1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
40 * Returns %true if the given DIO request should be attempted with DIO, or
41 * %false if it should fall back to buffered I/O.
43 * DIO isn't well specified; when it's unsupported (either due to the request
44 * being misaligned, or due to the file not supporting DIO at all), filesystems
45 * either fall back to buffered I/O or return EINVAL. For files that don't use
46 * any special features like encryption or verity, ext4 has traditionally
47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51 * traditionally falls back to buffered I/O.
53 * This function implements the traditional ext4 behavior in all these cases.
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
57 struct inode *inode = file_inode(iocb->ki_filp);
58 u32 dio_align = ext4_dio_alignment(inode);
66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
72 struct inode *inode = file_inode(iocb->ki_filp);
74 if (iocb->ki_flags & IOCB_NOWAIT) {
75 if (!inode_trylock_shared(inode))
78 inode_lock_shared(inode);
81 if (!ext4_should_use_dio(iocb, to)) {
82 inode_unlock_shared(inode);
84 * Fallback to buffered I/O if the operation being performed on
85 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 * flag needs to be cleared here in order to ensure that the
87 * direct I/O path within generic_file_read_iter() is not
90 iocb->ki_flags &= ~IOCB_DIRECT;
91 return generic_file_read_iter(iocb, to);
94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 inode_unlock_shared(inode);
97 file_accessed(iocb->ki_filp);
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
104 struct inode *inode = file_inode(iocb->ki_filp);
107 if (iocb->ki_flags & IOCB_NOWAIT) {
108 if (!inode_trylock_shared(inode))
111 inode_lock_shared(inode);
114 * Recheck under inode lock - at this point we are sure it cannot
117 if (!IS_DAX(inode)) {
118 inode_unlock_shared(inode);
119 /* Fallback to buffered IO in case we cannot support DAX */
120 return generic_file_read_iter(iocb, to);
122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 inode_unlock_shared(inode);
125 file_accessed(iocb->ki_filp);
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
132 struct inode *inode = file_inode(iocb->ki_filp);
134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
137 if (!iov_iter_count(to))
138 return 0; /* skip atime */
142 return ext4_dax_read_iter(iocb, to);
144 if (iocb->ki_flags & IOCB_DIRECT)
145 return ext4_dio_read_iter(iocb, to);
147 return generic_file_read_iter(iocb, to);
151 * Called when an inode is released. Note that this is different
152 * from ext4_file_open: open gets called at every open, but release
153 * gets called only when /all/ the files are closed.
155 static int ext4_release_file(struct inode *inode, struct file *filp)
157 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158 ext4_alloc_da_blocks(inode);
159 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
161 /* if we are the last writer on the inode, drop the block reservation */
162 if ((filp->f_mode & FMODE_WRITE) &&
163 (atomic_read(&inode->i_writecount) == 1) &&
164 !EXT4_I(inode)->i_reserved_data_blocks) {
165 down_write(&EXT4_I(inode)->i_data_sem);
166 ext4_discard_preallocations(inode, 0);
167 up_write(&EXT4_I(inode)->i_data_sem);
169 if (is_dx(inode) && filp->private_data)
170 ext4_htree_free_dir_info(filp->private_data);
176 * This tests whether the IO in question is block-aligned or not.
177 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178 * are converted to written only after the IO is complete. Until they are
179 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180 * it needs to zero out portions of the start and/or end block. If 2 AIO
181 * threads are at work on the same unwritten block, they must be synchronized
182 * or one thread will zero the other's data, causing corruption.
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
187 struct super_block *sb = inode->i_sb;
188 unsigned long blockmask = sb->s_blocksize - 1;
190 if ((pos | iov_iter_alignment(from)) & blockmask)
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
199 if (offset + len > i_size_read(inode) ||
200 offset + len > EXT4_I(inode)->i_disksize)
205 /* Is IO overwriting allocated and initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
208 struct ext4_map_blocks map;
209 unsigned int blkbits = inode->i_blkbits;
212 if (pos + len > i_size_read(inode))
215 map.m_lblk = pos >> blkbits;
216 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
219 err = ext4_map_blocks(NULL, inode, &map, 0);
221 * 'err==len' means that all of the blocks have been preallocated,
222 * regardless of whether they have been initialized or not. To exclude
223 * unwritten extents, we need to check m_flags.
225 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
228 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
229 struct iov_iter *from)
231 struct inode *inode = file_inode(iocb->ki_filp);
234 if (unlikely(IS_IMMUTABLE(inode)))
237 ret = generic_write_checks(iocb, from);
242 * If we have encountered a bitmap-format file, the size limit
243 * is smaller than s_maxbytes, which is for extent-mapped files.
245 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
246 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
248 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
250 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
253 return iov_iter_count(from);
256 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
260 count = ext4_generic_write_checks(iocb, from);
264 ret = file_modified(iocb->ki_filp);
270 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
271 struct iov_iter *from)
274 struct inode *inode = file_inode(iocb->ki_filp);
276 if (iocb->ki_flags & IOCB_NOWAIT)
280 ret = ext4_write_checks(iocb, from);
284 current->backing_dev_info = inode_to_bdi(inode);
285 ret = generic_perform_write(iocb, from);
286 current->backing_dev_info = NULL;
290 if (likely(ret > 0)) {
292 ret = generic_write_sync(iocb, ret);
298 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
299 ssize_t written, size_t count)
302 bool truncate = false;
303 u8 blkbits = inode->i_blkbits;
304 ext4_lblk_t written_blk, end_blk;
308 * Note that EXT4_I(inode)->i_disksize can get extended up to
309 * inode->i_size while the I/O was running due to writeback of delalloc
310 * blocks. But, the code in ext4_iomap_alloc() is careful to use
311 * zeroed/unwritten extents if this is possible; thus we won't leave
312 * uninitialized blocks in a file even if we didn't succeed in writing
313 * as much as we intended.
315 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
316 if (offset + count <= EXT4_I(inode)->i_disksize) {
318 * We need to ensure that the inode is removed from the orphan
319 * list if it has been added prematurely, due to writeback of
322 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
323 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325 if (IS_ERR(handle)) {
326 ext4_orphan_del(NULL, inode);
327 return PTR_ERR(handle);
330 ext4_orphan_del(handle, inode);
331 ext4_journal_stop(handle);
340 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
341 if (IS_ERR(handle)) {
342 written = PTR_ERR(handle);
346 if (ext4_update_inode_size(inode, offset + written)) {
347 ret = ext4_mark_inode_dirty(handle, inode);
350 ext4_journal_stop(handle);
356 * We may need to truncate allocated but not written blocks beyond EOF.
358 written_blk = ALIGN(offset + written, 1 << blkbits);
359 end_blk = ALIGN(offset + count, 1 << blkbits);
360 if (written_blk < end_blk && ext4_can_truncate(inode))
364 * Remove the inode from the orphan list if it has been extended and
365 * everything went OK.
367 if (!truncate && inode->i_nlink)
368 ext4_orphan_del(handle, inode);
369 ext4_journal_stop(handle);
373 ext4_truncate_failed_write(inode);
375 * If the truncate operation failed early, then the inode may
376 * still be on the orphan list. In that case, we need to try
377 * remove the inode from the in-memory linked list.
380 ext4_orphan_del(NULL, inode);
386 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
387 int error, unsigned int flags)
389 loff_t pos = iocb->ki_pos;
390 struct inode *inode = file_inode(iocb->ki_filp);
395 if (size && flags & IOMAP_DIO_UNWRITTEN) {
396 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
401 * If we are extending the file, we have to update i_size here before
402 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
403 * buffered reads could zero out too much from page cache pages. Update
404 * of on-disk size will happen later in ext4_dio_write_iter() where
405 * we have enough information to also perform orphan list handling etc.
406 * Note that we perform all extending writes synchronously under
407 * i_rwsem held exclusively so i_size update is safe here in that case.
408 * If the write was not extending, we cannot see pos > i_size here
409 * because operations reducing i_size like truncate wait for all
410 * outstanding DIO before updating i_size.
413 if (pos > i_size_read(inode))
414 i_size_write(inode, pos);
419 static const struct iomap_dio_ops ext4_dio_write_ops = {
420 .end_io = ext4_dio_write_end_io,
424 * The intention here is to start with shared lock acquired then see if any
425 * condition requires an exclusive inode lock. If yes, then we restart the
426 * whole operation by releasing the shared lock and acquiring exclusive lock.
428 * - For unaligned_io we never take shared lock as it may cause data corruption
429 * when two unaligned IO tries to modify the same block e.g. while zeroing.
431 * - For extending writes case we don't take the shared lock, since it requires
432 * updating inode i_disksize and/or orphan handling with exclusive lock.
434 * - shared locking will only be true mostly with overwrites. Otherwise we will
435 * switch to exclusive i_rwsem lock.
437 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
438 bool *ilock_shared, bool *extend)
440 struct file *file = iocb->ki_filp;
441 struct inode *inode = file_inode(file);
447 ret = ext4_generic_write_checks(iocb, from);
451 offset = iocb->ki_pos;
453 if (ext4_extending_io(inode, offset, count))
456 * Determine whether the IO operation will overwrite allocated
457 * and initialized blocks.
458 * We need exclusive i_rwsem for changing security info
459 * in file_modified().
461 if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
462 !ext4_overwrite_io(inode, offset, count))) {
463 if (iocb->ki_flags & IOCB_NOWAIT) {
467 inode_unlock_shared(inode);
468 *ilock_shared = false;
473 ret = file_modified(file);
480 inode_unlock_shared(inode);
486 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
490 struct inode *inode = file_inode(iocb->ki_filp);
491 loff_t offset = iocb->ki_pos;
492 size_t count = iov_iter_count(from);
493 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
494 bool extend = false, unaligned_io = false;
495 bool ilock_shared = true;
498 * We initially start with shared inode lock unless it is
499 * unaligned IO which needs exclusive lock anyways.
501 if (ext4_unaligned_io(inode, from, offset)) {
503 ilock_shared = false;
506 * Quick check here without any i_rwsem lock to see if it is extending
507 * IO. A more reliable check is done in ext4_dio_write_checks() with
508 * proper locking in place.
510 if (offset + count > i_size_read(inode))
511 ilock_shared = false;
513 if (iocb->ki_flags & IOCB_NOWAIT) {
515 if (!inode_trylock_shared(inode))
518 if (!inode_trylock(inode))
523 inode_lock_shared(inode);
528 /* Fallback to buffered I/O if the inode does not support direct I/O. */
529 if (!ext4_should_use_dio(iocb, from)) {
531 inode_unlock_shared(inode);
534 return ext4_buffered_write_iter(iocb, from);
537 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
541 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
542 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
547 * Make sure inline data cannot be created anymore since we are going
548 * to allocate blocks for DIO. We know the inode does not have any
549 * inline data now because ext4_dio_supported() checked for that.
551 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
553 offset = iocb->ki_pos;
557 * Unaligned direct IO must be serialized among each other as zeroing
558 * of partial blocks of two competing unaligned IOs can result in data
561 * So we make sure we don't allow any unaligned IO in flight.
562 * For IOs where we need not wait (like unaligned non-AIO DIO),
563 * below inode_dio_wait() may anyway become a no-op, since we start
564 * with exclusive lock.
567 inode_dio_wait(inode);
570 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
571 if (IS_ERR(handle)) {
572 ret = PTR_ERR(handle);
576 ret = ext4_orphan_add(handle, inode);
578 ext4_journal_stop(handle);
582 ext4_journal_stop(handle);
586 iomap_ops = &ext4_iomap_overwrite_ops;
587 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
588 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
594 ret = ext4_handle_inode_extension(inode, offset, ret, count);
598 inode_unlock_shared(inode);
602 if (ret >= 0 && iov_iter_count(from)) {
606 offset = iocb->ki_pos;
607 err = ext4_buffered_write_iter(iocb, from);
612 * We need to ensure that the pages within the page cache for
613 * the range covered by this I/O are written to disk and
614 * invalidated. This is in attempt to preserve the expected
615 * direct I/O semantics in the case we fallback to buffered I/O
616 * to complete off the I/O request.
619 endbyte = offset + err - 1;
620 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
623 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
624 offset >> PAGE_SHIFT,
625 endbyte >> PAGE_SHIFT);
633 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
640 struct inode *inode = file_inode(iocb->ki_filp);
642 if (iocb->ki_flags & IOCB_NOWAIT) {
643 if (!inode_trylock(inode))
649 ret = ext4_write_checks(iocb, from);
653 offset = iocb->ki_pos;
654 count = iov_iter_count(from);
656 if (offset + count > EXT4_I(inode)->i_disksize) {
657 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
658 if (IS_ERR(handle)) {
659 ret = PTR_ERR(handle);
663 ret = ext4_orphan_add(handle, inode);
665 ext4_journal_stop(handle);
670 ext4_journal_stop(handle);
673 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
676 ret = ext4_handle_inode_extension(inode, offset, ret, count);
680 ret = generic_write_sync(iocb, ret);
686 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
688 struct inode *inode = file_inode(iocb->ki_filp);
690 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
695 return ext4_dax_write_iter(iocb, from);
697 if (iocb->ki_flags & IOCB_DIRECT)
698 return ext4_dio_write_iter(iocb, from);
700 return ext4_buffered_write_iter(iocb, from);
704 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
705 enum page_entry_size pe_size)
710 handle_t *handle = NULL;
711 struct inode *inode = file_inode(vmf->vma->vm_file);
712 struct super_block *sb = inode->i_sb;
715 * We have to distinguish real writes from writes which will result in a
716 * COW page; COW writes should *not* poke the journal (the file will not
717 * be changed). Doing so would cause unintended failures when mounted
720 * We check for VM_SHARED rather than vmf->cow_page since the latter is
721 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
722 * other sizes, dax_iomap_fault will handle splitting / fallback so that
723 * we eventually come back with a COW page.
725 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
726 (vmf->vma->vm_flags & VM_SHARED);
727 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
731 sb_start_pagefault(sb);
732 file_update_time(vmf->vma->vm_file);
733 filemap_invalidate_lock_shared(mapping);
735 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
736 EXT4_DATA_TRANS_BLOCKS(sb));
737 if (IS_ERR(handle)) {
738 filemap_invalidate_unlock_shared(mapping);
739 sb_end_pagefault(sb);
740 return VM_FAULT_SIGBUS;
743 filemap_invalidate_lock_shared(mapping);
745 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
747 ext4_journal_stop(handle);
749 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
750 ext4_should_retry_alloc(sb, &retries))
752 /* Handling synchronous page fault? */
753 if (result & VM_FAULT_NEEDDSYNC)
754 result = dax_finish_sync_fault(vmf, pe_size, pfn);
755 filemap_invalidate_unlock_shared(mapping);
756 sb_end_pagefault(sb);
758 filemap_invalidate_unlock_shared(mapping);
764 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
766 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
769 static const struct vm_operations_struct ext4_dax_vm_ops = {
770 .fault = ext4_dax_fault,
771 .huge_fault = ext4_dax_huge_fault,
772 .page_mkwrite = ext4_dax_fault,
773 .pfn_mkwrite = ext4_dax_fault,
776 #define ext4_dax_vm_ops ext4_file_vm_ops
779 static const struct vm_operations_struct ext4_file_vm_ops = {
780 .fault = filemap_fault,
781 .map_pages = filemap_map_pages,
782 .page_mkwrite = ext4_page_mkwrite,
785 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
787 struct inode *inode = file->f_mapping->host;
788 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
789 struct dax_device *dax_dev = sbi->s_daxdev;
791 if (unlikely(ext4_forced_shutdown(sbi)))
795 * We don't support synchronous mappings for non-DAX files and
796 * for DAX files if underneath dax_device is not synchronous.
798 if (!daxdev_mapping_supported(vma, dax_dev))
802 if (IS_DAX(file_inode(file))) {
803 vma->vm_ops = &ext4_dax_vm_ops;
804 vma->vm_flags |= VM_HUGEPAGE;
806 vma->vm_ops = &ext4_file_vm_ops;
811 static int ext4_sample_last_mounted(struct super_block *sb,
812 struct vfsmount *mnt)
814 struct ext4_sb_info *sbi = EXT4_SB(sb);
820 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
823 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
826 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
828 * Sample where the filesystem has been mounted and
829 * store it in the superblock for sysadmin convenience
830 * when trying to sort through large numbers of block
831 * devices or filesystem images.
833 memset(buf, 0, sizeof(buf));
835 path.dentry = mnt->mnt_root;
836 cp = d_path(&path, buf, sizeof(buf));
841 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
842 err = PTR_ERR(handle);
845 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
846 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
850 lock_buffer(sbi->s_sbh);
851 strncpy(sbi->s_es->s_last_mounted, cp,
852 sizeof(sbi->s_es->s_last_mounted));
853 ext4_superblock_csum_set(sb);
854 unlock_buffer(sbi->s_sbh);
855 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
857 ext4_journal_stop(handle);
863 static int ext4_file_open(struct inode *inode, struct file *filp)
867 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
870 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
874 ret = fscrypt_file_open(inode, filp);
878 ret = fsverity_file_open(inode, filp);
883 * Set up the jbd2_inode if we are opening the inode for
884 * writing and the journal is present
886 if (filp->f_mode & FMODE_WRITE) {
887 ret = ext4_inode_attach_jinode(inode);
892 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
893 return dquot_file_open(inode, filp);
897 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
898 * by calling generic_file_llseek_size() with the appropriate maxbytes
901 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
903 struct inode *inode = file->f_mapping->host;
906 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
907 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
909 maxbytes = inode->i_sb->s_maxbytes;
913 return generic_file_llseek_size(file, offset, whence,
914 maxbytes, i_size_read(inode));
916 inode_lock_shared(inode);
917 offset = iomap_seek_hole(inode, offset,
918 &ext4_iomap_report_ops);
919 inode_unlock_shared(inode);
922 inode_lock_shared(inode);
923 offset = iomap_seek_data(inode, offset,
924 &ext4_iomap_report_ops);
925 inode_unlock_shared(inode);
931 return vfs_setpos(file, offset, maxbytes);
934 const struct file_operations ext4_file_operations = {
935 .llseek = ext4_llseek,
936 .read_iter = ext4_file_read_iter,
937 .write_iter = ext4_file_write_iter,
938 .iopoll = iocb_bio_iopoll,
939 .unlocked_ioctl = ext4_ioctl,
941 .compat_ioctl = ext4_compat_ioctl,
943 .mmap = ext4_file_mmap,
944 .mmap_supported_flags = MAP_SYNC,
945 .open = ext4_file_open,
946 .release = ext4_release_file,
947 .fsync = ext4_sync_file,
948 .get_unmapped_area = thp_get_unmapped_area,
949 .splice_read = generic_file_splice_read,
950 .splice_write = iter_file_splice_write,
951 .fallocate = ext4_fallocate,
954 const struct inode_operations ext4_file_inode_operations = {
955 .setattr = ext4_setattr,
956 .getattr = ext4_file_getattr,
957 .listxattr = ext4_listxattr,
958 .get_inode_acl = ext4_get_acl,
959 .set_acl = ext4_set_acl,
960 .fiemap = ext4_fiemap,
961 .fileattr_get = ext4_fileattr_get,
962 .fileattr_set = ext4_fileattr_set,