4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
96 ktime_t soft, hard, now;
99 if (hrtimer_active(period_timer))
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
118 void update_rq_clock(struct rq *rq)
122 lockdep_assert_held(&rq->lock);
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
131 update_rq_clock_task(rq, delta);
135 * Debugging: various feature bits
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
157 static int sched_feat_show(struct seq_file *m, void *v)
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
164 seq_printf(m, "%s ", sched_feat_names[i]);
171 #ifdef HAVE_JUMP_LABEL
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
185 static void sched_feat_disable(int i)
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
191 static void sched_feat_enable(int i)
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
201 static int sched_feat_set(char *cmp)
206 if (strncmp(cmp, "NO_", 3) == 0) {
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
239 if (copy_from_user(&buf, ubuf, cnt))
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
258 static int sched_feat_open(struct inode *inode, struct file *filp)
260 return single_open(filp, sched_feat_show, NULL);
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
268 .release = single_release,
271 static __init int sched_init_debug(void)
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
288 * period over which we average the RT time consumption, measured
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
296 * period over which we measure -rt task cpu usage in us.
299 unsigned int sysctl_sched_rt_period = 1000000;
301 __read_mostly int scheduler_running;
304 * part of the period that we allow rt tasks to run in us.
307 int sysctl_sched_rt_runtime = 950000;
310 * __task_rq_lock - lock the rq @p resides on.
312 static inline struct rq *__task_rq_lock(struct task_struct *p)
317 lockdep_assert_held(&p->pi_lock);
321 raw_spin_lock(&rq->lock);
322 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
324 raw_spin_unlock(&rq->lock);
326 while (unlikely(task_on_rq_migrating(p)))
332 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
334 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
335 __acquires(p->pi_lock)
341 raw_spin_lock_irqsave(&p->pi_lock, *flags);
343 raw_spin_lock(&rq->lock);
344 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
346 raw_spin_unlock(&rq->lock);
347 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
349 while (unlikely(task_on_rq_migrating(p)))
354 static void __task_rq_unlock(struct rq *rq)
357 raw_spin_unlock(&rq->lock);
361 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363 __releases(p->pi_lock)
365 raw_spin_unlock(&rq->lock);
366 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
370 * this_rq_lock - lock this runqueue and disable interrupts.
372 static struct rq *this_rq_lock(void)
379 raw_spin_lock(&rq->lock);
384 #ifdef CONFIG_SCHED_HRTICK
386 * Use HR-timers to deliver accurate preemption points.
389 static void hrtick_clear(struct rq *rq)
391 if (hrtimer_active(&rq->hrtick_timer))
392 hrtimer_cancel(&rq->hrtick_timer);
396 * High-resolution timer tick.
397 * Runs from hardirq context with interrupts disabled.
399 static enum hrtimer_restart hrtick(struct hrtimer *timer)
401 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405 raw_spin_lock(&rq->lock);
407 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
408 raw_spin_unlock(&rq->lock);
410 return HRTIMER_NORESTART;
415 static int __hrtick_restart(struct rq *rq)
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = hrtimer_get_softexpires(timer);
420 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
424 * called from hardirq (IPI) context
426 static void __hrtick_start(void *arg)
430 raw_spin_lock(&rq->lock);
431 __hrtick_restart(rq);
432 rq->hrtick_csd_pending = 0;
433 raw_spin_unlock(&rq->lock);
437 * Called to set the hrtick timer state.
439 * called with rq->lock held and irqs disabled
441 void hrtick_start(struct rq *rq, u64 delay)
443 struct hrtimer *timer = &rq->hrtick_timer;
448 * Don't schedule slices shorter than 10000ns, that just
449 * doesn't make sense and can cause timer DoS.
451 delta = max_t(s64, delay, 10000LL);
452 time = ktime_add_ns(timer->base->get_time(), delta);
454 hrtimer_set_expires(timer, time);
456 if (rq == this_rq()) {
457 __hrtick_restart(rq);
458 } else if (!rq->hrtick_csd_pending) {
459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 rq->hrtick_csd_pending = 1;
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
467 int cpu = (int)(long)hcpu;
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
475 case CPU_DEAD_FROZEN:
476 hrtick_clear(cpu_rq(cpu));
483 static __init void init_hrtick(void)
485 hotcpu_notifier(hotplug_hrtick, 0);
489 * Called to set the hrtick timer state.
491 * called with rq->lock held and irqs disabled
493 void hrtick_start(struct rq *rq, u64 delay)
496 * Don't schedule slices shorter than 10000ns, that just
497 * doesn't make sense. Rely on vruntime for fairness.
499 delay = max_t(u64, delay, 10000LL);
500 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
501 HRTIMER_MODE_REL_PINNED, 0);
504 static inline void init_hrtick(void)
507 #endif /* CONFIG_SMP */
509 static void init_rq_hrtick(struct rq *rq)
512 rq->hrtick_csd_pending = 0;
514 rq->hrtick_csd.flags = 0;
515 rq->hrtick_csd.func = __hrtick_start;
516 rq->hrtick_csd.info = rq;
519 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
520 rq->hrtick_timer.function = hrtick;
522 #else /* CONFIG_SCHED_HRTICK */
523 static inline void hrtick_clear(struct rq *rq)
527 static inline void init_rq_hrtick(struct rq *rq)
531 static inline void init_hrtick(void)
534 #endif /* CONFIG_SCHED_HRTICK */
537 * cmpxchg based fetch_or, macro so it works for different integer types
539 #define fetch_or(ptr, val) \
540 ({ typeof(*(ptr)) __old, __val = *(ptr); \
542 __old = cmpxchg((ptr), __val, __val | (val)); \
543 if (__old == __val) \
550 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
552 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
553 * this avoids any races wrt polling state changes and thereby avoids
556 static bool set_nr_and_not_polling(struct task_struct *p)
558 struct thread_info *ti = task_thread_info(p);
559 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
563 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
565 * If this returns true, then the idle task promises to call
566 * sched_ttwu_pending() and reschedule soon.
568 static bool set_nr_if_polling(struct task_struct *p)
570 struct thread_info *ti = task_thread_info(p);
571 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
574 if (!(val & _TIF_POLLING_NRFLAG))
576 if (val & _TIF_NEED_RESCHED)
578 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
587 static bool set_nr_and_not_polling(struct task_struct *p)
589 set_tsk_need_resched(p);
594 static bool set_nr_if_polling(struct task_struct *p)
602 * resched_curr - mark rq's current task 'to be rescheduled now'.
604 * On UP this means the setting of the need_resched flag, on SMP it
605 * might also involve a cross-CPU call to trigger the scheduler on
608 void resched_curr(struct rq *rq)
610 struct task_struct *curr = rq->curr;
613 lockdep_assert_held(&rq->lock);
615 if (test_tsk_need_resched(curr))
620 if (cpu == smp_processor_id()) {
621 set_tsk_need_resched(curr);
622 set_preempt_need_resched();
626 if (set_nr_and_not_polling(curr))
627 smp_send_reschedule(cpu);
629 trace_sched_wake_idle_without_ipi(cpu);
632 void resched_cpu(int cpu)
634 struct rq *rq = cpu_rq(cpu);
637 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
640 raw_spin_unlock_irqrestore(&rq->lock, flags);
644 #ifdef CONFIG_NO_HZ_COMMON
646 * In the semi idle case, use the nearest busy cpu for migrating timers
647 * from an idle cpu. This is good for power-savings.
649 * We don't do similar optimization for completely idle system, as
650 * selecting an idle cpu will add more delays to the timers than intended
651 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
653 int get_nohz_timer_target(int pinned)
655 int cpu = smp_processor_id();
657 struct sched_domain *sd;
659 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
663 for_each_domain(cpu, sd) {
664 for_each_cpu(i, sched_domain_span(sd)) {
676 * When add_timer_on() enqueues a timer into the timer wheel of an
677 * idle CPU then this timer might expire before the next timer event
678 * which is scheduled to wake up that CPU. In case of a completely
679 * idle system the next event might even be infinite time into the
680 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
681 * leaves the inner idle loop so the newly added timer is taken into
682 * account when the CPU goes back to idle and evaluates the timer
683 * wheel for the next timer event.
685 static void wake_up_idle_cpu(int cpu)
687 struct rq *rq = cpu_rq(cpu);
689 if (cpu == smp_processor_id())
692 if (set_nr_and_not_polling(rq->idle))
693 smp_send_reschedule(cpu);
695 trace_sched_wake_idle_without_ipi(cpu);
698 static bool wake_up_full_nohz_cpu(int cpu)
701 * We just need the target to call irq_exit() and re-evaluate
702 * the next tick. The nohz full kick at least implies that.
703 * If needed we can still optimize that later with an
706 if (tick_nohz_full_cpu(cpu)) {
707 if (cpu != smp_processor_id() ||
708 tick_nohz_tick_stopped())
709 tick_nohz_full_kick_cpu(cpu);
716 void wake_up_nohz_cpu(int cpu)
718 if (!wake_up_full_nohz_cpu(cpu))
719 wake_up_idle_cpu(cpu);
722 static inline bool got_nohz_idle_kick(void)
724 int cpu = smp_processor_id();
726 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
729 if (idle_cpu(cpu) && !need_resched())
733 * We can't run Idle Load Balance on this CPU for this time so we
734 * cancel it and clear NOHZ_BALANCE_KICK
736 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
740 #else /* CONFIG_NO_HZ_COMMON */
742 static inline bool got_nohz_idle_kick(void)
747 #endif /* CONFIG_NO_HZ_COMMON */
749 #ifdef CONFIG_NO_HZ_FULL
750 bool sched_can_stop_tick(void)
753 * More than one running task need preemption.
754 * nr_running update is assumed to be visible
755 * after IPI is sent from wakers.
757 if (this_rq()->nr_running > 1)
762 #endif /* CONFIG_NO_HZ_FULL */
764 void sched_avg_update(struct rq *rq)
766 s64 period = sched_avg_period();
768 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
770 * Inline assembly required to prevent the compiler
771 * optimising this loop into a divmod call.
772 * See __iter_div_u64_rem() for another example of this.
774 asm("" : "+rm" (rq->age_stamp));
775 rq->age_stamp += period;
780 #endif /* CONFIG_SMP */
782 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
783 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
785 * Iterate task_group tree rooted at *from, calling @down when first entering a
786 * node and @up when leaving it for the final time.
788 * Caller must hold rcu_lock or sufficient equivalent.
790 int walk_tg_tree_from(struct task_group *from,
791 tg_visitor down, tg_visitor up, void *data)
793 struct task_group *parent, *child;
799 ret = (*down)(parent, data);
802 list_for_each_entry_rcu(child, &parent->children, siblings) {
809 ret = (*up)(parent, data);
810 if (ret || parent == from)
814 parent = parent->parent;
821 int tg_nop(struct task_group *tg, void *data)
827 static void set_load_weight(struct task_struct *p)
829 int prio = p->static_prio - MAX_RT_PRIO;
830 struct load_weight *load = &p->se.load;
833 * SCHED_IDLE tasks get minimal weight:
835 if (p->policy == SCHED_IDLE) {
836 load->weight = scale_load(WEIGHT_IDLEPRIO);
837 load->inv_weight = WMULT_IDLEPRIO;
841 load->weight = scale_load(prio_to_weight[prio]);
842 load->inv_weight = prio_to_wmult[prio];
845 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
848 sched_info_queued(rq, p);
849 p->sched_class->enqueue_task(rq, p, flags);
852 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
855 sched_info_dequeued(rq, p);
856 p->sched_class->dequeue_task(rq, p, flags);
859 void activate_task(struct rq *rq, struct task_struct *p, int flags)
861 if (task_contributes_to_load(p))
862 rq->nr_uninterruptible--;
864 enqueue_task(rq, p, flags);
867 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
869 if (task_contributes_to_load(p))
870 rq->nr_uninterruptible++;
872 dequeue_task(rq, p, flags);
875 static void update_rq_clock_task(struct rq *rq, s64 delta)
878 * In theory, the compile should just see 0 here, and optimize out the call
879 * to sched_rt_avg_update. But I don't trust it...
881 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
882 s64 steal = 0, irq_delta = 0;
884 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
885 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
888 * Since irq_time is only updated on {soft,}irq_exit, we might run into
889 * this case when a previous update_rq_clock() happened inside a
892 * When this happens, we stop ->clock_task and only update the
893 * prev_irq_time stamp to account for the part that fit, so that a next
894 * update will consume the rest. This ensures ->clock_task is
897 * It does however cause some slight miss-attribution of {soft,}irq
898 * time, a more accurate solution would be to update the irq_time using
899 * the current rq->clock timestamp, except that would require using
902 if (irq_delta > delta)
905 rq->prev_irq_time += irq_delta;
908 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
909 if (static_key_false((¶virt_steal_rq_enabled))) {
910 steal = paravirt_steal_clock(cpu_of(rq));
911 steal -= rq->prev_steal_time_rq;
913 if (unlikely(steal > delta))
916 rq->prev_steal_time_rq += steal;
921 rq->clock_task += delta;
923 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
924 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
925 sched_rt_avg_update(rq, irq_delta + steal);
929 void sched_set_stop_task(int cpu, struct task_struct *stop)
931 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
932 struct task_struct *old_stop = cpu_rq(cpu)->stop;
936 * Make it appear like a SCHED_FIFO task, its something
937 * userspace knows about and won't get confused about.
939 * Also, it will make PI more or less work without too
940 * much confusion -- but then, stop work should not
941 * rely on PI working anyway.
943 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
945 stop->sched_class = &stop_sched_class;
948 cpu_rq(cpu)->stop = stop;
952 * Reset it back to a normal scheduling class so that
953 * it can die in pieces.
955 old_stop->sched_class = &rt_sched_class;
960 * __normal_prio - return the priority that is based on the static prio
962 static inline int __normal_prio(struct task_struct *p)
964 return p->static_prio;
968 * Calculate the expected normal priority: i.e. priority
969 * without taking RT-inheritance into account. Might be
970 * boosted by interactivity modifiers. Changes upon fork,
971 * setprio syscalls, and whenever the interactivity
972 * estimator recalculates.
974 static inline int normal_prio(struct task_struct *p)
978 if (task_has_dl_policy(p))
979 prio = MAX_DL_PRIO-1;
980 else if (task_has_rt_policy(p))
981 prio = MAX_RT_PRIO-1 - p->rt_priority;
983 prio = __normal_prio(p);
988 * Calculate the current priority, i.e. the priority
989 * taken into account by the scheduler. This value might
990 * be boosted by RT tasks, or might be boosted by
991 * interactivity modifiers. Will be RT if the task got
992 * RT-boosted. If not then it returns p->normal_prio.
994 static int effective_prio(struct task_struct *p)
996 p->normal_prio = normal_prio(p);
998 * If we are RT tasks or we were boosted to RT priority,
999 * keep the priority unchanged. Otherwise, update priority
1000 * to the normal priority:
1002 if (!rt_prio(p->prio))
1003 return p->normal_prio;
1008 * task_curr - is this task currently executing on a CPU?
1009 * @p: the task in question.
1011 * Return: 1 if the task is currently executing. 0 otherwise.
1013 inline int task_curr(const struct task_struct *p)
1015 return cpu_curr(task_cpu(p)) == p;
1019 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1021 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1022 const struct sched_class *prev_class,
1025 if (prev_class != p->sched_class) {
1026 if (prev_class->switched_from)
1027 prev_class->switched_from(rq, p);
1028 /* Possble rq->lock 'hole'. */
1029 p->sched_class->switched_to(rq, p);
1030 } else if (oldprio != p->prio || dl_task(p))
1031 p->sched_class->prio_changed(rq, p, oldprio);
1034 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1036 const struct sched_class *class;
1038 if (p->sched_class == rq->curr->sched_class) {
1039 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1041 for_each_class(class) {
1042 if (class == rq->curr->sched_class)
1044 if (class == p->sched_class) {
1052 * A queue event has occurred, and we're going to schedule. In
1053 * this case, we can save a useless back to back clock update.
1055 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1056 rq_clock_skip_update(rq, true);
1060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1062 #ifdef CONFIG_SCHED_DEBUG
1064 * We should never call set_task_cpu() on a blocked task,
1065 * ttwu() will sort out the placement.
1067 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1070 #ifdef CONFIG_LOCKDEP
1072 * The caller should hold either p->pi_lock or rq->lock, when changing
1073 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1075 * sched_move_task() holds both and thus holding either pins the cgroup,
1078 * Furthermore, all task_rq users should acquire both locks, see
1081 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1082 lockdep_is_held(&task_rq(p)->lock)));
1086 trace_sched_migrate_task(p, new_cpu);
1088 if (task_cpu(p) != new_cpu) {
1089 if (p->sched_class->migrate_task_rq)
1090 p->sched_class->migrate_task_rq(p, new_cpu);
1091 p->se.nr_migrations++;
1092 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1095 __set_task_cpu(p, new_cpu);
1098 static void __migrate_swap_task(struct task_struct *p, int cpu)
1100 if (task_on_rq_queued(p)) {
1101 struct rq *src_rq, *dst_rq;
1103 src_rq = task_rq(p);
1104 dst_rq = cpu_rq(cpu);
1106 deactivate_task(src_rq, p, 0);
1107 set_task_cpu(p, cpu);
1108 activate_task(dst_rq, p, 0);
1109 check_preempt_curr(dst_rq, p, 0);
1112 * Task isn't running anymore; make it appear like we migrated
1113 * it before it went to sleep. This means on wakeup we make the
1114 * previous cpu our targer instead of where it really is.
1120 struct migration_swap_arg {
1121 struct task_struct *src_task, *dst_task;
1122 int src_cpu, dst_cpu;
1125 static int migrate_swap_stop(void *data)
1127 struct migration_swap_arg *arg = data;
1128 struct rq *src_rq, *dst_rq;
1131 src_rq = cpu_rq(arg->src_cpu);
1132 dst_rq = cpu_rq(arg->dst_cpu);
1134 double_raw_lock(&arg->src_task->pi_lock,
1135 &arg->dst_task->pi_lock);
1136 double_rq_lock(src_rq, dst_rq);
1137 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1140 if (task_cpu(arg->src_task) != arg->src_cpu)
1143 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1146 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1149 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1150 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1155 double_rq_unlock(src_rq, dst_rq);
1156 raw_spin_unlock(&arg->dst_task->pi_lock);
1157 raw_spin_unlock(&arg->src_task->pi_lock);
1163 * Cross migrate two tasks
1165 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1167 struct migration_swap_arg arg;
1170 arg = (struct migration_swap_arg){
1172 .src_cpu = task_cpu(cur),
1174 .dst_cpu = task_cpu(p),
1177 if (arg.src_cpu == arg.dst_cpu)
1181 * These three tests are all lockless; this is OK since all of them
1182 * will be re-checked with proper locks held further down the line.
1184 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1187 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1190 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1193 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1194 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200 struct migration_arg {
1201 struct task_struct *task;
1205 static int migration_cpu_stop(void *data);
1208 * wait_task_inactive - wait for a thread to unschedule.
1210 * If @match_state is nonzero, it's the @p->state value just checked and
1211 * not expected to change. If it changes, i.e. @p might have woken up,
1212 * then return zero. When we succeed in waiting for @p to be off its CPU,
1213 * we return a positive number (its total switch count). If a second call
1214 * a short while later returns the same number, the caller can be sure that
1215 * @p has remained unscheduled the whole time.
1217 * The caller must ensure that the task *will* unschedule sometime soon,
1218 * else this function might spin for a *long* time. This function can't
1219 * be called with interrupts off, or it may introduce deadlock with
1220 * smp_call_function() if an IPI is sent by the same process we are
1221 * waiting to become inactive.
1223 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1225 unsigned long flags;
1226 int running, queued;
1232 * We do the initial early heuristics without holding
1233 * any task-queue locks at all. We'll only try to get
1234 * the runqueue lock when things look like they will
1240 * If the task is actively running on another CPU
1241 * still, just relax and busy-wait without holding
1244 * NOTE! Since we don't hold any locks, it's not
1245 * even sure that "rq" stays as the right runqueue!
1246 * But we don't care, since "task_running()" will
1247 * return false if the runqueue has changed and p
1248 * is actually now running somewhere else!
1250 while (task_running(rq, p)) {
1251 if (match_state && unlikely(p->state != match_state))
1257 * Ok, time to look more closely! We need the rq
1258 * lock now, to be *sure*. If we're wrong, we'll
1259 * just go back and repeat.
1261 rq = task_rq_lock(p, &flags);
1262 trace_sched_wait_task(p);
1263 running = task_running(rq, p);
1264 queued = task_on_rq_queued(p);
1266 if (!match_state || p->state == match_state)
1267 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1268 task_rq_unlock(rq, p, &flags);
1271 * If it changed from the expected state, bail out now.
1273 if (unlikely(!ncsw))
1277 * Was it really running after all now that we
1278 * checked with the proper locks actually held?
1280 * Oops. Go back and try again..
1282 if (unlikely(running)) {
1288 * It's not enough that it's not actively running,
1289 * it must be off the runqueue _entirely_, and not
1292 * So if it was still runnable (but just not actively
1293 * running right now), it's preempted, and we should
1294 * yield - it could be a while.
1296 if (unlikely(queued)) {
1297 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1299 set_current_state(TASK_UNINTERRUPTIBLE);
1300 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1305 * Ahh, all good. It wasn't running, and it wasn't
1306 * runnable, which means that it will never become
1307 * running in the future either. We're all done!
1316 * kick_process - kick a running thread to enter/exit the kernel
1317 * @p: the to-be-kicked thread
1319 * Cause a process which is running on another CPU to enter
1320 * kernel-mode, without any delay. (to get signals handled.)
1322 * NOTE: this function doesn't have to take the runqueue lock,
1323 * because all it wants to ensure is that the remote task enters
1324 * the kernel. If the IPI races and the task has been migrated
1325 * to another CPU then no harm is done and the purpose has been
1328 void kick_process(struct task_struct *p)
1334 if ((cpu != smp_processor_id()) && task_curr(p))
1335 smp_send_reschedule(cpu);
1338 EXPORT_SYMBOL_GPL(kick_process);
1339 #endif /* CONFIG_SMP */
1343 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1345 static int select_fallback_rq(int cpu, struct task_struct *p)
1347 int nid = cpu_to_node(cpu);
1348 const struct cpumask *nodemask = NULL;
1349 enum { cpuset, possible, fail } state = cpuset;
1353 * If the node that the cpu is on has been offlined, cpu_to_node()
1354 * will return -1. There is no cpu on the node, and we should
1355 * select the cpu on the other node.
1358 nodemask = cpumask_of_node(nid);
1360 /* Look for allowed, online CPU in same node. */
1361 for_each_cpu(dest_cpu, nodemask) {
1362 if (!cpu_online(dest_cpu))
1364 if (!cpu_active(dest_cpu))
1366 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372 /* Any allowed, online CPU? */
1373 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1374 if (!cpu_online(dest_cpu))
1376 if (!cpu_active(dest_cpu))
1383 /* No more Mr. Nice Guy. */
1384 cpuset_cpus_allowed_fallback(p);
1389 do_set_cpus_allowed(p, cpu_possible_mask);
1400 if (state != cpuset) {
1402 * Don't tell them about moving exiting tasks or
1403 * kernel threads (both mm NULL), since they never
1406 if (p->mm && printk_ratelimit()) {
1407 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1408 task_pid_nr(p), p->comm, cpu);
1416 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1419 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1421 if (p->nr_cpus_allowed > 1)
1422 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1425 * In order not to call set_task_cpu() on a blocking task we need
1426 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1429 * Since this is common to all placement strategies, this lives here.
1431 * [ this allows ->select_task() to simply return task_cpu(p) and
1432 * not worry about this generic constraint ]
1434 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1436 cpu = select_fallback_rq(task_cpu(p), p);
1441 static void update_avg(u64 *avg, u64 sample)
1443 s64 diff = sample - *avg;
1449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1451 #ifdef CONFIG_SCHEDSTATS
1452 struct rq *rq = this_rq();
1455 int this_cpu = smp_processor_id();
1457 if (cpu == this_cpu) {
1458 schedstat_inc(rq, ttwu_local);
1459 schedstat_inc(p, se.statistics.nr_wakeups_local);
1461 struct sched_domain *sd;
1463 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1465 for_each_domain(this_cpu, sd) {
1466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1467 schedstat_inc(sd, ttwu_wake_remote);
1474 if (wake_flags & WF_MIGRATED)
1475 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1477 #endif /* CONFIG_SMP */
1479 schedstat_inc(rq, ttwu_count);
1480 schedstat_inc(p, se.statistics.nr_wakeups);
1482 if (wake_flags & WF_SYNC)
1483 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1485 #endif /* CONFIG_SCHEDSTATS */
1488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1490 activate_task(rq, p, en_flags);
1491 p->on_rq = TASK_ON_RQ_QUEUED;
1493 /* if a worker is waking up, notify workqueue */
1494 if (p->flags & PF_WQ_WORKER)
1495 wq_worker_waking_up(p, cpu_of(rq));
1499 * Mark the task runnable and perform wakeup-preemption.
1502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1504 check_preempt_curr(rq, p, wake_flags);
1505 trace_sched_wakeup(p, true);
1507 p->state = TASK_RUNNING;
1509 if (p->sched_class->task_woken)
1510 p->sched_class->task_woken(rq, p);
1512 if (rq->idle_stamp) {
1513 u64 delta = rq_clock(rq) - rq->idle_stamp;
1514 u64 max = 2*rq->max_idle_balance_cost;
1516 update_avg(&rq->avg_idle, delta);
1518 if (rq->avg_idle > max)
1527 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1530 if (p->sched_contributes_to_load)
1531 rq->nr_uninterruptible--;
1534 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1535 ttwu_do_wakeup(rq, p, wake_flags);
1539 * Called in case the task @p isn't fully descheduled from its runqueue,
1540 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1541 * since all we need to do is flip p->state to TASK_RUNNING, since
1542 * the task is still ->on_rq.
1544 static int ttwu_remote(struct task_struct *p, int wake_flags)
1549 rq = __task_rq_lock(p);
1550 if (task_on_rq_queued(p)) {
1551 /* check_preempt_curr() may use rq clock */
1552 update_rq_clock(rq);
1553 ttwu_do_wakeup(rq, p, wake_flags);
1556 __task_rq_unlock(rq);
1562 void sched_ttwu_pending(void)
1564 struct rq *rq = this_rq();
1565 struct llist_node *llist = llist_del_all(&rq->wake_list);
1566 struct task_struct *p;
1567 unsigned long flags;
1572 raw_spin_lock_irqsave(&rq->lock, flags);
1575 p = llist_entry(llist, struct task_struct, wake_entry);
1576 llist = llist_next(llist);
1577 ttwu_do_activate(rq, p, 0);
1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
1583 void scheduler_ipi(void)
1586 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1587 * TIF_NEED_RESCHED remotely (for the first time) will also send
1590 preempt_fold_need_resched();
1592 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1596 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1597 * traditionally all their work was done from the interrupt return
1598 * path. Now that we actually do some work, we need to make sure
1601 * Some archs already do call them, luckily irq_enter/exit nest
1604 * Arguably we should visit all archs and update all handlers,
1605 * however a fair share of IPIs are still resched only so this would
1606 * somewhat pessimize the simple resched case.
1609 sched_ttwu_pending();
1612 * Check if someone kicked us for doing the nohz idle load balance.
1614 if (unlikely(got_nohz_idle_kick())) {
1615 this_rq()->idle_balance = 1;
1616 raise_softirq_irqoff(SCHED_SOFTIRQ);
1621 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1623 struct rq *rq = cpu_rq(cpu);
1625 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1626 if (!set_nr_if_polling(rq->idle))
1627 smp_send_reschedule(cpu);
1629 trace_sched_wake_idle_without_ipi(cpu);
1633 void wake_up_if_idle(int cpu)
1635 struct rq *rq = cpu_rq(cpu);
1636 unsigned long flags;
1640 if (!is_idle_task(rcu_dereference(rq->curr)))
1643 if (set_nr_if_polling(rq->idle)) {
1644 trace_sched_wake_idle_without_ipi(cpu);
1646 raw_spin_lock_irqsave(&rq->lock, flags);
1647 if (is_idle_task(rq->curr))
1648 smp_send_reschedule(cpu);
1649 /* Else cpu is not in idle, do nothing here */
1650 raw_spin_unlock_irqrestore(&rq->lock, flags);
1657 bool cpus_share_cache(int this_cpu, int that_cpu)
1659 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1661 #endif /* CONFIG_SMP */
1663 static void ttwu_queue(struct task_struct *p, int cpu)
1665 struct rq *rq = cpu_rq(cpu);
1667 #if defined(CONFIG_SMP)
1668 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1669 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1670 ttwu_queue_remote(p, cpu);
1675 raw_spin_lock(&rq->lock);
1676 ttwu_do_activate(rq, p, 0);
1677 raw_spin_unlock(&rq->lock);
1681 * try_to_wake_up - wake up a thread
1682 * @p: the thread to be awakened
1683 * @state: the mask of task states that can be woken
1684 * @wake_flags: wake modifier flags (WF_*)
1686 * Put it on the run-queue if it's not already there. The "current"
1687 * thread is always on the run-queue (except when the actual
1688 * re-schedule is in progress), and as such you're allowed to do
1689 * the simpler "current->state = TASK_RUNNING" to mark yourself
1690 * runnable without the overhead of this.
1692 * Return: %true if @p was woken up, %false if it was already running.
1693 * or @state didn't match @p's state.
1696 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1698 unsigned long flags;
1699 int cpu, success = 0;
1702 * If we are going to wake up a thread waiting for CONDITION we
1703 * need to ensure that CONDITION=1 done by the caller can not be
1704 * reordered with p->state check below. This pairs with mb() in
1705 * set_current_state() the waiting thread does.
1707 smp_mb__before_spinlock();
1708 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 if (!(p->state & state))
1712 success = 1; /* we're going to change ->state */
1715 if (p->on_rq && ttwu_remote(p, wake_flags))
1720 * If the owning (remote) cpu is still in the middle of schedule() with
1721 * this task as prev, wait until its done referencing the task.
1726 * Pairs with the smp_wmb() in finish_lock_switch().
1730 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1731 p->state = TASK_WAKING;
1733 if (p->sched_class->task_waking)
1734 p->sched_class->task_waking(p);
1736 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1737 if (task_cpu(p) != cpu) {
1738 wake_flags |= WF_MIGRATED;
1739 set_task_cpu(p, cpu);
1741 #endif /* CONFIG_SMP */
1745 ttwu_stat(p, cpu, wake_flags);
1747 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1753 * try_to_wake_up_local - try to wake up a local task with rq lock held
1754 * @p: the thread to be awakened
1756 * Put @p on the run-queue if it's not already there. The caller must
1757 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1760 static void try_to_wake_up_local(struct task_struct *p)
1762 struct rq *rq = task_rq(p);
1764 if (WARN_ON_ONCE(rq != this_rq()) ||
1765 WARN_ON_ONCE(p == current))
1768 lockdep_assert_held(&rq->lock);
1770 if (!raw_spin_trylock(&p->pi_lock)) {
1771 raw_spin_unlock(&rq->lock);
1772 raw_spin_lock(&p->pi_lock);
1773 raw_spin_lock(&rq->lock);
1776 if (!(p->state & TASK_NORMAL))
1779 if (!task_on_rq_queued(p))
1780 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1782 ttwu_do_wakeup(rq, p, 0);
1783 ttwu_stat(p, smp_processor_id(), 0);
1785 raw_spin_unlock(&p->pi_lock);
1789 * wake_up_process - Wake up a specific process
1790 * @p: The process to be woken up.
1792 * Attempt to wake up the nominated process and move it to the set of runnable
1795 * Return: 1 if the process was woken up, 0 if it was already running.
1797 * It may be assumed that this function implies a write memory barrier before
1798 * changing the task state if and only if any tasks are woken up.
1800 int wake_up_process(struct task_struct *p)
1802 WARN_ON(task_is_stopped_or_traced(p));
1803 return try_to_wake_up(p, TASK_NORMAL, 0);
1805 EXPORT_SYMBOL(wake_up_process);
1807 int wake_up_state(struct task_struct *p, unsigned int state)
1809 return try_to_wake_up(p, state, 0);
1813 * This function clears the sched_dl_entity static params.
1815 void __dl_clear_params(struct task_struct *p)
1817 struct sched_dl_entity *dl_se = &p->dl;
1819 dl_se->dl_runtime = 0;
1820 dl_se->dl_deadline = 0;
1821 dl_se->dl_period = 0;
1825 dl_se->dl_throttled = 0;
1827 dl_se->dl_yielded = 0;
1831 * Perform scheduler related setup for a newly forked process p.
1832 * p is forked by current.
1834 * __sched_fork() is basic setup used by init_idle() too:
1836 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1841 p->se.exec_start = 0;
1842 p->se.sum_exec_runtime = 0;
1843 p->se.prev_sum_exec_runtime = 0;
1844 p->se.nr_migrations = 0;
1847 p->se.avg.decay_count = 0;
1849 INIT_LIST_HEAD(&p->se.group_node);
1851 #ifdef CONFIG_SCHEDSTATS
1852 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1855 RB_CLEAR_NODE(&p->dl.rb_node);
1856 init_dl_task_timer(&p->dl);
1857 __dl_clear_params(p);
1859 INIT_LIST_HEAD(&p->rt.run_list);
1861 #ifdef CONFIG_PREEMPT_NOTIFIERS
1862 INIT_HLIST_HEAD(&p->preempt_notifiers);
1865 #ifdef CONFIG_NUMA_BALANCING
1866 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1867 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1868 p->mm->numa_scan_seq = 0;
1871 if (clone_flags & CLONE_VM)
1872 p->numa_preferred_nid = current->numa_preferred_nid;
1874 p->numa_preferred_nid = -1;
1876 p->node_stamp = 0ULL;
1877 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1878 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1879 p->numa_work.next = &p->numa_work;
1880 p->numa_faults = NULL;
1881 p->last_task_numa_placement = 0;
1882 p->last_sum_exec_runtime = 0;
1884 p->numa_group = NULL;
1885 #endif /* CONFIG_NUMA_BALANCING */
1888 #ifdef CONFIG_NUMA_BALANCING
1889 #ifdef CONFIG_SCHED_DEBUG
1890 void set_numabalancing_state(bool enabled)
1893 sched_feat_set("NUMA");
1895 sched_feat_set("NO_NUMA");
1898 __read_mostly bool numabalancing_enabled;
1900 void set_numabalancing_state(bool enabled)
1902 numabalancing_enabled = enabled;
1904 #endif /* CONFIG_SCHED_DEBUG */
1906 #ifdef CONFIG_PROC_SYSCTL
1907 int sysctl_numa_balancing(struct ctl_table *table, int write,
1908 void __user *buffer, size_t *lenp, loff_t *ppos)
1912 int state = numabalancing_enabled;
1914 if (write && !capable(CAP_SYS_ADMIN))
1919 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1923 set_numabalancing_state(state);
1930 * fork()/clone()-time setup:
1932 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1934 unsigned long flags;
1935 int cpu = get_cpu();
1937 __sched_fork(clone_flags, p);
1939 * We mark the process as running here. This guarantees that
1940 * nobody will actually run it, and a signal or other external
1941 * event cannot wake it up and insert it on the runqueue either.
1943 p->state = TASK_RUNNING;
1946 * Make sure we do not leak PI boosting priority to the child.
1948 p->prio = current->normal_prio;
1951 * Revert to default priority/policy on fork if requested.
1953 if (unlikely(p->sched_reset_on_fork)) {
1954 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1955 p->policy = SCHED_NORMAL;
1956 p->static_prio = NICE_TO_PRIO(0);
1958 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1959 p->static_prio = NICE_TO_PRIO(0);
1961 p->prio = p->normal_prio = __normal_prio(p);
1965 * We don't need the reset flag anymore after the fork. It has
1966 * fulfilled its duty:
1968 p->sched_reset_on_fork = 0;
1971 if (dl_prio(p->prio)) {
1974 } else if (rt_prio(p->prio)) {
1975 p->sched_class = &rt_sched_class;
1977 p->sched_class = &fair_sched_class;
1980 if (p->sched_class->task_fork)
1981 p->sched_class->task_fork(p);
1984 * The child is not yet in the pid-hash so no cgroup attach races,
1985 * and the cgroup is pinned to this child due to cgroup_fork()
1986 * is ran before sched_fork().
1988 * Silence PROVE_RCU.
1990 raw_spin_lock_irqsave(&p->pi_lock, flags);
1991 set_task_cpu(p, cpu);
1992 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1994 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1995 if (likely(sched_info_on()))
1996 memset(&p->sched_info, 0, sizeof(p->sched_info));
1998 #if defined(CONFIG_SMP)
2001 init_task_preempt_count(p);
2003 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2004 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2011 unsigned long to_ratio(u64 period, u64 runtime)
2013 if (runtime == RUNTIME_INF)
2017 * Doing this here saves a lot of checks in all
2018 * the calling paths, and returning zero seems
2019 * safe for them anyway.
2024 return div64_u64(runtime << 20, period);
2028 inline struct dl_bw *dl_bw_of(int i)
2030 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2031 "sched RCU must be held");
2032 return &cpu_rq(i)->rd->dl_bw;
2035 static inline int dl_bw_cpus(int i)
2037 struct root_domain *rd = cpu_rq(i)->rd;
2040 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2041 "sched RCU must be held");
2042 for_each_cpu_and(i, rd->span, cpu_active_mask)
2048 inline struct dl_bw *dl_bw_of(int i)
2050 return &cpu_rq(i)->dl.dl_bw;
2053 static inline int dl_bw_cpus(int i)
2060 * We must be sure that accepting a new task (or allowing changing the
2061 * parameters of an existing one) is consistent with the bandwidth
2062 * constraints. If yes, this function also accordingly updates the currently
2063 * allocated bandwidth to reflect the new situation.
2065 * This function is called while holding p's rq->lock.
2067 * XXX we should delay bw change until the task's 0-lag point, see
2070 static int dl_overflow(struct task_struct *p, int policy,
2071 const struct sched_attr *attr)
2074 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2075 u64 period = attr->sched_period ?: attr->sched_deadline;
2076 u64 runtime = attr->sched_runtime;
2077 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2080 if (new_bw == p->dl.dl_bw)
2084 * Either if a task, enters, leave, or stays -deadline but changes
2085 * its parameters, we may need to update accordingly the total
2086 * allocated bandwidth of the container.
2088 raw_spin_lock(&dl_b->lock);
2089 cpus = dl_bw_cpus(task_cpu(p));
2090 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2091 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2092 __dl_add(dl_b, new_bw);
2094 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2095 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2096 __dl_clear(dl_b, p->dl.dl_bw);
2097 __dl_add(dl_b, new_bw);
2099 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2100 __dl_clear(dl_b, p->dl.dl_bw);
2103 raw_spin_unlock(&dl_b->lock);
2108 extern void init_dl_bw(struct dl_bw *dl_b);
2111 * wake_up_new_task - wake up a newly created task for the first time.
2113 * This function will do some initial scheduler statistics housekeeping
2114 * that must be done for every newly created context, then puts the task
2115 * on the runqueue and wakes it.
2117 void wake_up_new_task(struct task_struct *p)
2119 unsigned long flags;
2122 raw_spin_lock_irqsave(&p->pi_lock, flags);
2125 * Fork balancing, do it here and not earlier because:
2126 * - cpus_allowed can change in the fork path
2127 * - any previously selected cpu might disappear through hotplug
2129 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2132 /* Initialize new task's runnable average */
2133 init_task_runnable_average(p);
2134 rq = __task_rq_lock(p);
2135 activate_task(rq, p, 0);
2136 p->on_rq = TASK_ON_RQ_QUEUED;
2137 trace_sched_wakeup_new(p, true);
2138 check_preempt_curr(rq, p, WF_FORK);
2140 if (p->sched_class->task_woken)
2141 p->sched_class->task_woken(rq, p);
2143 task_rq_unlock(rq, p, &flags);
2146 #ifdef CONFIG_PREEMPT_NOTIFIERS
2149 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2150 * @notifier: notifier struct to register
2152 void preempt_notifier_register(struct preempt_notifier *notifier)
2154 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2156 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2159 * preempt_notifier_unregister - no longer interested in preemption notifications
2160 * @notifier: notifier struct to unregister
2162 * This is safe to call from within a preemption notifier.
2164 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2166 hlist_del(¬ifier->link);
2168 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2170 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2172 struct preempt_notifier *notifier;
2174 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2175 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2179 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2180 struct task_struct *next)
2182 struct preempt_notifier *notifier;
2184 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2185 notifier->ops->sched_out(notifier, next);
2188 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2190 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2195 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2196 struct task_struct *next)
2200 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2203 * prepare_task_switch - prepare to switch tasks
2204 * @rq: the runqueue preparing to switch
2205 * @prev: the current task that is being switched out
2206 * @next: the task we are going to switch to.
2208 * This is called with the rq lock held and interrupts off. It must
2209 * be paired with a subsequent finish_task_switch after the context
2212 * prepare_task_switch sets up locking and calls architecture specific
2216 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2217 struct task_struct *next)
2219 trace_sched_switch(prev, next);
2220 sched_info_switch(rq, prev, next);
2221 perf_event_task_sched_out(prev, next);
2222 fire_sched_out_preempt_notifiers(prev, next);
2223 prepare_lock_switch(rq, next);
2224 prepare_arch_switch(next);
2228 * finish_task_switch - clean up after a task-switch
2229 * @prev: the thread we just switched away from.
2231 * finish_task_switch must be called after the context switch, paired
2232 * with a prepare_task_switch call before the context switch.
2233 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2234 * and do any other architecture-specific cleanup actions.
2236 * Note that we may have delayed dropping an mm in context_switch(). If
2237 * so, we finish that here outside of the runqueue lock. (Doing it
2238 * with the lock held can cause deadlocks; see schedule() for
2241 * The context switch have flipped the stack from under us and restored the
2242 * local variables which were saved when this task called schedule() in the
2243 * past. prev == current is still correct but we need to recalculate this_rq
2244 * because prev may have moved to another CPU.
2246 static struct rq *finish_task_switch(struct task_struct *prev)
2247 __releases(rq->lock)
2249 struct rq *rq = this_rq();
2250 struct mm_struct *mm = rq->prev_mm;
2256 * A task struct has one reference for the use as "current".
2257 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2258 * schedule one last time. The schedule call will never return, and
2259 * the scheduled task must drop that reference.
2260 * The test for TASK_DEAD must occur while the runqueue locks are
2261 * still held, otherwise prev could be scheduled on another cpu, die
2262 * there before we look at prev->state, and then the reference would
2266 prev_state = prev->state;
2267 vtime_task_switch(prev);
2268 finish_arch_switch(prev);
2269 perf_event_task_sched_in(prev, current);
2270 finish_lock_switch(rq, prev);
2271 finish_arch_post_lock_switch();
2273 fire_sched_in_preempt_notifiers(current);
2276 if (unlikely(prev_state == TASK_DEAD)) {
2277 if (prev->sched_class->task_dead)
2278 prev->sched_class->task_dead(prev);
2281 * Remove function-return probe instances associated with this
2282 * task and put them back on the free list.
2284 kprobe_flush_task(prev);
2285 put_task_struct(prev);
2288 tick_nohz_task_switch(current);
2294 /* rq->lock is NOT held, but preemption is disabled */
2295 static inline void post_schedule(struct rq *rq)
2297 if (rq->post_schedule) {
2298 unsigned long flags;
2300 raw_spin_lock_irqsave(&rq->lock, flags);
2301 if (rq->curr->sched_class->post_schedule)
2302 rq->curr->sched_class->post_schedule(rq);
2303 raw_spin_unlock_irqrestore(&rq->lock, flags);
2305 rq->post_schedule = 0;
2311 static inline void post_schedule(struct rq *rq)
2318 * schedule_tail - first thing a freshly forked thread must call.
2319 * @prev: the thread we just switched away from.
2321 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2322 __releases(rq->lock)
2326 /* finish_task_switch() drops rq->lock and enables preemtion */
2328 rq = finish_task_switch(prev);
2332 if (current->set_child_tid)
2333 put_user(task_pid_vnr(current), current->set_child_tid);
2337 * context_switch - switch to the new MM and the new thread's register state.
2339 static inline struct rq *
2340 context_switch(struct rq *rq, struct task_struct *prev,
2341 struct task_struct *next)
2343 struct mm_struct *mm, *oldmm;
2345 prepare_task_switch(rq, prev, next);
2348 oldmm = prev->active_mm;
2350 * For paravirt, this is coupled with an exit in switch_to to
2351 * combine the page table reload and the switch backend into
2354 arch_start_context_switch(prev);
2357 next->active_mm = oldmm;
2358 atomic_inc(&oldmm->mm_count);
2359 enter_lazy_tlb(oldmm, next);
2361 switch_mm(oldmm, mm, next);
2364 prev->active_mm = NULL;
2365 rq->prev_mm = oldmm;
2368 * Since the runqueue lock will be released by the next
2369 * task (which is an invalid locking op but in the case
2370 * of the scheduler it's an obvious special-case), so we
2371 * do an early lockdep release here:
2373 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2375 context_tracking_task_switch(prev, next);
2376 /* Here we just switch the register state and the stack. */
2377 switch_to(prev, next, prev);
2380 return finish_task_switch(prev);
2384 * nr_running and nr_context_switches:
2386 * externally visible scheduler statistics: current number of runnable
2387 * threads, total number of context switches performed since bootup.
2389 unsigned long nr_running(void)
2391 unsigned long i, sum = 0;
2393 for_each_online_cpu(i)
2394 sum += cpu_rq(i)->nr_running;
2400 * Check if only the current task is running on the cpu.
2402 bool single_task_running(void)
2404 if (cpu_rq(smp_processor_id())->nr_running == 1)
2409 EXPORT_SYMBOL(single_task_running);
2411 unsigned long long nr_context_switches(void)
2414 unsigned long long sum = 0;
2416 for_each_possible_cpu(i)
2417 sum += cpu_rq(i)->nr_switches;
2422 unsigned long nr_iowait(void)
2424 unsigned long i, sum = 0;
2426 for_each_possible_cpu(i)
2427 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2432 unsigned long nr_iowait_cpu(int cpu)
2434 struct rq *this = cpu_rq(cpu);
2435 return atomic_read(&this->nr_iowait);
2438 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2440 struct rq *this = this_rq();
2441 *nr_waiters = atomic_read(&this->nr_iowait);
2442 *load = this->cpu_load[0];
2448 * sched_exec - execve() is a valuable balancing opportunity, because at
2449 * this point the task has the smallest effective memory and cache footprint.
2451 void sched_exec(void)
2453 struct task_struct *p = current;
2454 unsigned long flags;
2457 raw_spin_lock_irqsave(&p->pi_lock, flags);
2458 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2459 if (dest_cpu == smp_processor_id())
2462 if (likely(cpu_active(dest_cpu))) {
2463 struct migration_arg arg = { p, dest_cpu };
2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2466 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2475 DEFINE_PER_CPU(struct kernel_stat, kstat);
2476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2478 EXPORT_PER_CPU_SYMBOL(kstat);
2479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2482 * Return accounted runtime for the task.
2483 * In case the task is currently running, return the runtime plus current's
2484 * pending runtime that have not been accounted yet.
2486 unsigned long long task_sched_runtime(struct task_struct *p)
2488 unsigned long flags;
2492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2494 * 64-bit doesn't need locks to atomically read a 64bit value.
2495 * So we have a optimization chance when the task's delta_exec is 0.
2496 * Reading ->on_cpu is racy, but this is ok.
2498 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2499 * If we race with it entering cpu, unaccounted time is 0. This is
2500 * indistinguishable from the read occurring a few cycles earlier.
2501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2502 * been accounted, so we're correct here as well.
2504 if (!p->on_cpu || !task_on_rq_queued(p))
2505 return p->se.sum_exec_runtime;
2508 rq = task_rq_lock(p, &flags);
2510 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2511 * project cycles that may never be accounted to this
2512 * thread, breaking clock_gettime().
2514 if (task_current(rq, p) && task_on_rq_queued(p)) {
2515 update_rq_clock(rq);
2516 p->sched_class->update_curr(rq);
2518 ns = p->se.sum_exec_runtime;
2519 task_rq_unlock(rq, p, &flags);
2525 * This function gets called by the timer code, with HZ frequency.
2526 * We call it with interrupts disabled.
2528 void scheduler_tick(void)
2530 int cpu = smp_processor_id();
2531 struct rq *rq = cpu_rq(cpu);
2532 struct task_struct *curr = rq->curr;
2536 raw_spin_lock(&rq->lock);
2537 update_rq_clock(rq);
2538 curr->sched_class->task_tick(rq, curr, 0);
2539 update_cpu_load_active(rq);
2540 raw_spin_unlock(&rq->lock);
2542 perf_event_task_tick();
2545 rq->idle_balance = idle_cpu(cpu);
2546 trigger_load_balance(rq);
2548 rq_last_tick_reset(rq);
2551 #ifdef CONFIG_NO_HZ_FULL
2553 * scheduler_tick_max_deferment
2555 * Keep at least one tick per second when a single
2556 * active task is running because the scheduler doesn't
2557 * yet completely support full dynticks environment.
2559 * This makes sure that uptime, CFS vruntime, load
2560 * balancing, etc... continue to move forward, even
2561 * with a very low granularity.
2563 * Return: Maximum deferment in nanoseconds.
2565 u64 scheduler_tick_max_deferment(void)
2567 struct rq *rq = this_rq();
2568 unsigned long next, now = ACCESS_ONCE(jiffies);
2570 next = rq->last_sched_tick + HZ;
2572 if (time_before_eq(next, now))
2575 return jiffies_to_nsecs(next - now);
2579 notrace unsigned long get_parent_ip(unsigned long addr)
2581 if (in_lock_functions(addr)) {
2582 addr = CALLER_ADDR2;
2583 if (in_lock_functions(addr))
2584 addr = CALLER_ADDR3;
2589 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2590 defined(CONFIG_PREEMPT_TRACER))
2592 void preempt_count_add(int val)
2594 #ifdef CONFIG_DEBUG_PREEMPT
2598 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2601 __preempt_count_add(val);
2602 #ifdef CONFIG_DEBUG_PREEMPT
2604 * Spinlock count overflowing soon?
2606 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2609 if (preempt_count() == val) {
2610 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2611 #ifdef CONFIG_DEBUG_PREEMPT
2612 current->preempt_disable_ip = ip;
2614 trace_preempt_off(CALLER_ADDR0, ip);
2617 EXPORT_SYMBOL(preempt_count_add);
2618 NOKPROBE_SYMBOL(preempt_count_add);
2620 void preempt_count_sub(int val)
2622 #ifdef CONFIG_DEBUG_PREEMPT
2626 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2629 * Is the spinlock portion underflowing?
2631 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2632 !(preempt_count() & PREEMPT_MASK)))
2636 if (preempt_count() == val)
2637 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2638 __preempt_count_sub(val);
2640 EXPORT_SYMBOL(preempt_count_sub);
2641 NOKPROBE_SYMBOL(preempt_count_sub);
2646 * Print scheduling while atomic bug:
2648 static noinline void __schedule_bug(struct task_struct *prev)
2650 if (oops_in_progress)
2653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2654 prev->comm, prev->pid, preempt_count());
2656 debug_show_held_locks(prev);
2658 if (irqs_disabled())
2659 print_irqtrace_events(prev);
2660 #ifdef CONFIG_DEBUG_PREEMPT
2661 if (in_atomic_preempt_off()) {
2662 pr_err("Preemption disabled at:");
2663 print_ip_sym(current->preempt_disable_ip);
2668 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2672 * Various schedule()-time debugging checks and statistics:
2674 static inline void schedule_debug(struct task_struct *prev)
2676 #ifdef CONFIG_SCHED_STACK_END_CHECK
2677 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2680 * Test if we are atomic. Since do_exit() needs to call into
2681 * schedule() atomically, we ignore that path. Otherwise whine
2682 * if we are scheduling when we should not.
2684 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2685 __schedule_bug(prev);
2688 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2690 schedstat_inc(this_rq(), sched_count);
2694 * Pick up the highest-prio task:
2696 static inline struct task_struct *
2697 pick_next_task(struct rq *rq, struct task_struct *prev)
2699 const struct sched_class *class = &fair_sched_class;
2700 struct task_struct *p;
2703 * Optimization: we know that if all tasks are in
2704 * the fair class we can call that function directly:
2706 if (likely(prev->sched_class == class &&
2707 rq->nr_running == rq->cfs.h_nr_running)) {
2708 p = fair_sched_class.pick_next_task(rq, prev);
2709 if (unlikely(p == RETRY_TASK))
2712 /* assumes fair_sched_class->next == idle_sched_class */
2714 p = idle_sched_class.pick_next_task(rq, prev);
2720 for_each_class(class) {
2721 p = class->pick_next_task(rq, prev);
2723 if (unlikely(p == RETRY_TASK))
2729 BUG(); /* the idle class will always have a runnable task */
2733 * __schedule() is the main scheduler function.
2735 * The main means of driving the scheduler and thus entering this function are:
2737 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2739 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2740 * paths. For example, see arch/x86/entry_64.S.
2742 * To drive preemption between tasks, the scheduler sets the flag in timer
2743 * interrupt handler scheduler_tick().
2745 * 3. Wakeups don't really cause entry into schedule(). They add a
2746 * task to the run-queue and that's it.
2748 * Now, if the new task added to the run-queue preempts the current
2749 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2750 * called on the nearest possible occasion:
2752 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2754 * - in syscall or exception context, at the next outmost
2755 * preempt_enable(). (this might be as soon as the wake_up()'s
2758 * - in IRQ context, return from interrupt-handler to
2759 * preemptible context
2761 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2764 * - cond_resched() call
2765 * - explicit schedule() call
2766 * - return from syscall or exception to user-space
2767 * - return from interrupt-handler to user-space
2769 * WARNING: all callers must re-check need_resched() afterward and reschedule
2770 * accordingly in case an event triggered the need for rescheduling (such as
2771 * an interrupt waking up a task) while preemption was disabled in __schedule().
2773 static void __sched __schedule(void)
2775 struct task_struct *prev, *next;
2776 unsigned long *switch_count;
2781 cpu = smp_processor_id();
2783 rcu_note_context_switch();
2786 schedule_debug(prev);
2788 if (sched_feat(HRTICK))
2792 * Make sure that signal_pending_state()->signal_pending() below
2793 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2794 * done by the caller to avoid the race with signal_wake_up().
2796 smp_mb__before_spinlock();
2797 raw_spin_lock_irq(&rq->lock);
2799 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2801 switch_count = &prev->nivcsw;
2802 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2803 if (unlikely(signal_pending_state(prev->state, prev))) {
2804 prev->state = TASK_RUNNING;
2806 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2810 * If a worker went to sleep, notify and ask workqueue
2811 * whether it wants to wake up a task to maintain
2814 if (prev->flags & PF_WQ_WORKER) {
2815 struct task_struct *to_wakeup;
2817 to_wakeup = wq_worker_sleeping(prev, cpu);
2819 try_to_wake_up_local(to_wakeup);
2822 switch_count = &prev->nvcsw;
2825 if (task_on_rq_queued(prev))
2826 update_rq_clock(rq);
2828 next = pick_next_task(rq, prev);
2829 clear_tsk_need_resched(prev);
2830 clear_preempt_need_resched();
2831 rq->clock_skip_update = 0;
2833 if (likely(prev != next)) {
2838 rq = context_switch(rq, prev, next); /* unlocks the rq */
2841 raw_spin_unlock_irq(&rq->lock);
2845 sched_preempt_enable_no_resched();
2848 static inline void sched_submit_work(struct task_struct *tsk)
2850 if (!tsk->state || tsk_is_pi_blocked(tsk))
2853 * If we are going to sleep and we have plugged IO queued,
2854 * make sure to submit it to avoid deadlocks.
2856 if (blk_needs_flush_plug(tsk))
2857 blk_schedule_flush_plug(tsk);
2860 asmlinkage __visible void __sched schedule(void)
2862 struct task_struct *tsk = current;
2864 sched_submit_work(tsk);
2867 } while (need_resched());
2869 EXPORT_SYMBOL(schedule);
2871 #ifdef CONFIG_CONTEXT_TRACKING
2872 asmlinkage __visible void __sched schedule_user(void)
2875 * If we come here after a random call to set_need_resched(),
2876 * or we have been woken up remotely but the IPI has not yet arrived,
2877 * we haven't yet exited the RCU idle mode. Do it here manually until
2878 * we find a better solution.
2880 * NB: There are buggy callers of this function. Ideally we
2881 * should warn if prev_state != IN_USER, but that will trigger
2882 * too frequently to make sense yet.
2884 enum ctx_state prev_state = exception_enter();
2886 exception_exit(prev_state);
2891 * schedule_preempt_disabled - called with preemption disabled
2893 * Returns with preemption disabled. Note: preempt_count must be 1
2895 void __sched schedule_preempt_disabled(void)
2897 sched_preempt_enable_no_resched();
2902 static void preempt_schedule_common(void)
2905 __preempt_count_add(PREEMPT_ACTIVE);
2907 __preempt_count_sub(PREEMPT_ACTIVE);
2910 * Check again in case we missed a preemption opportunity
2911 * between schedule and now.
2914 } while (need_resched());
2917 #ifdef CONFIG_PREEMPT
2919 * this is the entry point to schedule() from in-kernel preemption
2920 * off of preempt_enable. Kernel preemptions off return from interrupt
2921 * occur there and call schedule directly.
2923 asmlinkage __visible void __sched notrace preempt_schedule(void)
2926 * If there is a non-zero preempt_count or interrupts are disabled,
2927 * we do not want to preempt the current task. Just return..
2929 if (likely(!preemptible()))
2932 preempt_schedule_common();
2934 NOKPROBE_SYMBOL(preempt_schedule);
2935 EXPORT_SYMBOL(preempt_schedule);
2937 #ifdef CONFIG_CONTEXT_TRACKING
2939 * preempt_schedule_context - preempt_schedule called by tracing
2941 * The tracing infrastructure uses preempt_enable_notrace to prevent
2942 * recursion and tracing preempt enabling caused by the tracing
2943 * infrastructure itself. But as tracing can happen in areas coming
2944 * from userspace or just about to enter userspace, a preempt enable
2945 * can occur before user_exit() is called. This will cause the scheduler
2946 * to be called when the system is still in usermode.
2948 * To prevent this, the preempt_enable_notrace will use this function
2949 * instead of preempt_schedule() to exit user context if needed before
2950 * calling the scheduler.
2952 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2954 enum ctx_state prev_ctx;
2956 if (likely(!preemptible()))
2960 __preempt_count_add(PREEMPT_ACTIVE);
2962 * Needs preempt disabled in case user_exit() is traced
2963 * and the tracer calls preempt_enable_notrace() causing
2964 * an infinite recursion.
2966 prev_ctx = exception_enter();
2968 exception_exit(prev_ctx);
2970 __preempt_count_sub(PREEMPT_ACTIVE);
2972 } while (need_resched());
2974 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2975 #endif /* CONFIG_CONTEXT_TRACKING */
2977 #endif /* CONFIG_PREEMPT */
2980 * this is the entry point to schedule() from kernel preemption
2981 * off of irq context.
2982 * Note, that this is called and return with irqs disabled. This will
2983 * protect us against recursive calling from irq.
2985 asmlinkage __visible void __sched preempt_schedule_irq(void)
2987 enum ctx_state prev_state;
2989 /* Catch callers which need to be fixed */
2990 BUG_ON(preempt_count() || !irqs_disabled());
2992 prev_state = exception_enter();
2995 __preempt_count_add(PREEMPT_ACTIVE);
2998 local_irq_disable();
2999 __preempt_count_sub(PREEMPT_ACTIVE);
3002 * Check again in case we missed a preemption opportunity
3003 * between schedule and now.
3006 } while (need_resched());
3008 exception_exit(prev_state);
3011 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3014 return try_to_wake_up(curr->private, mode, wake_flags);
3016 EXPORT_SYMBOL(default_wake_function);
3018 #ifdef CONFIG_RT_MUTEXES
3021 * rt_mutex_setprio - set the current priority of a task
3023 * @prio: prio value (kernel-internal form)
3025 * This function changes the 'effective' priority of a task. It does
3026 * not touch ->normal_prio like __setscheduler().
3028 * Used by the rt_mutex code to implement priority inheritance
3029 * logic. Call site only calls if the priority of the task changed.
3031 void rt_mutex_setprio(struct task_struct *p, int prio)
3033 int oldprio, queued, running, enqueue_flag = 0;
3035 const struct sched_class *prev_class;
3037 BUG_ON(prio > MAX_PRIO);
3039 rq = __task_rq_lock(p);
3042 * Idle task boosting is a nono in general. There is one
3043 * exception, when PREEMPT_RT and NOHZ is active:
3045 * The idle task calls get_next_timer_interrupt() and holds
3046 * the timer wheel base->lock on the CPU and another CPU wants
3047 * to access the timer (probably to cancel it). We can safely
3048 * ignore the boosting request, as the idle CPU runs this code
3049 * with interrupts disabled and will complete the lock
3050 * protected section without being interrupted. So there is no
3051 * real need to boost.
3053 if (unlikely(p == rq->idle)) {
3054 WARN_ON(p != rq->curr);
3055 WARN_ON(p->pi_blocked_on);
3059 trace_sched_pi_setprio(p, prio);
3061 prev_class = p->sched_class;
3062 queued = task_on_rq_queued(p);
3063 running = task_current(rq, p);
3065 dequeue_task(rq, p, 0);
3067 put_prev_task(rq, p);
3070 * Boosting condition are:
3071 * 1. -rt task is running and holds mutex A
3072 * --> -dl task blocks on mutex A
3074 * 2. -dl task is running and holds mutex A
3075 * --> -dl task blocks on mutex A and could preempt the
3078 if (dl_prio(prio)) {
3079 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3080 if (!dl_prio(p->normal_prio) ||
3081 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3082 p->dl.dl_boosted = 1;
3083 p->dl.dl_throttled = 0;
3084 enqueue_flag = ENQUEUE_REPLENISH;
3086 p->dl.dl_boosted = 0;
3087 p->sched_class = &dl_sched_class;
3088 } else if (rt_prio(prio)) {
3089 if (dl_prio(oldprio))
3090 p->dl.dl_boosted = 0;
3092 enqueue_flag = ENQUEUE_HEAD;
3093 p->sched_class = &rt_sched_class;
3095 if (dl_prio(oldprio))
3096 p->dl.dl_boosted = 0;
3097 p->sched_class = &fair_sched_class;
3103 p->sched_class->set_curr_task(rq);
3105 enqueue_task(rq, p, enqueue_flag);
3107 check_class_changed(rq, p, prev_class, oldprio);
3109 __task_rq_unlock(rq);
3113 void set_user_nice(struct task_struct *p, long nice)
3115 int old_prio, delta, queued;
3116 unsigned long flags;
3119 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3122 * We have to be careful, if called from sys_setpriority(),
3123 * the task might be in the middle of scheduling on another CPU.
3125 rq = task_rq_lock(p, &flags);
3127 * The RT priorities are set via sched_setscheduler(), but we still
3128 * allow the 'normal' nice value to be set - but as expected
3129 * it wont have any effect on scheduling until the task is
3130 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3132 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3133 p->static_prio = NICE_TO_PRIO(nice);
3136 queued = task_on_rq_queued(p);
3138 dequeue_task(rq, p, 0);
3140 p->static_prio = NICE_TO_PRIO(nice);
3143 p->prio = effective_prio(p);
3144 delta = p->prio - old_prio;
3147 enqueue_task(rq, p, 0);
3149 * If the task increased its priority or is running and
3150 * lowered its priority, then reschedule its CPU:
3152 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3156 task_rq_unlock(rq, p, &flags);
3158 EXPORT_SYMBOL(set_user_nice);
3161 * can_nice - check if a task can reduce its nice value
3165 int can_nice(const struct task_struct *p, const int nice)
3167 /* convert nice value [19,-20] to rlimit style value [1,40] */
3168 int nice_rlim = nice_to_rlimit(nice);
3170 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3171 capable(CAP_SYS_NICE));
3174 #ifdef __ARCH_WANT_SYS_NICE
3177 * sys_nice - change the priority of the current process.
3178 * @increment: priority increment
3180 * sys_setpriority is a more generic, but much slower function that
3181 * does similar things.
3183 SYSCALL_DEFINE1(nice, int, increment)
3188 * Setpriority might change our priority at the same moment.
3189 * We don't have to worry. Conceptually one call occurs first
3190 * and we have a single winner.
3192 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3193 nice = task_nice(current) + increment;
3195 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3196 if (increment < 0 && !can_nice(current, nice))
3199 retval = security_task_setnice(current, nice);
3203 set_user_nice(current, nice);
3210 * task_prio - return the priority value of a given task.
3211 * @p: the task in question.
3213 * Return: The priority value as seen by users in /proc.
3214 * RT tasks are offset by -200. Normal tasks are centered
3215 * around 0, value goes from -16 to +15.
3217 int task_prio(const struct task_struct *p)
3219 return p->prio - MAX_RT_PRIO;
3223 * idle_cpu - is a given cpu idle currently?
3224 * @cpu: the processor in question.
3226 * Return: 1 if the CPU is currently idle. 0 otherwise.
3228 int idle_cpu(int cpu)
3230 struct rq *rq = cpu_rq(cpu);
3232 if (rq->curr != rq->idle)
3239 if (!llist_empty(&rq->wake_list))
3247 * idle_task - return the idle task for a given cpu.
3248 * @cpu: the processor in question.
3250 * Return: The idle task for the cpu @cpu.
3252 struct task_struct *idle_task(int cpu)
3254 return cpu_rq(cpu)->idle;
3258 * find_process_by_pid - find a process with a matching PID value.
3259 * @pid: the pid in question.
3261 * The task of @pid, if found. %NULL otherwise.
3263 static struct task_struct *find_process_by_pid(pid_t pid)
3265 return pid ? find_task_by_vpid(pid) : current;
3269 * This function initializes the sched_dl_entity of a newly becoming
3270 * SCHED_DEADLINE task.
3272 * Only the static values are considered here, the actual runtime and the
3273 * absolute deadline will be properly calculated when the task is enqueued
3274 * for the first time with its new policy.
3277 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3279 struct sched_dl_entity *dl_se = &p->dl;
3281 dl_se->dl_runtime = attr->sched_runtime;
3282 dl_se->dl_deadline = attr->sched_deadline;
3283 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3284 dl_se->flags = attr->sched_flags;
3285 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3288 * Changing the parameters of a task is 'tricky' and we're not doing
3289 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3291 * What we SHOULD do is delay the bandwidth release until the 0-lag
3292 * point. This would include retaining the task_struct until that time
3293 * and change dl_overflow() to not immediately decrement the current
3296 * Instead we retain the current runtime/deadline and let the new
3297 * parameters take effect after the current reservation period lapses.
3298 * This is safe (albeit pessimistic) because the 0-lag point is always
3299 * before the current scheduling deadline.
3301 * We can still have temporary overloads because we do not delay the
3302 * change in bandwidth until that time; so admission control is
3303 * not on the safe side. It does however guarantee tasks will never
3304 * consume more than promised.
3309 * sched_setparam() passes in -1 for its policy, to let the functions
3310 * it calls know not to change it.
3312 #define SETPARAM_POLICY -1
3314 static void __setscheduler_params(struct task_struct *p,
3315 const struct sched_attr *attr)
3317 int policy = attr->sched_policy;
3319 if (policy == SETPARAM_POLICY)
3324 if (dl_policy(policy))
3325 __setparam_dl(p, attr);
3326 else if (fair_policy(policy))
3327 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3330 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3331 * !rt_policy. Always setting this ensures that things like
3332 * getparam()/getattr() don't report silly values for !rt tasks.
3334 p->rt_priority = attr->sched_priority;
3335 p->normal_prio = normal_prio(p);
3339 /* Actually do priority change: must hold pi & rq lock. */
3340 static void __setscheduler(struct rq *rq, struct task_struct *p,
3341 const struct sched_attr *attr)
3343 __setscheduler_params(p, attr);
3346 * If we get here, there was no pi waiters boosting the
3347 * task. It is safe to use the normal prio.
3349 p->prio = normal_prio(p);
3351 if (dl_prio(p->prio))
3352 p->sched_class = &dl_sched_class;
3353 else if (rt_prio(p->prio))
3354 p->sched_class = &rt_sched_class;
3356 p->sched_class = &fair_sched_class;
3360 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3362 struct sched_dl_entity *dl_se = &p->dl;
3364 attr->sched_priority = p->rt_priority;
3365 attr->sched_runtime = dl_se->dl_runtime;
3366 attr->sched_deadline = dl_se->dl_deadline;
3367 attr->sched_period = dl_se->dl_period;
3368 attr->sched_flags = dl_se->flags;
3372 * This function validates the new parameters of a -deadline task.
3373 * We ask for the deadline not being zero, and greater or equal
3374 * than the runtime, as well as the period of being zero or
3375 * greater than deadline. Furthermore, we have to be sure that
3376 * user parameters are above the internal resolution of 1us (we
3377 * check sched_runtime only since it is always the smaller one) and
3378 * below 2^63 ns (we have to check both sched_deadline and
3379 * sched_period, as the latter can be zero).
3382 __checkparam_dl(const struct sched_attr *attr)
3385 if (attr->sched_deadline == 0)
3389 * Since we truncate DL_SCALE bits, make sure we're at least
3392 if (attr->sched_runtime < (1ULL << DL_SCALE))
3396 * Since we use the MSB for wrap-around and sign issues, make
3397 * sure it's not set (mind that period can be equal to zero).
3399 if (attr->sched_deadline & (1ULL << 63) ||
3400 attr->sched_period & (1ULL << 63))
3403 /* runtime <= deadline <= period (if period != 0) */
3404 if ((attr->sched_period != 0 &&
3405 attr->sched_period < attr->sched_deadline) ||
3406 attr->sched_deadline < attr->sched_runtime)
3413 * check the target process has a UID that matches the current process's
3415 static bool check_same_owner(struct task_struct *p)
3417 const struct cred *cred = current_cred(), *pcred;
3421 pcred = __task_cred(p);
3422 match = (uid_eq(cred->euid, pcred->euid) ||
3423 uid_eq(cred->euid, pcred->uid));
3428 static bool dl_param_changed(struct task_struct *p,
3429 const struct sched_attr *attr)
3431 struct sched_dl_entity *dl_se = &p->dl;
3433 if (dl_se->dl_runtime != attr->sched_runtime ||
3434 dl_se->dl_deadline != attr->sched_deadline ||
3435 dl_se->dl_period != attr->sched_period ||
3436 dl_se->flags != attr->sched_flags)
3442 static int __sched_setscheduler(struct task_struct *p,
3443 const struct sched_attr *attr,
3446 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3447 MAX_RT_PRIO - 1 - attr->sched_priority;
3448 int retval, oldprio, oldpolicy = -1, queued, running;
3449 int policy = attr->sched_policy;
3450 unsigned long flags;
3451 const struct sched_class *prev_class;
3455 /* may grab non-irq protected spin_locks */
3456 BUG_ON(in_interrupt());
3458 /* double check policy once rq lock held */
3460 reset_on_fork = p->sched_reset_on_fork;
3461 policy = oldpolicy = p->policy;
3463 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3465 if (policy != SCHED_DEADLINE &&
3466 policy != SCHED_FIFO && policy != SCHED_RR &&
3467 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3468 policy != SCHED_IDLE)
3472 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3476 * Valid priorities for SCHED_FIFO and SCHED_RR are
3477 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3478 * SCHED_BATCH and SCHED_IDLE is 0.
3480 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3481 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3483 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3484 (rt_policy(policy) != (attr->sched_priority != 0)))
3488 * Allow unprivileged RT tasks to decrease priority:
3490 if (user && !capable(CAP_SYS_NICE)) {
3491 if (fair_policy(policy)) {
3492 if (attr->sched_nice < task_nice(p) &&
3493 !can_nice(p, attr->sched_nice))
3497 if (rt_policy(policy)) {
3498 unsigned long rlim_rtprio =
3499 task_rlimit(p, RLIMIT_RTPRIO);
3501 /* can't set/change the rt policy */
3502 if (policy != p->policy && !rlim_rtprio)
3505 /* can't increase priority */
3506 if (attr->sched_priority > p->rt_priority &&
3507 attr->sched_priority > rlim_rtprio)
3512 * Can't set/change SCHED_DEADLINE policy at all for now
3513 * (safest behavior); in the future we would like to allow
3514 * unprivileged DL tasks to increase their relative deadline
3515 * or reduce their runtime (both ways reducing utilization)
3517 if (dl_policy(policy))
3521 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3522 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3524 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3525 if (!can_nice(p, task_nice(p)))
3529 /* can't change other user's priorities */
3530 if (!check_same_owner(p))
3533 /* Normal users shall not reset the sched_reset_on_fork flag */
3534 if (p->sched_reset_on_fork && !reset_on_fork)
3539 retval = security_task_setscheduler(p);
3545 * make sure no PI-waiters arrive (or leave) while we are
3546 * changing the priority of the task:
3548 * To be able to change p->policy safely, the appropriate
3549 * runqueue lock must be held.
3551 rq = task_rq_lock(p, &flags);
3554 * Changing the policy of the stop threads its a very bad idea
3556 if (p == rq->stop) {
3557 task_rq_unlock(rq, p, &flags);
3562 * If not changing anything there's no need to proceed further,
3563 * but store a possible modification of reset_on_fork.
3565 if (unlikely(policy == p->policy)) {
3566 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3568 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3570 if (dl_policy(policy) && dl_param_changed(p, attr))
3573 p->sched_reset_on_fork = reset_on_fork;
3574 task_rq_unlock(rq, p, &flags);
3580 #ifdef CONFIG_RT_GROUP_SCHED
3582 * Do not allow realtime tasks into groups that have no runtime
3585 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3586 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3587 !task_group_is_autogroup(task_group(p))) {
3588 task_rq_unlock(rq, p, &flags);
3593 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3594 cpumask_t *span = rq->rd->span;
3597 * Don't allow tasks with an affinity mask smaller than
3598 * the entire root_domain to become SCHED_DEADLINE. We
3599 * will also fail if there's no bandwidth available.
3601 if (!cpumask_subset(span, &p->cpus_allowed) ||
3602 rq->rd->dl_bw.bw == 0) {
3603 task_rq_unlock(rq, p, &flags);
3610 /* recheck policy now with rq lock held */
3611 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3612 policy = oldpolicy = -1;
3613 task_rq_unlock(rq, p, &flags);
3618 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3619 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3622 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3623 task_rq_unlock(rq, p, &flags);
3627 p->sched_reset_on_fork = reset_on_fork;
3631 * Special case for priority boosted tasks.
3633 * If the new priority is lower or equal (user space view)
3634 * than the current (boosted) priority, we just store the new
3635 * normal parameters and do not touch the scheduler class and
3636 * the runqueue. This will be done when the task deboost
3639 if (rt_mutex_check_prio(p, newprio)) {
3640 __setscheduler_params(p, attr);
3641 task_rq_unlock(rq, p, &flags);
3645 queued = task_on_rq_queued(p);
3646 running = task_current(rq, p);
3648 dequeue_task(rq, p, 0);
3650 put_prev_task(rq, p);
3652 prev_class = p->sched_class;
3653 __setscheduler(rq, p, attr);
3656 p->sched_class->set_curr_task(rq);
3659 * We enqueue to tail when the priority of a task is
3660 * increased (user space view).
3662 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3665 check_class_changed(rq, p, prev_class, oldprio);
3666 task_rq_unlock(rq, p, &flags);
3668 rt_mutex_adjust_pi(p);
3673 static int _sched_setscheduler(struct task_struct *p, int policy,
3674 const struct sched_param *param, bool check)
3676 struct sched_attr attr = {
3677 .sched_policy = policy,
3678 .sched_priority = param->sched_priority,
3679 .sched_nice = PRIO_TO_NICE(p->static_prio),
3682 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3683 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3684 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3685 policy &= ~SCHED_RESET_ON_FORK;
3686 attr.sched_policy = policy;
3689 return __sched_setscheduler(p, &attr, check);
3692 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3693 * @p: the task in question.
3694 * @policy: new policy.
3695 * @param: structure containing the new RT priority.
3697 * Return: 0 on success. An error code otherwise.
3699 * NOTE that the task may be already dead.
3701 int sched_setscheduler(struct task_struct *p, int policy,
3702 const struct sched_param *param)
3704 return _sched_setscheduler(p, policy, param, true);
3706 EXPORT_SYMBOL_GPL(sched_setscheduler);
3708 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3710 return __sched_setscheduler(p, attr, true);
3712 EXPORT_SYMBOL_GPL(sched_setattr);
3715 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3716 * @p: the task in question.
3717 * @policy: new policy.
3718 * @param: structure containing the new RT priority.
3720 * Just like sched_setscheduler, only don't bother checking if the
3721 * current context has permission. For example, this is needed in
3722 * stop_machine(): we create temporary high priority worker threads,
3723 * but our caller might not have that capability.
3725 * Return: 0 on success. An error code otherwise.
3727 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3728 const struct sched_param *param)
3730 return _sched_setscheduler(p, policy, param, false);
3734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3736 struct sched_param lparam;
3737 struct task_struct *p;
3740 if (!param || pid < 0)
3742 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3747 p = find_process_by_pid(pid);
3749 retval = sched_setscheduler(p, policy, &lparam);
3756 * Mimics kernel/events/core.c perf_copy_attr().
3758 static int sched_copy_attr(struct sched_attr __user *uattr,
3759 struct sched_attr *attr)
3764 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3768 * zero the full structure, so that a short copy will be nice.
3770 memset(attr, 0, sizeof(*attr));
3772 ret = get_user(size, &uattr->size);
3776 if (size > PAGE_SIZE) /* silly large */
3779 if (!size) /* abi compat */
3780 size = SCHED_ATTR_SIZE_VER0;
3782 if (size < SCHED_ATTR_SIZE_VER0)
3786 * If we're handed a bigger struct than we know of,
3787 * ensure all the unknown bits are 0 - i.e. new
3788 * user-space does not rely on any kernel feature
3789 * extensions we dont know about yet.
3791 if (size > sizeof(*attr)) {
3792 unsigned char __user *addr;
3793 unsigned char __user *end;
3796 addr = (void __user *)uattr + sizeof(*attr);
3797 end = (void __user *)uattr + size;
3799 for (; addr < end; addr++) {
3800 ret = get_user(val, addr);
3806 size = sizeof(*attr);
3809 ret = copy_from_user(attr, uattr, size);
3814 * XXX: do we want to be lenient like existing syscalls; or do we want
3815 * to be strict and return an error on out-of-bounds values?
3817 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3822 put_user(sizeof(*attr), &uattr->size);
3827 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3828 * @pid: the pid in question.
3829 * @policy: new policy.
3830 * @param: structure containing the new RT priority.
3832 * Return: 0 on success. An error code otherwise.
3834 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3835 struct sched_param __user *, param)
3837 /* negative values for policy are not valid */
3841 return do_sched_setscheduler(pid, policy, param);
3845 * sys_sched_setparam - set/change the RT priority of a thread
3846 * @pid: the pid in question.
3847 * @param: structure containing the new RT priority.
3849 * Return: 0 on success. An error code otherwise.
3851 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3853 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3857 * sys_sched_setattr - same as above, but with extended sched_attr
3858 * @pid: the pid in question.
3859 * @uattr: structure containing the extended parameters.
3860 * @flags: for future extension.
3862 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3863 unsigned int, flags)
3865 struct sched_attr attr;
3866 struct task_struct *p;
3869 if (!uattr || pid < 0 || flags)
3872 retval = sched_copy_attr(uattr, &attr);
3876 if ((int)attr.sched_policy < 0)
3881 p = find_process_by_pid(pid);
3883 retval = sched_setattr(p, &attr);
3890 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3891 * @pid: the pid in question.
3893 * Return: On success, the policy of the thread. Otherwise, a negative error
3896 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3898 struct task_struct *p;
3906 p = find_process_by_pid(pid);
3908 retval = security_task_getscheduler(p);
3911 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3918 * sys_sched_getparam - get the RT priority of a thread
3919 * @pid: the pid in question.
3920 * @param: structure containing the RT priority.
3922 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3925 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3927 struct sched_param lp = { .sched_priority = 0 };
3928 struct task_struct *p;
3931 if (!param || pid < 0)
3935 p = find_process_by_pid(pid);
3940 retval = security_task_getscheduler(p);
3944 if (task_has_rt_policy(p))
3945 lp.sched_priority = p->rt_priority;
3949 * This one might sleep, we cannot do it with a spinlock held ...
3951 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3960 static int sched_read_attr(struct sched_attr __user *uattr,
3961 struct sched_attr *attr,
3966 if (!access_ok(VERIFY_WRITE, uattr, usize))
3970 * If we're handed a smaller struct than we know of,
3971 * ensure all the unknown bits are 0 - i.e. old
3972 * user-space does not get uncomplete information.
3974 if (usize < sizeof(*attr)) {
3975 unsigned char *addr;
3978 addr = (void *)attr + usize;
3979 end = (void *)attr + sizeof(*attr);
3981 for (; addr < end; addr++) {
3989 ret = copy_to_user(uattr, attr, attr->size);
3997 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3998 * @pid: the pid in question.
3999 * @uattr: structure containing the extended parameters.
4000 * @size: sizeof(attr) for fwd/bwd comp.
4001 * @flags: for future extension.
4003 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4004 unsigned int, size, unsigned int, flags)
4006 struct sched_attr attr = {
4007 .size = sizeof(struct sched_attr),
4009 struct task_struct *p;
4012 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4013 size < SCHED_ATTR_SIZE_VER0 || flags)
4017 p = find_process_by_pid(pid);
4022 retval = security_task_getscheduler(p);
4026 attr.sched_policy = p->policy;
4027 if (p->sched_reset_on_fork)
4028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4029 if (task_has_dl_policy(p))
4030 __getparam_dl(p, &attr);
4031 else if (task_has_rt_policy(p))
4032 attr.sched_priority = p->rt_priority;
4034 attr.sched_nice = task_nice(p);
4038 retval = sched_read_attr(uattr, &attr, size);
4046 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4048 cpumask_var_t cpus_allowed, new_mask;
4049 struct task_struct *p;
4054 p = find_process_by_pid(pid);
4060 /* Prevent p going away */
4064 if (p->flags & PF_NO_SETAFFINITY) {
4068 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4072 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4074 goto out_free_cpus_allowed;
4077 if (!check_same_owner(p)) {
4079 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4081 goto out_free_new_mask;
4086 retval = security_task_setscheduler(p);
4088 goto out_free_new_mask;
4091 cpuset_cpus_allowed(p, cpus_allowed);
4092 cpumask_and(new_mask, in_mask, cpus_allowed);
4095 * Since bandwidth control happens on root_domain basis,
4096 * if admission test is enabled, we only admit -deadline
4097 * tasks allowed to run on all the CPUs in the task's
4101 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4103 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4106 goto out_free_new_mask;
4112 retval = set_cpus_allowed_ptr(p, new_mask);
4115 cpuset_cpus_allowed(p, cpus_allowed);
4116 if (!cpumask_subset(new_mask, cpus_allowed)) {
4118 * We must have raced with a concurrent cpuset
4119 * update. Just reset the cpus_allowed to the
4120 * cpuset's cpus_allowed
4122 cpumask_copy(new_mask, cpus_allowed);
4127 free_cpumask_var(new_mask);
4128 out_free_cpus_allowed:
4129 free_cpumask_var(cpus_allowed);
4135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4136 struct cpumask *new_mask)
4138 if (len < cpumask_size())
4139 cpumask_clear(new_mask);
4140 else if (len > cpumask_size())
4141 len = cpumask_size();
4143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4147 * sys_sched_setaffinity - set the cpu affinity of a process
4148 * @pid: pid of the process
4149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4150 * @user_mask_ptr: user-space pointer to the new cpu mask
4152 * Return: 0 on success. An error code otherwise.
4154 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4155 unsigned long __user *, user_mask_ptr)
4157 cpumask_var_t new_mask;
4160 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4163 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4165 retval = sched_setaffinity(pid, new_mask);
4166 free_cpumask_var(new_mask);
4170 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4172 struct task_struct *p;
4173 unsigned long flags;
4179 p = find_process_by_pid(pid);
4183 retval = security_task_getscheduler(p);
4187 raw_spin_lock_irqsave(&p->pi_lock, flags);
4188 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4189 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4198 * sys_sched_getaffinity - get the cpu affinity of a process
4199 * @pid: pid of the process
4200 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4201 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4203 * Return: 0 on success. An error code otherwise.
4205 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4206 unsigned long __user *, user_mask_ptr)
4211 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4213 if (len & (sizeof(unsigned long)-1))
4216 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4219 ret = sched_getaffinity(pid, mask);
4221 size_t retlen = min_t(size_t, len, cpumask_size());
4223 if (copy_to_user(user_mask_ptr, mask, retlen))
4228 free_cpumask_var(mask);
4234 * sys_sched_yield - yield the current processor to other threads.
4236 * This function yields the current CPU to other tasks. If there are no
4237 * other threads running on this CPU then this function will return.
4241 SYSCALL_DEFINE0(sched_yield)
4243 struct rq *rq = this_rq_lock();
4245 schedstat_inc(rq, yld_count);
4246 current->sched_class->yield_task(rq);
4249 * Since we are going to call schedule() anyway, there's
4250 * no need to preempt or enable interrupts:
4252 __release(rq->lock);
4253 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4254 do_raw_spin_unlock(&rq->lock);
4255 sched_preempt_enable_no_resched();
4262 int __sched _cond_resched(void)
4264 if (should_resched()) {
4265 preempt_schedule_common();
4270 EXPORT_SYMBOL(_cond_resched);
4273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4274 * call schedule, and on return reacquire the lock.
4276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4277 * operations here to prevent schedule() from being called twice (once via
4278 * spin_unlock(), once by hand).
4280 int __cond_resched_lock(spinlock_t *lock)
4282 int resched = should_resched();
4285 lockdep_assert_held(lock);
4287 if (spin_needbreak(lock) || resched) {
4290 preempt_schedule_common();
4298 EXPORT_SYMBOL(__cond_resched_lock);
4300 int __sched __cond_resched_softirq(void)
4302 BUG_ON(!in_softirq());
4304 if (should_resched()) {
4306 preempt_schedule_common();
4312 EXPORT_SYMBOL(__cond_resched_softirq);
4315 * yield - yield the current processor to other threads.
4317 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4319 * The scheduler is at all times free to pick the calling task as the most
4320 * eligible task to run, if removing the yield() call from your code breaks
4321 * it, its already broken.
4323 * Typical broken usage is:
4328 * where one assumes that yield() will let 'the other' process run that will
4329 * make event true. If the current task is a SCHED_FIFO task that will never
4330 * happen. Never use yield() as a progress guarantee!!
4332 * If you want to use yield() to wait for something, use wait_event().
4333 * If you want to use yield() to be 'nice' for others, use cond_resched().
4334 * If you still want to use yield(), do not!
4336 void __sched yield(void)
4338 set_current_state(TASK_RUNNING);
4341 EXPORT_SYMBOL(yield);
4344 * yield_to - yield the current processor to another thread in
4345 * your thread group, or accelerate that thread toward the
4346 * processor it's on.
4348 * @preempt: whether task preemption is allowed or not
4350 * It's the caller's job to ensure that the target task struct
4351 * can't go away on us before we can do any checks.
4354 * true (>0) if we indeed boosted the target task.
4355 * false (0) if we failed to boost the target.
4356 * -ESRCH if there's no task to yield to.
4358 int __sched yield_to(struct task_struct *p, bool preempt)
4360 struct task_struct *curr = current;
4361 struct rq *rq, *p_rq;
4362 unsigned long flags;
4365 local_irq_save(flags);
4371 * If we're the only runnable task on the rq and target rq also
4372 * has only one task, there's absolutely no point in yielding.
4374 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4379 double_rq_lock(rq, p_rq);
4380 if (task_rq(p) != p_rq) {
4381 double_rq_unlock(rq, p_rq);
4385 if (!curr->sched_class->yield_to_task)
4388 if (curr->sched_class != p->sched_class)
4391 if (task_running(p_rq, p) || p->state)
4394 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4396 schedstat_inc(rq, yld_count);
4398 * Make p's CPU reschedule; pick_next_entity takes care of
4401 if (preempt && rq != p_rq)
4406 double_rq_unlock(rq, p_rq);
4408 local_irq_restore(flags);
4415 EXPORT_SYMBOL_GPL(yield_to);
4418 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4419 * that process accounting knows that this is a task in IO wait state.
4421 void __sched io_schedule(void)
4423 struct rq *rq = raw_rq();
4425 delayacct_blkio_start();
4426 atomic_inc(&rq->nr_iowait);
4427 blk_flush_plug(current);
4428 current->in_iowait = 1;
4430 current->in_iowait = 0;
4431 atomic_dec(&rq->nr_iowait);
4432 delayacct_blkio_end();
4434 EXPORT_SYMBOL(io_schedule);
4436 long __sched io_schedule_timeout(long timeout)
4438 struct rq *rq = raw_rq();
4441 delayacct_blkio_start();
4442 atomic_inc(&rq->nr_iowait);
4443 blk_flush_plug(current);
4444 current->in_iowait = 1;
4445 ret = schedule_timeout(timeout);
4446 current->in_iowait = 0;
4447 atomic_dec(&rq->nr_iowait);
4448 delayacct_blkio_end();
4453 * sys_sched_get_priority_max - return maximum RT priority.
4454 * @policy: scheduling class.
4456 * Return: On success, this syscall returns the maximum
4457 * rt_priority that can be used by a given scheduling class.
4458 * On failure, a negative error code is returned.
4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4467 ret = MAX_USER_RT_PRIO-1;
4469 case SCHED_DEADLINE:
4480 * sys_sched_get_priority_min - return minimum RT priority.
4481 * @policy: scheduling class.
4483 * Return: On success, this syscall returns the minimum
4484 * rt_priority that can be used by a given scheduling class.
4485 * On failure, a negative error code is returned.
4487 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4496 case SCHED_DEADLINE:
4506 * sys_sched_rr_get_interval - return the default timeslice of a process.
4507 * @pid: pid of the process.
4508 * @interval: userspace pointer to the timeslice value.
4510 * this syscall writes the default timeslice value of a given process
4511 * into the user-space timespec buffer. A value of '0' means infinity.
4513 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4516 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4517 struct timespec __user *, interval)
4519 struct task_struct *p;
4520 unsigned int time_slice;
4521 unsigned long flags;
4531 p = find_process_by_pid(pid);
4535 retval = security_task_getscheduler(p);
4539 rq = task_rq_lock(p, &flags);
4541 if (p->sched_class->get_rr_interval)
4542 time_slice = p->sched_class->get_rr_interval(rq, p);
4543 task_rq_unlock(rq, p, &flags);
4546 jiffies_to_timespec(time_slice, &t);
4547 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4555 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4557 void sched_show_task(struct task_struct *p)
4559 unsigned long free = 0;
4561 unsigned long state = p->state;
4564 state = __ffs(state) + 1;
4565 printk(KERN_INFO "%-15.15s %c", p->comm,
4566 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4567 #if BITS_PER_LONG == 32
4568 if (state == TASK_RUNNING)
4569 printk(KERN_CONT " running ");
4571 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4573 if (state == TASK_RUNNING)
4574 printk(KERN_CONT " running task ");
4576 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4578 #ifdef CONFIG_DEBUG_STACK_USAGE
4579 free = stack_not_used(p);
4584 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4586 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4587 task_pid_nr(p), ppid,
4588 (unsigned long)task_thread_info(p)->flags);
4590 print_worker_info(KERN_INFO, p);
4591 show_stack(p, NULL);
4594 void show_state_filter(unsigned long state_filter)
4596 struct task_struct *g, *p;
4598 #if BITS_PER_LONG == 32
4600 " task PC stack pid father\n");
4603 " task PC stack pid father\n");
4606 for_each_process_thread(g, p) {
4608 * reset the NMI-timeout, listing all files on a slow
4609 * console might take a lot of time:
4611 touch_nmi_watchdog();
4612 if (!state_filter || (p->state & state_filter))
4616 touch_all_softlockup_watchdogs();
4618 #ifdef CONFIG_SCHED_DEBUG
4619 sysrq_sched_debug_show();
4623 * Only show locks if all tasks are dumped:
4626 debug_show_all_locks();
4629 void init_idle_bootup_task(struct task_struct *idle)
4631 idle->sched_class = &idle_sched_class;
4635 * init_idle - set up an idle thread for a given CPU
4636 * @idle: task in question
4637 * @cpu: cpu the idle task belongs to
4639 * NOTE: this function does not set the idle thread's NEED_RESCHED
4640 * flag, to make booting more robust.
4642 void init_idle(struct task_struct *idle, int cpu)
4644 struct rq *rq = cpu_rq(cpu);
4645 unsigned long flags;
4647 raw_spin_lock_irqsave(&rq->lock, flags);
4649 __sched_fork(0, idle);
4650 idle->state = TASK_RUNNING;
4651 idle->se.exec_start = sched_clock();
4653 do_set_cpus_allowed(idle, cpumask_of(cpu));
4655 * We're having a chicken and egg problem, even though we are
4656 * holding rq->lock, the cpu isn't yet set to this cpu so the
4657 * lockdep check in task_group() will fail.
4659 * Similar case to sched_fork(). / Alternatively we could
4660 * use task_rq_lock() here and obtain the other rq->lock.
4665 __set_task_cpu(idle, cpu);
4668 rq->curr = rq->idle = idle;
4669 idle->on_rq = TASK_ON_RQ_QUEUED;
4670 #if defined(CONFIG_SMP)
4673 raw_spin_unlock_irqrestore(&rq->lock, flags);
4675 /* Set the preempt count _outside_ the spinlocks! */
4676 init_idle_preempt_count(idle, cpu);
4679 * The idle tasks have their own, simple scheduling class:
4681 idle->sched_class = &idle_sched_class;
4682 ftrace_graph_init_idle_task(idle, cpu);
4683 vtime_init_idle(idle, cpu);
4684 #if defined(CONFIG_SMP)
4685 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4689 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4690 const struct cpumask *trial)
4692 int ret = 1, trial_cpus;
4693 struct dl_bw *cur_dl_b;
4694 unsigned long flags;
4696 if (!cpumask_weight(cur))
4699 rcu_read_lock_sched();
4700 cur_dl_b = dl_bw_of(cpumask_any(cur));
4701 trial_cpus = cpumask_weight(trial);
4703 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4704 if (cur_dl_b->bw != -1 &&
4705 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4707 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4708 rcu_read_unlock_sched();
4713 int task_can_attach(struct task_struct *p,
4714 const struct cpumask *cs_cpus_allowed)
4719 * Kthreads which disallow setaffinity shouldn't be moved
4720 * to a new cpuset; we don't want to change their cpu
4721 * affinity and isolating such threads by their set of
4722 * allowed nodes is unnecessary. Thus, cpusets are not
4723 * applicable for such threads. This prevents checking for
4724 * success of set_cpus_allowed_ptr() on all attached tasks
4725 * before cpus_allowed may be changed.
4727 if (p->flags & PF_NO_SETAFFINITY) {
4733 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4735 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4740 unsigned long flags;
4742 rcu_read_lock_sched();
4743 dl_b = dl_bw_of(dest_cpu);
4744 raw_spin_lock_irqsave(&dl_b->lock, flags);
4745 cpus = dl_bw_cpus(dest_cpu);
4746 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4751 * We reserve space for this task in the destination
4752 * root_domain, as we can't fail after this point.
4753 * We will free resources in the source root_domain
4754 * later on (see set_cpus_allowed_dl()).
4756 __dl_add(dl_b, p->dl.dl_bw);
4758 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4759 rcu_read_unlock_sched();
4769 * move_queued_task - move a queued task to new rq.
4771 * Returns (locked) new rq. Old rq's lock is released.
4773 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4775 struct rq *rq = task_rq(p);
4777 lockdep_assert_held(&rq->lock);
4779 dequeue_task(rq, p, 0);
4780 p->on_rq = TASK_ON_RQ_MIGRATING;
4781 set_task_cpu(p, new_cpu);
4782 raw_spin_unlock(&rq->lock);
4784 rq = cpu_rq(new_cpu);
4786 raw_spin_lock(&rq->lock);
4787 BUG_ON(task_cpu(p) != new_cpu);
4788 p->on_rq = TASK_ON_RQ_QUEUED;
4789 enqueue_task(rq, p, 0);
4790 check_preempt_curr(rq, p, 0);
4795 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4797 if (p->sched_class->set_cpus_allowed)
4798 p->sched_class->set_cpus_allowed(p, new_mask);
4800 cpumask_copy(&p->cpus_allowed, new_mask);
4801 p->nr_cpus_allowed = cpumask_weight(new_mask);
4805 * This is how migration works:
4807 * 1) we invoke migration_cpu_stop() on the target CPU using
4809 * 2) stopper starts to run (implicitly forcing the migrated thread
4811 * 3) it checks whether the migrated task is still in the wrong runqueue.
4812 * 4) if it's in the wrong runqueue then the migration thread removes
4813 * it and puts it into the right queue.
4814 * 5) stopper completes and stop_one_cpu() returns and the migration
4819 * Change a given task's CPU affinity. Migrate the thread to a
4820 * proper CPU and schedule it away if the CPU it's executing on
4821 * is removed from the allowed bitmask.
4823 * NOTE: the caller must have a valid reference to the task, the
4824 * task must not exit() & deallocate itself prematurely. The
4825 * call is not atomic; no spinlocks may be held.
4827 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4829 unsigned long flags;
4831 unsigned int dest_cpu;
4834 rq = task_rq_lock(p, &flags);
4836 if (cpumask_equal(&p->cpus_allowed, new_mask))
4839 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4844 do_set_cpus_allowed(p, new_mask);
4846 /* Can the task run on the task's current CPU? If so, we're done */
4847 if (cpumask_test_cpu(task_cpu(p), new_mask))
4850 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4851 if (task_running(rq, p) || p->state == TASK_WAKING) {
4852 struct migration_arg arg = { p, dest_cpu };
4853 /* Need help from migration thread: drop lock and wait. */
4854 task_rq_unlock(rq, p, &flags);
4855 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4856 tlb_migrate_finish(p->mm);
4858 } else if (task_on_rq_queued(p))
4859 rq = move_queued_task(p, dest_cpu);
4861 task_rq_unlock(rq, p, &flags);
4865 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4868 * Move (not current) task off this cpu, onto dest cpu. We're doing
4869 * this because either it can't run here any more (set_cpus_allowed()
4870 * away from this CPU, or CPU going down), or because we're
4871 * attempting to rebalance this task on exec (sched_exec).
4873 * So we race with normal scheduler movements, but that's OK, as long
4874 * as the task is no longer on this CPU.
4876 * Returns non-zero if task was successfully migrated.
4878 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4883 if (unlikely(!cpu_active(dest_cpu)))
4886 rq = cpu_rq(src_cpu);
4888 raw_spin_lock(&p->pi_lock);
4889 raw_spin_lock(&rq->lock);
4890 /* Already moved. */
4891 if (task_cpu(p) != src_cpu)
4894 /* Affinity changed (again). */
4895 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4899 * If we're not on a rq, the next wake-up will ensure we're
4902 if (task_on_rq_queued(p))
4903 rq = move_queued_task(p, dest_cpu);
4907 raw_spin_unlock(&rq->lock);
4908 raw_spin_unlock(&p->pi_lock);
4912 #ifdef CONFIG_NUMA_BALANCING
4913 /* Migrate current task p to target_cpu */
4914 int migrate_task_to(struct task_struct *p, int target_cpu)
4916 struct migration_arg arg = { p, target_cpu };
4917 int curr_cpu = task_cpu(p);
4919 if (curr_cpu == target_cpu)
4922 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4925 /* TODO: This is not properly updating schedstats */
4927 trace_sched_move_numa(p, curr_cpu, target_cpu);
4928 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4932 * Requeue a task on a given node and accurately track the number of NUMA
4933 * tasks on the runqueues
4935 void sched_setnuma(struct task_struct *p, int nid)
4938 unsigned long flags;
4939 bool queued, running;
4941 rq = task_rq_lock(p, &flags);
4942 queued = task_on_rq_queued(p);
4943 running = task_current(rq, p);
4946 dequeue_task(rq, p, 0);
4948 put_prev_task(rq, p);
4950 p->numa_preferred_nid = nid;
4953 p->sched_class->set_curr_task(rq);
4955 enqueue_task(rq, p, 0);
4956 task_rq_unlock(rq, p, &flags);
4961 * migration_cpu_stop - this will be executed by a highprio stopper thread
4962 * and performs thread migration by bumping thread off CPU then
4963 * 'pushing' onto another runqueue.
4965 static int migration_cpu_stop(void *data)
4967 struct migration_arg *arg = data;
4970 * The original target cpu might have gone down and we might
4971 * be on another cpu but it doesn't matter.
4973 local_irq_disable();
4975 * We need to explicitly wake pending tasks before running
4976 * __migrate_task() such that we will not miss enforcing cpus_allowed
4977 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4979 sched_ttwu_pending();
4980 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4985 #ifdef CONFIG_HOTPLUG_CPU
4988 * Ensures that the idle task is using init_mm right before its cpu goes
4991 void idle_task_exit(void)
4993 struct mm_struct *mm = current->active_mm;
4995 BUG_ON(cpu_online(smp_processor_id()));
4997 if (mm != &init_mm) {
4998 switch_mm(mm, &init_mm, current);
4999 finish_arch_post_lock_switch();
5005 * Since this CPU is going 'away' for a while, fold any nr_active delta
5006 * we might have. Assumes we're called after migrate_tasks() so that the
5007 * nr_active count is stable.
5009 * Also see the comment "Global load-average calculations".
5011 static void calc_load_migrate(struct rq *rq)
5013 long delta = calc_load_fold_active(rq);
5015 atomic_long_add(delta, &calc_load_tasks);
5018 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5022 static const struct sched_class fake_sched_class = {
5023 .put_prev_task = put_prev_task_fake,
5026 static struct task_struct fake_task = {
5028 * Avoid pull_{rt,dl}_task()
5030 .prio = MAX_PRIO + 1,
5031 .sched_class = &fake_sched_class,
5035 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5036 * try_to_wake_up()->select_task_rq().
5038 * Called with rq->lock held even though we'er in stop_machine() and
5039 * there's no concurrency possible, we hold the required locks anyway
5040 * because of lock validation efforts.
5042 static void migrate_tasks(unsigned int dead_cpu)
5044 struct rq *rq = cpu_rq(dead_cpu);
5045 struct task_struct *next, *stop = rq->stop;
5049 * Fudge the rq selection such that the below task selection loop
5050 * doesn't get stuck on the currently eligible stop task.
5052 * We're currently inside stop_machine() and the rq is either stuck
5053 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5054 * either way we should never end up calling schedule() until we're
5060 * put_prev_task() and pick_next_task() sched
5061 * class method both need to have an up-to-date
5062 * value of rq->clock[_task]
5064 update_rq_clock(rq);
5068 * There's this thread running, bail when that's the only
5071 if (rq->nr_running == 1)
5074 next = pick_next_task(rq, &fake_task);
5076 next->sched_class->put_prev_task(rq, next);
5078 /* Find suitable destination for @next, with force if needed. */
5079 dest_cpu = select_fallback_rq(dead_cpu, next);
5080 raw_spin_unlock(&rq->lock);
5082 __migrate_task(next, dead_cpu, dest_cpu);
5084 raw_spin_lock(&rq->lock);
5090 #endif /* CONFIG_HOTPLUG_CPU */
5092 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5094 static struct ctl_table sd_ctl_dir[] = {
5096 .procname = "sched_domain",
5102 static struct ctl_table sd_ctl_root[] = {
5104 .procname = "kernel",
5106 .child = sd_ctl_dir,
5111 static struct ctl_table *sd_alloc_ctl_entry(int n)
5113 struct ctl_table *entry =
5114 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5119 static void sd_free_ctl_entry(struct ctl_table **tablep)
5121 struct ctl_table *entry;
5124 * In the intermediate directories, both the child directory and
5125 * procname are dynamically allocated and could fail but the mode
5126 * will always be set. In the lowest directory the names are
5127 * static strings and all have proc handlers.
5129 for (entry = *tablep; entry->mode; entry++) {
5131 sd_free_ctl_entry(&entry->child);
5132 if (entry->proc_handler == NULL)
5133 kfree(entry->procname);
5140 static int min_load_idx = 0;
5141 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5144 set_table_entry(struct ctl_table *entry,
5145 const char *procname, void *data, int maxlen,
5146 umode_t mode, proc_handler *proc_handler,
5149 entry->procname = procname;
5151 entry->maxlen = maxlen;
5153 entry->proc_handler = proc_handler;
5156 entry->extra1 = &min_load_idx;
5157 entry->extra2 = &max_load_idx;
5161 static struct ctl_table *
5162 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5164 struct ctl_table *table = sd_alloc_ctl_entry(14);
5169 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5170 sizeof(long), 0644, proc_doulongvec_minmax, false);
5171 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5172 sizeof(long), 0644, proc_doulongvec_minmax, false);
5173 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5174 sizeof(int), 0644, proc_dointvec_minmax, true);
5175 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5176 sizeof(int), 0644, proc_dointvec_minmax, true);
5177 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5178 sizeof(int), 0644, proc_dointvec_minmax, true);
5179 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5180 sizeof(int), 0644, proc_dointvec_minmax, true);
5181 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5182 sizeof(int), 0644, proc_dointvec_minmax, true);
5183 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5184 sizeof(int), 0644, proc_dointvec_minmax, false);
5185 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5186 sizeof(int), 0644, proc_dointvec_minmax, false);
5187 set_table_entry(&table[9], "cache_nice_tries",
5188 &sd->cache_nice_tries,
5189 sizeof(int), 0644, proc_dointvec_minmax, false);
5190 set_table_entry(&table[10], "flags", &sd->flags,
5191 sizeof(int), 0644, proc_dointvec_minmax, false);
5192 set_table_entry(&table[11], "max_newidle_lb_cost",
5193 &sd->max_newidle_lb_cost,
5194 sizeof(long), 0644, proc_doulongvec_minmax, false);
5195 set_table_entry(&table[12], "name", sd->name,
5196 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5197 /* &table[13] is terminator */
5202 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5204 struct ctl_table *entry, *table;
5205 struct sched_domain *sd;
5206 int domain_num = 0, i;
5209 for_each_domain(cpu, sd)
5211 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5216 for_each_domain(cpu, sd) {
5217 snprintf(buf, 32, "domain%d", i);
5218 entry->procname = kstrdup(buf, GFP_KERNEL);
5220 entry->child = sd_alloc_ctl_domain_table(sd);
5227 static struct ctl_table_header *sd_sysctl_header;
5228 static void register_sched_domain_sysctl(void)
5230 int i, cpu_num = num_possible_cpus();
5231 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5234 WARN_ON(sd_ctl_dir[0].child);
5235 sd_ctl_dir[0].child = entry;
5240 for_each_possible_cpu(i) {
5241 snprintf(buf, 32, "cpu%d", i);
5242 entry->procname = kstrdup(buf, GFP_KERNEL);
5244 entry->child = sd_alloc_ctl_cpu_table(i);
5248 WARN_ON(sd_sysctl_header);
5249 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5252 /* may be called multiple times per register */
5253 static void unregister_sched_domain_sysctl(void)
5255 if (sd_sysctl_header)
5256 unregister_sysctl_table(sd_sysctl_header);
5257 sd_sysctl_header = NULL;
5258 if (sd_ctl_dir[0].child)
5259 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5262 static void register_sched_domain_sysctl(void)
5265 static void unregister_sched_domain_sysctl(void)
5270 static void set_rq_online(struct rq *rq)
5273 const struct sched_class *class;
5275 cpumask_set_cpu(rq->cpu, rq->rd->online);
5278 for_each_class(class) {
5279 if (class->rq_online)
5280 class->rq_online(rq);
5285 static void set_rq_offline(struct rq *rq)
5288 const struct sched_class *class;
5290 for_each_class(class) {
5291 if (class->rq_offline)
5292 class->rq_offline(rq);
5295 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5301 * migration_call - callback that gets triggered when a CPU is added.
5302 * Here we can start up the necessary migration thread for the new CPU.
5305 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5307 int cpu = (long)hcpu;
5308 unsigned long flags;
5309 struct rq *rq = cpu_rq(cpu);
5311 switch (action & ~CPU_TASKS_FROZEN) {
5313 case CPU_UP_PREPARE:
5314 rq->calc_load_update = calc_load_update;
5318 /* Update our root-domain */
5319 raw_spin_lock_irqsave(&rq->lock, flags);
5321 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5325 raw_spin_unlock_irqrestore(&rq->lock, flags);
5328 #ifdef CONFIG_HOTPLUG_CPU
5330 sched_ttwu_pending();
5331 /* Update our root-domain */
5332 raw_spin_lock_irqsave(&rq->lock, flags);
5334 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5338 BUG_ON(rq->nr_running != 1); /* the migration thread */
5339 raw_spin_unlock_irqrestore(&rq->lock, flags);
5343 calc_load_migrate(rq);
5348 update_max_interval();
5354 * Register at high priority so that task migration (migrate_all_tasks)
5355 * happens before everything else. This has to be lower priority than
5356 * the notifier in the perf_event subsystem, though.
5358 static struct notifier_block migration_notifier = {
5359 .notifier_call = migration_call,
5360 .priority = CPU_PRI_MIGRATION,
5363 static void __cpuinit set_cpu_rq_start_time(void)
5365 int cpu = smp_processor_id();
5366 struct rq *rq = cpu_rq(cpu);
5367 rq->age_stamp = sched_clock_cpu(cpu);
5370 static int sched_cpu_active(struct notifier_block *nfb,
5371 unsigned long action, void *hcpu)
5373 switch (action & ~CPU_TASKS_FROZEN) {
5375 set_cpu_rq_start_time();
5377 case CPU_DOWN_FAILED:
5378 set_cpu_active((long)hcpu, true);
5385 static int sched_cpu_inactive(struct notifier_block *nfb,
5386 unsigned long action, void *hcpu)
5388 unsigned long flags;
5389 long cpu = (long)hcpu;
5392 switch (action & ~CPU_TASKS_FROZEN) {
5393 case CPU_DOWN_PREPARE:
5394 set_cpu_active(cpu, false);
5396 /* explicitly allow suspend */
5397 if (!(action & CPU_TASKS_FROZEN)) {
5401 rcu_read_lock_sched();
5402 dl_b = dl_bw_of(cpu);
5404 raw_spin_lock_irqsave(&dl_b->lock, flags);
5405 cpus = dl_bw_cpus(cpu);
5406 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5407 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5409 rcu_read_unlock_sched();
5412 return notifier_from_errno(-EBUSY);
5420 static int __init migration_init(void)
5422 void *cpu = (void *)(long)smp_processor_id();
5425 /* Initialize migration for the boot CPU */
5426 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5427 BUG_ON(err == NOTIFY_BAD);
5428 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5429 register_cpu_notifier(&migration_notifier);
5431 /* Register cpu active notifiers */
5432 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5433 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5437 early_initcall(migration_init);
5442 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5444 #ifdef CONFIG_SCHED_DEBUG
5446 static __read_mostly int sched_debug_enabled;
5448 static int __init sched_debug_setup(char *str)
5450 sched_debug_enabled = 1;
5454 early_param("sched_debug", sched_debug_setup);
5456 static inline bool sched_debug(void)
5458 return sched_debug_enabled;
5461 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5462 struct cpumask *groupmask)
5464 struct sched_group *group = sd->groups;
5467 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5468 cpumask_clear(groupmask);
5470 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5472 if (!(sd->flags & SD_LOAD_BALANCE)) {
5473 printk("does not load-balance\n");
5475 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5482 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5483 printk(KERN_ERR "ERROR: domain->span does not contain "
5486 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5487 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5495 printk(KERN_ERR "ERROR: group is NULL\n");
5500 * Even though we initialize ->capacity to something semi-sane,
5501 * we leave capacity_orig unset. This allows us to detect if
5502 * domain iteration is still funny without causing /0 traps.
5504 if (!group->sgc->capacity_orig) {
5505 printk(KERN_CONT "\n");
5506 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5510 if (!cpumask_weight(sched_group_cpus(group))) {
5511 printk(KERN_CONT "\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5516 if (!(sd->flags & SD_OVERLAP) &&
5517 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5518 printk(KERN_CONT "\n");
5519 printk(KERN_ERR "ERROR: repeated CPUs\n");
5523 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5525 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5527 printk(KERN_CONT " %s", str);
5528 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5529 printk(KERN_CONT " (cpu_capacity = %d)",
5530 group->sgc->capacity);
5533 group = group->next;
5534 } while (group != sd->groups);
5535 printk(KERN_CONT "\n");
5537 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5538 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5541 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5542 printk(KERN_ERR "ERROR: parent span is not a superset "
5543 "of domain->span\n");
5547 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5551 if (!sched_debug_enabled)
5555 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5559 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5562 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5570 #else /* !CONFIG_SCHED_DEBUG */
5571 # define sched_domain_debug(sd, cpu) do { } while (0)
5572 static inline bool sched_debug(void)
5576 #endif /* CONFIG_SCHED_DEBUG */
5578 static int sd_degenerate(struct sched_domain *sd)
5580 if (cpumask_weight(sched_domain_span(sd)) == 1)
5583 /* Following flags need at least 2 groups */
5584 if (sd->flags & (SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5588 SD_SHARE_CPUCAPACITY |
5589 SD_SHARE_PKG_RESOURCES |
5590 SD_SHARE_POWERDOMAIN)) {
5591 if (sd->groups != sd->groups->next)
5595 /* Following flags don't use groups */
5596 if (sd->flags & (SD_WAKE_AFFINE))
5603 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5605 unsigned long cflags = sd->flags, pflags = parent->flags;
5607 if (sd_degenerate(parent))
5610 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5613 /* Flags needing groups don't count if only 1 group in parent */
5614 if (parent->groups == parent->groups->next) {
5615 pflags &= ~(SD_LOAD_BALANCE |
5616 SD_BALANCE_NEWIDLE |
5619 SD_SHARE_CPUCAPACITY |
5620 SD_SHARE_PKG_RESOURCES |
5622 SD_SHARE_POWERDOMAIN);
5623 if (nr_node_ids == 1)
5624 pflags &= ~SD_SERIALIZE;
5626 if (~cflags & pflags)
5632 static void free_rootdomain(struct rcu_head *rcu)
5634 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5636 cpupri_cleanup(&rd->cpupri);
5637 cpudl_cleanup(&rd->cpudl);
5638 free_cpumask_var(rd->dlo_mask);
5639 free_cpumask_var(rd->rto_mask);
5640 free_cpumask_var(rd->online);
5641 free_cpumask_var(rd->span);
5645 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5647 struct root_domain *old_rd = NULL;
5648 unsigned long flags;
5650 raw_spin_lock_irqsave(&rq->lock, flags);
5655 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5658 cpumask_clear_cpu(rq->cpu, old_rd->span);
5661 * If we dont want to free the old_rd yet then
5662 * set old_rd to NULL to skip the freeing later
5665 if (!atomic_dec_and_test(&old_rd->refcount))
5669 atomic_inc(&rd->refcount);
5672 cpumask_set_cpu(rq->cpu, rd->span);
5673 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5676 raw_spin_unlock_irqrestore(&rq->lock, flags);
5679 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5682 static int init_rootdomain(struct root_domain *rd)
5684 memset(rd, 0, sizeof(*rd));
5686 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5688 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5690 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5692 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5695 init_dl_bw(&rd->dl_bw);
5696 if (cpudl_init(&rd->cpudl) != 0)
5699 if (cpupri_init(&rd->cpupri) != 0)
5704 free_cpumask_var(rd->rto_mask);
5706 free_cpumask_var(rd->dlo_mask);
5708 free_cpumask_var(rd->online);
5710 free_cpumask_var(rd->span);
5716 * By default the system creates a single root-domain with all cpus as
5717 * members (mimicking the global state we have today).
5719 struct root_domain def_root_domain;
5721 static void init_defrootdomain(void)
5723 init_rootdomain(&def_root_domain);
5725 atomic_set(&def_root_domain.refcount, 1);
5728 static struct root_domain *alloc_rootdomain(void)
5730 struct root_domain *rd;
5732 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5736 if (init_rootdomain(rd) != 0) {
5744 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5746 struct sched_group *tmp, *first;
5755 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5760 } while (sg != first);
5763 static void free_sched_domain(struct rcu_head *rcu)
5765 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5768 * If its an overlapping domain it has private groups, iterate and
5771 if (sd->flags & SD_OVERLAP) {
5772 free_sched_groups(sd->groups, 1);
5773 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5774 kfree(sd->groups->sgc);
5780 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5782 call_rcu(&sd->rcu, free_sched_domain);
5785 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5787 for (; sd; sd = sd->parent)
5788 destroy_sched_domain(sd, cpu);
5792 * Keep a special pointer to the highest sched_domain that has
5793 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5794 * allows us to avoid some pointer chasing select_idle_sibling().
5796 * Also keep a unique ID per domain (we use the first cpu number in
5797 * the cpumask of the domain), this allows us to quickly tell if
5798 * two cpus are in the same cache domain, see cpus_share_cache().
5800 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5801 DEFINE_PER_CPU(int, sd_llc_size);
5802 DEFINE_PER_CPU(int, sd_llc_id);
5803 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5804 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5805 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5807 static void update_top_cache_domain(int cpu)
5809 struct sched_domain *sd;
5810 struct sched_domain *busy_sd = NULL;
5814 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5816 id = cpumask_first(sched_domain_span(sd));
5817 size = cpumask_weight(sched_domain_span(sd));
5818 busy_sd = sd->parent; /* sd_busy */
5820 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5822 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5823 per_cpu(sd_llc_size, cpu) = size;
5824 per_cpu(sd_llc_id, cpu) = id;
5826 sd = lowest_flag_domain(cpu, SD_NUMA);
5827 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5829 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5830 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5834 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5835 * hold the hotplug lock.
5838 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5840 struct rq *rq = cpu_rq(cpu);
5841 struct sched_domain *tmp;
5843 /* Remove the sched domains which do not contribute to scheduling. */
5844 for (tmp = sd; tmp; ) {
5845 struct sched_domain *parent = tmp->parent;
5849 if (sd_parent_degenerate(tmp, parent)) {
5850 tmp->parent = parent->parent;
5852 parent->parent->child = tmp;
5854 * Transfer SD_PREFER_SIBLING down in case of a
5855 * degenerate parent; the spans match for this
5856 * so the property transfers.
5858 if (parent->flags & SD_PREFER_SIBLING)
5859 tmp->flags |= SD_PREFER_SIBLING;
5860 destroy_sched_domain(parent, cpu);
5865 if (sd && sd_degenerate(sd)) {
5868 destroy_sched_domain(tmp, cpu);
5873 sched_domain_debug(sd, cpu);
5875 rq_attach_root(rq, rd);
5877 rcu_assign_pointer(rq->sd, sd);
5878 destroy_sched_domains(tmp, cpu);
5880 update_top_cache_domain(cpu);
5883 /* cpus with isolated domains */
5884 static cpumask_var_t cpu_isolated_map;
5886 /* Setup the mask of cpus configured for isolated domains */
5887 static int __init isolated_cpu_setup(char *str)
5889 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5890 cpulist_parse(str, cpu_isolated_map);
5894 __setup("isolcpus=", isolated_cpu_setup);
5897 struct sched_domain ** __percpu sd;
5898 struct root_domain *rd;
5909 * Build an iteration mask that can exclude certain CPUs from the upwards
5912 * Asymmetric node setups can result in situations where the domain tree is of
5913 * unequal depth, make sure to skip domains that already cover the entire
5916 * In that case build_sched_domains() will have terminated the iteration early
5917 * and our sibling sd spans will be empty. Domains should always include the
5918 * cpu they're built on, so check that.
5921 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5923 const struct cpumask *span = sched_domain_span(sd);
5924 struct sd_data *sdd = sd->private;
5925 struct sched_domain *sibling;
5928 for_each_cpu(i, span) {
5929 sibling = *per_cpu_ptr(sdd->sd, i);
5930 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5933 cpumask_set_cpu(i, sched_group_mask(sg));
5938 * Return the canonical balance cpu for this group, this is the first cpu
5939 * of this group that's also in the iteration mask.
5941 int group_balance_cpu(struct sched_group *sg)
5943 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5947 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5949 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5950 const struct cpumask *span = sched_domain_span(sd);
5951 struct cpumask *covered = sched_domains_tmpmask;
5952 struct sd_data *sdd = sd->private;
5953 struct sched_domain *sibling;
5956 cpumask_clear(covered);
5958 for_each_cpu(i, span) {
5959 struct cpumask *sg_span;
5961 if (cpumask_test_cpu(i, covered))
5964 sibling = *per_cpu_ptr(sdd->sd, i);
5966 /* See the comment near build_group_mask(). */
5967 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5970 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5971 GFP_KERNEL, cpu_to_node(cpu));
5976 sg_span = sched_group_cpus(sg);
5978 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5980 cpumask_set_cpu(i, sg_span);
5982 cpumask_or(covered, covered, sg_span);
5984 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5985 if (atomic_inc_return(&sg->sgc->ref) == 1)
5986 build_group_mask(sd, sg);
5989 * Initialize sgc->capacity such that even if we mess up the
5990 * domains and no possible iteration will get us here, we won't
5993 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5994 sg->sgc->capacity_orig = sg->sgc->capacity;
5997 * Make sure the first group of this domain contains the
5998 * canonical balance cpu. Otherwise the sched_domain iteration
5999 * breaks. See update_sg_lb_stats().
6001 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6002 group_balance_cpu(sg) == cpu)
6012 sd->groups = groups;
6017 free_sched_groups(first, 0);
6022 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6024 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6025 struct sched_domain *child = sd->child;
6028 cpu = cpumask_first(sched_domain_span(child));
6031 *sg = *per_cpu_ptr(sdd->sg, cpu);
6032 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6033 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6040 * build_sched_groups will build a circular linked list of the groups
6041 * covered by the given span, and will set each group's ->cpumask correctly,
6042 * and ->cpu_capacity to 0.
6044 * Assumes the sched_domain tree is fully constructed
6047 build_sched_groups(struct sched_domain *sd, int cpu)
6049 struct sched_group *first = NULL, *last = NULL;
6050 struct sd_data *sdd = sd->private;
6051 const struct cpumask *span = sched_domain_span(sd);
6052 struct cpumask *covered;
6055 get_group(cpu, sdd, &sd->groups);
6056 atomic_inc(&sd->groups->ref);
6058 if (cpu != cpumask_first(span))
6061 lockdep_assert_held(&sched_domains_mutex);
6062 covered = sched_domains_tmpmask;
6064 cpumask_clear(covered);
6066 for_each_cpu(i, span) {
6067 struct sched_group *sg;
6070 if (cpumask_test_cpu(i, covered))
6073 group = get_group(i, sdd, &sg);
6074 cpumask_setall(sched_group_mask(sg));
6076 for_each_cpu(j, span) {
6077 if (get_group(j, sdd, NULL) != group)
6080 cpumask_set_cpu(j, covered);
6081 cpumask_set_cpu(j, sched_group_cpus(sg));
6096 * Initialize sched groups cpu_capacity.
6098 * cpu_capacity indicates the capacity of sched group, which is used while
6099 * distributing the load between different sched groups in a sched domain.
6100 * Typically cpu_capacity for all the groups in a sched domain will be same
6101 * unless there are asymmetries in the topology. If there are asymmetries,
6102 * group having more cpu_capacity will pickup more load compared to the
6103 * group having less cpu_capacity.
6105 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6107 struct sched_group *sg = sd->groups;
6112 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6114 } while (sg != sd->groups);
6116 if (cpu != group_balance_cpu(sg))
6119 update_group_capacity(sd, cpu);
6120 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6124 * Initializers for schedule domains
6125 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6128 static int default_relax_domain_level = -1;
6129 int sched_domain_level_max;
6131 static int __init setup_relax_domain_level(char *str)
6133 if (kstrtoint(str, 0, &default_relax_domain_level))
6134 pr_warn("Unable to set relax_domain_level\n");
6138 __setup("relax_domain_level=", setup_relax_domain_level);
6140 static void set_domain_attribute(struct sched_domain *sd,
6141 struct sched_domain_attr *attr)
6145 if (!attr || attr->relax_domain_level < 0) {
6146 if (default_relax_domain_level < 0)
6149 request = default_relax_domain_level;
6151 request = attr->relax_domain_level;
6152 if (request < sd->level) {
6153 /* turn off idle balance on this domain */
6154 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6156 /* turn on idle balance on this domain */
6157 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6161 static void __sdt_free(const struct cpumask *cpu_map);
6162 static int __sdt_alloc(const struct cpumask *cpu_map);
6164 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6165 const struct cpumask *cpu_map)
6169 if (!atomic_read(&d->rd->refcount))
6170 free_rootdomain(&d->rd->rcu); /* fall through */
6172 free_percpu(d->sd); /* fall through */
6174 __sdt_free(cpu_map); /* fall through */
6180 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6181 const struct cpumask *cpu_map)
6183 memset(d, 0, sizeof(*d));
6185 if (__sdt_alloc(cpu_map))
6186 return sa_sd_storage;
6187 d->sd = alloc_percpu(struct sched_domain *);
6189 return sa_sd_storage;
6190 d->rd = alloc_rootdomain();
6193 return sa_rootdomain;
6197 * NULL the sd_data elements we've used to build the sched_domain and
6198 * sched_group structure so that the subsequent __free_domain_allocs()
6199 * will not free the data we're using.
6201 static void claim_allocations(int cpu, struct sched_domain *sd)
6203 struct sd_data *sdd = sd->private;
6205 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6206 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6208 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6209 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6211 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6212 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6216 static int sched_domains_numa_levels;
6217 enum numa_topology_type sched_numa_topology_type;
6218 static int *sched_domains_numa_distance;
6219 int sched_max_numa_distance;
6220 static struct cpumask ***sched_domains_numa_masks;
6221 static int sched_domains_curr_level;
6225 * SD_flags allowed in topology descriptions.
6227 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6228 * SD_SHARE_PKG_RESOURCES - describes shared caches
6229 * SD_NUMA - describes NUMA topologies
6230 * SD_SHARE_POWERDOMAIN - describes shared power domain
6233 * SD_ASYM_PACKING - describes SMT quirks
6235 #define TOPOLOGY_SD_FLAGS \
6236 (SD_SHARE_CPUCAPACITY | \
6237 SD_SHARE_PKG_RESOURCES | \
6240 SD_SHARE_POWERDOMAIN)
6242 static struct sched_domain *
6243 sd_init(struct sched_domain_topology_level *tl, int cpu)
6245 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6246 int sd_weight, sd_flags = 0;
6250 * Ugly hack to pass state to sd_numa_mask()...
6252 sched_domains_curr_level = tl->numa_level;
6255 sd_weight = cpumask_weight(tl->mask(cpu));
6258 sd_flags = (*tl->sd_flags)();
6259 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6260 "wrong sd_flags in topology description\n"))
6261 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6263 *sd = (struct sched_domain){
6264 .min_interval = sd_weight,
6265 .max_interval = 2*sd_weight,
6267 .imbalance_pct = 125,
6269 .cache_nice_tries = 0,
6276 .flags = 1*SD_LOAD_BALANCE
6277 | 1*SD_BALANCE_NEWIDLE
6282 | 0*SD_SHARE_CPUCAPACITY
6283 | 0*SD_SHARE_PKG_RESOURCES
6285 | 0*SD_PREFER_SIBLING
6290 .last_balance = jiffies,
6291 .balance_interval = sd_weight,
6293 .max_newidle_lb_cost = 0,
6294 .next_decay_max_lb_cost = jiffies,
6295 #ifdef CONFIG_SCHED_DEBUG
6301 * Convert topological properties into behaviour.
6304 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6305 sd->imbalance_pct = 110;
6306 sd->smt_gain = 1178; /* ~15% */
6308 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6309 sd->imbalance_pct = 117;
6310 sd->cache_nice_tries = 1;
6314 } else if (sd->flags & SD_NUMA) {
6315 sd->cache_nice_tries = 2;
6319 sd->flags |= SD_SERIALIZE;
6320 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6321 sd->flags &= ~(SD_BALANCE_EXEC |
6328 sd->flags |= SD_PREFER_SIBLING;
6329 sd->cache_nice_tries = 1;
6334 sd->private = &tl->data;
6340 * Topology list, bottom-up.
6342 static struct sched_domain_topology_level default_topology[] = {
6343 #ifdef CONFIG_SCHED_SMT
6344 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6346 #ifdef CONFIG_SCHED_MC
6347 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6349 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6353 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6355 #define for_each_sd_topology(tl) \
6356 for (tl = sched_domain_topology; tl->mask; tl++)
6358 void set_sched_topology(struct sched_domain_topology_level *tl)
6360 sched_domain_topology = tl;
6365 static const struct cpumask *sd_numa_mask(int cpu)
6367 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6370 static void sched_numa_warn(const char *str)
6372 static int done = false;
6380 printk(KERN_WARNING "ERROR: %s\n\n", str);
6382 for (i = 0; i < nr_node_ids; i++) {
6383 printk(KERN_WARNING " ");
6384 for (j = 0; j < nr_node_ids; j++)
6385 printk(KERN_CONT "%02d ", node_distance(i,j));
6386 printk(KERN_CONT "\n");
6388 printk(KERN_WARNING "\n");
6391 bool find_numa_distance(int distance)
6395 if (distance == node_distance(0, 0))
6398 for (i = 0; i < sched_domains_numa_levels; i++) {
6399 if (sched_domains_numa_distance[i] == distance)
6407 * A system can have three types of NUMA topology:
6408 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6409 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6410 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6412 * The difference between a glueless mesh topology and a backplane
6413 * topology lies in whether communication between not directly
6414 * connected nodes goes through intermediary nodes (where programs
6415 * could run), or through backplane controllers. This affects
6416 * placement of programs.
6418 * The type of topology can be discerned with the following tests:
6419 * - If the maximum distance between any nodes is 1 hop, the system
6420 * is directly connected.
6421 * - If for two nodes A and B, located N > 1 hops away from each other,
6422 * there is an intermediary node C, which is < N hops away from both
6423 * nodes A and B, the system is a glueless mesh.
6425 static void init_numa_topology_type(void)
6429 n = sched_max_numa_distance;
6432 sched_numa_topology_type = NUMA_DIRECT;
6434 for_each_online_node(a) {
6435 for_each_online_node(b) {
6436 /* Find two nodes furthest removed from each other. */
6437 if (node_distance(a, b) < n)
6440 /* Is there an intermediary node between a and b? */
6441 for_each_online_node(c) {
6442 if (node_distance(a, c) < n &&
6443 node_distance(b, c) < n) {
6444 sched_numa_topology_type =
6450 sched_numa_topology_type = NUMA_BACKPLANE;
6456 static void sched_init_numa(void)
6458 int next_distance, curr_distance = node_distance(0, 0);
6459 struct sched_domain_topology_level *tl;
6463 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6464 if (!sched_domains_numa_distance)
6468 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6469 * unique distances in the node_distance() table.
6471 * Assumes node_distance(0,j) includes all distances in
6472 * node_distance(i,j) in order to avoid cubic time.
6474 next_distance = curr_distance;
6475 for (i = 0; i < nr_node_ids; i++) {
6476 for (j = 0; j < nr_node_ids; j++) {
6477 for (k = 0; k < nr_node_ids; k++) {
6478 int distance = node_distance(i, k);
6480 if (distance > curr_distance &&
6481 (distance < next_distance ||
6482 next_distance == curr_distance))
6483 next_distance = distance;
6486 * While not a strong assumption it would be nice to know
6487 * about cases where if node A is connected to B, B is not
6488 * equally connected to A.
6490 if (sched_debug() && node_distance(k, i) != distance)
6491 sched_numa_warn("Node-distance not symmetric");
6493 if (sched_debug() && i && !find_numa_distance(distance))
6494 sched_numa_warn("Node-0 not representative");
6496 if (next_distance != curr_distance) {
6497 sched_domains_numa_distance[level++] = next_distance;
6498 sched_domains_numa_levels = level;
6499 curr_distance = next_distance;
6504 * In case of sched_debug() we verify the above assumption.
6514 * 'level' contains the number of unique distances, excluding the
6515 * identity distance node_distance(i,i).
6517 * The sched_domains_numa_distance[] array includes the actual distance
6522 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6523 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6524 * the array will contain less then 'level' members. This could be
6525 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6526 * in other functions.
6528 * We reset it to 'level' at the end of this function.
6530 sched_domains_numa_levels = 0;
6532 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6533 if (!sched_domains_numa_masks)
6537 * Now for each level, construct a mask per node which contains all
6538 * cpus of nodes that are that many hops away from us.
6540 for (i = 0; i < level; i++) {
6541 sched_domains_numa_masks[i] =
6542 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6543 if (!sched_domains_numa_masks[i])
6546 for (j = 0; j < nr_node_ids; j++) {
6547 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6551 sched_domains_numa_masks[i][j] = mask;
6553 for (k = 0; k < nr_node_ids; k++) {
6554 if (node_distance(j, k) > sched_domains_numa_distance[i])
6557 cpumask_or(mask, mask, cpumask_of_node(k));
6562 /* Compute default topology size */
6563 for (i = 0; sched_domain_topology[i].mask; i++);
6565 tl = kzalloc((i + level + 1) *
6566 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6571 * Copy the default topology bits..
6573 for (i = 0; sched_domain_topology[i].mask; i++)
6574 tl[i] = sched_domain_topology[i];
6577 * .. and append 'j' levels of NUMA goodness.
6579 for (j = 0; j < level; i++, j++) {
6580 tl[i] = (struct sched_domain_topology_level){
6581 .mask = sd_numa_mask,
6582 .sd_flags = cpu_numa_flags,
6583 .flags = SDTL_OVERLAP,
6589 sched_domain_topology = tl;
6591 sched_domains_numa_levels = level;
6592 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6594 init_numa_topology_type();
6597 static void sched_domains_numa_masks_set(int cpu)
6600 int node = cpu_to_node(cpu);
6602 for (i = 0; i < sched_domains_numa_levels; i++) {
6603 for (j = 0; j < nr_node_ids; j++) {
6604 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6605 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6610 static void sched_domains_numa_masks_clear(int cpu)
6613 for (i = 0; i < sched_domains_numa_levels; i++) {
6614 for (j = 0; j < nr_node_ids; j++)
6615 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6620 * Update sched_domains_numa_masks[level][node] array when new cpus
6623 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6624 unsigned long action,
6627 int cpu = (long)hcpu;
6629 switch (action & ~CPU_TASKS_FROZEN) {
6631 sched_domains_numa_masks_set(cpu);
6635 sched_domains_numa_masks_clear(cpu);
6645 static inline void sched_init_numa(void)
6649 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6650 unsigned long action,
6655 #endif /* CONFIG_NUMA */
6657 static int __sdt_alloc(const struct cpumask *cpu_map)
6659 struct sched_domain_topology_level *tl;
6662 for_each_sd_topology(tl) {
6663 struct sd_data *sdd = &tl->data;
6665 sdd->sd = alloc_percpu(struct sched_domain *);
6669 sdd->sg = alloc_percpu(struct sched_group *);
6673 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6677 for_each_cpu(j, cpu_map) {
6678 struct sched_domain *sd;
6679 struct sched_group *sg;
6680 struct sched_group_capacity *sgc;
6682 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6683 GFP_KERNEL, cpu_to_node(j));
6687 *per_cpu_ptr(sdd->sd, j) = sd;
6689 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6690 GFP_KERNEL, cpu_to_node(j));
6696 *per_cpu_ptr(sdd->sg, j) = sg;
6698 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6699 GFP_KERNEL, cpu_to_node(j));
6703 *per_cpu_ptr(sdd->sgc, j) = sgc;
6710 static void __sdt_free(const struct cpumask *cpu_map)
6712 struct sched_domain_topology_level *tl;
6715 for_each_sd_topology(tl) {
6716 struct sd_data *sdd = &tl->data;
6718 for_each_cpu(j, cpu_map) {
6719 struct sched_domain *sd;
6722 sd = *per_cpu_ptr(sdd->sd, j);
6723 if (sd && (sd->flags & SD_OVERLAP))
6724 free_sched_groups(sd->groups, 0);
6725 kfree(*per_cpu_ptr(sdd->sd, j));
6729 kfree(*per_cpu_ptr(sdd->sg, j));
6731 kfree(*per_cpu_ptr(sdd->sgc, j));
6733 free_percpu(sdd->sd);
6735 free_percpu(sdd->sg);
6737 free_percpu(sdd->sgc);
6742 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6743 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6744 struct sched_domain *child, int cpu)
6746 struct sched_domain *sd = sd_init(tl, cpu);
6750 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6752 sd->level = child->level + 1;
6753 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6757 if (!cpumask_subset(sched_domain_span(child),
6758 sched_domain_span(sd))) {
6759 pr_err("BUG: arch topology borken\n");
6760 #ifdef CONFIG_SCHED_DEBUG
6761 pr_err(" the %s domain not a subset of the %s domain\n",
6762 child->name, sd->name);
6764 /* Fixup, ensure @sd has at least @child cpus. */
6765 cpumask_or(sched_domain_span(sd),
6766 sched_domain_span(sd),
6767 sched_domain_span(child));
6771 set_domain_attribute(sd, attr);
6777 * Build sched domains for a given set of cpus and attach the sched domains
6778 * to the individual cpus
6780 static int build_sched_domains(const struct cpumask *cpu_map,
6781 struct sched_domain_attr *attr)
6783 enum s_alloc alloc_state;
6784 struct sched_domain *sd;
6786 int i, ret = -ENOMEM;
6788 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6789 if (alloc_state != sa_rootdomain)
6792 /* Set up domains for cpus specified by the cpu_map. */
6793 for_each_cpu(i, cpu_map) {
6794 struct sched_domain_topology_level *tl;
6797 for_each_sd_topology(tl) {
6798 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6799 if (tl == sched_domain_topology)
6800 *per_cpu_ptr(d.sd, i) = sd;
6801 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6802 sd->flags |= SD_OVERLAP;
6803 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6808 /* Build the groups for the domains */
6809 for_each_cpu(i, cpu_map) {
6810 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6811 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6812 if (sd->flags & SD_OVERLAP) {
6813 if (build_overlap_sched_groups(sd, i))
6816 if (build_sched_groups(sd, i))
6822 /* Calculate CPU capacity for physical packages and nodes */
6823 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6824 if (!cpumask_test_cpu(i, cpu_map))
6827 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6828 claim_allocations(i, sd);
6829 init_sched_groups_capacity(i, sd);
6833 /* Attach the domains */
6835 for_each_cpu(i, cpu_map) {
6836 sd = *per_cpu_ptr(d.sd, i);
6837 cpu_attach_domain(sd, d.rd, i);
6843 __free_domain_allocs(&d, alloc_state, cpu_map);
6847 static cpumask_var_t *doms_cur; /* current sched domains */
6848 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6849 static struct sched_domain_attr *dattr_cur;
6850 /* attribues of custom domains in 'doms_cur' */
6853 * Special case: If a kmalloc of a doms_cur partition (array of
6854 * cpumask) fails, then fallback to a single sched domain,
6855 * as determined by the single cpumask fallback_doms.
6857 static cpumask_var_t fallback_doms;
6860 * arch_update_cpu_topology lets virtualized architectures update the
6861 * cpu core maps. It is supposed to return 1 if the topology changed
6862 * or 0 if it stayed the same.
6864 int __weak arch_update_cpu_topology(void)
6869 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6872 cpumask_var_t *doms;
6874 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6877 for (i = 0; i < ndoms; i++) {
6878 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6879 free_sched_domains(doms, i);
6886 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6889 for (i = 0; i < ndoms; i++)
6890 free_cpumask_var(doms[i]);
6895 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6896 * For now this just excludes isolated cpus, but could be used to
6897 * exclude other special cases in the future.
6899 static int init_sched_domains(const struct cpumask *cpu_map)
6903 arch_update_cpu_topology();
6905 doms_cur = alloc_sched_domains(ndoms_cur);
6907 doms_cur = &fallback_doms;
6908 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6909 err = build_sched_domains(doms_cur[0], NULL);
6910 register_sched_domain_sysctl();
6916 * Detach sched domains from a group of cpus specified in cpu_map
6917 * These cpus will now be attached to the NULL domain
6919 static void detach_destroy_domains(const struct cpumask *cpu_map)
6924 for_each_cpu(i, cpu_map)
6925 cpu_attach_domain(NULL, &def_root_domain, i);
6929 /* handle null as "default" */
6930 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6931 struct sched_domain_attr *new, int idx_new)
6933 struct sched_domain_attr tmp;
6940 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6941 new ? (new + idx_new) : &tmp,
6942 sizeof(struct sched_domain_attr));
6946 * Partition sched domains as specified by the 'ndoms_new'
6947 * cpumasks in the array doms_new[] of cpumasks. This compares
6948 * doms_new[] to the current sched domain partitioning, doms_cur[].
6949 * It destroys each deleted domain and builds each new domain.
6951 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6952 * The masks don't intersect (don't overlap.) We should setup one
6953 * sched domain for each mask. CPUs not in any of the cpumasks will
6954 * not be load balanced. If the same cpumask appears both in the
6955 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6958 * The passed in 'doms_new' should be allocated using
6959 * alloc_sched_domains. This routine takes ownership of it and will
6960 * free_sched_domains it when done with it. If the caller failed the
6961 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6962 * and partition_sched_domains() will fallback to the single partition
6963 * 'fallback_doms', it also forces the domains to be rebuilt.
6965 * If doms_new == NULL it will be replaced with cpu_online_mask.
6966 * ndoms_new == 0 is a special case for destroying existing domains,
6967 * and it will not create the default domain.
6969 * Call with hotplug lock held
6971 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6972 struct sched_domain_attr *dattr_new)
6977 mutex_lock(&sched_domains_mutex);
6979 /* always unregister in case we don't destroy any domains */
6980 unregister_sched_domain_sysctl();
6982 /* Let architecture update cpu core mappings. */
6983 new_topology = arch_update_cpu_topology();
6985 n = doms_new ? ndoms_new : 0;
6987 /* Destroy deleted domains */
6988 for (i = 0; i < ndoms_cur; i++) {
6989 for (j = 0; j < n && !new_topology; j++) {
6990 if (cpumask_equal(doms_cur[i], doms_new[j])
6991 && dattrs_equal(dattr_cur, i, dattr_new, j))
6994 /* no match - a current sched domain not in new doms_new[] */
6995 detach_destroy_domains(doms_cur[i]);
7001 if (doms_new == NULL) {
7003 doms_new = &fallback_doms;
7004 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7005 WARN_ON_ONCE(dattr_new);
7008 /* Build new domains */
7009 for (i = 0; i < ndoms_new; i++) {
7010 for (j = 0; j < n && !new_topology; j++) {
7011 if (cpumask_equal(doms_new[i], doms_cur[j])
7012 && dattrs_equal(dattr_new, i, dattr_cur, j))
7015 /* no match - add a new doms_new */
7016 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7021 /* Remember the new sched domains */
7022 if (doms_cur != &fallback_doms)
7023 free_sched_domains(doms_cur, ndoms_cur);
7024 kfree(dattr_cur); /* kfree(NULL) is safe */
7025 doms_cur = doms_new;
7026 dattr_cur = dattr_new;
7027 ndoms_cur = ndoms_new;
7029 register_sched_domain_sysctl();
7031 mutex_unlock(&sched_domains_mutex);
7034 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7037 * Update cpusets according to cpu_active mask. If cpusets are
7038 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7039 * around partition_sched_domains().
7041 * If we come here as part of a suspend/resume, don't touch cpusets because we
7042 * want to restore it back to its original state upon resume anyway.
7044 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7048 case CPU_ONLINE_FROZEN:
7049 case CPU_DOWN_FAILED_FROZEN:
7052 * num_cpus_frozen tracks how many CPUs are involved in suspend
7053 * resume sequence. As long as this is not the last online
7054 * operation in the resume sequence, just build a single sched
7055 * domain, ignoring cpusets.
7058 if (likely(num_cpus_frozen)) {
7059 partition_sched_domains(1, NULL, NULL);
7064 * This is the last CPU online operation. So fall through and
7065 * restore the original sched domains by considering the
7066 * cpuset configurations.
7070 case CPU_DOWN_FAILED:
7071 cpuset_update_active_cpus(true);
7079 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7083 case CPU_DOWN_PREPARE:
7084 cpuset_update_active_cpus(false);
7086 case CPU_DOWN_PREPARE_FROZEN:
7088 partition_sched_domains(1, NULL, NULL);
7096 void __init sched_init_smp(void)
7098 cpumask_var_t non_isolated_cpus;
7100 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7101 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7106 * There's no userspace yet to cause hotplug operations; hence all the
7107 * cpu masks are stable and all blatant races in the below code cannot
7110 mutex_lock(&sched_domains_mutex);
7111 init_sched_domains(cpu_active_mask);
7112 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7113 if (cpumask_empty(non_isolated_cpus))
7114 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7115 mutex_unlock(&sched_domains_mutex);
7117 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7118 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7119 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7123 /* Move init over to a non-isolated CPU */
7124 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7126 sched_init_granularity();
7127 free_cpumask_var(non_isolated_cpus);
7129 init_sched_rt_class();
7130 init_sched_dl_class();
7133 void __init sched_init_smp(void)
7135 sched_init_granularity();
7137 #endif /* CONFIG_SMP */
7139 const_debug unsigned int sysctl_timer_migration = 1;
7141 int in_sched_functions(unsigned long addr)
7143 return in_lock_functions(addr) ||
7144 (addr >= (unsigned long)__sched_text_start
7145 && addr < (unsigned long)__sched_text_end);
7148 #ifdef CONFIG_CGROUP_SCHED
7150 * Default task group.
7151 * Every task in system belongs to this group at bootup.
7153 struct task_group root_task_group;
7154 LIST_HEAD(task_groups);
7157 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7159 void __init sched_init(void)
7162 unsigned long alloc_size = 0, ptr;
7164 #ifdef CONFIG_FAIR_GROUP_SCHED
7165 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7167 #ifdef CONFIG_RT_GROUP_SCHED
7168 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7171 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7173 #ifdef CONFIG_FAIR_GROUP_SCHED
7174 root_task_group.se = (struct sched_entity **)ptr;
7175 ptr += nr_cpu_ids * sizeof(void **);
7177 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7178 ptr += nr_cpu_ids * sizeof(void **);
7180 #endif /* CONFIG_FAIR_GROUP_SCHED */
7181 #ifdef CONFIG_RT_GROUP_SCHED
7182 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7183 ptr += nr_cpu_ids * sizeof(void **);
7185 root_task_group.rt_rq = (struct rt_rq **)ptr;
7186 ptr += nr_cpu_ids * sizeof(void **);
7188 #endif /* CONFIG_RT_GROUP_SCHED */
7190 #ifdef CONFIG_CPUMASK_OFFSTACK
7191 for_each_possible_cpu(i) {
7192 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7193 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7195 #endif /* CONFIG_CPUMASK_OFFSTACK */
7197 init_rt_bandwidth(&def_rt_bandwidth,
7198 global_rt_period(), global_rt_runtime());
7199 init_dl_bandwidth(&def_dl_bandwidth,
7200 global_rt_period(), global_rt_runtime());
7203 init_defrootdomain();
7206 #ifdef CONFIG_RT_GROUP_SCHED
7207 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7208 global_rt_period(), global_rt_runtime());
7209 #endif /* CONFIG_RT_GROUP_SCHED */
7211 #ifdef CONFIG_CGROUP_SCHED
7212 list_add(&root_task_group.list, &task_groups);
7213 INIT_LIST_HEAD(&root_task_group.children);
7214 INIT_LIST_HEAD(&root_task_group.siblings);
7215 autogroup_init(&init_task);
7217 #endif /* CONFIG_CGROUP_SCHED */
7219 for_each_possible_cpu(i) {
7223 raw_spin_lock_init(&rq->lock);
7225 rq->calc_load_active = 0;
7226 rq->calc_load_update = jiffies + LOAD_FREQ;
7227 init_cfs_rq(&rq->cfs);
7228 init_rt_rq(&rq->rt, rq);
7229 init_dl_rq(&rq->dl, rq);
7230 #ifdef CONFIG_FAIR_GROUP_SCHED
7231 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7232 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7234 * How much cpu bandwidth does root_task_group get?
7236 * In case of task-groups formed thr' the cgroup filesystem, it
7237 * gets 100% of the cpu resources in the system. This overall
7238 * system cpu resource is divided among the tasks of
7239 * root_task_group and its child task-groups in a fair manner,
7240 * based on each entity's (task or task-group's) weight
7241 * (se->load.weight).
7243 * In other words, if root_task_group has 10 tasks of weight
7244 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7245 * then A0's share of the cpu resource is:
7247 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7249 * We achieve this by letting root_task_group's tasks sit
7250 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7252 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7253 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7254 #endif /* CONFIG_FAIR_GROUP_SCHED */
7256 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7257 #ifdef CONFIG_RT_GROUP_SCHED
7258 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7261 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7262 rq->cpu_load[j] = 0;
7264 rq->last_load_update_tick = jiffies;
7269 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7270 rq->post_schedule = 0;
7271 rq->active_balance = 0;
7272 rq->next_balance = jiffies;
7277 rq->avg_idle = 2*sysctl_sched_migration_cost;
7278 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7280 INIT_LIST_HEAD(&rq->cfs_tasks);
7282 rq_attach_root(rq, &def_root_domain);
7283 #ifdef CONFIG_NO_HZ_COMMON
7286 #ifdef CONFIG_NO_HZ_FULL
7287 rq->last_sched_tick = 0;
7291 atomic_set(&rq->nr_iowait, 0);
7294 set_load_weight(&init_task);
7296 #ifdef CONFIG_PREEMPT_NOTIFIERS
7297 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7301 * The boot idle thread does lazy MMU switching as well:
7303 atomic_inc(&init_mm.mm_count);
7304 enter_lazy_tlb(&init_mm, current);
7307 * During early bootup we pretend to be a normal task:
7309 current->sched_class = &fair_sched_class;
7312 * Make us the idle thread. Technically, schedule() should not be
7313 * called from this thread, however somewhere below it might be,
7314 * but because we are the idle thread, we just pick up running again
7315 * when this runqueue becomes "idle".
7317 init_idle(current, smp_processor_id());
7319 calc_load_update = jiffies + LOAD_FREQ;
7322 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7323 /* May be allocated at isolcpus cmdline parse time */
7324 if (cpu_isolated_map == NULL)
7325 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7326 idle_thread_set_boot_cpu();
7327 set_cpu_rq_start_time();
7329 init_sched_fair_class();
7331 scheduler_running = 1;
7334 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7335 static inline int preempt_count_equals(int preempt_offset)
7337 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7339 return (nested == preempt_offset);
7342 void __might_sleep(const char *file, int line, int preempt_offset)
7345 * Blocking primitives will set (and therefore destroy) current->state,
7346 * since we will exit with TASK_RUNNING make sure we enter with it,
7347 * otherwise we will destroy state.
7349 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7350 "do not call blocking ops when !TASK_RUNNING; "
7351 "state=%lx set at [<%p>] %pS\n",
7353 (void *)current->task_state_change,
7354 (void *)current->task_state_change);
7356 ___might_sleep(file, line, preempt_offset);
7358 EXPORT_SYMBOL(__might_sleep);
7360 void ___might_sleep(const char *file, int line, int preempt_offset)
7362 static unsigned long prev_jiffy; /* ratelimiting */
7364 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7365 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7366 !is_idle_task(current)) ||
7367 system_state != SYSTEM_RUNNING || oops_in_progress)
7369 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7371 prev_jiffy = jiffies;
7374 "BUG: sleeping function called from invalid context at %s:%d\n",
7377 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7378 in_atomic(), irqs_disabled(),
7379 current->pid, current->comm);
7381 if (task_stack_end_corrupted(current))
7382 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7384 debug_show_held_locks(current);
7385 if (irqs_disabled())
7386 print_irqtrace_events(current);
7387 #ifdef CONFIG_DEBUG_PREEMPT
7388 if (!preempt_count_equals(preempt_offset)) {
7389 pr_err("Preemption disabled at:");
7390 print_ip_sym(current->preempt_disable_ip);
7396 EXPORT_SYMBOL(___might_sleep);
7399 #ifdef CONFIG_MAGIC_SYSRQ
7400 static void normalize_task(struct rq *rq, struct task_struct *p)
7402 const struct sched_class *prev_class = p->sched_class;
7403 struct sched_attr attr = {
7404 .sched_policy = SCHED_NORMAL,
7406 int old_prio = p->prio;
7409 queued = task_on_rq_queued(p);
7411 dequeue_task(rq, p, 0);
7412 __setscheduler(rq, p, &attr);
7414 enqueue_task(rq, p, 0);
7418 check_class_changed(rq, p, prev_class, old_prio);
7421 void normalize_rt_tasks(void)
7423 struct task_struct *g, *p;
7424 unsigned long flags;
7427 read_lock(&tasklist_lock);
7428 for_each_process_thread(g, p) {
7430 * Only normalize user tasks:
7432 if (p->flags & PF_KTHREAD)
7435 p->se.exec_start = 0;
7436 #ifdef CONFIG_SCHEDSTATS
7437 p->se.statistics.wait_start = 0;
7438 p->se.statistics.sleep_start = 0;
7439 p->se.statistics.block_start = 0;
7442 if (!dl_task(p) && !rt_task(p)) {
7444 * Renice negative nice level userspace
7447 if (task_nice(p) < 0)
7448 set_user_nice(p, 0);
7452 rq = task_rq_lock(p, &flags);
7453 normalize_task(rq, p);
7454 task_rq_unlock(rq, p, &flags);
7456 read_unlock(&tasklist_lock);
7459 #endif /* CONFIG_MAGIC_SYSRQ */
7461 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7463 * These functions are only useful for the IA64 MCA handling, or kdb.
7465 * They can only be called when the whole system has been
7466 * stopped - every CPU needs to be quiescent, and no scheduling
7467 * activity can take place. Using them for anything else would
7468 * be a serious bug, and as a result, they aren't even visible
7469 * under any other configuration.
7473 * curr_task - return the current task for a given cpu.
7474 * @cpu: the processor in question.
7476 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7478 * Return: The current task for @cpu.
7480 struct task_struct *curr_task(int cpu)
7482 return cpu_curr(cpu);
7485 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7489 * set_curr_task - set the current task for a given cpu.
7490 * @cpu: the processor in question.
7491 * @p: the task pointer to set.
7493 * Description: This function must only be used when non-maskable interrupts
7494 * are serviced on a separate stack. It allows the architecture to switch the
7495 * notion of the current task on a cpu in a non-blocking manner. This function
7496 * must be called with all CPU's synchronized, and interrupts disabled, the
7497 * and caller must save the original value of the current task (see
7498 * curr_task() above) and restore that value before reenabling interrupts and
7499 * re-starting the system.
7501 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7503 void set_curr_task(int cpu, struct task_struct *p)
7510 #ifdef CONFIG_CGROUP_SCHED
7511 /* task_group_lock serializes the addition/removal of task groups */
7512 static DEFINE_SPINLOCK(task_group_lock);
7514 static void free_sched_group(struct task_group *tg)
7516 free_fair_sched_group(tg);
7517 free_rt_sched_group(tg);
7522 /* allocate runqueue etc for a new task group */
7523 struct task_group *sched_create_group(struct task_group *parent)
7525 struct task_group *tg;
7527 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7529 return ERR_PTR(-ENOMEM);
7531 if (!alloc_fair_sched_group(tg, parent))
7534 if (!alloc_rt_sched_group(tg, parent))
7540 free_sched_group(tg);
7541 return ERR_PTR(-ENOMEM);
7544 void sched_online_group(struct task_group *tg, struct task_group *parent)
7546 unsigned long flags;
7548 spin_lock_irqsave(&task_group_lock, flags);
7549 list_add_rcu(&tg->list, &task_groups);
7551 WARN_ON(!parent); /* root should already exist */
7553 tg->parent = parent;
7554 INIT_LIST_HEAD(&tg->children);
7555 list_add_rcu(&tg->siblings, &parent->children);
7556 spin_unlock_irqrestore(&task_group_lock, flags);
7559 /* rcu callback to free various structures associated with a task group */
7560 static void free_sched_group_rcu(struct rcu_head *rhp)
7562 /* now it should be safe to free those cfs_rqs */
7563 free_sched_group(container_of(rhp, struct task_group, rcu));
7566 /* Destroy runqueue etc associated with a task group */
7567 void sched_destroy_group(struct task_group *tg)
7569 /* wait for possible concurrent references to cfs_rqs complete */
7570 call_rcu(&tg->rcu, free_sched_group_rcu);
7573 void sched_offline_group(struct task_group *tg)
7575 unsigned long flags;
7578 /* end participation in shares distribution */
7579 for_each_possible_cpu(i)
7580 unregister_fair_sched_group(tg, i);
7582 spin_lock_irqsave(&task_group_lock, flags);
7583 list_del_rcu(&tg->list);
7584 list_del_rcu(&tg->siblings);
7585 spin_unlock_irqrestore(&task_group_lock, flags);
7588 /* change task's runqueue when it moves between groups.
7589 * The caller of this function should have put the task in its new group
7590 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7591 * reflect its new group.
7593 void sched_move_task(struct task_struct *tsk)
7595 struct task_group *tg;
7596 int queued, running;
7597 unsigned long flags;
7600 rq = task_rq_lock(tsk, &flags);
7602 running = task_current(rq, tsk);
7603 queued = task_on_rq_queued(tsk);
7606 dequeue_task(rq, tsk, 0);
7607 if (unlikely(running))
7608 put_prev_task(rq, tsk);
7611 * All callers are synchronized by task_rq_lock(); we do not use RCU
7612 * which is pointless here. Thus, we pass "true" to task_css_check()
7613 * to prevent lockdep warnings.
7615 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7616 struct task_group, css);
7617 tg = autogroup_task_group(tsk, tg);
7618 tsk->sched_task_group = tg;
7620 #ifdef CONFIG_FAIR_GROUP_SCHED
7621 if (tsk->sched_class->task_move_group)
7622 tsk->sched_class->task_move_group(tsk, queued);
7625 set_task_rq(tsk, task_cpu(tsk));
7627 if (unlikely(running))
7628 tsk->sched_class->set_curr_task(rq);
7630 enqueue_task(rq, tsk, 0);
7632 task_rq_unlock(rq, tsk, &flags);
7634 #endif /* CONFIG_CGROUP_SCHED */
7636 #ifdef CONFIG_RT_GROUP_SCHED
7638 * Ensure that the real time constraints are schedulable.
7640 static DEFINE_MUTEX(rt_constraints_mutex);
7642 /* Must be called with tasklist_lock held */
7643 static inline int tg_has_rt_tasks(struct task_group *tg)
7645 struct task_struct *g, *p;
7647 for_each_process_thread(g, p) {
7648 if (rt_task(p) && task_group(p) == tg)
7655 struct rt_schedulable_data {
7656 struct task_group *tg;
7661 static int tg_rt_schedulable(struct task_group *tg, void *data)
7663 struct rt_schedulable_data *d = data;
7664 struct task_group *child;
7665 unsigned long total, sum = 0;
7666 u64 period, runtime;
7668 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7669 runtime = tg->rt_bandwidth.rt_runtime;
7672 period = d->rt_period;
7673 runtime = d->rt_runtime;
7677 * Cannot have more runtime than the period.
7679 if (runtime > period && runtime != RUNTIME_INF)
7683 * Ensure we don't starve existing RT tasks.
7685 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7688 total = to_ratio(period, runtime);
7691 * Nobody can have more than the global setting allows.
7693 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7697 * The sum of our children's runtime should not exceed our own.
7699 list_for_each_entry_rcu(child, &tg->children, siblings) {
7700 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7701 runtime = child->rt_bandwidth.rt_runtime;
7703 if (child == d->tg) {
7704 period = d->rt_period;
7705 runtime = d->rt_runtime;
7708 sum += to_ratio(period, runtime);
7717 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7721 struct rt_schedulable_data data = {
7723 .rt_period = period,
7724 .rt_runtime = runtime,
7728 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7734 static int tg_set_rt_bandwidth(struct task_group *tg,
7735 u64 rt_period, u64 rt_runtime)
7739 mutex_lock(&rt_constraints_mutex);
7740 read_lock(&tasklist_lock);
7741 err = __rt_schedulable(tg, rt_period, rt_runtime);
7745 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7746 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7747 tg->rt_bandwidth.rt_runtime = rt_runtime;
7749 for_each_possible_cpu(i) {
7750 struct rt_rq *rt_rq = tg->rt_rq[i];
7752 raw_spin_lock(&rt_rq->rt_runtime_lock);
7753 rt_rq->rt_runtime = rt_runtime;
7754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7756 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7758 read_unlock(&tasklist_lock);
7759 mutex_unlock(&rt_constraints_mutex);
7764 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7766 u64 rt_runtime, rt_period;
7768 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7769 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7770 if (rt_runtime_us < 0)
7771 rt_runtime = RUNTIME_INF;
7773 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7776 static long sched_group_rt_runtime(struct task_group *tg)
7780 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7783 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7784 do_div(rt_runtime_us, NSEC_PER_USEC);
7785 return rt_runtime_us;
7788 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7790 u64 rt_runtime, rt_period;
7792 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7793 rt_runtime = tg->rt_bandwidth.rt_runtime;
7798 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7801 static long sched_group_rt_period(struct task_group *tg)
7805 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7806 do_div(rt_period_us, NSEC_PER_USEC);
7807 return rt_period_us;
7809 #endif /* CONFIG_RT_GROUP_SCHED */
7811 #ifdef CONFIG_RT_GROUP_SCHED
7812 static int sched_rt_global_constraints(void)
7816 mutex_lock(&rt_constraints_mutex);
7817 read_lock(&tasklist_lock);
7818 ret = __rt_schedulable(NULL, 0, 0);
7819 read_unlock(&tasklist_lock);
7820 mutex_unlock(&rt_constraints_mutex);
7825 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7827 /* Don't accept realtime tasks when there is no way for them to run */
7828 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7834 #else /* !CONFIG_RT_GROUP_SCHED */
7835 static int sched_rt_global_constraints(void)
7837 unsigned long flags;
7840 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7841 for_each_possible_cpu(i) {
7842 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7844 raw_spin_lock(&rt_rq->rt_runtime_lock);
7845 rt_rq->rt_runtime = global_rt_runtime();
7846 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7848 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7852 #endif /* CONFIG_RT_GROUP_SCHED */
7854 static int sched_dl_global_constraints(void)
7856 u64 runtime = global_rt_runtime();
7857 u64 period = global_rt_period();
7858 u64 new_bw = to_ratio(period, runtime);
7861 unsigned long flags;
7864 * Here we want to check the bandwidth not being set to some
7865 * value smaller than the currently allocated bandwidth in
7866 * any of the root_domains.
7868 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7869 * cycling on root_domains... Discussion on different/better
7870 * solutions is welcome!
7872 for_each_possible_cpu(cpu) {
7873 rcu_read_lock_sched();
7874 dl_b = dl_bw_of(cpu);
7876 raw_spin_lock_irqsave(&dl_b->lock, flags);
7877 if (new_bw < dl_b->total_bw)
7879 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7881 rcu_read_unlock_sched();
7890 static void sched_dl_do_global(void)
7895 unsigned long flags;
7897 def_dl_bandwidth.dl_period = global_rt_period();
7898 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7900 if (global_rt_runtime() != RUNTIME_INF)
7901 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7904 * FIXME: As above...
7906 for_each_possible_cpu(cpu) {
7907 rcu_read_lock_sched();
7908 dl_b = dl_bw_of(cpu);
7910 raw_spin_lock_irqsave(&dl_b->lock, flags);
7912 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7914 rcu_read_unlock_sched();
7918 static int sched_rt_global_validate(void)
7920 if (sysctl_sched_rt_period <= 0)
7923 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7924 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7930 static void sched_rt_do_global(void)
7932 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7933 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7936 int sched_rt_handler(struct ctl_table *table, int write,
7937 void __user *buffer, size_t *lenp,
7940 int old_period, old_runtime;
7941 static DEFINE_MUTEX(mutex);
7945 old_period = sysctl_sched_rt_period;
7946 old_runtime = sysctl_sched_rt_runtime;
7948 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7950 if (!ret && write) {
7951 ret = sched_rt_global_validate();
7955 ret = sched_rt_global_constraints();
7959 ret = sched_dl_global_constraints();
7963 sched_rt_do_global();
7964 sched_dl_do_global();
7968 sysctl_sched_rt_period = old_period;
7969 sysctl_sched_rt_runtime = old_runtime;
7971 mutex_unlock(&mutex);
7976 int sched_rr_handler(struct ctl_table *table, int write,
7977 void __user *buffer, size_t *lenp,
7981 static DEFINE_MUTEX(mutex);
7984 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7985 /* make sure that internally we keep jiffies */
7986 /* also, writing zero resets timeslice to default */
7987 if (!ret && write) {
7988 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7989 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7991 mutex_unlock(&mutex);
7995 #ifdef CONFIG_CGROUP_SCHED
7997 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7999 return css ? container_of(css, struct task_group, css) : NULL;
8002 static struct cgroup_subsys_state *
8003 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8005 struct task_group *parent = css_tg(parent_css);
8006 struct task_group *tg;
8009 /* This is early initialization for the top cgroup */
8010 return &root_task_group.css;
8013 tg = sched_create_group(parent);
8015 return ERR_PTR(-ENOMEM);
8020 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8022 struct task_group *tg = css_tg(css);
8023 struct task_group *parent = css_tg(css->parent);
8026 sched_online_group(tg, parent);
8030 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8032 struct task_group *tg = css_tg(css);
8034 sched_destroy_group(tg);
8037 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8039 struct task_group *tg = css_tg(css);
8041 sched_offline_group(tg);
8044 static void cpu_cgroup_fork(struct task_struct *task)
8046 sched_move_task(task);
8049 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8050 struct cgroup_taskset *tset)
8052 struct task_struct *task;
8054 cgroup_taskset_for_each(task, tset) {
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 if (!sched_rt_can_attach(css_tg(css), task))
8059 /* We don't support RT-tasks being in separate groups */
8060 if (task->sched_class != &fair_sched_class)
8067 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8068 struct cgroup_taskset *tset)
8070 struct task_struct *task;
8072 cgroup_taskset_for_each(task, tset)
8073 sched_move_task(task);
8076 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8077 struct cgroup_subsys_state *old_css,
8078 struct task_struct *task)
8081 * cgroup_exit() is called in the copy_process() failure path.
8082 * Ignore this case since the task hasn't ran yet, this avoids
8083 * trying to poke a half freed task state from generic code.
8085 if (!(task->flags & PF_EXITING))
8088 sched_move_task(task);
8091 #ifdef CONFIG_FAIR_GROUP_SCHED
8092 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8093 struct cftype *cftype, u64 shareval)
8095 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8098 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8101 struct task_group *tg = css_tg(css);
8103 return (u64) scale_load_down(tg->shares);
8106 #ifdef CONFIG_CFS_BANDWIDTH
8107 static DEFINE_MUTEX(cfs_constraints_mutex);
8109 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8110 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8112 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8114 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8116 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8117 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8119 if (tg == &root_task_group)
8123 * Ensure we have at some amount of bandwidth every period. This is
8124 * to prevent reaching a state of large arrears when throttled via
8125 * entity_tick() resulting in prolonged exit starvation.
8127 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8131 * Likewise, bound things on the otherside by preventing insane quota
8132 * periods. This also allows us to normalize in computing quota
8135 if (period > max_cfs_quota_period)
8139 * Prevent race between setting of cfs_rq->runtime_enabled and
8140 * unthrottle_offline_cfs_rqs().
8143 mutex_lock(&cfs_constraints_mutex);
8144 ret = __cfs_schedulable(tg, period, quota);
8148 runtime_enabled = quota != RUNTIME_INF;
8149 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8151 * If we need to toggle cfs_bandwidth_used, off->on must occur
8152 * before making related changes, and on->off must occur afterwards
8154 if (runtime_enabled && !runtime_was_enabled)
8155 cfs_bandwidth_usage_inc();
8156 raw_spin_lock_irq(&cfs_b->lock);
8157 cfs_b->period = ns_to_ktime(period);
8158 cfs_b->quota = quota;
8160 __refill_cfs_bandwidth_runtime(cfs_b);
8161 /* restart the period timer (if active) to handle new period expiry */
8162 if (runtime_enabled && cfs_b->timer_active) {
8163 /* force a reprogram */
8164 __start_cfs_bandwidth(cfs_b, true);
8166 raw_spin_unlock_irq(&cfs_b->lock);
8168 for_each_online_cpu(i) {
8169 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8170 struct rq *rq = cfs_rq->rq;
8172 raw_spin_lock_irq(&rq->lock);
8173 cfs_rq->runtime_enabled = runtime_enabled;
8174 cfs_rq->runtime_remaining = 0;
8176 if (cfs_rq->throttled)
8177 unthrottle_cfs_rq(cfs_rq);
8178 raw_spin_unlock_irq(&rq->lock);
8180 if (runtime_was_enabled && !runtime_enabled)
8181 cfs_bandwidth_usage_dec();
8183 mutex_unlock(&cfs_constraints_mutex);
8189 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8193 period = ktime_to_ns(tg->cfs_bandwidth.period);
8194 if (cfs_quota_us < 0)
8195 quota = RUNTIME_INF;
8197 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8199 return tg_set_cfs_bandwidth(tg, period, quota);
8202 long tg_get_cfs_quota(struct task_group *tg)
8206 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8209 quota_us = tg->cfs_bandwidth.quota;
8210 do_div(quota_us, NSEC_PER_USEC);
8215 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8219 period = (u64)cfs_period_us * NSEC_PER_USEC;
8220 quota = tg->cfs_bandwidth.quota;
8222 return tg_set_cfs_bandwidth(tg, period, quota);
8225 long tg_get_cfs_period(struct task_group *tg)
8229 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8230 do_div(cfs_period_us, NSEC_PER_USEC);
8232 return cfs_period_us;
8235 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8238 return tg_get_cfs_quota(css_tg(css));
8241 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8242 struct cftype *cftype, s64 cfs_quota_us)
8244 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8247 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8250 return tg_get_cfs_period(css_tg(css));
8253 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8254 struct cftype *cftype, u64 cfs_period_us)
8256 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8259 struct cfs_schedulable_data {
8260 struct task_group *tg;
8265 * normalize group quota/period to be quota/max_period
8266 * note: units are usecs
8268 static u64 normalize_cfs_quota(struct task_group *tg,
8269 struct cfs_schedulable_data *d)
8277 period = tg_get_cfs_period(tg);
8278 quota = tg_get_cfs_quota(tg);
8281 /* note: these should typically be equivalent */
8282 if (quota == RUNTIME_INF || quota == -1)
8285 return to_ratio(period, quota);
8288 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8290 struct cfs_schedulable_data *d = data;
8291 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8292 s64 quota = 0, parent_quota = -1;
8295 quota = RUNTIME_INF;
8297 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8299 quota = normalize_cfs_quota(tg, d);
8300 parent_quota = parent_b->hierarchical_quota;
8303 * ensure max(child_quota) <= parent_quota, inherit when no
8306 if (quota == RUNTIME_INF)
8307 quota = parent_quota;
8308 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8311 cfs_b->hierarchical_quota = quota;
8316 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8319 struct cfs_schedulable_data data = {
8325 if (quota != RUNTIME_INF) {
8326 do_div(data.period, NSEC_PER_USEC);
8327 do_div(data.quota, NSEC_PER_USEC);
8331 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8337 static int cpu_stats_show(struct seq_file *sf, void *v)
8339 struct task_group *tg = css_tg(seq_css(sf));
8340 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8342 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8343 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8344 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8348 #endif /* CONFIG_CFS_BANDWIDTH */
8349 #endif /* CONFIG_FAIR_GROUP_SCHED */
8351 #ifdef CONFIG_RT_GROUP_SCHED
8352 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8353 struct cftype *cft, s64 val)
8355 return sched_group_set_rt_runtime(css_tg(css), val);
8358 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8361 return sched_group_rt_runtime(css_tg(css));
8364 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8365 struct cftype *cftype, u64 rt_period_us)
8367 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8370 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8373 return sched_group_rt_period(css_tg(css));
8375 #endif /* CONFIG_RT_GROUP_SCHED */
8377 static struct cftype cpu_files[] = {
8378 #ifdef CONFIG_FAIR_GROUP_SCHED
8381 .read_u64 = cpu_shares_read_u64,
8382 .write_u64 = cpu_shares_write_u64,
8385 #ifdef CONFIG_CFS_BANDWIDTH
8387 .name = "cfs_quota_us",
8388 .read_s64 = cpu_cfs_quota_read_s64,
8389 .write_s64 = cpu_cfs_quota_write_s64,
8392 .name = "cfs_period_us",
8393 .read_u64 = cpu_cfs_period_read_u64,
8394 .write_u64 = cpu_cfs_period_write_u64,
8398 .seq_show = cpu_stats_show,
8401 #ifdef CONFIG_RT_GROUP_SCHED
8403 .name = "rt_runtime_us",
8404 .read_s64 = cpu_rt_runtime_read,
8405 .write_s64 = cpu_rt_runtime_write,
8408 .name = "rt_period_us",
8409 .read_u64 = cpu_rt_period_read_uint,
8410 .write_u64 = cpu_rt_period_write_uint,
8416 struct cgroup_subsys cpu_cgrp_subsys = {
8417 .css_alloc = cpu_cgroup_css_alloc,
8418 .css_free = cpu_cgroup_css_free,
8419 .css_online = cpu_cgroup_css_online,
8420 .css_offline = cpu_cgroup_css_offline,
8421 .fork = cpu_cgroup_fork,
8422 .can_attach = cpu_cgroup_can_attach,
8423 .attach = cpu_cgroup_attach,
8424 .exit = cpu_cgroup_exit,
8425 .legacy_cftypes = cpu_files,
8429 #endif /* CONFIG_CGROUP_SCHED */
8431 void dump_cpu_task(int cpu)
8433 pr_info("Task dump for CPU %d:\n", cpu);
8434 sched_show_task(cpu_curr(cpu));