled())
872                 // Power8 or later
873                 set_dawr(nr, brk);
874         else if (IS_ENABLED(CONFIG_PPC_8xx))
875                 set_breakpoint_8xx(brk);
876         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
877                 // Power7 or earlier
878                 set_dabr(brk);
879         else
880                 // Shouldn't happen due to higher level checks
881                 WARN_ON_ONCE(1);
882 }
883
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
886 {
887         if (dawr_enabled())
888                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889         if (cpu_has_feature(CPU_FTR_ARCH_207S))
890                 return false; /* POWER9 with DAWR disabled */
891         /* DABR: Everything but POWER8 and POWER9 */
892         return true;
893 }
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895
896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
897
898 static inline bool tm_enabled(struct task_struct *tsk)
899 {
900         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
901 }
902
903 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
904 {
905         /*
906          * Use the current MSR TM suspended bit to track if we have
907          * checkpointed state outstanding.
908          * On signal delivery, we'd normally reclaim the checkpointed
909          * state to obtain stack pointer (see:get_tm_stackpointer()).
910          * This will then directly return to userspace without going
911          * through __switch_to(). However, if the stack frame is bad,
912          * we need to exit this thread which calls __switch_to() which
913          * will again attempt to reclaim the already saved tm state.
914          * Hence we need to check that we've not already reclaimed
915          * this state.
916          * We do this using the current MSR, rather tracking it in
917          * some specific thread_struct bit, as it has the additional
918          * benefit of checking for a potential TM bad thing exception.
919          */
920         if (!MSR_TM_SUSPENDED(mfmsr()))
921                 return;
922
923         giveup_all(container_of(thr, struct task_struct, thread));
924
925         tm_reclaim(thr, cause);
926
927         /*
928          * If we are in a transaction and FP is off then we can't have
929          * used FP inside that transaction. Hence the checkpointed
930          * state is the same as the live state. We need to copy the
931          * live state to the checkpointed state so that when the
932          * transaction is restored, the checkpointed state is correct
933          * and the aborted transaction sees the correct state. We use
934          * ckpt_regs.msr here as that's what tm_reclaim will use to
935          * determine if it's going to write the checkpointed state or
936          * not. So either this will write the checkpointed registers,
937          * or reclaim will. Similarly for VMX.
938          */
939         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
940                 memcpy(&thr->ckfp_state, &thr->fp_state,
941                        sizeof(struct thread_fp_state));
942         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
943                 memcpy(&thr->ckvr_state, &thr->vr_state,
944                        sizeof(struct thread_vr_state));
945 }
946
947 void tm_reclaim_current(uint8_t cause)
948 {
949         tm_enable();
950         tm_reclaim_thread(&current->thread, cause);
951 }
952
953 static inline void tm_reclaim_task(struct task_struct *tsk)
954 {
955         /* We have to work out if we're switching from/to a task that's in the
956          * middle of a transaction.
957          *
958          * In switching we need to maintain a 2nd register state as
959          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
960          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
961          * ckvr_state
962          *
963          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
964          */
965         struct thread_struct *thr = &tsk->thread;
966
967         if (!thr->regs)
968                 return;
969
970         if (!MSR_TM_ACTIVE(thr->regs->msr))
971                 goto out_and_saveregs;
972
973         WARN_ON(tm_suspend_disabled);
974
975         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
976                  "ccr=%lx, msr=%lx, trap=%lx)\n",
977                  tsk->pid, thr->regs->nip,
978                  thr->regs->ccr, thr->regs->msr,
979                  thr->regs->trap);
980
981         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
982
983         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
984                  tsk->pid);
985
986 out_and_saveregs:
987         /* Always save the regs here, even if a transaction's not active.
988          * This context-switches a thread's TM info SPRs.  We do it here to
989          * be consistent with the restore path (in recheckpoint) which
990          * cannot happen later in _switch().
991          */
992         tm_save_sprs(thr);
993 }
994
995 extern void __tm_recheckpoint(struct thread_struct *thread);
996
997 void tm_recheckpoint(struct thread_struct *thread)
998 {
999         unsigned long flags;
1000
1001         if (!(thread->regs->msr & MSR_TM))
1002                 return;
1003
1004         /* We really can't be interrupted here as the TEXASR registers can't
1005          * change and later in the trecheckpoint code, we have a userspace R1.
1006          * So let's hard disable over this region.
1007          */
1008         local_irq_save(flags);
1009         hard_irq_disable();
1010
1011         /* The TM SPRs are restored here, so that TEXASR.FS can be set
1012          * before the trecheckpoint and no explosion occurs.
1013          */
1014         tm_restore_sprs(thread);
1015
1016         __tm_recheckpoint(thread);
1017
1018         local_irq_restore(flags);
1019 }
1020
1021 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1022 {
1023         if (!cpu_has_feature(CPU_FTR_TM))
1024                 return;
1025
1026         /* Recheckpoint the registers of the thread we're about to switch to.
1027          *
1028          * If the task was using FP, we non-lazily reload both the original and
1029          * the speculative FP register states.  This is because the kernel
1030          * doesn't see if/when a TM rollback occurs, so if we take an FP
1031          * unavailable later, we are unable to determine which set of FP regs
1032          * need to be restored.
1033          */
1034         if (!tm_enabled(new))
1035                 return;
1036
1037         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1038                 tm_restore_sprs(&new->thread);
1039                 return;
1040         }
1041         /* Recheckpoint to restore original checkpointed register state. */
1042         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1043                  new->pid, new->thread.regs->msr);
1044
1045         tm_recheckpoint(&new->thread);
1046
1047         /*
1048          * The checkpointed state has been restored but the live state has
1049          * not, ensure all the math functionality is turned off to trigger
1050          * restore_math() to reload.
1051          */
1052         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1053
1054         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1055                  "(kernel msr 0x%lx)\n",
1056                  new->pid, mfmsr());
1057 }
1058
1059 static inline void __switch_to_tm(struct task_struct *prev,
1060                 struct task_struct *new)
1061 {
1062         if (cpu_has_feature(CPU_FTR_TM)) {
1063                 if (tm_enabled(prev) || tm_enabled(new))
1064                         tm_enable();
1065
1066                 if (tm_enabled(prev)) {
1067                         prev->thread.load_tm++;
1068                         tm_reclaim_task(prev);
1069                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1070                                 prev->thread.regs->msr &= ~MSR_TM;
1071                 }
1072
1073                 tm_recheckpoint_new_task(new);
1074         }
1075 }
1076
1077 /*
1078  * This is called if we are on the way out to userspace and the
1079  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1080  * FP and/or vector state and does so if necessary.
1081  * If userspace is inside a transaction (whether active or
1082  * suspended) and FP/VMX/VSX instructions have ever been enabled
1083  * inside that transaction, then we have to keep them enabled
1084  * and keep the FP/VMX/VSX state loaded while ever the transaction
1085  * continues.  The reason is that if we didn't, and subsequently
1086  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1087  * we don't know whether it's the same transaction, and thus we
1088  * don't know which of the checkpointed state and the transactional
1089  * state to use.
1090  */
1091 void restore_tm_state(struct pt_regs *regs)
1092 {
1093         unsigned long msr_diff;
1094
1095         /*
1096          * This is the only moment we should clear TIF_RESTORE_TM as
1097          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1098          * again, anything else could lead to an incorrect ckpt_msr being
1099          * saved and therefore incorrect signal contexts.
1100          */
1101         clear_thread_flag(TIF_RESTORE_TM);
1102         if (!MSR_TM_ACTIVE(regs->msr))
1103                 return;
1104
1105         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1106         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1107
1108         /* Ensure that restore_math() will restore */
1109         if (msr_diff & MSR_FP)
1110                 current->thread.load_fp = 1;
1111 #ifdef CONFIG_ALTIVEC
1112         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1113                 current->thread.load_vec = 1;
1114 #endif
1115         restore_math(regs);
1116
1117         regs->msr |= msr_diff;
1118 }
1119
1120 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1121 #define tm_recheckpoint_new_task(new)
1122 #define __switch_to_tm(prev, new)
1123 void tm_reclaim_current(uint8_t cause) {}
1124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1125
1126 static inline void save_sprs(struct thread_struct *t)
1127 {
1128 #ifdef CONFIG_ALTIVEC
1129         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1130                 t->vrsave = mfspr(SPRN_VRSAVE);
1131 #endif
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133         if (cpu_has_feature(CPU_FTR_DSCR))
1134                 t->dscr = mfspr(SPRN_DSCR);
1135
1136         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1137                 t->bescr = mfspr(SPRN_BESCR);
1138                 t->ebbhr = mfspr(SPRN_EBBHR);
1139                 t->ebbrr = mfspr(SPRN_EBBRR);
1140
1141                 t->fscr = mfspr(SPRN_FSCR);
1142
1143                 /*
1144                  * Note that the TAR is not available for use in the kernel.
1145                  * (To provide this, the TAR should be backed up/restored on
1146                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1147                  * this should be in pt_regs anyway (for debug).)
1148                  */
1149                 t->tar = mfspr(SPRN_TAR);
1150         }
1151 #endif
1152 }
1153
1154 static inline void restore_sprs(struct thread_struct *old_thread,
1155                                 struct thread_struct *new_thread)
1156 {
1157 #ifdef CONFIG_ALTIVEC
1158         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1159             old_thread->vrsave != new_thread->vrsave)
1160                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1161 #endif
1162 #ifdef CONFIG_PPC_BOOK3S_64
1163         if (cpu_has_feature(CPU_FTR_DSCR)) {
1164                 u64 dscr = get_paca()->dscr_default;
1165                 if (new_thread->dscr_inherit)
1166                         dscr = new_thread->dscr;
1167
1168                 if (old_thread->dscr != dscr)
1169                         mtspr(SPRN_DSCR, dscr);
1170         }
1171
1172         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1173                 if (old_thread->bescr != new_thread->bescr)
1174                         mtspr(SPRN_BESCR, new_thread->bescr);
1175                 if (old_thread->ebbhr != new_thread->ebbhr)
1176                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1177                 if (old_thread->ebbrr != new_thread->ebbrr)
1178                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1179
1180                 if (old_thread->fscr != new_thread->fscr)
1181                         mtspr(SPRN_FSCR, new_thread->fscr);
1182
1183                 if (old_thread->tar != new_thread->tar)
1184                         mtspr(SPRN_TAR, new_thread->tar);
1185         }
1186
1187         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1188             old_thread->tidr != new_thread->tidr)
1189                 mtspr(SPRN_TIDR, new_thread->tidr);
1190 #endif
1191
1192 }
1193
1194 struct task_struct *__switch_to(struct task_struct *prev,
1195         struct task_struct *new)
1196 {
1197         struct thread_struct *new_thread, *old_thread;
1198         struct task_struct *last;
1199 #ifdef CONFIG_PPC_BOOK3S_64
1200         struct ppc64_tlb_batch *batch;
1201 #endif
1202
1203         new_thread = &new->thread;
1204         old_thread = &current->thread;
1205
1206         WARN_ON(!irqs_disabled());
1207
1208 #ifdef CONFIG_PPC_BOOK3S_64
1209         batch = this_cpu_ptr(&ppc64_tlb_batch);
1210         if (batch->active) {
1211                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1212                 if (batch->index)
1213                         __flush_tlb_pending(batch);
1214                 batch->active = 0;
1215         }
1216 #endif /* CONFIG_PPC_BOOK3S_64 */
1217
1218 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1219         switch_booke_debug_regs(&new->thread.debug);
1220 #else
1221 /*
1222  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1223  * schedule DABR
1224  */
1225 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1226         switch_hw_breakpoint(new);
1227 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1228 #endif
1229
1230         /*
1231          * We need to save SPRs before treclaim/trecheckpoint as these will
1232          * change a number of them.
1233          */
1234         save_sprs(&prev->thread);
1235
1236         /* Save FPU, Altivec, VSX and SPE state */
1237         giveup_all(prev);
1238
1239         __switch_to_tm(prev, new);
1240
1241         if (!radix_enabled()) {
1242                 /*
1243                  * We can't take a PMU exception inside _switch() since there
1244                  * is a window where the kernel stack SLB and the kernel stack
1245                  * are out of sync. Hard disable here.
1246                  */
1247                 hard_irq_disable();
1248         }
1249
1250         /*
1251          * Call restore_sprs() before calling _switch(). If we move it after
1252          * _switch() then we miss out on calling it for new tasks. The reason
1253          * for this is we manually create a stack frame for new tasks that
1254          * directly returns through ret_from_fork() or
1255          * ret_from_kernel_thread(). See copy_thread() for details.
1256          */
1257         restore_sprs(old_thread, new_thread);
1258
1259 #ifdef CONFIG_PPC32
1260         kuap_assert_locked();
1261 #endif
1262         last = _switch(old_thread, new_thread);
1263
1264 #ifdef CONFIG_PPC_BOOK3S_64
1265         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1266                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1267                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1268                 batch->active = 1;
1269         }
1270
1271         if (current->thread.regs) {
1272                 restore_math(current->thread.regs);
1273
1274                 /*
1275                  * On POWER9 the copy-paste buffer can only paste into
1276                  * foreign real addresses, so unprivileged processes can not
1277                  * see the data or use it in any way unless they have
1278                  * foreign real mappings. If the new process has the foreign
1279                  * real address mappings, we must issue a cp_abort to clear
1280                  * any state and prevent snooping, corruption or a covert
1281                  * channel. ISA v3.1 supports paste into local memory.
1282                  */
1283                 if (current->mm &&
1284                         (cpu_has_feature(CPU_FTR_ARCH_31) ||
1285                         atomic_read(&current->mm->context.vas_windows)))
1286                         asm volatile(PPC_CP_ABORT);
1287         }
1288 #endif /* CONFIG_PPC_BOOK3S_64 */
1289
1290         return last;
1291 }
1292
1293 #define NR_INSN_TO_PRINT        16
1294
1295 static void show_instructions(struct pt_regs *regs)
1296 {
1297         int i;
1298         unsigned long nip = regs->nip;
1299         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300
1301         printk("Instruction dump:");
1302
1303         /*
1304          * If we were executing with the MMU off for instructions, adjust pc
1305          * rather than printing XXXXXXXX.
1306          */
1307         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1308                 pc = (unsigned long)phys_to_virt(pc);
1309                 nip = (unsigned long)phys_to_virt(regs->nip);
1310         }
1311
1312         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1313                 int instr;
1314
1315                 if (!(i % 8))
1316                         pr_cont("\n");
1317
1318                 if (!__kernel_text_address(pc) ||
1319                     get_kernel_nofault(instr, (const void *)pc)) {
1320                         pr_cont("XXXXXXXX ");
1321                 } else {
1322                         if (nip == pc)
1323                                 pr_cont("<%08x> ", instr);
1324                         else
1325                                 pr_cont("%08x ", instr);
1326                 }
1327
1328                 pc += sizeof(int);
1329         }
1330
1331         pr_cont("\n");
1332 }
1333
1334 void show_user_instructions(struct pt_regs *regs)
1335 {
1336         unsigned long pc;
1337         int n = NR_INSN_TO_PRINT;
1338         struct seq_buf s;
1339         char buf[96]; /* enough for 8 times 9 + 2 chars */
1340
1341         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1342
1343         seq_buf_init(&s, buf, sizeof(buf));
1344
1345         while (n) {
1346                 int i;
1347
1348                 seq_buf_clear(&s);
1349
1350                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1351                         int instr;
1352
1353                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1354                                         sizeof(instr))) {
1355                                 seq_buf_printf(&s, "XXXXXXXX ");
1356                                 continue;
1357                         }
1358                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1359                 }
1360
1361                 if (!seq_buf_has_overflowed(&s))
1362                         pr_info("%s[%d]: code: %s\n", current->comm,
1363                                 current->pid, s.buffer);
1364         }
1365 }
1366
1367 struct regbit {
1368         unsigned long bit;
1369         const char *name;
1370 };
1371
1372 static struct regbit msr_bits[] = {
1373 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1374         {MSR_SF,        "SF"},
1375         {MSR_HV,        "HV"},
1376 #endif
1377         {MSR_VEC,       "VEC"},
1378         {MSR_VSX,       "VSX"},
1379 #ifdef CONFIG_BOOKE
1380         {MSR_CE,        "CE"},
1381 #endif
1382         {MSR_EE,        "EE"},
1383         {MSR_PR,        "PR"},
1384         {MSR_FP,        "FP"},
1385         {MSR_ME,        "ME"},
1386 #ifdef CONFIG_BOOKE
1387         {MSR_DE,        "DE"},
1388 #else
1389         {MSR_SE,        "SE"},
1390         {MSR_BE,        "BE"},
1391 #endif
1392         {MSR_IR,        "IR"},
1393         {MSR_DR,        "DR"},
1394         {MSR_PMM,       "PMM"},
1395 #ifndef CONFIG_BOOKE
1396         {MSR_RI,        "RI"},
1397         {MSR_LE,        "LE"},
1398 #endif
1399         {0,             NULL}
1400 };
1401
1402 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1403 {
1404         const char *s = "";
1405
1406         for (; bits->bit; ++bits)
1407                 if (val & bits->bit) {
1408                         pr_cont("%s%s", s, bits->name);
1409                         s = sep;
1410                 }
1411 }
1412
1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1414 static struct regbit msr_tm_bits[] = {
1415         {MSR_TS_T,      "T"},
1416         {MSR_TS_S,      "S"},
1417         {MSR_TM,        "E"},
1418         {0,             NULL}
1419 };
1420
1421 static void print_tm_bits(unsigned long val)
1422 {
1423 /*
1424  * This only prints something if at least one of the TM bit is set.
1425  * Inside the TM[], the output means:
1426  *   E: Enabled         (bit 32)
1427  *   S: Suspended       (bit 33)
1428  *   T: Transactional   (bit 34)
1429  */
1430         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1431                 pr_cont(",TM[");
1432                 print_bits(val, msr_tm_bits, "");
1433                 pr_cont("]");
1434         }
1435 }
1436 #else
1437 static void print_tm_bits(unsigned long val) {}
1438 #endif
1439
1440 static void print_msr_bits(unsigned long val)
1441 {
1442         pr_cont("<");
1443         print_bits(val, msr_bits, ",");
1444         print_tm_bits(val);
1445         pr_cont(">");
1446 }
1447
1448 #ifdef CONFIG_PPC64
1449 #define REG             "%016lx"
1450 #define REGS_PER_LINE   4
1451 #else
1452 #define REG             "%08lx"
1453 #define REGS_PER_LINE   8
1454 #endif
1455
1456 static void __show_regs(struct pt_regs *regs)
1457 {
1458         int i, trap;
1459
1460         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1461                regs->nip, regs->link, regs->ctr);
1462         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1463                regs, regs->trap, print_tainted(), init_utsname()->release);
1464         printk("MSR:  "REG" ", regs->msr);
1465         print_msr_bits(regs->msr);
1466         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1467         trap = TRAP(regs);
1468         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1469                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1470         if (trap == INTERRUPT_MACHINE_CHECK ||
1471             trap == INTERRUPT_DATA_STORAGE ||
1472             trap == INTERRUPT_ALIGNMENT) {
1473                 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1474                         pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1475                 else
1476                         pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1477         }
1478
1479 #ifdef CONFIG_PPC64
1480         pr_cont("IRQMASK: %lx ", regs->softe);
1481 #endif
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483         if (MSR_TM_ACTIVE(regs->msr))
1484                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1485 #endif
1486
1487         for (i = 0;  i < 32;  i++) {
1488                 if ((i % REGS_PER_LINE) == 0)
1489                         pr_cont("\nGPR%02d: ", i);
1490                 pr_cont(REG " ", regs->gpr[i]);
1491         }
1492         pr_cont("\n");
1493         /*
1494          * Lookup NIP late so we have the best change of getting the
1495          * above info out without failing
1496          */
1497         if (IS_ENABLED(CONFIG_KALLSYMS)) {
1498                 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1499                 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1500         }
1501 }
1502
1503 void show_regs(struct pt_regs *regs)
1504 {
1505         show_regs_print_info(KERN_DEFAULT);
1506         __show_regs(regs);
1507         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1508         if (!user_mode(regs))
1509                 show_instructions(regs);
1510 }
1511
1512 void flush_thread(void)
1513 {
1514 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1515         flush_ptrace_hw_breakpoint(current);
1516 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1517         set_debug_reg_defaults(&current->thread);
1518 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1519 }
1520
1521 void arch_setup_new_exec(void)
1522 {
1523
1524 #ifdef CONFIG_PPC_BOOK3S_64
1525         if (!radix_enabled())
1526                 hash__setup_new_exec();
1527 #endif
1528         /*
1529          * If we exec out of a kernel thread then thread.regs will not be
1530          * set.  Do it now.
1531          */
1532         if (!current->thread.regs) {
1533                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1534                 current->thread.regs = regs - 1;
1535         }
1536
1537 #ifdef CONFIG_PPC_MEM_KEYS
1538         current->thread.regs->amr  = default_amr;
1539         current->thread.regs->iamr  = default_iamr;
1540 #endif
1541 }
1542
1543 #ifdef CONFIG_PPC64
1544 /**
1545  * Assign a TIDR (thread ID) for task @t and set it in the thread
1546  * structure. For now, we only support setting TIDR for 'current' task.
1547  *
1548  * Since the TID value is a truncated form of it PID, it is possible
1549  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1550  * that 2 threads share the same TID and are waiting, one of the following
1551  * cases will happen:
1552  *
1553  * 1. The correct thread is running, the wrong thread is not
1554  * In this situation, the correct thread is woken and proceeds to pass it's
1555  * condition check.
1556  *
1557  * 2. Neither threads are running
1558  * In this situation, neither thread will be woken. When scheduled, the waiting
1559  * threads will execute either a wait, which will return immediately, followed
1560  * by a condition check, which will pass for the correct thread and fail
1561  * for the wrong thread, or they will execute the condition check immediately.
1562  *
1563  * 3. The wrong thread is running, the correct thread is not
1564  * The wrong thread will be woken, but will fail it's condition check and
1565  * re-execute wait. The correct thread, when scheduled, will execute either
1566  * it's condition check (which will pass), or wait, which returns immediately
1567  * when called the first time after the thread is scheduled, followed by it's
1568  * condition check (which will pass).
1569  *
1570  * 4. Both threads are running
1571  * Both threads will be woken. The wrong thread will fail it's condition check
1572  * and execute another wait, while the correct thread will pass it's condition
1573  * check.
1574  *
1575  * @t: the task to set the thread ID for
1576  */
1577 int set_thread_tidr(struct task_struct *t)
1578 {
1579         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1580                 return -EINVAL;
1581
1582         if (t != current)
1583                 return -EINVAL;
1584
1585         if (t->thread.tidr)
1586                 return 0;
1587
1588         t->thread.tidr = (u16)task_pid_nr(t);
1589         mtspr(SPRN_TIDR, t->thread.tidr);
1590
1591         return 0;
1592 }
1593 EXPORT_SYMBOL_GPL(set_thread_tidr);
1594
1595 #endif /* CONFIG_PPC64 */
1596
1597 void
1598 release_thread(struct task_struct *t)
1599 {
1600 }
1601
1602 /*
1603  * this gets called so that we can store coprocessor state into memory and
1604  * copy the current task into the new thread.
1605  */
1606 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1607 {
1608         flush_all_to_thread(src);
1609         /*
1610          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1611          * flush but it removes the checkpointed state from the current CPU and
1612          * transitions the CPU out of TM mode.  Hence we need to call
1613          * tm_recheckpoint_new_task() (on the same task) to restore the
1614          * checkpointed state back and the TM mode.
1615          *
1616          * Can't pass dst because it isn't ready. Doesn't matter, passing
1617          * dst is only important for __switch_to()
1618          */
1619         __switch_to_tm(src, src);
1620
1621         *dst = *src;
1622
1623         clear_task_ebb(dst);
1624
1625         return 0;
1626 }
1627
1628 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1629 {
1630 #ifdef CONFIG_PPC_BOOK3S_64
1631         unsigned long sp_vsid;
1632         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1633
1634         if (radix_enabled())
1635                 return;
1636
1637         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1638                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1639                         << SLB_VSID_SHIFT_1T;
1640         else
1641                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1642                         << SLB_VSID_SHIFT;
1643         sp_vsid |= SLB_VSID_KERNEL | llp;
1644         p->thread.ksp_vsid = sp_vsid;
1645 #endif
1646 }
1647
1648 /*
1649  * Copy a thread..
1650  */
1651
1652 /*
1653  * Copy architecture-specific thread state
1654  */
1655 int copy_thread(unsigned long clone_flags, unsigned long usp,
1656                 unsigned long kthread_arg, struct task_struct *p,
1657                 unsigned long tls)
1658 {
1659         struct pt_regs *childregs, *kregs;
1660         extern void ret_from_fork(void);
1661         extern void ret_from_fork_scv(void);
1662         extern void ret_from_kernel_thread(void);
1663         void (*f)(void);
1664         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1665         struct thread_info *ti = task_thread_info(p);
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667         int i;
1668 #endif
1669
1670         klp_init_thread_info(p);
1671
1672         /* Copy registers */
1673         sp -= sizeof(struct pt_regs);
1674         childregs = (struct pt_regs *) sp;
1675         if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1676                 /* kernel thread */
1677                 memset(childregs, 0, sizeof(struct pt_regs));
1678                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1679                 /* function */
1680                 if (usp)
1681                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1682 #ifdef CONFIG_PPC64
1683                 clear_tsk_thread_flag(p, TIF_32BIT);
1684                 childregs->softe = IRQS_ENABLED;
1685 #endif
1686                 childregs->gpr[15] = kthread_arg;
1687                 p->thread.regs = NULL;  /* no user register state */
1688                 ti->flags |= _TIF_RESTOREALL;
1689                 f = ret_from_kernel_thread;
1690         } else {
1691                 /* user thread */
1692                 struct pt_regs *regs = current_pt_regs();
1693                 *childregs = *regs;
1694                 if (usp)
1695                         childregs->gpr[1] = usp;
1696                 p->thread.regs = childregs;
1697                 /* 64s sets this in ret_from_fork */
1698                 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1699                         childregs->gpr[3] = 0;  /* Result from fork() */
1700                 if (clone_flags & CLONE_SETTLS) {
1701                         if (!is_32bit_task())
1702                                 childregs->gpr[13] = tls;
1703                         else
1704                                 childregs->gpr[2] = tls;
1705                 }
1706
1707                 if (trap_is_scv(regs))
1708                         f = ret_from_fork_scv;
1709                 else
1710                         f = ret_from_fork;
1711         }
1712         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1713         sp -= STACK_FRAME_OVERHEAD;
1714
1715         /*
1716          * The way this works is that at some point in the future
1717          * some task will call _switch to switch to the new task.
1718          * That will pop off the stack frame created below and start
1719          * the new task running at ret_from_fork.  The new task will
1720          * do some house keeping and then return from the fork or clone
1721          * system call, using the stack frame created above.
1722          */
1723         ((unsigned long *)sp)[0] = 0;
1724         sp -= sizeof(struct pt_regs);
1725         kregs = (struct pt_regs *) sp;
1726         sp -= STACK_FRAME_OVERHEAD;
1727         p->thread.ksp = sp;
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729         for (i = 0; i < nr_wp_slots(); i++)
1730                 p->thread.ptrace_bps[i] = NULL;
1731 #endif
1732
1733 #ifdef CONFIG_PPC_FPU_REGS
1734         p->thread.fp_save_area = NULL;
1735 #endif
1736 #ifdef CONFIG_ALTIVEC
1737         p->thread.vr_save_area = NULL;
1738 #endif
1739
1740         setup_ksp_vsid(p, sp);
1741
1742 #ifdef CONFIG_PPC64 
1743         if (cpu_has_feature(CPU_FTR_DSCR)) {
1744                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1745                 p->thread.dscr = mfspr(SPRN_DSCR);
1746         }
1747         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1748                 childregs->ppr = DEFAULT_PPR;
1749
1750         p->thread.tidr = 0;
1751 #endif
1752         /*
1753          * Run with the current AMR value of the kernel
1754          */
1755 #ifdef CONFIG_PPC_PKEY
1756         if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1757                 kregs->amr = AMR_KUAP_BLOCKED;
1758
1759         if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1760                 kregs->iamr = AMR_KUEP_BLOCKED;
1761 #endif
1762         kregs->nip = ppc_function_entry(f);
1763         return 0;
1764 }
1765
1766 void preload_new_slb_context(unsigned long start, unsigned long sp);
1767
1768 /*
1769  * Set up a thread for executing a new program
1770  */
1771 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1772 {
1773 #ifdef CONFIG_PPC64
1774         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1775
1776         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1777                 preload_new_slb_context(start, sp);
1778 #endif
1779
1780 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1781         /*
1782          * Clear any transactional state, we're exec()ing. The cause is
1783          * not important as there will never be a recheckpoint so it's not
1784          * user visible.
1785          */
1786         if (MSR_TM_SUSPENDED(mfmsr()))
1787                 tm_reclaim_current(0);
1788 #endif
1789
1790         memset(regs->gpr, 0, sizeof(regs->gpr));
1791         regs->ctr = 0;
1792         regs->link = 0;
1793         regs->xer = 0;
1794         regs->ccr = 0;
1795         regs->gpr[1] = sp;
1796
1797 #ifdef CONFIG_PPC32
1798         regs->mq = 0;
1799         regs->nip = start;
1800         regs->msr = MSR_USER;
1801 #else
1802         if (!is_32bit_task()) {
1803                 unsigned long entry;
1804
1805                 if (is_elf2_task()) {
1806                         /* Look ma, no function descriptors! */
1807                         entry = start;
1808
1809                         /*
1810                          * Ulrich says:
1811                          *   The latest iteration of the ABI requires that when
1812                          *   calling a function (at its global entry point),
1813                          *   the caller must ensure r12 holds the entry point
1814                          *   address (so that the function can quickly
1815                          *   establish addressability).
1816                          */
1817                         regs->gpr[12] = start;
1818                         /* Make sure that's restored on entry to userspace. */
1819                         set_thread_flag(TIF_RESTOREALL);
1820                 } else {
1821                         unsigned long toc;
1822
1823                         /* start is a relocated pointer to the function
1824                          * descriptor for the elf _start routine.  The first
1825                          * entry in the function descriptor is the entry
1826                          * address of _start and the second entry is the TOC
1827                          * value we need to use.
1828                          */
1829                         __get_user(entry, (unsigned long __user *)start);
1830                         __get_user(toc, (unsigned long __user *)start+1);
1831
1832                         /* Check whether the e_entry function descriptor entries
1833                          * need to be relocated before we can use them.
1834                          */
1835                         if (load_addr != 0) {
1836                                 entry += load_addr;
1837                                 toc   += load_addr;
1838                         }
1839                         regs->gpr[2] = toc;
1840                 }
1841                 regs->nip = entry;
1842                 regs->msr = MSR_USER64;
1843         } else {
1844                 regs->nip = start;
1845                 regs->gpr[2] = 0;
1846                 regs->msr = MSR_USER32;
1847         }
1848 #endif
1849 #ifdef CONFIG_VSX
1850         current->thread.used_vsr = 0;
1851 #endif
1852         current->thread.load_slb = 0;
1853         current->thread.load_fp = 0;
1854 #ifdef CONFIG_PPC_FPU_REGS
1855         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1856         current->thread.fp_save_area = NULL;
1857 #endif
1858 #ifdef CONFIG_ALTIVEC
1859         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1860         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1861         current->thread.vr_save_area = NULL;
1862         current->thread.vrsave = 0;
1863         current->thread.used_vr = 0;
1864         current->thread.load_vec = 0;
1865 #endif /* CONFIG_ALTIVEC */
1866 #ifdef CONFIG_SPE
1867         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1868         current->thread.acc = 0;
1869         current->thread.spefscr = 0;
1870         current->thread.used_spe = 0;
1871 #endif /* CONFIG_SPE */
1872 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1873         current->thread.tm_tfhar = 0;
1874         current->thread.tm_texasr = 0;
1875         current->thread.tm_tfiar = 0;
1876         current->thread.load_tm = 0;
1877 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1878
1879 }
1880 EXPORT_SYMBOL(start_thread);
1881
1882 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1883                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1884
1885 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1886 {
1887         struct pt_regs *regs = tsk->thread.regs;
1888
1889         /* This is a bit hairy.  If we are an SPE enabled  processor
1890          * (have embedded fp) we store the IEEE exception enable flags in
1891          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1892          * mode (asyn, precise, disabled) for 'Classic' FP. */
1893         if (val & PR_FP_EXC_SW_ENABLE) {
1894                 if (cpu_has_feature(CPU_FTR_SPE)) {
1895                         /*
1896                          * When the sticky exception bits are set
1897                          * directly by userspace, it must call prctl
1898                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1899                          * in the existing prctl settings) or
1900                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1901                          * the bits being set).  <fenv.h> functions
1902                          * saving and restoring the whole
1903                          * floating-point environment need to do so
1904                          * anyway to restore the prctl settings from
1905                          * the saved environment.
1906                          */
1907 #ifdef CONFIG_SPE
1908                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1909                         tsk->thread.fpexc_mode = val &
1910                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1911 #endif
1912                         return 0;
1913                 } else {
1914                         return -EINVAL;
1915                 }
1916         }
1917
1918         /* on a CONFIG_SPE this does not hurt us.  The bits that
1919          * __pack_fe01 use do not overlap with bits used for
1920          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1921          * on CONFIG_SPE implementations are reserved so writing to
1922          * them does not change anything */
1923         if (val > PR_FP_EXC_PRECISE)
1924                 return -EINVAL;
1925         tsk->thread.fpexc_mode = __pack_fe01(val);
1926         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1927                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1928                         | tsk->thread.fpexc_mode;
1929         return 0;
1930 }
1931
1932 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1933 {
1934         unsigned int val = 0;
1935
1936         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1937                 if (cpu_has_feature(CPU_FTR_SPE)) {
1938                         /*
1939                          * When the sticky exception bits are set
1940                          * directly by userspace, it must call prctl
1941                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1942                          * in the existing prctl settings) or
1943                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1944                          * the bits being set).  <fenv.h> functions
1945                          * saving and restoring the whole
1946                          * floating-point environment need to do so
1947                          * anyway to restore the prctl settings from
1948                          * the saved environment.
1949                          */
1950 #ifdef CONFIG_SPE
1951                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1952                         val = tsk->thread.fpexc_mode;
1953 #endif
1954                 } else
1955                         return -EINVAL;
1956         } else {
1957                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1958         }
1959         return put_user(val, (unsigned int __user *) adr);
1960 }
1961
1962 int set_endian(struct task_struct *tsk, unsigned int val)
1963 {
1964         struct pt_regs *regs = tsk->thread.regs;
1965
1966         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1967             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1968                 return -EINVAL;
1969
1970         if (regs == NULL)
1971                 return -EINVAL;
1972
1973         if (val == PR_ENDIAN_BIG)
1974                 regs->msr &= ~MSR_LE;
1975         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1976                 regs->msr |= MSR_LE;
1977         else
1978                 return -EINVAL;
1979
1980         return 0;
1981 }
1982
1983 int get_endian(struct task_struct *tsk, unsigned long adr)
1984 {
1985         struct pt_regs *regs = tsk->thread.regs;
1986         unsigned int val;
1987
1988         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1989             !cpu_has_feature(CPU_FTR_REAL_LE))
1990                 return -EINVAL;
1991
1992         if (regs == NULL)
1993                 return -EINVAL;
1994
1995         if (regs->msr & MSR_LE) {
1996                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1997                         val = PR_ENDIAN_LITTLE;
1998                 else
1999                         val = PR_ENDIAN_PPC_LITTLE;
2000         } else
2001                 val = PR_ENDIAN_BIG;
2002
2003         return put_user(val, (unsigned int __user *)adr);
2004 }
2005
2006 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2007 {
2008         tsk->thread.align_ctl = val;
2009         return 0;
2010 }
2011
2012 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2013 {
2014         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2015 }
2016
2017 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2018                                   unsigned long nbytes)
2019 {
2020         unsigned long stack_page;
2021         unsigned long cpu = task_cpu(p);
2022
2023         stack_page = (unsigned long)hardirq_ctx[cpu];
2024         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2025                 return 1;
2026
2027         stack_page = (unsigned long)softirq_ctx[cpu];
2028         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2029                 return 1;
2030
2031         return 0;
2032 }
2033
2034 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2035                                         unsigned long nbytes)
2036 {
2037 #ifdef CONFIG_PPC64
2038         unsigned long stack_page;
2039         unsigned long cpu = task_cpu(p);
2040
2041         if (!paca_ptrs)
2042                 return 0;
2043
2044         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2045         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2046                 return 1;
2047
2048 # ifdef CONFIG_PPC_BOOK3S_64
2049         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2050         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2051                 return 1;
2052
2053         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2054         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2055                 return 1;
2056 # endif
2057 #endif
2058
2059         return 0;
2060 }
2061
2062
2063 int validate_sp(unsigned long sp, struct task_struct *p,
2064                        unsigned long nbytes)
2065 {
2066         unsigned long stack_page = (unsigned long)task_stack_page(p);
2067
2068         if (sp < THREAD_SIZE)
2069                 return 0;
2070
2071         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2072                 return 1;
2073
2074         if (valid_irq_stack(sp, p, nbytes))
2075                 return 1;
2076
2077         return valid_emergency_stack(sp, p, nbytes);
2078 }
2079
2080 EXPORT_SYMBOL(validate_sp);
2081
2082 static unsigned long __get_wchan(struct task_struct *p)
2083 {
2084         unsigned long ip, sp;
2085         int count = 0;
2086
2087         if (!p || p == current || p->state == TASK_RUNNING)
2088                 return 0;
2089
2090         sp = p->thread.ksp;
2091         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2092                 return 0;
2093
2094         do {
2095                 sp = *(unsigned long *)sp;
2096                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2097                     p->state == TASK_RUNNING)
2098                         return 0;
2099                 if (count > 0) {
2100                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2101                         if (!in_sched_functions(ip))
2102                                 return ip;
2103                 }
2104         } while (count++ < 16);
2105         return 0;
2106 }
2107
2108 unsigned long get_wchan(struct task_struct *p)
2109 {
2110         unsigned long ret;
2111
2112         if (!try_get_task_stack(p))
2113                 return 0;
2114
2115         ret = __get_wchan(p);
2116
2117         put_task_stack(p);
2118
2119         return ret;
2120 }
2121
2122 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2123
2124 void show_stack(struct task_struct *tsk, unsigned long *stack,
2125                 const char *loglvl)
2126 {
2127         unsigned long sp, ip, lr, newsp;
2128         int count = 0;
2129         int firstframe = 1;
2130         unsigned long ret_addr;
2131         int ftrace_idx = 0;
2132
2133         if (tsk == NULL)
2134                 tsk = current;
2135
2136         if (!try_get_task_stack(tsk))
2137                 return;
2138
2139         sp = (unsigned long) stack;
2140         if (sp == 0) {
2141                 if (tsk == current)
2142                         sp = current_stack_frame();
2143                 else
2144                         sp = tsk->thread.ksp;
2145         }
2146
2147         lr = 0;
2148         printk("%sCall Trace:\n", loglvl);
2149         do {
2150                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2151                         break;
2152
2153                 stack = (unsigned long *) sp;
2154                 newsp = stack[0];
2155                 ip = stack[STACK_FRAME_LR_SAVE];
2156                 if (!firstframe || ip != lr) {
2157                         printk("%s["REG"] ["REG"] %pS",
2158                                 loglvl, sp, ip, (void *)ip);
2159                         ret_addr = ftrace_graph_ret_addr(current,
2160                                                 &ftrace_idx, ip, stack);
2161                         if (ret_addr != ip)
2162                                 pr_cont(" (%pS)", (void *)ret_addr);
2163                         if (firstframe)
2164                                 pr_cont(" (unreliable)");
2165                         pr_cont("\n");
2166                 }
2167                 firstframe = 0;
2168
2169                 /*
2170                  * See if this is an exception frame.
2171                  * We look for the "regshere" marker in the current frame.
2172                  */
2173                 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2174                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2175                         struct pt_regs *regs = (struct pt_regs *)
2176                                 (sp + STACK_FRAME_OVERHEAD);
2177
2178                         lr = regs->link;
2179                         printk("%s--- interrupt: %lx at %pS\n",
2180                                loglvl, regs->trap, (void *)regs->nip);
2181                         __show_regs(regs);
2182                         printk("%s--- interrupt: %lx\n",
2183                                loglvl, regs->trap);
2184
2185                         firstframe = 1;
2186                 }
2187
2188                 sp = newsp;
2189         } while (count++ < kstack_depth_to_print);
2190
2191         put_task_stack(tsk);
2192 }
2193
2194 #ifdef CONFIG_PPC64
2195 /* Called with hard IRQs off */
2196 void notrace __ppc64_runlatch_on(void)
2197 {
2198         struct thread_info *ti = current_thread_info();
2199
2200         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2201                 /*
2202                  * Least significant bit (RUN) is the only writable bit of
2203                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2204                  * earliest ISA where this is the case, but it's convenient.
2205                  */
2206                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2207         } else {
2208                 unsigned long ctrl;
2209
2210                 /*
2211                  * Some architectures (e.g., Cell) have writable fields other
2212                  * than RUN, so do the read-modify-write.
2213                  */
2214                 ctrl = mfspr(SPRN_CTRLF);
2215                 ctrl |= CTRL_RUNLATCH;
2216                 mtspr(SPRN_CTRLT, ctrl);
2217         }
2218
2219         ti->local_flags |= _TLF_RUNLATCH;
2220 }
2221
2222 /* Called with hard IRQs off */
2223 void notrace __ppc64_runlatch_off(void)
2224 {
2225         struct thread_info *ti = current_thread_info();
2226
2227         ti->local_flags &= ~_TLF_RUNLATCH;
2228
2229         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2230                 mtspr(SPRN_CTRLT, 0);
2231         } else {
2232                 unsigned long ctrl;
2233
2234                 ctrl = mfspr(SPRN_CTRLF);
2235                 ctrl &= ~CTRL_RUNLATCH;
2236                 mtspr(SPRN_CTRLT, ctrl);
2237         }
2238 }
2239 #endif /* CONFIG_PPC64 */
2240
2241 unsigned long arch_align_stack(unsigned long sp)
2242 {
2243         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2244                 sp -= get_random_int() & ~PAGE_MASK;
2245         return sp & ~0xf;
2246 }
2247
2248 static inline unsigned long brk_rnd(void)
2249 {
2250         unsigned long rnd = 0;
2251
2252         /* 8MB for 32bit, 1GB for 64bit */
2253         if (is_32bit_task())
2254                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2255         else
2256                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2257
2258         return rnd << PAGE_SHIFT;
2259 }
2260
2261 unsigned long arch_randomize_brk(struct mm_struct *mm)
2262 {
2263         unsigned long base = mm->brk;
2264         unsigned long ret;
2265
2266 #ifdef CONFIG_PPC_BOOK3S_64
2267         /*
2268          * If we are using 1TB segments and we are allowed to randomise
2269          * the heap, we can put it above 1TB so it is backed by a 1TB
2270          * segment. Otherwise the heap will be in the bottom 1TB
2271          * which always uses 256MB segments and this may result in a
2272          * performance penalty. We don't need to worry about radix. For
2273          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2274          */
2275         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2276                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2277 #endif
2278
2279         ret = PAGE_ALIGN(base + brk_rnd());
2280
2281         if (ret < mm->brk)
2282                 return mm->brk;
2283
2284         return ret;
2285 }
2286
This page took 0.164102 seconds and 4 git commands to generate.