1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
10 * DOC: Interesting implementation details of the Maple Tree
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
23 * The following illustrates the layout of a range64 nodes slots and pivots.
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
65 #define MA_ROOT_PARENT 1
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 static const unsigned char mt_pivots[] = {
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 enum maple_type type;
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
161 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
166 static void mt_free_rcu(struct rcu_head *head)
168 struct maple_node *node = container_of(head, struct maple_node, rcu);
170 kmem_cache_free(maple_node_cache, node);
174 * ma_free_rcu() - Use rcu callback to free a maple node
175 * @node: The node to free
177 * The maple tree uses the parent pointer to indicate this node is no longer in
178 * use and will be freed.
180 static void ma_free_rcu(struct maple_node *node)
182 node->parent = ma_parent_ptr(node);
183 call_rcu(&node->rcu, mt_free_rcu);
187 static void mas_set_height(struct ma_state *mas)
189 unsigned int new_flags = mas->tree->ma_flags;
191 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
194 mas->tree->ma_flags = new_flags;
197 static unsigned int mas_mt_height(struct ma_state *mas)
199 return mt_height(mas->tree);
202 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
205 MAPLE_NODE_TYPE_MASK;
208 static inline bool ma_is_dense(const enum maple_type type)
210 return type < maple_leaf_64;
213 static inline bool ma_is_leaf(const enum maple_type type)
215 return type < maple_range_64;
218 static inline bool mte_is_leaf(const struct maple_enode *entry)
220 return ma_is_leaf(mte_node_type(entry));
224 * We also reserve values with the bottom two bits set to '10' which are
227 static inline bool mt_is_reserved(const void *entry)
229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
230 xa_is_internal(entry);
233 static inline void mas_set_err(struct ma_state *mas, long err)
235 mas->node = MA_ERROR(err);
238 static inline bool mas_is_ptr(struct ma_state *mas)
240 return mas->node == MAS_ROOT;
243 static inline bool mas_is_start(struct ma_state *mas)
245 return mas->node == MAS_START;
248 bool mas_is_err(struct ma_state *mas)
250 return xa_is_err(mas->node);
253 static inline bool mas_searchable(struct ma_state *mas)
255 if (mas_is_none(mas))
264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
271 * @entry: The maple encoded node
273 * Return: a maple topiary pointer
275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
277 return (struct maple_topiary *)
278 ((unsigned long)entry & ~MAPLE_NODE_MASK);
282 * mas_mn() - Get the maple state node.
283 * @mas: The maple state
285 * Return: the maple node (not encoded - bare pointer).
287 static inline struct maple_node *mas_mn(const struct ma_state *mas)
289 return mte_to_node(mas->node);
293 * mte_set_node_dead() - Set a maple encoded node as dead.
294 * @mn: The maple encoded node.
296 static inline void mte_set_node_dead(struct maple_enode *mn)
298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
299 smp_wmb(); /* Needed for RCU */
302 /* Bit 1 indicates the root is a node */
303 #define MAPLE_ROOT_NODE 0x02
304 /* maple_type stored bit 3-6 */
305 #define MAPLE_ENODE_TYPE_SHIFT 0x03
306 /* Bit 2 means a NULL somewhere below */
307 #define MAPLE_ENODE_NULL 0x04
309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
310 enum maple_type type)
312 return (void *)((unsigned long)node |
313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
316 static inline void *mte_mk_root(const struct maple_enode *node)
318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
321 static inline void *mte_safe_root(const struct maple_enode *node)
323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
326 static inline void *mte_set_full(const struct maple_enode *node)
328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
331 static inline void *mte_clear_full(const struct maple_enode *node)
333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
336 static inline bool mte_has_null(const struct maple_enode *node)
338 return (unsigned long)node & MAPLE_ENODE_NULL;
341 static inline bool ma_is_root(struct maple_node *node)
343 return ((unsigned long)node->parent & MA_ROOT_PARENT);
346 static inline bool mte_is_root(const struct maple_enode *node)
348 return ma_is_root(mte_to_node(node));
351 static inline bool mas_is_root_limits(const struct ma_state *mas)
353 return !mas->min && mas->max == ULONG_MAX;
356 static inline bool mt_is_alloc(struct maple_tree *mt)
358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
365 * bit values need an extra bit to store the offset. This extra bit comes from
366 * a reuse of the last bit in the node type. This is possible by using bit 1 to
367 * indicate if bit 2 is part of the type or the slot.
371 * 0x?00 = 16 bit nodes
372 * 0x010 = 32 bit nodes
373 * 0x110 = 64 bit nodes
375 * Slot size and alignment
377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
382 #define MAPLE_PARENT_ROOT 0x01
384 #define MAPLE_PARENT_SLOT_SHIFT 0x03
385 #define MAPLE_PARENT_SLOT_MASK 0xF8
387 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
388 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
390 #define MAPLE_PARENT_RANGE64 0x06
391 #define MAPLE_PARENT_RANGE32 0x04
392 #define MAPLE_PARENT_NOT_RANGE16 0x02
395 * mte_parent_shift() - Get the parent shift for the slot storage.
396 * @parent: The parent pointer cast as an unsigned long
397 * Return: The shift into that pointer to the star to of the slot
399 static inline unsigned long mte_parent_shift(unsigned long parent)
401 /* Note bit 1 == 0 means 16B */
402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
403 return MAPLE_PARENT_SLOT_SHIFT;
405 return MAPLE_PARENT_16B_SLOT_SHIFT;
409 * mte_parent_slot_mask() - Get the slot mask for the parent.
410 * @parent: The parent pointer cast as an unsigned long.
411 * Return: The slot mask for that parent.
413 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
415 /* Note bit 1 == 0 means 16B */
416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
417 return MAPLE_PARENT_SLOT_MASK;
419 return MAPLE_PARENT_16B_SLOT_MASK;
423 * mas_parent_enum() - Return the maple_type of the parent from the stored
425 * @mas: The maple state
426 * @node: The maple_enode to extract the parent's enum
427 * Return: The node->parent maple_type
430 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
431 struct maple_tree *mt)
433 unsigned long p_type;
435 p_type = (unsigned long)p_enode;
436 if (p_type & MAPLE_PARENT_ROOT)
437 return 0; /* Validated in the caller. */
439 p_type &= MAPLE_NODE_MASK;
440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
445 return maple_arange_64;
446 return maple_range_64;
453 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
459 * mte_set_parent() - Set the parent node and encode the slot
460 * @enode: The encoded maple node.
461 * @parent: The encoded maple node that is the parent of @enode.
462 * @slot: The slot that @enode resides in @parent.
464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
468 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
471 unsigned long val = (unsigned long) parent;
474 enum maple_type p_type = mte_node_type(parent);
476 BUG_ON(p_type == maple_dense);
477 BUG_ON(p_type == maple_leaf_64);
481 case maple_arange_64:
482 shift = MAPLE_PARENT_SLOT_SHIFT;
483 type = MAPLE_PARENT_RANGE64;
492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
493 val |= (slot << shift) | type;
494 mte_to_node(enode)->parent = ma_parent_ptr(val);
498 * mte_parent_slot() - get the parent slot of @enode.
499 * @enode: The encoded maple node.
501 * Return: The slot in the parent node where @enode resides.
503 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
505 unsigned long val = (unsigned long) mte_to_node(enode)->parent;
512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
519 * mte_parent() - Get the parent of @node.
520 * @node: The encoded maple node.
522 * Return: The parent maple node.
524 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
526 return (void *)((unsigned long)
527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
531 * ma_dead_node() - check if the @enode is dead.
532 * @enode: The encoded maple node
534 * Return: true if dead, false otherwise.
536 static inline bool ma_dead_node(const struct maple_node *node)
538 struct maple_node *parent = (void *)((unsigned long)
539 node->parent & ~MAPLE_NODE_MASK);
541 return (parent == node);
544 * mte_dead_node() - check if the @enode is dead.
545 * @enode: The encoded maple node
547 * Return: true if dead, false otherwise.
549 static inline bool mte_dead_node(const struct maple_enode *enode)
551 struct maple_node *parent, *node;
553 node = mte_to_node(enode);
554 parent = mte_parent(enode);
555 return (parent == node);
559 * mas_allocated() - Get the number of nodes allocated in a maple state.
560 * @mas: The maple state
562 * The ma_state alloc member is overloaded to hold a pointer to the first
563 * allocated node or to the number of requested nodes to allocate. If bit 0 is
564 * set, then the alloc contains the number of requested nodes. If there is an
565 * allocated node, then the total allocated nodes is in that node.
567 * Return: The total number of nodes allocated
569 static inline unsigned long mas_allocated(const struct ma_state *mas)
571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
574 return mas->alloc->total;
578 * mas_set_alloc_req() - Set the requested number of allocations.
579 * @mas: the maple state
580 * @count: the number of allocations.
582 * The requested number of allocations is either in the first allocated node,
583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
584 * no allocated node. Set the request either in the node or do the necessary
585 * encoding to store in @mas->alloc directly.
587 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
597 mas->alloc->request_count = count;
601 * mas_alloc_req() - get the requested number of allocations.
602 * @mas: The maple state
604 * The alloc count is either stored directly in @mas, or in
605 * @mas->alloc->request_count if there is at least one node allocated. Decode
606 * the request count if it's stored directly in @mas->alloc.
608 * Return: The allocation request count.
610 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612 if ((unsigned long)mas->alloc & 0x1)
613 return (unsigned long)(mas->alloc) >> 1;
615 return mas->alloc->request_count;
620 * ma_pivots() - Get a pointer to the maple node pivots.
621 * @node - the maple node
622 * @type - the node type
624 * Return: A pointer to the maple node pivots
626 static inline unsigned long *ma_pivots(struct maple_node *node,
627 enum maple_type type)
630 case maple_arange_64:
631 return node->ma64.pivot;
634 return node->mr64.pivot;
642 * ma_gaps() - Get a pointer to the maple node gaps.
643 * @node - the maple node
644 * @type - the node type
646 * Return: A pointer to the maple node gaps
648 static inline unsigned long *ma_gaps(struct maple_node *node,
649 enum maple_type type)
652 case maple_arange_64:
653 return node->ma64.gap;
663 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
664 * @mn: The maple encoded node.
667 * Return: the pivot at @piv of @mn.
669 static inline unsigned long mte_pivot(const struct maple_enode *mn,
672 struct maple_node *node = mte_to_node(mn);
673 enum maple_type type = mte_node_type(mn);
675 if (piv >= mt_pivots[type]) {
680 case maple_arange_64:
681 return node->ma64.pivot[piv];
684 return node->mr64.pivot[piv];
692 * mas_safe_pivot() - get the pivot at @piv or mas->max.
693 * @mas: The maple state
694 * @pivots: The pointer to the maple node pivots
695 * @piv: The pivot to fetch
696 * @type: The maple node type
698 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
701 static inline unsigned long
702 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
703 unsigned char piv, enum maple_type type)
705 if (piv >= mt_pivots[type])
712 * mas_safe_min() - Return the minimum for a given offset.
713 * @mas: The maple state
714 * @pivots: The pointer to the maple node pivots
715 * @offset: The offset into the pivot array
717 * Return: The minimum range value that is contained in @offset.
719 static inline unsigned long
720 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
723 return pivots[offset - 1] + 1;
729 * mas_logical_pivot() - Get the logical pivot of a given offset.
730 * @mas: The maple state
731 * @pivots: The pointer to the maple node pivots
732 * @offset: The offset into the pivot array
733 * @type: The maple node type
735 * When there is no value at a pivot (beyond the end of the data), then the
736 * pivot is actually @mas->max.
738 * Return: the logical pivot of a given @offset.
740 static inline unsigned long
741 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
742 unsigned char offset, enum maple_type type)
744 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
756 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
757 * @mn: The encoded maple node
758 * @piv: The pivot offset
759 * @val: The value of the pivot
761 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
764 struct maple_node *node = mte_to_node(mn);
765 enum maple_type type = mte_node_type(mn);
767 BUG_ON(piv >= mt_pivots[type]);
772 node->mr64.pivot[piv] = val;
774 case maple_arange_64:
775 node->ma64.pivot[piv] = val;
784 * ma_slots() - Get a pointer to the maple node slots.
785 * @mn: The maple node
786 * @mt: The maple node type
788 * Return: A pointer to the maple node slots
790 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
794 case maple_arange_64:
795 return mn->ma64.slot;
798 return mn->mr64.slot;
804 static inline bool mt_locked(const struct maple_tree *mt)
806 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
807 lockdep_is_held(&mt->ma_lock);
810 static inline void *mt_slot(const struct maple_tree *mt,
811 void __rcu **slots, unsigned char offset)
813 return rcu_dereference_check(slots[offset], mt_locked(mt));
817 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
818 * @mas: The maple state
819 * @slots: The pointer to the slots
820 * @offset: The offset into the slots array to fetch
822 * Return: The entry stored in @slots at the @offset.
824 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
825 unsigned char offset)
827 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
831 * mas_slot() - Get the slot value when not holding the maple tree lock.
832 * @mas: The maple state
833 * @slots: The pointer to the slots
834 * @offset: The offset into the slots array to fetch
836 * Return: The entry stored in @slots at the @offset
838 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
839 unsigned char offset)
841 return mt_slot(mas->tree, slots, offset);
845 * mas_root() - Get the maple tree root.
846 * @mas: The maple state.
848 * Return: The pointer to the root of the tree
850 static inline void *mas_root(struct ma_state *mas)
852 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
855 static inline void *mt_root_locked(struct maple_tree *mt)
857 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
861 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
862 * @mas: The maple state.
864 * Return: The pointer to the root of the tree
866 static inline void *mas_root_locked(struct ma_state *mas)
868 return mt_root_locked(mas->tree);
871 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
875 case maple_arange_64:
876 return &mn->ma64.meta;
878 return &mn->mr64.meta;
883 * ma_set_meta() - Set the metadata information of a node.
884 * @mn: The maple node
885 * @mt: The maple node type
886 * @offset: The offset of the highest sub-gap in this node.
887 * @end: The end of the data in this node.
889 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
890 unsigned char offset, unsigned char end)
892 struct maple_metadata *meta = ma_meta(mn, mt);
899 * ma_meta_end() - Get the data end of a node from the metadata
900 * @mn: The maple node
901 * @mt: The maple node type
903 static inline unsigned char ma_meta_end(struct maple_node *mn,
906 struct maple_metadata *meta = ma_meta(mn, mt);
912 * ma_meta_gap() - Get the largest gap location of a node from the metadata
913 * @mn: The maple node
914 * @mt: The maple node type
916 static inline unsigned char ma_meta_gap(struct maple_node *mn,
919 BUG_ON(mt != maple_arange_64);
921 return mn->ma64.meta.gap;
925 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
926 * @mn: The maple node
927 * @mn: The maple node type
928 * @offset: The location of the largest gap.
930 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
931 unsigned char offset)
934 struct maple_metadata *meta = ma_meta(mn, mt);
940 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
941 * @mat - the ma_topiary, a linked list of dead nodes.
942 * @dead_enode - the node to be marked as dead and added to the tail of the list
944 * Add the @dead_enode to the linked list in @mat.
946 static inline void mat_add(struct ma_topiary *mat,
947 struct maple_enode *dead_enode)
949 mte_set_node_dead(dead_enode);
950 mte_to_mat(dead_enode)->next = NULL;
952 mat->tail = mat->head = dead_enode;
956 mte_to_mat(mat->tail)->next = dead_enode;
957 mat->tail = dead_enode;
960 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
961 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
964 * mas_mat_free() - Free all nodes in a dead list.
965 * @mas - the maple state
966 * @mat - the ma_topiary linked list of dead nodes to free.
968 * Free walk a dead list.
970 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
972 struct maple_enode *next;
975 next = mte_to_mat(mat->head)->next;
976 mas_free(mas, mat->head);
982 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
983 * @mas - the maple state
984 * @mat - the ma_topiary linked list of dead nodes to free.
986 * Destroy walk a dead list.
988 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
990 struct maple_enode *next;
993 next = mte_to_mat(mat->head)->next;
994 mte_destroy_walk(mat->head, mat->mtree);
999 * mas_descend() - Descend into the slot stored in the ma_state.
1000 * @mas - the maple state.
1002 * Note: Not RCU safe, only use in write side or debug code.
1004 static inline void mas_descend(struct ma_state *mas)
1006 enum maple_type type;
1007 unsigned long *pivots;
1008 struct maple_node *node;
1012 type = mte_node_type(mas->node);
1013 pivots = ma_pivots(node, type);
1014 slots = ma_slots(node, type);
1017 mas->min = pivots[mas->offset - 1] + 1;
1018 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1019 mas->node = mas_slot(mas, slots, mas->offset);
1023 * mte_set_gap() - Set a maple node gap.
1024 * @mn: The encoded maple node
1025 * @gap: The offset of the gap to set
1026 * @val: The gap value
1028 static inline void mte_set_gap(const struct maple_enode *mn,
1029 unsigned char gap, unsigned long val)
1031 switch (mte_node_type(mn)) {
1034 case maple_arange_64:
1035 mte_to_node(mn)->ma64.gap[gap] = val;
1041 * mas_ascend() - Walk up a level of the tree.
1042 * @mas: The maple state
1044 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1045 * may cause several levels of walking up to find the correct min and max.
1046 * May find a dead node which will cause a premature return.
1047 * Return: 1 on dead node, 0 otherwise
1049 static int mas_ascend(struct ma_state *mas)
1051 struct maple_enode *p_enode; /* parent enode. */
1052 struct maple_enode *a_enode; /* ancestor enode. */
1053 struct maple_node *a_node; /* ancestor node. */
1054 struct maple_node *p_node; /* parent node. */
1055 unsigned char a_slot;
1056 enum maple_type a_type;
1057 unsigned long min, max;
1058 unsigned long *pivots;
1059 unsigned char offset;
1060 bool set_max = false, set_min = false;
1062 a_node = mas_mn(mas);
1063 if (ma_is_root(a_node)) {
1068 p_node = mte_parent(mas->node);
1069 if (unlikely(a_node == p_node))
1071 a_type = mas_parent_enum(mas, mas->node);
1072 offset = mte_parent_slot(mas->node);
1073 a_enode = mt_mk_node(p_node, a_type);
1075 /* Check to make sure all parent information is still accurate */
1076 if (p_node != mte_parent(mas->node))
1079 mas->node = a_enode;
1080 mas->offset = offset;
1082 if (mte_is_root(a_enode)) {
1083 mas->max = ULONG_MAX;
1092 a_type = mas_parent_enum(mas, p_enode);
1093 a_node = mte_parent(p_enode);
1094 a_slot = mte_parent_slot(p_enode);
1095 pivots = ma_pivots(a_node, a_type);
1096 a_enode = mt_mk_node(a_node, a_type);
1098 if (!set_min && a_slot) {
1100 min = pivots[a_slot - 1] + 1;
1103 if (!set_max && a_slot < mt_pivots[a_type]) {
1105 max = pivots[a_slot];
1108 if (unlikely(ma_dead_node(a_node)))
1111 if (unlikely(ma_is_root(a_node)))
1114 } while (!set_min || !set_max);
1122 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1123 * @mas: The maple state
1125 * Return: A pointer to a maple node.
1127 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1129 struct maple_alloc *ret, *node = mas->alloc;
1130 unsigned long total = mas_allocated(mas);
1132 /* nothing or a request pending. */
1133 if (unlikely(!total))
1137 /* single allocation in this ma_state */
1143 if (!node->node_count) {
1144 /* Single allocation in this node. */
1145 mas->alloc = node->slot[0];
1146 node->slot[0] = NULL;
1147 mas->alloc->total = node->total - 1;
1153 ret = node->slot[node->node_count];
1154 node->slot[node->node_count--] = NULL;
1159 ret->node_count = 0;
1160 if (ret->request_count) {
1161 mas_set_alloc_req(mas, ret->request_count + 1);
1162 ret->request_count = 0;
1164 return (struct maple_node *)ret;
1168 * mas_push_node() - Push a node back on the maple state allocation.
1169 * @mas: The maple state
1170 * @used: The used maple node
1172 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1173 * requested node count as necessary.
1175 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1177 struct maple_alloc *reuse = (struct maple_alloc *)used;
1178 struct maple_alloc *head = mas->alloc;
1179 unsigned long count;
1180 unsigned int requested = mas_alloc_req(mas);
1182 memset(reuse, 0, sizeof(*reuse));
1183 count = mas_allocated(mas);
1185 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1188 head->slot[head->node_count] = reuse;
1194 if ((head) && !((unsigned long)head & 0x1)) {
1195 head->request_count = 0;
1196 reuse->slot[0] = head;
1197 reuse->total += head->total;
1203 mas_set_alloc_req(mas, requested - 1);
1207 * mas_alloc_nodes() - Allocate nodes into a maple state
1208 * @mas: The maple state
1209 * @gfp: The GFP Flags
1211 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1213 struct maple_alloc *node;
1214 unsigned long allocated = mas_allocated(mas);
1215 unsigned long success = allocated;
1216 unsigned int requested = mas_alloc_req(mas);
1218 void **slots = NULL;
1219 unsigned int max_req = 0;
1224 mas_set_alloc_req(mas, 0);
1225 if (mas->mas_flags & MA_STATE_PREALLOC) {
1228 WARN_ON(!allocated);
1231 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1232 node = (struct maple_alloc *)mt_alloc_one(gfp);
1237 node->slot[0] = mas->alloc;
1246 max_req = MAPLE_ALLOC_SLOTS;
1247 if (node->slot[0]) {
1248 unsigned int offset = node->node_count + 1;
1250 slots = (void **)&node->slot[offset];
1253 slots = (void **)&node->slot;
1256 max_req = min(requested, max_req);
1257 count = mt_alloc_bulk(gfp, max_req, slots);
1261 node->node_count += count;
1263 if (slots == (void **)&node->slot)
1267 node = node->slot[0];
1270 mas->alloc->total = success;
1274 /* Clean up potential freed allocations on bulk failure */
1275 memset(slots, 0, max_req * sizeof(unsigned long));
1277 mas_set_alloc_req(mas, requested);
1278 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1279 mas->alloc->total = success;
1280 mas_set_err(mas, -ENOMEM);
1286 * mas_free() - Free an encoded maple node
1287 * @mas: The maple state
1288 * @used: The encoded maple node to free.
1290 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1293 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1295 struct maple_node *tmp = mte_to_node(used);
1297 if (mt_in_rcu(mas->tree))
1300 mas_push_node(mas, tmp);
1304 * mas_node_count() - Check if enough nodes are allocated and request more if
1305 * there is not enough nodes.
1306 * @mas: The maple state
1307 * @count: The number of nodes needed
1308 * @gfp: the gfp flags
1310 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1312 unsigned long allocated = mas_allocated(mas);
1314 if (allocated < count) {
1315 mas_set_alloc_req(mas, count - allocated);
1316 mas_alloc_nodes(mas, gfp);
1321 * mas_node_count() - Check if enough nodes are allocated and request more if
1322 * there is not enough nodes.
1323 * @mas: The maple state
1324 * @count: The number of nodes needed
1326 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1328 static void mas_node_count(struct ma_state *mas, int count)
1330 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1334 * mas_start() - Sets up maple state for operations.
1335 * @mas: The maple state.
1337 * If mas->node == MAS_START, then set the min, max, depth, and offset to
1341 * - If mas->node is an error or not MAS_START, return NULL.
1342 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1343 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1344 * - If it's a tree: NULL & mas->node == safe root node.
1346 static inline struct maple_enode *mas_start(struct ma_state *mas)
1348 if (likely(mas_is_start(mas))) {
1349 struct maple_enode *root;
1351 mas->node = MAS_NONE;
1353 mas->max = ULONG_MAX;
1357 root = mas_root(mas);
1358 /* Tree with nodes */
1359 if (likely(xa_is_node(root))) {
1361 mas->node = mte_safe_root(root);
1366 if (unlikely(!root)) {
1367 mas->offset = MAPLE_NODE_SLOTS;
1371 /* Single entry tree */
1372 mas->node = MAS_ROOT;
1373 mas->offset = MAPLE_NODE_SLOTS;
1375 /* Single entry tree. */
1386 * ma_data_end() - Find the end of the data in a node.
1387 * @node: The maple node
1388 * @type: The maple node type
1389 * @pivots: The array of pivots in the node
1390 * @max: The maximum value in the node
1392 * Uses metadata to find the end of the data when possible.
1393 * Return: The zero indexed last slot with data (may be null).
1395 static inline unsigned char ma_data_end(struct maple_node *node,
1396 enum maple_type type,
1397 unsigned long *pivots,
1400 unsigned char offset;
1402 if (type == maple_arange_64)
1403 return ma_meta_end(node, type);
1405 offset = mt_pivots[type] - 1;
1406 if (likely(!pivots[offset]))
1407 return ma_meta_end(node, type);
1409 if (likely(pivots[offset] == max))
1412 return mt_pivots[type];
1416 * mas_data_end() - Find the end of the data (slot).
1417 * @mas: the maple state
1419 * This method is optimized to check the metadata of a node if the node type
1420 * supports data end metadata.
1422 * Return: The zero indexed last slot with data (may be null).
1424 static inline unsigned char mas_data_end(struct ma_state *mas)
1426 enum maple_type type;
1427 struct maple_node *node;
1428 unsigned char offset;
1429 unsigned long *pivots;
1431 type = mte_node_type(mas->node);
1433 if (type == maple_arange_64)
1434 return ma_meta_end(node, type);
1436 pivots = ma_pivots(node, type);
1437 offset = mt_pivots[type] - 1;
1438 if (likely(!pivots[offset]))
1439 return ma_meta_end(node, type);
1441 if (likely(pivots[offset] == mas->max))
1444 return mt_pivots[type];
1448 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1449 * @mas - the maple state
1451 * Return: The maximum gap in the leaf.
1453 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1456 unsigned long pstart, gap, max_gap;
1457 struct maple_node *mn;
1458 unsigned long *pivots;
1461 unsigned char max_piv;
1463 mt = mte_node_type(mas->node);
1465 slots = ma_slots(mn, mt);
1467 if (unlikely(ma_is_dense(mt))) {
1469 for (i = 0; i < mt_slots[mt]; i++) {
1484 * Check the first implied pivot optimizes the loop below and slot 1 may
1485 * be skipped if there is a gap in slot 0.
1487 pivots = ma_pivots(mn, mt);
1488 if (likely(!slots[0])) {
1489 max_gap = pivots[0] - mas->min + 1;
1495 /* reduce max_piv as the special case is checked before the loop */
1496 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1498 * Check end implied pivot which can only be a gap on the right most
1501 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1502 gap = ULONG_MAX - pivots[max_piv];
1507 for (; i <= max_piv; i++) {
1508 /* data == no gap. */
1509 if (likely(slots[i]))
1512 pstart = pivots[i - 1];
1513 gap = pivots[i] - pstart;
1517 /* There cannot be two gaps in a row. */
1524 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1525 * @node: The maple node
1526 * @gaps: The pointer to the gaps
1527 * @mt: The maple node type
1528 * @*off: Pointer to store the offset location of the gap.
1530 * Uses the metadata data end to scan backwards across set gaps.
1532 * Return: The maximum gap value
1534 static inline unsigned long
1535 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1538 unsigned char offset, i;
1539 unsigned long max_gap = 0;
1541 i = offset = ma_meta_end(node, mt);
1543 if (gaps[i] > max_gap) {
1554 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1555 * @mas: The maple state.
1557 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1559 * Return: The gap value.
1561 static inline unsigned long mas_max_gap(struct ma_state *mas)
1563 unsigned long *gaps;
1564 unsigned char offset;
1566 struct maple_node *node;
1568 mt = mte_node_type(mas->node);
1570 return mas_leaf_max_gap(mas);
1573 offset = ma_meta_gap(node, mt);
1574 if (offset == MAPLE_ARANGE64_META_MAX)
1577 gaps = ma_gaps(node, mt);
1578 return gaps[offset];
1582 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1583 * @mas: The maple state
1584 * @offset: The gap offset in the parent to set
1585 * @new: The new gap value.
1587 * Set the parent gap then continue to set the gap upwards, using the metadata
1588 * of the parent to see if it is necessary to check the node above.
1590 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1593 unsigned long meta_gap = 0;
1594 struct maple_node *pnode;
1595 struct maple_enode *penode;
1596 unsigned long *pgaps;
1597 unsigned char meta_offset;
1598 enum maple_type pmt;
1600 pnode = mte_parent(mas->node);
1601 pmt = mas_parent_enum(mas, mas->node);
1602 penode = mt_mk_node(pnode, pmt);
1603 pgaps = ma_gaps(pnode, pmt);
1606 meta_offset = ma_meta_gap(pnode, pmt);
1607 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1610 meta_gap = pgaps[meta_offset];
1612 pgaps[offset] = new;
1614 if (meta_gap == new)
1617 if (offset != meta_offset) {
1621 ma_set_meta_gap(pnode, pmt, offset);
1622 } else if (new < meta_gap) {
1624 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1625 ma_set_meta_gap(pnode, pmt, meta_offset);
1628 if (ma_is_root(pnode))
1631 /* Go to the parent node. */
1632 pnode = mte_parent(penode);
1633 pmt = mas_parent_enum(mas, penode);
1634 pgaps = ma_gaps(pnode, pmt);
1635 offset = mte_parent_slot(penode);
1636 penode = mt_mk_node(pnode, pmt);
1641 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1642 * @mas - the maple state.
1644 static inline void mas_update_gap(struct ma_state *mas)
1646 unsigned char pslot;
1647 unsigned long p_gap;
1648 unsigned long max_gap;
1650 if (!mt_is_alloc(mas->tree))
1653 if (mte_is_root(mas->node))
1656 max_gap = mas_max_gap(mas);
1658 pslot = mte_parent_slot(mas->node);
1659 p_gap = ma_gaps(mte_parent(mas->node),
1660 mas_parent_enum(mas, mas->node))[pslot];
1662 if (p_gap != max_gap)
1663 mas_parent_gap(mas, pslot, max_gap);
1667 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1668 * @parent with the slot encoded.
1669 * @mas - the maple state (for the tree)
1670 * @parent - the maple encoded node containing the children.
1672 static inline void mas_adopt_children(struct ma_state *mas,
1673 struct maple_enode *parent)
1675 enum maple_type type = mte_node_type(parent);
1676 struct maple_node *node = mas_mn(mas);
1677 void __rcu **slots = ma_slots(node, type);
1678 unsigned long *pivots = ma_pivots(node, type);
1679 struct maple_enode *child;
1680 unsigned char offset;
1682 offset = ma_data_end(node, type, pivots, mas->max);
1684 child = mas_slot_locked(mas, slots, offset);
1685 mte_set_parent(child, parent, offset);
1690 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1691 * parent encoding to locate the maple node in the tree.
1692 * @mas - the ma_state to use for operations.
1693 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1694 * leave the node (true) and handle the adoption and free elsewhere.
1696 static inline void mas_replace(struct ma_state *mas, bool advanced)
1697 __must_hold(mas->tree->lock)
1699 struct maple_node *mn = mas_mn(mas);
1700 struct maple_enode *old_enode;
1701 unsigned char offset = 0;
1702 void __rcu **slots = NULL;
1704 if (ma_is_root(mn)) {
1705 old_enode = mas_root_locked(mas);
1707 offset = mte_parent_slot(mas->node);
1708 slots = ma_slots(mte_parent(mas->node),
1709 mas_parent_enum(mas, mas->node));
1710 old_enode = mas_slot_locked(mas, slots, offset);
1713 if (!advanced && !mte_is_leaf(mas->node))
1714 mas_adopt_children(mas, mas->node);
1716 if (mte_is_root(mas->node)) {
1717 mn->parent = ma_parent_ptr(
1718 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1719 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1720 mas_set_height(mas);
1722 rcu_assign_pointer(slots[offset], mas->node);
1726 mas_free(mas, old_enode);
1730 * mas_new_child() - Find the new child of a node.
1731 * @mas: the maple state
1732 * @child: the maple state to store the child.
1734 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1735 __must_hold(mas->tree->lock)
1738 unsigned char offset;
1740 unsigned long *pivots;
1741 struct maple_enode *entry;
1742 struct maple_node *node;
1745 mt = mte_node_type(mas->node);
1747 slots = ma_slots(node, mt);
1748 pivots = ma_pivots(node, mt);
1749 end = ma_data_end(node, mt, pivots, mas->max);
1750 for (offset = mas->offset; offset <= end; offset++) {
1751 entry = mas_slot_locked(mas, slots, offset);
1752 if (mte_parent(entry) == node) {
1754 mas->offset = offset + 1;
1755 child->offset = offset;
1765 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1766 * old data or set b_node->b_end.
1767 * @b_node: the maple_big_node
1768 * @shift: the shift count
1770 static inline void mab_shift_right(struct maple_big_node *b_node,
1771 unsigned char shift)
1773 unsigned long size = b_node->b_end * sizeof(unsigned long);
1775 memmove(b_node->pivot + shift, b_node->pivot, size);
1776 memmove(b_node->slot + shift, b_node->slot, size);
1777 if (b_node->type == maple_arange_64)
1778 memmove(b_node->gap + shift, b_node->gap, size);
1782 * mab_middle_node() - Check if a middle node is needed (unlikely)
1783 * @b_node: the maple_big_node that contains the data.
1784 * @size: the amount of data in the b_node
1785 * @split: the potential split location
1786 * @slot_count: the size that can be stored in a single node being considered.
1788 * Return: true if a middle node is required.
1790 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1791 unsigned char slot_count)
1793 unsigned char size = b_node->b_end;
1795 if (size >= 2 * slot_count)
1798 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1805 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1806 * @b_node: the maple_big_node with the data
1807 * @split: the suggested split location
1808 * @slot_count: the number of slots in the node being considered.
1810 * Return: the split location.
1812 static inline int mab_no_null_split(struct maple_big_node *b_node,
1813 unsigned char split, unsigned char slot_count)
1815 if (!b_node->slot[split]) {
1817 * If the split is less than the max slot && the right side will
1818 * still be sufficient, then increment the split on NULL.
1820 if ((split < slot_count - 1) &&
1821 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1830 * mab_calc_split() - Calculate the split location and if there needs to be two
1832 * @bn: The maple_big_node with the data
1833 * @mid_split: The second split, if required. 0 otherwise.
1835 * Return: The first split location. The middle split is set in @mid_split.
1837 static inline int mab_calc_split(struct ma_state *mas,
1838 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1840 unsigned char b_end = bn->b_end;
1841 int split = b_end / 2; /* Assume equal split. */
1842 unsigned char slot_min, slot_count = mt_slots[bn->type];
1845 * To support gap tracking, all NULL entries are kept together and a node cannot
1846 * end on a NULL entry, with the exception of the left-most leaf. The
1847 * limitation means that the split of a node must be checked for this condition
1848 * and be able to put more data in one direction or the other.
1850 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1852 split = b_end - mt_min_slots[bn->type];
1854 if (!ma_is_leaf(bn->type))
1857 mas->mas_flags |= MA_STATE_REBALANCE;
1858 if (!bn->slot[split])
1864 * Although extremely rare, it is possible to enter what is known as the 3-way
1865 * split scenario. The 3-way split comes about by means of a store of a range
1866 * that overwrites the end and beginning of two full nodes. The result is a set
1867 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1868 * also be located in different parent nodes which are also full. This can
1869 * carry upwards all the way to the root in the worst case.
1871 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1873 *mid_split = split * 2;
1875 slot_min = mt_min_slots[bn->type];
1879 * Avoid having a range less than the slot count unless it
1880 * causes one node to be deficient.
1881 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1883 while (((bn->pivot[split] - min) < slot_count - 1) &&
1884 (split < slot_count - 1) && (b_end - split > slot_min))
1888 /* Avoid ending a node on a NULL entry */
1889 split = mab_no_null_split(bn, split, slot_count);
1893 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1899 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1900 * and set @b_node->b_end to the next free slot.
1901 * @mas: The maple state
1902 * @mas_start: The starting slot to copy
1903 * @mas_end: The end slot to copy (inclusively)
1904 * @b_node: The maple_big_node to place the data
1905 * @mab_start: The starting location in maple_big_node to store the data.
1907 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1908 unsigned char mas_end, struct maple_big_node *b_node,
1909 unsigned char mab_start)
1912 struct maple_node *node;
1914 unsigned long *pivots, *gaps;
1915 int i = mas_start, j = mab_start;
1916 unsigned char piv_end;
1919 mt = mte_node_type(mas->node);
1920 pivots = ma_pivots(node, mt);
1922 b_node->pivot[j] = pivots[i++];
1923 if (unlikely(i > mas_end))
1928 piv_end = min(mas_end, mt_pivots[mt]);
1929 for (; i < piv_end; i++, j++) {
1930 b_node->pivot[j] = pivots[i];
1931 if (unlikely(!b_node->pivot[j]))
1934 if (unlikely(mas->max == b_node->pivot[j]))
1938 if (likely(i <= mas_end))
1939 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1942 b_node->b_end = ++j;
1944 slots = ma_slots(node, mt);
1945 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1946 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1947 gaps = ma_gaps(node, mt);
1948 memcpy(b_node->gap + mab_start, gaps + mas_start,
1949 sizeof(unsigned long) * j);
1954 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1955 * @mas: The maple state
1956 * @node: The maple node
1957 * @pivots: pointer to the maple node pivots
1958 * @mt: The maple type
1959 * @end: The assumed end
1961 * Note, end may be incremented within this function but not modified at the
1962 * source. This is fine since the metadata is the last thing to be stored in a
1963 * node during a write.
1965 static inline void mas_leaf_set_meta(struct ma_state *mas,
1966 struct maple_node *node, unsigned long *pivots,
1967 enum maple_type mt, unsigned char end)
1969 /* There is no room for metadata already */
1970 if (mt_pivots[mt] <= end)
1973 if (pivots[end] && pivots[end] < mas->max)
1976 if (end < mt_slots[mt] - 1)
1977 ma_set_meta(node, mt, 0, end);
1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982 * @b_node: the maple_big_node that has the data
1983 * @mab_start: the start location in @b_node.
1984 * @mab_end: The end location in @b_node (inclusively)
1985 * @mas: The maple state with the maple encoded node.
1987 static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 unsigned char mab_start, unsigned char mab_end,
1989 struct ma_state *mas, bool new_max)
1992 enum maple_type mt = mte_node_type(mas->node);
1993 struct maple_node *node = mte_to_node(mas->node);
1994 void __rcu **slots = ma_slots(node, mt);
1995 unsigned long *pivots = ma_pivots(node, mt);
1996 unsigned long *gaps = NULL;
1999 if (mab_end - mab_start > mt_pivots[mt])
2002 if (!pivots[mt_pivots[mt] - 1])
2003 slots[mt_pivots[mt]] = NULL;
2007 pivots[j++] = b_node->pivot[i++];
2008 } while (i <= mab_end && likely(b_node->pivot[i]));
2010 memcpy(slots, b_node->slot + mab_start,
2011 sizeof(void *) * (i - mab_start));
2014 mas->max = b_node->pivot[i - 1];
2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 unsigned long max_gap = 0;
2019 unsigned char offset = 15;
2021 gaps = ma_gaps(node, mt);
2023 gaps[--j] = b_node->gap[--i];
2024 if (gaps[j] > max_gap) {
2030 ma_set_meta(node, mt, offset, end);
2032 mas_leaf_set_meta(mas, node, pivots, mt, end);
2037 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2038 * @mas: the maple state with the maple encoded node of the sub-tree.
2040 * Descend through a sub-tree and adopt children who do not have the correct
2041 * parents set. Follow the parents which have the correct parents as they are
2042 * the new entries which need to be followed to find other incorrectly set
2045 static inline void mas_descend_adopt(struct ma_state *mas)
2047 struct ma_state list[3], next[3];
2051 * At each level there may be up to 3 correct parent pointers which indicates
2052 * the new nodes which need to be walked to find any new nodes at a lower level.
2055 for (i = 0; i < 3; i++) {
2062 while (!mte_is_leaf(list[0].node)) {
2064 for (i = 0; i < 3; i++) {
2065 if (mas_is_none(&list[i]))
2068 if (i && list[i-1].node == list[i].node)
2071 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2074 mas_adopt_children(&list[i], list[i].node);
2078 next[n++].node = MAS_NONE;
2080 /* descend by setting the list to the children */
2081 for (i = 0; i < 3; i++)
2087 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2088 * @mas: The maple state
2089 * @end: The maple node end
2090 * @mt: The maple node type
2092 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2095 if (!(mas->mas_flags & MA_STATE_BULK))
2098 if (mte_is_root(mas->node))
2101 if (end > mt_min_slots[mt]) {
2102 mas->mas_flags &= ~MA_STATE_REBALANCE;
2108 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2109 * data from a maple encoded node.
2110 * @wr_mas: the maple write state
2111 * @b_node: the maple_big_node to fill with data
2112 * @offset_end: the offset to end copying
2114 * Return: The actual end of the data stored in @b_node
2116 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2117 struct maple_big_node *b_node, unsigned char offset_end)
2120 unsigned char b_end;
2121 /* Possible underflow of piv will wrap back to 0 before use. */
2123 struct ma_state *mas = wr_mas->mas;
2125 b_node->type = wr_mas->type;
2129 /* Copy start data up to insert. */
2130 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2131 b_end = b_node->b_end;
2132 piv = b_node->pivot[b_end - 1];
2136 if (piv + 1 < mas->index) {
2137 /* Handle range starting after old range */
2138 b_node->slot[b_end] = wr_mas->content;
2139 if (!wr_mas->content)
2140 b_node->gap[b_end] = mas->index - 1 - piv;
2141 b_node->pivot[b_end++] = mas->index - 1;
2144 /* Store the new entry. */
2145 mas->offset = b_end;
2146 b_node->slot[b_end] = wr_mas->entry;
2147 b_node->pivot[b_end] = mas->last;
2150 if (mas->last >= mas->max)
2153 /* Handle new range ending before old range ends */
2154 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2155 if (piv > mas->last) {
2156 if (piv == ULONG_MAX)
2157 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2159 if (offset_end != slot)
2160 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2163 b_node->slot[++b_end] = wr_mas->content;
2164 if (!wr_mas->content)
2165 b_node->gap[b_end] = piv - mas->last + 1;
2166 b_node->pivot[b_end] = piv;
2169 slot = offset_end + 1;
2170 if (slot > wr_mas->node_end)
2173 /* Copy end data to the end of the node. */
2174 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2179 b_node->b_end = b_end;
2183 * mas_prev_sibling() - Find the previous node with the same parent.
2184 * @mas: the maple state
2186 * Return: True if there is a previous sibling, false otherwise.
2188 static inline bool mas_prev_sibling(struct ma_state *mas)
2190 unsigned int p_slot = mte_parent_slot(mas->node);
2192 if (mte_is_root(mas->node))
2199 mas->offset = p_slot - 1;
2205 * mas_next_sibling() - Find the next node with the same parent.
2206 * @mas: the maple state
2208 * Return: true if there is a next sibling, false otherwise.
2210 static inline bool mas_next_sibling(struct ma_state *mas)
2212 MA_STATE(parent, mas->tree, mas->index, mas->last);
2214 if (mte_is_root(mas->node))
2218 mas_ascend(&parent);
2219 parent.offset = mte_parent_slot(mas->node) + 1;
2220 if (parent.offset > mas_data_end(&parent))
2229 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2230 * @enode: The encoded maple node.
2232 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2234 * Return: @enode or MAS_NONE
2236 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2241 return ma_enode_ptr(MAS_NONE);
2245 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2246 * @wr_mas: The maple write state
2248 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2250 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2252 struct ma_state *mas = wr_mas->mas;
2253 unsigned char count;
2254 unsigned char offset;
2255 unsigned long index, min, max;
2257 if (unlikely(ma_is_dense(wr_mas->type))) {
2258 wr_mas->r_max = wr_mas->r_min = mas->index;
2259 mas->offset = mas->index = mas->min;
2263 wr_mas->node = mas_mn(wr_mas->mas);
2264 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2265 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2266 wr_mas->pivots, mas->max);
2267 offset = mas->offset;
2268 min = mas_safe_min(mas, wr_mas->pivots, offset);
2269 if (unlikely(offset == count))
2272 max = wr_mas->pivots[offset];
2274 if (unlikely(index <= max))
2277 if (unlikely(!max && offset))
2281 while (++offset < count) {
2282 max = wr_mas->pivots[offset];
2285 else if (unlikely(!max))
2294 wr_mas->r_max = max;
2295 wr_mas->r_min = min;
2296 wr_mas->offset_end = mas->offset = offset;
2300 * mas_topiary_range() - Add a range of slots to the topiary.
2301 * @mas: The maple state
2302 * @destroy: The topiary to add the slots (usually destroy)
2303 * @start: The starting slot inclusively
2304 * @end: The end slot inclusively
2306 static inline void mas_topiary_range(struct ma_state *mas,
2307 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2310 unsigned char offset;
2312 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2313 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2314 for (offset = start; offset <= end; offset++) {
2315 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2317 if (mte_dead_node(enode))
2320 mat_add(destroy, enode);
2325 * mast_topiary() - Add the portions of the tree to the removal list; either to
2326 * be freed or discarded (destroy walk).
2327 * @mast: The maple_subtree_state.
2329 static inline void mast_topiary(struct maple_subtree_state *mast)
2331 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2332 unsigned char r_start, r_end;
2333 unsigned char l_start, l_end;
2334 void __rcu **l_slots, **r_slots;
2336 wr_mas.type = mte_node_type(mast->orig_l->node);
2337 mast->orig_l->index = mast->orig_l->last;
2338 mas_wr_node_walk(&wr_mas);
2339 l_start = mast->orig_l->offset + 1;
2340 l_end = mas_data_end(mast->orig_l);
2342 r_end = mast->orig_r->offset;
2347 l_slots = ma_slots(mas_mn(mast->orig_l),
2348 mte_node_type(mast->orig_l->node));
2350 r_slots = ma_slots(mas_mn(mast->orig_r),
2351 mte_node_type(mast->orig_r->node));
2353 if ((l_start < l_end) &&
2354 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2358 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2363 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2366 /* At the node where left and right sides meet, add the parts between */
2367 if (mast->orig_l->node == mast->orig_r->node) {
2368 return mas_topiary_range(mast->orig_l, mast->destroy,
2372 /* mast->orig_r is different and consumed. */
2373 if (mte_is_leaf(mast->orig_r->node))
2376 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2380 if (l_start <= l_end)
2381 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2383 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2386 if (r_start <= r_end)
2387 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2391 * mast_rebalance_next() - Rebalance against the next node
2392 * @mast: The maple subtree state
2393 * @old_r: The encoded maple node to the right (next node).
2395 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2397 unsigned char b_end = mast->bn->b_end;
2399 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2401 mast->orig_r->last = mast->orig_r->max;
2405 * mast_rebalance_prev() - Rebalance against the previous node
2406 * @mast: The maple subtree state
2407 * @old_l: The encoded maple node to the left (previous node)
2409 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2411 unsigned char end = mas_data_end(mast->orig_l) + 1;
2412 unsigned char b_end = mast->bn->b_end;
2414 mab_shift_right(mast->bn, end);
2415 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2416 mast->l->min = mast->orig_l->min;
2417 mast->orig_l->index = mast->orig_l->min;
2418 mast->bn->b_end = end + b_end;
2419 mast->l->offset += end;
2423 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2424 * the node to the right. Checking the nodes to the right then the left at each
2425 * level upwards until root is reached. Free and destroy as needed.
2426 * Data is copied into the @mast->bn.
2427 * @mast: The maple_subtree_state.
2430 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2432 struct ma_state r_tmp = *mast->orig_r;
2433 struct ma_state l_tmp = *mast->orig_l;
2434 struct maple_enode *ancestor = NULL;
2435 unsigned char start, end;
2436 unsigned char depth = 0;
2438 r_tmp = *mast->orig_r;
2439 l_tmp = *mast->orig_l;
2441 mas_ascend(mast->orig_r);
2442 mas_ascend(mast->orig_l);
2445 (mast->orig_r->node == mast->orig_l->node)) {
2446 ancestor = mast->orig_r->node;
2447 end = mast->orig_r->offset - 1;
2448 start = mast->orig_l->offset + 1;
2451 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2453 ancestor = mast->orig_r->node;
2457 mast->orig_r->offset++;
2459 mas_descend(mast->orig_r);
2460 mast->orig_r->offset = 0;
2464 mast_rebalance_next(mast);
2466 unsigned char l_off = 0;
2467 struct maple_enode *child = r_tmp.node;
2470 if (ancestor == r_tmp.node)
2476 if (l_off < r_tmp.offset)
2477 mas_topiary_range(&r_tmp, mast->destroy,
2478 l_off, r_tmp.offset);
2480 if (l_tmp.node != child)
2481 mat_add(mast->free, child);
2483 } while (r_tmp.node != ancestor);
2485 *mast->orig_l = l_tmp;
2488 } else if (mast->orig_l->offset != 0) {
2490 ancestor = mast->orig_l->node;
2491 end = mas_data_end(mast->orig_l);
2494 mast->orig_l->offset--;
2496 mas_descend(mast->orig_l);
2497 mast->orig_l->offset =
2498 mas_data_end(mast->orig_l);
2502 mast_rebalance_prev(mast);
2504 unsigned char r_off;
2505 struct maple_enode *child = l_tmp.node;
2508 if (ancestor == l_tmp.node)
2511 r_off = mas_data_end(&l_tmp);
2513 if (l_tmp.offset < r_off)
2516 if (l_tmp.offset < r_off)
2517 mas_topiary_range(&l_tmp, mast->destroy,
2518 l_tmp.offset, r_off);
2520 if (r_tmp.node != child)
2521 mat_add(mast->free, child);
2523 } while (l_tmp.node != ancestor);
2525 *mast->orig_r = r_tmp;
2528 } while (!mte_is_root(mast->orig_r->node));
2530 *mast->orig_r = r_tmp;
2531 *mast->orig_l = l_tmp;
2536 * mast_ascend_free() - Add current original maple state nodes to the free list
2538 * @mast: the maple subtree state.
2540 * Ascend the original left and right sides and add the previous nodes to the
2541 * free list. Set the slots to point to the correct location in the new nodes.
2544 mast_ascend_free(struct maple_subtree_state *mast)
2546 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2547 struct maple_enode *left = mast->orig_l->node;
2548 struct maple_enode *right = mast->orig_r->node;
2550 mas_ascend(mast->orig_l);
2551 mas_ascend(mast->orig_r);
2552 mat_add(mast->free, left);
2555 mat_add(mast->free, right);
2557 mast->orig_r->offset = 0;
2558 mast->orig_r->index = mast->r->max;
2559 /* last should be larger than or equal to index */
2560 if (mast->orig_r->last < mast->orig_r->index)
2561 mast->orig_r->last = mast->orig_r->index;
2563 * The node may not contain the value so set slot to ensure all
2564 * of the nodes contents are freed or destroyed.
2566 wr_mas.type = mte_node_type(mast->orig_r->node);
2567 mas_wr_node_walk(&wr_mas);
2568 /* Set up the left side of things */
2569 mast->orig_l->offset = 0;
2570 mast->orig_l->index = mast->l->min;
2571 wr_mas.mas = mast->orig_l;
2572 wr_mas.type = mte_node_type(mast->orig_l->node);
2573 mas_wr_node_walk(&wr_mas);
2575 mast->bn->type = wr_mas.type;
2579 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2580 * @mas: the maple state with the allocations.
2581 * @b_node: the maple_big_node with the type encoding.
2583 * Use the node type from the maple_big_node to allocate a new node from the
2584 * ma_state. This function exists mainly for code readability.
2586 * Return: A new maple encoded node
2588 static inline struct maple_enode
2589 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2591 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2595 * mas_mab_to_node() - Set up right and middle nodes
2597 * @mas: the maple state that contains the allocations.
2598 * @b_node: the node which contains the data.
2599 * @left: The pointer which will have the left node
2600 * @right: The pointer which may have the right node
2601 * @middle: the pointer which may have the middle node (rare)
2602 * @mid_split: the split location for the middle node
2604 * Return: the split of left.
2606 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2607 struct maple_big_node *b_node, struct maple_enode **left,
2608 struct maple_enode **right, struct maple_enode **middle,
2609 unsigned char *mid_split, unsigned long min)
2611 unsigned char split = 0;
2612 unsigned char slot_count = mt_slots[b_node->type];
2614 *left = mas_new_ma_node(mas, b_node);
2619 if (b_node->b_end < slot_count) {
2620 split = b_node->b_end;
2622 split = mab_calc_split(mas, b_node, mid_split, min);
2623 *right = mas_new_ma_node(mas, b_node);
2627 *middle = mas_new_ma_node(mas, b_node);
2634 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2636 * @b_node - the big node to add the entry
2637 * @mas - the maple state to get the pivot (mas->max)
2638 * @entry - the entry to add, if NULL nothing happens.
2640 static inline void mab_set_b_end(struct maple_big_node *b_node,
2641 struct ma_state *mas,
2647 b_node->slot[b_node->b_end] = entry;
2648 if (mt_is_alloc(mas->tree))
2649 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2650 b_node->pivot[b_node->b_end++] = mas->max;
2654 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2655 * of @mas->node to either @left or @right, depending on @slot and @split
2657 * @mas - the maple state with the node that needs a parent
2658 * @left - possible parent 1
2659 * @right - possible parent 2
2660 * @slot - the slot the mas->node was placed
2661 * @split - the split location between @left and @right
2663 static inline void mas_set_split_parent(struct ma_state *mas,
2664 struct maple_enode *left,
2665 struct maple_enode *right,
2666 unsigned char *slot, unsigned char split)
2668 if (mas_is_none(mas))
2671 if ((*slot) <= split)
2672 mte_set_parent(mas->node, left, *slot);
2674 mte_set_parent(mas->node, right, (*slot) - split - 1);
2680 * mte_mid_split_check() - Check if the next node passes the mid-split
2681 * @**l: Pointer to left encoded maple node.
2682 * @**m: Pointer to middle encoded maple node.
2683 * @**r: Pointer to right encoded maple node.
2685 * @*split: The split location.
2686 * @mid_split: The middle split.
2688 static inline void mte_mid_split_check(struct maple_enode **l,
2689 struct maple_enode **r,
2690 struct maple_enode *right,
2692 unsigned char *split,
2693 unsigned char mid_split)
2698 if (slot < mid_split)
2707 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2708 * is taken from @mast->l.
2709 * @mast - the maple subtree state
2710 * @left - the left node
2711 * @right - the right node
2712 * @split - the split location.
2714 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2715 struct maple_enode *left,
2716 struct maple_enode *middle,
2717 struct maple_enode *right,
2718 unsigned char split,
2719 unsigned char mid_split)
2722 struct maple_enode *l = left;
2723 struct maple_enode *r = right;
2725 if (mas_is_none(mast->l))
2731 slot = mast->l->offset;
2733 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2734 mas_set_split_parent(mast->l, l, r, &slot, split);
2736 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2737 mas_set_split_parent(mast->m, l, r, &slot, split);
2739 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2740 mas_set_split_parent(mast->r, l, r, &slot, split);
2744 * mas_wmb_replace() - Write memory barrier and replace
2745 * @mas: The maple state
2746 * @free: the maple topiary list of nodes to free
2747 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2749 * Updates gap as necessary.
2751 static inline void mas_wmb_replace(struct ma_state *mas,
2752 struct ma_topiary *free,
2753 struct ma_topiary *destroy)
2755 /* All nodes must see old data as dead prior to replacing that data */
2756 smp_wmb(); /* Needed for RCU */
2758 /* Insert the new data in the tree */
2759 mas_replace(mas, true);
2761 if (!mte_is_leaf(mas->node))
2762 mas_descend_adopt(mas);
2764 mas_mat_free(mas, free);
2767 mas_mat_destroy(mas, destroy);
2769 if (mte_is_leaf(mas->node))
2772 mas_update_gap(mas);
2776 * mast_new_root() - Set a new tree root during subtree creation
2777 * @mast: The maple subtree state
2778 * @mas: The maple state
2780 static inline void mast_new_root(struct maple_subtree_state *mast,
2781 struct ma_state *mas)
2783 mas_mn(mast->l)->parent =
2784 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2785 if (!mte_dead_node(mast->orig_l->node) &&
2786 !mte_is_root(mast->orig_l->node)) {
2788 mast_ascend_free(mast);
2790 } while (!mte_is_root(mast->orig_l->node));
2792 if ((mast->orig_l->node != mas->node) &&
2793 (mast->l->depth > mas_mt_height(mas))) {
2794 mat_add(mast->free, mas->node);
2799 * mast_cp_to_nodes() - Copy data out to nodes.
2800 * @mast: The maple subtree state
2801 * @left: The left encoded maple node
2802 * @middle: The middle encoded maple node
2803 * @right: The right encoded maple node
2804 * @split: The location to split between left and (middle ? middle : right)
2805 * @mid_split: The location to split between middle and right.
2807 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2808 struct maple_enode *left, struct maple_enode *middle,
2809 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2811 bool new_lmax = true;
2813 mast->l->node = mte_node_or_none(left);
2814 mast->m->node = mte_node_or_none(middle);
2815 mast->r->node = mte_node_or_none(right);
2817 mast->l->min = mast->orig_l->min;
2818 if (split == mast->bn->b_end) {
2819 mast->l->max = mast->orig_r->max;
2823 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2826 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2827 mast->m->min = mast->bn->pivot[split] + 1;
2831 mast->r->max = mast->orig_r->max;
2833 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2834 mast->r->min = mast->bn->pivot[split] + 1;
2839 * mast_combine_cp_left - Copy in the original left side of the tree into the
2840 * combined data set in the maple subtree state big node.
2841 * @mast: The maple subtree state
2843 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2845 unsigned char l_slot = mast->orig_l->offset;
2850 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2854 * mast_combine_cp_right: Copy in the original right side of the tree into the
2855 * combined data set in the maple subtree state big node.
2856 * @mast: The maple subtree state
2858 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2860 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2863 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2864 mt_slot_count(mast->orig_r->node), mast->bn,
2866 mast->orig_r->last = mast->orig_r->max;
2870 * mast_sufficient: Check if the maple subtree state has enough data in the big
2871 * node to create at least one sufficient node
2872 * @mast: the maple subtree state
2874 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2876 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2883 * mast_overflow: Check if there is too much data in the subtree state for a
2885 * @mast: The maple subtree state
2887 static inline bool mast_overflow(struct maple_subtree_state *mast)
2889 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2895 static inline void *mtree_range_walk(struct ma_state *mas)
2897 unsigned long *pivots;
2898 unsigned char offset;
2899 struct maple_node *node;
2900 struct maple_enode *next, *last;
2901 enum maple_type type;
2904 unsigned long max, min;
2905 unsigned long prev_max, prev_min;
2913 node = mte_to_node(next);
2914 type = mte_node_type(next);
2915 pivots = ma_pivots(node, type);
2916 end = ma_data_end(node, type, pivots, max);
2917 if (unlikely(ma_dead_node(node)))
2920 if (pivots[offset] >= mas->index) {
2923 max = pivots[offset];
2929 } while ((offset < end) && (pivots[offset] < mas->index));
2932 min = pivots[offset - 1] + 1;
2934 if (likely(offset < end && pivots[offset]))
2935 max = pivots[offset];
2938 slots = ma_slots(node, type);
2939 next = mt_slot(mas->tree, slots, offset);
2940 if (unlikely(ma_dead_node(node)))
2942 } while (!ma_is_leaf(type));
2944 mas->offset = offset;
2947 mas->min = prev_min;
2948 mas->max = prev_max;
2950 return (void *) next;
2958 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2959 * @mas: The starting maple state
2960 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2961 * @count: The estimated count of iterations needed.
2963 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2964 * is hit. First @b_node is split into two entries which are inserted into the
2965 * next iteration of the loop. @b_node is returned populated with the final
2966 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2967 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2968 * to account of what has been copied into the new sub-tree. The update of
2969 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2970 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2971 * the new sub-tree in case the sub-tree becomes the full tree.
2973 * Return: the number of elements in b_node during the last loop.
2975 static int mas_spanning_rebalance(struct ma_state *mas,
2976 struct maple_subtree_state *mast, unsigned char count)
2978 unsigned char split, mid_split;
2979 unsigned char slot = 0;
2980 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2982 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2983 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2984 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2985 MA_TOPIARY(free, mas->tree);
2986 MA_TOPIARY(destroy, mas->tree);
2989 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2990 * Rebalancing is done by use of the ``struct maple_topiary``.
2996 mast->destroy = &destroy;
2997 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2999 /* Check if this is not root and has sufficient data. */
3000 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3001 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3002 mast_spanning_rebalance(mast);
3004 mast->orig_l->depth = 0;
3007 * Each level of the tree is examined and balanced, pushing data to the left or
3008 * right, or rebalancing against left or right nodes is employed to avoid
3009 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3010 * the tree is created, there may be a mix of new and old nodes. The old nodes
3011 * will have the incorrect parent pointers and currently be in two trees: the
3012 * original tree and the partially new tree. To remedy the parent pointers in
3013 * the old tree, the new data is swapped into the active tree and a walk down
3014 * the tree is performed and the parent pointers are updated.
3015 * See mas_descend_adopt() for more information..
3019 mast->bn->type = mte_node_type(mast->orig_l->node);
3020 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3021 &mid_split, mast->orig_l->min);
3022 mast_set_split_parents(mast, left, middle, right, split,
3024 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3027 * Copy data from next level in the tree to mast->bn from next
3030 memset(mast->bn, 0, sizeof(struct maple_big_node));
3031 mast->bn->type = mte_node_type(left);
3032 mast->orig_l->depth++;
3034 /* Root already stored in l->node. */
3035 if (mas_is_root_limits(mast->l))
3038 mast_ascend_free(mast);
3039 mast_combine_cp_left(mast);
3040 l_mas.offset = mast->bn->b_end;
3041 mab_set_b_end(mast->bn, &l_mas, left);
3042 mab_set_b_end(mast->bn, &m_mas, middle);
3043 mab_set_b_end(mast->bn, &r_mas, right);
3045 /* Copy anything necessary out of the right node. */
3046 mast_combine_cp_right(mast);
3048 mast->orig_l->last = mast->orig_l->max;
3050 if (mast_sufficient(mast))
3053 if (mast_overflow(mast))
3056 /* May be a new root stored in mast->bn */
3057 if (mas_is_root_limits(mast->orig_l))
3060 mast_spanning_rebalance(mast);
3062 /* rebalancing from other nodes may require another loop. */
3067 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3068 mte_node_type(mast->orig_l->node));
3069 mast->orig_l->depth++;
3070 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3071 mte_set_parent(left, l_mas.node, slot);
3073 mte_set_parent(middle, l_mas.node, ++slot);
3076 mte_set_parent(right, l_mas.node, ++slot);
3078 if (mas_is_root_limits(mast->l)) {
3080 mast_new_root(mast, mas);
3082 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3085 if (!mte_dead_node(mast->orig_l->node))
3086 mat_add(&free, mast->orig_l->node);
3088 mas->depth = mast->orig_l->depth;
3089 *mast->orig_l = l_mas;
3090 mte_set_node_dead(mas->node);
3092 /* Set up mas for insertion. */
3093 mast->orig_l->depth = mas->depth;
3094 mast->orig_l->alloc = mas->alloc;
3095 *mas = *mast->orig_l;
3096 mas_wmb_replace(mas, &free, &destroy);
3097 mtree_range_walk(mas);
3098 return mast->bn->b_end;
3102 * mas_rebalance() - Rebalance a given node.
3103 * @mas: The maple state
3104 * @b_node: The big maple node.
3106 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3107 * Continue upwards until tree is sufficient.
3109 * Return: the number of elements in b_node during the last loop.
3111 static inline int mas_rebalance(struct ma_state *mas,
3112 struct maple_big_node *b_node)
3114 char empty_count = mas_mt_height(mas);
3115 struct maple_subtree_state mast;
3116 unsigned char shift, b_end = ++b_node->b_end;
3118 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3119 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3121 trace_ma_op(__func__, mas);
3124 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3125 * against the node to the right if it exists, otherwise the node to the
3126 * left of this node is rebalanced against this node. If rebalancing
3127 * causes just one node to be produced instead of two, then the parent
3128 * is also examined and rebalanced if it is insufficient. Every level
3129 * tries to combine the data in the same way. If one node contains the
3130 * entire range of the tree, then that node is used as a new root node.
3132 mas_node_count(mas, 1 + empty_count * 3);
3133 if (mas_is_err(mas))
3136 mast.orig_l = &l_mas;
3137 mast.orig_r = &r_mas;
3139 mast.bn->type = mte_node_type(mas->node);
3141 l_mas = r_mas = *mas;
3143 if (mas_next_sibling(&r_mas)) {
3144 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3145 r_mas.last = r_mas.index = r_mas.max;
3147 mas_prev_sibling(&l_mas);
3148 shift = mas_data_end(&l_mas) + 1;
3149 mab_shift_right(b_node, shift);
3150 mas->offset += shift;
3151 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3152 b_node->b_end = shift + b_end;
3153 l_mas.index = l_mas.last = l_mas.min;
3156 return mas_spanning_rebalance(mas, &mast, empty_count);
3160 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3162 * @mas: The maple state
3163 * @end: The end of the left-most node.
3165 * During a mass-insert event (such as forking), it may be necessary to
3166 * rebalance the left-most node when it is not sufficient.
3168 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3170 enum maple_type mt = mte_node_type(mas->node);
3171 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3172 struct maple_enode *eparent;
3173 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3174 void __rcu **l_slots, **slots;
3175 unsigned long *l_pivs, *pivs, gap;
3176 bool in_rcu = mt_in_rcu(mas->tree);
3178 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3181 mas_prev_sibling(&l_mas);
3185 /* Allocate for both left and right as well as parent. */
3186 mas_node_count(mas, 3);
3187 if (mas_is_err(mas))
3190 newnode = mas_pop_node(mas);
3196 newnode->parent = node->parent;
3197 slots = ma_slots(newnode, mt);
3198 pivs = ma_pivots(newnode, mt);
3199 left = mas_mn(&l_mas);
3200 l_slots = ma_slots(left, mt);
3201 l_pivs = ma_pivots(left, mt);
3202 if (!l_slots[split])
3204 tmp = mas_data_end(&l_mas) - split;
3206 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3207 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3208 pivs[tmp] = l_mas.max;
3209 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3210 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3212 l_mas.max = l_pivs[split];
3213 mas->min = l_mas.max + 1;
3214 eparent = mt_mk_node(mte_parent(l_mas.node),
3215 mas_parent_enum(&l_mas, l_mas.node));
3218 unsigned char max_p = mt_pivots[mt];
3219 unsigned char max_s = mt_slots[mt];
3222 memset(pivs + tmp, 0,
3223 sizeof(unsigned long *) * (max_p - tmp));
3225 if (tmp < mt_slots[mt])
3226 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3228 memcpy(node, newnode, sizeof(struct maple_node));
3229 ma_set_meta(node, mt, 0, tmp - 1);
3230 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3233 /* Remove data from l_pivs. */
3235 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3236 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3237 ma_set_meta(left, mt, 0, split);
3242 /* RCU requires replacing both l_mas, mas, and parent. */
3243 mas->node = mt_mk_node(newnode, mt);
3244 ma_set_meta(newnode, mt, 0, tmp);
3246 new_left = mas_pop_node(mas);
3247 new_left->parent = left->parent;
3248 mt = mte_node_type(l_mas.node);
3249 slots = ma_slots(new_left, mt);
3250 pivs = ma_pivots(new_left, mt);
3251 memcpy(slots, l_slots, sizeof(void *) * split);
3252 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3253 ma_set_meta(new_left, mt, 0, split);
3254 l_mas.node = mt_mk_node(new_left, mt);
3256 /* replace parent. */
3257 offset = mte_parent_slot(mas->node);
3258 mt = mas_parent_enum(&l_mas, l_mas.node);
3259 parent = mas_pop_node(mas);
3260 slots = ma_slots(parent, mt);
3261 pivs = ma_pivots(parent, mt);
3262 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3263 rcu_assign_pointer(slots[offset], mas->node);
3264 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3265 pivs[offset - 1] = l_mas.max;
3266 eparent = mt_mk_node(parent, mt);
3268 gap = mas_leaf_max_gap(mas);
3269 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3270 gap = mas_leaf_max_gap(&l_mas);
3271 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3275 mas_replace(mas, false);
3277 mas_update_gap(mas);
3281 * mas_split_final_node() - Split the final node in a subtree operation.
3282 * @mast: the maple subtree state
3283 * @mas: The maple state
3284 * @height: The height of the tree in case it's a new root.
3286 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3287 struct ma_state *mas, int height)
3289 struct maple_enode *ancestor;
3291 if (mte_is_root(mas->node)) {
3292 if (mt_is_alloc(mas->tree))
3293 mast->bn->type = maple_arange_64;
3295 mast->bn->type = maple_range_64;
3296 mas->depth = height;
3299 * Only a single node is used here, could be root.
3300 * The Big_node data should just fit in a single node.
3302 ancestor = mas_new_ma_node(mas, mast->bn);
3303 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3304 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3305 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3307 mast->l->node = ancestor;
3308 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3309 mas->offset = mast->bn->b_end - 1;
3314 * mast_fill_bnode() - Copy data into the big node in the subtree state
3315 * @mast: The maple subtree state
3316 * @mas: the maple state
3317 * @skip: The number of entries to skip for new nodes insertion.
3319 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3320 struct ma_state *mas,
3324 struct maple_enode *old = mas->node;
3325 unsigned char split;
3327 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3328 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3329 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3330 mast->bn->b_end = 0;
3332 if (mte_is_root(mas->node)) {
3336 mat_add(mast->free, old);
3337 mas->offset = mte_parent_slot(mas->node);
3340 if (cp && mast->l->offset)
3341 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3343 split = mast->bn->b_end;
3344 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3345 mast->r->offset = mast->bn->b_end;
3346 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3347 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3351 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3352 mast->bn, mast->bn->b_end);
3355 mast->bn->type = mte_node_type(mas->node);
3359 * mast_split_data() - Split the data in the subtree state big node into regular
3361 * @mast: The maple subtree state
3362 * @mas: The maple state
3363 * @split: The location to split the big node
3365 static inline void mast_split_data(struct maple_subtree_state *mast,
3366 struct ma_state *mas, unsigned char split)
3368 unsigned char p_slot;
3370 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3371 mte_set_pivot(mast->r->node, 0, mast->r->max);
3372 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3373 mast->l->offset = mte_parent_slot(mas->node);
3374 mast->l->max = mast->bn->pivot[split];
3375 mast->r->min = mast->l->max + 1;
3376 if (mte_is_leaf(mas->node))
3379 p_slot = mast->orig_l->offset;
3380 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3382 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3387 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3388 * data to the right or left node if there is room.
3389 * @mas: The maple state
3390 * @height: The current height of the maple state
3391 * @mast: The maple subtree state
3392 * @left: Push left or not.
3394 * Keeping the height of the tree low means faster lookups.
3396 * Return: True if pushed, false otherwise.
3398 static inline bool mas_push_data(struct ma_state *mas, int height,
3399 struct maple_subtree_state *mast, bool left)
3401 unsigned char slot_total = mast->bn->b_end;
3402 unsigned char end, space, split;
3404 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3406 tmp_mas.depth = mast->l->depth;
3408 if (left && !mas_prev_sibling(&tmp_mas))
3410 else if (!left && !mas_next_sibling(&tmp_mas))
3413 end = mas_data_end(&tmp_mas);
3415 space = 2 * mt_slot_count(mas->node) - 2;
3416 /* -2 instead of -1 to ensure there isn't a triple split */
3417 if (ma_is_leaf(mast->bn->type))
3420 if (mas->max == ULONG_MAX)
3423 if (slot_total >= space)
3426 /* Get the data; Fill mast->bn */
3429 mab_shift_right(mast->bn, end + 1);
3430 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3431 mast->bn->b_end = slot_total + 1;
3433 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3436 /* Configure mast for splitting of mast->bn */
3437 split = mt_slots[mast->bn->type] - 2;
3439 /* Switch mas to prev node */
3440 mat_add(mast->free, mas->node);
3442 /* Start using mast->l for the left side. */
3443 tmp_mas.node = mast->l->node;
3446 mat_add(mast->free, tmp_mas.node);
3447 tmp_mas.node = mast->r->node;
3449 split = slot_total - split;
3451 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3452 /* Update parent slot for split calculation. */
3454 mast->orig_l->offset += end + 1;
3456 mast_split_data(mast, mas, split);
3457 mast_fill_bnode(mast, mas, 2);
3458 mas_split_final_node(mast, mas, height + 1);
3463 * mas_split() - Split data that is too big for one node into two.
3464 * @mas: The maple state
3465 * @b_node: The maple big node
3466 * Return: 1 on success, 0 on failure.
3468 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3471 struct maple_subtree_state mast;
3473 unsigned char mid_split, split = 0;
3476 * Splitting is handled differently from any other B-tree; the Maple
3477 * Tree splits upwards. Splitting up means that the split operation
3478 * occurs when the walk of the tree hits the leaves and not on the way
3479 * down. The reason for splitting up is that it is impossible to know
3480 * how much space will be needed until the leaf is (or leaves are)
3481 * reached. Since overwriting data is allowed and a range could
3482 * overwrite more than one range or result in changing one entry into 3
3483 * entries, it is impossible to know if a split is required until the
3486 * Splitting is a balancing act between keeping allocations to a minimum
3487 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 * for an entry followed by a contraction when the entry is removed. To
3489 * accomplish the balance, there are empty slots remaining in both left
3490 * and right nodes after a split.
3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 MA_TOPIARY(mat, mas->tree);
3498 trace_ma_op(__func__, mas);
3499 mas->depth = mas_mt_height(mas);
3500 /* Allocation failures will happen early. */
3501 mas_node_count(mas, 1 + mas->depth * 2);
3502 if (mas_is_err(mas))
3507 mast.orig_l = &prev_l_mas;
3508 mast.orig_r = &prev_r_mas;
3512 while (height++ <= mas->depth) {
3513 if (mt_slots[b_node->type] > b_node->b_end) {
3514 mas_split_final_node(&mast, mas, height);
3518 l_mas = r_mas = *mas;
3519 l_mas.node = mas_new_ma_node(mas, b_node);
3520 r_mas.node = mas_new_ma_node(mas, b_node);
3522 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 * left or right node has space to spare. This is referred to as "pushing left"
3524 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 * is a significant savings.
3528 /* Try to push left. */
3529 if (mas_push_data(mas, height, &mast, true))
3532 /* Try to push right. */
3533 if (mas_push_data(mas, height, &mast, false))
3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 mast_split_data(&mast, mas, split);
3539 * Usually correct, mab_mas_cp in the above call overwrites
3542 mast.r->max = mas->max;
3543 mast_fill_bnode(&mast, mas, 1);
3544 prev_l_mas = *mast.l;
3545 prev_r_mas = *mast.r;
3548 /* Set the original node as dead */
3549 mat_add(mast.free, mas->node);
3550 mas->node = l_mas.node;
3551 mas_wmb_replace(mas, mast.free, NULL);
3552 mtree_range_walk(mas);
3557 * mas_reuse_node() - Reuse the node to store the data.
3558 * @wr_mas: The maple write state
3559 * @bn: The maple big node
3560 * @end: The end of the data.
3562 * Will always return false in RCU mode.
3564 * Return: True if node was reused, false otherwise.
3566 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 struct maple_big_node *bn, unsigned char end)
3569 /* Need to be rcu safe. */
3570 if (mt_in_rcu(wr_mas->mas->tree))
3573 if (end > bn->b_end) {
3574 int clear = mt_slots[wr_mas->type] - bn->b_end;
3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3584 * mas_commit_b_node() - Commit the big node into the tree.
3585 * @wr_mas: The maple write state
3586 * @b_node: The maple big node
3587 * @end: The end of the data.
3589 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3590 struct maple_big_node *b_node, unsigned char end)
3592 struct maple_node *node;
3593 unsigned char b_end = b_node->b_end;
3594 enum maple_type b_type = b_node->type;
3596 if ((b_end < mt_min_slots[b_type]) &&
3597 (!mte_is_root(wr_mas->mas->node)) &&
3598 (mas_mt_height(wr_mas->mas) > 1))
3599 return mas_rebalance(wr_mas->mas, b_node);
3601 if (b_end >= mt_slots[b_type])
3602 return mas_split(wr_mas->mas, b_node);
3604 if (mas_reuse_node(wr_mas, b_node, end))
3607 mas_node_count(wr_mas->mas, 1);
3608 if (mas_is_err(wr_mas->mas))
3611 node = mas_pop_node(wr_mas->mas);
3612 node->parent = mas_mn(wr_mas->mas)->parent;
3613 wr_mas->mas->node = mt_mk_node(node, b_type);
3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3615 mas_replace(wr_mas->mas, false);
3617 mas_update_gap(wr_mas->mas);
3622 * mas_root_expand() - Expand a root to a node
3623 * @mas: The maple state
3624 * @entry: The entry to store into the tree
3626 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3628 void *contents = mas_root_locked(mas);
3629 enum maple_type type = maple_leaf_64;
3630 struct maple_node *node;
3632 unsigned long *pivots;
3635 mas_node_count(mas, 1);
3636 if (unlikely(mas_is_err(mas)))
3639 node = mas_pop_node(mas);
3640 pivots = ma_pivots(node, type);
3641 slots = ma_slots(node, type);
3642 node->parent = ma_parent_ptr(
3643 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 mas->node = mt_mk_node(node, type);
3648 rcu_assign_pointer(slots[slot], contents);
3649 if (likely(mas->index > 1))
3652 pivots[slot++] = mas->index - 1;
3655 rcu_assign_pointer(slots[slot], entry);
3657 pivots[slot] = mas->last;
3658 if (mas->last != ULONG_MAX)
3661 mas_set_height(mas);
3663 /* swap the new root into the tree */
3664 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3665 ma_set_meta(node, maple_leaf_64, 0, slot);
3669 static inline void mas_store_root(struct ma_state *mas, void *entry)
3671 if (likely((mas->last != 0) || (mas->index != 0)))
3672 mas_root_expand(mas, entry);
3673 else if (((unsigned long) (entry) & 3) == 2)
3674 mas_root_expand(mas, entry);
3676 rcu_assign_pointer(mas->tree->ma_root, entry);
3677 mas->node = MAS_START;
3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3684 * @mas: The maple state
3685 * @piv: The pivot value being written
3686 * @type: The maple node type
3687 * @entry: The data to write
3689 * Spanning writes are writes that start in one node and end in another OR if
3690 * the write of a %NULL will cause the node to end with a %NULL.
3692 * Return: True if this is a spanning write, false otherwise.
3694 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3697 unsigned long last = wr_mas->mas->last;
3698 unsigned long piv = wr_mas->r_max;
3699 enum maple_type type = wr_mas->type;
3700 void *entry = wr_mas->entry;
3702 /* Contained in this pivot */
3706 max = wr_mas->mas->max;
3707 if (unlikely(ma_is_leaf(type))) {
3708 /* Fits in the node, but may span slots. */
3712 /* Writes to the end of the node but not null. */
3713 if ((last == max) && entry)
3717 * Writing ULONG_MAX is not a spanning write regardless of the
3718 * value being written as long as the range fits in the node.
3720 if ((last == ULONG_MAX) && (last == max))
3722 } else if (piv == last) {
3726 /* Detect spanning store wr walk */
3727 if (last == ULONG_MAX)
3731 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3736 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3738 wr_mas->type = mte_node_type(wr_mas->mas->node);
3739 mas_wr_node_walk(wr_mas);
3740 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3743 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3745 wr_mas->mas->max = wr_mas->r_max;
3746 wr_mas->mas->min = wr_mas->r_min;
3747 wr_mas->mas->node = wr_mas->content;
3748 wr_mas->mas->offset = 0;
3749 wr_mas->mas->depth++;
3752 * mas_wr_walk() - Walk the tree for a write.
3753 * @wr_mas: The maple write state
3755 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3757 * Return: True if it's contained in a node, false on spanning write.
3759 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3761 struct ma_state *mas = wr_mas->mas;
3764 mas_wr_walk_descend(wr_mas);
3765 if (unlikely(mas_is_span_wr(wr_mas)))
3768 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3770 if (ma_is_leaf(wr_mas->type))
3773 mas_wr_walk_traverse(wr_mas);
3779 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3781 struct ma_state *mas = wr_mas->mas;
3784 mas_wr_walk_descend(wr_mas);
3785 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3787 if (ma_is_leaf(wr_mas->type))
3789 mas_wr_walk_traverse(wr_mas);
3795 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3796 * @l_wr_mas: The left maple write state
3797 * @r_wr_mas: The right maple write state
3799 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3800 struct ma_wr_state *r_wr_mas)
3802 struct ma_state *r_mas = r_wr_mas->mas;
3803 struct ma_state *l_mas = l_wr_mas->mas;
3804 unsigned char l_slot;
3806 l_slot = l_mas->offset;
3807 if (!l_wr_mas->content)
3808 l_mas->index = l_wr_mas->r_min;
3810 if ((l_mas->index == l_wr_mas->r_min) &&
3812 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3814 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3816 l_mas->index = l_mas->min;
3818 l_mas->offset = l_slot - 1;
3821 if (!r_wr_mas->content) {
3822 if (r_mas->last < r_wr_mas->r_max)
3823 r_mas->last = r_wr_mas->r_max;
3825 } else if ((r_mas->last == r_wr_mas->r_max) &&
3826 (r_mas->last < r_mas->max) &&
3827 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3828 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3829 r_wr_mas->type, r_mas->offset + 1);
3834 static inline void *mas_state_walk(struct ma_state *mas)
3838 entry = mas_start(mas);
3839 if (mas_is_none(mas))
3842 if (mas_is_ptr(mas))
3845 return mtree_range_walk(mas);
3849 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3852 * @mas: The maple state.
3854 * Note: Leaves mas in undesirable state.
3855 * Return: The entry for @mas->index or %NULL on dead node.
3857 static inline void *mtree_lookup_walk(struct ma_state *mas)
3859 unsigned long *pivots;
3860 unsigned char offset;
3861 struct maple_node *node;
3862 struct maple_enode *next;
3863 enum maple_type type;
3872 node = mte_to_node(next);
3873 type = mte_node_type(next);
3874 pivots = ma_pivots(node, type);
3875 end = ma_data_end(node, type, pivots, max);
3876 if (unlikely(ma_dead_node(node)))
3879 if (pivots[offset] >= mas->index)
3884 } while ((offset < end) && (pivots[offset] < mas->index));
3886 if (likely(offset > end))
3887 max = pivots[offset];
3890 slots = ma_slots(node, type);
3891 next = mt_slot(mas->tree, slots, offset);
3892 if (unlikely(ma_dead_node(node)))
3894 } while (!ma_is_leaf(type));
3896 return (void *) next;
3904 * mas_new_root() - Create a new root node that only contains the entry passed
3906 * @mas: The maple state
3907 * @entry: The entry to store.
3909 * Only valid when the index == 0 and the last == ULONG_MAX
3911 * Return 0 on error, 1 on success.
3913 static inline int mas_new_root(struct ma_state *mas, void *entry)
3915 struct maple_enode *root = mas_root_locked(mas);
3916 enum maple_type type = maple_leaf_64;
3917 struct maple_node *node;
3919 unsigned long *pivots;
3921 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3923 mas_set_height(mas);
3924 rcu_assign_pointer(mas->tree->ma_root, entry);
3925 mas->node = MAS_START;
3929 mas_node_count(mas, 1);
3930 if (mas_is_err(mas))
3933 node = mas_pop_node(mas);
3934 pivots = ma_pivots(node, type);
3935 slots = ma_slots(node, type);
3936 node->parent = ma_parent_ptr(
3937 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3938 mas->node = mt_mk_node(node, type);
3939 rcu_assign_pointer(slots[0], entry);
3940 pivots[0] = mas->last;
3942 mas_set_height(mas);
3943 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3946 if (xa_is_node(root))
3947 mte_destroy_walk(root, mas->tree);
3952 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3953 * and new nodes where necessary, then place the sub-tree in the actual tree.
3954 * Note that mas is expected to point to the node which caused the store to
3956 * @wr_mas: The maple write state
3958 * Return: 0 on error, positive on success.
3960 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3962 struct maple_subtree_state mast;
3963 struct maple_big_node b_node;
3964 struct ma_state *mas;
3965 unsigned char height;
3967 /* Left and Right side of spanning store */
3968 MA_STATE(l_mas, NULL, 0, 0);
3969 MA_STATE(r_mas, NULL, 0, 0);
3971 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3972 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3975 * A store operation that spans multiple nodes is called a spanning
3976 * store and is handled early in the store call stack by the function
3977 * mas_is_span_wr(). When a spanning store is identified, the maple
3978 * state is duplicated. The first maple state walks the left tree path
3979 * to ``index``, the duplicate walks the right tree path to ``last``.
3980 * The data in the two nodes are combined into a single node, two nodes,
3981 * or possibly three nodes (see the 3-way split above). A ``NULL``
3982 * written to the last entry of a node is considered a spanning store as
3983 * a rebalance is required for the operation to complete and an overflow
3984 * of data may happen.
3987 trace_ma_op(__func__, mas);
3989 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3990 return mas_new_root(mas, wr_mas->entry);
3992 * Node rebalancing may occur due to this store, so there may be three new
3993 * entries per level plus a new root.
3995 height = mas_mt_height(mas);
3996 mas_node_count(mas, 1 + height * 3);
3997 if (mas_is_err(mas))
4001 * Set up right side. Need to get to the next offset after the spanning
4002 * store to ensure it's not NULL and to combine both the next node and
4003 * the node with the start together.
4006 /* Avoid overflow, walk to next slot in the tree. */
4010 r_mas.index = r_mas.last;
4011 mas_wr_walk_index(&r_wr_mas);
4012 r_mas.last = r_mas.index = mas->last;
4014 /* Set up left side. */
4016 mas_wr_walk_index(&l_wr_mas);
4018 if (!wr_mas->entry) {
4019 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4020 mas->offset = l_mas.offset;
4021 mas->index = l_mas.index;
4022 mas->last = l_mas.last = r_mas.last;
4025 /* expanding NULLs may make this cover the entire range */
4026 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4027 mas_set_range(mas, 0, ULONG_MAX);
4028 return mas_new_root(mas, wr_mas->entry);
4031 memset(&b_node, 0, sizeof(struct maple_big_node));
4032 /* Copy l_mas and store the value in b_node. */
4033 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4034 /* Copy r_mas into b_node. */
4035 if (r_mas.offset <= r_wr_mas.node_end)
4036 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4037 &b_node, b_node.b_end + 1);
4041 /* Stop spanning searches by searching for just index. */
4042 l_mas.index = l_mas.last = mas->index;
4045 mast.orig_l = &l_mas;
4046 mast.orig_r = &r_mas;
4047 /* Combine l_mas and r_mas and split them up evenly again. */
4048 return mas_spanning_rebalance(mas, &mast, height + 1);
4052 * mas_wr_node_store() - Attempt to store the value in a node
4053 * @wr_mas: The maple write state
4055 * Attempts to reuse the node, but may allocate.
4057 * Return: True if stored, false otherwise
4059 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4061 struct ma_state *mas = wr_mas->mas;
4062 void __rcu **dst_slots;
4063 unsigned long *dst_pivots;
4064 unsigned char dst_offset;
4065 unsigned char new_end = wr_mas->node_end;
4066 unsigned char offset;
4067 unsigned char node_slots = mt_slots[wr_mas->type];
4068 struct maple_node reuse, *newnode;
4069 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4070 bool in_rcu = mt_in_rcu(mas->tree);
4072 offset = mas->offset;
4073 if (mas->last == wr_mas->r_max) {
4074 /* runs right to the end of the node */
4075 if (mas->last == mas->max)
4077 /* don't copy this offset */
4078 wr_mas->offset_end++;
4079 } else if (mas->last < wr_mas->r_max) {
4080 /* new range ends in this range */
4081 if (unlikely(wr_mas->r_max == ULONG_MAX))
4082 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4086 if (wr_mas->end_piv == mas->last)
4087 wr_mas->offset_end++;
4089 new_end -= wr_mas->offset_end - offset - 1;
4092 /* new range starts within a range */
4093 if (wr_mas->r_min < mas->index)
4096 /* Not enough room */
4097 if (new_end >= node_slots)
4100 /* Not enough data. */
4101 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4102 !(mas->mas_flags & MA_STATE_BULK))
4107 mas_node_count(mas, 1);
4108 if (mas_is_err(mas))
4111 newnode = mas_pop_node(mas);
4113 memset(&reuse, 0, sizeof(struct maple_node));
4117 newnode->parent = mas_mn(mas)->parent;
4118 dst_pivots = ma_pivots(newnode, wr_mas->type);
4119 dst_slots = ma_slots(newnode, wr_mas->type);
4120 /* Copy from start to insert point */
4121 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4122 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4123 dst_offset = offset;
4125 /* Handle insert of new range starting after old range */
4126 if (wr_mas->r_min < mas->index) {
4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4129 dst_pivots[dst_offset++] = mas->index - 1;
4132 /* Store the new entry and range end. */
4133 if (dst_offset < max_piv)
4134 dst_pivots[dst_offset] = mas->last;
4135 mas->offset = dst_offset;
4136 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4139 * this range wrote to the end of the node or it overwrote the rest of
4142 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4143 new_end = dst_offset;
4148 /* Copy to the end of node if necessary. */
4149 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4150 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4151 sizeof(void *) * copy_size);
4152 if (dst_offset < max_piv) {
4153 if (copy_size > max_piv - dst_offset)
4154 copy_size = max_piv - dst_offset;
4156 memcpy(dst_pivots + dst_offset,
4157 wr_mas->pivots + wr_mas->offset_end,
4158 sizeof(unsigned long) * copy_size);
4161 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4162 dst_pivots[new_end] = mas->max;
4165 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4167 mas->node = mt_mk_node(newnode, wr_mas->type);
4168 mas_replace(mas, false);
4170 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4172 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4173 mas_update_gap(mas);
4178 * mas_wr_slot_store: Attempt to store a value in a slot.
4179 * @wr_mas: the maple write state
4181 * Return: True if stored, false otherwise
4183 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4185 struct ma_state *mas = wr_mas->mas;
4186 unsigned long lmax; /* Logical max. */
4187 unsigned char offset = mas->offset;
4189 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4190 (offset != wr_mas->node_end)))
4193 if (offset == wr_mas->node_end - 1)
4196 lmax = wr_mas->pivots[offset + 1];
4198 /* going to overwrite too many slots. */
4199 if (lmax < mas->last)
4202 if (wr_mas->r_min == mas->index) {
4203 /* overwriting two or more ranges with one. */
4204 if (lmax == mas->last)
4207 /* Overwriting all of offset and a portion of offset + 1. */
4208 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4209 wr_mas->pivots[offset] = mas->last;
4213 /* Doesn't end on the next range end. */
4214 if (lmax != mas->last)
4217 /* Overwriting a portion of offset and all of offset + 1 */
4218 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4219 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4220 wr_mas->pivots[offset + 1] = mas->last;
4222 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4223 wr_mas->pivots[offset] = mas->index - 1;
4224 mas->offset++; /* Keep mas accurate. */
4227 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4228 mas_update_gap(mas);
4232 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4234 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4235 (wr_mas->offset_end < wr_mas->node_end))
4236 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4238 if (wr_mas->mas->last > wr_mas->end_piv)
4239 wr_mas->end_piv = wr_mas->mas->max;
4242 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4244 struct ma_state *mas = wr_mas->mas;
4246 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4247 mas->last = wr_mas->end_piv;
4249 /* Check next slot(s) if we are overwriting the end */
4250 if ((mas->last == wr_mas->end_piv) &&
4251 (wr_mas->node_end != wr_mas->offset_end) &&
4252 !wr_mas->slots[wr_mas->offset_end + 1]) {
4253 wr_mas->offset_end++;
4254 if (wr_mas->offset_end == wr_mas->node_end)
4255 mas->last = mas->max;
4257 mas->last = wr_mas->pivots[wr_mas->offset_end];
4258 wr_mas->end_piv = mas->last;
4261 if (!wr_mas->content) {
4262 /* If this one is null, the next and prev are not */
4263 mas->index = wr_mas->r_min;
4265 /* Check prev slot if we are overwriting the start */
4266 if (mas->index == wr_mas->r_min && mas->offset &&
4267 !wr_mas->slots[mas->offset - 1]) {
4269 wr_mas->r_min = mas->index =
4270 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4271 wr_mas->r_max = wr_mas->pivots[mas->offset];
4276 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4278 unsigned char end = wr_mas->node_end;
4279 unsigned char new_end = end + 1;
4280 struct ma_state *mas = wr_mas->mas;
4281 unsigned char node_pivots = mt_pivots[wr_mas->type];
4283 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4284 if (new_end < node_pivots)
4285 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4287 if (new_end < node_pivots)
4288 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4290 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4291 mas->offset = new_end;
4292 wr_mas->pivots[end] = mas->index - 1;
4297 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4298 if (new_end < node_pivots)
4299 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4301 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4302 if (new_end < node_pivots)
4303 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4305 wr_mas->pivots[end] = mas->last;
4306 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4314 * mas_wr_bnode() - Slow path for a modification.
4315 * @wr_mas: The write maple state
4317 * This is where split, rebalance end up.
4319 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4321 struct maple_big_node b_node;
4323 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4324 memset(&b_node, 0, sizeof(struct maple_big_node));
4325 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4326 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4329 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4331 unsigned char node_slots;
4332 unsigned char node_size;
4333 struct ma_state *mas = wr_mas->mas;
4335 /* Direct replacement */
4336 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4337 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4338 if (!!wr_mas->entry ^ !!wr_mas->content)
4339 mas_update_gap(mas);
4343 /* Attempt to append */
4344 node_slots = mt_slots[wr_mas->type];
4345 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4346 if (mas->max == ULONG_MAX)
4349 /* slot and node store will not fit, go to the slow path */
4350 if (unlikely(node_size >= node_slots))
4353 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4354 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4355 if (!wr_mas->content || !wr_mas->entry)
4356 mas_update_gap(mas);
4360 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4362 else if (mas_wr_node_store(wr_mas))
4365 if (mas_is_err(mas))
4369 mas_wr_bnode(wr_mas);
4373 * mas_wr_store_entry() - Internal call to store a value
4374 * @mas: The maple state
4375 * @entry: The entry to store.
4377 * Return: The contents that was stored at the index.
4379 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4381 struct ma_state *mas = wr_mas->mas;
4383 wr_mas->content = mas_start(mas);
4384 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4385 mas_store_root(mas, wr_mas->entry);
4386 return wr_mas->content;
4389 if (unlikely(!mas_wr_walk(wr_mas))) {
4390 mas_wr_spanning_store(wr_mas);
4391 return wr_mas->content;
4394 /* At this point, we are at the leaf node that needs to be altered. */
4395 wr_mas->end_piv = wr_mas->r_max;
4396 mas_wr_end_piv(wr_mas);
4399 mas_wr_extend_null(wr_mas);
4401 /* New root for a single pointer */
4402 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4403 mas_new_root(mas, wr_mas->entry);
4404 return wr_mas->content;
4407 mas_wr_modify(wr_mas);
4408 return wr_mas->content;
4412 * mas_insert() - Internal call to insert a value
4413 * @mas: The maple state
4414 * @entry: The entry to store
4416 * Return: %NULL or the contents that already exists at the requested index
4417 * otherwise. The maple state needs to be checked for error conditions.
4419 static inline void *mas_insert(struct ma_state *mas, void *entry)
4421 MA_WR_STATE(wr_mas, mas, entry);
4424 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4425 * tree. If the insert fits exactly into an existing gap with a value
4426 * of NULL, then the slot only needs to be written with the new value.
4427 * If the range being inserted is adjacent to another range, then only a
4428 * single pivot needs to be inserted (as well as writing the entry). If
4429 * the new range is within a gap but does not touch any other ranges,
4430 * then two pivots need to be inserted: the start - 1, and the end. As
4431 * usual, the entry must be written. Most operations require a new node
4432 * to be allocated and replace an existing node to ensure RCU safety,
4433 * when in RCU mode. The exception to requiring a newly allocated node
4434 * is when inserting at the end of a node (appending). When done
4435 * carefully, appending can reuse the node in place.
4437 wr_mas.content = mas_start(mas);
4441 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4442 mas_store_root(mas, entry);
4446 /* spanning writes always overwrite something */
4447 if (!mas_wr_walk(&wr_mas))
4450 /* At this point, we are at the leaf node that needs to be altered. */
4451 wr_mas.offset_end = mas->offset;
4452 wr_mas.end_piv = wr_mas.r_max;
4454 if (wr_mas.content || (mas->last > wr_mas.r_max))
4460 mas_wr_modify(&wr_mas);
4461 return wr_mas.content;
4464 mas_set_err(mas, -EEXIST);
4465 return wr_mas.content;
4470 * mas_prev_node() - Find the prev non-null entry at the same level in the
4471 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4472 * @mas: The maple state
4473 * @min: The lower limit to search
4475 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4476 * Return: 1 if the node is dead, 0 otherwise.
4478 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4483 struct maple_node *node;
4484 struct maple_enode *enode;
4485 unsigned long *pivots;
4487 if (mas_is_none(mas))
4493 if (ma_is_root(node))
4497 if (unlikely(mas_ascend(mas)))
4499 offset = mas->offset;
4504 mt = mte_node_type(mas->node);
4506 slots = ma_slots(node, mt);
4507 pivots = ma_pivots(node, mt);
4508 mas->max = pivots[offset];
4510 mas->min = pivots[offset - 1] + 1;
4511 if (unlikely(ma_dead_node(node)))
4519 enode = mas_slot(mas, slots, offset);
4520 if (unlikely(ma_dead_node(node)))
4524 mt = mte_node_type(mas->node);
4526 slots = ma_slots(node, mt);
4527 pivots = ma_pivots(node, mt);
4528 offset = ma_data_end(node, mt, pivots, mas->max);
4530 mas->min = pivots[offset - 1] + 1;
4532 if (offset < mt_pivots[mt])
4533 mas->max = pivots[offset];
4539 mas->node = mas_slot(mas, slots, offset);
4540 if (unlikely(ma_dead_node(node)))
4543 mas->offset = mas_data_end(mas);
4544 if (unlikely(mte_dead_node(mas->node)))
4550 mas->offset = offset;
4552 mas->min = pivots[offset - 1] + 1;
4554 if (unlikely(ma_dead_node(node)))
4557 mas->node = MAS_NONE;
4562 * mas_next_node() - Get the next node at the same level in the tree.
4563 * @mas: The maple state
4564 * @max: The maximum pivot value to check.
4566 * The next value will be mas->node[mas->offset] or MAS_NONE.
4567 * Return: 1 on dead node, 0 otherwise.
4569 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4572 unsigned long min, pivot;
4573 unsigned long *pivots;
4574 struct maple_enode *enode;
4576 unsigned char offset;
4580 if (mas->max >= max)
4585 if (ma_is_root(node))
4592 if (unlikely(mas_ascend(mas)))
4595 offset = mas->offset;
4598 mt = mte_node_type(mas->node);
4599 pivots = ma_pivots(node, mt);
4600 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4602 slots = ma_slots(node, mt);
4603 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4604 while (unlikely(level > 1)) {
4605 /* Descend, if necessary */
4606 enode = mas_slot(mas, slots, offset);
4607 if (unlikely(ma_dead_node(node)))
4613 mt = mte_node_type(mas->node);
4614 slots = ma_slots(node, mt);
4615 pivots = ma_pivots(node, mt);
4620 enode = mas_slot(mas, slots, offset);
4621 if (unlikely(ma_dead_node(node)))
4630 if (unlikely(ma_dead_node(node)))
4633 mas->node = MAS_NONE;
4638 * mas_next_nentry() - Get the next node entry
4639 * @mas: The maple state
4640 * @max: The maximum value to check
4641 * @*range_start: Pointer to store the start of the range.
4643 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4644 * pivot of the entry.
4646 * Return: The next entry, %NULL otherwise
4648 static inline void *mas_next_nentry(struct ma_state *mas,
4649 struct maple_node *node, unsigned long max, enum maple_type type)
4651 unsigned char count;
4652 unsigned long pivot;
4653 unsigned long *pivots;
4657 if (mas->last == mas->max) {
4658 mas->index = mas->max;
4662 pivots = ma_pivots(node, type);
4663 slots = ma_slots(node, type);
4664 mas->index = mas_safe_min(mas, pivots, mas->offset);
4665 if (ma_dead_node(node))
4668 if (mas->index > max)
4671 count = ma_data_end(node, type, pivots, mas->max);
4672 if (mas->offset > count)
4675 while (mas->offset < count) {
4676 pivot = pivots[mas->offset];
4677 entry = mas_slot(mas, slots, mas->offset);
4678 if (ma_dead_node(node))
4687 mas->index = pivot + 1;
4691 if (mas->index > mas->max) {
4692 mas->index = mas->last;
4696 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4697 entry = mas_slot(mas, slots, mas->offset);
4698 if (ma_dead_node(node))
4712 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4716 mas_set(mas, index);
4717 mas_state_walk(mas);
4718 if (mas_is_start(mas))
4726 * mas_next_entry() - Internal function to get the next entry.
4727 * @mas: The maple state
4728 * @limit: The maximum range start.
4730 * Set the @mas->node to the next entry and the range_start to
4731 * the beginning value for the entry. Does not check beyond @limit.
4732 * Sets @mas->index and @mas->last to the limit if it is hit.
4733 * Restarts on dead nodes.
4735 * Return: the next entry or %NULL.
4737 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4740 struct maple_enode *prev_node;
4741 struct maple_node *node;
4742 unsigned char offset;
4748 offset = mas->offset;
4749 prev_node = mas->node;
4751 mt = mte_node_type(mas->node);
4753 if (unlikely(mas->offset >= mt_slots[mt])) {
4754 mas->offset = mt_slots[mt] - 1;
4758 while (!mas_is_none(mas)) {
4759 entry = mas_next_nentry(mas, node, limit, mt);
4760 if (unlikely(ma_dead_node(node))) {
4761 mas_rewalk(mas, last);
4768 if (unlikely((mas->index > limit)))
4772 prev_node = mas->node;
4773 offset = mas->offset;
4774 if (unlikely(mas_next_node(mas, node, limit))) {
4775 mas_rewalk(mas, last);
4780 mt = mte_node_type(mas->node);
4783 mas->index = mas->last = limit;
4784 mas->offset = offset;
4785 mas->node = prev_node;
4790 * mas_prev_nentry() - Get the previous node entry.
4791 * @mas: The maple state.
4792 * @limit: The lower limit to check for a value.
4794 * Return: the entry, %NULL otherwise.
4796 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4797 unsigned long index)
4799 unsigned long pivot, min;
4800 unsigned char offset;
4801 struct maple_node *mn;
4803 unsigned long *pivots;
4812 mt = mte_node_type(mas->node);
4813 offset = mas->offset - 1;
4814 if (offset >= mt_slots[mt])
4815 offset = mt_slots[mt] - 1;
4817 slots = ma_slots(mn, mt);
4818 pivots = ma_pivots(mn, mt);
4819 if (offset == mt_pivots[mt])
4822 pivot = pivots[offset];
4824 if (unlikely(ma_dead_node(mn))) {
4825 mas_rewalk(mas, index);
4829 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4831 pivot = pivots[--offset];
4833 min = mas_safe_min(mas, pivots, offset);
4834 entry = mas_slot(mas, slots, offset);
4835 if (unlikely(ma_dead_node(mn))) {
4836 mas_rewalk(mas, index);
4840 if (likely(entry)) {
4841 mas->offset = offset;
4848 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4853 while (likely(!mas_is_none(mas))) {
4854 entry = mas_prev_nentry(mas, min, mas->index);
4855 if (unlikely(mas->last < min))
4861 if (unlikely(mas_prev_node(mas, min))) {
4862 mas_rewalk(mas, mas->index);
4871 mas->index = mas->last = min;
4876 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4877 * highest gap address of a given size in a given node and descend.
4878 * @mas: The maple state
4879 * @size: The needed size.
4881 * Return: True if found in a leaf, false otherwise.
4884 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4886 enum maple_type type = mte_node_type(mas->node);
4887 struct maple_node *node = mas_mn(mas);
4888 unsigned long *pivots, *gaps;
4890 unsigned long gap = 0;
4891 unsigned long max, min;
4892 unsigned char offset;
4894 if (unlikely(mas_is_err(mas)))
4897 if (ma_is_dense(type)) {
4899 mas->offset = (unsigned char)(mas->index - mas->min);
4903 pivots = ma_pivots(node, type);
4904 slots = ma_slots(node, type);
4905 gaps = ma_gaps(node, type);
4906 offset = mas->offset;
4907 min = mas_safe_min(mas, pivots, offset);
4908 /* Skip out of bounds. */
4909 while (mas->last < min)
4910 min = mas_safe_min(mas, pivots, --offset);
4912 max = mas_safe_pivot(mas, pivots, offset, type);
4913 while (mas->index <= max) {
4917 else if (!mas_slot(mas, slots, offset))
4918 gap = max - min + 1;
4921 if ((size <= gap) && (size <= mas->last - min + 1))
4925 /* Skip the next slot, it cannot be a gap. */
4930 max = pivots[offset];
4931 min = mas_safe_min(mas, pivots, offset);
4941 min = mas_safe_min(mas, pivots, offset);
4944 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4947 if (unlikely(ma_is_leaf(type))) {
4948 mas->offset = offset;
4950 mas->max = min + gap - 1;
4954 /* descend, only happens under lock. */
4955 mas->node = mas_slot(mas, slots, offset);
4958 mas->offset = mas_data_end(mas);
4962 if (!mte_is_root(mas->node))
4966 mas_set_err(mas, -EBUSY);
4970 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4972 enum maple_type type = mte_node_type(mas->node);
4973 unsigned long pivot, min, gap = 0;
4974 unsigned char offset;
4975 unsigned long *gaps;
4976 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4977 void __rcu **slots = ma_slots(mas_mn(mas), type);
4980 if (ma_is_dense(type)) {
4981 mas->offset = (unsigned char)(mas->index - mas->min);
4985 gaps = ma_gaps(mte_to_node(mas->node), type);
4986 offset = mas->offset;
4987 min = mas_safe_min(mas, pivots, offset);
4988 for (; offset < mt_slots[type]; offset++) {
4989 pivot = mas_safe_pivot(mas, pivots, offset, type);
4990 if (offset && !pivot)
4993 /* Not within lower bounds */
4994 if (mas->index > pivot)
4999 else if (!mas_slot(mas, slots, offset))
5000 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5005 if (ma_is_leaf(type)) {
5009 if (mas->index <= pivot) {
5010 mas->node = mas_slot(mas, slots, offset);
5019 if (mas->last <= pivot) {
5020 mas_set_err(mas, -EBUSY);
5025 if (mte_is_root(mas->node))
5028 mas->offset = offset;
5033 * mas_walk() - Search for @mas->index in the tree.
5034 * @mas: The maple state.
5036 * mas->index and mas->last will be set to the range if there is a value. If
5037 * mas->node is MAS_NONE, reset to MAS_START.
5039 * Return: the entry at the location or %NULL.
5041 void *mas_walk(struct ma_state *mas)
5046 entry = mas_state_walk(mas);
5047 if (mas_is_start(mas))
5050 if (mas_is_ptr(mas)) {
5055 mas->last = ULONG_MAX;
5060 if (mas_is_none(mas)) {
5062 mas->last = ULONG_MAX;
5067 EXPORT_SYMBOL_GPL(mas_walk);
5069 static inline bool mas_rewind_node(struct ma_state *mas)
5074 if (mte_is_root(mas->node)) {
5084 mas->offset = --slot;
5089 * mas_skip_node() - Internal function. Skip over a node.
5090 * @mas: The maple state.
5092 * Return: true if there is another node, false otherwise.
5094 static inline bool mas_skip_node(struct ma_state *mas)
5096 unsigned char slot, slot_count;
5097 unsigned long *pivots;
5100 mt = mte_node_type(mas->node);
5101 slot_count = mt_slots[mt] - 1;
5103 if (mte_is_root(mas->node)) {
5105 if (slot > slot_count) {
5106 mas_set_err(mas, -EBUSY);
5112 mt = mte_node_type(mas->node);
5113 slot_count = mt_slots[mt] - 1;
5115 } while (slot > slot_count);
5117 mas->offset = ++slot;
5118 pivots = ma_pivots(mas_mn(mas), mt);
5120 mas->min = pivots[slot - 1] + 1;
5122 if (slot <= slot_count)
5123 mas->max = pivots[slot];
5129 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5131 * @mas: The maple state
5132 * @size: The size of the gap required
5134 * Search between @mas->index and @mas->last for a gap of @size.
5136 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5138 struct maple_enode *last = NULL;
5141 * There are 4 options:
5142 * go to child (descend)
5143 * go back to parent (ascend)
5144 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5145 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5147 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5148 if (last == mas->node)
5156 * mas_fill_gap() - Fill a located gap with @entry.
5157 * @mas: The maple state
5158 * @entry: The value to store
5159 * @slot: The offset into the node to store the @entry
5160 * @size: The size of the entry
5161 * @index: The start location
5163 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5164 unsigned char slot, unsigned long size, unsigned long *index)
5166 MA_WR_STATE(wr_mas, mas, entry);
5167 unsigned char pslot = mte_parent_slot(mas->node);
5168 struct maple_enode *mn = mas->node;
5169 unsigned long *pivots;
5170 enum maple_type ptype;
5172 * mas->index is the start address for the search
5173 * which may no longer be needed.
5174 * mas->last is the end address for the search
5177 *index = mas->index;
5178 mas->last = mas->index + size - 1;
5181 * It is possible that using mas->max and mas->min to correctly
5182 * calculate the index and last will cause an issue in the gap
5183 * calculation, so fix the ma_state here
5186 ptype = mte_node_type(mas->node);
5187 pivots = ma_pivots(mas_mn(mas), ptype);
5188 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5189 mas->min = mas_safe_min(mas, pivots, pslot);
5192 mas_wr_store_entry(&wr_mas);
5196 * mas_sparse_area() - Internal function. Return upper or lower limit when
5197 * searching for a gap in an empty tree.
5198 * @mas: The maple state
5199 * @min: the minimum range
5200 * @max: The maximum range
5201 * @size: The size of the gap
5202 * @fwd: Searching forward or back
5204 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5205 unsigned long max, unsigned long size, bool fwd)
5207 unsigned long start = 0;
5209 if (!unlikely(mas_is_none(mas)))
5218 mas->last = start + size - 1;
5226 * mas_empty_area() - Get the lowest address within the range that is
5227 * sufficient for the size requested.
5228 * @mas: The maple state
5229 * @min: The lowest value of the range
5230 * @max: The highest value of the range
5231 * @size: The size needed
5233 int mas_empty_area(struct ma_state *mas, unsigned long min,
5234 unsigned long max, unsigned long size)
5236 unsigned char offset;
5237 unsigned long *pivots;
5240 if (mas_is_start(mas))
5242 else if (mas->offset >= 2)
5244 else if (!mas_skip_node(mas))
5248 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5249 mas_sparse_area(mas, min, max, size, true);
5253 /* The start of the window can only be within these values */
5256 mas_awalk(mas, size);
5258 if (unlikely(mas_is_err(mas)))
5259 return xa_err(mas->node);
5261 offset = mas->offset;
5262 if (unlikely(offset == MAPLE_NODE_SLOTS))
5265 mt = mte_node_type(mas->node);
5266 pivots = ma_pivots(mas_mn(mas), mt);
5268 mas->min = pivots[offset - 1] + 1;
5270 if (offset < mt_pivots[mt])
5271 mas->max = pivots[offset];
5273 if (mas->index < mas->min)
5274 mas->index = mas->min;
5276 mas->last = mas->index + size - 1;
5279 EXPORT_SYMBOL_GPL(mas_empty_area);
5282 * mas_empty_area_rev() - Get the highest address within the range that is
5283 * sufficient for the size requested.
5284 * @mas: The maple state
5285 * @min: The lowest value of the range
5286 * @max: The highest value of the range
5287 * @size: The size needed
5289 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5290 unsigned long max, unsigned long size)
5292 struct maple_enode *last = mas->node;
5294 if (mas_is_start(mas)) {
5296 mas->offset = mas_data_end(mas);
5297 } else if (mas->offset >= 2) {
5299 } else if (!mas_rewind_node(mas)) {
5304 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5305 mas_sparse_area(mas, min, max, size, false);
5309 /* The start of the window can only be within these values. */
5313 while (!mas_rev_awalk(mas, size)) {
5314 if (last == mas->node) {
5315 if (!mas_rewind_node(mas))
5322 if (mas_is_err(mas))
5323 return xa_err(mas->node);
5325 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5329 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5330 * the maximum is outside the window we are searching, then use the last
5331 * location in the search.
5332 * mas->max and mas->min is the range of the gap.
5333 * mas->index and mas->last are currently set to the search range.
5336 /* Trim the upper limit to the max. */
5337 if (mas->max <= mas->last)
5338 mas->last = mas->max;
5340 mas->index = mas->last - size + 1;
5343 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5345 static inline int mas_alloc(struct ma_state *mas, void *entry,
5346 unsigned long size, unsigned long *index)
5351 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5352 mas_root_expand(mas, entry);
5353 if (mas_is_err(mas))
5354 return xa_err(mas->node);
5357 return mte_pivot(mas->node, 0);
5358 return mte_pivot(mas->node, 1);
5361 /* Must be walking a tree. */
5362 mas_awalk(mas, size);
5363 if (mas_is_err(mas))
5364 return xa_err(mas->node);
5366 if (mas->offset == MAPLE_NODE_SLOTS)
5370 * At this point, mas->node points to the right node and we have an
5371 * offset that has a sufficient gap.
5375 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5377 if (mas->index < min)
5380 mas_fill_gap(mas, entry, mas->offset, size, index);
5387 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5388 unsigned long max, void *entry,
5389 unsigned long size, unsigned long *index)
5393 ret = mas_empty_area_rev(mas, min, max, size);
5397 if (mas_is_err(mas))
5398 return xa_err(mas->node);
5400 if (mas->offset == MAPLE_NODE_SLOTS)
5403 mas_fill_gap(mas, entry, mas->offset, size, index);
5411 * mas_dead_leaves() - Mark all leaves of a node as dead.
5412 * @mas: The maple state
5413 * @slots: Pointer to the slot array
5415 * Must hold the write lock.
5417 * Return: The number of leaves marked as dead.
5420 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5422 struct maple_node *node;
5423 enum maple_type type;
5427 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5428 entry = mas_slot_locked(mas, slots, offset);
5429 type = mte_node_type(entry);
5430 node = mte_to_node(entry);
5431 /* Use both node and type to catch LE & BE metadata */
5435 mte_set_node_dead(entry);
5436 smp_wmb(); /* Needed for RCU */
5438 rcu_assign_pointer(slots[offset], node);
5444 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5446 struct maple_node *node, *next;
5447 void __rcu **slots = NULL;
5451 mas->node = ma_enode_ptr(next);
5453 slots = ma_slots(node, node->type);
5454 next = mas_slot_locked(mas, slots, offset);
5456 } while (!ma_is_leaf(next->type));
5461 static void mt_free_walk(struct rcu_head *head)
5464 struct maple_node *node, *start;
5465 struct maple_tree mt;
5466 unsigned char offset;
5467 enum maple_type type;
5468 MA_STATE(mas, &mt, 0, 0);
5470 node = container_of(head, struct maple_node, rcu);
5472 if (ma_is_leaf(node->type))
5475 mt_init_flags(&mt, node->ma_flags);
5478 mas.node = mt_mk_node(node, node->type);
5479 slots = mas_dead_walk(&mas, 0);
5480 node = mas_mn(&mas);
5482 mt_free_bulk(node->slot_len, slots);
5483 offset = node->parent_slot + 1;
5484 mas.node = node->piv_parent;
5485 if (mas_mn(&mas) == node)
5486 goto start_slots_free;
5488 type = mte_node_type(mas.node);
5489 slots = ma_slots(mte_to_node(mas.node), type);
5490 if ((offset < mt_slots[type]) && (slots[offset]))
5491 slots = mas_dead_walk(&mas, offset);
5493 node = mas_mn(&mas);
5494 } while ((node != start) || (node->slot_len < offset));
5496 slots = ma_slots(node, node->type);
5497 mt_free_bulk(node->slot_len, slots);
5502 mt_free_rcu(&node->rcu);
5505 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5506 struct maple_enode *prev, unsigned char offset)
5508 struct maple_node *node;
5509 struct maple_enode *next = mas->node;
5510 void __rcu **slots = NULL;
5515 slots = ma_slots(node, mte_node_type(mas->node));
5516 next = mas_slot_locked(mas, slots, 0);
5517 if ((mte_dead_node(next)))
5518 next = mas_slot_locked(mas, slots, 1);
5520 mte_set_node_dead(mas->node);
5521 node->type = mte_node_type(mas->node);
5522 node->piv_parent = prev;
5523 node->parent_slot = offset;
5526 } while (!mte_is_leaf(next));
5531 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5535 struct maple_node *node = mte_to_node(enode);
5536 struct maple_enode *start;
5537 struct maple_tree mt;
5539 MA_STATE(mas, &mt, 0, 0);
5541 if (mte_is_leaf(enode))
5544 mt_init_flags(&mt, ma_flags);
5547 mas.node = start = enode;
5548 slots = mas_destroy_descend(&mas, start, 0);
5549 node = mas_mn(&mas);
5551 enum maple_type type;
5552 unsigned char offset;
5553 struct maple_enode *parent, *tmp;
5555 node->slot_len = mas_dead_leaves(&mas, slots);
5557 mt_free_bulk(node->slot_len, slots);
5558 offset = node->parent_slot + 1;
5559 mas.node = node->piv_parent;
5560 if (mas_mn(&mas) == node)
5561 goto start_slots_free;
5563 type = mte_node_type(mas.node);
5564 slots = ma_slots(mte_to_node(mas.node), type);
5565 if (offset >= mt_slots[type])
5568 tmp = mas_slot_locked(&mas, slots, offset);
5569 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5572 slots = mas_destroy_descend(&mas, parent, offset);
5575 node = mas_mn(&mas);
5576 } while (start != mas.node);
5578 node = mas_mn(&mas);
5579 node->slot_len = mas_dead_leaves(&mas, slots);
5581 mt_free_bulk(node->slot_len, slots);
5588 mt_free_rcu(&node->rcu);
5592 * mte_destroy_walk() - Free a tree or sub-tree.
5593 * @enode - the encoded maple node (maple_enode) to start
5594 * @mn - the tree to free - needed for node types.
5596 * Must hold the write lock.
5598 static inline void mte_destroy_walk(struct maple_enode *enode,
5599 struct maple_tree *mt)
5601 struct maple_node *node = mte_to_node(enode);
5603 if (mt_in_rcu(mt)) {
5604 mt_destroy_walk(enode, mt->ma_flags, false);
5605 call_rcu(&node->rcu, mt_free_walk);
5607 mt_destroy_walk(enode, mt->ma_flags, true);
5611 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5613 if (!mas_is_start(wr_mas->mas)) {
5614 if (mas_is_none(wr_mas->mas)) {
5615 mas_reset(wr_mas->mas);
5617 wr_mas->r_max = wr_mas->mas->max;
5618 wr_mas->type = mte_node_type(wr_mas->mas->node);
5619 if (mas_is_span_wr(wr_mas))
5620 mas_reset(wr_mas->mas);
5629 * mas_store() - Store an @entry.
5630 * @mas: The maple state.
5631 * @entry: The entry to store.
5633 * The @mas->index and @mas->last is used to set the range for the @entry.
5634 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5635 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5637 * Return: the first entry between mas->index and mas->last or %NULL.
5639 void *mas_store(struct ma_state *mas, void *entry)
5641 MA_WR_STATE(wr_mas, mas, entry);
5643 trace_ma_write(__func__, mas, 0, entry);
5644 #ifdef CONFIG_DEBUG_MAPLE_TREE
5645 if (mas->index > mas->last)
5646 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5647 MT_BUG_ON(mas->tree, mas->index > mas->last);
5648 if (mas->index > mas->last) {
5649 mas_set_err(mas, -EINVAL);
5656 * Storing is the same operation as insert with the added caveat that it
5657 * can overwrite entries. Although this seems simple enough, one may
5658 * want to examine what happens if a single store operation was to
5659 * overwrite multiple entries within a self-balancing B-Tree.
5661 mas_wr_store_setup(&wr_mas);
5662 mas_wr_store_entry(&wr_mas);
5663 return wr_mas.content;
5665 EXPORT_SYMBOL_GPL(mas_store);
5668 * mas_store_gfp() - Store a value into the tree.
5669 * @mas: The maple state
5670 * @entry: The entry to store
5671 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5673 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5676 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5678 MA_WR_STATE(wr_mas, mas, entry);
5680 mas_wr_store_setup(&wr_mas);
5681 trace_ma_write(__func__, mas, 0, entry);
5683 mas_wr_store_entry(&wr_mas);
5684 if (unlikely(mas_nomem(mas, gfp)))
5687 if (unlikely(mas_is_err(mas)))
5688 return xa_err(mas->node);
5692 EXPORT_SYMBOL_GPL(mas_store_gfp);
5695 * mas_store_prealloc() - Store a value into the tree using memory
5696 * preallocated in the maple state.
5697 * @mas: The maple state
5698 * @entry: The entry to store.
5700 void mas_store_prealloc(struct ma_state *mas, void *entry)
5702 MA_WR_STATE(wr_mas, mas, entry);
5704 mas_wr_store_setup(&wr_mas);
5705 trace_ma_write(__func__, mas, 0, entry);
5706 mas_wr_store_entry(&wr_mas);
5707 BUG_ON(mas_is_err(mas));
5710 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5713 * mas_preallocate() - Preallocate enough nodes for a store operation
5714 * @mas: The maple state
5715 * @entry: The entry that will be stored
5716 * @gfp: The GFP_FLAGS to use for allocations.
5718 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5720 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5724 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5725 mas->mas_flags |= MA_STATE_PREALLOC;
5726 if (likely(!mas_is_err(mas)))
5729 mas_set_alloc_req(mas, 0);
5730 ret = xa_err(mas->node);
5738 * mas_destroy() - destroy a maple state.
5739 * @mas: The maple state
5741 * Upon completion, check the left-most node and rebalance against the node to
5742 * the right if necessary. Frees any allocated nodes associated with this maple
5745 void mas_destroy(struct ma_state *mas)
5747 struct maple_alloc *node;
5750 * When using mas_for_each() to insert an expected number of elements,
5751 * it is possible that the number inserted is less than the expected
5752 * number. To fix an invalid final node, a check is performed here to
5753 * rebalance the previous node with the final node.
5755 if (mas->mas_flags & MA_STATE_REBALANCE) {
5758 if (mas_is_start(mas))
5761 mtree_range_walk(mas);
5762 end = mas_data_end(mas) + 1;
5763 if (end < mt_min_slot_count(mas->node) - 1)
5764 mas_destroy_rebalance(mas, end);
5766 mas->mas_flags &= ~MA_STATE_REBALANCE;
5768 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5770 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5772 mas->alloc = node->slot[0];
5773 if (node->node_count > 0)
5774 mt_free_bulk(node->node_count,
5775 (void __rcu **)&node->slot[1]);
5776 kmem_cache_free(maple_node_cache, node);
5780 EXPORT_SYMBOL_GPL(mas_destroy);
5783 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5784 * @mas: The maple state
5785 * @nr_entries: The number of expected entries.
5787 * This will attempt to pre-allocate enough nodes to store the expected number
5788 * of entries. The allocations will occur using the bulk allocator interface
5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5790 * to ensure any unused nodes are freed.
5792 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5794 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5797 struct maple_enode *enode = mas->node;
5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5803 * forking a process and duplicating the VMAs from one tree to a new
5804 * tree. When such a situation arises, it is known that the new tree is
5805 * not going to be used until the entire tree is populated. For
5806 * performance reasons, it is best to use a bulk load with RCU disabled.
5807 * This allows for optimistic splitting that favours the left and reuse
5808 * of nodes during the operation.
5811 /* Optimize splitting for bulk insert in-order */
5812 mas->mas_flags |= MA_STATE_BULK;
5815 * Avoid overflow, assume a gap between each entry and a trailing null.
5816 * If this is wrong, it just means allocation can happen during
5817 * insertion of entries.
5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5820 if (!mt_is_alloc(mas->tree))
5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5823 /* Leaves; reduce slots to keep space for expansion */
5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5825 /* Internal nodes */
5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5827 /* Add working room for split (2 nodes) + new parents */
5828 mas_node_count(mas, nr_nodes + 3);
5830 /* Detect if allocations run out */
5831 mas->mas_flags |= MA_STATE_PREALLOC;
5833 if (!mas_is_err(mas))
5836 ret = xa_err(mas->node);
5842 EXPORT_SYMBOL_GPL(mas_expected_entries);
5845 * mas_next() - Get the next entry.
5846 * @mas: The maple state
5847 * @max: The maximum index to check.
5849 * Returns the next entry after @mas->index.
5850 * Must hold rcu_read_lock or the write lock.
5851 * Can return the zero entry.
5853 * Return: The next entry or %NULL
5855 void *mas_next(struct ma_state *mas, unsigned long max)
5857 if (mas_is_none(mas) || mas_is_paused(mas))
5858 mas->node = MAS_START;
5860 if (mas_is_start(mas))
5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5863 if (mas_is_ptr(mas)) {
5866 mas->last = ULONG_MAX;
5871 if (mas->last == ULONG_MAX)
5874 /* Retries on dead nodes handled by mas_next_entry */
5875 return mas_next_entry(mas, max);
5877 EXPORT_SYMBOL_GPL(mas_next);
5880 * mt_next() - get the next value in the maple tree
5881 * @mt: The maple tree
5882 * @index: The start index
5883 * @max: The maximum index to check
5885 * Return: The entry at @index or higher, or %NULL if nothing is found.
5887 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5890 MA_STATE(mas, mt, index, index);
5893 entry = mas_next(&mas, max);
5897 EXPORT_SYMBOL_GPL(mt_next);
5900 * mas_prev() - Get the previous entry
5901 * @mas: The maple state
5902 * @min: The minimum value to check.
5904 * Must hold rcu_read_lock or the write lock.
5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5908 * Return: the previous value or %NULL.
5910 void *mas_prev(struct ma_state *mas, unsigned long min)
5913 /* Nothing comes before 0 */
5918 if (unlikely(mas_is_ptr(mas)))
5921 if (mas_is_none(mas) || mas_is_paused(mas))
5922 mas->node = MAS_START;
5924 if (mas_is_start(mas)) {
5930 if (mas_is_ptr(mas)) {
5936 mas->index = mas->last = 0;
5937 return mas_root_locked(mas);
5939 return mas_prev_entry(mas, min);
5941 EXPORT_SYMBOL_GPL(mas_prev);
5944 * mt_prev() - get the previous value in the maple tree
5945 * @mt: The maple tree
5946 * @index: The start index
5947 * @min: The minimum index to check
5949 * Return: The entry at @index or lower, or %NULL if nothing is found.
5951 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5954 MA_STATE(mas, mt, index, index);
5957 entry = mas_prev(&mas, min);
5961 EXPORT_SYMBOL_GPL(mt_prev);
5964 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5965 * @mas: The maple state to pause
5967 * Some users need to pause a walk and drop the lock they're holding in
5968 * order to yield to a higher priority thread or carry out an operation
5969 * on an entry. Those users should call this function before they drop
5970 * the lock. It resets the @mas to be suitable for the next iteration
5971 * of the loop after the user has reacquired the lock. If most entries
5972 * found during a walk require you to call mas_pause(), the mt_for_each()
5973 * iterator may be more appropriate.
5976 void mas_pause(struct ma_state *mas)
5978 mas->node = MAS_PAUSE;
5980 EXPORT_SYMBOL_GPL(mas_pause);
5983 * mas_find() - On the first call, find the entry at or after mas->index up to
5984 * %max. Otherwise, find the entry after mas->index.
5985 * @mas: The maple state
5986 * @max: The maximum value to check.
5988 * Must hold rcu_read_lock or the write lock.
5989 * If an entry exists, last and index are updated accordingly.
5990 * May set @mas->node to MAS_NONE.
5992 * Return: The entry or %NULL.
5994 void *mas_find(struct ma_state *mas, unsigned long max)
5996 if (unlikely(mas_is_paused(mas))) {
5997 if (unlikely(mas->last == ULONG_MAX)) {
5998 mas->node = MAS_NONE;
6001 mas->node = MAS_START;
6002 mas->index = ++mas->last;
6005 if (unlikely(mas_is_start(mas))) {
6006 /* First run or continue */
6009 if (mas->index > max)
6012 entry = mas_walk(mas);
6017 if (unlikely(!mas_searchable(mas)))
6020 /* Retries on dead nodes handled by mas_next_entry */
6021 return mas_next_entry(mas, max);
6023 EXPORT_SYMBOL_GPL(mas_find);
6026 * mas_find_rev: On the first call, find the first non-null entry at or below
6027 * mas->index down to %min. Otherwise find the first non-null entry below
6028 * mas->index down to %min.
6029 * @mas: The maple state
6030 * @min: The minimum value to check.
6032 * Must hold rcu_read_lock or the write lock.
6033 * If an entry exists, last and index are updated accordingly.
6034 * May set @mas->node to MAS_NONE.
6036 * Return: The entry or %NULL.
6038 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6040 if (unlikely(mas_is_paused(mas))) {
6041 if (unlikely(mas->last == ULONG_MAX)) {
6042 mas->node = MAS_NONE;
6045 mas->node = MAS_START;
6046 mas->last = --mas->index;
6049 if (unlikely(mas_is_start(mas))) {
6050 /* First run or continue */
6053 if (mas->index < min)
6056 entry = mas_walk(mas);
6061 if (unlikely(!mas_searchable(mas)))
6064 if (mas->index < min)
6067 /* Retries on dead nodes handled by mas_prev_entry */
6068 return mas_prev_entry(mas, min);
6070 EXPORT_SYMBOL_GPL(mas_find_rev);
6073 * mas_erase() - Find the range in which index resides and erase the entire
6075 * @mas: The maple state
6077 * Must hold the write lock.
6078 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6079 * erases that range.
6081 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6083 void *mas_erase(struct ma_state *mas)
6086 MA_WR_STATE(wr_mas, mas, NULL);
6088 if (mas_is_none(mas) || mas_is_paused(mas))
6089 mas->node = MAS_START;
6091 /* Retry unnecessary when holding the write lock. */
6092 entry = mas_state_walk(mas);
6097 /* Must reset to ensure spanning writes of last slot are detected */
6099 mas_wr_store_setup(&wr_mas);
6100 mas_wr_store_entry(&wr_mas);
6101 if (mas_nomem(mas, GFP_KERNEL))
6106 EXPORT_SYMBOL_GPL(mas_erase);
6109 * mas_nomem() - Check if there was an error allocating and do the allocation
6110 * if necessary If there are allocations, then free them.
6111 * @mas: The maple state
6112 * @gfp: The GFP_FLAGS to use for allocations
6113 * Return: true on allocation, false otherwise.
6115 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6116 __must_hold(mas->tree->lock)
6118 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6123 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6124 mtree_unlock(mas->tree);
6125 mas_alloc_nodes(mas, gfp);
6126 mtree_lock(mas->tree);
6128 mas_alloc_nodes(mas, gfp);
6131 if (!mas_allocated(mas))
6134 mas->node = MAS_START;
6138 void __init maple_tree_init(void)
6140 maple_node_cache = kmem_cache_create("maple_node",
6141 sizeof(struct maple_node), sizeof(struct maple_node),
6146 * mtree_load() - Load a value stored in a maple tree
6147 * @mt: The maple tree
6148 * @index: The index to load
6150 * Return: the entry or %NULL
6152 void *mtree_load(struct maple_tree *mt, unsigned long index)
6154 MA_STATE(mas, mt, index, index);
6157 trace_ma_read(__func__, &mas);
6160 entry = mas_start(&mas);
6161 if (unlikely(mas_is_none(&mas)))
6164 if (unlikely(mas_is_ptr(&mas))) {
6171 entry = mtree_lookup_walk(&mas);
6172 if (!entry && unlikely(mas_is_start(&mas)))
6176 if (xa_is_zero(entry))
6181 EXPORT_SYMBOL(mtree_load);
6184 * mtree_store_range() - Store an entry at a given range.
6185 * @mt: The maple tree
6186 * @index: The start of the range
6187 * @last: The end of the range
6188 * @entry: The entry to store
6189 * @gfp: The GFP_FLAGS to use for allocations
6191 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6194 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6195 unsigned long last, void *entry, gfp_t gfp)
6197 MA_STATE(mas, mt, index, last);
6198 MA_WR_STATE(wr_mas, &mas, entry);
6200 trace_ma_write(__func__, &mas, 0, entry);
6201 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6209 mas_wr_store_entry(&wr_mas);
6210 if (mas_nomem(&mas, gfp))
6214 if (mas_is_err(&mas))
6215 return xa_err(mas.node);
6219 EXPORT_SYMBOL(mtree_store_range);
6222 * mtree_store() - Store an entry at a given index.
6223 * @mt: The maple tree
6224 * @index: The index to store the value
6225 * @entry: The entry to store
6226 * @gfp: The GFP_FLAGS to use for allocations
6228 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6231 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6234 return mtree_store_range(mt, index, index, entry, gfp);
6236 EXPORT_SYMBOL(mtree_store);
6239 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6240 * @mt: The maple tree
6241 * @first: The start of the range
6242 * @last: The end of the range
6243 * @entry: The entry to store
6244 * @gfp: The GFP_FLAGS to use for allocations.
6246 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6247 * request, -ENOMEM if memory could not be allocated.
6249 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6250 unsigned long last, void *entry, gfp_t gfp)
6252 MA_STATE(ms, mt, first, last);
6254 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6262 mas_insert(&ms, entry);
6263 if (mas_nomem(&ms, gfp))
6267 if (mas_is_err(&ms))
6268 return xa_err(ms.node);
6272 EXPORT_SYMBOL(mtree_insert_range);
6275 * mtree_insert() - Insert an entry at a give index if there is no value.
6276 * @mt: The maple tree
6277 * @index : The index to store the value
6278 * @entry: The entry to store
6279 * @gfp: The FGP_FLAGS to use for allocations.
6281 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6282 * request, -ENOMEM if memory could not be allocated.
6284 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6287 return mtree_insert_range(mt, index, index, entry, gfp);
6289 EXPORT_SYMBOL(mtree_insert);
6291 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6292 void *entry, unsigned long size, unsigned long min,
6293 unsigned long max, gfp_t gfp)
6297 MA_STATE(mas, mt, min, max - size);
6298 if (!mt_is_alloc(mt))
6301 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6317 mas.last = max - size;
6318 ret = mas_alloc(&mas, entry, size, startp);
6319 if (mas_nomem(&mas, gfp))
6325 EXPORT_SYMBOL(mtree_alloc_range);
6327 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6328 void *entry, unsigned long size, unsigned long min,
6329 unsigned long max, gfp_t gfp)
6333 MA_STATE(mas, mt, min, max - size);
6334 if (!mt_is_alloc(mt))
6337 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6351 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6352 if (mas_nomem(&mas, gfp))
6358 EXPORT_SYMBOL(mtree_alloc_rrange);
6361 * mtree_erase() - Find an index and erase the entire range.
6362 * @mt: The maple tree
6363 * @index: The index to erase
6365 * Erasing is the same as a walk to an entry then a store of a NULL to that
6366 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6368 * Return: The entry stored at the @index or %NULL
6370 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6374 MA_STATE(mas, mt, index, index);
6375 trace_ma_op(__func__, &mas);
6378 entry = mas_erase(&mas);
6383 EXPORT_SYMBOL(mtree_erase);
6386 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6387 * @mt: The maple tree
6389 * Note: Does not handle locking.
6391 void __mt_destroy(struct maple_tree *mt)
6393 void *root = mt_root_locked(mt);
6395 rcu_assign_pointer(mt->ma_root, NULL);
6396 if (xa_is_node(root))
6397 mte_destroy_walk(root, mt);
6401 EXPORT_SYMBOL_GPL(__mt_destroy);
6404 * mtree_destroy() - Destroy a maple tree
6405 * @mt: The maple tree
6407 * Frees all resources used by the tree. Handles locking.
6409 void mtree_destroy(struct maple_tree *mt)
6415 EXPORT_SYMBOL(mtree_destroy);
6418 * mt_find() - Search from the start up until an entry is found.
6419 * @mt: The maple tree
6420 * @index: Pointer which contains the start location of the search
6421 * @max: The maximum value to check
6423 * Handles locking. @index will be incremented to one beyond the range.
6425 * Return: The entry at or after the @index or %NULL
6427 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6429 MA_STATE(mas, mt, *index, *index);
6431 #ifdef CONFIG_DEBUG_MAPLE_TREE
6432 unsigned long copy = *index;
6435 trace_ma_read(__func__, &mas);
6442 entry = mas_state_walk(&mas);
6443 if (mas_is_start(&mas))
6446 if (unlikely(xa_is_zero(entry)))
6452 while (mas_searchable(&mas) && (mas.index < max)) {
6453 entry = mas_next_entry(&mas, max);
6454 if (likely(entry && !xa_is_zero(entry)))
6458 if (unlikely(xa_is_zero(entry)))
6462 if (likely(entry)) {
6463 *index = mas.last + 1;
6464 #ifdef CONFIG_DEBUG_MAPLE_TREE
6465 if ((*index) && (*index) <= copy)
6466 pr_err("index not increased! %lx <= %lx\n",
6468 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6474 EXPORT_SYMBOL(mt_find);
6477 * mt_find_after() - Search from the start up until an entry is found.
6478 * @mt: The maple tree
6479 * @index: Pointer which contains the start location of the search
6480 * @max: The maximum value to check
6482 * Handles locking, detects wrapping on index == 0
6484 * Return: The entry at or after the @index or %NULL
6486 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6492 return mt_find(mt, index, max);
6494 EXPORT_SYMBOL(mt_find_after);
6496 #ifdef CONFIG_DEBUG_MAPLE_TREE
6497 atomic_t maple_tree_tests_run;
6498 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6499 atomic_t maple_tree_tests_passed;
6500 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6503 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6504 void mt_set_non_kernel(unsigned int val)
6506 kmem_cache_set_non_kernel(maple_node_cache, val);
6509 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6510 unsigned long mt_get_alloc_size(void)
6512 return kmem_cache_get_alloc(maple_node_cache);
6515 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6516 void mt_zero_nr_tallocated(void)
6518 kmem_cache_zero_nr_tallocated(maple_node_cache);
6521 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6522 unsigned int mt_nr_tallocated(void)
6524 return kmem_cache_nr_tallocated(maple_node_cache);
6527 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6528 unsigned int mt_nr_allocated(void)
6530 return kmem_cache_nr_allocated(maple_node_cache);
6534 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6535 * @mas: The maple state
6536 * @index: The index to restore in @mas.
6538 * Used in test code.
6539 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6541 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6543 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6546 if (likely(!mte_dead_node(mas->node)))
6549 mas_rewalk(mas, index);
6553 void mt_cache_shrink(void)
6558 * mt_cache_shrink() - For testing, don't use this.
6560 * Certain testcases can trigger an OOM when combined with other memory
6561 * debugging configuration options. This function is used to reduce the
6562 * possibility of an out of memory even due to kmem_cache objects remaining
6563 * around for longer than usual.
6565 void mt_cache_shrink(void)
6567 kmem_cache_shrink(maple_node_cache);
6570 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6572 #endif /* not defined __KERNEL__ */
6574 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6575 * @mas: The maple state
6576 * @offset: The offset into the slot array to fetch.
6578 * Return: The entry stored at @offset.
6580 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6581 unsigned char offset)
6583 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6589 * mas_first_entry() - Go the first leaf and find the first entry.
6590 * @mas: the maple state.
6591 * @limit: the maximum index to check.
6592 * @*r_start: Pointer to set to the range start.
6594 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6596 * Return: The first entry or MAS_NONE.
6598 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6599 unsigned long limit, enum maple_type mt)
6603 unsigned long *pivots;
6607 mas->index = mas->min;
6608 if (mas->index > limit)
6613 while (likely(!ma_is_leaf(mt))) {
6614 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6615 slots = ma_slots(mn, mt);
6616 pivots = ma_pivots(mn, mt);
6618 entry = mas_slot(mas, slots, 0);
6619 if (unlikely(ma_dead_node(mn)))
6623 mt = mte_node_type(mas->node);
6625 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6628 slots = ma_slots(mn, mt);
6629 entry = mas_slot(mas, slots, 0);
6630 if (unlikely(ma_dead_node(mn)))
6633 /* Slot 0 or 1 must be set */
6634 if (mas->index > limit)
6640 pivots = ma_pivots(mn, mt);
6641 mas->index = pivots[0] + 1;
6643 entry = mas_slot(mas, slots, 1);
6644 if (unlikely(ma_dead_node(mn)))
6647 if (mas->index > limit)
6654 if (likely(!ma_dead_node(mn)))
6655 mas->node = MAS_NONE;
6659 /* Depth first search, post-order */
6660 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6663 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6664 unsigned long p_min, p_max;
6666 mas_next_node(mas, mas_mn(mas), max);
6667 if (!mas_is_none(mas))
6670 if (mte_is_root(mn))
6675 while (mas->node != MAS_NONE) {
6679 mas_prev_node(mas, 0);
6690 /* Tree validations */
6691 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6692 unsigned long min, unsigned long max, unsigned int depth);
6693 static void mt_dump_range(unsigned long min, unsigned long max,
6696 static const char spaces[] = " ";
6699 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6701 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6704 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6707 mt_dump_range(min, max, depth);
6709 if (xa_is_value(entry))
6710 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6711 xa_to_value(entry), entry);
6712 else if (xa_is_zero(entry))
6713 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6714 else if (mt_is_reserved(entry))
6715 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6717 pr_cont("%p\n", entry);
6720 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6721 unsigned long min, unsigned long max, unsigned int depth)
6723 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6724 bool leaf = mte_is_leaf(entry);
6725 unsigned long first = min;
6728 pr_cont(" contents: ");
6729 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6730 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6731 pr_cont("%p\n", node->slot[i]);
6732 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6733 unsigned long last = max;
6735 if (i < (MAPLE_RANGE64_SLOTS - 1))
6736 last = node->pivot[i];
6737 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6739 if (last == 0 && i > 0)
6742 mt_dump_entry(mt_slot(mt, node->slot, i),
6743 first, last, depth + 1);
6744 else if (node->slot[i])
6745 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6746 first, last, depth + 1);
6751 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6752 node, last, max, i);
6759 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6760 unsigned long min, unsigned long max, unsigned int depth)
6762 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6763 bool leaf = mte_is_leaf(entry);
6764 unsigned long first = min;
6767 pr_cont(" contents: ");
6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6769 pr_cont("%lu ", node->gap[i]);
6770 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6771 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6772 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6773 pr_cont("%p\n", node->slot[i]);
6774 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6775 unsigned long last = max;
6777 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6778 last = node->pivot[i];
6779 else if (!node->slot[i])
6781 if (last == 0 && i > 0)
6784 mt_dump_entry(mt_slot(mt, node->slot, i),
6785 first, last, depth + 1);
6786 else if (node->slot[i])
6787 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6788 first, last, depth + 1);
6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6794 node, last, max, i);
6801 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6802 unsigned long min, unsigned long max, unsigned int depth)
6804 struct maple_node *node = mte_to_node(entry);
6805 unsigned int type = mte_node_type(entry);
6808 mt_dump_range(min, max, depth);
6810 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6811 node ? node->parent : NULL);
6815 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6817 pr_cont("OUT OF RANGE: ");
6818 mt_dump_entry(mt_slot(mt, node->slot, i),
6819 min + i, min + i, depth);
6823 case maple_range_64:
6824 mt_dump_range64(mt, entry, min, max, depth);
6826 case maple_arange_64:
6827 mt_dump_arange64(mt, entry, min, max, depth);
6831 pr_cont(" UNKNOWN TYPE\n");
6835 void mt_dump(const struct maple_tree *mt)
6837 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6839 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6840 mt, mt->ma_flags, mt_height(mt), entry);
6841 if (!xa_is_node(entry))
6842 mt_dump_entry(entry, 0, 0, 0);
6844 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6846 EXPORT_SYMBOL_GPL(mt_dump);
6849 * Calculate the maximum gap in a node and check if that's what is reported in
6850 * the parent (unless root).
6852 static void mas_validate_gaps(struct ma_state *mas)
6854 struct maple_enode *mte = mas->node;
6855 struct maple_node *p_mn;
6856 unsigned long gap = 0, max_gap = 0;
6857 unsigned long p_end, p_start = mas->min;
6858 unsigned char p_slot;
6859 unsigned long *gaps = NULL;
6860 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6863 if (ma_is_dense(mte_node_type(mte))) {
6864 for (i = 0; i < mt_slot_count(mte); i++) {
6865 if (mas_get_slot(mas, i)) {
6876 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6877 for (i = 0; i < mt_slot_count(mte); i++) {
6878 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6881 if (mas_get_slot(mas, i)) {
6886 gap += p_end - p_start + 1;
6888 void *entry = mas_get_slot(mas, i);
6892 if (gap != p_end - p_start + 1) {
6893 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6895 mas_get_slot(mas, i), gap,
6899 MT_BUG_ON(mas->tree,
6900 gap != p_end - p_start + 1);
6903 if (gap > p_end - p_start + 1) {
6904 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6905 mas_mn(mas), i, gap, p_end, p_start,
6906 p_end - p_start + 1);
6907 MT_BUG_ON(mas->tree,
6908 gap > p_end - p_start + 1);
6916 p_start = p_end + 1;
6917 if (p_end >= mas->max)
6922 if (mte_is_root(mte))
6925 p_slot = mte_parent_slot(mas->node);
6926 p_mn = mte_parent(mte);
6927 MT_BUG_ON(mas->tree, max_gap > mas->max);
6928 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6929 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6933 MT_BUG_ON(mas->tree,
6934 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6937 static void mas_validate_parent_slot(struct ma_state *mas)
6939 struct maple_node *parent;
6940 struct maple_enode *node;
6941 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6942 unsigned char p_slot = mte_parent_slot(mas->node);
6946 if (mte_is_root(mas->node))
6949 parent = mte_parent(mas->node);
6950 slots = ma_slots(parent, p_type);
6951 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6953 /* Check prev/next parent slot for duplicate node entry */
6955 for (i = 0; i < mt_slots[p_type]; i++) {
6956 node = mas_slot(mas, slots, i);
6958 if (node != mas->node)
6959 pr_err("parent %p[%u] does not have %p\n",
6960 parent, i, mas_mn(mas));
6961 MT_BUG_ON(mas->tree, node != mas->node);
6962 } else if (node == mas->node) {
6963 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6964 mas_mn(mas), parent, i, p_slot);
6965 MT_BUG_ON(mas->tree, node == mas->node);
6970 static void mas_validate_child_slot(struct ma_state *mas)
6972 enum maple_type type = mte_node_type(mas->node);
6973 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6974 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6975 struct maple_enode *child;
6978 if (mte_is_leaf(mas->node))
6981 for (i = 0; i < mt_slots[type]; i++) {
6982 child = mas_slot(mas, slots, i);
6983 if (!pivots[i] || pivots[i] == mas->max)
6989 if (mte_parent_slot(child) != i) {
6990 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6991 mas_mn(mas), i, mte_to_node(child),
6992 mte_parent_slot(child));
6993 MT_BUG_ON(mas->tree, 1);
6996 if (mte_parent(child) != mte_to_node(mas->node)) {
6997 pr_err("child %p has parent %p not %p\n",
6998 mte_to_node(child), mte_parent(child),
6999 mte_to_node(mas->node));
7000 MT_BUG_ON(mas->tree, 1);
7006 * Validate all pivots are within mas->min and mas->max.
7008 static void mas_validate_limits(struct ma_state *mas)
7011 unsigned long prev_piv = 0;
7012 enum maple_type type = mte_node_type(mas->node);
7013 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7014 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7016 /* all limits are fine here. */
7017 if (mte_is_root(mas->node))
7020 for (i = 0; i < mt_slots[type]; i++) {
7023 piv = mas_safe_pivot(mas, pivots, i, type);
7025 if (!piv && (i != 0))
7028 if (!mte_is_leaf(mas->node)) {
7029 void *entry = mas_slot(mas, slots, i);
7032 pr_err("%p[%u] cannot be null\n",
7035 MT_BUG_ON(mas->tree, !entry);
7038 if (prev_piv > piv) {
7039 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7040 mas_mn(mas), i, piv, prev_piv);
7041 MT_BUG_ON(mas->tree, piv < prev_piv);
7044 if (piv < mas->min) {
7045 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7047 MT_BUG_ON(mas->tree, piv < mas->min);
7049 if (piv > mas->max) {
7050 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7052 MT_BUG_ON(mas->tree, piv > mas->max);
7055 if (piv == mas->max)
7058 for (i += 1; i < mt_slots[type]; i++) {
7059 void *entry = mas_slot(mas, slots, i);
7061 if (entry && (i != mt_slots[type] - 1)) {
7062 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7064 MT_BUG_ON(mas->tree, entry != NULL);
7067 if (i < mt_pivots[type]) {
7068 unsigned long piv = pivots[i];
7073 pr_err("%p[%u] should not have piv %lu\n",
7074 mas_mn(mas), i, piv);
7075 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7080 static void mt_validate_nulls(struct maple_tree *mt)
7082 void *entry, *last = (void *)1;
7083 unsigned char offset = 0;
7085 MA_STATE(mas, mt, 0, 0);
7088 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7091 while (!mte_is_leaf(mas.node))
7094 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7096 entry = mas_slot(&mas, slots, offset);
7097 if (!last && !entry) {
7098 pr_err("Sequential nulls end at %p[%u]\n",
7099 mas_mn(&mas), offset);
7101 MT_BUG_ON(mt, !last && !entry);
7103 if (offset == mas_data_end(&mas)) {
7104 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7105 if (mas_is_none(&mas))
7108 slots = ma_slots(mte_to_node(mas.node),
7109 mte_node_type(mas.node));
7114 } while (!mas_is_none(&mas));
7118 * validate a maple tree by checking:
7119 * 1. The limits (pivots are within mas->min to mas->max)
7120 * 2. The gap is correctly set in the parents
7122 void mt_validate(struct maple_tree *mt)
7126 MA_STATE(mas, mt, 0, 0);
7129 if (!mas_searchable(&mas))
7132 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7133 while (!mas_is_none(&mas)) {
7134 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7135 if (!mte_is_root(mas.node)) {
7136 end = mas_data_end(&mas);
7137 if ((end < mt_min_slot_count(mas.node)) &&
7138 (mas.max != ULONG_MAX)) {
7139 pr_err("Invalid size %u of %p\n", end,
7141 MT_BUG_ON(mas.tree, 1);
7145 mas_validate_parent_slot(&mas);
7146 mas_validate_child_slot(&mas);
7147 mas_validate_limits(&mas);
7148 if (mt_is_alloc(mt))
7149 mas_validate_gaps(&mas);
7150 mas_dfs_postorder(&mas, ULONG_MAX);
7152 mt_validate_nulls(mt);
7157 EXPORT_SYMBOL_GPL(mt_validate);
7159 #endif /* CONFIG_DEBUG_MAPLE_TREE */