1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
47 #include "compression.h"
49 #include "free-space-cache.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
57 #include "inode-item.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
69 #include "relocation.h"
74 struct btrfs_iget_args {
76 struct btrfs_root *root;
79 struct btrfs_dio_data {
81 struct extent_changeset *data_reserved;
82 bool data_space_reserved;
86 struct btrfs_dio_private {
87 struct btrfs_inode *inode;
90 * Since DIO can use anonymous page, we cannot use page_offset() to
91 * grab the file offset, thus need a dedicated member for file offset.
94 /* Used for bio::bi_size */
98 * References to this structure. There is one reference per in-flight
99 * bio plus one while we're still setting up.
103 /* Array of checksums */
106 /* This must be last */
110 static struct bio_set btrfs_dio_bioset;
112 struct btrfs_rename_ctx {
113 /* Output field. Stores the index number of the old directory entry. */
117 static const struct inode_operations btrfs_dir_inode_operations;
118 static const struct inode_operations btrfs_symlink_inode_operations;
119 static const struct inode_operations btrfs_special_inode_operations;
120 static const struct inode_operations btrfs_file_inode_operations;
121 static const struct address_space_operations btrfs_aops;
122 static const struct file_operations btrfs_dir_file_operations;
124 static struct kmem_cache *btrfs_inode_cachep;
126 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
127 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 static noinline int cow_file_range(struct btrfs_inode *inode,
129 struct page *locked_page,
130 u64 start, u64 end, int *page_started,
131 unsigned long *nr_written, int unlock,
133 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
134 u64 len, u64 orig_start, u64 block_start,
135 u64 block_len, u64 orig_block_len,
136 u64 ram_bytes, int compress_type,
139 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
140 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
142 struct btrfs_root *root = inode->root;
143 const u32 csum_size = root->fs_info->csum_size;
145 /* Output without objectid, which is more meaningful */
146 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
147 btrfs_warn_rl(root->fs_info,
148 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
149 root->root_key.objectid, btrfs_ino(inode),
151 CSUM_FMT_VALUE(csum_size, csum),
152 CSUM_FMT_VALUE(csum_size, csum_expected),
155 btrfs_warn_rl(root->fs_info,
156 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
157 root->root_key.objectid, btrfs_ino(inode),
159 CSUM_FMT_VALUE(csum_size, csum),
160 CSUM_FMT_VALUE(csum_size, csum_expected),
166 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
168 * ilock_flags can have the following bit set:
170 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
171 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
173 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
175 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
177 if (ilock_flags & BTRFS_ILOCK_SHARED) {
178 if (ilock_flags & BTRFS_ILOCK_TRY) {
179 if (!inode_trylock_shared(&inode->vfs_inode))
184 inode_lock_shared(&inode->vfs_inode);
186 if (ilock_flags & BTRFS_ILOCK_TRY) {
187 if (!inode_trylock(&inode->vfs_inode))
192 inode_lock(&inode->vfs_inode);
194 if (ilock_flags & BTRFS_ILOCK_MMAP)
195 down_write(&inode->i_mmap_lock);
200 * btrfs_inode_unlock - unock inode i_rwsem
202 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
203 * to decide whether the lock acquired is shared or exclusive.
205 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
207 if (ilock_flags & BTRFS_ILOCK_MMAP)
208 up_write(&inode->i_mmap_lock);
209 if (ilock_flags & BTRFS_ILOCK_SHARED)
210 inode_unlock_shared(&inode->vfs_inode);
212 inode_unlock(&inode->vfs_inode);
216 * Cleanup all submitted ordered extents in specified range to handle errors
217 * from the btrfs_run_delalloc_range() callback.
219 * NOTE: caller must ensure that when an error happens, it can not call
220 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
221 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
222 * to be released, which we want to happen only when finishing the ordered
223 * extent (btrfs_finish_ordered_io()).
225 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
226 struct page *locked_page,
227 u64 offset, u64 bytes)
229 unsigned long index = offset >> PAGE_SHIFT;
230 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
231 u64 page_start, page_end;
235 page_start = page_offset(locked_page);
236 page_end = page_start + PAGE_SIZE - 1;
239 while (index <= end_index) {
241 * For locked page, we will call end_extent_writepage() on it
242 * in run_delalloc_range() for the error handling. That
243 * end_extent_writepage() function will call
244 * btrfs_mark_ordered_io_finished() to clear page Ordered and
245 * run the ordered extent accounting.
247 * Here we can't just clear the Ordered bit, or
248 * btrfs_mark_ordered_io_finished() would skip the accounting
249 * for the page range, and the ordered extent will never finish.
251 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
255 page = find_get_page(inode->vfs_inode.i_mapping, index);
261 * Here we just clear all Ordered bits for every page in the
262 * range, then btrfs_mark_ordered_io_finished() will handle
263 * the ordered extent accounting for the range.
265 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
271 /* The locked page covers the full range, nothing needs to be done */
272 if (bytes + offset <= page_start + PAGE_SIZE)
275 * In case this page belongs to the delalloc range being
276 * instantiated then skip it, since the first page of a range is
277 * going to be properly cleaned up by the caller of
280 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
281 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
282 offset = page_offset(locked_page) + PAGE_SIZE;
286 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
289 static int btrfs_dirty_inode(struct btrfs_inode *inode);
291 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
292 struct btrfs_new_inode_args *args)
296 if (args->default_acl) {
297 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
303 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
307 if (!args->default_acl && !args->acl)
308 cache_no_acl(args->inode);
309 return btrfs_xattr_security_init(trans, args->inode, args->dir,
310 &args->dentry->d_name);
314 * this does all the hard work for inserting an inline extent into
315 * the btree. The caller should have done a btrfs_drop_extents so that
316 * no overlapping inline items exist in the btree
318 static int insert_inline_extent(struct btrfs_trans_handle *trans,
319 struct btrfs_path *path,
320 struct btrfs_inode *inode, bool extent_inserted,
321 size_t size, size_t compressed_size,
323 struct page **compressed_pages,
326 struct btrfs_root *root = inode->root;
327 struct extent_buffer *leaf;
328 struct page *page = NULL;
331 struct btrfs_file_extent_item *ei;
333 size_t cur_size = size;
336 ASSERT((compressed_size > 0 && compressed_pages) ||
337 (compressed_size == 0 && !compressed_pages));
339 if (compressed_size && compressed_pages)
340 cur_size = compressed_size;
342 if (!extent_inserted) {
343 struct btrfs_key key;
346 key.objectid = btrfs_ino(inode);
348 key.type = BTRFS_EXTENT_DATA_KEY;
350 datasize = btrfs_file_extent_calc_inline_size(cur_size);
351 ret = btrfs_insert_empty_item(trans, root, path, &key,
356 leaf = path->nodes[0];
357 ei = btrfs_item_ptr(leaf, path->slots[0],
358 struct btrfs_file_extent_item);
359 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
360 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
361 btrfs_set_file_extent_encryption(leaf, ei, 0);
362 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
363 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
364 ptr = btrfs_file_extent_inline_start(ei);
366 if (compress_type != BTRFS_COMPRESS_NONE) {
369 while (compressed_size > 0) {
370 cpage = compressed_pages[i];
371 cur_size = min_t(unsigned long, compressed_size,
374 kaddr = kmap_local_page(cpage);
375 write_extent_buffer(leaf, kaddr, ptr, cur_size);
380 compressed_size -= cur_size;
382 btrfs_set_file_extent_compression(leaf, ei,
385 page = find_get_page(inode->vfs_inode.i_mapping, 0);
386 btrfs_set_file_extent_compression(leaf, ei, 0);
387 kaddr = kmap_local_page(page);
388 write_extent_buffer(leaf, kaddr, ptr, size);
392 btrfs_mark_buffer_dirty(leaf);
393 btrfs_release_path(path);
396 * We align size to sectorsize for inline extents just for simplicity
399 ret = btrfs_inode_set_file_extent_range(inode, 0,
400 ALIGN(size, root->fs_info->sectorsize));
405 * We're an inline extent, so nobody can extend the file past i_size
406 * without locking a page we already have locked.
408 * We must do any i_size and inode updates before we unlock the pages.
409 * Otherwise we could end up racing with unlink.
411 i_size = i_size_read(&inode->vfs_inode);
412 if (update_i_size && size > i_size) {
413 i_size_write(&inode->vfs_inode, size);
416 inode->disk_i_size = i_size;
424 * conditionally insert an inline extent into the file. This
425 * does the checks required to make sure the data is small enough
426 * to fit as an inline extent.
428 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
429 size_t compressed_size,
431 struct page **compressed_pages,
434 struct btrfs_drop_extents_args drop_args = { 0 };
435 struct btrfs_root *root = inode->root;
436 struct btrfs_fs_info *fs_info = root->fs_info;
437 struct btrfs_trans_handle *trans;
438 u64 data_len = (compressed_size ?: size);
440 struct btrfs_path *path;
443 * We can create an inline extent if it ends at or beyond the current
444 * i_size, is no larger than a sector (decompressed), and the (possibly
445 * compressed) data fits in a leaf and the configured maximum inline
448 if (size < i_size_read(&inode->vfs_inode) ||
449 size > fs_info->sectorsize ||
450 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
451 data_len > fs_info->max_inline)
454 path = btrfs_alloc_path();
458 trans = btrfs_join_transaction(root);
460 btrfs_free_path(path);
461 return PTR_ERR(trans);
463 trans->block_rsv = &inode->block_rsv;
465 drop_args.path = path;
467 drop_args.end = fs_info->sectorsize;
468 drop_args.drop_cache = true;
469 drop_args.replace_extent = true;
470 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
471 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
473 btrfs_abort_transaction(trans, ret);
477 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
478 size, compressed_size, compress_type,
479 compressed_pages, update_i_size);
480 if (ret && ret != -ENOSPC) {
481 btrfs_abort_transaction(trans, ret);
483 } else if (ret == -ENOSPC) {
488 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
489 ret = btrfs_update_inode(trans, root, inode);
490 if (ret && ret != -ENOSPC) {
491 btrfs_abort_transaction(trans, ret);
493 } else if (ret == -ENOSPC) {
498 btrfs_set_inode_full_sync(inode);
501 * Don't forget to free the reserved space, as for inlined extent
502 * it won't count as data extent, free them directly here.
503 * And at reserve time, it's always aligned to page size, so
504 * just free one page here.
506 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
507 btrfs_free_path(path);
508 btrfs_end_transaction(trans);
512 struct async_extent {
517 unsigned long nr_pages;
519 struct list_head list;
523 struct btrfs_inode *inode;
524 struct page *locked_page;
527 blk_opf_t write_flags;
528 struct list_head extents;
529 struct cgroup_subsys_state *blkcg_css;
530 struct btrfs_work work;
531 struct async_cow *async_cow;
536 struct async_chunk chunks[];
539 static noinline int add_async_extent(struct async_chunk *cow,
540 u64 start, u64 ram_size,
543 unsigned long nr_pages,
546 struct async_extent *async_extent;
548 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
549 BUG_ON(!async_extent); /* -ENOMEM */
550 async_extent->start = start;
551 async_extent->ram_size = ram_size;
552 async_extent->compressed_size = compressed_size;
553 async_extent->pages = pages;
554 async_extent->nr_pages = nr_pages;
555 async_extent->compress_type = compress_type;
556 list_add_tail(&async_extent->list, &cow->extents);
561 * Check if the inode needs to be submitted to compression, based on mount
562 * options, defragmentation, properties or heuristics.
564 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
567 struct btrfs_fs_info *fs_info = inode->root->fs_info;
569 if (!btrfs_inode_can_compress(inode)) {
570 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
571 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
576 * Special check for subpage.
578 * We lock the full page then run each delalloc range in the page, thus
579 * for the following case, we will hit some subpage specific corner case:
582 * | |///////| |///////|
585 * In above case, both range A and range B will try to unlock the full
586 * page [0, 64K), causing the one finished later will have page
587 * unlocked already, triggering various page lock requirement BUG_ON()s.
589 * So here we add an artificial limit that subpage compression can only
590 * if the range is fully page aligned.
592 * In theory we only need to ensure the first page is fully covered, but
593 * the tailing partial page will be locked until the full compression
594 * finishes, delaying the write of other range.
596 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
597 * first to prevent any submitted async extent to unlock the full page.
598 * By this, we can ensure for subpage case that only the last async_cow
599 * will unlock the full page.
601 if (fs_info->sectorsize < PAGE_SIZE) {
602 if (!PAGE_ALIGNED(start) ||
603 !PAGE_ALIGNED(end + 1))
608 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
611 if (inode->defrag_compress)
613 /* bad compression ratios */
614 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
616 if (btrfs_test_opt(fs_info, COMPRESS) ||
617 inode->flags & BTRFS_INODE_COMPRESS ||
618 inode->prop_compress)
619 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
623 static inline void inode_should_defrag(struct btrfs_inode *inode,
624 u64 start, u64 end, u64 num_bytes, u32 small_write)
626 /* If this is a small write inside eof, kick off a defrag */
627 if (num_bytes < small_write &&
628 (start > 0 || end + 1 < inode->disk_i_size))
629 btrfs_add_inode_defrag(NULL, inode, small_write);
633 * we create compressed extents in two phases. The first
634 * phase compresses a range of pages that have already been
635 * locked (both pages and state bits are locked).
637 * This is done inside an ordered work queue, and the compression
638 * is spread across many cpus. The actual IO submission is step
639 * two, and the ordered work queue takes care of making sure that
640 * happens in the same order things were put onto the queue by
641 * writepages and friends.
643 * If this code finds it can't get good compression, it puts an
644 * entry onto the work queue to write the uncompressed bytes. This
645 * makes sure that both compressed inodes and uncompressed inodes
646 * are written in the same order that the flusher thread sent them
649 static noinline int compress_file_range(struct async_chunk *async_chunk)
651 struct btrfs_inode *inode = async_chunk->inode;
652 struct btrfs_fs_info *fs_info = inode->root->fs_info;
653 u64 blocksize = fs_info->sectorsize;
654 u64 start = async_chunk->start;
655 u64 end = async_chunk->end;
659 struct page **pages = NULL;
660 unsigned long nr_pages;
661 unsigned long total_compressed = 0;
662 unsigned long total_in = 0;
665 int compress_type = fs_info->compress_type;
666 int compressed_extents = 0;
669 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
672 * We need to save i_size before now because it could change in between
673 * us evaluating the size and assigning it. This is because we lock and
674 * unlock the page in truncate and fallocate, and then modify the i_size
677 * The barriers are to emulate READ_ONCE, remove that once i_size_read
681 i_size = i_size_read(&inode->vfs_inode);
683 actual_end = min_t(u64, i_size, end + 1);
686 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
687 nr_pages = min_t(unsigned long, nr_pages,
688 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
691 * we don't want to send crud past the end of i_size through
692 * compression, that's just a waste of CPU time. So, if the
693 * end of the file is before the start of our current
694 * requested range of bytes, we bail out to the uncompressed
695 * cleanup code that can deal with all of this.
697 * It isn't really the fastest way to fix things, but this is a
698 * very uncommon corner.
700 if (actual_end <= start)
701 goto cleanup_and_bail_uncompressed;
703 total_compressed = actual_end - start;
706 * Skip compression for a small file range(<=blocksize) that
707 * isn't an inline extent, since it doesn't save disk space at all.
709 if (total_compressed <= blocksize &&
710 (start > 0 || end + 1 < inode->disk_i_size))
711 goto cleanup_and_bail_uncompressed;
714 * For subpage case, we require full page alignment for the sector
716 * Thus we must also check against @actual_end, not just @end.
718 if (blocksize < PAGE_SIZE) {
719 if (!PAGE_ALIGNED(start) ||
720 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
721 goto cleanup_and_bail_uncompressed;
724 total_compressed = min_t(unsigned long, total_compressed,
725 BTRFS_MAX_UNCOMPRESSED);
730 * we do compression for mount -o compress and when the
731 * inode has not been flagged as nocompress. This flag can
732 * change at any time if we discover bad compression ratios.
734 if (inode_need_compress(inode, start, end)) {
736 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
738 /* just bail out to the uncompressed code */
743 if (inode->defrag_compress)
744 compress_type = inode->defrag_compress;
745 else if (inode->prop_compress)
746 compress_type = inode->prop_compress;
749 * we need to call clear_page_dirty_for_io on each
750 * page in the range. Otherwise applications with the file
751 * mmap'd can wander in and change the page contents while
752 * we are compressing them.
754 * If the compression fails for any reason, we set the pages
755 * dirty again later on.
757 * Note that the remaining part is redirtied, the start pointer
758 * has moved, the end is the original one.
761 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
765 /* Compression level is applied here and only here */
766 ret = btrfs_compress_pages(
767 compress_type | (fs_info->compress_level << 4),
768 inode->vfs_inode.i_mapping, start,
775 unsigned long offset = offset_in_page(total_compressed);
776 struct page *page = pages[nr_pages - 1];
778 /* zero the tail end of the last page, we might be
779 * sending it down to disk
782 memzero_page(page, offset, PAGE_SIZE - offset);
788 * Check cow_file_range() for why we don't even try to create inline
789 * extent for subpage case.
791 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
792 /* lets try to make an inline extent */
793 if (ret || total_in < actual_end) {
794 /* we didn't compress the entire range, try
795 * to make an uncompressed inline extent.
797 ret = cow_file_range_inline(inode, actual_end,
798 0, BTRFS_COMPRESS_NONE,
801 /* try making a compressed inline extent */
802 ret = cow_file_range_inline(inode, actual_end,
804 compress_type, pages,
808 unsigned long clear_flags = EXTENT_DELALLOC |
809 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
810 EXTENT_DO_ACCOUNTING;
811 unsigned long page_error_op;
813 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
816 * inline extent creation worked or returned error,
817 * we don't need to create any more async work items.
818 * Unlock and free up our temp pages.
820 * We use DO_ACCOUNTING here because we need the
821 * delalloc_release_metadata to be done _after_ we drop
822 * our outstanding extent for clearing delalloc for this
825 extent_clear_unlock_delalloc(inode, start, end,
829 PAGE_START_WRITEBACK |
834 * Ensure we only free the compressed pages if we have
835 * them allocated, as we can still reach here with
836 * inode_need_compress() == false.
839 for (i = 0; i < nr_pages; i++) {
840 WARN_ON(pages[i]->mapping);
851 * we aren't doing an inline extent round the compressed size
852 * up to a block size boundary so the allocator does sane
855 total_compressed = ALIGN(total_compressed, blocksize);
858 * one last check to make sure the compression is really a
859 * win, compare the page count read with the blocks on disk,
860 * compression must free at least one sector size
862 total_in = round_up(total_in, fs_info->sectorsize);
863 if (total_compressed + blocksize <= total_in) {
864 compressed_extents++;
867 * The async work queues will take care of doing actual
868 * allocation on disk for these compressed pages, and
869 * will submit them to the elevator.
871 add_async_extent(async_chunk, start, total_in,
872 total_compressed, pages, nr_pages,
875 if (start + total_in < end) {
881 return compressed_extents;
886 * the compression code ran but failed to make things smaller,
887 * free any pages it allocated and our page pointer array
889 for (i = 0; i < nr_pages; i++) {
890 WARN_ON(pages[i]->mapping);
895 total_compressed = 0;
898 /* flag the file so we don't compress in the future */
899 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
900 !(inode->prop_compress)) {
901 inode->flags |= BTRFS_INODE_NOCOMPRESS;
904 cleanup_and_bail_uncompressed:
906 * No compression, but we still need to write the pages in the file
907 * we've been given so far. redirty the locked page if it corresponds
908 * to our extent and set things up for the async work queue to run
909 * cow_file_range to do the normal delalloc dance.
911 if (async_chunk->locked_page &&
912 (page_offset(async_chunk->locked_page) >= start &&
913 page_offset(async_chunk->locked_page)) <= end) {
914 __set_page_dirty_nobuffers(async_chunk->locked_page);
915 /* unlocked later on in the async handlers */
919 extent_range_redirty_for_io(&inode->vfs_inode, start, end);
920 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
921 BTRFS_COMPRESS_NONE);
922 compressed_extents++;
924 return compressed_extents;
927 static void free_async_extent_pages(struct async_extent *async_extent)
931 if (!async_extent->pages)
934 for (i = 0; i < async_extent->nr_pages; i++) {
935 WARN_ON(async_extent->pages[i]->mapping);
936 put_page(async_extent->pages[i]);
938 kfree(async_extent->pages);
939 async_extent->nr_pages = 0;
940 async_extent->pages = NULL;
943 static int submit_uncompressed_range(struct btrfs_inode *inode,
944 struct async_extent *async_extent,
945 struct page *locked_page)
947 u64 start = async_extent->start;
948 u64 end = async_extent->start + async_extent->ram_size - 1;
949 unsigned long nr_written = 0;
950 int page_started = 0;
954 * Call cow_file_range() to run the delalloc range directly, since we
955 * won't go to NOCOW or async path again.
957 * Also we call cow_file_range() with @unlock_page == 0, so that we
958 * can directly submit them without interruption.
960 ret = cow_file_range(inode, locked_page, start, end, &page_started,
961 &nr_written, 0, NULL);
962 /* Inline extent inserted, page gets unlocked and everything is done */
968 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
970 const u64 page_start = page_offset(locked_page);
971 const u64 page_end = page_start + PAGE_SIZE - 1;
973 btrfs_page_set_error(inode->root->fs_info, locked_page,
974 page_start, PAGE_SIZE);
975 set_page_writeback(locked_page);
976 end_page_writeback(locked_page);
977 end_extent_writepage(locked_page, ret, page_start, page_end);
978 unlock_page(locked_page);
983 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
984 /* All pages will be unlocked, including @locked_page */
990 static int submit_one_async_extent(struct btrfs_inode *inode,
991 struct async_chunk *async_chunk,
992 struct async_extent *async_extent,
995 struct extent_io_tree *io_tree = &inode->io_tree;
996 struct btrfs_root *root = inode->root;
997 struct btrfs_fs_info *fs_info = root->fs_info;
998 struct btrfs_key ins;
999 struct page *locked_page = NULL;
1000 struct extent_map *em;
1002 u64 start = async_extent->start;
1003 u64 end = async_extent->start + async_extent->ram_size - 1;
1006 * If async_chunk->locked_page is in the async_extent range, we need to
1009 if (async_chunk->locked_page) {
1010 u64 locked_page_start = page_offset(async_chunk->locked_page);
1011 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1013 if (!(start >= locked_page_end || end <= locked_page_start))
1014 locked_page = async_chunk->locked_page;
1016 lock_extent(io_tree, start, end, NULL);
1018 /* We have fall back to uncompressed write */
1019 if (!async_extent->pages)
1020 return submit_uncompressed_range(inode, async_extent, locked_page);
1022 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1023 async_extent->compressed_size,
1024 async_extent->compressed_size,
1025 0, *alloc_hint, &ins, 1, 1);
1027 free_async_extent_pages(async_extent);
1029 * Here we used to try again by going back to non-compressed
1030 * path for ENOSPC. But we can't reserve space even for
1031 * compressed size, how could it work for uncompressed size
1032 * which requires larger size? So here we directly go error
1038 /* Here we're doing allocation and writeback of the compressed pages */
1039 em = create_io_em(inode, start,
1040 async_extent->ram_size, /* len */
1041 start, /* orig_start */
1042 ins.objectid, /* block_start */
1043 ins.offset, /* block_len */
1044 ins.offset, /* orig_block_len */
1045 async_extent->ram_size, /* ram_bytes */
1046 async_extent->compress_type,
1047 BTRFS_ORDERED_COMPRESSED);
1050 goto out_free_reserve;
1052 free_extent_map(em);
1054 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1055 async_extent->ram_size, /* num_bytes */
1056 async_extent->ram_size, /* ram_bytes */
1057 ins.objectid, /* disk_bytenr */
1058 ins.offset, /* disk_num_bytes */
1060 1 << BTRFS_ORDERED_COMPRESSED,
1061 async_extent->compress_type);
1063 btrfs_drop_extent_map_range(inode, start, end, false);
1064 goto out_free_reserve;
1066 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1068 /* Clear dirty, set writeback and unlock the pages. */
1069 extent_clear_unlock_delalloc(inode, start, end,
1070 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1071 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1072 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1073 async_extent->ram_size, /* num_bytes */
1074 ins.objectid, /* disk_bytenr */
1075 ins.offset, /* compressed_len */
1076 async_extent->pages, /* compressed_pages */
1077 async_extent->nr_pages,
1078 async_chunk->write_flags,
1079 async_chunk->blkcg_css, true)) {
1080 const u64 start = async_extent->start;
1081 const u64 end = start + async_extent->ram_size - 1;
1083 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1085 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1086 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1087 free_async_extent_pages(async_extent);
1089 *alloc_hint = ins.objectid + ins.offset;
1090 kfree(async_extent);
1094 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1095 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1097 extent_clear_unlock_delalloc(inode, start, end,
1098 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1099 EXTENT_DELALLOC_NEW |
1100 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1101 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1102 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1103 free_async_extent_pages(async_extent);
1104 kfree(async_extent);
1109 * Phase two of compressed writeback. This is the ordered portion of the code,
1110 * which only gets called in the order the work was queued. We walk all the
1111 * async extents created by compress_file_range and send them down to the disk.
1113 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1115 struct btrfs_inode *inode = async_chunk->inode;
1116 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1117 struct async_extent *async_extent;
1121 while (!list_empty(&async_chunk->extents)) {
1125 async_extent = list_entry(async_chunk->extents.next,
1126 struct async_extent, list);
1127 list_del(&async_extent->list);
1128 extent_start = async_extent->start;
1129 ram_size = async_extent->ram_size;
1131 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1133 btrfs_debug(fs_info,
1134 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1135 inode->root->root_key.objectid,
1136 btrfs_ino(inode), extent_start, ram_size, ret);
1140 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1143 struct extent_map_tree *em_tree = &inode->extent_tree;
1144 struct extent_map *em;
1147 read_lock(&em_tree->lock);
1148 em = search_extent_mapping(em_tree, start, num_bytes);
1151 * if block start isn't an actual block number then find the
1152 * first block in this inode and use that as a hint. If that
1153 * block is also bogus then just don't worry about it.
1155 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1156 free_extent_map(em);
1157 em = search_extent_mapping(em_tree, 0, 0);
1158 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1159 alloc_hint = em->block_start;
1161 free_extent_map(em);
1163 alloc_hint = em->block_start;
1164 free_extent_map(em);
1167 read_unlock(&em_tree->lock);
1173 * when extent_io.c finds a delayed allocation range in the file,
1174 * the call backs end up in this code. The basic idea is to
1175 * allocate extents on disk for the range, and create ordered data structs
1176 * in ram to track those extents.
1178 * locked_page is the page that writepage had locked already. We use
1179 * it to make sure we don't do extra locks or unlocks.
1181 * *page_started is set to one if we unlock locked_page and do everything
1182 * required to start IO on it. It may be clean and already done with
1183 * IO when we return.
1185 * When unlock == 1, we unlock the pages in successfully allocated regions.
1186 * When unlock == 0, we leave them locked for writing them out.
1188 * However, we unlock all the pages except @locked_page in case of failure.
1190 * In summary, page locking state will be as follow:
1192 * - page_started == 1 (return value)
1193 * - All the pages are unlocked. IO is started.
1194 * - Note that this can happen only on success
1196 * - All the pages except @locked_page are unlocked in any case
1198 * - On success, all the pages are locked for writing out them
1199 * - On failure, all the pages except @locked_page are unlocked
1201 * When a failure happens in the second or later iteration of the
1202 * while-loop, the ordered extents created in previous iterations are kept
1203 * intact. So, the caller must clean them up by calling
1204 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1207 static noinline int cow_file_range(struct btrfs_inode *inode,
1208 struct page *locked_page,
1209 u64 start, u64 end, int *page_started,
1210 unsigned long *nr_written, int unlock,
1213 struct btrfs_root *root = inode->root;
1214 struct btrfs_fs_info *fs_info = root->fs_info;
1216 u64 orig_start = start;
1218 unsigned long ram_size;
1219 u64 cur_alloc_size = 0;
1221 u64 blocksize = fs_info->sectorsize;
1222 struct btrfs_key ins;
1223 struct extent_map *em;
1224 unsigned clear_bits;
1225 unsigned long page_ops;
1226 bool extent_reserved = false;
1229 if (btrfs_is_free_space_inode(inode)) {
1234 num_bytes = ALIGN(end - start + 1, blocksize);
1235 num_bytes = max(blocksize, num_bytes);
1236 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1238 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1241 * Due to the page size limit, for subpage we can only trigger the
1242 * writeback for the dirty sectors of page, that means data writeback
1243 * is doing more writeback than what we want.
1245 * This is especially unexpected for some call sites like fallocate,
1246 * where we only increase i_size after everything is done.
1247 * This means we can trigger inline extent even if we didn't want to.
1248 * So here we skip inline extent creation completely.
1250 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1251 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1254 /* lets try to make an inline extent */
1255 ret = cow_file_range_inline(inode, actual_end, 0,
1256 BTRFS_COMPRESS_NONE, NULL, false);
1259 * We use DO_ACCOUNTING here because we need the
1260 * delalloc_release_metadata to be run _after_ we drop
1261 * our outstanding extent for clearing delalloc for this
1264 extent_clear_unlock_delalloc(inode, start, end,
1266 EXTENT_LOCKED | EXTENT_DELALLOC |
1267 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1268 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1269 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1270 *nr_written = *nr_written +
1271 (end - start + PAGE_SIZE) / PAGE_SIZE;
1274 * locked_page is locked by the caller of
1275 * writepage_delalloc(), not locked by
1276 * __process_pages_contig().
1278 * We can't let __process_pages_contig() to unlock it,
1279 * as it doesn't have any subpage::writers recorded.
1281 * Here we manually unlock the page, since the caller
1282 * can't use page_started to determine if it's an
1283 * inline extent or a compressed extent.
1285 unlock_page(locked_page);
1287 } else if (ret < 0) {
1292 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1295 * Relocation relies on the relocated extents to have exactly the same
1296 * size as the original extents. Normally writeback for relocation data
1297 * extents follows a NOCOW path because relocation preallocates the
1298 * extents. However, due to an operation such as scrub turning a block
1299 * group to RO mode, it may fallback to COW mode, so we must make sure
1300 * an extent allocated during COW has exactly the requested size and can
1301 * not be split into smaller extents, otherwise relocation breaks and
1302 * fails during the stage where it updates the bytenr of file extent
1305 if (btrfs_is_data_reloc_root(root))
1306 min_alloc_size = num_bytes;
1308 min_alloc_size = fs_info->sectorsize;
1310 while (num_bytes > 0) {
1311 cur_alloc_size = num_bytes;
1312 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1313 min_alloc_size, 0, alloc_hint,
1317 cur_alloc_size = ins.offset;
1318 extent_reserved = true;
1320 ram_size = ins.offset;
1321 em = create_io_em(inode, start, ins.offset, /* len */
1322 start, /* orig_start */
1323 ins.objectid, /* block_start */
1324 ins.offset, /* block_len */
1325 ins.offset, /* orig_block_len */
1326 ram_size, /* ram_bytes */
1327 BTRFS_COMPRESS_NONE, /* compress_type */
1328 BTRFS_ORDERED_REGULAR /* type */);
1333 free_extent_map(em);
1335 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1336 ins.objectid, cur_alloc_size, 0,
1337 1 << BTRFS_ORDERED_REGULAR,
1338 BTRFS_COMPRESS_NONE);
1340 goto out_drop_extent_cache;
1342 if (btrfs_is_data_reloc_root(root)) {
1343 ret = btrfs_reloc_clone_csums(inode, start,
1346 * Only drop cache here, and process as normal.
1348 * We must not allow extent_clear_unlock_delalloc()
1349 * at out_unlock label to free meta of this ordered
1350 * extent, as its meta should be freed by
1351 * btrfs_finish_ordered_io().
1353 * So we must continue until @start is increased to
1354 * skip current ordered extent.
1357 btrfs_drop_extent_map_range(inode, start,
1358 start + ram_size - 1,
1362 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1365 * We're not doing compressed IO, don't unlock the first page
1366 * (which the caller expects to stay locked), don't clear any
1367 * dirty bits and don't set any writeback bits
1369 * Do set the Ordered (Private2) bit so we know this page was
1370 * properly setup for writepage.
1372 page_ops = unlock ? PAGE_UNLOCK : 0;
1373 page_ops |= PAGE_SET_ORDERED;
1375 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1377 EXTENT_LOCKED | EXTENT_DELALLOC,
1379 if (num_bytes < cur_alloc_size)
1382 num_bytes -= cur_alloc_size;
1383 alloc_hint = ins.objectid + ins.offset;
1384 start += cur_alloc_size;
1385 extent_reserved = false;
1388 * btrfs_reloc_clone_csums() error, since start is increased
1389 * extent_clear_unlock_delalloc() at out_unlock label won't
1390 * free metadata of current ordered extent, we're OK to exit.
1398 out_drop_extent_cache:
1399 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1401 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1402 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1405 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1406 * caller to write out the successfully allocated region and retry.
1408 if (done_offset && ret == -EAGAIN) {
1409 if (orig_start < start)
1410 *done_offset = start - 1;
1412 *done_offset = start;
1414 } else if (ret == -EAGAIN) {
1415 /* Convert to -ENOSPC since the caller cannot retry. */
1420 * Now, we have three regions to clean up:
1422 * |-------(1)----|---(2)---|-------------(3)----------|
1423 * `- orig_start `- start `- start + cur_alloc_size `- end
1425 * We process each region below.
1428 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1429 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1430 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1433 * For the range (1). We have already instantiated the ordered extents
1434 * for this region. They are cleaned up by
1435 * btrfs_cleanup_ordered_extents() in e.g,
1436 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1437 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1438 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1441 * However, in case of unlock == 0, we still need to unlock the pages
1442 * (except @locked_page) to ensure all the pages are unlocked.
1444 if (!unlock && orig_start < start) {
1446 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1447 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1448 locked_page, 0, page_ops);
1452 * For the range (2). If we reserved an extent for our delalloc range
1453 * (or a subrange) and failed to create the respective ordered extent,
1454 * then it means that when we reserved the extent we decremented the
1455 * extent's size from the data space_info's bytes_may_use counter and
1456 * incremented the space_info's bytes_reserved counter by the same
1457 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1458 * to decrement again the data space_info's bytes_may_use counter,
1459 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1461 if (extent_reserved) {
1462 extent_clear_unlock_delalloc(inode, start,
1463 start + cur_alloc_size - 1,
1467 start += cur_alloc_size;
1473 * For the range (3). We never touched the region. In addition to the
1474 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1475 * space_info's bytes_may_use counter, reserved in
1476 * btrfs_check_data_free_space().
1478 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1479 clear_bits | EXTENT_CLEAR_DATA_RESV,
1485 * work queue call back to started compression on a file and pages
1487 static noinline void async_cow_start(struct btrfs_work *work)
1489 struct async_chunk *async_chunk;
1490 int compressed_extents;
1492 async_chunk = container_of(work, struct async_chunk, work);
1494 compressed_extents = compress_file_range(async_chunk);
1495 if (compressed_extents == 0) {
1496 btrfs_add_delayed_iput(async_chunk->inode);
1497 async_chunk->inode = NULL;
1502 * work queue call back to submit previously compressed pages
1504 static noinline void async_cow_submit(struct btrfs_work *work)
1506 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1508 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1509 unsigned long nr_pages;
1511 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1515 * ->inode could be NULL if async_chunk_start has failed to compress,
1516 * in which case we don't have anything to submit, yet we need to
1517 * always adjust ->async_delalloc_pages as its paired with the init
1518 * happening in cow_file_range_async
1520 if (async_chunk->inode)
1521 submit_compressed_extents(async_chunk);
1523 /* atomic_sub_return implies a barrier */
1524 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1526 cond_wake_up_nomb(&fs_info->async_submit_wait);
1529 static noinline void async_cow_free(struct btrfs_work *work)
1531 struct async_chunk *async_chunk;
1532 struct async_cow *async_cow;
1534 async_chunk = container_of(work, struct async_chunk, work);
1535 if (async_chunk->inode)
1536 btrfs_add_delayed_iput(async_chunk->inode);
1537 if (async_chunk->blkcg_css)
1538 css_put(async_chunk->blkcg_css);
1540 async_cow = async_chunk->async_cow;
1541 if (atomic_dec_and_test(&async_cow->num_chunks))
1545 static int cow_file_range_async(struct btrfs_inode *inode,
1546 struct writeback_control *wbc,
1547 struct page *locked_page,
1548 u64 start, u64 end, int *page_started,
1549 unsigned long *nr_written)
1551 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1552 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1553 struct async_cow *ctx;
1554 struct async_chunk *async_chunk;
1555 unsigned long nr_pages;
1557 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1559 bool should_compress;
1561 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1563 unlock_extent(&inode->io_tree, start, end, NULL);
1565 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1566 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1568 should_compress = false;
1570 should_compress = true;
1573 nofs_flag = memalloc_nofs_save();
1574 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1575 memalloc_nofs_restore(nofs_flag);
1578 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1580 EXTENT_DO_ACCOUNTING;
1581 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1582 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1584 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1585 clear_bits, page_ops);
1589 async_chunk = ctx->chunks;
1590 atomic_set(&ctx->num_chunks, num_chunks);
1592 for (i = 0; i < num_chunks; i++) {
1593 if (should_compress)
1594 cur_end = min(end, start + SZ_512K - 1);
1599 * igrab is called higher up in the call chain, take only the
1600 * lightweight reference for the callback lifetime
1602 ihold(&inode->vfs_inode);
1603 async_chunk[i].async_cow = ctx;
1604 async_chunk[i].inode = inode;
1605 async_chunk[i].start = start;
1606 async_chunk[i].end = cur_end;
1607 async_chunk[i].write_flags = write_flags;
1608 INIT_LIST_HEAD(&async_chunk[i].extents);
1611 * The locked_page comes all the way from writepage and its
1612 * the original page we were actually given. As we spread
1613 * this large delalloc region across multiple async_chunk
1614 * structs, only the first struct needs a pointer to locked_page
1616 * This way we don't need racey decisions about who is supposed
1621 * Depending on the compressibility, the pages might or
1622 * might not go through async. We want all of them to
1623 * be accounted against wbc once. Let's do it here
1624 * before the paths diverge. wbc accounting is used
1625 * only for foreign writeback detection and doesn't
1626 * need full accuracy. Just account the whole thing
1627 * against the first page.
1629 wbc_account_cgroup_owner(wbc, locked_page,
1631 async_chunk[i].locked_page = locked_page;
1634 async_chunk[i].locked_page = NULL;
1637 if (blkcg_css != blkcg_root_css) {
1639 async_chunk[i].blkcg_css = blkcg_css;
1641 async_chunk[i].blkcg_css = NULL;
1644 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1645 async_cow_submit, async_cow_free);
1647 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1648 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1650 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1652 *nr_written += nr_pages;
1653 start = cur_end + 1;
1659 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1660 struct page *locked_page, u64 start,
1661 u64 end, int *page_started,
1662 unsigned long *nr_written)
1664 u64 done_offset = end;
1666 bool locked_page_done = false;
1668 while (start <= end) {
1669 ret = cow_file_range(inode, locked_page, start, end, page_started,
1670 nr_written, 0, &done_offset);
1671 if (ret && ret != -EAGAIN)
1674 if (*page_started) {
1682 if (done_offset == start) {
1683 wait_on_bit_io(&inode->root->fs_info->flags,
1684 BTRFS_FS_NEED_ZONE_FINISH,
1685 TASK_UNINTERRUPTIBLE);
1689 if (!locked_page_done) {
1690 __set_page_dirty_nobuffers(locked_page);
1691 account_page_redirty(locked_page);
1693 locked_page_done = true;
1694 extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1696 start = done_offset + 1;
1704 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1705 u64 bytenr, u64 num_bytes, bool nowait)
1707 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1708 struct btrfs_ordered_sum *sums;
1712 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1714 if (ret == 0 && list_empty(&list))
1717 while (!list_empty(&list)) {
1718 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1719 list_del(&sums->list);
1727 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1728 const u64 start, const u64 end,
1729 int *page_started, unsigned long *nr_written)
1731 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1732 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1733 const u64 range_bytes = end + 1 - start;
1734 struct extent_io_tree *io_tree = &inode->io_tree;
1735 u64 range_start = start;
1739 * If EXTENT_NORESERVE is set it means that when the buffered write was
1740 * made we had not enough available data space and therefore we did not
1741 * reserve data space for it, since we though we could do NOCOW for the
1742 * respective file range (either there is prealloc extent or the inode
1743 * has the NOCOW bit set).
1745 * However when we need to fallback to COW mode (because for example the
1746 * block group for the corresponding extent was turned to RO mode by a
1747 * scrub or relocation) we need to do the following:
1749 * 1) We increment the bytes_may_use counter of the data space info.
1750 * If COW succeeds, it allocates a new data extent and after doing
1751 * that it decrements the space info's bytes_may_use counter and
1752 * increments its bytes_reserved counter by the same amount (we do
1753 * this at btrfs_add_reserved_bytes()). So we need to increment the
1754 * bytes_may_use counter to compensate (when space is reserved at
1755 * buffered write time, the bytes_may_use counter is incremented);
1757 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1758 * that if the COW path fails for any reason, it decrements (through
1759 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1760 * data space info, which we incremented in the step above.
1762 * If we need to fallback to cow and the inode corresponds to a free
1763 * space cache inode or an inode of the data relocation tree, we must
1764 * also increment bytes_may_use of the data space_info for the same
1765 * reason. Space caches and relocated data extents always get a prealloc
1766 * extent for them, however scrub or balance may have set the block
1767 * group that contains that extent to RO mode and therefore force COW
1768 * when starting writeback.
1770 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1771 EXTENT_NORESERVE, 0, NULL);
1772 if (count > 0 || is_space_ino || is_reloc_ino) {
1774 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1775 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1777 if (is_space_ino || is_reloc_ino)
1778 bytes = range_bytes;
1780 spin_lock(&sinfo->lock);
1781 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1782 spin_unlock(&sinfo->lock);
1785 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1789 return cow_file_range(inode, locked_page, start, end, page_started,
1790 nr_written, 1, NULL);
1793 struct can_nocow_file_extent_args {
1796 /* Start file offset of the range we want to NOCOW. */
1798 /* End file offset (inclusive) of the range we want to NOCOW. */
1800 bool writeback_path;
1803 * Free the path passed to can_nocow_file_extent() once it's not needed
1808 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1813 /* Number of bytes that can be written to in NOCOW mode. */
1818 * Check if we can NOCOW the file extent that the path points to.
1819 * This function may return with the path released, so the caller should check
1820 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1822 * Returns: < 0 on error
1823 * 0 if we can not NOCOW
1826 static int can_nocow_file_extent(struct btrfs_path *path,
1827 struct btrfs_key *key,
1828 struct btrfs_inode *inode,
1829 struct can_nocow_file_extent_args *args)
1831 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1832 struct extent_buffer *leaf = path->nodes[0];
1833 struct btrfs_root *root = inode->root;
1834 struct btrfs_file_extent_item *fi;
1839 bool nowait = path->nowait;
1841 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1842 extent_type = btrfs_file_extent_type(leaf, fi);
1844 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1847 /* Can't access these fields unless we know it's not an inline extent. */
1848 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1849 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1850 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1852 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1853 extent_type == BTRFS_FILE_EXTENT_REG)
1857 * If the extent was created before the generation where the last snapshot
1858 * for its subvolume was created, then this implies the extent is shared,
1859 * hence we must COW.
1861 if (!args->strict &&
1862 btrfs_file_extent_generation(leaf, fi) <=
1863 btrfs_root_last_snapshot(&root->root_item))
1866 /* An explicit hole, must COW. */
1867 if (args->disk_bytenr == 0)
1870 /* Compressed/encrypted/encoded extents must be COWed. */
1871 if (btrfs_file_extent_compression(leaf, fi) ||
1872 btrfs_file_extent_encryption(leaf, fi) ||
1873 btrfs_file_extent_other_encoding(leaf, fi))
1876 extent_end = btrfs_file_extent_end(path);
1879 * The following checks can be expensive, as they need to take other
1880 * locks and do btree or rbtree searches, so release the path to avoid
1881 * blocking other tasks for too long.
1883 btrfs_release_path(path);
1885 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1886 key->offset - args->extent_offset,
1887 args->disk_bytenr, false, path);
1888 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1892 if (args->free_path) {
1894 * We don't need the path anymore, plus through the
1895 * csum_exist_in_range() call below we will end up allocating
1896 * another path. So free the path to avoid unnecessary extra
1899 btrfs_free_path(path);
1903 /* If there are pending snapshots for this root, we must COW. */
1904 if (args->writeback_path && !is_freespace_inode &&
1905 atomic_read(&root->snapshot_force_cow))
1908 args->disk_bytenr += args->extent_offset;
1909 args->disk_bytenr += args->start - key->offset;
1910 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1913 * Force COW if csums exist in the range. This ensures that csums for a
1914 * given extent are either valid or do not exist.
1916 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1918 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1924 if (args->free_path && path)
1925 btrfs_free_path(path);
1927 return ret < 0 ? ret : can_nocow;
1931 * when nowcow writeback call back. This checks for snapshots or COW copies
1932 * of the extents that exist in the file, and COWs the file as required.
1934 * If no cow copies or snapshots exist, we write directly to the existing
1937 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1938 struct page *locked_page,
1939 const u64 start, const u64 end,
1941 unsigned long *nr_written)
1943 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1944 struct btrfs_root *root = inode->root;
1945 struct btrfs_path *path;
1946 u64 cow_start = (u64)-1;
1947 u64 cur_offset = start;
1949 bool check_prev = true;
1950 u64 ino = btrfs_ino(inode);
1951 struct btrfs_block_group *bg;
1953 struct can_nocow_file_extent_args nocow_args = { 0 };
1955 path = btrfs_alloc_path();
1957 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1958 EXTENT_LOCKED | EXTENT_DELALLOC |
1959 EXTENT_DO_ACCOUNTING |
1960 EXTENT_DEFRAG, PAGE_UNLOCK |
1961 PAGE_START_WRITEBACK |
1962 PAGE_END_WRITEBACK);
1966 nocow_args.end = end;
1967 nocow_args.writeback_path = true;
1970 struct btrfs_key found_key;
1971 struct btrfs_file_extent_item *fi;
1972 struct extent_buffer *leaf;
1980 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1986 * If there is no extent for our range when doing the initial
1987 * search, then go back to the previous slot as it will be the
1988 * one containing the search offset
1990 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1991 leaf = path->nodes[0];
1992 btrfs_item_key_to_cpu(leaf, &found_key,
1993 path->slots[0] - 1);
1994 if (found_key.objectid == ino &&
1995 found_key.type == BTRFS_EXTENT_DATA_KEY)
2000 /* Go to next leaf if we have exhausted the current one */
2001 leaf = path->nodes[0];
2002 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2003 ret = btrfs_next_leaf(root, path);
2005 if (cow_start != (u64)-1)
2006 cur_offset = cow_start;
2011 leaf = path->nodes[0];
2014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2016 /* Didn't find anything for our INO */
2017 if (found_key.objectid > ino)
2020 * Keep searching until we find an EXTENT_ITEM or there are no
2021 * more extents for this inode
2023 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2024 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2029 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2030 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2031 found_key.offset > end)
2035 * If the found extent starts after requested offset, then
2036 * adjust extent_end to be right before this extent begins
2038 if (found_key.offset > cur_offset) {
2039 extent_end = found_key.offset;
2045 * Found extent which begins before our range and potentially
2048 fi = btrfs_item_ptr(leaf, path->slots[0],
2049 struct btrfs_file_extent_item);
2050 extent_type = btrfs_file_extent_type(leaf, fi);
2051 /* If this is triggered then we have a memory corruption. */
2052 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2053 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2057 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2058 extent_end = btrfs_file_extent_end(path);
2061 * If the extent we got ends before our current offset, skip to
2064 if (extent_end <= cur_offset) {
2069 nocow_args.start = cur_offset;
2070 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2072 if (cow_start != (u64)-1)
2073 cur_offset = cow_start;
2075 } else if (ret == 0) {
2080 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2085 * If nocow is false then record the beginning of the range
2086 * that needs to be COWed
2089 if (cow_start == (u64)-1)
2090 cow_start = cur_offset;
2091 cur_offset = extent_end;
2092 if (cur_offset > end)
2094 if (!path->nodes[0])
2101 * COW range from cow_start to found_key.offset - 1. As the key
2102 * will contain the beginning of the first extent that can be
2103 * NOCOW, following one which needs to be COW'ed
2105 if (cow_start != (u64)-1) {
2106 ret = fallback_to_cow(inode, locked_page,
2107 cow_start, found_key.offset - 1,
2108 page_started, nr_written);
2111 cow_start = (u64)-1;
2114 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2116 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2117 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2118 struct extent_map *em;
2120 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2122 nocow_args.disk_bytenr, /* block_start */
2123 nocow_args.num_bytes, /* block_len */
2124 nocow_args.disk_num_bytes, /* orig_block_len */
2125 ram_bytes, BTRFS_COMPRESS_NONE,
2126 BTRFS_ORDERED_PREALLOC);
2131 free_extent_map(em);
2132 ret = btrfs_add_ordered_extent(inode,
2133 cur_offset, nocow_args.num_bytes,
2134 nocow_args.num_bytes,
2135 nocow_args.disk_bytenr,
2136 nocow_args.num_bytes, 0,
2137 1 << BTRFS_ORDERED_PREALLOC,
2138 BTRFS_COMPRESS_NONE);
2140 btrfs_drop_extent_map_range(inode, cur_offset,
2145 ret = btrfs_add_ordered_extent(inode, cur_offset,
2146 nocow_args.num_bytes,
2147 nocow_args.num_bytes,
2148 nocow_args.disk_bytenr,
2149 nocow_args.num_bytes,
2151 1 << BTRFS_ORDERED_NOCOW,
2152 BTRFS_COMPRESS_NONE);
2158 btrfs_dec_nocow_writers(bg);
2162 if (btrfs_is_data_reloc_root(root))
2164 * Error handled later, as we must prevent
2165 * extent_clear_unlock_delalloc() in error handler
2166 * from freeing metadata of created ordered extent.
2168 ret = btrfs_reloc_clone_csums(inode, cur_offset,
2169 nocow_args.num_bytes);
2171 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2172 locked_page, EXTENT_LOCKED |
2174 EXTENT_CLEAR_DATA_RESV,
2175 PAGE_UNLOCK | PAGE_SET_ORDERED);
2177 cur_offset = extent_end;
2180 * btrfs_reloc_clone_csums() error, now we're OK to call error
2181 * handler, as metadata for created ordered extent will only
2182 * be freed by btrfs_finish_ordered_io().
2186 if (cur_offset > end)
2189 btrfs_release_path(path);
2191 if (cur_offset <= end && cow_start == (u64)-1)
2192 cow_start = cur_offset;
2194 if (cow_start != (u64)-1) {
2196 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2197 page_started, nr_written);
2204 btrfs_dec_nocow_writers(bg);
2206 if (ret && cur_offset < end)
2207 extent_clear_unlock_delalloc(inode, cur_offset, end,
2208 locked_page, EXTENT_LOCKED |
2209 EXTENT_DELALLOC | EXTENT_DEFRAG |
2210 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2211 PAGE_START_WRITEBACK |
2212 PAGE_END_WRITEBACK);
2213 btrfs_free_path(path);
2217 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2219 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2220 if (inode->defrag_bytes &&
2221 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2230 * Function to process delayed allocation (create CoW) for ranges which are
2231 * being touched for the first time.
2233 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2234 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2235 struct writeback_control *wbc)
2238 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2241 * The range must cover part of the @locked_page, or the returned
2242 * @page_started can confuse the caller.
2244 ASSERT(!(end <= page_offset(locked_page) ||
2245 start >= page_offset(locked_page) + PAGE_SIZE));
2247 if (should_nocow(inode, start, end)) {
2249 * Normally on a zoned device we're only doing COW writes, but
2250 * in case of relocation on a zoned filesystem we have taken
2251 * precaution, that we're only writing sequentially. It's safe
2252 * to use run_delalloc_nocow() here, like for regular
2253 * preallocated inodes.
2255 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2256 ret = run_delalloc_nocow(inode, locked_page, start, end,
2257 page_started, nr_written);
2258 } else if (!btrfs_inode_can_compress(inode) ||
2259 !inode_need_compress(inode, start, end)) {
2261 ret = run_delalloc_zoned(inode, locked_page, start, end,
2262 page_started, nr_written);
2264 ret = cow_file_range(inode, locked_page, start, end,
2265 page_started, nr_written, 1, NULL);
2267 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2268 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2269 page_started, nr_written);
2273 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2278 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2279 struct extent_state *orig, u64 split)
2281 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2284 /* not delalloc, ignore it */
2285 if (!(orig->state & EXTENT_DELALLOC))
2288 size = orig->end - orig->start + 1;
2289 if (size > fs_info->max_extent_size) {
2294 * See the explanation in btrfs_merge_delalloc_extent, the same
2295 * applies here, just in reverse.
2297 new_size = orig->end - split + 1;
2298 num_extents = count_max_extents(fs_info, new_size);
2299 new_size = split - orig->start;
2300 num_extents += count_max_extents(fs_info, new_size);
2301 if (count_max_extents(fs_info, size) >= num_extents)
2305 spin_lock(&inode->lock);
2306 btrfs_mod_outstanding_extents(inode, 1);
2307 spin_unlock(&inode->lock);
2311 * Handle merged delayed allocation extents so we can keep track of new extents
2312 * that are just merged onto old extents, such as when we are doing sequential
2313 * writes, so we can properly account for the metadata space we'll need.
2315 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2316 struct extent_state *other)
2318 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2319 u64 new_size, old_size;
2322 /* not delalloc, ignore it */
2323 if (!(other->state & EXTENT_DELALLOC))
2326 if (new->start > other->start)
2327 new_size = new->end - other->start + 1;
2329 new_size = other->end - new->start + 1;
2331 /* we're not bigger than the max, unreserve the space and go */
2332 if (new_size <= fs_info->max_extent_size) {
2333 spin_lock(&inode->lock);
2334 btrfs_mod_outstanding_extents(inode, -1);
2335 spin_unlock(&inode->lock);
2340 * We have to add up either side to figure out how many extents were
2341 * accounted for before we merged into one big extent. If the number of
2342 * extents we accounted for is <= the amount we need for the new range
2343 * then we can return, otherwise drop. Think of it like this
2347 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2348 * need 2 outstanding extents, on one side we have 1 and the other side
2349 * we have 1 so they are == and we can return. But in this case
2351 * [MAX_SIZE+4k][MAX_SIZE+4k]
2353 * Each range on their own accounts for 2 extents, but merged together
2354 * they are only 3 extents worth of accounting, so we need to drop in
2357 old_size = other->end - other->start + 1;
2358 num_extents = count_max_extents(fs_info, old_size);
2359 old_size = new->end - new->start + 1;
2360 num_extents += count_max_extents(fs_info, old_size);
2361 if (count_max_extents(fs_info, new_size) >= num_extents)
2364 spin_lock(&inode->lock);
2365 btrfs_mod_outstanding_extents(inode, -1);
2366 spin_unlock(&inode->lock);
2369 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2370 struct btrfs_inode *inode)
2372 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2374 spin_lock(&root->delalloc_lock);
2375 if (list_empty(&inode->delalloc_inodes)) {
2376 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2377 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2378 root->nr_delalloc_inodes++;
2379 if (root->nr_delalloc_inodes == 1) {
2380 spin_lock(&fs_info->delalloc_root_lock);
2381 BUG_ON(!list_empty(&root->delalloc_root));
2382 list_add_tail(&root->delalloc_root,
2383 &fs_info->delalloc_roots);
2384 spin_unlock(&fs_info->delalloc_root_lock);
2387 spin_unlock(&root->delalloc_lock);
2390 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2391 struct btrfs_inode *inode)
2393 struct btrfs_fs_info *fs_info = root->fs_info;
2395 if (!list_empty(&inode->delalloc_inodes)) {
2396 list_del_init(&inode->delalloc_inodes);
2397 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2398 &inode->runtime_flags);
2399 root->nr_delalloc_inodes--;
2400 if (!root->nr_delalloc_inodes) {
2401 ASSERT(list_empty(&root->delalloc_inodes));
2402 spin_lock(&fs_info->delalloc_root_lock);
2403 BUG_ON(list_empty(&root->delalloc_root));
2404 list_del_init(&root->delalloc_root);
2405 spin_unlock(&fs_info->delalloc_root_lock);
2410 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2411 struct btrfs_inode *inode)
2413 spin_lock(&root->delalloc_lock);
2414 __btrfs_del_delalloc_inode(root, inode);
2415 spin_unlock(&root->delalloc_lock);
2419 * Properly track delayed allocation bytes in the inode and to maintain the
2420 * list of inodes that have pending delalloc work to be done.
2422 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2425 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2427 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2430 * set_bit and clear bit hooks normally require _irqsave/restore
2431 * but in this case, we are only testing for the DELALLOC
2432 * bit, which is only set or cleared with irqs on
2434 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2435 struct btrfs_root *root = inode->root;
2436 u64 len = state->end + 1 - state->start;
2437 u32 num_extents = count_max_extents(fs_info, len);
2438 bool do_list = !btrfs_is_free_space_inode(inode);
2440 spin_lock(&inode->lock);
2441 btrfs_mod_outstanding_extents(inode, num_extents);
2442 spin_unlock(&inode->lock);
2444 /* For sanity tests */
2445 if (btrfs_is_testing(fs_info))
2448 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2449 fs_info->delalloc_batch);
2450 spin_lock(&inode->lock);
2451 inode->delalloc_bytes += len;
2452 if (bits & EXTENT_DEFRAG)
2453 inode->defrag_bytes += len;
2454 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2455 &inode->runtime_flags))
2456 btrfs_add_delalloc_inodes(root, inode);
2457 spin_unlock(&inode->lock);
2460 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2461 (bits & EXTENT_DELALLOC_NEW)) {
2462 spin_lock(&inode->lock);
2463 inode->new_delalloc_bytes += state->end + 1 - state->start;
2464 spin_unlock(&inode->lock);
2469 * Once a range is no longer delalloc this function ensures that proper
2470 * accounting happens.
2472 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2473 struct extent_state *state, u32 bits)
2475 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2476 u64 len = state->end + 1 - state->start;
2477 u32 num_extents = count_max_extents(fs_info, len);
2479 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2480 spin_lock(&inode->lock);
2481 inode->defrag_bytes -= len;
2482 spin_unlock(&inode->lock);
2486 * set_bit and clear bit hooks normally require _irqsave/restore
2487 * but in this case, we are only testing for the DELALLOC
2488 * bit, which is only set or cleared with irqs on
2490 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2491 struct btrfs_root *root = inode->root;
2492 bool do_list = !btrfs_is_free_space_inode(inode);
2494 spin_lock(&inode->lock);
2495 btrfs_mod_outstanding_extents(inode, -num_extents);
2496 spin_unlock(&inode->lock);
2499 * We don't reserve metadata space for space cache inodes so we
2500 * don't need to call delalloc_release_metadata if there is an
2503 if (bits & EXTENT_CLEAR_META_RESV &&
2504 root != fs_info->tree_root)
2505 btrfs_delalloc_release_metadata(inode, len, false);
2507 /* For sanity tests. */
2508 if (btrfs_is_testing(fs_info))
2511 if (!btrfs_is_data_reloc_root(root) &&
2512 do_list && !(state->state & EXTENT_NORESERVE) &&
2513 (bits & EXTENT_CLEAR_DATA_RESV))
2514 btrfs_free_reserved_data_space_noquota(fs_info, len);
2516 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2517 fs_info->delalloc_batch);
2518 spin_lock(&inode->lock);
2519 inode->delalloc_bytes -= len;
2520 if (do_list && inode->delalloc_bytes == 0 &&
2521 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2522 &inode->runtime_flags))
2523 btrfs_del_delalloc_inode(root, inode);
2524 spin_unlock(&inode->lock);
2527 if ((state->state & EXTENT_DELALLOC_NEW) &&
2528 (bits & EXTENT_DELALLOC_NEW)) {
2529 spin_lock(&inode->lock);
2530 ASSERT(inode->new_delalloc_bytes >= len);
2531 inode->new_delalloc_bytes -= len;
2532 if (bits & EXTENT_ADD_INODE_BYTES)
2533 inode_add_bytes(&inode->vfs_inode, len);
2534 spin_unlock(&inode->lock);
2539 * in order to insert checksums into the metadata in large chunks,
2540 * we wait until bio submission time. All the pages in the bio are
2541 * checksummed and sums are attached onto the ordered extent record.
2543 * At IO completion time the cums attached on the ordered extent record
2544 * are inserted into the btree
2546 blk_status_t btrfs_submit_bio_start(struct btrfs_inode *inode, struct bio *bio)
2548 return btrfs_csum_one_bio(inode, bio, (u64)-1, false);
2552 * Split an extent_map at [start, start + len]
2554 * This function is intended to be used only for extract_ordered_extent().
2556 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2559 struct extent_map_tree *em_tree = &inode->extent_tree;
2560 struct extent_map *em;
2561 struct extent_map *split_pre = NULL;
2562 struct extent_map *split_mid = NULL;
2563 struct extent_map *split_post = NULL;
2565 unsigned long flags;
2568 if (pre == 0 && post == 0)
2571 split_pre = alloc_extent_map();
2573 split_mid = alloc_extent_map();
2575 split_post = alloc_extent_map();
2576 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2581 ASSERT(pre + post < len);
2583 lock_extent(&inode->io_tree, start, start + len - 1, NULL);
2584 write_lock(&em_tree->lock);
2585 em = lookup_extent_mapping(em_tree, start, len);
2591 ASSERT(em->len == len);
2592 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2593 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2594 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2595 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2596 ASSERT(!list_empty(&em->list));
2599 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2601 /* First, replace the em with a new extent_map starting from * em->start */
2602 split_pre->start = em->start;
2603 split_pre->len = (pre ? pre : em->len - post);
2604 split_pre->orig_start = split_pre->start;
2605 split_pre->block_start = em->block_start;
2606 split_pre->block_len = split_pre->len;
2607 split_pre->orig_block_len = split_pre->block_len;
2608 split_pre->ram_bytes = split_pre->len;
2609 split_pre->flags = flags;
2610 split_pre->compress_type = em->compress_type;
2611 split_pre->generation = em->generation;
2613 replace_extent_mapping(em_tree, em, split_pre, 1);
2616 * Now we only have an extent_map at:
2617 * [em->start, em->start + pre] if pre != 0
2618 * [em->start, em->start + em->len - post] if pre == 0
2622 /* Insert the middle extent_map */
2623 split_mid->start = em->start + pre;
2624 split_mid->len = em->len - pre - post;
2625 split_mid->orig_start = split_mid->start;
2626 split_mid->block_start = em->block_start + pre;
2627 split_mid->block_len = split_mid->len;
2628 split_mid->orig_block_len = split_mid->block_len;
2629 split_mid->ram_bytes = split_mid->len;
2630 split_mid->flags = flags;
2631 split_mid->compress_type = em->compress_type;
2632 split_mid->generation = em->generation;
2633 add_extent_mapping(em_tree, split_mid, 1);
2637 split_post->start = em->start + em->len - post;
2638 split_post->len = post;
2639 split_post->orig_start = split_post->start;
2640 split_post->block_start = em->block_start + em->len - post;
2641 split_post->block_len = split_post->len;
2642 split_post->orig_block_len = split_post->block_len;
2643 split_post->ram_bytes = split_post->len;
2644 split_post->flags = flags;
2645 split_post->compress_type = em->compress_type;
2646 split_post->generation = em->generation;
2647 add_extent_mapping(em_tree, split_post, 1);
2651 free_extent_map(em);
2652 /* Once for the tree */
2653 free_extent_map(em);
2656 write_unlock(&em_tree->lock);
2657 unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
2659 free_extent_map(split_pre);
2660 free_extent_map(split_mid);
2661 free_extent_map(split_post);
2666 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2667 struct bio *bio, loff_t file_offset)
2669 struct btrfs_ordered_extent *ordered;
2670 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2672 u64 len = bio->bi_iter.bi_size;
2673 u64 end = start + len;
2678 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2679 if (WARN_ON_ONCE(!ordered))
2680 return BLK_STS_IOERR;
2682 /* No need to split */
2683 if (ordered->disk_num_bytes == len)
2686 /* We cannot split once end_bio'd ordered extent */
2687 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2692 /* We cannot split a compressed ordered extent */
2693 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2698 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2699 /* bio must be in one ordered extent */
2700 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2705 /* Checksum list should be empty */
2706 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2711 file_len = ordered->num_bytes;
2712 pre = start - ordered->disk_bytenr;
2713 post = ordered_end - end;
2715 ret = btrfs_split_ordered_extent(ordered, pre, post);
2718 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2721 btrfs_put_ordered_extent(ordered);
2723 return errno_to_blk_status(ret);
2726 void btrfs_submit_data_write_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
2728 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2731 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2732 ret = extract_ordered_extent(inode, bio,
2733 page_offset(bio_first_bvec_all(bio)->bv_page));
2735 btrfs_bio_end_io(btrfs_bio(bio), ret);
2741 * If we need to checksum, and the I/O is not issued by fsync and
2742 * friends, that is ->sync_writers != 0, defer the submission to a
2743 * workqueue to parallelize it.
2745 * Csum items for reloc roots have already been cloned at this point,
2746 * so they are handled as part of the no-checksum case.
2748 if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
2749 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2750 !btrfs_is_data_reloc_root(inode->root)) {
2751 if (!atomic_read(&inode->sync_writers) &&
2752 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_DATA))
2755 ret = btrfs_csum_one_bio(inode, bio, (u64)-1, false);
2757 btrfs_bio_end_io(btrfs_bio(bio), ret);
2761 btrfs_submit_bio(fs_info, bio, mirror_num);
2764 void btrfs_submit_data_read_bio(struct btrfs_inode *inode, struct bio *bio,
2765 int mirror_num, enum btrfs_compression_type compress_type)
2767 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2770 if (compress_type != BTRFS_COMPRESS_NONE) {
2772 * btrfs_submit_compressed_read will handle completing the bio
2773 * if there were any errors, so just return here.
2775 btrfs_submit_compressed_read(&inode->vfs_inode, bio, mirror_num);
2779 /* Save the original iter for read repair */
2780 btrfs_bio(bio)->iter = bio->bi_iter;
2783 * Lookup bio sums does extra checks around whether we need to csum or
2784 * not, which is why we ignore skip_sum here.
2786 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
2788 btrfs_bio_end_io(btrfs_bio(bio), ret);
2792 btrfs_submit_bio(fs_info, bio, mirror_num);
2796 * given a list of ordered sums record them in the inode. This happens
2797 * at IO completion time based on sums calculated at bio submission time.
2799 static int add_pending_csums(struct btrfs_trans_handle *trans,
2800 struct list_head *list)
2802 struct btrfs_ordered_sum *sum;
2803 struct btrfs_root *csum_root = NULL;
2806 list_for_each_entry(sum, list, list) {
2807 trans->adding_csums = true;
2809 csum_root = btrfs_csum_root(trans->fs_info,
2811 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2812 trans->adding_csums = false;
2819 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2822 struct extent_state **cached_state)
2824 u64 search_start = start;
2825 const u64 end = start + len - 1;
2827 while (search_start < end) {
2828 const u64 search_len = end - search_start + 1;
2829 struct extent_map *em;
2833 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2837 if (em->block_start != EXTENT_MAP_HOLE)
2841 if (em->start < search_start)
2842 em_len -= search_start - em->start;
2843 if (em_len > search_len)
2844 em_len = search_len;
2846 ret = set_extent_bit(&inode->io_tree, search_start,
2847 search_start + em_len - 1,
2848 EXTENT_DELALLOC_NEW, cached_state,
2851 search_start = extent_map_end(em);
2852 free_extent_map(em);
2859 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2860 unsigned int extra_bits,
2861 struct extent_state **cached_state)
2863 WARN_ON(PAGE_ALIGNED(end));
2865 if (start >= i_size_read(&inode->vfs_inode) &&
2866 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2868 * There can't be any extents following eof in this case so just
2869 * set the delalloc new bit for the range directly.
2871 extra_bits |= EXTENT_DELALLOC_NEW;
2875 ret = btrfs_find_new_delalloc_bytes(inode, start,
2882 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2886 /* see btrfs_writepage_start_hook for details on why this is required */
2887 struct btrfs_writepage_fixup {
2889 struct btrfs_inode *inode;
2890 struct btrfs_work work;
2893 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2895 struct btrfs_writepage_fixup *fixup;
2896 struct btrfs_ordered_extent *ordered;
2897 struct extent_state *cached_state = NULL;
2898 struct extent_changeset *data_reserved = NULL;
2900 struct btrfs_inode *inode;
2904 bool free_delalloc_space = true;
2906 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2908 inode = fixup->inode;
2909 page_start = page_offset(page);
2910 page_end = page_offset(page) + PAGE_SIZE - 1;
2913 * This is similar to page_mkwrite, we need to reserve the space before
2914 * we take the page lock.
2916 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2922 * Before we queued this fixup, we took a reference on the page.
2923 * page->mapping may go NULL, but it shouldn't be moved to a different
2926 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2928 * Unfortunately this is a little tricky, either
2930 * 1) We got here and our page had already been dealt with and
2931 * we reserved our space, thus ret == 0, so we need to just
2932 * drop our space reservation and bail. This can happen the
2933 * first time we come into the fixup worker, or could happen
2934 * while waiting for the ordered extent.
2935 * 2) Our page was already dealt with, but we happened to get an
2936 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2937 * this case we obviously don't have anything to release, but
2938 * because the page was already dealt with we don't want to
2939 * mark the page with an error, so make sure we're resetting
2940 * ret to 0. This is why we have this check _before_ the ret
2941 * check, because we do not want to have a surprise ENOSPC
2942 * when the page was already properly dealt with.
2945 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2946 btrfs_delalloc_release_space(inode, data_reserved,
2947 page_start, PAGE_SIZE,
2955 * We can't mess with the page state unless it is locked, so now that
2956 * it is locked bail if we failed to make our space reservation.
2961 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2963 /* already ordered? We're done */
2964 if (PageOrdered(page))
2967 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2969 unlock_extent(&inode->io_tree, page_start, page_end,
2972 btrfs_start_ordered_extent(ordered, 1);
2973 btrfs_put_ordered_extent(ordered);
2977 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2983 * Everything went as planned, we're now the owner of a dirty page with
2984 * delayed allocation bits set and space reserved for our COW
2987 * The page was dirty when we started, nothing should have cleaned it.
2989 BUG_ON(!PageDirty(page));
2990 free_delalloc_space = false;
2992 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2993 if (free_delalloc_space)
2994 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2996 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
3000 * We hit ENOSPC or other errors. Update the mapping and page
3001 * to reflect the errors and clean the page.
3003 mapping_set_error(page->mapping, ret);
3004 end_extent_writepage(page, ret, page_start, page_end);
3005 clear_page_dirty_for_io(page);
3008 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
3012 extent_changeset_free(data_reserved);
3014 * As a precaution, do a delayed iput in case it would be the last iput
3015 * that could need flushing space. Recursing back to fixup worker would
3018 btrfs_add_delayed_iput(inode);
3022 * There are a few paths in the higher layers of the kernel that directly
3023 * set the page dirty bit without asking the filesystem if it is a
3024 * good idea. This causes problems because we want to make sure COW
3025 * properly happens and the data=ordered rules are followed.
3027 * In our case any range that doesn't have the ORDERED bit set
3028 * hasn't been properly setup for IO. We kick off an async process
3029 * to fix it up. The async helper will wait for ordered extents, set
3030 * the delalloc bit and make it safe to write the page.
3032 int btrfs_writepage_cow_fixup(struct page *page)
3034 struct inode *inode = page->mapping->host;
3035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3036 struct btrfs_writepage_fixup *fixup;
3038 /* This page has ordered extent covering it already */
3039 if (PageOrdered(page))
3043 * PageChecked is set below when we create a fixup worker for this page,
3044 * don't try to create another one if we're already PageChecked()
3046 * The extent_io writepage code will redirty the page if we send back
3049 if (PageChecked(page))
3052 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3057 * We are already holding a reference to this inode from
3058 * write_cache_pages. We need to hold it because the space reservation
3059 * takes place outside of the page lock, and we can't trust
3060 * page->mapping outside of the page lock.
3063 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3065 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3067 fixup->inode = BTRFS_I(inode);
3068 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3073 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3074 struct btrfs_inode *inode, u64 file_pos,
3075 struct btrfs_file_extent_item *stack_fi,
3076 const bool update_inode_bytes,
3077 u64 qgroup_reserved)
3079 struct btrfs_root *root = inode->root;
3080 const u64 sectorsize = root->fs_info->sectorsize;
3081 struct btrfs_path *path;
3082 struct extent_buffer *leaf;
3083 struct btrfs_key ins;
3084 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3085 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3086 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3087 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3088 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3089 struct btrfs_drop_extents_args drop_args = { 0 };
3092 path = btrfs_alloc_path();
3097 * we may be replacing one extent in the tree with another.
3098 * The new extent is pinned in the extent map, and we don't want
3099 * to drop it from the cache until it is completely in the btree.
3101 * So, tell btrfs_drop_extents to leave this extent in the cache.
3102 * the caller is expected to unpin it and allow it to be merged
3105 drop_args.path = path;
3106 drop_args.start = file_pos;
3107 drop_args.end = file_pos + num_bytes;
3108 drop_args.replace_extent = true;
3109 drop_args.extent_item_size = sizeof(*stack_fi);
3110 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3114 if (!drop_args.extent_inserted) {
3115 ins.objectid = btrfs_ino(inode);
3116 ins.offset = file_pos;
3117 ins.type = BTRFS_EXTENT_DATA_KEY;
3119 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3124 leaf = path->nodes[0];
3125 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3126 write_extent_buffer(leaf, stack_fi,
3127 btrfs_item_ptr_offset(leaf, path->slots[0]),
3128 sizeof(struct btrfs_file_extent_item));
3130 btrfs_mark_buffer_dirty(leaf);
3131 btrfs_release_path(path);
3134 * If we dropped an inline extent here, we know the range where it is
3135 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3136 * number of bytes only for that range containing the inline extent.
3137 * The remaining of the range will be processed when clearning the
3138 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3140 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3141 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3143 inline_size = drop_args.bytes_found - inline_size;
3144 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3145 drop_args.bytes_found -= inline_size;
3146 num_bytes -= sectorsize;
3149 if (update_inode_bytes)
3150 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3152 ins.objectid = disk_bytenr;
3153 ins.offset = disk_num_bytes;
3154 ins.type = BTRFS_EXTENT_ITEM_KEY;
3156 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3160 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3162 qgroup_reserved, &ins);
3164 btrfs_free_path(path);
3169 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3172 struct btrfs_block_group *cache;
3174 cache = btrfs_lookup_block_group(fs_info, start);
3177 spin_lock(&cache->lock);
3178 cache->delalloc_bytes -= len;
3179 spin_unlock(&cache->lock);
3181 btrfs_put_block_group(cache);
3184 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3185 struct btrfs_ordered_extent *oe)
3187 struct btrfs_file_extent_item stack_fi;
3188 bool update_inode_bytes;
3189 u64 num_bytes = oe->num_bytes;
3190 u64 ram_bytes = oe->ram_bytes;
3192 memset(&stack_fi, 0, sizeof(stack_fi));
3193 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3194 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3195 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3196 oe->disk_num_bytes);
3197 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3198 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3199 num_bytes = oe->truncated_len;
3200 ram_bytes = num_bytes;
3202 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3203 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3204 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3205 /* Encryption and other encoding is reserved and all 0 */
3208 * For delalloc, when completing an ordered extent we update the inode's
3209 * bytes when clearing the range in the inode's io tree, so pass false
3210 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3211 * except if the ordered extent was truncated.
3213 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3214 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3215 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3217 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3218 oe->file_offset, &stack_fi,
3219 update_inode_bytes, oe->qgroup_rsv);
3223 * As ordered data IO finishes, this gets called so we can finish
3224 * an ordered extent if the range of bytes in the file it covers are
3227 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3229 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3230 struct btrfs_root *root = inode->root;
3231 struct btrfs_fs_info *fs_info = root->fs_info;
3232 struct btrfs_trans_handle *trans = NULL;
3233 struct extent_io_tree *io_tree = &inode->io_tree;
3234 struct extent_state *cached_state = NULL;
3236 int compress_type = 0;
3238 u64 logical_len = ordered_extent->num_bytes;
3239 bool freespace_inode;
3240 bool truncated = false;
3241 bool clear_reserved_extent = true;
3242 unsigned int clear_bits = EXTENT_DEFRAG;
3244 start = ordered_extent->file_offset;
3245 end = start + ordered_extent->num_bytes - 1;
3247 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3248 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3249 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3250 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3251 clear_bits |= EXTENT_DELALLOC_NEW;
3253 freespace_inode = btrfs_is_free_space_inode(inode);
3254 if (!freespace_inode)
3255 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3257 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3262 /* A valid bdev implies a write on a sequential zone */
3263 if (ordered_extent->bdev) {
3264 btrfs_rewrite_logical_zoned(ordered_extent);
3265 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3266 ordered_extent->disk_num_bytes);
3269 btrfs_free_io_failure_record(inode, start, end);
3271 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3273 logical_len = ordered_extent->truncated_len;
3274 /* Truncated the entire extent, don't bother adding */
3279 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3280 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3282 btrfs_inode_safe_disk_i_size_write(inode, 0);
3283 if (freespace_inode)
3284 trans = btrfs_join_transaction_spacecache(root);
3286 trans = btrfs_join_transaction(root);
3287 if (IS_ERR(trans)) {
3288 ret = PTR_ERR(trans);
3292 trans->block_rsv = &inode->block_rsv;
3293 ret = btrfs_update_inode_fallback(trans, root, inode);
3294 if (ret) /* -ENOMEM or corruption */
3295 btrfs_abort_transaction(trans, ret);
3299 clear_bits |= EXTENT_LOCKED;
3300 lock_extent(io_tree, start, end, &cached_state);
3302 if (freespace_inode)
3303 trans = btrfs_join_transaction_spacecache(root);
3305 trans = btrfs_join_transaction(root);
3306 if (IS_ERR(trans)) {
3307 ret = PTR_ERR(trans);
3312 trans->block_rsv = &inode->block_rsv;
3314 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3315 compress_type = ordered_extent->compress_type;
3316 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3317 BUG_ON(compress_type);
3318 ret = btrfs_mark_extent_written(trans, inode,
3319 ordered_extent->file_offset,
3320 ordered_extent->file_offset +
3322 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3323 ordered_extent->disk_num_bytes);
3325 BUG_ON(root == fs_info->tree_root);
3326 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3328 clear_reserved_extent = false;
3329 btrfs_release_delalloc_bytes(fs_info,
3330 ordered_extent->disk_bytenr,
3331 ordered_extent->disk_num_bytes);
3334 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3335 ordered_extent->num_bytes, trans->transid);
3337 btrfs_abort_transaction(trans, ret);
3341 ret = add_pending_csums(trans, &ordered_extent->list);
3343 btrfs_abort_transaction(trans, ret);
3348 * If this is a new delalloc range, clear its new delalloc flag to
3349 * update the inode's number of bytes. This needs to be done first
3350 * before updating the inode item.
3352 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3353 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3354 clear_extent_bit(&inode->io_tree, start, end,
3355 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3358 btrfs_inode_safe_disk_i_size_write(inode, 0);
3359 ret = btrfs_update_inode_fallback(trans, root, inode);
3360 if (ret) { /* -ENOMEM or corruption */
3361 btrfs_abort_transaction(trans, ret);
3366 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3370 btrfs_end_transaction(trans);
3372 if (ret || truncated) {
3373 u64 unwritten_start = start;
3376 * If we failed to finish this ordered extent for any reason we
3377 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3378 * extent, and mark the inode with the error if it wasn't
3379 * already set. Any error during writeback would have already
3380 * set the mapping error, so we need to set it if we're the ones
3381 * marking this ordered extent as failed.
3383 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3384 &ordered_extent->flags))
3385 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3388 unwritten_start += logical_len;
3389 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3391 /* Drop extent maps for the part of the extent we didn't write. */
3392 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3395 * If the ordered extent had an IOERR or something else went
3396 * wrong we need to return the space for this ordered extent
3397 * back to the allocator. We only free the extent in the
3398 * truncated case if we didn't write out the extent at all.
3400 * If we made it past insert_reserved_file_extent before we
3401 * errored out then we don't need to do this as the accounting
3402 * has already been done.
3404 if ((ret || !logical_len) &&
3405 clear_reserved_extent &&
3406 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3407 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3409 * Discard the range before returning it back to the
3412 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3413 btrfs_discard_extent(fs_info,
3414 ordered_extent->disk_bytenr,
3415 ordered_extent->disk_num_bytes,
3417 btrfs_free_reserved_extent(fs_info,
3418 ordered_extent->disk_bytenr,
3419 ordered_extent->disk_num_bytes, 1);
3424 * This needs to be done to make sure anybody waiting knows we are done
3425 * updating everything for this ordered extent.
3427 btrfs_remove_ordered_extent(inode, ordered_extent);
3430 btrfs_put_ordered_extent(ordered_extent);
3431 /* once for the tree */
3432 btrfs_put_ordered_extent(ordered_extent);
3437 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3438 struct page *page, u64 start,
3439 u64 end, bool uptodate)
3441 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3443 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3447 * Verify the checksum for a single sector without any extra action that depend
3448 * on the type of I/O.
3450 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3451 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3453 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3456 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3458 shash->tfm = fs_info->csum_shash;
3460 kaddr = kmap_local_page(page) + pgoff;
3461 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3462 kunmap_local(kaddr);
3464 if (memcmp(csum, csum_expected, fs_info->csum_size))
3469 static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset)
3471 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
3473 return csums + offset_in_sectors * fs_info->csum_size;
3477 * check_data_csum - verify checksum of one sector of uncompressed data
3479 * @bbio: btrfs_bio which contains the csum
3480 * @bio_offset: offset to the beginning of the bio (in bytes)
3481 * @page: page where is the data to be verified
3482 * @pgoff: offset inside the page
3484 * The length of such check is always one sector size.
3486 * When csum mismatch is detected, we will also report the error and fill the
3487 * corrupted range with zero. (Thus it needs the extra parameters)
3489 int btrfs_check_data_csum(struct btrfs_inode *inode, struct btrfs_bio *bbio,
3490 u32 bio_offset, struct page *page, u32 pgoff)
3492 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3493 u32 len = fs_info->sectorsize;
3495 u8 csum[BTRFS_CSUM_SIZE];
3497 ASSERT(pgoff + len <= PAGE_SIZE);
3499 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
3501 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
3506 btrfs_print_data_csum_error(inode, bbio->file_offset + bio_offset,
3507 csum, csum_expected, bbio->mirror_num);
3509 btrfs_dev_stat_inc_and_print(bbio->device,
3510 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3511 memzero_page(page, pgoff, len);
3516 * When reads are done, we need to check csums to verify the data is correct.
3517 * if there's a match, we allow the bio to finish. If not, the code in
3518 * extent_io.c will try to find good copies for us.
3520 * @bio_offset: offset to the beginning of the bio (in bytes)
3521 * @start: file offset of the range start
3522 * @end: file offset of the range end (inclusive)
3524 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3527 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3528 u32 bio_offset, struct page *page,
3531 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3532 struct btrfs_root *root = inode->root;
3533 struct btrfs_fs_info *fs_info = root->fs_info;
3534 struct extent_io_tree *io_tree = &inode->io_tree;
3535 const u32 sectorsize = root->fs_info->sectorsize;
3537 unsigned int result = 0;
3540 * This only happens for NODATASUM or compressed read.
3541 * Normally this should be covered by above check for compressed read
3542 * or the next check for NODATASUM. Just do a quicker exit here.
3544 if (bbio->csum == NULL)
3547 if (inode->flags & BTRFS_INODE_NODATASUM)
3550 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3553 ASSERT(page_offset(page) <= start &&
3554 end <= page_offset(page) + PAGE_SIZE - 1);
3555 for (pg_off = offset_in_page(start);
3556 pg_off < offset_in_page(end);
3557 pg_off += sectorsize, bio_offset += sectorsize) {
3558 u64 file_offset = pg_off + page_offset(page);
3561 if (btrfs_is_data_reloc_root(root) &&
3562 test_range_bit(io_tree, file_offset,
3563 file_offset + sectorsize - 1,
3564 EXTENT_NODATASUM, 1, NULL)) {
3565 /* Skip the range without csum for data reloc inode */
3566 clear_extent_bits(io_tree, file_offset,
3567 file_offset + sectorsize - 1,
3571 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
3573 const int nr_bit = (pg_off - offset_in_page(start)) >>
3574 root->fs_info->sectorsize_bits;
3576 result |= (1U << nr_bit);
3583 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3585 * @inode: The inode we want to perform iput on
3587 * This function uses the generic vfs_inode::i_count to track whether we should
3588 * just decrement it (in case it's > 1) or if this is the last iput then link
3589 * the inode to the delayed iput machinery. Delayed iputs are processed at
3590 * transaction commit time/superblock commit/cleaner kthread.
3592 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3594 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3596 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3599 atomic_inc(&fs_info->nr_delayed_iputs);
3600 spin_lock(&fs_info->delayed_iput_lock);
3601 ASSERT(list_empty(&inode->delayed_iput));
3602 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3603 spin_unlock(&fs_info->delayed_iput_lock);
3604 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3605 wake_up_process(fs_info->cleaner_kthread);
3608 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3609 struct btrfs_inode *inode)
3611 list_del_init(&inode->delayed_iput);
3612 spin_unlock(&fs_info->delayed_iput_lock);
3613 iput(&inode->vfs_inode);
3614 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3615 wake_up(&fs_info->delayed_iputs_wait);
3616 spin_lock(&fs_info->delayed_iput_lock);
3619 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3620 struct btrfs_inode *inode)
3622 if (!list_empty(&inode->delayed_iput)) {
3623 spin_lock(&fs_info->delayed_iput_lock);
3624 if (!list_empty(&inode->delayed_iput))
3625 run_delayed_iput_locked(fs_info, inode);
3626 spin_unlock(&fs_info->delayed_iput_lock);
3630 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3633 spin_lock(&fs_info->delayed_iput_lock);
3634 while (!list_empty(&fs_info->delayed_iputs)) {
3635 struct btrfs_inode *inode;
3637 inode = list_first_entry(&fs_info->delayed_iputs,
3638 struct btrfs_inode, delayed_iput);
3639 run_delayed_iput_locked(fs_info, inode);
3640 cond_resched_lock(&fs_info->delayed_iput_lock);
3642 spin_unlock(&fs_info->delayed_iput_lock);
3646 * Wait for flushing all delayed iputs
3648 * @fs_info: the filesystem
3650 * This will wait on any delayed iputs that are currently running with KILLABLE
3651 * set. Once they are all done running we will return, unless we are killed in
3652 * which case we return EINTR. This helps in user operations like fallocate etc
3653 * that might get blocked on the iputs.
3655 * Return EINTR if we were killed, 0 if nothing's pending
3657 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3659 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3660 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3667 * This creates an orphan entry for the given inode in case something goes wrong
3668 * in the middle of an unlink.
3670 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3671 struct btrfs_inode *inode)
3675 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3676 if (ret && ret != -EEXIST) {
3677 btrfs_abort_transaction(trans, ret);
3685 * We have done the delete so we can go ahead and remove the orphan item for
3686 * this particular inode.
3688 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3689 struct btrfs_inode *inode)
3691 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3695 * this cleans up any orphans that may be left on the list from the last use
3698 int btrfs_orphan_cleanup(struct btrfs_root *root)
3700 struct btrfs_fs_info *fs_info = root->fs_info;
3701 struct btrfs_path *path;
3702 struct extent_buffer *leaf;
3703 struct btrfs_key key, found_key;
3704 struct btrfs_trans_handle *trans;
3705 struct inode *inode;
3706 u64 last_objectid = 0;
3707 int ret = 0, nr_unlink = 0;
3709 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3712 path = btrfs_alloc_path();
3717 path->reada = READA_BACK;
3719 key.objectid = BTRFS_ORPHAN_OBJECTID;
3720 key.type = BTRFS_ORPHAN_ITEM_KEY;
3721 key.offset = (u64)-1;
3724 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3729 * if ret == 0 means we found what we were searching for, which
3730 * is weird, but possible, so only screw with path if we didn't
3731 * find the key and see if we have stuff that matches
3735 if (path->slots[0] == 0)
3740 /* pull out the item */
3741 leaf = path->nodes[0];
3742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3744 /* make sure the item matches what we want */
3745 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3747 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3750 /* release the path since we're done with it */
3751 btrfs_release_path(path);
3754 * this is where we are basically btrfs_lookup, without the
3755 * crossing root thing. we store the inode number in the
3756 * offset of the orphan item.
3759 if (found_key.offset == last_objectid) {
3761 "Error removing orphan entry, stopping orphan cleanup");
3766 last_objectid = found_key.offset;
3768 found_key.objectid = found_key.offset;
3769 found_key.type = BTRFS_INODE_ITEM_KEY;
3770 found_key.offset = 0;
3771 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3772 ret = PTR_ERR_OR_ZERO(inode);
3773 if (ret && ret != -ENOENT)
3776 if (ret == -ENOENT && root == fs_info->tree_root) {
3777 struct btrfs_root *dead_root;
3778 int is_dead_root = 0;
3781 * This is an orphan in the tree root. Currently these
3782 * could come from 2 sources:
3783 * a) a root (snapshot/subvolume) deletion in progress
3784 * b) a free space cache inode
3785 * We need to distinguish those two, as the orphan item
3786 * for a root must not get deleted before the deletion
3787 * of the snapshot/subvolume's tree completes.
3789 * btrfs_find_orphan_roots() ran before us, which has
3790 * found all deleted roots and loaded them into
3791 * fs_info->fs_roots_radix. So here we can find if an
3792 * orphan item corresponds to a deleted root by looking
3793 * up the root from that radix tree.
3796 spin_lock(&fs_info->fs_roots_radix_lock);
3797 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3798 (unsigned long)found_key.objectid);
3799 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3801 spin_unlock(&fs_info->fs_roots_radix_lock);
3804 /* prevent this orphan from being found again */
3805 key.offset = found_key.objectid - 1;
3812 * If we have an inode with links, there are a couple of
3815 * 1. We were halfway through creating fsverity metadata for the
3816 * file. In that case, the orphan item represents incomplete
3817 * fsverity metadata which must be cleaned up with
3818 * btrfs_drop_verity_items and deleting the orphan item.
3820 * 2. Old kernels (before v3.12) used to create an
3821 * orphan item for truncate indicating that there were possibly
3822 * extent items past i_size that needed to be deleted. In v3.12,
3823 * truncate was changed to update i_size in sync with the extent
3824 * items, but the (useless) orphan item was still created. Since
3825 * v4.18, we don't create the orphan item for truncate at all.
3827 * So, this item could mean that we need to do a truncate, but
3828 * only if this filesystem was last used on a pre-v3.12 kernel
3829 * and was not cleanly unmounted. The odds of that are quite
3830 * slim, and it's a pain to do the truncate now, so just delete
3833 * It's also possible that this orphan item was supposed to be
3834 * deleted but wasn't. The inode number may have been reused,
3835 * but either way, we can delete the orphan item.
3837 if (ret == -ENOENT || inode->i_nlink) {
3839 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3844 trans = btrfs_start_transaction(root, 1);
3845 if (IS_ERR(trans)) {
3846 ret = PTR_ERR(trans);
3849 btrfs_debug(fs_info, "auto deleting %Lu",
3850 found_key.objectid);
3851 ret = btrfs_del_orphan_item(trans, root,
3852 found_key.objectid);
3853 btrfs_end_transaction(trans);
3861 /* this will do delete_inode and everything for us */
3864 /* release the path since we're done with it */
3865 btrfs_release_path(path);
3867 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3868 trans = btrfs_join_transaction(root);
3870 btrfs_end_transaction(trans);
3874 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3878 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3879 btrfs_free_path(path);
3884 * very simple check to peek ahead in the leaf looking for xattrs. If we
3885 * don't find any xattrs, we know there can't be any acls.
3887 * slot is the slot the inode is in, objectid is the objectid of the inode
3889 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3890 int slot, u64 objectid,
3891 int *first_xattr_slot)
3893 u32 nritems = btrfs_header_nritems(leaf);
3894 struct btrfs_key found_key;
3895 static u64 xattr_access = 0;
3896 static u64 xattr_default = 0;
3899 if (!xattr_access) {
3900 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3901 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3902 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3903 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3907 *first_xattr_slot = -1;
3908 while (slot < nritems) {
3909 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3911 /* we found a different objectid, there must not be acls */
3912 if (found_key.objectid != objectid)
3915 /* we found an xattr, assume we've got an acl */
3916 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3917 if (*first_xattr_slot == -1)
3918 *first_xattr_slot = slot;
3919 if (found_key.offset == xattr_access ||
3920 found_key.offset == xattr_default)
3925 * we found a key greater than an xattr key, there can't
3926 * be any acls later on
3928 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3935 * it goes inode, inode backrefs, xattrs, extents,
3936 * so if there are a ton of hard links to an inode there can
3937 * be a lot of backrefs. Don't waste time searching too hard,
3938 * this is just an optimization
3943 /* we hit the end of the leaf before we found an xattr or
3944 * something larger than an xattr. We have to assume the inode
3947 if (*first_xattr_slot == -1)
3948 *first_xattr_slot = slot;
3953 * read an inode from the btree into the in-memory inode
3955 static int btrfs_read_locked_inode(struct inode *inode,
3956 struct btrfs_path *in_path)
3958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3959 struct btrfs_path *path = in_path;
3960 struct extent_buffer *leaf;
3961 struct btrfs_inode_item *inode_item;
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 struct btrfs_key location;
3968 bool filled = false;
3969 int first_xattr_slot;
3971 ret = btrfs_fill_inode(inode, &rdev);
3976 path = btrfs_alloc_path();
3981 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3983 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3985 if (path != in_path)
3986 btrfs_free_path(path);
3990 leaf = path->nodes[0];
3995 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3996 struct btrfs_inode_item);
3997 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3998 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3999 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
4000 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
4001 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
4002 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
4003 round_up(i_size_read(inode), fs_info->sectorsize));
4005 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
4006 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
4008 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
4009 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
4011 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
4012 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
4014 BTRFS_I(inode)->i_otime.tv_sec =
4015 btrfs_timespec_sec(leaf, &inode_item->otime);
4016 BTRFS_I(inode)->i_otime.tv_nsec =
4017 btrfs_timespec_nsec(leaf, &inode_item->otime);
4019 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
4020 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
4021 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
4023 inode_set_iversion_queried(inode,
4024 btrfs_inode_sequence(leaf, inode_item));
4025 inode->i_generation = BTRFS_I(inode)->generation;
4027 rdev = btrfs_inode_rdev(leaf, inode_item);
4029 BTRFS_I(inode)->index_cnt = (u64)-1;
4030 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4031 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4035 * If we were modified in the current generation and evicted from memory
4036 * and then re-read we need to do a full sync since we don't have any
4037 * idea about which extents were modified before we were evicted from
4040 * This is required for both inode re-read from disk and delayed inode
4041 * in delayed_nodes_tree.
4043 if (BTRFS_I(inode)->last_trans == fs_info->generation)
4044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4045 &BTRFS_I(inode)->runtime_flags);
4048 * We don't persist the id of the transaction where an unlink operation
4049 * against the inode was last made. So here we assume the inode might
4050 * have been evicted, and therefore the exact value of last_unlink_trans
4051 * lost, and set it to last_trans to avoid metadata inconsistencies
4052 * between the inode and its parent if the inode is fsync'ed and the log
4053 * replayed. For example, in the scenario:
4056 * ln mydir/foo mydir/bar
4059 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4060 * xfs_io -c fsync mydir/foo
4062 * mount fs, triggers fsync log replay
4064 * We must make sure that when we fsync our inode foo we also log its
4065 * parent inode, otherwise after log replay the parent still has the
4066 * dentry with the "bar" name but our inode foo has a link count of 1
4067 * and doesn't have an inode ref with the name "bar" anymore.
4069 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4070 * but it guarantees correctness at the expense of occasional full
4071 * transaction commits on fsync if our inode is a directory, or if our
4072 * inode is not a directory, logging its parent unnecessarily.
4074 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4077 * Same logic as for last_unlink_trans. We don't persist the generation
4078 * of the last transaction where this inode was used for a reflink
4079 * operation, so after eviction and reloading the inode we must be
4080 * pessimistic and assume the last transaction that modified the inode.
4082 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4085 if (inode->i_nlink != 1 ||
4086 path->slots[0] >= btrfs_header_nritems(leaf))
4089 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4090 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4093 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4094 if (location.type == BTRFS_INODE_REF_KEY) {
4095 struct btrfs_inode_ref *ref;
4097 ref = (struct btrfs_inode_ref *)ptr;
4098 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4099 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4100 struct btrfs_inode_extref *extref;
4102 extref = (struct btrfs_inode_extref *)ptr;
4103 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4108 * try to precache a NULL acl entry for files that don't have
4109 * any xattrs or acls
4111 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4112 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4113 if (first_xattr_slot != -1) {
4114 path->slots[0] = first_xattr_slot;
4115 ret = btrfs_load_inode_props(inode, path);
4118 "error loading props for ino %llu (root %llu): %d",
4119 btrfs_ino(BTRFS_I(inode)),
4120 root->root_key.objectid, ret);
4122 if (path != in_path)
4123 btrfs_free_path(path);
4126 cache_no_acl(inode);
4128 switch (inode->i_mode & S_IFMT) {
4130 inode->i_mapping->a_ops = &btrfs_aops;
4131 inode->i_fop = &btrfs_file_operations;
4132 inode->i_op = &btrfs_file_inode_operations;
4135 inode->i_fop = &btrfs_dir_file_operations;
4136 inode->i_op = &btrfs_dir_inode_operations;
4139 inode->i_op = &btrfs_symlink_inode_operations;
4140 inode_nohighmem(inode);
4141 inode->i_mapping->a_ops = &btrfs_aops;
4144 inode->i_op = &btrfs_special_inode_operations;
4145 init_special_inode(inode, inode->i_mode, rdev);
4149 btrfs_sync_inode_flags_to_i_flags(inode);
4154 * given a leaf and an inode, copy the inode fields into the leaf
4156 static void fill_inode_item(struct btrfs_trans_handle *trans,
4157 struct extent_buffer *leaf,
4158 struct btrfs_inode_item *item,
4159 struct inode *inode)
4161 struct btrfs_map_token token;
4164 btrfs_init_map_token(&token, leaf);
4166 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4167 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4168 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4169 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4170 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4172 btrfs_set_token_timespec_sec(&token, &item->atime,
4173 inode->i_atime.tv_sec);
4174 btrfs_set_token_timespec_nsec(&token, &item->atime,
4175 inode->i_atime.tv_nsec);
4177 btrfs_set_token_timespec_sec(&token, &item->mtime,
4178 inode->i_mtime.tv_sec);
4179 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4180 inode->i_mtime.tv_nsec);
4182 btrfs_set_token_timespec_sec(&token, &item->ctime,
4183 inode->i_ctime.tv_sec);
4184 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4185 inode->i_ctime.tv_nsec);
4187 btrfs_set_token_timespec_sec(&token, &item->otime,
4188 BTRFS_I(inode)->i_otime.tv_sec);
4189 btrfs_set_token_timespec_nsec(&token, &item->otime,
4190 BTRFS_I(inode)->i_otime.tv_nsec);
4192 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4193 btrfs_set_token_inode_generation(&token, item,
4194 BTRFS_I(inode)->generation);
4195 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4196 btrfs_set_token_inode_transid(&token, item, trans->transid);
4197 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4198 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4199 BTRFS_I(inode)->ro_flags);
4200 btrfs_set_token_inode_flags(&token, item, flags);
4201 btrfs_set_token_inode_block_group(&token, item, 0);
4205 * copy everything in the in-memory inode into the btree.
4207 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 struct btrfs_inode *inode)
4211 struct btrfs_inode_item *inode_item;
4212 struct btrfs_path *path;
4213 struct extent_buffer *leaf;
4216 path = btrfs_alloc_path();
4220 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4227 leaf = path->nodes[0];
4228 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4229 struct btrfs_inode_item);
4231 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4232 btrfs_mark_buffer_dirty(leaf);
4233 btrfs_set_inode_last_trans(trans, inode);
4236 btrfs_free_path(path);
4241 * copy everything in the in-memory inode into the btree.
4243 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4244 struct btrfs_root *root,
4245 struct btrfs_inode *inode)
4247 struct btrfs_fs_info *fs_info = root->fs_info;
4251 * If the inode is a free space inode, we can deadlock during commit
4252 * if we put it into the delayed code.
4254 * The data relocation inode should also be directly updated
4257 if (!btrfs_is_free_space_inode(inode)
4258 && !btrfs_is_data_reloc_root(root)
4259 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4260 btrfs_update_root_times(trans, root);
4262 ret = btrfs_delayed_update_inode(trans, root, inode);
4264 btrfs_set_inode_last_trans(trans, inode);
4268 return btrfs_update_inode_item(trans, root, inode);
4271 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4272 struct btrfs_root *root, struct btrfs_inode *inode)
4276 ret = btrfs_update_inode(trans, root, inode);
4278 return btrfs_update_inode_item(trans, root, inode);
4283 * unlink helper that gets used here in inode.c and in the tree logging
4284 * recovery code. It remove a link in a directory with a given name, and
4285 * also drops the back refs in the inode to the directory
4287 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4288 struct btrfs_inode *dir,
4289 struct btrfs_inode *inode,
4290 const struct fscrypt_str *name,
4291 struct btrfs_rename_ctx *rename_ctx)
4293 struct btrfs_root *root = dir->root;
4294 struct btrfs_fs_info *fs_info = root->fs_info;
4295 struct btrfs_path *path;
4297 struct btrfs_dir_item *di;
4299 u64 ino = btrfs_ino(inode);
4300 u64 dir_ino = btrfs_ino(dir);
4302 path = btrfs_alloc_path();
4308 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4309 if (IS_ERR_OR_NULL(di)) {
4310 ret = di ? PTR_ERR(di) : -ENOENT;
4313 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4316 btrfs_release_path(path);
4319 * If we don't have dir index, we have to get it by looking up
4320 * the inode ref, since we get the inode ref, remove it directly,
4321 * it is unnecessary to do delayed deletion.
4323 * But if we have dir index, needn't search inode ref to get it.
4324 * Since the inode ref is close to the inode item, it is better
4325 * that we delay to delete it, and just do this deletion when
4326 * we update the inode item.
4328 if (inode->dir_index) {
4329 ret = btrfs_delayed_delete_inode_ref(inode);
4331 index = inode->dir_index;
4336 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4339 "failed to delete reference to %.*s, inode %llu parent %llu",
4340 name->len, name->name, ino, dir_ino);
4341 btrfs_abort_transaction(trans, ret);
4346 rename_ctx->index = index;
4348 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4350 btrfs_abort_transaction(trans, ret);
4355 * If we are in a rename context, we don't need to update anything in the
4356 * log. That will be done later during the rename by btrfs_log_new_name().
4357 * Besides that, doing it here would only cause extra unnecessary btree
4358 * operations on the log tree, increasing latency for applications.
4361 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4362 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4366 * If we have a pending delayed iput we could end up with the final iput
4367 * being run in btrfs-cleaner context. If we have enough of these built
4368 * up we can end up burning a lot of time in btrfs-cleaner without any
4369 * way to throttle the unlinks. Since we're currently holding a ref on
4370 * the inode we can run the delayed iput here without any issues as the
4371 * final iput won't be done until after we drop the ref we're currently
4374 btrfs_run_delayed_iput(fs_info, inode);
4376 btrfs_free_path(path);
4380 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4381 inode_inc_iversion(&inode->vfs_inode);
4382 inode_inc_iversion(&dir->vfs_inode);
4383 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4384 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4385 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4386 ret = btrfs_update_inode(trans, root, dir);
4391 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4392 struct btrfs_inode *dir, struct btrfs_inode *inode,
4393 const struct fscrypt_str *name)
4397 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4399 drop_nlink(&inode->vfs_inode);
4400 ret = btrfs_update_inode(trans, inode->root, inode);
4406 * helper to start transaction for unlink and rmdir.
4408 * unlink and rmdir are special in btrfs, they do not always free space, so
4409 * if we cannot make our reservations the normal way try and see if there is
4410 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4411 * allow the unlink to occur.
4413 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4415 struct btrfs_root *root = dir->root;
4418 * 1 for the possible orphan item
4419 * 1 for the dir item
4420 * 1 for the dir index
4421 * 1 for the inode ref
4423 * 1 for the parent inode
4425 return btrfs_start_transaction_fallback_global_rsv(root, 6);
4428 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4430 struct btrfs_trans_handle *trans;
4431 struct inode *inode = d_inode(dentry);
4433 struct fscrypt_name fname;
4435 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4439 /* This needs to handle no-key deletions later on */
4441 trans = __unlink_start_trans(BTRFS_I(dir));
4442 if (IS_ERR(trans)) {
4443 ret = PTR_ERR(trans);
4447 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4450 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4455 if (inode->i_nlink == 0) {
4456 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4462 btrfs_end_transaction(trans);
4463 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4465 fscrypt_free_filename(&fname);
4469 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4470 struct btrfs_inode *dir, struct dentry *dentry)
4472 struct btrfs_root *root = dir->root;
4473 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4474 struct btrfs_path *path;
4475 struct extent_buffer *leaf;
4476 struct btrfs_dir_item *di;
4477 struct btrfs_key key;
4481 u64 dir_ino = btrfs_ino(dir);
4482 struct fscrypt_name fname;
4484 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4488 /* This needs to handle no-key deletions later on */
4490 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4491 objectid = inode->root->root_key.objectid;
4492 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4493 objectid = inode->location.objectid;
4496 fscrypt_free_filename(&fname);
4500 path = btrfs_alloc_path();
4506 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4507 &fname.disk_name, -1);
4508 if (IS_ERR_OR_NULL(di)) {
4509 ret = di ? PTR_ERR(di) : -ENOENT;
4513 leaf = path->nodes[0];
4514 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4515 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4516 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4518 btrfs_abort_transaction(trans, ret);
4521 btrfs_release_path(path);
4524 * This is a placeholder inode for a subvolume we didn't have a
4525 * reference to at the time of the snapshot creation. In the meantime
4526 * we could have renamed the real subvol link into our snapshot, so
4527 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4528 * Instead simply lookup the dir_index_item for this entry so we can
4529 * remove it. Otherwise we know we have a ref to the root and we can
4530 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4532 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4533 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4534 if (IS_ERR_OR_NULL(di)) {
4539 btrfs_abort_transaction(trans, ret);
4543 leaf = path->nodes[0];
4544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4546 btrfs_release_path(path);
4548 ret = btrfs_del_root_ref(trans, objectid,
4549 root->root_key.objectid, dir_ino,
4550 &index, &fname.disk_name);
4552 btrfs_abort_transaction(trans, ret);
4557 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4559 btrfs_abort_transaction(trans, ret);
4563 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4564 inode_inc_iversion(&dir->vfs_inode);
4565 dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode);
4566 dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime;
4567 ret = btrfs_update_inode_fallback(trans, root, dir);
4569 btrfs_abort_transaction(trans, ret);
4571 btrfs_free_path(path);
4572 fscrypt_free_filename(&fname);
4577 * Helper to check if the subvolume references other subvolumes or if it's
4580 static noinline int may_destroy_subvol(struct btrfs_root *root)
4582 struct btrfs_fs_info *fs_info = root->fs_info;
4583 struct btrfs_path *path;
4584 struct btrfs_dir_item *di;
4585 struct btrfs_key key;
4586 struct fscrypt_str name = FSTR_INIT("default", 7);
4590 path = btrfs_alloc_path();
4594 /* Make sure this root isn't set as the default subvol */
4595 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4596 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4598 if (di && !IS_ERR(di)) {
4599 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4600 if (key.objectid == root->root_key.objectid) {
4603 "deleting default subvolume %llu is not allowed",
4607 btrfs_release_path(path);
4610 key.objectid = root->root_key.objectid;
4611 key.type = BTRFS_ROOT_REF_KEY;
4612 key.offset = (u64)-1;
4614 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4620 if (path->slots[0] > 0) {
4622 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4623 if (key.objectid == root->root_key.objectid &&
4624 key.type == BTRFS_ROOT_REF_KEY)
4628 btrfs_free_path(path);
4632 /* Delete all dentries for inodes belonging to the root */
4633 static void btrfs_prune_dentries(struct btrfs_root *root)
4635 struct btrfs_fs_info *fs_info = root->fs_info;
4636 struct rb_node *node;
4637 struct rb_node *prev;
4638 struct btrfs_inode *entry;
4639 struct inode *inode;
4642 if (!BTRFS_FS_ERROR(fs_info))
4643 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4645 spin_lock(&root->inode_lock);
4647 node = root->inode_tree.rb_node;
4651 entry = rb_entry(node, struct btrfs_inode, rb_node);
4653 if (objectid < btrfs_ino(entry))
4654 node = node->rb_left;
4655 else if (objectid > btrfs_ino(entry))
4656 node = node->rb_right;
4662 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4663 if (objectid <= btrfs_ino(entry)) {
4667 prev = rb_next(prev);
4671 entry = rb_entry(node, struct btrfs_inode, rb_node);
4672 objectid = btrfs_ino(entry) + 1;
4673 inode = igrab(&entry->vfs_inode);
4675 spin_unlock(&root->inode_lock);
4676 if (atomic_read(&inode->i_count) > 1)
4677 d_prune_aliases(inode);
4679 * btrfs_drop_inode will have it removed from the inode
4680 * cache when its usage count hits zero.
4684 spin_lock(&root->inode_lock);
4688 if (cond_resched_lock(&root->inode_lock))
4691 node = rb_next(node);
4693 spin_unlock(&root->inode_lock);
4696 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4698 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4699 struct btrfs_root *root = dir->root;
4700 struct inode *inode = d_inode(dentry);
4701 struct btrfs_root *dest = BTRFS_I(inode)->root;
4702 struct btrfs_trans_handle *trans;
4703 struct btrfs_block_rsv block_rsv;
4708 * Don't allow to delete a subvolume with send in progress. This is
4709 * inside the inode lock so the error handling that has to drop the bit
4710 * again is not run concurrently.
4712 spin_lock(&dest->root_item_lock);
4713 if (dest->send_in_progress) {
4714 spin_unlock(&dest->root_item_lock);
4716 "attempt to delete subvolume %llu during send",
4717 dest->root_key.objectid);
4720 if (atomic_read(&dest->nr_swapfiles)) {
4721 spin_unlock(&dest->root_item_lock);
4723 "attempt to delete subvolume %llu with active swapfile",
4724 root->root_key.objectid);
4727 root_flags = btrfs_root_flags(&dest->root_item);
4728 btrfs_set_root_flags(&dest->root_item,
4729 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4730 spin_unlock(&dest->root_item_lock);
4732 down_write(&fs_info->subvol_sem);
4734 ret = may_destroy_subvol(dest);
4738 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4740 * One for dir inode,
4741 * two for dir entries,
4742 * two for root ref/backref.
4744 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4748 trans = btrfs_start_transaction(root, 0);
4749 if (IS_ERR(trans)) {
4750 ret = PTR_ERR(trans);
4753 trans->block_rsv = &block_rsv;
4754 trans->bytes_reserved = block_rsv.size;
4756 btrfs_record_snapshot_destroy(trans, dir);
4758 ret = btrfs_unlink_subvol(trans, dir, dentry);
4760 btrfs_abort_transaction(trans, ret);
4764 ret = btrfs_record_root_in_trans(trans, dest);
4766 btrfs_abort_transaction(trans, ret);
4770 memset(&dest->root_item.drop_progress, 0,
4771 sizeof(dest->root_item.drop_progress));
4772 btrfs_set_root_drop_level(&dest->root_item, 0);
4773 btrfs_set_root_refs(&dest->root_item, 0);
4775 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4776 ret = btrfs_insert_orphan_item(trans,
4778 dest->root_key.objectid);
4780 btrfs_abort_transaction(trans, ret);
4785 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4786 BTRFS_UUID_KEY_SUBVOL,
4787 dest->root_key.objectid);
4788 if (ret && ret != -ENOENT) {
4789 btrfs_abort_transaction(trans, ret);
4792 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4793 ret = btrfs_uuid_tree_remove(trans,
4794 dest->root_item.received_uuid,
4795 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4796 dest->root_key.objectid);
4797 if (ret && ret != -ENOENT) {
4798 btrfs_abort_transaction(trans, ret);
4803 free_anon_bdev(dest->anon_dev);
4806 trans->block_rsv = NULL;
4807 trans->bytes_reserved = 0;
4808 ret = btrfs_end_transaction(trans);
4809 inode->i_flags |= S_DEAD;
4811 btrfs_subvolume_release_metadata(root, &block_rsv);
4813 up_write(&fs_info->subvol_sem);
4815 spin_lock(&dest->root_item_lock);
4816 root_flags = btrfs_root_flags(&dest->root_item);
4817 btrfs_set_root_flags(&dest->root_item,
4818 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4819 spin_unlock(&dest->root_item_lock);
4821 d_invalidate(dentry);
4822 btrfs_prune_dentries(dest);
4823 ASSERT(dest->send_in_progress == 0);
4829 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4831 struct inode *inode = d_inode(dentry);
4832 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4834 struct btrfs_trans_handle *trans;
4835 u64 last_unlink_trans;
4836 struct fscrypt_name fname;
4838 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4840 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4841 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4843 "extent tree v2 doesn't support snapshot deletion yet");
4846 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4849 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4853 /* This needs to handle no-key deletions later on */
4855 trans = __unlink_start_trans(BTRFS_I(dir));
4856 if (IS_ERR(trans)) {
4857 err = PTR_ERR(trans);
4861 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4862 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4866 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4870 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4872 /* now the directory is empty */
4873 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4876 btrfs_i_size_write(BTRFS_I(inode), 0);
4878 * Propagate the last_unlink_trans value of the deleted dir to
4879 * its parent directory. This is to prevent an unrecoverable
4880 * log tree in the case we do something like this:
4882 * 2) create snapshot under dir foo
4883 * 3) delete the snapshot
4886 * 6) fsync foo or some file inside foo
4888 if (last_unlink_trans >= trans->transid)
4889 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4892 btrfs_end_transaction(trans);
4894 btrfs_btree_balance_dirty(fs_info);
4895 fscrypt_free_filename(&fname);
4901 * btrfs_truncate_block - read, zero a chunk and write a block
4902 * @inode - inode that we're zeroing
4903 * @from - the offset to start zeroing
4904 * @len - the length to zero, 0 to zero the entire range respective to the
4906 * @front - zero up to the offset instead of from the offset on
4908 * This will find the block for the "from" offset and cow the block and zero the
4909 * part we want to zero. This is used with truncate and hole punching.
4911 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4915 struct address_space *mapping = inode->vfs_inode.i_mapping;
4916 struct extent_io_tree *io_tree = &inode->io_tree;
4917 struct btrfs_ordered_extent *ordered;
4918 struct extent_state *cached_state = NULL;
4919 struct extent_changeset *data_reserved = NULL;
4920 bool only_release_metadata = false;
4921 u32 blocksize = fs_info->sectorsize;
4922 pgoff_t index = from >> PAGE_SHIFT;
4923 unsigned offset = from & (blocksize - 1);
4925 gfp_t mask = btrfs_alloc_write_mask(mapping);
4926 size_t write_bytes = blocksize;
4931 if (IS_ALIGNED(offset, blocksize) &&
4932 (!len || IS_ALIGNED(len, blocksize)))
4935 block_start = round_down(from, blocksize);
4936 block_end = block_start + blocksize - 1;
4938 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4941 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4942 /* For nocow case, no need to reserve data space */
4943 only_release_metadata = true;
4948 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4950 if (!only_release_metadata)
4951 btrfs_free_reserved_data_space(inode, data_reserved,
4952 block_start, blocksize);
4956 page = find_or_create_page(mapping, index, mask);
4958 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4960 btrfs_delalloc_release_extents(inode, blocksize);
4964 ret = set_page_extent_mapped(page);
4968 if (!PageUptodate(page)) {
4969 ret = btrfs_read_folio(NULL, page_folio(page));
4971 if (page->mapping != mapping) {
4976 if (!PageUptodate(page)) {
4981 wait_on_page_writeback(page);
4983 lock_extent(io_tree, block_start, block_end, &cached_state);
4985 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4987 unlock_extent(io_tree, block_start, block_end, &cached_state);
4990 btrfs_start_ordered_extent(ordered, 1);
4991 btrfs_put_ordered_extent(ordered);
4995 clear_extent_bit(&inode->io_tree, block_start, block_end,
4996 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4999 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5002 unlock_extent(io_tree, block_start, block_end, &cached_state);
5006 if (offset != blocksize) {
5008 len = blocksize - offset;
5010 memzero_page(page, (block_start - page_offset(page)),
5013 memzero_page(page, (block_start - page_offset(page)) + offset,
5016 btrfs_page_clear_checked(fs_info, page, block_start,
5017 block_end + 1 - block_start);
5018 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5019 unlock_extent(io_tree, block_start, block_end, &cached_state);
5021 if (only_release_metadata)
5022 set_extent_bit(&inode->io_tree, block_start, block_end,
5023 EXTENT_NORESERVE, NULL, GFP_NOFS);
5027 if (only_release_metadata)
5028 btrfs_delalloc_release_metadata(inode, blocksize, true);
5030 btrfs_delalloc_release_space(inode, data_reserved,
5031 block_start, blocksize, true);
5033 btrfs_delalloc_release_extents(inode, blocksize);
5037 if (only_release_metadata)
5038 btrfs_check_nocow_unlock(inode);
5039 extent_changeset_free(data_reserved);
5043 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5044 u64 offset, u64 len)
5046 struct btrfs_fs_info *fs_info = root->fs_info;
5047 struct btrfs_trans_handle *trans;
5048 struct btrfs_drop_extents_args drop_args = { 0 };
5052 * If NO_HOLES is enabled, we don't need to do anything.
5053 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5054 * or btrfs_update_inode() will be called, which guarantee that the next
5055 * fsync will know this inode was changed and needs to be logged.
5057 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5061 * 1 - for the one we're dropping
5062 * 1 - for the one we're adding
5063 * 1 - for updating the inode.
5065 trans = btrfs_start_transaction(root, 3);
5067 return PTR_ERR(trans);
5069 drop_args.start = offset;
5070 drop_args.end = offset + len;
5071 drop_args.drop_cache = true;
5073 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5075 btrfs_abort_transaction(trans, ret);
5076 btrfs_end_transaction(trans);
5080 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5082 btrfs_abort_transaction(trans, ret);
5084 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5085 btrfs_update_inode(trans, root, inode);
5087 btrfs_end_transaction(trans);
5092 * This function puts in dummy file extents for the area we're creating a hole
5093 * for. So if we are truncating this file to a larger size we need to insert
5094 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5095 * the range between oldsize and size
5097 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5099 struct btrfs_root *root = inode->root;
5100 struct btrfs_fs_info *fs_info = root->fs_info;
5101 struct extent_io_tree *io_tree = &inode->io_tree;
5102 struct extent_map *em = NULL;
5103 struct extent_state *cached_state = NULL;
5104 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5105 u64 block_end = ALIGN(size, fs_info->sectorsize);
5112 * If our size started in the middle of a block we need to zero out the
5113 * rest of the block before we expand the i_size, otherwise we could
5114 * expose stale data.
5116 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5120 if (size <= hole_start)
5123 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5125 cur_offset = hole_start;
5127 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5128 block_end - cur_offset);
5134 last_byte = min(extent_map_end(em), block_end);
5135 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5136 hole_size = last_byte - cur_offset;
5138 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5139 struct extent_map *hole_em;
5141 err = maybe_insert_hole(root, inode, cur_offset,
5146 err = btrfs_inode_set_file_extent_range(inode,
5147 cur_offset, hole_size);
5151 hole_em = alloc_extent_map();
5153 btrfs_drop_extent_map_range(inode, cur_offset,
5154 cur_offset + hole_size - 1,
5156 btrfs_set_inode_full_sync(inode);
5159 hole_em->start = cur_offset;
5160 hole_em->len = hole_size;
5161 hole_em->orig_start = cur_offset;
5163 hole_em->block_start = EXTENT_MAP_HOLE;
5164 hole_em->block_len = 0;
5165 hole_em->orig_block_len = 0;
5166 hole_em->ram_bytes = hole_size;
5167 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5168 hole_em->generation = fs_info->generation;
5170 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5171 free_extent_map(hole_em);
5173 err = btrfs_inode_set_file_extent_range(inode,
5174 cur_offset, hole_size);
5179 free_extent_map(em);
5181 cur_offset = last_byte;
5182 if (cur_offset >= block_end)
5185 free_extent_map(em);
5186 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5190 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5192 struct btrfs_root *root = BTRFS_I(inode)->root;
5193 struct btrfs_trans_handle *trans;
5194 loff_t oldsize = i_size_read(inode);
5195 loff_t newsize = attr->ia_size;
5196 int mask = attr->ia_valid;
5200 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5201 * special case where we need to update the times despite not having
5202 * these flags set. For all other operations the VFS set these flags
5203 * explicitly if it wants a timestamp update.
5205 if (newsize != oldsize) {
5206 inode_inc_iversion(inode);
5207 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5208 inode->i_mtime = current_time(inode);
5209 inode->i_ctime = inode->i_mtime;
5213 if (newsize > oldsize) {
5215 * Don't do an expanding truncate while snapshotting is ongoing.
5216 * This is to ensure the snapshot captures a fully consistent
5217 * state of this file - if the snapshot captures this expanding
5218 * truncation, it must capture all writes that happened before
5221 btrfs_drew_write_lock(&root->snapshot_lock);
5222 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5224 btrfs_drew_write_unlock(&root->snapshot_lock);
5228 trans = btrfs_start_transaction(root, 1);
5229 if (IS_ERR(trans)) {
5230 btrfs_drew_write_unlock(&root->snapshot_lock);
5231 return PTR_ERR(trans);
5234 i_size_write(inode, newsize);
5235 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5236 pagecache_isize_extended(inode, oldsize, newsize);
5237 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5238 btrfs_drew_write_unlock(&root->snapshot_lock);
5239 btrfs_end_transaction(trans);
5241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5243 if (btrfs_is_zoned(fs_info)) {
5244 ret = btrfs_wait_ordered_range(inode,
5245 ALIGN(newsize, fs_info->sectorsize),
5252 * We're truncating a file that used to have good data down to
5253 * zero. Make sure any new writes to the file get on disk
5257 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5258 &BTRFS_I(inode)->runtime_flags);
5260 truncate_setsize(inode, newsize);
5262 inode_dio_wait(inode);
5264 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5265 if (ret && inode->i_nlink) {
5269 * Truncate failed, so fix up the in-memory size. We
5270 * adjusted disk_i_size down as we removed extents, so
5271 * wait for disk_i_size to be stable and then update the
5272 * in-memory size to match.
5274 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5277 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5284 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5287 struct inode *inode = d_inode(dentry);
5288 struct btrfs_root *root = BTRFS_I(inode)->root;
5291 if (btrfs_root_readonly(root))
5294 err = setattr_prepare(mnt_userns, dentry, attr);
5298 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5299 err = btrfs_setsize(inode, attr);
5304 if (attr->ia_valid) {
5305 setattr_copy(mnt_userns, inode, attr);
5306 inode_inc_iversion(inode);
5307 err = btrfs_dirty_inode(BTRFS_I(inode));
5309 if (!err && attr->ia_valid & ATTR_MODE)
5310 err = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
5317 * While truncating the inode pages during eviction, we get the VFS
5318 * calling btrfs_invalidate_folio() against each folio of the inode. This
5319 * is slow because the calls to btrfs_invalidate_folio() result in a
5320 * huge amount of calls to lock_extent() and clear_extent_bit(),
5321 * which keep merging and splitting extent_state structures over and over,
5322 * wasting lots of time.
5324 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5325 * skip all those expensive operations on a per folio basis and do only
5326 * the ordered io finishing, while we release here the extent_map and
5327 * extent_state structures, without the excessive merging and splitting.
5329 static void evict_inode_truncate_pages(struct inode *inode)
5331 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5332 struct rb_node *node;
5334 ASSERT(inode->i_state & I_FREEING);
5335 truncate_inode_pages_final(&inode->i_data);
5337 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5340 * Keep looping until we have no more ranges in the io tree.
5341 * We can have ongoing bios started by readahead that have
5342 * their endio callback (extent_io.c:end_bio_extent_readpage)
5343 * still in progress (unlocked the pages in the bio but did not yet
5344 * unlocked the ranges in the io tree). Therefore this means some
5345 * ranges can still be locked and eviction started because before
5346 * submitting those bios, which are executed by a separate task (work
5347 * queue kthread), inode references (inode->i_count) were not taken
5348 * (which would be dropped in the end io callback of each bio).
5349 * Therefore here we effectively end up waiting for those bios and
5350 * anyone else holding locked ranges without having bumped the inode's
5351 * reference count - if we don't do it, when they access the inode's
5352 * io_tree to unlock a range it may be too late, leading to an
5353 * use-after-free issue.
5355 spin_lock(&io_tree->lock);
5356 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5357 struct extent_state *state;
5358 struct extent_state *cached_state = NULL;
5361 unsigned state_flags;
5363 node = rb_first(&io_tree->state);
5364 state = rb_entry(node, struct extent_state, rb_node);
5365 start = state->start;
5367 state_flags = state->state;
5368 spin_unlock(&io_tree->lock);
5370 lock_extent(io_tree, start, end, &cached_state);
5373 * If still has DELALLOC flag, the extent didn't reach disk,
5374 * and its reserved space won't be freed by delayed_ref.
5375 * So we need to free its reserved space here.
5376 * (Refer to comment in btrfs_invalidate_folio, case 2)
5378 * Note, end is the bytenr of last byte, so we need + 1 here.
5380 if (state_flags & EXTENT_DELALLOC)
5381 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5384 clear_extent_bit(io_tree, start, end,
5385 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5389 spin_lock(&io_tree->lock);
5391 spin_unlock(&io_tree->lock);
5394 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5395 struct btrfs_block_rsv *rsv)
5397 struct btrfs_fs_info *fs_info = root->fs_info;
5398 struct btrfs_trans_handle *trans;
5399 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5403 * Eviction should be taking place at some place safe because of our
5404 * delayed iputs. However the normal flushing code will run delayed
5405 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5407 * We reserve the delayed_refs_extra here again because we can't use
5408 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5409 * above. We reserve our extra bit here because we generate a ton of
5410 * delayed refs activity by truncating.
5412 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5413 * if we fail to make this reservation we can re-try without the
5414 * delayed_refs_extra so we can make some forward progress.
5416 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5417 BTRFS_RESERVE_FLUSH_EVICT);
5419 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5420 BTRFS_RESERVE_FLUSH_EVICT);
5423 "could not allocate space for delete; will truncate on mount");
5424 return ERR_PTR(-ENOSPC);
5426 delayed_refs_extra = 0;
5429 trans = btrfs_join_transaction(root);
5433 if (delayed_refs_extra) {
5434 trans->block_rsv = &fs_info->trans_block_rsv;
5435 trans->bytes_reserved = delayed_refs_extra;
5436 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5437 delayed_refs_extra, 1);
5442 void btrfs_evict_inode(struct inode *inode)
5444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5445 struct btrfs_trans_handle *trans;
5446 struct btrfs_root *root = BTRFS_I(inode)->root;
5447 struct btrfs_block_rsv *rsv;
5450 trace_btrfs_inode_evict(inode);
5453 fsverity_cleanup_inode(inode);
5458 evict_inode_truncate_pages(inode);
5460 if (inode->i_nlink &&
5461 ((btrfs_root_refs(&root->root_item) != 0 &&
5462 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5463 btrfs_is_free_space_inode(BTRFS_I(inode))))
5466 if (is_bad_inode(inode))
5469 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5471 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5474 if (inode->i_nlink > 0) {
5475 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5476 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5481 * This makes sure the inode item in tree is uptodate and the space for
5482 * the inode update is released.
5484 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5489 * This drops any pending insert or delete operations we have for this
5490 * inode. We could have a delayed dir index deletion queued up, but
5491 * we're removing the inode completely so that'll be taken care of in
5494 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5496 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5499 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5500 rsv->failfast = true;
5502 btrfs_i_size_write(BTRFS_I(inode), 0);
5505 struct btrfs_truncate_control control = {
5506 .inode = BTRFS_I(inode),
5507 .ino = btrfs_ino(BTRFS_I(inode)),
5512 trans = evict_refill_and_join(root, rsv);
5516 trans->block_rsv = rsv;
5518 ret = btrfs_truncate_inode_items(trans, root, &control);
5519 trans->block_rsv = &fs_info->trans_block_rsv;
5520 btrfs_end_transaction(trans);
5521 btrfs_btree_balance_dirty(fs_info);
5522 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5529 * Errors here aren't a big deal, it just means we leave orphan items in
5530 * the tree. They will be cleaned up on the next mount. If the inode
5531 * number gets reused, cleanup deletes the orphan item without doing
5532 * anything, and unlink reuses the existing orphan item.
5534 * If it turns out that we are dropping too many of these, we might want
5535 * to add a mechanism for retrying these after a commit.
5537 trans = evict_refill_and_join(root, rsv);
5538 if (!IS_ERR(trans)) {
5539 trans->block_rsv = rsv;
5540 btrfs_orphan_del(trans, BTRFS_I(inode));
5541 trans->block_rsv = &fs_info->trans_block_rsv;
5542 btrfs_end_transaction(trans);
5546 btrfs_free_block_rsv(fs_info, rsv);
5549 * If we didn't successfully delete, the orphan item will still be in
5550 * the tree and we'll retry on the next mount. Again, we might also want
5551 * to retry these periodically in the future.
5553 btrfs_remove_delayed_node(BTRFS_I(inode));
5554 fsverity_cleanup_inode(inode);
5559 * Return the key found in the dir entry in the location pointer, fill @type
5560 * with BTRFS_FT_*, and return 0.
5562 * If no dir entries were found, returns -ENOENT.
5563 * If found a corrupted location in dir entry, returns -EUCLEAN.
5565 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5566 struct btrfs_key *location, u8 *type)
5568 struct btrfs_dir_item *di;
5569 struct btrfs_path *path;
5570 struct btrfs_root *root = dir->root;
5572 struct fscrypt_name fname;
5574 path = btrfs_alloc_path();
5578 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5582 /* This needs to handle no-key deletions later on */
5584 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5585 &fname.disk_name, 0);
5586 if (IS_ERR_OR_NULL(di)) {
5587 ret = di ? PTR_ERR(di) : -ENOENT;
5591 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5592 if (location->type != BTRFS_INODE_ITEM_KEY &&
5593 location->type != BTRFS_ROOT_ITEM_KEY) {
5595 btrfs_warn(root->fs_info,
5596 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5597 __func__, fname.disk_name.name, btrfs_ino(dir),
5598 location->objectid, location->type, location->offset);
5601 *type = btrfs_dir_ftype(path->nodes[0], di);
5603 fscrypt_free_filename(&fname);
5604 btrfs_free_path(path);
5609 * when we hit a tree root in a directory, the btrfs part of the inode
5610 * needs to be changed to reflect the root directory of the tree root. This
5611 * is kind of like crossing a mount point.
5613 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5614 struct btrfs_inode *dir,
5615 struct dentry *dentry,
5616 struct btrfs_key *location,
5617 struct btrfs_root **sub_root)
5619 struct btrfs_path *path;
5620 struct btrfs_root *new_root;
5621 struct btrfs_root_ref *ref;
5622 struct extent_buffer *leaf;
5623 struct btrfs_key key;
5626 struct fscrypt_name fname;
5628 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5632 path = btrfs_alloc_path();
5639 key.objectid = dir->root->root_key.objectid;
5640 key.type = BTRFS_ROOT_REF_KEY;
5641 key.offset = location->objectid;
5643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5650 leaf = path->nodes[0];
5651 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5652 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5653 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5656 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5657 (unsigned long)(ref + 1), fname.disk_name.len);
5661 btrfs_release_path(path);
5663 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5664 if (IS_ERR(new_root)) {
5665 err = PTR_ERR(new_root);
5669 *sub_root = new_root;
5670 location->objectid = btrfs_root_dirid(&new_root->root_item);
5671 location->type = BTRFS_INODE_ITEM_KEY;
5672 location->offset = 0;
5675 btrfs_free_path(path);
5676 fscrypt_free_filename(&fname);
5680 static void inode_tree_add(struct btrfs_inode *inode)
5682 struct btrfs_root *root = inode->root;
5683 struct btrfs_inode *entry;
5685 struct rb_node *parent;
5686 struct rb_node *new = &inode->rb_node;
5687 u64 ino = btrfs_ino(inode);
5689 if (inode_unhashed(&inode->vfs_inode))
5692 spin_lock(&root->inode_lock);
5693 p = &root->inode_tree.rb_node;
5696 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5698 if (ino < btrfs_ino(entry))
5699 p = &parent->rb_left;
5700 else if (ino > btrfs_ino(entry))
5701 p = &parent->rb_right;
5703 WARN_ON(!(entry->vfs_inode.i_state &
5704 (I_WILL_FREE | I_FREEING)));
5705 rb_replace_node(parent, new, &root->inode_tree);
5706 RB_CLEAR_NODE(parent);
5707 spin_unlock(&root->inode_lock);
5711 rb_link_node(new, parent, p);
5712 rb_insert_color(new, &root->inode_tree);
5713 spin_unlock(&root->inode_lock);
5716 static void inode_tree_del(struct btrfs_inode *inode)
5718 struct btrfs_root *root = inode->root;
5721 spin_lock(&root->inode_lock);
5722 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5723 rb_erase(&inode->rb_node, &root->inode_tree);
5724 RB_CLEAR_NODE(&inode->rb_node);
5725 empty = RB_EMPTY_ROOT(&root->inode_tree);
5727 spin_unlock(&root->inode_lock);
5729 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5730 spin_lock(&root->inode_lock);
5731 empty = RB_EMPTY_ROOT(&root->inode_tree);
5732 spin_unlock(&root->inode_lock);
5734 btrfs_add_dead_root(root);
5739 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5741 struct btrfs_iget_args *args = p;
5743 inode->i_ino = args->ino;
5744 BTRFS_I(inode)->location.objectid = args->ino;
5745 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5746 BTRFS_I(inode)->location.offset = 0;
5747 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5748 BUG_ON(args->root && !BTRFS_I(inode)->root);
5750 if (args->root && args->root == args->root->fs_info->tree_root &&
5751 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5752 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5753 &BTRFS_I(inode)->runtime_flags);
5757 static int btrfs_find_actor(struct inode *inode, void *opaque)
5759 struct btrfs_iget_args *args = opaque;
5761 return args->ino == BTRFS_I(inode)->location.objectid &&
5762 args->root == BTRFS_I(inode)->root;
5765 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5766 struct btrfs_root *root)
5768 struct inode *inode;
5769 struct btrfs_iget_args args;
5770 unsigned long hashval = btrfs_inode_hash(ino, root);
5775 inode = iget5_locked(s, hashval, btrfs_find_actor,
5776 btrfs_init_locked_inode,
5782 * Get an inode object given its inode number and corresponding root.
5783 * Path can be preallocated to prevent recursing back to iget through
5784 * allocator. NULL is also valid but may require an additional allocation
5787 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5788 struct btrfs_root *root, struct btrfs_path *path)
5790 struct inode *inode;
5792 inode = btrfs_iget_locked(s, ino, root);
5794 return ERR_PTR(-ENOMEM);
5796 if (inode->i_state & I_NEW) {
5799 ret = btrfs_read_locked_inode(inode, path);
5801 inode_tree_add(BTRFS_I(inode));
5802 unlock_new_inode(inode);
5806 * ret > 0 can come from btrfs_search_slot called by
5807 * btrfs_read_locked_inode, this means the inode item
5812 inode = ERR_PTR(ret);
5819 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5821 return btrfs_iget_path(s, ino, root, NULL);
5824 static struct inode *new_simple_dir(struct super_block *s,
5825 struct btrfs_key *key,
5826 struct btrfs_root *root)
5828 struct inode *inode = new_inode(s);
5831 return ERR_PTR(-ENOMEM);
5833 BTRFS_I(inode)->root = btrfs_grab_root(root);
5834 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5835 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5837 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5839 * We only need lookup, the rest is read-only and there's no inode
5840 * associated with the dentry
5842 inode->i_op = &simple_dir_inode_operations;
5843 inode->i_opflags &= ~IOP_XATTR;
5844 inode->i_fop = &simple_dir_operations;
5845 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5846 inode->i_mtime = current_time(inode);
5847 inode->i_atime = inode->i_mtime;
5848 inode->i_ctime = inode->i_mtime;
5849 BTRFS_I(inode)->i_otime = inode->i_mtime;
5854 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5855 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5856 static_assert(BTRFS_FT_DIR == FT_DIR);
5857 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5858 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5859 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5860 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5861 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5863 static inline u8 btrfs_inode_type(struct inode *inode)
5865 return fs_umode_to_ftype(inode->i_mode);
5868 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5870 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5871 struct inode *inode;
5872 struct btrfs_root *root = BTRFS_I(dir)->root;
5873 struct btrfs_root *sub_root = root;
5874 struct btrfs_key location;
5878 if (dentry->d_name.len > BTRFS_NAME_LEN)
5879 return ERR_PTR(-ENAMETOOLONG);
5881 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5883 return ERR_PTR(ret);
5885 if (location.type == BTRFS_INODE_ITEM_KEY) {
5886 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5890 /* Do extra check against inode mode with di_type */
5891 if (btrfs_inode_type(inode) != di_type) {
5893 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5894 inode->i_mode, btrfs_inode_type(inode),
5897 return ERR_PTR(-EUCLEAN);
5902 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5903 &location, &sub_root);
5906 inode = ERR_PTR(ret);
5908 inode = new_simple_dir(dir->i_sb, &location, root);
5910 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5911 btrfs_put_root(sub_root);
5916 down_read(&fs_info->cleanup_work_sem);
5917 if (!sb_rdonly(inode->i_sb))
5918 ret = btrfs_orphan_cleanup(sub_root);
5919 up_read(&fs_info->cleanup_work_sem);
5922 inode = ERR_PTR(ret);
5929 static int btrfs_dentry_delete(const struct dentry *dentry)
5931 struct btrfs_root *root;
5932 struct inode *inode = d_inode(dentry);
5934 if (!inode && !IS_ROOT(dentry))
5935 inode = d_inode(dentry->d_parent);
5938 root = BTRFS_I(inode)->root;
5939 if (btrfs_root_refs(&root->root_item) == 0)
5942 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5948 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5951 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5953 if (inode == ERR_PTR(-ENOENT))
5955 return d_splice_alias(inode, dentry);
5959 * All this infrastructure exists because dir_emit can fault, and we are holding
5960 * the tree lock when doing readdir. For now just allocate a buffer and copy
5961 * our information into that, and then dir_emit from the buffer. This is
5962 * similar to what NFS does, only we don't keep the buffer around in pagecache
5963 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5964 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5967 static int btrfs_opendir(struct inode *inode, struct file *file)
5969 struct btrfs_file_private *private;
5971 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5974 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5975 if (!private->filldir_buf) {
5979 file->private_data = private;
5990 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5993 struct dir_entry *entry = addr;
5994 char *name = (char *)(entry + 1);
5996 ctx->pos = get_unaligned(&entry->offset);
5997 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5998 get_unaligned(&entry->ino),
5999 get_unaligned(&entry->type)))
6001 addr += sizeof(struct dir_entry) +
6002 get_unaligned(&entry->name_len);
6008 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6010 struct inode *inode = file_inode(file);
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 struct btrfs_file_private *private = file->private_data;
6013 struct btrfs_dir_item *di;
6014 struct btrfs_key key;
6015 struct btrfs_key found_key;
6016 struct btrfs_path *path;
6018 struct list_head ins_list;
6019 struct list_head del_list;
6026 struct btrfs_key location;
6028 if (!dir_emit_dots(file, ctx))
6031 path = btrfs_alloc_path();
6035 addr = private->filldir_buf;
6036 path->reada = READA_FORWARD;
6038 INIT_LIST_HEAD(&ins_list);
6039 INIT_LIST_HEAD(&del_list);
6040 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6043 key.type = BTRFS_DIR_INDEX_KEY;
6044 key.offset = ctx->pos;
6045 key.objectid = btrfs_ino(BTRFS_I(inode));
6047 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6048 struct dir_entry *entry;
6049 struct extent_buffer *leaf = path->nodes[0];
6052 if (found_key.objectid != key.objectid)
6054 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6056 if (found_key.offset < ctx->pos)
6058 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6060 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6061 name_len = btrfs_dir_name_len(leaf, di);
6062 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6064 btrfs_release_path(path);
6065 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6068 addr = private->filldir_buf;
6074 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6076 name_ptr = (char *)(entry + 1);
6077 read_extent_buffer(leaf, name_ptr,
6078 (unsigned long)(di + 1), name_len);
6079 put_unaligned(name_len, &entry->name_len);
6080 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6081 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6082 put_unaligned(location.objectid, &entry->ino);
6083 put_unaligned(found_key.offset, &entry->offset);
6085 addr += sizeof(struct dir_entry) + name_len;
6086 total_len += sizeof(struct dir_entry) + name_len;
6088 /* Catch error encountered during iteration */
6092 btrfs_release_path(path);
6094 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6098 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6103 * Stop new entries from being returned after we return the last
6106 * New directory entries are assigned a strictly increasing
6107 * offset. This means that new entries created during readdir
6108 * are *guaranteed* to be seen in the future by that readdir.
6109 * This has broken buggy programs which operate on names as
6110 * they're returned by readdir. Until we re-use freed offsets
6111 * we have this hack to stop new entries from being returned
6112 * under the assumption that they'll never reach this huge
6115 * This is being careful not to overflow 32bit loff_t unless the
6116 * last entry requires it because doing so has broken 32bit apps
6119 if (ctx->pos >= INT_MAX)
6120 ctx->pos = LLONG_MAX;
6127 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6128 btrfs_free_path(path);
6133 * This is somewhat expensive, updating the tree every time the
6134 * inode changes. But, it is most likely to find the inode in cache.
6135 * FIXME, needs more benchmarking...there are no reasons other than performance
6136 * to keep or drop this code.
6138 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6140 struct btrfs_root *root = inode->root;
6141 struct btrfs_fs_info *fs_info = root->fs_info;
6142 struct btrfs_trans_handle *trans;
6145 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6148 trans = btrfs_join_transaction(root);
6150 return PTR_ERR(trans);
6152 ret = btrfs_update_inode(trans, root, inode);
6153 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6154 /* whoops, lets try again with the full transaction */
6155 btrfs_end_transaction(trans);
6156 trans = btrfs_start_transaction(root, 1);
6158 return PTR_ERR(trans);
6160 ret = btrfs_update_inode(trans, root, inode);
6162 btrfs_end_transaction(trans);
6163 if (inode->delayed_node)
6164 btrfs_balance_delayed_items(fs_info);
6170 * This is a copy of file_update_time. We need this so we can return error on
6171 * ENOSPC for updating the inode in the case of file write and mmap writes.
6173 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6176 struct btrfs_root *root = BTRFS_I(inode)->root;
6177 bool dirty = flags & ~S_VERSION;
6179 if (btrfs_root_readonly(root))
6182 if (flags & S_VERSION)
6183 dirty |= inode_maybe_inc_iversion(inode, dirty);
6184 if (flags & S_CTIME)
6185 inode->i_ctime = *now;
6186 if (flags & S_MTIME)
6187 inode->i_mtime = *now;
6188 if (flags & S_ATIME)
6189 inode->i_atime = *now;
6190 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6194 * find the highest existing sequence number in a directory
6195 * and then set the in-memory index_cnt variable to reflect
6196 * free sequence numbers
6198 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6200 struct btrfs_root *root = inode->root;
6201 struct btrfs_key key, found_key;
6202 struct btrfs_path *path;
6203 struct extent_buffer *leaf;
6206 key.objectid = btrfs_ino(inode);
6207 key.type = BTRFS_DIR_INDEX_KEY;
6208 key.offset = (u64)-1;
6210 path = btrfs_alloc_path();
6214 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6217 /* FIXME: we should be able to handle this */
6222 if (path->slots[0] == 0) {
6223 inode->index_cnt = BTRFS_DIR_START_INDEX;
6229 leaf = path->nodes[0];
6230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6232 if (found_key.objectid != btrfs_ino(inode) ||
6233 found_key.type != BTRFS_DIR_INDEX_KEY) {
6234 inode->index_cnt = BTRFS_DIR_START_INDEX;
6238 inode->index_cnt = found_key.offset + 1;
6240 btrfs_free_path(path);
6245 * helper to find a free sequence number in a given directory. This current
6246 * code is very simple, later versions will do smarter things in the btree
6248 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6252 if (dir->index_cnt == (u64)-1) {
6253 ret = btrfs_inode_delayed_dir_index_count(dir);
6255 ret = btrfs_set_inode_index_count(dir);
6261 *index = dir->index_cnt;
6267 static int btrfs_insert_inode_locked(struct inode *inode)
6269 struct btrfs_iget_args args;
6271 args.ino = BTRFS_I(inode)->location.objectid;
6272 args.root = BTRFS_I(inode)->root;
6274 return insert_inode_locked4(inode,
6275 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6276 btrfs_find_actor, &args);
6279 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6280 unsigned int *trans_num_items)
6282 struct inode *dir = args->dir;
6283 struct inode *inode = args->inode;
6286 if (!args->orphan) {
6287 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6293 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6295 fscrypt_free_filename(&args->fname);
6299 /* 1 to add inode item */
6300 *trans_num_items = 1;
6301 /* 1 to add compression property */
6302 if (BTRFS_I(dir)->prop_compress)
6303 (*trans_num_items)++;
6304 /* 1 to add default ACL xattr */
6305 if (args->default_acl)
6306 (*trans_num_items)++;
6307 /* 1 to add access ACL xattr */
6309 (*trans_num_items)++;
6310 #ifdef CONFIG_SECURITY
6311 /* 1 to add LSM xattr */
6312 if (dir->i_security)
6313 (*trans_num_items)++;
6316 /* 1 to add orphan item */
6317 (*trans_num_items)++;
6321 * 1 to add dir index
6322 * 1 to update parent inode item
6324 * No need for 1 unit for the inode ref item because it is
6325 * inserted in a batch together with the inode item at
6326 * btrfs_create_new_inode().
6328 *trans_num_items += 3;
6333 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6335 posix_acl_release(args->acl);
6336 posix_acl_release(args->default_acl);
6337 fscrypt_free_filename(&args->fname);
6341 * Inherit flags from the parent inode.
6343 * Currently only the compression flags and the cow flags are inherited.
6345 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6351 if (flags & BTRFS_INODE_NOCOMPRESS) {
6352 inode->flags &= ~BTRFS_INODE_COMPRESS;
6353 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6354 } else if (flags & BTRFS_INODE_COMPRESS) {
6355 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6356 inode->flags |= BTRFS_INODE_COMPRESS;
6359 if (flags & BTRFS_INODE_NODATACOW) {
6360 inode->flags |= BTRFS_INODE_NODATACOW;
6361 if (S_ISREG(inode->vfs_inode.i_mode))
6362 inode->flags |= BTRFS_INODE_NODATASUM;
6365 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6368 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6369 struct btrfs_new_inode_args *args)
6371 struct inode *dir = args->dir;
6372 struct inode *inode = args->inode;
6373 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6374 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6375 struct btrfs_root *root;
6376 struct btrfs_inode_item *inode_item;
6377 struct btrfs_key *location;
6378 struct btrfs_path *path;
6380 struct btrfs_inode_ref *ref;
6381 struct btrfs_key key[2];
6383 struct btrfs_item_batch batch;
6387 path = btrfs_alloc_path();
6392 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6393 root = BTRFS_I(inode)->root;
6395 ret = btrfs_get_free_objectid(root, &objectid);
6398 inode->i_ino = objectid;
6402 * O_TMPFILE, set link count to 0, so that after this point, we
6403 * fill in an inode item with the correct link count.
6405 set_nlink(inode, 0);
6407 trace_btrfs_inode_request(dir);
6409 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6413 /* index_cnt is ignored for everything but a dir. */
6414 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6415 BTRFS_I(inode)->generation = trans->transid;
6416 inode->i_generation = BTRFS_I(inode)->generation;
6419 * Subvolumes don't inherit flags from their parent directory.
6420 * Originally this was probably by accident, but we probably can't
6421 * change it now without compatibility issues.
6424 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6426 if (S_ISREG(inode->i_mode)) {
6427 if (btrfs_test_opt(fs_info, NODATASUM))
6428 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6429 if (btrfs_test_opt(fs_info, NODATACOW))
6430 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6431 BTRFS_INODE_NODATASUM;
6434 location = &BTRFS_I(inode)->location;
6435 location->objectid = objectid;
6436 location->offset = 0;
6437 location->type = BTRFS_INODE_ITEM_KEY;
6439 ret = btrfs_insert_inode_locked(inode);
6442 BTRFS_I(dir)->index_cnt--;
6447 * We could have gotten an inode number from somebody who was fsynced
6448 * and then removed in this same transaction, so let's just set full
6449 * sync since it will be a full sync anyway and this will blow away the
6450 * old info in the log.
6452 btrfs_set_inode_full_sync(BTRFS_I(inode));
6454 key[0].objectid = objectid;
6455 key[0].type = BTRFS_INODE_ITEM_KEY;
6458 sizes[0] = sizeof(struct btrfs_inode_item);
6460 if (!args->orphan) {
6462 * Start new inodes with an inode_ref. This is slightly more
6463 * efficient for small numbers of hard links since they will
6464 * be packed into one item. Extended refs will kick in if we
6465 * add more hard links than can fit in the ref item.
6467 key[1].objectid = objectid;
6468 key[1].type = BTRFS_INODE_REF_KEY;
6470 key[1].offset = objectid;
6471 sizes[1] = 2 + sizeof(*ref);
6473 key[1].offset = btrfs_ino(BTRFS_I(dir));
6474 sizes[1] = name->len + sizeof(*ref);
6478 batch.keys = &key[0];
6479 batch.data_sizes = &sizes[0];
6480 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6481 batch.nr = args->orphan ? 1 : 2;
6482 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6484 btrfs_abort_transaction(trans, ret);
6488 inode->i_mtime = current_time(inode);
6489 inode->i_atime = inode->i_mtime;
6490 inode->i_ctime = inode->i_mtime;
6491 BTRFS_I(inode)->i_otime = inode->i_mtime;
6494 * We're going to fill the inode item now, so at this point the inode
6495 * must be fully initialized.
6498 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6499 struct btrfs_inode_item);
6500 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6501 sizeof(*inode_item));
6502 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6504 if (!args->orphan) {
6505 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6506 struct btrfs_inode_ref);
6507 ptr = (unsigned long)(ref + 1);
6509 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6510 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6511 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6513 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6515 btrfs_set_inode_ref_index(path->nodes[0], ref,
6516 BTRFS_I(inode)->dir_index);
6517 write_extent_buffer(path->nodes[0], name->name, ptr,
6522 btrfs_mark_buffer_dirty(path->nodes[0]);
6524 * We don't need the path anymore, plus inheriting properties, adding
6525 * ACLs, security xattrs, orphan item or adding the link, will result in
6526 * allocating yet another path. So just free our path.
6528 btrfs_free_path(path);
6532 struct inode *parent;
6535 * Subvolumes inherit properties from their parent subvolume,
6536 * not the directory they were created in.
6538 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6539 BTRFS_I(dir)->root);
6540 if (IS_ERR(parent)) {
6541 ret = PTR_ERR(parent);
6543 ret = btrfs_inode_inherit_props(trans, inode, parent);
6547 ret = btrfs_inode_inherit_props(trans, inode, dir);
6551 "error inheriting props for ino %llu (root %llu): %d",
6552 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6557 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6560 if (!args->subvol) {
6561 ret = btrfs_init_inode_security(trans, args);
6563 btrfs_abort_transaction(trans, ret);
6568 inode_tree_add(BTRFS_I(inode));
6570 trace_btrfs_inode_new(inode);
6571 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6573 btrfs_update_root_times(trans, root);
6576 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6578 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6579 0, BTRFS_I(inode)->dir_index);
6582 btrfs_abort_transaction(trans, ret);
6590 * discard_new_inode() calls iput(), but the caller owns the reference
6594 discard_new_inode(inode);
6596 btrfs_free_path(path);
6601 * utility function to add 'inode' into 'parent_inode' with
6602 * a give name and a given sequence number.
6603 * if 'add_backref' is true, also insert a backref from the
6604 * inode to the parent directory.
6606 int btrfs_add_link(struct btrfs_trans_handle *trans,
6607 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6608 const struct fscrypt_str *name, int add_backref, u64 index)
6611 struct btrfs_key key;
6612 struct btrfs_root *root = parent_inode->root;
6613 u64 ino = btrfs_ino(inode);
6614 u64 parent_ino = btrfs_ino(parent_inode);
6616 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6617 memcpy(&key, &inode->root->root_key, sizeof(key));
6620 key.type = BTRFS_INODE_ITEM_KEY;
6624 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6625 ret = btrfs_add_root_ref(trans, key.objectid,
6626 root->root_key.objectid, parent_ino,
6628 } else if (add_backref) {
6629 ret = btrfs_insert_inode_ref(trans, root, name,
6630 ino, parent_ino, index);
6633 /* Nothing to clean up yet */
6637 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6638 btrfs_inode_type(&inode->vfs_inode), index);
6639 if (ret == -EEXIST || ret == -EOVERFLOW)
6642 btrfs_abort_transaction(trans, ret);
6646 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6648 inode_inc_iversion(&parent_inode->vfs_inode);
6650 * If we are replaying a log tree, we do not want to update the mtime
6651 * and ctime of the parent directory with the current time, since the
6652 * log replay procedure is responsible for setting them to their correct
6653 * values (the ones it had when the fsync was done).
6655 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6656 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6658 parent_inode->vfs_inode.i_mtime = now;
6659 parent_inode->vfs_inode.i_ctime = now;
6661 ret = btrfs_update_inode(trans, root, parent_inode);
6663 btrfs_abort_transaction(trans, ret);
6667 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6670 err = btrfs_del_root_ref(trans, key.objectid,
6671 root->root_key.objectid, parent_ino,
6672 &local_index, name);
6674 btrfs_abort_transaction(trans, err);
6675 } else if (add_backref) {
6679 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6682 btrfs_abort_transaction(trans, err);
6685 /* Return the original error code */
6689 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6690 struct inode *inode)
6692 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6693 struct btrfs_root *root = BTRFS_I(dir)->root;
6694 struct btrfs_new_inode_args new_inode_args = {
6699 unsigned int trans_num_items;
6700 struct btrfs_trans_handle *trans;
6703 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6707 trans = btrfs_start_transaction(root, trans_num_items);
6708 if (IS_ERR(trans)) {
6709 err = PTR_ERR(trans);
6710 goto out_new_inode_args;
6713 err = btrfs_create_new_inode(trans, &new_inode_args);
6715 d_instantiate_new(dentry, inode);
6717 btrfs_end_transaction(trans);
6718 btrfs_btree_balance_dirty(fs_info);
6720 btrfs_new_inode_args_destroy(&new_inode_args);
6727 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6728 struct dentry *dentry, umode_t mode, dev_t rdev)
6730 struct inode *inode;
6732 inode = new_inode(dir->i_sb);
6735 inode_init_owner(mnt_userns, inode, dir, mode);
6736 inode->i_op = &btrfs_special_inode_operations;
6737 init_special_inode(inode, inode->i_mode, rdev);
6738 return btrfs_create_common(dir, dentry, inode);
6741 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6742 struct dentry *dentry, umode_t mode, bool excl)
6744 struct inode *inode;
6746 inode = new_inode(dir->i_sb);
6749 inode_init_owner(mnt_userns, inode, dir, mode);
6750 inode->i_fop = &btrfs_file_operations;
6751 inode->i_op = &btrfs_file_inode_operations;
6752 inode->i_mapping->a_ops = &btrfs_aops;
6753 return btrfs_create_common(dir, dentry, inode);
6756 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6757 struct dentry *dentry)
6759 struct btrfs_trans_handle *trans = NULL;
6760 struct btrfs_root *root = BTRFS_I(dir)->root;
6761 struct inode *inode = d_inode(old_dentry);
6762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6763 struct fscrypt_name fname;
6768 /* do not allow sys_link's with other subvols of the same device */
6769 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6772 if (inode->i_nlink >= BTRFS_LINK_MAX)
6775 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6779 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6784 * 2 items for inode and inode ref
6785 * 2 items for dir items
6786 * 1 item for parent inode
6787 * 1 item for orphan item deletion if O_TMPFILE
6789 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6790 if (IS_ERR(trans)) {
6791 err = PTR_ERR(trans);
6796 /* There are several dir indexes for this inode, clear the cache. */
6797 BTRFS_I(inode)->dir_index = 0ULL;
6799 inode_inc_iversion(inode);
6800 inode->i_ctime = current_time(inode);
6802 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6804 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6805 &fname.disk_name, 1, index);
6810 struct dentry *parent = dentry->d_parent;
6812 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6815 if (inode->i_nlink == 1) {
6817 * If new hard link count is 1, it's a file created
6818 * with open(2) O_TMPFILE flag.
6820 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6824 d_instantiate(dentry, inode);
6825 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6829 fscrypt_free_filename(&fname);
6831 btrfs_end_transaction(trans);
6833 inode_dec_link_count(inode);
6836 btrfs_btree_balance_dirty(fs_info);
6840 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6841 struct dentry *dentry, umode_t mode)
6843 struct inode *inode;
6845 inode = new_inode(dir->i_sb);
6848 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6849 inode->i_op = &btrfs_dir_inode_operations;
6850 inode->i_fop = &btrfs_dir_file_operations;
6851 return btrfs_create_common(dir, dentry, inode);
6854 static noinline int uncompress_inline(struct btrfs_path *path,
6856 struct btrfs_file_extent_item *item)
6859 struct extent_buffer *leaf = path->nodes[0];
6862 unsigned long inline_size;
6866 compress_type = btrfs_file_extent_compression(leaf, item);
6867 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6868 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6869 tmp = kmalloc(inline_size, GFP_NOFS);
6872 ptr = btrfs_file_extent_inline_start(item);
6874 read_extent_buffer(leaf, tmp, ptr, inline_size);
6876 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6877 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6880 * decompression code contains a memset to fill in any space between the end
6881 * of the uncompressed data and the end of max_size in case the decompressed
6882 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6883 * the end of an inline extent and the beginning of the next block, so we
6884 * cover that region here.
6887 if (max_size < PAGE_SIZE)
6888 memzero_page(page, max_size, PAGE_SIZE - max_size);
6893 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6896 struct btrfs_file_extent_item *fi;
6900 if (!page || PageUptodate(page))
6903 ASSERT(page_offset(page) == 0);
6905 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6906 struct btrfs_file_extent_item);
6907 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6908 return uncompress_inline(path, page, fi);
6910 copy_size = min_t(u64, PAGE_SIZE,
6911 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6912 kaddr = kmap_local_page(page);
6913 read_extent_buffer(path->nodes[0], kaddr,
6914 btrfs_file_extent_inline_start(fi), copy_size);
6915 kunmap_local(kaddr);
6916 if (copy_size < PAGE_SIZE)
6917 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6922 * Lookup the first extent overlapping a range in a file.
6924 * @inode: file to search in
6925 * @page: page to read extent data into if the extent is inline
6926 * @pg_offset: offset into @page to copy to
6927 * @start: file offset
6928 * @len: length of range starting at @start
6930 * Return the first &struct extent_map which overlaps the given range, reading
6931 * it from the B-tree and caching it if necessary. Note that there may be more
6932 * extents which overlap the given range after the returned extent_map.
6934 * If @page is not NULL and the extent is inline, this also reads the extent
6935 * data directly into the page and marks the extent up to date in the io_tree.
6937 * Return: ERR_PTR on error, non-NULL extent_map on success.
6939 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6940 struct page *page, size_t pg_offset,
6943 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6945 u64 extent_start = 0;
6947 u64 objectid = btrfs_ino(inode);
6948 int extent_type = -1;
6949 struct btrfs_path *path = NULL;
6950 struct btrfs_root *root = inode->root;
6951 struct btrfs_file_extent_item *item;
6952 struct extent_buffer *leaf;
6953 struct btrfs_key found_key;
6954 struct extent_map *em = NULL;
6955 struct extent_map_tree *em_tree = &inode->extent_tree;
6957 read_lock(&em_tree->lock);
6958 em = lookup_extent_mapping(em_tree, start, len);
6959 read_unlock(&em_tree->lock);
6962 if (em->start > start || em->start + em->len <= start)
6963 free_extent_map(em);
6964 else if (em->block_start == EXTENT_MAP_INLINE && page)
6965 free_extent_map(em);
6969 em = alloc_extent_map();
6974 em->start = EXTENT_MAP_HOLE;
6975 em->orig_start = EXTENT_MAP_HOLE;
6977 em->block_len = (u64)-1;
6979 path = btrfs_alloc_path();
6985 /* Chances are we'll be called again, so go ahead and do readahead */
6986 path->reada = READA_FORWARD;
6989 * The same explanation in load_free_space_cache applies here as well,
6990 * we only read when we're loading the free space cache, and at that
6991 * point the commit_root has everything we need.
6993 if (btrfs_is_free_space_inode(inode)) {
6994 path->search_commit_root = 1;
6995 path->skip_locking = 1;
6998 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7001 } else if (ret > 0) {
7002 if (path->slots[0] == 0)
7008 leaf = path->nodes[0];
7009 item = btrfs_item_ptr(leaf, path->slots[0],
7010 struct btrfs_file_extent_item);
7011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7012 if (found_key.objectid != objectid ||
7013 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7015 * If we backup past the first extent we want to move forward
7016 * and see if there is an extent in front of us, otherwise we'll
7017 * say there is a hole for our whole search range which can
7024 extent_type = btrfs_file_extent_type(leaf, item);
7025 extent_start = found_key.offset;
7026 extent_end = btrfs_file_extent_end(path);
7027 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7028 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7029 /* Only regular file could have regular/prealloc extent */
7030 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7033 "regular/prealloc extent found for non-regular inode %llu",
7037 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7040 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7045 if (start >= extent_end) {
7047 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7048 ret = btrfs_next_leaf(root, path);
7054 leaf = path->nodes[0];
7056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7057 if (found_key.objectid != objectid ||
7058 found_key.type != BTRFS_EXTENT_DATA_KEY)
7060 if (start + len <= found_key.offset)
7062 if (start > found_key.offset)
7065 /* New extent overlaps with existing one */
7067 em->orig_start = start;
7068 em->len = found_key.offset - start;
7069 em->block_start = EXTENT_MAP_HOLE;
7073 btrfs_extent_item_to_extent_map(inode, path, item, em);
7075 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7076 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7078 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7080 * Inline extent can only exist at file offset 0. This is
7081 * ensured by tree-checker and inline extent creation path.
7082 * Thus all members representing file offsets should be zero.
7084 ASSERT(pg_offset == 0);
7085 ASSERT(extent_start == 0);
7086 ASSERT(em->start == 0);
7089 * btrfs_extent_item_to_extent_map() should have properly
7090 * initialized em members already.
7092 * Other members are not utilized for inline extents.
7094 ASSERT(em->block_start == EXTENT_MAP_INLINE);
7095 ASSERT(em->len == fs_info->sectorsize);
7097 ret = read_inline_extent(inode, path, page);
7104 em->orig_start = start;
7106 em->block_start = EXTENT_MAP_HOLE;
7109 btrfs_release_path(path);
7110 if (em->start > start || extent_map_end(em) <= start) {
7112 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7113 em->start, em->len, start, len);
7118 write_lock(&em_tree->lock);
7119 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7120 write_unlock(&em_tree->lock);
7122 btrfs_free_path(path);
7124 trace_btrfs_get_extent(root, inode, em);
7127 free_extent_map(em);
7128 return ERR_PTR(ret);
7133 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7136 const u64 orig_start,
7137 const u64 block_start,
7138 const u64 block_len,
7139 const u64 orig_block_len,
7140 const u64 ram_bytes,
7143 struct extent_map *em = NULL;
7146 if (type != BTRFS_ORDERED_NOCOW) {
7147 em = create_io_em(inode, start, len, orig_start, block_start,
7148 block_len, orig_block_len, ram_bytes,
7149 BTRFS_COMPRESS_NONE, /* compress_type */
7154 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7157 (1 << BTRFS_ORDERED_DIRECT),
7158 BTRFS_COMPRESS_NONE);
7161 free_extent_map(em);
7162 btrfs_drop_extent_map_range(inode, start,
7163 start + len - 1, false);
7172 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7175 struct btrfs_root *root = inode->root;
7176 struct btrfs_fs_info *fs_info = root->fs_info;
7177 struct extent_map *em;
7178 struct btrfs_key ins;
7182 alloc_hint = get_extent_allocation_hint(inode, start, len);
7183 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7184 0, alloc_hint, &ins, 1, 1);
7186 return ERR_PTR(ret);
7188 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7189 ins.objectid, ins.offset, ins.offset,
7190 ins.offset, BTRFS_ORDERED_REGULAR);
7191 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7193 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7199 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7201 struct btrfs_block_group *block_group;
7202 bool readonly = false;
7204 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7205 if (!block_group || block_group->ro)
7208 btrfs_put_block_group(block_group);
7213 * Check if we can do nocow write into the range [@offset, @offset + @len)
7215 * @offset: File offset
7216 * @len: The length to write, will be updated to the nocow writeable
7218 * @orig_start: (optional) Return the original file offset of the file extent
7219 * @orig_len: (optional) Return the original on-disk length of the file extent
7220 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7221 * @strict: if true, omit optimizations that might force us into unnecessary
7222 * cow. e.g., don't trust generation number.
7225 * >0 and update @len if we can do nocow write
7226 * 0 if we can't do nocow write
7227 * <0 if error happened
7229 * NOTE: This only checks the file extents, caller is responsible to wait for
7230 * any ordered extents.
7232 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7233 u64 *orig_start, u64 *orig_block_len,
7234 u64 *ram_bytes, bool nowait, bool strict)
7236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7237 struct can_nocow_file_extent_args nocow_args = { 0 };
7238 struct btrfs_path *path;
7240 struct extent_buffer *leaf;
7241 struct btrfs_root *root = BTRFS_I(inode)->root;
7242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7243 struct btrfs_file_extent_item *fi;
7244 struct btrfs_key key;
7247 path = btrfs_alloc_path();
7250 path->nowait = nowait;
7252 ret = btrfs_lookup_file_extent(NULL, root, path,
7253 btrfs_ino(BTRFS_I(inode)), offset, 0);
7258 if (path->slots[0] == 0) {
7259 /* can't find the item, must cow */
7266 leaf = path->nodes[0];
7267 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7268 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7269 key.type != BTRFS_EXTENT_DATA_KEY) {
7270 /* not our file or wrong item type, must cow */
7274 if (key.offset > offset) {
7275 /* Wrong offset, must cow */
7279 if (btrfs_file_extent_end(path) <= offset)
7282 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7283 found_type = btrfs_file_extent_type(leaf, fi);
7285 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7287 nocow_args.start = offset;
7288 nocow_args.end = offset + *len - 1;
7289 nocow_args.strict = strict;
7290 nocow_args.free_path = true;
7292 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7293 /* can_nocow_file_extent() has freed the path. */
7297 /* Treat errors as not being able to NOCOW. */
7303 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7306 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7307 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7310 range_end = round_up(offset + nocow_args.num_bytes,
7311 root->fs_info->sectorsize) - 1;
7312 ret = test_range_bit(io_tree, offset, range_end,
7313 EXTENT_DELALLOC, 0, NULL);
7321 *orig_start = key.offset - nocow_args.extent_offset;
7323 *orig_block_len = nocow_args.disk_num_bytes;
7325 *len = nocow_args.num_bytes;
7328 btrfs_free_path(path);
7332 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7333 struct extent_state **cached_state,
7334 unsigned int iomap_flags)
7336 const bool writing = (iomap_flags & IOMAP_WRITE);
7337 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7338 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7339 struct btrfs_ordered_extent *ordered;
7344 if (!try_lock_extent(io_tree, lockstart, lockend,
7348 lock_extent(io_tree, lockstart, lockend, cached_state);
7351 * We're concerned with the entire range that we're going to be
7352 * doing DIO to, so we need to make sure there's no ordered
7353 * extents in this range.
7355 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7356 lockend - lockstart + 1);
7359 * We need to make sure there are no buffered pages in this
7360 * range either, we could have raced between the invalidate in
7361 * generic_file_direct_write and locking the extent. The
7362 * invalidate needs to happen so that reads after a write do not
7366 (!writing || !filemap_range_has_page(inode->i_mapping,
7367 lockstart, lockend)))
7370 unlock_extent(io_tree, lockstart, lockend, cached_state);
7374 btrfs_put_ordered_extent(ordered);
7379 * If we are doing a DIO read and the ordered extent we
7380 * found is for a buffered write, we can not wait for it
7381 * to complete and retry, because if we do so we can
7382 * deadlock with concurrent buffered writes on page
7383 * locks. This happens only if our DIO read covers more
7384 * than one extent map, if at this point has already
7385 * created an ordered extent for a previous extent map
7386 * and locked its range in the inode's io tree, and a
7387 * concurrent write against that previous extent map's
7388 * range and this range started (we unlock the ranges
7389 * in the io tree only when the bios complete and
7390 * buffered writes always lock pages before attempting
7391 * to lock range in the io tree).
7394 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7395 btrfs_start_ordered_extent(ordered, 1);
7397 ret = nowait ? -EAGAIN : -ENOTBLK;
7398 btrfs_put_ordered_extent(ordered);
7401 * We could trigger writeback for this range (and wait
7402 * for it to complete) and then invalidate the pages for
7403 * this range (through invalidate_inode_pages2_range()),
7404 * but that can lead us to a deadlock with a concurrent
7405 * call to readahead (a buffered read or a defrag call
7406 * triggered a readahead) on a page lock due to an
7407 * ordered dio extent we created before but did not have
7408 * yet a corresponding bio submitted (whence it can not
7409 * complete), which makes readahead wait for that
7410 * ordered extent to complete while holding a lock on
7413 ret = nowait ? -EAGAIN : -ENOTBLK;
7425 /* The callers of this must take lock_extent() */
7426 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7427 u64 len, u64 orig_start, u64 block_start,
7428 u64 block_len, u64 orig_block_len,
7429 u64 ram_bytes, int compress_type,
7432 struct extent_map *em;
7435 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7436 type == BTRFS_ORDERED_COMPRESSED ||
7437 type == BTRFS_ORDERED_NOCOW ||
7438 type == BTRFS_ORDERED_REGULAR);
7440 em = alloc_extent_map();
7442 return ERR_PTR(-ENOMEM);
7445 em->orig_start = orig_start;
7447 em->block_len = block_len;
7448 em->block_start = block_start;
7449 em->orig_block_len = orig_block_len;
7450 em->ram_bytes = ram_bytes;
7451 em->generation = -1;
7452 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7453 if (type == BTRFS_ORDERED_PREALLOC) {
7454 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7455 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7456 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7457 em->compress_type = compress_type;
7460 ret = btrfs_replace_extent_map_range(inode, em, true);
7462 free_extent_map(em);
7463 return ERR_PTR(ret);
7466 /* em got 2 refs now, callers needs to do free_extent_map once. */
7471 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7472 struct inode *inode,
7473 struct btrfs_dio_data *dio_data,
7475 unsigned int iomap_flags)
7477 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7479 struct extent_map *em = *map;
7481 u64 block_start, orig_start, orig_block_len, ram_bytes;
7482 struct btrfs_block_group *bg;
7483 bool can_nocow = false;
7484 bool space_reserved = false;
7489 * We don't allocate a new extent in the following cases
7491 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7493 * 2) The extent is marked as PREALLOC. We're good to go here and can
7494 * just use the extent.
7497 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7498 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7499 em->block_start != EXTENT_MAP_HOLE)) {
7500 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7501 type = BTRFS_ORDERED_PREALLOC;
7503 type = BTRFS_ORDERED_NOCOW;
7504 len = min(len, em->len - (start - em->start));
7505 block_start = em->block_start + (start - em->start);
7507 if (can_nocow_extent(inode, start, &len, &orig_start,
7508 &orig_block_len, &ram_bytes, false, false) == 1) {
7509 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7517 struct extent_map *em2;
7519 /* We can NOCOW, so only need to reserve metadata space. */
7520 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7523 /* Our caller expects us to free the input extent map. */
7524 free_extent_map(em);
7526 btrfs_dec_nocow_writers(bg);
7527 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7531 space_reserved = true;
7533 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7534 orig_start, block_start,
7535 len, orig_block_len,
7537 btrfs_dec_nocow_writers(bg);
7538 if (type == BTRFS_ORDERED_PREALLOC) {
7539 free_extent_map(em);
7549 dio_data->nocow_done = true;
7551 /* Our caller expects us to free the input extent map. */
7552 free_extent_map(em);
7559 * If we could not allocate data space before locking the file
7560 * range and we can't do a NOCOW write, then we have to fail.
7562 if (!dio_data->data_space_reserved)
7566 * We have to COW and we have already reserved data space before,
7567 * so now we reserve only metadata.
7569 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7573 space_reserved = true;
7575 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7581 len = min(len, em->len - (start - em->start));
7583 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7584 prev_len - len, true);
7588 * We have created our ordered extent, so we can now release our reservation
7589 * for an outstanding extent.
7591 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7594 * Need to update the i_size under the extent lock so buffered
7595 * readers will get the updated i_size when we unlock.
7597 if (start + len > i_size_read(inode))
7598 i_size_write(inode, start + len);
7600 if (ret && space_reserved) {
7601 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7602 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7607 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7608 loff_t length, unsigned int flags, struct iomap *iomap,
7609 struct iomap *srcmap)
7611 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7612 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7613 struct extent_map *em;
7614 struct extent_state *cached_state = NULL;
7615 struct btrfs_dio_data *dio_data = iter->private;
7616 u64 lockstart, lockend;
7617 const bool write = !!(flags & IOMAP_WRITE);
7620 const u64 data_alloc_len = length;
7621 bool unlock_extents = false;
7624 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7625 * we're NOWAIT we may submit a bio for a partial range and return
7626 * EIOCBQUEUED, which would result in an errant short read.
7628 * The best way to handle this would be to allow for partial completions
7629 * of iocb's, so we could submit the partial bio, return and fault in
7630 * the rest of the pages, and then submit the io for the rest of the
7631 * range. However we don't have that currently, so simply return
7632 * -EAGAIN at this point so that the normal path is used.
7634 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7638 * Cap the size of reads to that usually seen in buffered I/O as we need
7639 * to allocate a contiguous array for the checksums.
7642 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7645 lockend = start + len - 1;
7648 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7649 * enough if we've written compressed pages to this area, so we need to
7650 * flush the dirty pages again to make absolutely sure that any
7651 * outstanding dirty pages are on disk - the first flush only starts
7652 * compression on the data, while keeping the pages locked, so by the
7653 * time the second flush returns we know bios for the compressed pages
7654 * were submitted and finished, and the pages no longer under writeback.
7656 * If we have a NOWAIT request and we have any pages in the range that
7657 * are locked, likely due to compression still in progress, we don't want
7658 * to block on page locks. We also don't want to block on pages marked as
7659 * dirty or under writeback (same as for the non-compression case).
7660 * iomap_dio_rw() did the same check, but after that and before we got
7661 * here, mmap'ed writes may have happened or buffered reads started
7662 * (readpage() and readahead(), which lock pages), as we haven't locked
7663 * the file range yet.
7665 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7666 &BTRFS_I(inode)->runtime_flags)) {
7667 if (flags & IOMAP_NOWAIT) {
7668 if (filemap_range_needs_writeback(inode->i_mapping,
7669 lockstart, lockend))
7672 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7673 start + length - 1);
7679 memset(dio_data, 0, sizeof(*dio_data));
7682 * We always try to allocate data space and must do it before locking
7683 * the file range, to avoid deadlocks with concurrent writes to the same
7684 * range if the range has several extents and the writes don't expand the
7685 * current i_size (the inode lock is taken in shared mode). If we fail to
7686 * allocate data space here we continue and later, after locking the
7687 * file range, we fail with ENOSPC only if we figure out we can not do a
7690 if (write && !(flags & IOMAP_NOWAIT)) {
7691 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7692 &dio_data->data_reserved,
7693 start, data_alloc_len, false);
7695 dio_data->data_space_reserved = true;
7696 else if (ret && !(BTRFS_I(inode)->flags &
7697 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7702 * If this errors out it's because we couldn't invalidate pagecache for
7703 * this range and we need to fallback to buffered IO, or we are doing a
7704 * NOWAIT read/write and we need to block.
7706 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7710 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7717 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7718 * io. INLINE is special, and we could probably kludge it in here, but
7719 * it's still buffered so for safety lets just fall back to the generic
7722 * For COMPRESSED we _have_ to read the entire extent in so we can
7723 * decompress it, so there will be buffering required no matter what we
7724 * do, so go ahead and fallback to buffered.
7726 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7727 * to buffered IO. Don't blame me, this is the price we pay for using
7730 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7731 em->block_start == EXTENT_MAP_INLINE) {
7732 free_extent_map(em);
7734 * If we are in a NOWAIT context, return -EAGAIN in order to
7735 * fallback to buffered IO. This is not only because we can
7736 * block with buffered IO (no support for NOWAIT semantics at
7737 * the moment) but also to avoid returning short reads to user
7738 * space - this happens if we were able to read some data from
7739 * previous non-compressed extents and then when we fallback to
7740 * buffered IO, at btrfs_file_read_iter() by calling
7741 * filemap_read(), we fail to fault in pages for the read buffer,
7742 * in which case filemap_read() returns a short read (the number
7743 * of bytes previously read is > 0, so it does not return -EFAULT).
7745 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7749 len = min(len, em->len - (start - em->start));
7752 * If we have a NOWAIT request and the range contains multiple extents
7753 * (or a mix of extents and holes), then we return -EAGAIN to make the
7754 * caller fallback to a context where it can do a blocking (without
7755 * NOWAIT) request. This way we avoid doing partial IO and returning
7756 * success to the caller, which is not optimal for writes and for reads
7757 * it can result in unexpected behaviour for an application.
7759 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7760 * iomap_dio_rw(), we can end up returning less data then what the caller
7761 * asked for, resulting in an unexpected, and incorrect, short read.
7762 * That is, the caller asked to read N bytes and we return less than that,
7763 * which is wrong unless we are crossing EOF. This happens if we get a
7764 * page fault error when trying to fault in pages for the buffer that is
7765 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7766 * have previously submitted bios for other extents in the range, in
7767 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7768 * those bios have completed by the time we get the page fault error,
7769 * which we return back to our caller - we should only return EIOCBQUEUED
7770 * after we have submitted bios for all the extents in the range.
7772 if ((flags & IOMAP_NOWAIT) && len < length) {
7773 free_extent_map(em);
7779 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7783 unlock_extents = true;
7784 /* Recalc len in case the new em is smaller than requested */
7785 len = min(len, em->len - (start - em->start));
7786 if (dio_data->data_space_reserved) {
7788 u64 release_len = 0;
7790 if (dio_data->nocow_done) {
7791 release_offset = start;
7792 release_len = data_alloc_len;
7793 } else if (len < data_alloc_len) {
7794 release_offset = start + len;
7795 release_len = data_alloc_len - len;
7798 if (release_len > 0)
7799 btrfs_free_reserved_data_space(BTRFS_I(inode),
7800 dio_data->data_reserved,
7806 * We need to unlock only the end area that we aren't using.
7807 * The rest is going to be unlocked by the endio routine.
7809 lockstart = start + len;
7810 if (lockstart < lockend)
7811 unlock_extents = true;
7815 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7818 free_extent_state(cached_state);
7821 * Translate extent map information to iomap.
7822 * We trim the extents (and move the addr) even though iomap code does
7823 * that, since we have locked only the parts we are performing I/O in.
7825 if ((em->block_start == EXTENT_MAP_HOLE) ||
7826 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7827 iomap->addr = IOMAP_NULL_ADDR;
7828 iomap->type = IOMAP_HOLE;
7830 iomap->addr = em->block_start + (start - em->start);
7831 iomap->type = IOMAP_MAPPED;
7833 iomap->offset = start;
7834 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7835 iomap->length = len;
7837 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7838 iomap->flags |= IOMAP_F_ZONE_APPEND;
7840 free_extent_map(em);
7845 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7848 if (dio_data->data_space_reserved) {
7849 btrfs_free_reserved_data_space(BTRFS_I(inode),
7850 dio_data->data_reserved,
7851 start, data_alloc_len);
7852 extent_changeset_free(dio_data->data_reserved);
7858 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7859 ssize_t written, unsigned int flags, struct iomap *iomap)
7861 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7862 struct btrfs_dio_data *dio_data = iter->private;
7863 size_t submitted = dio_data->submitted;
7864 const bool write = !!(flags & IOMAP_WRITE);
7867 if (!write && (iomap->type == IOMAP_HOLE)) {
7868 /* If reading from a hole, unlock and return */
7869 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7874 if (submitted < length) {
7876 length -= submitted;
7878 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7879 pos, length, false);
7881 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7882 pos + length - 1, NULL);
7887 extent_changeset_free(dio_data->data_reserved);
7891 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7894 * This implies a barrier so that stores to dio_bio->bi_status before
7895 * this and loads of dio_bio->bi_status after this are fully ordered.
7897 if (!refcount_dec_and_test(&dip->refs))
7900 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7901 btrfs_mark_ordered_io_finished(dip->inode, NULL,
7902 dip->file_offset, dip->bytes,
7903 !dip->bio.bi_status);
7905 unlock_extent(&dip->inode->io_tree,
7907 dip->file_offset + dip->bytes - 1, NULL);
7911 bio_endio(&dip->bio);
7914 void btrfs_submit_dio_repair_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
7916 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7918 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7920 refcount_inc(&dip->refs);
7921 btrfs_submit_bio(inode->root->fs_info, bio, mirror_num);
7924 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7925 struct btrfs_bio *bbio,
7926 const bool uptodate)
7928 struct inode *inode = &dip->inode->vfs_inode;
7929 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7930 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7931 blk_status_t err = BLK_STS_OK;
7932 struct bvec_iter iter;
7936 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
7937 u64 start = bbio->file_offset + offset;
7940 (!csum || !btrfs_check_data_csum(BTRFS_I(inode), bbio, offset,
7941 bv.bv_page, bv.bv_offset))) {
7942 btrfs_clean_io_failure(BTRFS_I(inode), start,
7943 bv.bv_page, bv.bv_offset);
7947 ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset,
7948 bv.bv_page, bv.bv_offset, false);
7950 err = errno_to_blk_status(ret);
7957 blk_status_t btrfs_submit_bio_start_direct_io(struct btrfs_inode *inode,
7959 u64 dio_file_offset)
7961 return btrfs_csum_one_bio(inode, bio, dio_file_offset, false);
7964 static void btrfs_end_dio_bio(struct btrfs_bio *bbio)
7966 struct btrfs_dio_private *dip = bbio->private;
7967 struct bio *bio = &bbio->bio;
7968 blk_status_t err = bio->bi_status;
7971 btrfs_warn(dip->inode->root->fs_info,
7972 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7973 btrfs_ino(dip->inode), bio_op(bio),
7974 bio->bi_opf, bio->bi_iter.bi_sector,
7975 bio->bi_iter.bi_size, err);
7977 if (bio_op(bio) == REQ_OP_READ)
7978 err = btrfs_check_read_dio_bio(dip, bbio, !err);
7981 dip->bio.bi_status = err;
7983 btrfs_record_physical_zoned(&dip->inode->vfs_inode, bbio->file_offset, bio);
7986 btrfs_dio_private_put(dip);
7989 static void btrfs_submit_dio_bio(struct bio *bio, struct btrfs_inode *inode,
7990 u64 file_offset, int async_submit)
7992 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7993 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7996 /* Save the original iter for read repair */
7997 if (btrfs_op(bio) == BTRFS_MAP_READ)
7998 btrfs_bio(bio)->iter = bio->bi_iter;
8000 if (inode->flags & BTRFS_INODE_NODATASUM)
8003 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
8004 /* Check btrfs_submit_data_write_bio() for async submit rules */
8005 if (async_submit && !atomic_read(&inode->sync_writers) &&
8006 btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8007 WQ_SUBMIT_DATA_DIO))
8011 * If we aren't doing async submit, calculate the csum of the
8014 ret = btrfs_csum_one_bio(inode, bio, file_offset, false);
8016 btrfs_bio_end_io(btrfs_bio(bio), ret);
8020 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
8021 file_offset - dip->file_offset);
8024 btrfs_submit_bio(fs_info, bio, 0);
8027 static void btrfs_submit_direct(const struct iomap_iter *iter,
8028 struct bio *dio_bio, loff_t file_offset)
8030 struct btrfs_dio_private *dip =
8031 container_of(dio_bio, struct btrfs_dio_private, bio);
8032 struct inode *inode = iter->inode;
8033 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8034 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8035 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8036 BTRFS_BLOCK_GROUP_RAID56_MASK);
8039 int async_submit = 0;
8041 u64 clone_offset = 0;
8045 blk_status_t status;
8046 struct btrfs_io_geometry geom;
8047 struct btrfs_dio_data *dio_data = iter->private;
8048 struct extent_map *em = NULL;
8050 dip->inode = BTRFS_I(inode);
8051 dip->file_offset = file_offset;
8052 dip->bytes = dio_bio->bi_iter.bi_size;
8053 refcount_set(&dip->refs, 1);
8056 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8057 unsigned int nr_sectors =
8058 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8061 * Load the csums up front to reduce csum tree searches and
8062 * contention when submitting bios.
8064 status = BLK_STS_RESOURCE;
8065 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8069 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8070 if (status != BLK_STS_OK)
8074 start_sector = dio_bio->bi_iter.bi_sector;
8075 submit_len = dio_bio->bi_iter.bi_size;
8078 logical = start_sector << 9;
8079 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8081 status = errno_to_blk_status(PTR_ERR(em));
8085 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8088 status = errno_to_blk_status(ret);
8092 clone_len = min(submit_len, geom.len);
8093 ASSERT(clone_len <= UINT_MAX);
8096 * This will never fail as it's passing GPF_NOFS and
8097 * the allocation is backed by btrfs_bioset.
8099 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len,
8100 btrfs_end_dio_bio, dip);
8101 btrfs_bio(bio)->file_offset = file_offset;
8103 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8104 status = extract_ordered_extent(BTRFS_I(inode), bio,
8112 ASSERT(submit_len >= clone_len);
8113 submit_len -= clone_len;
8116 * Increase the count before we submit the bio so we know
8117 * the end IO handler won't happen before we increase the
8118 * count. Otherwise, the dip might get freed before we're
8119 * done setting it up.
8121 * We transfer the initial reference to the last bio, so we
8122 * don't need to increment the reference count for the last one.
8124 if (submit_len > 0) {
8125 refcount_inc(&dip->refs);
8127 * If we are submitting more than one bio, submit them
8128 * all asynchronously. The exception is RAID 5 or 6, as
8129 * asynchronous checksums make it difficult to collect
8130 * full stripe writes.
8136 btrfs_submit_dio_bio(bio, BTRFS_I(inode), file_offset, async_submit);
8138 dio_data->submitted += clone_len;
8139 clone_offset += clone_len;
8140 start_sector += clone_len >> 9;
8141 file_offset += clone_len;
8143 free_extent_map(em);
8144 } while (submit_len > 0);
8148 free_extent_map(em);
8150 dio_bio->bi_status = status;
8151 btrfs_dio_private_put(dip);
8154 static const struct iomap_ops btrfs_dio_iomap_ops = {
8155 .iomap_begin = btrfs_dio_iomap_begin,
8156 .iomap_end = btrfs_dio_iomap_end,
8159 static const struct iomap_dio_ops btrfs_dio_ops = {
8160 .submit_io = btrfs_submit_direct,
8161 .bio_set = &btrfs_dio_bioset,
8164 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8166 struct btrfs_dio_data data;
8168 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8169 IOMAP_DIO_PARTIAL, &data, done_before);
8172 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
8175 struct btrfs_dio_data data;
8177 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8178 IOMAP_DIO_PARTIAL, &data, done_before);
8181 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8186 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8191 * fiemap_prep() called filemap_write_and_wait() for the whole possible
8192 * file range (0 to LLONG_MAX), but that is not enough if we have
8193 * compression enabled. The first filemap_fdatawrite_range() only kicks
8194 * in the compression of data (in an async thread) and will return
8195 * before the compression is done and writeback is started. A second
8196 * filemap_fdatawrite_range() is needed to wait for the compression to
8197 * complete and writeback to start. We also need to wait for ordered
8198 * extents to complete, because our fiemap implementation uses mainly
8199 * file extent items to list the extents, searching for extent maps
8200 * only for file ranges with holes or prealloc extents to figure out
8201 * if we have delalloc in those ranges.
8203 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
8204 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
8209 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8212 static int btrfs_writepages(struct address_space *mapping,
8213 struct writeback_control *wbc)
8215 return extent_writepages(mapping, wbc);
8218 static void btrfs_readahead(struct readahead_control *rac)
8220 extent_readahead(rac);
8224 * For release_folio() and invalidate_folio() we have a race window where
8225 * folio_end_writeback() is called but the subpage spinlock is not yet released.
8226 * If we continue to release/invalidate the page, we could cause use-after-free
8227 * for subpage spinlock. So this function is to spin and wait for subpage
8230 static void wait_subpage_spinlock(struct page *page)
8232 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8233 struct btrfs_subpage *subpage;
8235 if (!btrfs_is_subpage(fs_info, page))
8238 ASSERT(PagePrivate(page) && page->private);
8239 subpage = (struct btrfs_subpage *)page->private;
8242 * This may look insane as we just acquire the spinlock and release it,
8243 * without doing anything. But we just want to make sure no one is
8244 * still holding the subpage spinlock.
8245 * And since the page is not dirty nor writeback, and we have page
8246 * locked, the only possible way to hold a spinlock is from the endio
8247 * function to clear page writeback.
8249 * Here we just acquire the spinlock so that all existing callers
8250 * should exit and we're safe to release/invalidate the page.
8252 spin_lock_irq(&subpage->lock);
8253 spin_unlock_irq(&subpage->lock);
8256 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8258 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8261 wait_subpage_spinlock(&folio->page);
8262 clear_page_extent_mapped(&folio->page);
8267 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8269 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8271 return __btrfs_release_folio(folio, gfp_flags);
8274 #ifdef CONFIG_MIGRATION
8275 static int btrfs_migrate_folio(struct address_space *mapping,
8276 struct folio *dst, struct folio *src,
8277 enum migrate_mode mode)
8279 int ret = filemap_migrate_folio(mapping, dst, src, mode);
8281 if (ret != MIGRATEPAGE_SUCCESS)
8284 if (folio_test_ordered(src)) {
8285 folio_clear_ordered(src);
8286 folio_set_ordered(dst);
8289 return MIGRATEPAGE_SUCCESS;
8292 #define btrfs_migrate_folio NULL
8295 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8298 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8299 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8300 struct extent_io_tree *tree = &inode->io_tree;
8301 struct extent_state *cached_state = NULL;
8302 u64 page_start = folio_pos(folio);
8303 u64 page_end = page_start + folio_size(folio) - 1;
8305 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8308 * We have folio locked so no new ordered extent can be created on this
8309 * page, nor bio can be submitted for this folio.
8311 * But already submitted bio can still be finished on this folio.
8312 * Furthermore, endio function won't skip folio which has Ordered
8313 * (Private2) already cleared, so it's possible for endio and
8314 * invalidate_folio to do the same ordered extent accounting twice
8317 * So here we wait for any submitted bios to finish, so that we won't
8318 * do double ordered extent accounting on the same folio.
8320 folio_wait_writeback(folio);
8321 wait_subpage_spinlock(&folio->page);
8324 * For subpage case, we have call sites like
8325 * btrfs_punch_hole_lock_range() which passes range not aligned to
8327 * If the range doesn't cover the full folio, we don't need to and
8328 * shouldn't clear page extent mapped, as folio->private can still
8329 * record subpage dirty bits for other part of the range.
8331 * For cases that invalidate the full folio even the range doesn't
8332 * cover the full folio, like invalidating the last folio, we're
8333 * still safe to wait for ordered extent to finish.
8335 if (!(offset == 0 && length == folio_size(folio))) {
8336 btrfs_release_folio(folio, GFP_NOFS);
8340 if (!inode_evicting)
8341 lock_extent(tree, page_start, page_end, &cached_state);
8344 while (cur < page_end) {
8345 struct btrfs_ordered_extent *ordered;
8348 u32 extra_flags = 0;
8350 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8351 page_end + 1 - cur);
8353 range_end = page_end;
8355 * No ordered extent covering this range, we are safe
8356 * to delete all extent states in the range.
8358 extra_flags = EXTENT_CLEAR_ALL_BITS;
8361 if (ordered->file_offset > cur) {
8363 * There is a range between [cur, oe->file_offset) not
8364 * covered by any ordered extent.
8365 * We are safe to delete all extent states, and handle
8366 * the ordered extent in the next iteration.
8368 range_end = ordered->file_offset - 1;
8369 extra_flags = EXTENT_CLEAR_ALL_BITS;
8373 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8375 ASSERT(range_end + 1 - cur < U32_MAX);
8376 range_len = range_end + 1 - cur;
8377 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8379 * If Ordered (Private2) is cleared, it means endio has
8380 * already been executed for the range.
8381 * We can't delete the extent states as
8382 * btrfs_finish_ordered_io() may still use some of them.
8386 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8389 * IO on this page will never be started, so we need to account
8390 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8391 * here, must leave that up for the ordered extent completion.
8393 * This will also unlock the range for incoming
8394 * btrfs_finish_ordered_io().
8396 if (!inode_evicting)
8397 clear_extent_bit(tree, cur, range_end,
8399 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8400 EXTENT_DEFRAG, &cached_state);
8402 spin_lock_irq(&inode->ordered_tree.lock);
8403 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8404 ordered->truncated_len = min(ordered->truncated_len,
8405 cur - ordered->file_offset);
8406 spin_unlock_irq(&inode->ordered_tree.lock);
8409 * If the ordered extent has finished, we're safe to delete all
8410 * the extent states of the range, otherwise
8411 * btrfs_finish_ordered_io() will get executed by endio for
8412 * other pages, so we can't delete extent states.
8414 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8415 cur, range_end + 1 - cur)) {
8416 btrfs_finish_ordered_io(ordered);
8418 * The ordered extent has finished, now we're again
8419 * safe to delete all extent states of the range.
8421 extra_flags = EXTENT_CLEAR_ALL_BITS;
8425 btrfs_put_ordered_extent(ordered);
8427 * Qgroup reserved space handler
8428 * Sector(s) here will be either:
8430 * 1) Already written to disk or bio already finished
8431 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8432 * Qgroup will be handled by its qgroup_record then.
8433 * btrfs_qgroup_free_data() call will do nothing here.
8435 * 2) Not written to disk yet
8436 * Then btrfs_qgroup_free_data() call will clear the
8437 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8438 * reserved data space.
8439 * Since the IO will never happen for this page.
8441 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8442 if (!inode_evicting) {
8443 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8444 EXTENT_DELALLOC | EXTENT_UPTODATE |
8445 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8446 extra_flags, &cached_state);
8448 cur = range_end + 1;
8451 * We have iterated through all ordered extents of the page, the page
8452 * should not have Ordered (Private2) anymore, or the above iteration
8453 * did something wrong.
8455 ASSERT(!folio_test_ordered(folio));
8456 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8457 if (!inode_evicting)
8458 __btrfs_release_folio(folio, GFP_NOFS);
8459 clear_page_extent_mapped(&folio->page);
8463 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8464 * called from a page fault handler when a page is first dirtied. Hence we must
8465 * be careful to check for EOF conditions here. We set the page up correctly
8466 * for a written page which means we get ENOSPC checking when writing into
8467 * holes and correct delalloc and unwritten extent mapping on filesystems that
8468 * support these features.
8470 * We are not allowed to take the i_mutex here so we have to play games to
8471 * protect against truncate races as the page could now be beyond EOF. Because
8472 * truncate_setsize() writes the inode size before removing pages, once we have
8473 * the page lock we can determine safely if the page is beyond EOF. If it is not
8474 * beyond EOF, then the page is guaranteed safe against truncation until we
8477 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8479 struct page *page = vmf->page;
8480 struct inode *inode = file_inode(vmf->vma->vm_file);
8481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8482 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8483 struct btrfs_ordered_extent *ordered;
8484 struct extent_state *cached_state = NULL;
8485 struct extent_changeset *data_reserved = NULL;
8486 unsigned long zero_start;
8496 reserved_space = PAGE_SIZE;
8498 sb_start_pagefault(inode->i_sb);
8499 page_start = page_offset(page);
8500 page_end = page_start + PAGE_SIZE - 1;
8504 * Reserving delalloc space after obtaining the page lock can lead to
8505 * deadlock. For example, if a dirty page is locked by this function
8506 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8507 * dirty page write out, then the btrfs_writepages() function could
8508 * end up waiting indefinitely to get a lock on the page currently
8509 * being processed by btrfs_page_mkwrite() function.
8511 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8512 page_start, reserved_space);
8514 ret2 = file_update_time(vmf->vma->vm_file);
8518 ret = vmf_error(ret2);
8524 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8526 down_read(&BTRFS_I(inode)->i_mmap_lock);
8528 size = i_size_read(inode);
8530 if ((page->mapping != inode->i_mapping) ||
8531 (page_start >= size)) {
8532 /* page got truncated out from underneath us */
8535 wait_on_page_writeback(page);
8537 lock_extent(io_tree, page_start, page_end, &cached_state);
8538 ret2 = set_page_extent_mapped(page);
8540 ret = vmf_error(ret2);
8541 unlock_extent(io_tree, page_start, page_end, &cached_state);
8546 * we can't set the delalloc bits if there are pending ordered
8547 * extents. Drop our locks and wait for them to finish
8549 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8552 unlock_extent(io_tree, page_start, page_end, &cached_state);
8554 up_read(&BTRFS_I(inode)->i_mmap_lock);
8555 btrfs_start_ordered_extent(ordered, 1);
8556 btrfs_put_ordered_extent(ordered);
8560 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8561 reserved_space = round_up(size - page_start,
8562 fs_info->sectorsize);
8563 if (reserved_space < PAGE_SIZE) {
8564 end = page_start + reserved_space - 1;
8565 btrfs_delalloc_release_space(BTRFS_I(inode),
8566 data_reserved, page_start,
8567 PAGE_SIZE - reserved_space, true);
8572 * page_mkwrite gets called when the page is firstly dirtied after it's
8573 * faulted in, but write(2) could also dirty a page and set delalloc
8574 * bits, thus in this case for space account reason, we still need to
8575 * clear any delalloc bits within this page range since we have to
8576 * reserve data&meta space before lock_page() (see above comments).
8578 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8579 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8580 EXTENT_DEFRAG, &cached_state);
8582 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8585 unlock_extent(io_tree, page_start, page_end, &cached_state);
8586 ret = VM_FAULT_SIGBUS;
8590 /* page is wholly or partially inside EOF */
8591 if (page_start + PAGE_SIZE > size)
8592 zero_start = offset_in_page(size);
8594 zero_start = PAGE_SIZE;
8596 if (zero_start != PAGE_SIZE)
8597 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8599 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8600 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8601 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8603 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8605 unlock_extent(io_tree, page_start, page_end, &cached_state);
8606 up_read(&BTRFS_I(inode)->i_mmap_lock);
8608 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8609 sb_end_pagefault(inode->i_sb);
8610 extent_changeset_free(data_reserved);
8611 return VM_FAULT_LOCKED;
8615 up_read(&BTRFS_I(inode)->i_mmap_lock);
8617 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8618 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8619 reserved_space, (ret != 0));
8621 sb_end_pagefault(inode->i_sb);
8622 extent_changeset_free(data_reserved);
8626 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8628 struct btrfs_truncate_control control = {
8630 .ino = btrfs_ino(inode),
8631 .min_type = BTRFS_EXTENT_DATA_KEY,
8632 .clear_extent_range = true,
8634 struct btrfs_root *root = inode->root;
8635 struct btrfs_fs_info *fs_info = root->fs_info;
8636 struct btrfs_block_rsv *rsv;
8638 struct btrfs_trans_handle *trans;
8639 u64 mask = fs_info->sectorsize - 1;
8640 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8642 if (!skip_writeback) {
8643 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8644 inode->vfs_inode.i_size & (~mask),
8651 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8652 * things going on here:
8654 * 1) We need to reserve space to update our inode.
8656 * 2) We need to have something to cache all the space that is going to
8657 * be free'd up by the truncate operation, but also have some slack
8658 * space reserved in case it uses space during the truncate (thank you
8659 * very much snapshotting).
8661 * And we need these to be separate. The fact is we can use a lot of
8662 * space doing the truncate, and we have no earthly idea how much space
8663 * we will use, so we need the truncate reservation to be separate so it
8664 * doesn't end up using space reserved for updating the inode. We also
8665 * need to be able to stop the transaction and start a new one, which
8666 * means we need to be able to update the inode several times, and we
8667 * have no idea of knowing how many times that will be, so we can't just
8668 * reserve 1 item for the entirety of the operation, so that has to be
8669 * done separately as well.
8671 * So that leaves us with
8673 * 1) rsv - for the truncate reservation, which we will steal from the
8674 * transaction reservation.
8675 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8676 * updating the inode.
8678 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8681 rsv->size = min_size;
8682 rsv->failfast = true;
8685 * 1 for the truncate slack space
8686 * 1 for updating the inode.
8688 trans = btrfs_start_transaction(root, 2);
8689 if (IS_ERR(trans)) {
8690 ret = PTR_ERR(trans);
8694 /* Migrate the slack space for the truncate to our reserve */
8695 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8699 trans->block_rsv = rsv;
8702 struct extent_state *cached_state = NULL;
8703 const u64 new_size = inode->vfs_inode.i_size;
8704 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8706 control.new_size = new_size;
8707 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8709 * We want to drop from the next block forward in case this new
8710 * size is not block aligned since we will be keeping the last
8711 * block of the extent just the way it is.
8713 btrfs_drop_extent_map_range(inode,
8714 ALIGN(new_size, fs_info->sectorsize),
8717 ret = btrfs_truncate_inode_items(trans, root, &control);
8719 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8720 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8722 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8724 trans->block_rsv = &fs_info->trans_block_rsv;
8725 if (ret != -ENOSPC && ret != -EAGAIN)
8728 ret = btrfs_update_inode(trans, root, inode);
8732 btrfs_end_transaction(trans);
8733 btrfs_btree_balance_dirty(fs_info);
8735 trans = btrfs_start_transaction(root, 2);
8736 if (IS_ERR(trans)) {
8737 ret = PTR_ERR(trans);
8742 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8743 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8744 rsv, min_size, false);
8745 BUG_ON(ret); /* shouldn't happen */
8746 trans->block_rsv = rsv;
8750 * We can't call btrfs_truncate_block inside a trans handle as we could
8751 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8752 * know we've truncated everything except the last little bit, and can
8753 * do btrfs_truncate_block and then update the disk_i_size.
8755 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8756 btrfs_end_transaction(trans);
8757 btrfs_btree_balance_dirty(fs_info);
8759 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8762 trans = btrfs_start_transaction(root, 1);
8763 if (IS_ERR(trans)) {
8764 ret = PTR_ERR(trans);
8767 btrfs_inode_safe_disk_i_size_write(inode, 0);
8773 trans->block_rsv = &fs_info->trans_block_rsv;
8774 ret2 = btrfs_update_inode(trans, root, inode);
8778 ret2 = btrfs_end_transaction(trans);
8781 btrfs_btree_balance_dirty(fs_info);
8784 btrfs_free_block_rsv(fs_info, rsv);
8786 * So if we truncate and then write and fsync we normally would just
8787 * write the extents that changed, which is a problem if we need to
8788 * first truncate that entire inode. So set this flag so we write out
8789 * all of the extents in the inode to the sync log so we're completely
8792 * If no extents were dropped or trimmed we don't need to force the next
8793 * fsync to truncate all the inode's items from the log and re-log them
8794 * all. This means the truncate operation did not change the file size,
8795 * or changed it to a smaller size but there was only an implicit hole
8796 * between the old i_size and the new i_size, and there were no prealloc
8797 * extents beyond i_size to drop.
8799 if (control.extents_found > 0)
8800 btrfs_set_inode_full_sync(inode);
8805 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8808 struct inode *inode;
8810 inode = new_inode(dir->i_sb);
8813 * Subvolumes don't inherit the sgid bit or the parent's gid if
8814 * the parent's sgid bit is set. This is probably a bug.
8816 inode_init_owner(mnt_userns, inode, NULL,
8817 S_IFDIR | (~current_umask() & S_IRWXUGO));
8818 inode->i_op = &btrfs_dir_inode_operations;
8819 inode->i_fop = &btrfs_dir_file_operations;
8824 struct inode *btrfs_alloc_inode(struct super_block *sb)
8826 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8827 struct btrfs_inode *ei;
8828 struct inode *inode;
8830 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8837 ei->last_sub_trans = 0;
8838 ei->logged_trans = 0;
8839 ei->delalloc_bytes = 0;
8840 ei->new_delalloc_bytes = 0;
8841 ei->defrag_bytes = 0;
8842 ei->disk_i_size = 0;
8846 ei->index_cnt = (u64)-1;
8848 ei->last_unlink_trans = 0;
8849 ei->last_reflink_trans = 0;
8850 ei->last_log_commit = 0;
8852 spin_lock_init(&ei->lock);
8853 spin_lock_init(&ei->io_failure_lock);
8854 ei->outstanding_extents = 0;
8855 if (sb->s_magic != BTRFS_TEST_MAGIC)
8856 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8857 BTRFS_BLOCK_RSV_DELALLOC);
8858 ei->runtime_flags = 0;
8859 ei->prop_compress = BTRFS_COMPRESS_NONE;
8860 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8862 ei->delayed_node = NULL;
8864 ei->i_otime.tv_sec = 0;
8865 ei->i_otime.tv_nsec = 0;
8867 inode = &ei->vfs_inode;
8868 extent_map_tree_init(&ei->extent_tree);
8869 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8870 ei->io_tree.inode = ei;
8871 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8872 IO_TREE_INODE_FILE_EXTENT);
8873 ei->io_failure_tree = RB_ROOT;
8874 atomic_set(&ei->sync_writers, 0);
8875 mutex_init(&ei->log_mutex);
8876 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8877 INIT_LIST_HEAD(&ei->delalloc_inodes);
8878 INIT_LIST_HEAD(&ei->delayed_iput);
8879 RB_CLEAR_NODE(&ei->rb_node);
8880 init_rwsem(&ei->i_mmap_lock);
8885 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8886 void btrfs_test_destroy_inode(struct inode *inode)
8888 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8889 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8893 void btrfs_free_inode(struct inode *inode)
8895 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8898 void btrfs_destroy_inode(struct inode *vfs_inode)
8900 struct btrfs_ordered_extent *ordered;
8901 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8902 struct btrfs_root *root = inode->root;
8903 bool freespace_inode;
8905 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8906 WARN_ON(vfs_inode->i_data.nrpages);
8907 WARN_ON(inode->block_rsv.reserved);
8908 WARN_ON(inode->block_rsv.size);
8909 WARN_ON(inode->outstanding_extents);
8910 if (!S_ISDIR(vfs_inode->i_mode)) {
8911 WARN_ON(inode->delalloc_bytes);
8912 WARN_ON(inode->new_delalloc_bytes);
8914 WARN_ON(inode->csum_bytes);
8915 WARN_ON(inode->defrag_bytes);
8918 * This can happen where we create an inode, but somebody else also
8919 * created the same inode and we need to destroy the one we already
8926 * If this is a free space inode do not take the ordered extents lockdep
8929 freespace_inode = btrfs_is_free_space_inode(inode);
8932 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8936 btrfs_err(root->fs_info,
8937 "found ordered extent %llu %llu on inode cleanup",
8938 ordered->file_offset, ordered->num_bytes);
8940 if (!freespace_inode)
8941 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8943 btrfs_remove_ordered_extent(inode, ordered);
8944 btrfs_put_ordered_extent(ordered);
8945 btrfs_put_ordered_extent(ordered);
8948 btrfs_qgroup_check_reserved_leak(inode);
8949 inode_tree_del(inode);
8950 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8951 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8952 btrfs_put_root(inode->root);
8955 int btrfs_drop_inode(struct inode *inode)
8957 struct btrfs_root *root = BTRFS_I(inode)->root;
8962 /* the snap/subvol tree is on deleting */
8963 if (btrfs_root_refs(&root->root_item) == 0)
8966 return generic_drop_inode(inode);
8969 static void init_once(void *foo)
8971 struct btrfs_inode *ei = foo;
8973 inode_init_once(&ei->vfs_inode);
8976 void __cold btrfs_destroy_cachep(void)
8979 * Make sure all delayed rcu free inodes are flushed before we
8983 bioset_exit(&btrfs_dio_bioset);
8984 kmem_cache_destroy(btrfs_inode_cachep);
8987 int __init btrfs_init_cachep(void)
8989 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8990 sizeof(struct btrfs_inode), 0,
8991 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8993 if (!btrfs_inode_cachep)
8996 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8997 offsetof(struct btrfs_dio_private, bio),
9003 btrfs_destroy_cachep();
9007 static int btrfs_getattr(struct user_namespace *mnt_userns,
9008 const struct path *path, struct kstat *stat,
9009 u32 request_mask, unsigned int flags)
9013 struct inode *inode = d_inode(path->dentry);
9014 u32 blocksize = inode->i_sb->s_blocksize;
9015 u32 bi_flags = BTRFS_I(inode)->flags;
9016 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9018 stat->result_mask |= STATX_BTIME;
9019 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9020 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9021 if (bi_flags & BTRFS_INODE_APPEND)
9022 stat->attributes |= STATX_ATTR_APPEND;
9023 if (bi_flags & BTRFS_INODE_COMPRESS)
9024 stat->attributes |= STATX_ATTR_COMPRESSED;
9025 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9026 stat->attributes |= STATX_ATTR_IMMUTABLE;
9027 if (bi_flags & BTRFS_INODE_NODUMP)
9028 stat->attributes |= STATX_ATTR_NODUMP;
9029 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9030 stat->attributes |= STATX_ATTR_VERITY;
9032 stat->attributes_mask |= (STATX_ATTR_APPEND |
9033 STATX_ATTR_COMPRESSED |
9034 STATX_ATTR_IMMUTABLE |
9037 generic_fillattr(mnt_userns, inode, stat);
9038 stat->dev = BTRFS_I(inode)->root->anon_dev;
9040 spin_lock(&BTRFS_I(inode)->lock);
9041 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9042 inode_bytes = inode_get_bytes(inode);
9043 spin_unlock(&BTRFS_I(inode)->lock);
9044 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9045 ALIGN(delalloc_bytes, blocksize)) >> 9;
9049 static int btrfs_rename_exchange(struct inode *old_dir,
9050 struct dentry *old_dentry,
9051 struct inode *new_dir,
9052 struct dentry *new_dentry)
9054 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9055 struct btrfs_trans_handle *trans;
9056 unsigned int trans_num_items;
9057 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9058 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9059 struct inode *new_inode = new_dentry->d_inode;
9060 struct inode *old_inode = old_dentry->d_inode;
9061 struct timespec64 ctime = current_time(old_inode);
9062 struct btrfs_rename_ctx old_rename_ctx;
9063 struct btrfs_rename_ctx new_rename_ctx;
9064 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9065 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9070 bool need_abort = false;
9071 struct fscrypt_name old_fname, new_fname;
9072 struct fscrypt_str *old_name, *new_name;
9075 * For non-subvolumes allow exchange only within one subvolume, in the
9076 * same inode namespace. Two subvolumes (represented as directory) can
9077 * be exchanged as they're a logical link and have a fixed inode number.
9080 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9081 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9084 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9088 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9090 fscrypt_free_filename(&old_fname);
9094 old_name = &old_fname.disk_name;
9095 new_name = &new_fname.disk_name;
9097 /* close the race window with snapshot create/destroy ioctl */
9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9099 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9100 down_read(&fs_info->subvol_sem);
9104 * 1 to remove old dir item
9105 * 1 to remove old dir index
9106 * 1 to add new dir item
9107 * 1 to add new dir index
9108 * 1 to update parent inode
9110 * If the parents are the same, we only need to account for one
9112 trans_num_items = (old_dir == new_dir ? 9 : 10);
9113 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9115 * 1 to remove old root ref
9116 * 1 to remove old root backref
9117 * 1 to add new root ref
9118 * 1 to add new root backref
9120 trans_num_items += 4;
9123 * 1 to update inode item
9124 * 1 to remove old inode ref
9125 * 1 to add new inode ref
9127 trans_num_items += 3;
9129 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 trans_num_items += 4;
9132 trans_num_items += 3;
9133 trans = btrfs_start_transaction(root, trans_num_items);
9134 if (IS_ERR(trans)) {
9135 ret = PTR_ERR(trans);
9140 ret = btrfs_record_root_in_trans(trans, dest);
9146 * We need to find a free sequence number both in the source and
9147 * in the destination directory for the exchange.
9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9152 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9156 BTRFS_I(old_inode)->dir_index = 0ULL;
9157 BTRFS_I(new_inode)->dir_index = 0ULL;
9159 /* Reference for the source. */
9160 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9161 /* force full log commit if subvolume involved. */
9162 btrfs_set_log_full_commit(trans);
9164 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
9165 btrfs_ino(BTRFS_I(new_dir)),
9172 /* And now for the dest. */
9173 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9174 /* force full log commit if subvolume involved. */
9175 btrfs_set_log_full_commit(trans);
9177 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
9178 btrfs_ino(BTRFS_I(old_dir)),
9182 btrfs_abort_transaction(trans, ret);
9187 /* Update inode version and ctime/mtime. */
9188 inode_inc_iversion(old_dir);
9189 inode_inc_iversion(new_dir);
9190 inode_inc_iversion(old_inode);
9191 inode_inc_iversion(new_inode);
9192 old_dir->i_mtime = ctime;
9193 old_dir->i_ctime = ctime;
9194 new_dir->i_mtime = ctime;
9195 new_dir->i_ctime = ctime;
9196 old_inode->i_ctime = ctime;
9197 new_inode->i_ctime = ctime;
9199 if (old_dentry->d_parent != new_dentry->d_parent) {
9200 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9201 BTRFS_I(old_inode), 1);
9202 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9203 BTRFS_I(new_inode), 1);
9206 /* src is a subvolume */
9207 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9208 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9209 } else { /* src is an inode */
9210 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9211 BTRFS_I(old_dentry->d_inode),
9212 old_name, &old_rename_ctx);
9214 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9217 btrfs_abort_transaction(trans, ret);
9221 /* dest is a subvolume */
9222 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9223 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9224 } else { /* dest is an inode */
9225 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9226 BTRFS_I(new_dentry->d_inode),
9227 new_name, &new_rename_ctx);
9229 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9232 btrfs_abort_transaction(trans, ret);
9236 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9237 new_name, 0, old_idx);
9239 btrfs_abort_transaction(trans, ret);
9243 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9244 old_name, 0, new_idx);
9246 btrfs_abort_transaction(trans, ret);
9250 if (old_inode->i_nlink == 1)
9251 BTRFS_I(old_inode)->dir_index = old_idx;
9252 if (new_inode->i_nlink == 1)
9253 BTRFS_I(new_inode)->dir_index = new_idx;
9256 * Now pin the logs of the roots. We do it to ensure that no other task
9257 * can sync the logs while we are in progress with the rename, because
9258 * that could result in an inconsistency in case any of the inodes that
9259 * are part of this rename operation were logged before.
9261 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9262 btrfs_pin_log_trans(root);
9263 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9264 btrfs_pin_log_trans(dest);
9266 /* Do the log updates for all inodes. */
9267 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9268 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9269 old_rename_ctx.index, new_dentry->d_parent);
9270 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9271 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9272 new_rename_ctx.index, old_dentry->d_parent);
9274 /* Now unpin the logs. */
9275 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9276 btrfs_end_log_trans(root);
9277 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9278 btrfs_end_log_trans(dest);
9280 ret2 = btrfs_end_transaction(trans);
9281 ret = ret ? ret : ret2;
9283 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9284 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9285 up_read(&fs_info->subvol_sem);
9287 fscrypt_free_filename(&new_fname);
9288 fscrypt_free_filename(&old_fname);
9292 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9295 struct inode *inode;
9297 inode = new_inode(dir->i_sb);
9299 inode_init_owner(mnt_userns, inode, dir,
9300 S_IFCHR | WHITEOUT_MODE);
9301 inode->i_op = &btrfs_special_inode_operations;
9302 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9307 static int btrfs_rename(struct user_namespace *mnt_userns,
9308 struct inode *old_dir, struct dentry *old_dentry,
9309 struct inode *new_dir, struct dentry *new_dentry,
9312 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9313 struct btrfs_new_inode_args whiteout_args = {
9315 .dentry = old_dentry,
9317 struct btrfs_trans_handle *trans;
9318 unsigned int trans_num_items;
9319 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9320 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9321 struct inode *new_inode = d_inode(new_dentry);
9322 struct inode *old_inode = d_inode(old_dentry);
9323 struct btrfs_rename_ctx rename_ctx;
9327 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9328 struct fscrypt_name old_fname, new_fname;
9330 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9333 /* we only allow rename subvolume link between subvolumes */
9334 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9337 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9338 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9341 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9342 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9345 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9349 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9351 fscrypt_free_filename(&old_fname);
9355 /* check for collisions, even if the name isn't there */
9356 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9358 if (ret == -EEXIST) {
9360 * eexist without a new_inode */
9361 if (WARN_ON(!new_inode)) {
9362 goto out_fscrypt_names;
9365 /* maybe -EOVERFLOW */
9366 goto out_fscrypt_names;
9372 * we're using rename to replace one file with another. Start IO on it
9373 * now so we don't add too much work to the end of the transaction
9375 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9376 filemap_flush(old_inode->i_mapping);
9378 if (flags & RENAME_WHITEOUT) {
9379 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9380 if (!whiteout_args.inode) {
9382 goto out_fscrypt_names;
9384 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9386 goto out_whiteout_inode;
9388 /* 1 to update the old parent inode. */
9389 trans_num_items = 1;
9392 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9393 /* Close the race window with snapshot create/destroy ioctl */
9394 down_read(&fs_info->subvol_sem);
9396 * 1 to remove old root ref
9397 * 1 to remove old root backref
9398 * 1 to add new root ref
9399 * 1 to add new root backref
9401 trans_num_items += 4;
9405 * 1 to remove old inode ref
9406 * 1 to add new inode ref
9408 trans_num_items += 3;
9411 * 1 to remove old dir item
9412 * 1 to remove old dir index
9413 * 1 to add new dir item
9414 * 1 to add new dir index
9416 trans_num_items += 4;
9417 /* 1 to update new parent inode if it's not the same as the old parent */
9418 if (new_dir != old_dir)
9423 * 1 to remove inode ref
9424 * 1 to remove dir item
9425 * 1 to remove dir index
9426 * 1 to possibly add orphan item
9428 trans_num_items += 5;
9430 trans = btrfs_start_transaction(root, trans_num_items);
9431 if (IS_ERR(trans)) {
9432 ret = PTR_ERR(trans);
9437 ret = btrfs_record_root_in_trans(trans, dest);
9442 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9446 BTRFS_I(old_inode)->dir_index = 0ULL;
9447 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9448 /* force full log commit if subvolume involved. */
9449 btrfs_set_log_full_commit(trans);
9451 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9452 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9458 inode_inc_iversion(old_dir);
9459 inode_inc_iversion(new_dir);
9460 inode_inc_iversion(old_inode);
9461 old_dir->i_mtime = current_time(old_dir);
9462 old_dir->i_ctime = old_dir->i_mtime;
9463 new_dir->i_mtime = old_dir->i_mtime;
9464 new_dir->i_ctime = old_dir->i_mtime;
9465 old_inode->i_ctime = old_dir->i_mtime;
9467 if (old_dentry->d_parent != new_dentry->d_parent)
9468 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9469 BTRFS_I(old_inode), 1);
9471 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9472 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9474 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9475 BTRFS_I(d_inode(old_dentry)),
9476 &old_fname.disk_name, &rename_ctx);
9478 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9481 btrfs_abort_transaction(trans, ret);
9486 inode_inc_iversion(new_inode);
9487 new_inode->i_ctime = current_time(new_inode);
9488 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9489 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9490 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9491 BUG_ON(new_inode->i_nlink == 0);
9493 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9494 BTRFS_I(d_inode(new_dentry)),
9495 &new_fname.disk_name);
9497 if (!ret && new_inode->i_nlink == 0)
9498 ret = btrfs_orphan_add(trans,
9499 BTRFS_I(d_inode(new_dentry)));
9501 btrfs_abort_transaction(trans, ret);
9506 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9507 &new_fname.disk_name, 0, index);
9509 btrfs_abort_transaction(trans, ret);
9513 if (old_inode->i_nlink == 1)
9514 BTRFS_I(old_inode)->dir_index = index;
9516 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9517 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9518 rename_ctx.index, new_dentry->d_parent);
9520 if (flags & RENAME_WHITEOUT) {
9521 ret = btrfs_create_new_inode(trans, &whiteout_args);
9523 btrfs_abort_transaction(trans, ret);
9526 unlock_new_inode(whiteout_args.inode);
9527 iput(whiteout_args.inode);
9528 whiteout_args.inode = NULL;
9532 ret2 = btrfs_end_transaction(trans);
9533 ret = ret ? ret : ret2;
9535 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9536 up_read(&fs_info->subvol_sem);
9537 if (flags & RENAME_WHITEOUT)
9538 btrfs_new_inode_args_destroy(&whiteout_args);
9540 if (flags & RENAME_WHITEOUT)
9541 iput(whiteout_args.inode);
9543 fscrypt_free_filename(&old_fname);
9544 fscrypt_free_filename(&new_fname);
9548 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9549 struct dentry *old_dentry, struct inode *new_dir,
9550 struct dentry *new_dentry, unsigned int flags)
9554 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9557 if (flags & RENAME_EXCHANGE)
9558 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9561 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9564 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9569 struct btrfs_delalloc_work {
9570 struct inode *inode;
9571 struct completion completion;
9572 struct list_head list;
9573 struct btrfs_work work;
9576 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9578 struct btrfs_delalloc_work *delalloc_work;
9579 struct inode *inode;
9581 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9583 inode = delalloc_work->inode;
9584 filemap_flush(inode->i_mapping);
9585 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9586 &BTRFS_I(inode)->runtime_flags))
9587 filemap_flush(inode->i_mapping);
9590 complete(&delalloc_work->completion);
9593 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9595 struct btrfs_delalloc_work *work;
9597 work = kmalloc(sizeof(*work), GFP_NOFS);
9601 init_completion(&work->completion);
9602 INIT_LIST_HEAD(&work->list);
9603 work->inode = inode;
9604 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9610 * some fairly slow code that needs optimization. This walks the list
9611 * of all the inodes with pending delalloc and forces them to disk.
9613 static int start_delalloc_inodes(struct btrfs_root *root,
9614 struct writeback_control *wbc, bool snapshot,
9615 bool in_reclaim_context)
9617 struct btrfs_inode *binode;
9618 struct inode *inode;
9619 struct btrfs_delalloc_work *work, *next;
9620 struct list_head works;
9621 struct list_head splice;
9623 bool full_flush = wbc->nr_to_write == LONG_MAX;
9625 INIT_LIST_HEAD(&works);
9626 INIT_LIST_HEAD(&splice);
9628 mutex_lock(&root->delalloc_mutex);
9629 spin_lock(&root->delalloc_lock);
9630 list_splice_init(&root->delalloc_inodes, &splice);
9631 while (!list_empty(&splice)) {
9632 binode = list_entry(splice.next, struct btrfs_inode,
9635 list_move_tail(&binode->delalloc_inodes,
9636 &root->delalloc_inodes);
9638 if (in_reclaim_context &&
9639 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9642 inode = igrab(&binode->vfs_inode);
9644 cond_resched_lock(&root->delalloc_lock);
9647 spin_unlock(&root->delalloc_lock);
9650 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9651 &binode->runtime_flags);
9653 work = btrfs_alloc_delalloc_work(inode);
9659 list_add_tail(&work->list, &works);
9660 btrfs_queue_work(root->fs_info->flush_workers,
9663 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9664 btrfs_add_delayed_iput(BTRFS_I(inode));
9665 if (ret || wbc->nr_to_write <= 0)
9669 spin_lock(&root->delalloc_lock);
9671 spin_unlock(&root->delalloc_lock);
9674 list_for_each_entry_safe(work, next, &works, list) {
9675 list_del_init(&work->list);
9676 wait_for_completion(&work->completion);
9680 if (!list_empty(&splice)) {
9681 spin_lock(&root->delalloc_lock);
9682 list_splice_tail(&splice, &root->delalloc_inodes);
9683 spin_unlock(&root->delalloc_lock);
9685 mutex_unlock(&root->delalloc_mutex);
9689 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9691 struct writeback_control wbc = {
9692 .nr_to_write = LONG_MAX,
9693 .sync_mode = WB_SYNC_NONE,
9695 .range_end = LLONG_MAX,
9697 struct btrfs_fs_info *fs_info = root->fs_info;
9699 if (BTRFS_FS_ERROR(fs_info))
9702 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9705 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9706 bool in_reclaim_context)
9708 struct writeback_control wbc = {
9710 .sync_mode = WB_SYNC_NONE,
9712 .range_end = LLONG_MAX,
9714 struct btrfs_root *root;
9715 struct list_head splice;
9718 if (BTRFS_FS_ERROR(fs_info))
9721 INIT_LIST_HEAD(&splice);
9723 mutex_lock(&fs_info->delalloc_root_mutex);
9724 spin_lock(&fs_info->delalloc_root_lock);
9725 list_splice_init(&fs_info->delalloc_roots, &splice);
9726 while (!list_empty(&splice)) {
9728 * Reset nr_to_write here so we know that we're doing a full
9732 wbc.nr_to_write = LONG_MAX;
9734 root = list_first_entry(&splice, struct btrfs_root,
9736 root = btrfs_grab_root(root);
9738 list_move_tail(&root->delalloc_root,
9739 &fs_info->delalloc_roots);
9740 spin_unlock(&fs_info->delalloc_root_lock);
9742 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9743 btrfs_put_root(root);
9744 if (ret < 0 || wbc.nr_to_write <= 0)
9746 spin_lock(&fs_info->delalloc_root_lock);
9748 spin_unlock(&fs_info->delalloc_root_lock);
9752 if (!list_empty(&splice)) {
9753 spin_lock(&fs_info->delalloc_root_lock);
9754 list_splice_tail(&splice, &fs_info->delalloc_roots);
9755 spin_unlock(&fs_info->delalloc_root_lock);
9757 mutex_unlock(&fs_info->delalloc_root_mutex);
9761 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9762 struct dentry *dentry, const char *symname)
9764 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9765 struct btrfs_trans_handle *trans;
9766 struct btrfs_root *root = BTRFS_I(dir)->root;
9767 struct btrfs_path *path;
9768 struct btrfs_key key;
9769 struct inode *inode;
9770 struct btrfs_new_inode_args new_inode_args = {
9774 unsigned int trans_num_items;
9779 struct btrfs_file_extent_item *ei;
9780 struct extent_buffer *leaf;
9782 name_len = strlen(symname);
9783 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9784 return -ENAMETOOLONG;
9786 inode = new_inode(dir->i_sb);
9789 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9790 inode->i_op = &btrfs_symlink_inode_operations;
9791 inode_nohighmem(inode);
9792 inode->i_mapping->a_ops = &btrfs_aops;
9793 btrfs_i_size_write(BTRFS_I(inode), name_len);
9794 inode_set_bytes(inode, name_len);
9796 new_inode_args.inode = inode;
9797 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9800 /* 1 additional item for the inline extent */
9803 trans = btrfs_start_transaction(root, trans_num_items);
9804 if (IS_ERR(trans)) {
9805 err = PTR_ERR(trans);
9806 goto out_new_inode_args;
9809 err = btrfs_create_new_inode(trans, &new_inode_args);
9813 path = btrfs_alloc_path();
9816 btrfs_abort_transaction(trans, err);
9817 discard_new_inode(inode);
9821 key.objectid = btrfs_ino(BTRFS_I(inode));
9823 key.type = BTRFS_EXTENT_DATA_KEY;
9824 datasize = btrfs_file_extent_calc_inline_size(name_len);
9825 err = btrfs_insert_empty_item(trans, root, path, &key,
9828 btrfs_abort_transaction(trans, err);
9829 btrfs_free_path(path);
9830 discard_new_inode(inode);
9834 leaf = path->nodes[0];
9835 ei = btrfs_item_ptr(leaf, path->slots[0],
9836 struct btrfs_file_extent_item);
9837 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9838 btrfs_set_file_extent_type(leaf, ei,
9839 BTRFS_FILE_EXTENT_INLINE);
9840 btrfs_set_file_extent_encryption(leaf, ei, 0);
9841 btrfs_set_file_extent_compression(leaf, ei, 0);
9842 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9843 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9845 ptr = btrfs_file_extent_inline_start(ei);
9846 write_extent_buffer(leaf, symname, ptr, name_len);
9847 btrfs_mark_buffer_dirty(leaf);
9848 btrfs_free_path(path);
9850 d_instantiate_new(dentry, inode);
9853 btrfs_end_transaction(trans);
9854 btrfs_btree_balance_dirty(fs_info);
9856 btrfs_new_inode_args_destroy(&new_inode_args);
9863 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9864 struct btrfs_trans_handle *trans_in,
9865 struct btrfs_inode *inode,
9866 struct btrfs_key *ins,
9869 struct btrfs_file_extent_item stack_fi;
9870 struct btrfs_replace_extent_info extent_info;
9871 struct btrfs_trans_handle *trans = trans_in;
9872 struct btrfs_path *path;
9873 u64 start = ins->objectid;
9874 u64 len = ins->offset;
9875 int qgroup_released;
9878 memset(&stack_fi, 0, sizeof(stack_fi));
9880 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9881 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9882 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9883 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9884 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9885 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9886 /* Encryption and other encoding is reserved and all 0 */
9888 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9889 if (qgroup_released < 0)
9890 return ERR_PTR(qgroup_released);
9893 ret = insert_reserved_file_extent(trans, inode,
9894 file_offset, &stack_fi,
9895 true, qgroup_released);
9901 extent_info.disk_offset = start;
9902 extent_info.disk_len = len;
9903 extent_info.data_offset = 0;
9904 extent_info.data_len = len;
9905 extent_info.file_offset = file_offset;
9906 extent_info.extent_buf = (char *)&stack_fi;
9907 extent_info.is_new_extent = true;
9908 extent_info.update_times = true;
9909 extent_info.qgroup_reserved = qgroup_released;
9910 extent_info.insertions = 0;
9912 path = btrfs_alloc_path();
9918 ret = btrfs_replace_file_extents(inode, path, file_offset,
9919 file_offset + len - 1, &extent_info,
9921 btrfs_free_path(path);
9928 * We have released qgroup data range at the beginning of the function,
9929 * and normally qgroup_released bytes will be freed when committing
9931 * But if we error out early, we have to free what we have released
9932 * or we leak qgroup data reservation.
9934 btrfs_qgroup_free_refroot(inode->root->fs_info,
9935 inode->root->root_key.objectid, qgroup_released,
9936 BTRFS_QGROUP_RSV_DATA);
9937 return ERR_PTR(ret);
9940 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9941 u64 start, u64 num_bytes, u64 min_size,
9942 loff_t actual_len, u64 *alloc_hint,
9943 struct btrfs_trans_handle *trans)
9945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9946 struct extent_map *em;
9947 struct btrfs_root *root = BTRFS_I(inode)->root;
9948 struct btrfs_key ins;
9949 u64 cur_offset = start;
9950 u64 clear_offset = start;
9953 u64 last_alloc = (u64)-1;
9955 bool own_trans = true;
9956 u64 end = start + num_bytes - 1;
9960 while (num_bytes > 0) {
9961 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9962 cur_bytes = max(cur_bytes, min_size);
9964 * If we are severely fragmented we could end up with really
9965 * small allocations, so if the allocator is returning small
9966 * chunks lets make its job easier by only searching for those
9969 cur_bytes = min(cur_bytes, last_alloc);
9970 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9971 min_size, 0, *alloc_hint, &ins, 1, 0);
9976 * We've reserved this space, and thus converted it from
9977 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9978 * from here on out we will only need to clear our reservation
9979 * for the remaining unreserved area, so advance our
9980 * clear_offset by our extent size.
9982 clear_offset += ins.offset;
9984 last_alloc = ins.offset;
9985 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9988 * Now that we inserted the prealloc extent we can finally
9989 * decrement the number of reservations in the block group.
9990 * If we did it before, we could race with relocation and have
9991 * relocation miss the reserved extent, making it fail later.
9993 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9994 if (IS_ERR(trans)) {
9995 ret = PTR_ERR(trans);
9996 btrfs_free_reserved_extent(fs_info, ins.objectid,
10001 em = alloc_extent_map();
10003 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
10004 cur_offset + ins.offset - 1, false);
10005 btrfs_set_inode_full_sync(BTRFS_I(inode));
10009 em->start = cur_offset;
10010 em->orig_start = cur_offset;
10011 em->len = ins.offset;
10012 em->block_start = ins.objectid;
10013 em->block_len = ins.offset;
10014 em->orig_block_len = ins.offset;
10015 em->ram_bytes = ins.offset;
10016 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10017 em->generation = trans->transid;
10019 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
10020 free_extent_map(em);
10022 num_bytes -= ins.offset;
10023 cur_offset += ins.offset;
10024 *alloc_hint = ins.objectid + ins.offset;
10026 inode_inc_iversion(inode);
10027 inode->i_ctime = current_time(inode);
10028 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10029 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10030 (actual_len > inode->i_size) &&
10031 (cur_offset > inode->i_size)) {
10032 if (cur_offset > actual_len)
10033 i_size = actual_len;
10035 i_size = cur_offset;
10036 i_size_write(inode, i_size);
10037 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10040 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10043 btrfs_abort_transaction(trans, ret);
10045 btrfs_end_transaction(trans);
10050 btrfs_end_transaction(trans);
10054 if (clear_offset < end)
10055 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10056 end - clear_offset + 1);
10060 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10061 u64 start, u64 num_bytes, u64 min_size,
10062 loff_t actual_len, u64 *alloc_hint)
10064 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10065 min_size, actual_len, alloc_hint,
10069 int btrfs_prealloc_file_range_trans(struct inode *inode,
10070 struct btrfs_trans_handle *trans, int mode,
10071 u64 start, u64 num_bytes, u64 min_size,
10072 loff_t actual_len, u64 *alloc_hint)
10074 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10075 min_size, actual_len, alloc_hint, trans);
10078 static int btrfs_permission(struct user_namespace *mnt_userns,
10079 struct inode *inode, int mask)
10081 struct btrfs_root *root = BTRFS_I(inode)->root;
10082 umode_t mode = inode->i_mode;
10084 if (mask & MAY_WRITE &&
10085 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10086 if (btrfs_root_readonly(root))
10088 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10091 return generic_permission(mnt_userns, inode, mask);
10094 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10095 struct file *file, umode_t mode)
10097 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10098 struct btrfs_trans_handle *trans;
10099 struct btrfs_root *root = BTRFS_I(dir)->root;
10100 struct inode *inode;
10101 struct btrfs_new_inode_args new_inode_args = {
10103 .dentry = file->f_path.dentry,
10106 unsigned int trans_num_items;
10109 inode = new_inode(dir->i_sb);
10112 inode_init_owner(mnt_userns, inode, dir, mode);
10113 inode->i_fop = &btrfs_file_operations;
10114 inode->i_op = &btrfs_file_inode_operations;
10115 inode->i_mapping->a_ops = &btrfs_aops;
10117 new_inode_args.inode = inode;
10118 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10122 trans = btrfs_start_transaction(root, trans_num_items);
10123 if (IS_ERR(trans)) {
10124 ret = PTR_ERR(trans);
10125 goto out_new_inode_args;
10128 ret = btrfs_create_new_inode(trans, &new_inode_args);
10131 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10132 * set it to 1 because d_tmpfile() will issue a warning if the count is
10135 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10137 set_nlink(inode, 1);
10140 d_tmpfile(file, inode);
10141 unlock_new_inode(inode);
10142 mark_inode_dirty(inode);
10145 btrfs_end_transaction(trans);
10146 btrfs_btree_balance_dirty(fs_info);
10147 out_new_inode_args:
10148 btrfs_new_inode_args_destroy(&new_inode_args);
10152 return finish_open_simple(file, ret);
10155 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10157 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10158 unsigned long index = start >> PAGE_SHIFT;
10159 unsigned long end_index = end >> PAGE_SHIFT;
10163 ASSERT(end + 1 - start <= U32_MAX);
10164 len = end + 1 - start;
10165 while (index <= end_index) {
10166 page = find_get_page(inode->vfs_inode.i_mapping, index);
10167 ASSERT(page); /* Pages should be in the extent_io_tree */
10169 btrfs_page_set_writeback(fs_info, page, start, len);
10175 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10178 switch (compress_type) {
10179 case BTRFS_COMPRESS_NONE:
10180 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10181 case BTRFS_COMPRESS_ZLIB:
10182 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10183 case BTRFS_COMPRESS_LZO:
10185 * The LZO format depends on the sector size. 64K is the maximum
10186 * sector size that we support.
10188 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10190 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10191 (fs_info->sectorsize_bits - 12);
10192 case BTRFS_COMPRESS_ZSTD:
10193 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10199 static ssize_t btrfs_encoded_read_inline(
10200 struct kiocb *iocb,
10201 struct iov_iter *iter, u64 start,
10203 struct extent_state **cached_state,
10204 u64 extent_start, size_t count,
10205 struct btrfs_ioctl_encoded_io_args *encoded,
10208 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10209 struct btrfs_root *root = inode->root;
10210 struct btrfs_fs_info *fs_info = root->fs_info;
10211 struct extent_io_tree *io_tree = &inode->io_tree;
10212 struct btrfs_path *path;
10213 struct extent_buffer *leaf;
10214 struct btrfs_file_extent_item *item;
10220 path = btrfs_alloc_path();
10225 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10229 /* The extent item disappeared? */
10234 leaf = path->nodes[0];
10235 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10237 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10238 ptr = btrfs_file_extent_inline_start(item);
10240 encoded->len = min_t(u64, extent_start + ram_bytes,
10241 inode->vfs_inode.i_size) - iocb->ki_pos;
10242 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10243 btrfs_file_extent_compression(leaf, item));
10246 encoded->compression = ret;
10247 if (encoded->compression) {
10248 size_t inline_size;
10250 inline_size = btrfs_file_extent_inline_item_len(leaf,
10252 if (inline_size > count) {
10256 count = inline_size;
10257 encoded->unencoded_len = ram_bytes;
10258 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10260 count = min_t(u64, count, encoded->len);
10261 encoded->len = count;
10262 encoded->unencoded_len = count;
10263 ptr += iocb->ki_pos - extent_start;
10266 tmp = kmalloc(count, GFP_NOFS);
10271 read_extent_buffer(leaf, tmp, ptr, count);
10272 btrfs_release_path(path);
10273 unlock_extent(io_tree, start, lockend, cached_state);
10274 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10277 ret = copy_to_iter(tmp, count, iter);
10282 btrfs_free_path(path);
10286 struct btrfs_encoded_read_private {
10287 struct btrfs_inode *inode;
10289 wait_queue_head_t wait;
10291 blk_status_t status;
10295 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10296 struct bio *bio, int mirror_num)
10298 struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private;
10299 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10302 if (!priv->skip_csum) {
10303 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10308 atomic_inc(&priv->pending);
10309 btrfs_submit_bio(fs_info, bio, mirror_num);
10313 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10315 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10316 struct btrfs_encoded_read_private *priv = bbio->private;
10317 struct btrfs_inode *inode = priv->inode;
10318 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10319 u32 sectorsize = fs_info->sectorsize;
10320 struct bio_vec *bvec;
10321 struct bvec_iter_all iter_all;
10322 u32 bio_offset = 0;
10324 if (priv->skip_csum || !uptodate)
10325 return bbio->bio.bi_status;
10327 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10328 unsigned int i, nr_sectors, pgoff;
10330 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10331 pgoff = bvec->bv_offset;
10332 for (i = 0; i < nr_sectors; i++) {
10333 ASSERT(pgoff < PAGE_SIZE);
10334 if (btrfs_check_data_csum(inode, bbio, bio_offset,
10335 bvec->bv_page, pgoff))
10336 return BLK_STS_IOERR;
10337 bio_offset += sectorsize;
10338 pgoff += sectorsize;
10344 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10346 struct btrfs_encoded_read_private *priv = bbio->private;
10347 blk_status_t status;
10349 status = btrfs_encoded_read_verify_csum(bbio);
10352 * The memory barrier implied by the atomic_dec_return() here
10353 * pairs with the memory barrier implied by the
10354 * atomic_dec_return() or io_wait_event() in
10355 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10356 * write is observed before the load of status in
10357 * btrfs_encoded_read_regular_fill_pages().
10359 WRITE_ONCE(priv->status, status);
10361 if (!atomic_dec_return(&priv->pending))
10362 wake_up(&priv->wait);
10363 btrfs_bio_free_csum(bbio);
10364 bio_put(&bbio->bio);
10367 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10368 u64 file_offset, u64 disk_bytenr,
10369 u64 disk_io_size, struct page **pages)
10371 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10372 struct btrfs_encoded_read_private priv = {
10374 .file_offset = file_offset,
10375 .pending = ATOMIC_INIT(1),
10376 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10378 unsigned long i = 0;
10382 init_waitqueue_head(&priv.wait);
10384 * Submit bios for the extent, splitting due to bio or stripe limits as
10387 while (cur < disk_io_size) {
10388 struct extent_map *em;
10389 struct btrfs_io_geometry geom;
10390 struct bio *bio = NULL;
10393 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10394 disk_io_size - cur);
10398 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10399 disk_bytenr + cur, &geom);
10400 free_extent_map(em);
10403 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10406 remaining = min(geom.len, disk_io_size - cur);
10407 while (bio || remaining) {
10408 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10411 bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ,
10412 btrfs_encoded_read_endio,
10414 bio->bi_iter.bi_sector =
10415 (disk_bytenr + cur) >> SECTOR_SHIFT;
10419 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10420 blk_status_t status;
10422 status = submit_encoded_read_bio(inode, bio, 0);
10424 WRITE_ONCE(priv.status, status);
10434 remaining -= bytes;
10439 if (atomic_dec_return(&priv.pending))
10440 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10441 /* See btrfs_encoded_read_endio() for ordering. */
10442 return blk_status_to_errno(READ_ONCE(priv.status));
10445 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10446 struct iov_iter *iter,
10447 u64 start, u64 lockend,
10448 struct extent_state **cached_state,
10449 u64 disk_bytenr, u64 disk_io_size,
10450 size_t count, bool compressed,
10453 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10454 struct extent_io_tree *io_tree = &inode->io_tree;
10455 struct page **pages;
10456 unsigned long nr_pages, i;
10458 size_t page_offset;
10461 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10462 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10465 ret = btrfs_alloc_page_array(nr_pages, pages);
10471 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10472 disk_io_size, pages);
10476 unlock_extent(io_tree, start, lockend, cached_state);
10477 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10484 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10485 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10488 while (cur < count) {
10489 size_t bytes = min_t(size_t, count - cur,
10490 PAGE_SIZE - page_offset);
10492 if (copy_page_to_iter(pages[i], page_offset, bytes,
10503 for (i = 0; i < nr_pages; i++) {
10505 __free_page(pages[i]);
10511 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10512 struct btrfs_ioctl_encoded_io_args *encoded)
10514 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10515 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10516 struct extent_io_tree *io_tree = &inode->io_tree;
10518 size_t count = iov_iter_count(iter);
10519 u64 start, lockend, disk_bytenr, disk_io_size;
10520 struct extent_state *cached_state = NULL;
10521 struct extent_map *em;
10522 bool unlocked = false;
10524 file_accessed(iocb->ki_filp);
10526 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10528 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10529 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10532 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10534 * We don't know how long the extent containing iocb->ki_pos is, but if
10535 * it's compressed we know that it won't be longer than this.
10537 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10540 struct btrfs_ordered_extent *ordered;
10542 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10543 lockend - start + 1);
10545 goto out_unlock_inode;
10546 lock_extent(io_tree, start, lockend, &cached_state);
10547 ordered = btrfs_lookup_ordered_range(inode, start,
10548 lockend - start + 1);
10551 btrfs_put_ordered_extent(ordered);
10552 unlock_extent(io_tree, start, lockend, &cached_state);
10556 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10559 goto out_unlock_extent;
10562 if (em->block_start == EXTENT_MAP_INLINE) {
10563 u64 extent_start = em->start;
10566 * For inline extents we get everything we need out of the
10569 free_extent_map(em);
10571 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10572 &cached_state, extent_start,
10573 count, encoded, &unlocked);
10578 * We only want to return up to EOF even if the extent extends beyond
10581 encoded->len = min_t(u64, extent_map_end(em),
10582 inode->vfs_inode.i_size) - iocb->ki_pos;
10583 if (em->block_start == EXTENT_MAP_HOLE ||
10584 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10585 disk_bytenr = EXTENT_MAP_HOLE;
10586 count = min_t(u64, count, encoded->len);
10587 encoded->len = count;
10588 encoded->unencoded_len = count;
10589 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10590 disk_bytenr = em->block_start;
10592 * Bail if the buffer isn't large enough to return the whole
10593 * compressed extent.
10595 if (em->block_len > count) {
10599 disk_io_size = em->block_len;
10600 count = em->block_len;
10601 encoded->unencoded_len = em->ram_bytes;
10602 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10603 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10604 em->compress_type);
10607 encoded->compression = ret;
10609 disk_bytenr = em->block_start + (start - em->start);
10610 if (encoded->len > count)
10611 encoded->len = count;
10613 * Don't read beyond what we locked. This also limits the page
10614 * allocations that we'll do.
10616 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10617 count = start + disk_io_size - iocb->ki_pos;
10618 encoded->len = count;
10619 encoded->unencoded_len = count;
10620 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10622 free_extent_map(em);
10625 if (disk_bytenr == EXTENT_MAP_HOLE) {
10626 unlock_extent(io_tree, start, lockend, &cached_state);
10627 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10629 ret = iov_iter_zero(count, iter);
10633 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10634 &cached_state, disk_bytenr,
10635 disk_io_size, count,
10636 encoded->compression,
10642 iocb->ki_pos += encoded->len;
10644 free_extent_map(em);
10647 unlock_extent(io_tree, start, lockend, &cached_state);
10650 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10654 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10655 const struct btrfs_ioctl_encoded_io_args *encoded)
10657 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10658 struct btrfs_root *root = inode->root;
10659 struct btrfs_fs_info *fs_info = root->fs_info;
10660 struct extent_io_tree *io_tree = &inode->io_tree;
10661 struct extent_changeset *data_reserved = NULL;
10662 struct extent_state *cached_state = NULL;
10666 u64 num_bytes, ram_bytes, disk_num_bytes;
10667 unsigned long nr_pages, i;
10668 struct page **pages;
10669 struct btrfs_key ins;
10670 bool extent_reserved = false;
10671 struct extent_map *em;
10674 switch (encoded->compression) {
10675 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10676 compression = BTRFS_COMPRESS_ZLIB;
10678 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10679 compression = BTRFS_COMPRESS_ZSTD;
10681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10683 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10684 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10685 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10686 /* The sector size must match for LZO. */
10687 if (encoded->compression -
10688 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10689 fs_info->sectorsize_bits)
10691 compression = BTRFS_COMPRESS_LZO;
10696 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10699 orig_count = iov_iter_count(from);
10701 /* The extent size must be sane. */
10702 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10703 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10707 * The compressed data must be smaller than the decompressed data.
10709 * It's of course possible for data to compress to larger or the same
10710 * size, but the buffered I/O path falls back to no compression for such
10711 * data, and we don't want to break any assumptions by creating these
10714 * Note that this is less strict than the current check we have that the
10715 * compressed data must be at least one sector smaller than the
10716 * decompressed data. We only want to enforce the weaker requirement
10717 * from old kernels that it is at least one byte smaller.
10719 if (orig_count >= encoded->unencoded_len)
10722 /* The extent must start on a sector boundary. */
10723 start = iocb->ki_pos;
10724 if (!IS_ALIGNED(start, fs_info->sectorsize))
10728 * The extent must end on a sector boundary. However, we allow a write
10729 * which ends at or extends i_size to have an unaligned length; we round
10730 * up the extent size and set i_size to the unaligned end.
10732 if (start + encoded->len < inode->vfs_inode.i_size &&
10733 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10736 /* Finally, the offset in the unencoded data must be sector-aligned. */
10737 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10740 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10741 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10742 end = start + num_bytes - 1;
10745 * If the extent cannot be inline, the compressed data on disk must be
10746 * sector-aligned. For convenience, we extend it with zeroes if it
10749 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10750 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10751 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10754 for (i = 0; i < nr_pages; i++) {
10755 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10758 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10763 kaddr = kmap_local_page(pages[i]);
10764 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10765 kunmap_local(kaddr);
10769 if (bytes < PAGE_SIZE)
10770 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10771 kunmap_local(kaddr);
10775 struct btrfs_ordered_extent *ordered;
10777 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10780 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10781 start >> PAGE_SHIFT,
10782 end >> PAGE_SHIFT);
10785 lock_extent(io_tree, start, end, &cached_state);
10786 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10788 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10791 btrfs_put_ordered_extent(ordered);
10792 unlock_extent(io_tree, start, end, &cached_state);
10797 * We don't use the higher-level delalloc space functions because our
10798 * num_bytes and disk_num_bytes are different.
10800 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10803 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10805 goto out_free_data_space;
10806 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10809 goto out_qgroup_free_data;
10811 /* Try an inline extent first. */
10812 if (start == 0 && encoded->unencoded_len == encoded->len &&
10813 encoded->unencoded_offset == 0) {
10814 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10815 compression, pages, true);
10819 goto out_delalloc_release;
10823 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10824 disk_num_bytes, 0, 0, &ins, 1, 1);
10826 goto out_delalloc_release;
10827 extent_reserved = true;
10829 em = create_io_em(inode, start, num_bytes,
10830 start - encoded->unencoded_offset, ins.objectid,
10831 ins.offset, ins.offset, ram_bytes, compression,
10832 BTRFS_ORDERED_COMPRESSED);
10835 goto out_free_reserved;
10837 free_extent_map(em);
10839 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10840 ins.objectid, ins.offset,
10841 encoded->unencoded_offset,
10842 (1 << BTRFS_ORDERED_ENCODED) |
10843 (1 << BTRFS_ORDERED_COMPRESSED),
10846 btrfs_drop_extent_map_range(inode, start, end, false);
10847 goto out_free_reserved;
10849 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10851 if (start + encoded->len > inode->vfs_inode.i_size)
10852 i_size_write(&inode->vfs_inode, start + encoded->len);
10854 unlock_extent(io_tree, start, end, &cached_state);
10856 btrfs_delalloc_release_extents(inode, num_bytes);
10858 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10859 ins.offset, pages, nr_pages, 0, NULL,
10861 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10869 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10870 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10871 out_delalloc_release:
10872 btrfs_delalloc_release_extents(inode, num_bytes);
10873 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10874 out_qgroup_free_data:
10876 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10877 out_free_data_space:
10879 * If btrfs_reserve_extent() succeeded, then we already decremented
10882 if (!extent_reserved)
10883 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10885 unlock_extent(io_tree, start, end, &cached_state);
10887 for (i = 0; i < nr_pages; i++) {
10889 __free_page(pages[i]);
10894 iocb->ki_pos += encoded->len;
10900 * Add an entry indicating a block group or device which is pinned by a
10901 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10902 * negative errno on failure.
10904 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10905 bool is_block_group)
10907 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10908 struct btrfs_swapfile_pin *sp, *entry;
10909 struct rb_node **p;
10910 struct rb_node *parent = NULL;
10912 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10917 sp->is_block_group = is_block_group;
10918 sp->bg_extent_count = 1;
10920 spin_lock(&fs_info->swapfile_pins_lock);
10921 p = &fs_info->swapfile_pins.rb_node;
10924 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10925 if (sp->ptr < entry->ptr ||
10926 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10927 p = &(*p)->rb_left;
10928 } else if (sp->ptr > entry->ptr ||
10929 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10930 p = &(*p)->rb_right;
10932 if (is_block_group)
10933 entry->bg_extent_count++;
10934 spin_unlock(&fs_info->swapfile_pins_lock);
10939 rb_link_node(&sp->node, parent, p);
10940 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10941 spin_unlock(&fs_info->swapfile_pins_lock);
10945 /* Free all of the entries pinned by this swapfile. */
10946 static void btrfs_free_swapfile_pins(struct inode *inode)
10948 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10949 struct btrfs_swapfile_pin *sp;
10950 struct rb_node *node, *next;
10952 spin_lock(&fs_info->swapfile_pins_lock);
10953 node = rb_first(&fs_info->swapfile_pins);
10955 next = rb_next(node);
10956 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10957 if (sp->inode == inode) {
10958 rb_erase(&sp->node, &fs_info->swapfile_pins);
10959 if (sp->is_block_group) {
10960 btrfs_dec_block_group_swap_extents(sp->ptr,
10961 sp->bg_extent_count);
10962 btrfs_put_block_group(sp->ptr);
10968 spin_unlock(&fs_info->swapfile_pins_lock);
10971 struct btrfs_swap_info {
10977 unsigned long nr_pages;
10981 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10982 struct btrfs_swap_info *bsi)
10984 unsigned long nr_pages;
10985 unsigned long max_pages;
10986 u64 first_ppage, first_ppage_reported, next_ppage;
10990 * Our swapfile may have had its size extended after the swap header was
10991 * written. In that case activating the swapfile should not go beyond
10992 * the max size set in the swap header.
10994 if (bsi->nr_pages >= sis->max)
10997 max_pages = sis->max - bsi->nr_pages;
10998 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10999 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11000 PAGE_SIZE) >> PAGE_SHIFT;
11002 if (first_ppage >= next_ppage)
11004 nr_pages = next_ppage - first_ppage;
11005 nr_pages = min(nr_pages, max_pages);
11007 first_ppage_reported = first_ppage;
11008 if (bsi->start == 0)
11009 first_ppage_reported++;
11010 if (bsi->lowest_ppage > first_ppage_reported)
11011 bsi->lowest_ppage = first_ppage_reported;
11012 if (bsi->highest_ppage < (next_ppage - 1))
11013 bsi->highest_ppage = next_ppage - 1;
11015 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11018 bsi->nr_extents += ret;
11019 bsi->nr_pages += nr_pages;
11023 static void btrfs_swap_deactivate(struct file *file)
11025 struct inode *inode = file_inode(file);
11027 btrfs_free_swapfile_pins(inode);
11028 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11034 struct inode *inode = file_inode(file);
11035 struct btrfs_root *root = BTRFS_I(inode)->root;
11036 struct btrfs_fs_info *fs_info = root->fs_info;
11037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11038 struct extent_state *cached_state = NULL;
11039 struct extent_map *em = NULL;
11040 struct btrfs_device *device = NULL;
11041 struct btrfs_swap_info bsi = {
11042 .lowest_ppage = (sector_t)-1ULL,
11049 * If the swap file was just created, make sure delalloc is done. If the
11050 * file changes again after this, the user is doing something stupid and
11051 * we don't really care.
11053 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11058 * The inode is locked, so these flags won't change after we check them.
11060 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11061 btrfs_warn(fs_info, "swapfile must not be compressed");
11064 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11065 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11068 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11069 btrfs_warn(fs_info, "swapfile must not be checksummed");
11074 * Balance or device remove/replace/resize can move stuff around from
11075 * under us. The exclop protection makes sure they aren't running/won't
11076 * run concurrently while we are mapping the swap extents, and
11077 * fs_info->swapfile_pins prevents them from running while the swap
11078 * file is active and moving the extents. Note that this also prevents
11079 * a concurrent device add which isn't actually necessary, but it's not
11080 * really worth the trouble to allow it.
11082 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11083 btrfs_warn(fs_info,
11084 "cannot activate swapfile while exclusive operation is running");
11089 * Prevent snapshot creation while we are activating the swap file.
11090 * We do not want to race with snapshot creation. If snapshot creation
11091 * already started before we bumped nr_swapfiles from 0 to 1 and
11092 * completes before the first write into the swap file after it is
11093 * activated, than that write would fallback to COW.
11095 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11096 btrfs_exclop_finish(fs_info);
11097 btrfs_warn(fs_info,
11098 "cannot activate swapfile because snapshot creation is in progress");
11102 * Snapshots can create extents which require COW even if NODATACOW is
11103 * set. We use this counter to prevent snapshots. We must increment it
11104 * before walking the extents because we don't want a concurrent
11105 * snapshot to run after we've already checked the extents.
11107 * It is possible that subvolume is marked for deletion but still not
11108 * removed yet. To prevent this race, we check the root status before
11109 * activating the swapfile.
11111 spin_lock(&root->root_item_lock);
11112 if (btrfs_root_dead(root)) {
11113 spin_unlock(&root->root_item_lock);
11115 btrfs_exclop_finish(fs_info);
11116 btrfs_warn(fs_info,
11117 "cannot activate swapfile because subvolume %llu is being deleted",
11118 root->root_key.objectid);
11121 atomic_inc(&root->nr_swapfiles);
11122 spin_unlock(&root->root_item_lock);
11124 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11126 lock_extent(io_tree, 0, isize - 1, &cached_state);
11128 while (start < isize) {
11129 u64 logical_block_start, physical_block_start;
11130 struct btrfs_block_group *bg;
11131 u64 len = isize - start;
11133 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11139 if (em->block_start == EXTENT_MAP_HOLE) {
11140 btrfs_warn(fs_info, "swapfile must not have holes");
11144 if (em->block_start == EXTENT_MAP_INLINE) {
11146 * It's unlikely we'll ever actually find ourselves
11147 * here, as a file small enough to fit inline won't be
11148 * big enough to store more than the swap header, but in
11149 * case something changes in the future, let's catch it
11150 * here rather than later.
11152 btrfs_warn(fs_info, "swapfile must not be inline");
11156 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11157 btrfs_warn(fs_info, "swapfile must not be compressed");
11162 logical_block_start = em->block_start + (start - em->start);
11163 len = min(len, em->len - (start - em->start));
11164 free_extent_map(em);
11167 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
11173 btrfs_warn(fs_info,
11174 "swapfile must not be copy-on-write");
11179 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11185 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11186 btrfs_warn(fs_info,
11187 "swapfile must have single data profile");
11192 if (device == NULL) {
11193 device = em->map_lookup->stripes[0].dev;
11194 ret = btrfs_add_swapfile_pin(inode, device, false);
11199 } else if (device != em->map_lookup->stripes[0].dev) {
11200 btrfs_warn(fs_info, "swapfile must be on one device");
11205 physical_block_start = (em->map_lookup->stripes[0].physical +
11206 (logical_block_start - em->start));
11207 len = min(len, em->len - (logical_block_start - em->start));
11208 free_extent_map(em);
11211 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11213 btrfs_warn(fs_info,
11214 "could not find block group containing swapfile");
11219 if (!btrfs_inc_block_group_swap_extents(bg)) {
11220 btrfs_warn(fs_info,
11221 "block group for swapfile at %llu is read-only%s",
11223 atomic_read(&fs_info->scrubs_running) ?
11224 " (scrub running)" : "");
11225 btrfs_put_block_group(bg);
11230 ret = btrfs_add_swapfile_pin(inode, bg, true);
11232 btrfs_put_block_group(bg);
11239 if (bsi.block_len &&
11240 bsi.block_start + bsi.block_len == physical_block_start) {
11241 bsi.block_len += len;
11243 if (bsi.block_len) {
11244 ret = btrfs_add_swap_extent(sis, &bsi);
11249 bsi.block_start = physical_block_start;
11250 bsi.block_len = len;
11257 ret = btrfs_add_swap_extent(sis, &bsi);
11260 if (!IS_ERR_OR_NULL(em))
11261 free_extent_map(em);
11263 unlock_extent(io_tree, 0, isize - 1, &cached_state);
11266 btrfs_swap_deactivate(file);
11268 btrfs_drew_write_unlock(&root->snapshot_lock);
11270 btrfs_exclop_finish(fs_info);
11276 sis->bdev = device->bdev;
11277 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11278 sis->max = bsi.nr_pages;
11279 sis->pages = bsi.nr_pages - 1;
11280 sis->highest_bit = bsi.nr_pages - 1;
11281 return bsi.nr_extents;
11284 static void btrfs_swap_deactivate(struct file *file)
11288 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11291 return -EOPNOTSUPP;
11296 * Update the number of bytes used in the VFS' inode. When we replace extents in
11297 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11298 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11299 * always get a correct value.
11301 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11302 const u64 add_bytes,
11303 const u64 del_bytes)
11305 if (add_bytes == del_bytes)
11308 spin_lock(&inode->lock);
11310 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11312 inode_add_bytes(&inode->vfs_inode, add_bytes);
11313 spin_unlock(&inode->lock);
11317 * Verify that there are no ordered extents for a given file range.
11319 * @inode: The target inode.
11320 * @start: Start offset of the file range, should be sector size aligned.
11321 * @end: End offset (inclusive) of the file range, its value +1 should be
11322 * sector size aligned.
11324 * This should typically be used for cases where we locked an inode's VFS lock in
11325 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11326 * we have flushed all delalloc in the range, we have waited for all ordered
11327 * extents in the range to complete and finally we have locked the file range in
11328 * the inode's io_tree.
11330 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11332 struct btrfs_root *root = inode->root;
11333 struct btrfs_ordered_extent *ordered;
11335 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11338 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11340 btrfs_err(root->fs_info,
11341 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11342 start, end, btrfs_ino(inode), root->root_key.objectid,
11343 ordered->file_offset,
11344 ordered->file_offset + ordered->num_bytes - 1);
11345 btrfs_put_ordered_extent(ordered);
11348 ASSERT(ordered == NULL);
11351 static const struct inode_operations btrfs_dir_inode_operations = {
11352 .getattr = btrfs_getattr,
11353 .lookup = btrfs_lookup,
11354 .create = btrfs_create,
11355 .unlink = btrfs_unlink,
11356 .link = btrfs_link,
11357 .mkdir = btrfs_mkdir,
11358 .rmdir = btrfs_rmdir,
11359 .rename = btrfs_rename2,
11360 .symlink = btrfs_symlink,
11361 .setattr = btrfs_setattr,
11362 .mknod = btrfs_mknod,
11363 .listxattr = btrfs_listxattr,
11364 .permission = btrfs_permission,
11365 .get_inode_acl = btrfs_get_acl,
11366 .set_acl = btrfs_set_acl,
11367 .update_time = btrfs_update_time,
11368 .tmpfile = btrfs_tmpfile,
11369 .fileattr_get = btrfs_fileattr_get,
11370 .fileattr_set = btrfs_fileattr_set,
11373 static const struct file_operations btrfs_dir_file_operations = {
11374 .llseek = generic_file_llseek,
11375 .read = generic_read_dir,
11376 .iterate_shared = btrfs_real_readdir,
11377 .open = btrfs_opendir,
11378 .unlocked_ioctl = btrfs_ioctl,
11379 #ifdef CONFIG_COMPAT
11380 .compat_ioctl = btrfs_compat_ioctl,
11382 .release = btrfs_release_file,
11383 .fsync = btrfs_sync_file,
11387 * btrfs doesn't support the bmap operation because swapfiles
11388 * use bmap to make a mapping of extents in the file. They assume
11389 * these extents won't change over the life of the file and they
11390 * use the bmap result to do IO directly to the drive.
11392 * the btrfs bmap call would return logical addresses that aren't
11393 * suitable for IO and they also will change frequently as COW
11394 * operations happen. So, swapfile + btrfs == corruption.
11396 * For now we're avoiding this by dropping bmap.
11398 static const struct address_space_operations btrfs_aops = {
11399 .read_folio = btrfs_read_folio,
11400 .writepages = btrfs_writepages,
11401 .readahead = btrfs_readahead,
11402 .direct_IO = noop_direct_IO,
11403 .invalidate_folio = btrfs_invalidate_folio,
11404 .release_folio = btrfs_release_folio,
11405 .migrate_folio = btrfs_migrate_folio,
11406 .dirty_folio = filemap_dirty_folio,
11407 .error_remove_page = generic_error_remove_page,
11408 .swap_activate = btrfs_swap_activate,
11409 .swap_deactivate = btrfs_swap_deactivate,
11412 static const struct inode_operations btrfs_file_inode_operations = {
11413 .getattr = btrfs_getattr,
11414 .setattr = btrfs_setattr,
11415 .listxattr = btrfs_listxattr,
11416 .permission = btrfs_permission,
11417 .fiemap = btrfs_fiemap,
11418 .get_inode_acl = btrfs_get_acl,
11419 .set_acl = btrfs_set_acl,
11420 .update_time = btrfs_update_time,
11421 .fileattr_get = btrfs_fileattr_get,
11422 .fileattr_set = btrfs_fileattr_set,
11424 static const struct inode_operations btrfs_special_inode_operations = {
11425 .getattr = btrfs_getattr,
11426 .setattr = btrfs_setattr,
11427 .permission = btrfs_permission,
11428 .listxattr = btrfs_listxattr,
11429 .get_inode_acl = btrfs_get_acl,
11430 .set_acl = btrfs_set_acl,
11431 .update_time = btrfs_update_time,
11433 static const struct inode_operations btrfs_symlink_inode_operations = {
11434 .get_link = page_get_link,
11435 .getattr = btrfs_getattr,
11436 .setattr = btrfs_setattr,
11437 .permission = btrfs_permission,
11438 .listxattr = btrfs_listxattr,
11439 .update_time = btrfs_update_time,
11442 const struct dentry_operations btrfs_dentry_operations = {
11443 .d_delete = btrfs_dentry_delete,