]> Git Repo - linux.git/blob - drivers/spi/spi.c
net: ethtool: extend ringparam set/get APIs for rx_push
[linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field)                         \
121 do {                                                                    \
122         int i;                                                          \
123         ret = 0;                                                        \
124         for_each_possible_cpu(i) {                                      \
125                 const struct spi_statistics *pcpu_stats;                \
126                 u64 inc;                                                \
127                 unsigned int start;                                     \
128                 pcpu_stats = per_cpu_ptr(in, i);                        \
129                 do {                                                    \
130                         start = u64_stats_fetch_begin(          \
131                                         &pcpu_stats->syncp);            \
132                         inc = u64_stats_read(&pcpu_stats->field);       \
133                 } while (u64_stats_fetch_retry(                 \
134                                         &pcpu_stats->syncp, start));    \
135                 ret += inc;                                             \
136         }                                                               \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file)                               \
140 static ssize_t spi_controller_##field##_show(struct device *dev,        \
141                                              struct device_attribute *attr, \
142                                              char *buf)                 \
143 {                                                                       \
144         struct spi_controller *ctlr = container_of(dev,                 \
145                                          struct spi_controller, dev);   \
146         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }                                                                       \
148 static struct device_attribute dev_attr_spi_controller_##field = {      \
149         .attr = { .name = file, .mode = 0444 },                         \
150         .show = spi_controller_##field##_show,                          \
151 };                                                                      \
152 static ssize_t spi_device_##field##_show(struct device *dev,            \
153                                          struct device_attribute *attr, \
154                                         char *buf)                      \
155 {                                                                       \
156         struct spi_device *spi = to_spi_device(dev);                    \
157         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }                                                                       \
159 static struct device_attribute dev_attr_spi_device_##field = {          \
160         .attr = { .name = file, .mode = 0444 },                         \
161         .show = spi_device_##field##_show,                              \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166                                             char *buf)                  \
167 {                                                                       \
168         ssize_t len;                                                    \
169         u64 val;                                                        \
170         spi_pcpu_stats_totalize(val, stat, field);                      \
171         len = sysfs_emit(buf, "%llu\n", val);                           \
172         return len;                                                     \
173 }                                                                       \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field)                                      \
177         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
178                                  field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
194         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
195                                  "transfer_bytes_histo_" number,        \
196                                  transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218         &dev_attr_modalias.attr,
219         &dev_attr_driver_override.attr,
220         NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224         .attrs  = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228         &dev_attr_spi_device_messages.attr,
229         &dev_attr_spi_device_transfers.attr,
230         &dev_attr_spi_device_errors.attr,
231         &dev_attr_spi_device_timedout.attr,
232         &dev_attr_spi_device_spi_sync.attr,
233         &dev_attr_spi_device_spi_sync_immediate.attr,
234         &dev_attr_spi_device_spi_async.attr,
235         &dev_attr_spi_device_bytes.attr,
236         &dev_attr_spi_device_bytes_rx.attr,
237         &dev_attr_spi_device_bytes_tx.attr,
238         &dev_attr_spi_device_transfer_bytes_histo0.attr,
239         &dev_attr_spi_device_transfer_bytes_histo1.attr,
240         &dev_attr_spi_device_transfer_bytes_histo2.attr,
241         &dev_attr_spi_device_transfer_bytes_histo3.attr,
242         &dev_attr_spi_device_transfer_bytes_histo4.attr,
243         &dev_attr_spi_device_transfer_bytes_histo5.attr,
244         &dev_attr_spi_device_transfer_bytes_histo6.attr,
245         &dev_attr_spi_device_transfer_bytes_histo7.attr,
246         &dev_attr_spi_device_transfer_bytes_histo8.attr,
247         &dev_attr_spi_device_transfer_bytes_histo9.attr,
248         &dev_attr_spi_device_transfer_bytes_histo10.attr,
249         &dev_attr_spi_device_transfer_bytes_histo11.attr,
250         &dev_attr_spi_device_transfer_bytes_histo12.attr,
251         &dev_attr_spi_device_transfer_bytes_histo13.attr,
252         &dev_attr_spi_device_transfer_bytes_histo14.attr,
253         &dev_attr_spi_device_transfer_bytes_histo15.attr,
254         &dev_attr_spi_device_transfer_bytes_histo16.attr,
255         &dev_attr_spi_device_transfers_split_maxsize.attr,
256         NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260         .name  = "statistics",
261         .attrs  = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265         &spi_dev_group,
266         &spi_device_statistics_group,
267         NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271         &dev_attr_spi_controller_messages.attr,
272         &dev_attr_spi_controller_transfers.attr,
273         &dev_attr_spi_controller_errors.attr,
274         &dev_attr_spi_controller_timedout.attr,
275         &dev_attr_spi_controller_spi_sync.attr,
276         &dev_attr_spi_controller_spi_sync_immediate.attr,
277         &dev_attr_spi_controller_spi_async.attr,
278         &dev_attr_spi_controller_bytes.attr,
279         &dev_attr_spi_controller_bytes_rx.attr,
280         &dev_attr_spi_controller_bytes_tx.attr,
281         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298         &dev_attr_spi_controller_transfers_split_maxsize.attr,
299         NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303         .name  = "statistics",
304         .attrs  = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308         &spi_controller_statistics_group,
309         NULL,
310 };
311
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313                                               struct spi_transfer *xfer,
314                                               struct spi_controller *ctlr)
315 {
316         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317         struct spi_statistics *stats;
318
319         if (l2len < 0)
320                 l2len = 0;
321
322         get_cpu();
323         stats = this_cpu_ptr(pcpu_stats);
324         u64_stats_update_begin(&stats->syncp);
325
326         u64_stats_inc(&stats->transfers);
327         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329         u64_stats_add(&stats->bytes, xfer->len);
330         if ((xfer->tx_buf) &&
331             (xfer->tx_buf != ctlr->dummy_tx))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if ((xfer->rx_buf) &&
334             (xfer->rx_buf != ctlr->dummy_rx))
335                 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337         u64_stats_update_end(&stats->syncp);
338         put_cpu();
339 }
340
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347         while (id->name[0]) {
348                 if (!strcmp(name, id->name))
349                         return id;
350                 id++;
351         }
352         return NULL;
353 }
354
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359         return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365         const void *match;
366
367         match = device_get_match_data(&sdev->dev);
368         if (match)
369                 return match;
370
371         return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377         const struct spi_device *spi = to_spi_device(dev);
378         const struct spi_driver *sdrv = to_spi_driver(drv);
379
380         /* Check override first, and if set, only use the named driver */
381         if (spi->driver_override)
382                 return strcmp(spi->driver_override, drv->name) == 0;
383
384         /* Attempt an OF style match */
385         if (of_driver_match_device(dev, drv))
386                 return 1;
387
388         /* Then try ACPI */
389         if (acpi_driver_match_device(dev, drv))
390                 return 1;
391
392         if (sdrv->id_table)
393                 return !!spi_match_id(sdrv->id_table, spi->modalias);
394
395         return strcmp(spi->modalias, drv->name) == 0;
396 }
397
398 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
399 {
400         const struct spi_device         *spi = to_spi_device(dev);
401         int rc;
402
403         rc = acpi_device_uevent_modalias(dev, env);
404         if (rc != -ENODEV)
405                 return rc;
406
407         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409
410 static int spi_probe(struct device *dev)
411 {
412         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
413         struct spi_device               *spi = to_spi_device(dev);
414         int ret;
415
416         ret = of_clk_set_defaults(dev->of_node, false);
417         if (ret)
418                 return ret;
419
420         if (dev->of_node) {
421                 spi->irq = of_irq_get(dev->of_node, 0);
422                 if (spi->irq == -EPROBE_DEFER)
423                         return -EPROBE_DEFER;
424                 if (spi->irq < 0)
425                         spi->irq = 0;
426         }
427
428         ret = dev_pm_domain_attach(dev, true);
429         if (ret)
430                 return ret;
431
432         if (sdrv->probe) {
433                 ret = sdrv->probe(spi);
434                 if (ret)
435                         dev_pm_domain_detach(dev, true);
436         }
437
438         return ret;
439 }
440
441 static void spi_remove(struct device *dev)
442 {
443         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
444
445         if (sdrv->remove)
446                 sdrv->remove(to_spi_device(dev));
447
448         dev_pm_domain_detach(dev, true);
449 }
450
451 static void spi_shutdown(struct device *dev)
452 {
453         if (dev->driver) {
454                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
455
456                 if (sdrv->shutdown)
457                         sdrv->shutdown(to_spi_device(dev));
458         }
459 }
460
461 struct bus_type spi_bus_type = {
462         .name           = "spi",
463         .dev_groups     = spi_dev_groups,
464         .match          = spi_match_device,
465         .uevent         = spi_uevent,
466         .probe          = spi_probe,
467         .remove         = spi_remove,
468         .shutdown       = spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471
472 /**
473  * __spi_register_driver - register a SPI driver
474  * @owner: owner module of the driver to register
475  * @sdrv: the driver to register
476  * Context: can sleep
477  *
478  * Return: zero on success, else a negative error code.
479  */
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482         sdrv->driver.owner = owner;
483         sdrv->driver.bus = &spi_bus_type;
484
485         /*
486          * For Really Good Reasons we use spi: modaliases not of:
487          * modaliases for DT so module autoloading won't work if we
488          * don't have a spi_device_id as well as a compatible string.
489          */
490         if (sdrv->driver.of_match_table) {
491                 const struct of_device_id *of_id;
492
493                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494                      of_id++) {
495                         const char *of_name;
496
497                         /* Strip off any vendor prefix */
498                         of_name = strnchr(of_id->compatible,
499                                           sizeof(of_id->compatible), ',');
500                         if (of_name)
501                                 of_name++;
502                         else
503                                 of_name = of_id->compatible;
504
505                         if (sdrv->id_table) {
506                                 const struct spi_device_id *spi_id;
507
508                                 spi_id = spi_match_id(sdrv->id_table, of_name);
509                                 if (spi_id)
510                                         continue;
511                         } else {
512                                 if (strcmp(sdrv->driver.name, of_name) == 0)
513                                         continue;
514                         }
515
516                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
517                                 sdrv->driver.name, of_id->compatible);
518                 }
519         }
520
521         return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524
525 /*-------------------------------------------------------------------------*/
526
527 /*
528  * SPI devices should normally not be created by SPI device drivers; that
529  * would make them board-specific.  Similarly with SPI controller drivers.
530  * Device registration normally goes into like arch/.../mach.../board-YYY.c
531  * with other readonly (flashable) information about mainboard devices.
532  */
533
534 struct boardinfo {
535         struct list_head        list;
536         struct spi_board_info   board_info;
537 };
538
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541
542 /*
543  * Used to protect add/del operation for board_info list and
544  * spi_controller list, and their matching process also used
545  * to protect object of type struct idr.
546  */
547 static DEFINE_MUTEX(board_lock);
548
549 /**
550  * spi_alloc_device - Allocate a new SPI device
551  * @ctlr: Controller to which device is connected
552  * Context: can sleep
553  *
554  * Allows a driver to allocate and initialize a spi_device without
555  * registering it immediately.  This allows a driver to directly
556  * fill the spi_device with device parameters before calling
557  * spi_add_device() on it.
558  *
559  * Caller is responsible to call spi_add_device() on the returned
560  * spi_device structure to add it to the SPI controller.  If the caller
561  * needs to discard the spi_device without adding it, then it should
562  * call spi_dev_put() on it.
563  *
564  * Return: a pointer to the new device, or NULL.
565  */
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568         struct spi_device       *spi;
569
570         if (!spi_controller_get(ctlr))
571                 return NULL;
572
573         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574         if (!spi) {
575                 spi_controller_put(ctlr);
576                 return NULL;
577         }
578
579         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580         if (!spi->pcpu_statistics) {
581                 kfree(spi);
582                 spi_controller_put(ctlr);
583                 return NULL;
584         }
585
586         spi->master = spi->controller = ctlr;
587         spi->dev.parent = &ctlr->dev;
588         spi->dev.bus = &spi_bus_type;
589         spi->dev.release = spidev_release;
590         spi->mode = ctlr->buswidth_override_bits;
591
592         device_initialize(&spi->dev);
593         return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596
597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600
601         if (adev) {
602                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603                 return;
604         }
605
606         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607                      spi->chip_select);
608 }
609
610 static int spi_dev_check(struct device *dev, void *data)
611 {
612         struct spi_device *spi = to_spi_device(dev);
613         struct spi_device *new_spi = data;
614
615         if (spi->controller == new_spi->controller &&
616             spi->chip_select == new_spi->chip_select)
617                 return -EBUSY;
618         return 0;
619 }
620
621 static void spi_cleanup(struct spi_device *spi)
622 {
623         if (spi->controller->cleanup)
624                 spi->controller->cleanup(spi);
625 }
626
627 static int __spi_add_device(struct spi_device *spi)
628 {
629         struct spi_controller *ctlr = spi->controller;
630         struct device *dev = ctlr->dev.parent;
631         int status;
632
633         /*
634          * We need to make sure there's no other device with this
635          * chipselect **BEFORE** we call setup(), else we'll trash
636          * its configuration.
637          */
638         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639         if (status) {
640                 dev_err(dev, "chipselect %d already in use\n",
641                                 spi->chip_select);
642                 return status;
643         }
644
645         /* Controller may unregister concurrently */
646         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647             !device_is_registered(&ctlr->dev)) {
648                 return -ENODEV;
649         }
650
651         if (ctlr->cs_gpiods)
652                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
653
654         /*
655          * Drivers may modify this initial i/o setup, but will
656          * normally rely on the device being setup.  Devices
657          * using SPI_CS_HIGH can't coexist well otherwise...
658          */
659         status = spi_setup(spi);
660         if (status < 0) {
661                 dev_err(dev, "can't setup %s, status %d\n",
662                                 dev_name(&spi->dev), status);
663                 return status;
664         }
665
666         /* Device may be bound to an active driver when this returns */
667         status = device_add(&spi->dev);
668         if (status < 0) {
669                 dev_err(dev, "can't add %s, status %d\n",
670                                 dev_name(&spi->dev), status);
671                 spi_cleanup(spi);
672         } else {
673                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674         }
675
676         return status;
677 }
678
679 /**
680  * spi_add_device - Add spi_device allocated with spi_alloc_device
681  * @spi: spi_device to register
682  *
683  * Companion function to spi_alloc_device.  Devices allocated with
684  * spi_alloc_device can be added onto the spi bus with this function.
685  *
686  * Return: 0 on success; negative errno on failure
687  */
688 int spi_add_device(struct spi_device *spi)
689 {
690         struct spi_controller *ctlr = spi->controller;
691         struct device *dev = ctlr->dev.parent;
692         int status;
693
694         /* Chipselects are numbered 0..max; validate. */
695         if (spi->chip_select >= ctlr->num_chipselect) {
696                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
697                         ctlr->num_chipselect);
698                 return -EINVAL;
699         }
700
701         /* Set the bus ID string */
702         spi_dev_set_name(spi);
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713         struct spi_controller *ctlr = spi->controller;
714         struct device *dev = ctlr->dev.parent;
715
716         /* Chipselects are numbered 0..max; validate. */
717         if (spi->chip_select >= ctlr->num_chipselect) {
718                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
719                         ctlr->num_chipselect);
720                 return -EINVAL;
721         }
722
723         /* Set the bus ID string */
724         spi_dev_set_name(spi);
725
726         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727         return __spi_add_device(spi);
728 }
729
730 /**
731  * spi_new_device - instantiate one new SPI device
732  * @ctlr: Controller to which device is connected
733  * @chip: Describes the SPI device
734  * Context: can sleep
735  *
736  * On typical mainboards, this is purely internal; and it's not needed
737  * after board init creates the hard-wired devices.  Some development
738  * platforms may not be able to use spi_register_board_info though, and
739  * this is exported so that for example a USB or parport based adapter
740  * driver could add devices (which it would learn about out-of-band).
741  *
742  * Return: the new device, or NULL.
743  */
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745                                   struct spi_board_info *chip)
746 {
747         struct spi_device       *proxy;
748         int                     status;
749
750         /*
751          * NOTE:  caller did any chip->bus_num checks necessary.
752          *
753          * Also, unless we change the return value convention to use
754          * error-or-pointer (not NULL-or-pointer), troubleshootability
755          * suggests syslogged diagnostics are best here (ugh).
756          */
757
758         proxy = spi_alloc_device(ctlr);
759         if (!proxy)
760                 return NULL;
761
762         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763
764         proxy->chip_select = chip->chip_select;
765         proxy->max_speed_hz = chip->max_speed_hz;
766         proxy->mode = chip->mode;
767         proxy->irq = chip->irq;
768         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769         proxy->dev.platform_data = (void *) chip->platform_data;
770         proxy->controller_data = chip->controller_data;
771         proxy->controller_state = NULL;
772
773         if (chip->swnode) {
774                 status = device_add_software_node(&proxy->dev, chip->swnode);
775                 if (status) {
776                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777                                 chip->modalias, status);
778                         goto err_dev_put;
779                 }
780         }
781
782         status = spi_add_device(proxy);
783         if (status < 0)
784                 goto err_dev_put;
785
786         return proxy;
787
788 err_dev_put:
789         device_remove_software_node(&proxy->dev);
790         spi_dev_put(proxy);
791         return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794
795 /**
796  * spi_unregister_device - unregister a single SPI device
797  * @spi: spi_device to unregister
798  *
799  * Start making the passed SPI device vanish. Normally this would be handled
800  * by spi_unregister_controller().
801  */
802 void spi_unregister_device(struct spi_device *spi)
803 {
804         if (!spi)
805                 return;
806
807         if (spi->dev.of_node) {
808                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809                 of_node_put(spi->dev.of_node);
810         }
811         if (ACPI_COMPANION(&spi->dev))
812                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813         device_remove_software_node(&spi->dev);
814         device_del(&spi->dev);
815         spi_cleanup(spi);
816         put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821                                               struct spi_board_info *bi)
822 {
823         struct spi_device *dev;
824
825         if (ctlr->bus_num != bi->bus_num)
826                 return;
827
828         dev = spi_new_device(ctlr, bi);
829         if (!dev)
830                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831                         bi->modalias);
832 }
833
834 /**
835  * spi_register_board_info - register SPI devices for a given board
836  * @info: array of chip descriptors
837  * @n: how many descriptors are provided
838  * Context: can sleep
839  *
840  * Board-specific early init code calls this (probably during arch_initcall)
841  * with segments of the SPI device table.  Any device nodes are created later,
842  * after the relevant parent SPI controller (bus_num) is defined.  We keep
843  * this table of devices forever, so that reloading a controller driver will
844  * not make Linux forget about these hard-wired devices.
845  *
846  * Other code can also call this, e.g. a particular add-on board might provide
847  * SPI devices through its expansion connector, so code initializing that board
848  * would naturally declare its SPI devices.
849  *
850  * The board info passed can safely be __initdata ... but be careful of
851  * any embedded pointers (platform_data, etc), they're copied as-is.
852  *
853  * Return: zero on success, else a negative error code.
854  */
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857         struct boardinfo *bi;
858         int i;
859
860         if (!n)
861                 return 0;
862
863         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864         if (!bi)
865                 return -ENOMEM;
866
867         for (i = 0; i < n; i++, bi++, info++) {
868                 struct spi_controller *ctlr;
869
870                 memcpy(&bi->board_info, info, sizeof(*info));
871
872                 mutex_lock(&board_lock);
873                 list_add_tail(&bi->list, &board_list);
874                 list_for_each_entry(ctlr, &spi_controller_list, list)
875                         spi_match_controller_to_boardinfo(ctlr,
876                                                           &bi->board_info);
877                 mutex_unlock(&board_lock);
878         }
879
880         return 0;
881 }
882
883 /*-------------------------------------------------------------------------*/
884
885 /* Core methods for SPI resource management */
886
887 /**
888  * spi_res_alloc - allocate a spi resource that is life-cycle managed
889  *                 during the processing of a spi_message while using
890  *                 spi_transfer_one
891  * @spi:     the spi device for which we allocate memory
892  * @release: the release code to execute for this resource
893  * @size:    size to alloc and return
894  * @gfp:     GFP allocation flags
895  *
896  * Return: the pointer to the allocated data
897  *
898  * This may get enhanced in the future to allocate from a memory pool
899  * of the @spi_device or @spi_controller to avoid repeated allocations.
900  */
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902                            size_t size, gfp_t gfp)
903 {
904         struct spi_res *sres;
905
906         sres = kzalloc(sizeof(*sres) + size, gfp);
907         if (!sres)
908                 return NULL;
909
910         INIT_LIST_HEAD(&sres->entry);
911         sres->release = release;
912
913         return sres->data;
914 }
915
916 /**
917  * spi_res_free - free an spi resource
918  * @res: pointer to the custom data of a resource
919  */
920 static void spi_res_free(void *res)
921 {
922         struct spi_res *sres = container_of(res, struct spi_res, data);
923
924         if (!res)
925                 return;
926
927         WARN_ON(!list_empty(&sres->entry));
928         kfree(sres);
929 }
930
931 /**
932  * spi_res_add - add a spi_res to the spi_message
933  * @message: the spi message
934  * @res:     the spi_resource
935  */
936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938         struct spi_res *sres = container_of(res, struct spi_res, data);
939
940         WARN_ON(!list_empty(&sres->entry));
941         list_add_tail(&sres->entry, &message->resources);
942 }
943
944 /**
945  * spi_res_release - release all spi resources for this message
946  * @ctlr:  the @spi_controller
947  * @message: the @spi_message
948  */
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951         struct spi_res *res, *tmp;
952
953         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954                 if (res->release)
955                         res->release(ctlr, message, res->data);
956
957                 list_del(&res->entry);
958
959                 kfree(res);
960         }
961 }
962
963 /*-------------------------------------------------------------------------*/
964
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967         bool activate = enable;
968
969         /*
970          * Avoid calling into the driver (or doing delays) if the chip select
971          * isn't actually changing from the last time this was called.
972          */
973         if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
974                                 (!enable && spi->controller->last_cs != spi->chip_select)) &&
975             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976                 return;
977
978         trace_spi_set_cs(spi, activate);
979
980         spi->controller->last_cs = enable ? spi->chip_select : -1;
981         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982
983         if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
984                 spi_delay_exec(&spi->cs_hold, NULL);
985         }
986
987         if (spi->mode & SPI_CS_HIGH)
988                 enable = !enable;
989
990         if (spi->cs_gpiod) {
991                 if (!(spi->mode & SPI_NO_CS)) {
992                         /*
993                          * Historically ACPI has no means of the GPIO polarity and
994                          * thus the SPISerialBus() resource defines it on the per-chip
995                          * basis. In order to avoid a chain of negations, the GPIO
996                          * polarity is considered being Active High. Even for the cases
997                          * when _DSD() is involved (in the updated versions of ACPI)
998                          * the GPIO CS polarity must be defined Active High to avoid
999                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000                          * into account.
1001                          */
1002                         if (has_acpi_companion(&spi->dev))
1003                                 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
1004                         else
1005                                 /* Polarity handled by GPIO library */
1006                                 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
1007                 }
1008                 /* Some SPI masters need both GPIO CS & slave_select */
1009                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010                     spi->controller->set_cs)
1011                         spi->controller->set_cs(spi, !enable);
1012         } else if (spi->controller->set_cs) {
1013                 spi->controller->set_cs(spi, !enable);
1014         }
1015
1016         if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1017                 if (activate)
1018                         spi_delay_exec(&spi->cs_setup, NULL);
1019                 else
1020                         spi_delay_exec(&spi->cs_inactive, NULL);
1021         }
1022 }
1023
1024 #ifdef CONFIG_HAS_DMA
1025 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026                              struct sg_table *sgt, void *buf, size_t len,
1027                              enum dma_data_direction dir, unsigned long attrs)
1028 {
1029         const bool vmalloced_buf = is_vmalloc_addr(buf);
1030         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031 #ifdef CONFIG_HIGHMEM
1032         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033                                 (unsigned long)buf < (PKMAP_BASE +
1034                                         (LAST_PKMAP * PAGE_SIZE)));
1035 #else
1036         const bool kmap_buf = false;
1037 #endif
1038         int desc_len;
1039         int sgs;
1040         struct page *vm_page;
1041         struct scatterlist *sg;
1042         void *sg_buf;
1043         size_t min;
1044         int i, ret;
1045
1046         if (vmalloced_buf || kmap_buf) {
1047                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049         } else if (virt_addr_valid(buf)) {
1050                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051                 sgs = DIV_ROUND_UP(len, desc_len);
1052         } else {
1053                 return -EINVAL;
1054         }
1055
1056         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057         if (ret != 0)
1058                 return ret;
1059
1060         sg = &sgt->sgl[0];
1061         for (i = 0; i < sgs; i++) {
1062
1063                 if (vmalloced_buf || kmap_buf) {
1064                         /*
1065                          * Next scatterlist entry size is the minimum between
1066                          * the desc_len and the remaining buffer length that
1067                          * fits in a page.
1068                          */
1069                         min = min_t(size_t, desc_len,
1070                                     min_t(size_t, len,
1071                                           PAGE_SIZE - offset_in_page(buf)));
1072                         if (vmalloced_buf)
1073                                 vm_page = vmalloc_to_page(buf);
1074                         else
1075                                 vm_page = kmap_to_page(buf);
1076                         if (!vm_page) {
1077                                 sg_free_table(sgt);
1078                                 return -ENOMEM;
1079                         }
1080                         sg_set_page(sg, vm_page,
1081                                     min, offset_in_page(buf));
1082                 } else {
1083                         min = min_t(size_t, len, desc_len);
1084                         sg_buf = buf;
1085                         sg_set_buf(sg, sg_buf, min);
1086                 }
1087
1088                 buf += min;
1089                 len -= min;
1090                 sg = sg_next(sg);
1091         }
1092
1093         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1094         if (ret < 0) {
1095                 sg_free_table(sgt);
1096                 return ret;
1097         }
1098
1099         return 0;
1100 }
1101
1102 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103                 struct sg_table *sgt, void *buf, size_t len,
1104                 enum dma_data_direction dir)
1105 {
1106         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107 }
1108
1109 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110                                 struct device *dev, struct sg_table *sgt,
1111                                 enum dma_data_direction dir,
1112                                 unsigned long attrs)
1113 {
1114         if (sgt->orig_nents) {
1115                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1116                 sg_free_table(sgt);
1117                 sgt->orig_nents = 0;
1118                 sgt->nents = 0;
1119         }
1120 }
1121
1122 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123                    struct sg_table *sgt, enum dma_data_direction dir)
1124 {
1125         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126 }
1127
1128 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129 {
1130         struct device *tx_dev, *rx_dev;
1131         struct spi_transfer *xfer;
1132         int ret;
1133
1134         if (!ctlr->can_dma)
1135                 return 0;
1136
1137         if (ctlr->dma_tx)
1138                 tx_dev = ctlr->dma_tx->device->dev;
1139         else if (ctlr->dma_map_dev)
1140                 tx_dev = ctlr->dma_map_dev;
1141         else
1142                 tx_dev = ctlr->dev.parent;
1143
1144         if (ctlr->dma_rx)
1145                 rx_dev = ctlr->dma_rx->device->dev;
1146         else if (ctlr->dma_map_dev)
1147                 rx_dev = ctlr->dma_map_dev;
1148         else
1149                 rx_dev = ctlr->dev.parent;
1150
1151         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152                 /* The sync is done before each transfer. */
1153                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154
1155                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156                         continue;
1157
1158                 if (xfer->tx_buf != NULL) {
1159                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160                                                 (void *)xfer->tx_buf,
1161                                                 xfer->len, DMA_TO_DEVICE,
1162                                                 attrs);
1163                         if (ret != 0)
1164                                 return ret;
1165                 }
1166
1167                 if (xfer->rx_buf != NULL) {
1168                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169                                                 xfer->rx_buf, xfer->len,
1170                                                 DMA_FROM_DEVICE, attrs);
1171                         if (ret != 0) {
1172                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1173                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1174                                                 attrs);
1175
1176                                 return ret;
1177                         }
1178                 }
1179         }
1180
1181         ctlr->cur_rx_dma_dev = rx_dev;
1182         ctlr->cur_tx_dma_dev = tx_dev;
1183         ctlr->cur_msg_mapped = true;
1184
1185         return 0;
1186 }
1187
1188 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189 {
1190         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192         struct spi_transfer *xfer;
1193
1194         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195                 return 0;
1196
1197         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198                 /* The sync has already been done after each transfer. */
1199                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200
1201                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202                         continue;
1203
1204                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205                                     DMA_FROM_DEVICE, attrs);
1206                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207                                     DMA_TO_DEVICE, attrs);
1208         }
1209
1210         ctlr->cur_msg_mapped = false;
1211
1212         return 0;
1213 }
1214
1215 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216                                     struct spi_transfer *xfer)
1217 {
1218         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220
1221         if (!ctlr->cur_msg_mapped)
1222                 return;
1223
1224         if (xfer->tx_sg.orig_nents)
1225                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226         if (xfer->rx_sg.orig_nents)
1227                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228 }
1229
1230 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231                                  struct spi_transfer *xfer)
1232 {
1233         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235
1236         if (!ctlr->cur_msg_mapped)
1237                 return;
1238
1239         if (xfer->rx_sg.orig_nents)
1240                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241         if (xfer->tx_sg.orig_nents)
1242                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243 }
1244 #else /* !CONFIG_HAS_DMA */
1245 static inline int __spi_map_msg(struct spi_controller *ctlr,
1246                                 struct spi_message *msg)
1247 {
1248         return 0;
1249 }
1250
1251 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252                                   struct spi_message *msg)
1253 {
1254         return 0;
1255 }
1256
1257 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258                                     struct spi_transfer *xfer)
1259 {
1260 }
1261
1262 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263                                  struct spi_transfer *xfer)
1264 {
1265 }
1266 #endif /* !CONFIG_HAS_DMA */
1267
1268 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269                                 struct spi_message *msg)
1270 {
1271         struct spi_transfer *xfer;
1272
1273         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274                 /*
1275                  * Restore the original value of tx_buf or rx_buf if they are
1276                  * NULL.
1277                  */
1278                 if (xfer->tx_buf == ctlr->dummy_tx)
1279                         xfer->tx_buf = NULL;
1280                 if (xfer->rx_buf == ctlr->dummy_rx)
1281                         xfer->rx_buf = NULL;
1282         }
1283
1284         return __spi_unmap_msg(ctlr, msg);
1285 }
1286
1287 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 {
1289         struct spi_transfer *xfer;
1290         void *tmp;
1291         unsigned int max_tx, max_rx;
1292
1293         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294                 && !(msg->spi->mode & SPI_3WIRE)) {
1295                 max_tx = 0;
1296                 max_rx = 0;
1297
1298                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300                             !xfer->tx_buf)
1301                                 max_tx = max(xfer->len, max_tx);
1302                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303                             !xfer->rx_buf)
1304                                 max_rx = max(xfer->len, max_rx);
1305                 }
1306
1307                 if (max_tx) {
1308                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1309                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310                         if (!tmp)
1311                                 return -ENOMEM;
1312                         ctlr->dummy_tx = tmp;
1313                 }
1314
1315                 if (max_rx) {
1316                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1317                                        GFP_KERNEL | GFP_DMA);
1318                         if (!tmp)
1319                                 return -ENOMEM;
1320                         ctlr->dummy_rx = tmp;
1321                 }
1322
1323                 if (max_tx || max_rx) {
1324                         list_for_each_entry(xfer, &msg->transfers,
1325                                             transfer_list) {
1326                                 if (!xfer->len)
1327                                         continue;
1328                                 if (!xfer->tx_buf)
1329                                         xfer->tx_buf = ctlr->dummy_tx;
1330                                 if (!xfer->rx_buf)
1331                                         xfer->rx_buf = ctlr->dummy_rx;
1332                         }
1333                 }
1334         }
1335
1336         return __spi_map_msg(ctlr, msg);
1337 }
1338
1339 static int spi_transfer_wait(struct spi_controller *ctlr,
1340                              struct spi_message *msg,
1341                              struct spi_transfer *xfer)
1342 {
1343         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345         u32 speed_hz = xfer->speed_hz;
1346         unsigned long long ms;
1347
1348         if (spi_controller_is_slave(ctlr)) {
1349                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351                         return -EINTR;
1352                 }
1353         } else {
1354                 if (!speed_hz)
1355                         speed_hz = 100000;
1356
1357                 /*
1358                  * For each byte we wait for 8 cycles of the SPI clock.
1359                  * Since speed is defined in Hz and we want milliseconds,
1360                  * use respective multiplier, but before the division,
1361                  * otherwise we may get 0 for short transfers.
1362                  */
1363                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1364                 do_div(ms, speed_hz);
1365
1366                 /*
1367                  * Increase it twice and add 200 ms tolerance, use
1368                  * predefined maximum in case of overflow.
1369                  */
1370                 ms += ms + 200;
1371                 if (ms > UINT_MAX)
1372                         ms = UINT_MAX;
1373
1374                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375                                                  msecs_to_jiffies(ms));
1376
1377                 if (ms == 0) {
1378                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380                         dev_err(&msg->spi->dev,
1381                                 "SPI transfer timed out\n");
1382                         return -ETIMEDOUT;
1383                 }
1384         }
1385
1386         return 0;
1387 }
1388
1389 static void _spi_transfer_delay_ns(u32 ns)
1390 {
1391         if (!ns)
1392                 return;
1393         if (ns <= NSEC_PER_USEC) {
1394                 ndelay(ns);
1395         } else {
1396                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397
1398                 if (us <= 10)
1399                         udelay(us);
1400                 else
1401                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402         }
1403 }
1404
1405 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406 {
1407         u32 delay = _delay->value;
1408         u32 unit = _delay->unit;
1409         u32 hz;
1410
1411         if (!delay)
1412                 return 0;
1413
1414         switch (unit) {
1415         case SPI_DELAY_UNIT_USECS:
1416                 delay *= NSEC_PER_USEC;
1417                 break;
1418         case SPI_DELAY_UNIT_NSECS:
1419                 /* Nothing to do here */
1420                 break;
1421         case SPI_DELAY_UNIT_SCK:
1422                 /* Clock cycles need to be obtained from spi_transfer */
1423                 if (!xfer)
1424                         return -EINVAL;
1425                 /*
1426                  * If there is unknown effective speed, approximate it
1427                  * by underestimating with half of the requested hz.
1428                  */
1429                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430                 if (!hz)
1431                         return -EINVAL;
1432
1433                 /* Convert delay to nanoseconds */
1434                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435                 break;
1436         default:
1437                 return -EINVAL;
1438         }
1439
1440         return delay;
1441 }
1442 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443
1444 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445 {
1446         int delay;
1447
1448         might_sleep();
1449
1450         if (!_delay)
1451                 return -EINVAL;
1452
1453         delay = spi_delay_to_ns(_delay, xfer);
1454         if (delay < 0)
1455                 return delay;
1456
1457         _spi_transfer_delay_ns(delay);
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_delay_exec);
1462
1463 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464                                           struct spi_transfer *xfer)
1465 {
1466         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467         u32 delay = xfer->cs_change_delay.value;
1468         u32 unit = xfer->cs_change_delay.unit;
1469         int ret;
1470
1471         /* Return early on "fast" mode - for everything but USECS */
1472         if (!delay) {
1473                 if (unit == SPI_DELAY_UNIT_USECS)
1474                         _spi_transfer_delay_ns(default_delay_ns);
1475                 return;
1476         }
1477
1478         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479         if (ret) {
1480                 dev_err_once(&msg->spi->dev,
1481                              "Use of unsupported delay unit %i, using default of %luus\n",
1482                              unit, default_delay_ns / NSEC_PER_USEC);
1483                 _spi_transfer_delay_ns(default_delay_ns);
1484         }
1485 }
1486
1487 /*
1488  * spi_transfer_one_message - Default implementation of transfer_one_message()
1489  *
1490  * This is a standard implementation of transfer_one_message() for
1491  * drivers which implement a transfer_one() operation.  It provides
1492  * standard handling of delays and chip select management.
1493  */
1494 static int spi_transfer_one_message(struct spi_controller *ctlr,
1495                                     struct spi_message *msg)
1496 {
1497         struct spi_transfer *xfer;
1498         bool keep_cs = false;
1499         int ret = 0;
1500         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1501         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1502
1503         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1504         spi_set_cs(msg->spi, !xfer->cs_off, false);
1505
1506         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1507         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1508
1509         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1510                 trace_spi_transfer_start(msg, xfer);
1511
1512                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1513                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1514
1515                 if (!ctlr->ptp_sts_supported) {
1516                         xfer->ptp_sts_word_pre = 0;
1517                         ptp_read_system_prets(xfer->ptp_sts);
1518                 }
1519
1520                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1521                         reinit_completion(&ctlr->xfer_completion);
1522
1523 fallback_pio:
1524                         spi_dma_sync_for_device(ctlr, xfer);
1525                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1526                         if (ret < 0) {
1527                                 spi_dma_sync_for_cpu(ctlr, xfer);
1528
1529                                 if (ctlr->cur_msg_mapped &&
1530                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1531                                         __spi_unmap_msg(ctlr, msg);
1532                                         ctlr->fallback = true;
1533                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1534                                         goto fallback_pio;
1535                                 }
1536
1537                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1538                                                                errors);
1539                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1540                                                                errors);
1541                                 dev_err(&msg->spi->dev,
1542                                         "SPI transfer failed: %d\n", ret);
1543                                 goto out;
1544                         }
1545
1546                         if (ret > 0) {
1547                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1548                                 if (ret < 0)
1549                                         msg->status = ret;
1550                         }
1551
1552                         spi_dma_sync_for_cpu(ctlr, xfer);
1553                 } else {
1554                         if (xfer->len)
1555                                 dev_err(&msg->spi->dev,
1556                                         "Bufferless transfer has length %u\n",
1557                                         xfer->len);
1558                 }
1559
1560                 if (!ctlr->ptp_sts_supported) {
1561                         ptp_read_system_postts(xfer->ptp_sts);
1562                         xfer->ptp_sts_word_post = xfer->len;
1563                 }
1564
1565                 trace_spi_transfer_stop(msg, xfer);
1566
1567                 if (msg->status != -EINPROGRESS)
1568                         goto out;
1569
1570                 spi_transfer_delay_exec(xfer);
1571
1572                 if (xfer->cs_change) {
1573                         if (list_is_last(&xfer->transfer_list,
1574                                          &msg->transfers)) {
1575                                 keep_cs = true;
1576                         } else {
1577                                 if (!xfer->cs_off)
1578                                         spi_set_cs(msg->spi, false, false);
1579                                 _spi_transfer_cs_change_delay(msg, xfer);
1580                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1581                                         spi_set_cs(msg->spi, true, false);
1582                         }
1583                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1584                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1585                         spi_set_cs(msg->spi, xfer->cs_off, false);
1586                 }
1587
1588                 msg->actual_length += xfer->len;
1589         }
1590
1591 out:
1592         if (ret != 0 || !keep_cs)
1593                 spi_set_cs(msg->spi, false, false);
1594
1595         if (msg->status == -EINPROGRESS)
1596                 msg->status = ret;
1597
1598         if (msg->status && ctlr->handle_err)
1599                 ctlr->handle_err(ctlr, msg);
1600
1601         spi_finalize_current_message(ctlr);
1602
1603         return ret;
1604 }
1605
1606 /**
1607  * spi_finalize_current_transfer - report completion of a transfer
1608  * @ctlr: the controller reporting completion
1609  *
1610  * Called by SPI drivers using the core transfer_one_message()
1611  * implementation to notify it that the current interrupt driven
1612  * transfer has finished and the next one may be scheduled.
1613  */
1614 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1615 {
1616         complete(&ctlr->xfer_completion);
1617 }
1618 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1619
1620 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1621 {
1622         if (ctlr->auto_runtime_pm) {
1623                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1624                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1625         }
1626 }
1627
1628 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1629                 struct spi_message *msg, bool was_busy)
1630 {
1631         struct spi_transfer *xfer;
1632         int ret;
1633
1634         if (!was_busy && ctlr->auto_runtime_pm) {
1635                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1636                 if (ret < 0) {
1637                         pm_runtime_put_noidle(ctlr->dev.parent);
1638                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1639                                 ret);
1640                         return ret;
1641                 }
1642         }
1643
1644         if (!was_busy)
1645                 trace_spi_controller_busy(ctlr);
1646
1647         if (!was_busy && ctlr->prepare_transfer_hardware) {
1648                 ret = ctlr->prepare_transfer_hardware(ctlr);
1649                 if (ret) {
1650                         dev_err(&ctlr->dev,
1651                                 "failed to prepare transfer hardware: %d\n",
1652                                 ret);
1653
1654                         if (ctlr->auto_runtime_pm)
1655                                 pm_runtime_put(ctlr->dev.parent);
1656
1657                         msg->status = ret;
1658                         spi_finalize_current_message(ctlr);
1659
1660                         return ret;
1661                 }
1662         }
1663
1664         trace_spi_message_start(msg);
1665
1666         ret = spi_split_transfers_maxsize(ctlr, msg,
1667                                           spi_max_transfer_size(msg->spi),
1668                                           GFP_KERNEL | GFP_DMA);
1669         if (ret) {
1670                 msg->status = ret;
1671                 spi_finalize_current_message(ctlr);
1672                 return ret;
1673         }
1674
1675         if (ctlr->prepare_message) {
1676                 ret = ctlr->prepare_message(ctlr, msg);
1677                 if (ret) {
1678                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1679                                 ret);
1680                         msg->status = ret;
1681                         spi_finalize_current_message(ctlr);
1682                         return ret;
1683                 }
1684                 msg->prepared = true;
1685         }
1686
1687         ret = spi_map_msg(ctlr, msg);
1688         if (ret) {
1689                 msg->status = ret;
1690                 spi_finalize_current_message(ctlr);
1691                 return ret;
1692         }
1693
1694         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1695                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1696                         xfer->ptp_sts_word_pre = 0;
1697                         ptp_read_system_prets(xfer->ptp_sts);
1698                 }
1699         }
1700
1701         /*
1702          * Drivers implementation of transfer_one_message() must arrange for
1703          * spi_finalize_current_message() to get called. Most drivers will do
1704          * this in the calling context, but some don't. For those cases, a
1705          * completion is used to guarantee that this function does not return
1706          * until spi_finalize_current_message() is done accessing
1707          * ctlr->cur_msg.
1708          * Use of the following two flags enable to opportunistically skip the
1709          * use of the completion since its use involves expensive spin locks.
1710          * In case of a race with the context that calls
1711          * spi_finalize_current_message() the completion will always be used,
1712          * due to strict ordering of these flags using barriers.
1713          */
1714         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1715         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1716         reinit_completion(&ctlr->cur_msg_completion);
1717         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1718
1719         ret = ctlr->transfer_one_message(ctlr, msg);
1720         if (ret) {
1721                 dev_err(&ctlr->dev,
1722                         "failed to transfer one message from queue\n");
1723                 return ret;
1724         }
1725
1726         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1727         smp_mb(); /* See spi_finalize_current_message()... */
1728         if (READ_ONCE(ctlr->cur_msg_incomplete))
1729                 wait_for_completion(&ctlr->cur_msg_completion);
1730
1731         return 0;
1732 }
1733
1734 /**
1735  * __spi_pump_messages - function which processes spi message queue
1736  * @ctlr: controller to process queue for
1737  * @in_kthread: true if we are in the context of the message pump thread
1738  *
1739  * This function checks if there is any spi message in the queue that
1740  * needs processing and if so call out to the driver to initialize hardware
1741  * and transfer each message.
1742  *
1743  * Note that it is called both from the kthread itself and also from
1744  * inside spi_sync(); the queue extraction handling at the top of the
1745  * function should deal with this safely.
1746  */
1747 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1748 {
1749         struct spi_message *msg;
1750         bool was_busy = false;
1751         unsigned long flags;
1752         int ret;
1753
1754         /* Take the IO mutex */
1755         mutex_lock(&ctlr->io_mutex);
1756
1757         /* Lock queue */
1758         spin_lock_irqsave(&ctlr->queue_lock, flags);
1759
1760         /* Make sure we are not already running a message */
1761         if (ctlr->cur_msg)
1762                 goto out_unlock;
1763
1764         /* Check if the queue is idle */
1765         if (list_empty(&ctlr->queue) || !ctlr->running) {
1766                 if (!ctlr->busy)
1767                         goto out_unlock;
1768
1769                 /* Defer any non-atomic teardown to the thread */
1770                 if (!in_kthread) {
1771                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1772                             !ctlr->unprepare_transfer_hardware) {
1773                                 spi_idle_runtime_pm(ctlr);
1774                                 ctlr->busy = false;
1775                                 ctlr->queue_empty = true;
1776                                 trace_spi_controller_idle(ctlr);
1777                         } else {
1778                                 kthread_queue_work(ctlr->kworker,
1779                                                    &ctlr->pump_messages);
1780                         }
1781                         goto out_unlock;
1782                 }
1783
1784                 ctlr->busy = false;
1785                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786
1787                 kfree(ctlr->dummy_rx);
1788                 ctlr->dummy_rx = NULL;
1789                 kfree(ctlr->dummy_tx);
1790                 ctlr->dummy_tx = NULL;
1791                 if (ctlr->unprepare_transfer_hardware &&
1792                     ctlr->unprepare_transfer_hardware(ctlr))
1793                         dev_err(&ctlr->dev,
1794                                 "failed to unprepare transfer hardware\n");
1795                 spi_idle_runtime_pm(ctlr);
1796                 trace_spi_controller_idle(ctlr);
1797
1798                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1799                 ctlr->queue_empty = true;
1800                 goto out_unlock;
1801         }
1802
1803         /* Extract head of queue */
1804         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1805         ctlr->cur_msg = msg;
1806
1807         list_del_init(&msg->queue);
1808         if (ctlr->busy)
1809                 was_busy = true;
1810         else
1811                 ctlr->busy = true;
1812         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813
1814         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1815         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1816
1817         ctlr->cur_msg = NULL;
1818         ctlr->fallback = false;
1819
1820         mutex_unlock(&ctlr->io_mutex);
1821
1822         /* Prod the scheduler in case transfer_one() was busy waiting */
1823         if (!ret)
1824                 cond_resched();
1825         return;
1826
1827 out_unlock:
1828         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1829         mutex_unlock(&ctlr->io_mutex);
1830 }
1831
1832 /**
1833  * spi_pump_messages - kthread work function which processes spi message queue
1834  * @work: pointer to kthread work struct contained in the controller struct
1835  */
1836 static void spi_pump_messages(struct kthread_work *work)
1837 {
1838         struct spi_controller *ctlr =
1839                 container_of(work, struct spi_controller, pump_messages);
1840
1841         __spi_pump_messages(ctlr, true);
1842 }
1843
1844 /**
1845  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1846  * @ctlr: Pointer to the spi_controller structure of the driver
1847  * @xfer: Pointer to the transfer being timestamped
1848  * @progress: How many words (not bytes) have been transferred so far
1849  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1850  *            transfer, for less jitter in time measurement. Only compatible
1851  *            with PIO drivers. If true, must follow up with
1852  *            spi_take_timestamp_post or otherwise system will crash.
1853  *            WARNING: for fully predictable results, the CPU frequency must
1854  *            also be under control (governor).
1855  *
1856  * This is a helper for drivers to collect the beginning of the TX timestamp
1857  * for the requested byte from the SPI transfer. The frequency with which this
1858  * function must be called (once per word, once for the whole transfer, once
1859  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1860  * greater than or equal to the requested byte at the time of the call. The
1861  * timestamp is only taken once, at the first such call. It is assumed that
1862  * the driver advances its @tx buffer pointer monotonically.
1863  */
1864 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1865                             struct spi_transfer *xfer,
1866                             size_t progress, bool irqs_off)
1867 {
1868         if (!xfer->ptp_sts)
1869                 return;
1870
1871         if (xfer->timestamped)
1872                 return;
1873
1874         if (progress > xfer->ptp_sts_word_pre)
1875                 return;
1876
1877         /* Capture the resolution of the timestamp */
1878         xfer->ptp_sts_word_pre = progress;
1879
1880         if (irqs_off) {
1881                 local_irq_save(ctlr->irq_flags);
1882                 preempt_disable();
1883         }
1884
1885         ptp_read_system_prets(xfer->ptp_sts);
1886 }
1887 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1888
1889 /**
1890  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1891  * @ctlr: Pointer to the spi_controller structure of the driver
1892  * @xfer: Pointer to the transfer being timestamped
1893  * @progress: How many words (not bytes) have been transferred so far
1894  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1895  *
1896  * This is a helper for drivers to collect the end of the TX timestamp for
1897  * the requested byte from the SPI transfer. Can be called with an arbitrary
1898  * frequency: only the first call where @tx exceeds or is equal to the
1899  * requested word will be timestamped.
1900  */
1901 void spi_take_timestamp_post(struct spi_controller *ctlr,
1902                              struct spi_transfer *xfer,
1903                              size_t progress, bool irqs_off)
1904 {
1905         if (!xfer->ptp_sts)
1906                 return;
1907
1908         if (xfer->timestamped)
1909                 return;
1910
1911         if (progress < xfer->ptp_sts_word_post)
1912                 return;
1913
1914         ptp_read_system_postts(xfer->ptp_sts);
1915
1916         if (irqs_off) {
1917                 local_irq_restore(ctlr->irq_flags);
1918                 preempt_enable();
1919         }
1920
1921         /* Capture the resolution of the timestamp */
1922         xfer->ptp_sts_word_post = progress;
1923
1924         xfer->timestamped = true;
1925 }
1926 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1927
1928 /**
1929  * spi_set_thread_rt - set the controller to pump at realtime priority
1930  * @ctlr: controller to boost priority of
1931  *
1932  * This can be called because the controller requested realtime priority
1933  * (by setting the ->rt value before calling spi_register_controller()) or
1934  * because a device on the bus said that its transfers needed realtime
1935  * priority.
1936  *
1937  * NOTE: at the moment if any device on a bus says it needs realtime then
1938  * the thread will be at realtime priority for all transfers on that
1939  * controller.  If this eventually becomes a problem we may see if we can
1940  * find a way to boost the priority only temporarily during relevant
1941  * transfers.
1942  */
1943 static void spi_set_thread_rt(struct spi_controller *ctlr)
1944 {
1945         dev_info(&ctlr->dev,
1946                 "will run message pump with realtime priority\n");
1947         sched_set_fifo(ctlr->kworker->task);
1948 }
1949
1950 static int spi_init_queue(struct spi_controller *ctlr)
1951 {
1952         ctlr->running = false;
1953         ctlr->busy = false;
1954         ctlr->queue_empty = true;
1955
1956         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1957         if (IS_ERR(ctlr->kworker)) {
1958                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1959                 return PTR_ERR(ctlr->kworker);
1960         }
1961
1962         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1963
1964         /*
1965          * Controller config will indicate if this controller should run the
1966          * message pump with high (realtime) priority to reduce the transfer
1967          * latency on the bus by minimising the delay between a transfer
1968          * request and the scheduling of the message pump thread. Without this
1969          * setting the message pump thread will remain at default priority.
1970          */
1971         if (ctlr->rt)
1972                 spi_set_thread_rt(ctlr);
1973
1974         return 0;
1975 }
1976
1977 /**
1978  * spi_get_next_queued_message() - called by driver to check for queued
1979  * messages
1980  * @ctlr: the controller to check for queued messages
1981  *
1982  * If there are more messages in the queue, the next message is returned from
1983  * this call.
1984  *
1985  * Return: the next message in the queue, else NULL if the queue is empty.
1986  */
1987 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1988 {
1989         struct spi_message *next;
1990         unsigned long flags;
1991
1992         /* Get a pointer to the next message, if any */
1993         spin_lock_irqsave(&ctlr->queue_lock, flags);
1994         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1995                                         queue);
1996         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1997
1998         return next;
1999 }
2000 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2001
2002 /**
2003  * spi_finalize_current_message() - the current message is complete
2004  * @ctlr: the controller to return the message to
2005  *
2006  * Called by the driver to notify the core that the message in the front of the
2007  * queue is complete and can be removed from the queue.
2008  */
2009 void spi_finalize_current_message(struct spi_controller *ctlr)
2010 {
2011         struct spi_transfer *xfer;
2012         struct spi_message *mesg;
2013         int ret;
2014
2015         mesg = ctlr->cur_msg;
2016
2017         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2018                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2019                         ptp_read_system_postts(xfer->ptp_sts);
2020                         xfer->ptp_sts_word_post = xfer->len;
2021                 }
2022         }
2023
2024         if (unlikely(ctlr->ptp_sts_supported))
2025                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2026                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2027
2028         spi_unmap_msg(ctlr, mesg);
2029
2030         /*
2031          * In the prepare_messages callback the SPI bus has the opportunity
2032          * to split a transfer to smaller chunks.
2033          *
2034          * Release the split transfers here since spi_map_msg() is done on
2035          * the split transfers.
2036          */
2037         spi_res_release(ctlr, mesg);
2038
2039         if (mesg->prepared && ctlr->unprepare_message) {
2040                 ret = ctlr->unprepare_message(ctlr, mesg);
2041                 if (ret) {
2042                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2043                                 ret);
2044                 }
2045         }
2046
2047         mesg->prepared = false;
2048
2049         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2050         smp_mb(); /* See __spi_pump_transfer_message()... */
2051         if (READ_ONCE(ctlr->cur_msg_need_completion))
2052                 complete(&ctlr->cur_msg_completion);
2053
2054         trace_spi_message_done(mesg);
2055
2056         mesg->state = NULL;
2057         if (mesg->complete)
2058                 mesg->complete(mesg->context);
2059 }
2060 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2061
2062 static int spi_start_queue(struct spi_controller *ctlr)
2063 {
2064         unsigned long flags;
2065
2066         spin_lock_irqsave(&ctlr->queue_lock, flags);
2067
2068         if (ctlr->running || ctlr->busy) {
2069                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2070                 return -EBUSY;
2071         }
2072
2073         ctlr->running = true;
2074         ctlr->cur_msg = NULL;
2075         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076
2077         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2078
2079         return 0;
2080 }
2081
2082 static int spi_stop_queue(struct spi_controller *ctlr)
2083 {
2084         unsigned long flags;
2085         unsigned limit = 500;
2086         int ret = 0;
2087
2088         spin_lock_irqsave(&ctlr->queue_lock, flags);
2089
2090         /*
2091          * This is a bit lame, but is optimized for the common execution path.
2092          * A wait_queue on the ctlr->busy could be used, but then the common
2093          * execution path (pump_messages) would be required to call wake_up or
2094          * friends on every SPI message. Do this instead.
2095          */
2096         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2097                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2098                 usleep_range(10000, 11000);
2099                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2100         }
2101
2102         if (!list_empty(&ctlr->queue) || ctlr->busy)
2103                 ret = -EBUSY;
2104         else
2105                 ctlr->running = false;
2106
2107         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2108
2109         if (ret) {
2110                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2111                 return ret;
2112         }
2113         return ret;
2114 }
2115
2116 static int spi_destroy_queue(struct spi_controller *ctlr)
2117 {
2118         int ret;
2119
2120         ret = spi_stop_queue(ctlr);
2121
2122         /*
2123          * kthread_flush_worker will block until all work is done.
2124          * If the reason that stop_queue timed out is that the work will never
2125          * finish, then it does no good to call flush/stop thread, so
2126          * return anyway.
2127          */
2128         if (ret) {
2129                 dev_err(&ctlr->dev, "problem destroying queue\n");
2130                 return ret;
2131         }
2132
2133         kthread_destroy_worker(ctlr->kworker);
2134
2135         return 0;
2136 }
2137
2138 static int __spi_queued_transfer(struct spi_device *spi,
2139                                  struct spi_message *msg,
2140                                  bool need_pump)
2141 {
2142         struct spi_controller *ctlr = spi->controller;
2143         unsigned long flags;
2144
2145         spin_lock_irqsave(&ctlr->queue_lock, flags);
2146
2147         if (!ctlr->running) {
2148                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2149                 return -ESHUTDOWN;
2150         }
2151         msg->actual_length = 0;
2152         msg->status = -EINPROGRESS;
2153
2154         list_add_tail(&msg->queue, &ctlr->queue);
2155         ctlr->queue_empty = false;
2156         if (!ctlr->busy && need_pump)
2157                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158
2159         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160         return 0;
2161 }
2162
2163 /**
2164  * spi_queued_transfer - transfer function for queued transfers
2165  * @spi: spi device which is requesting transfer
2166  * @msg: spi message which is to handled is queued to driver queue
2167  *
2168  * Return: zero on success, else a negative error code.
2169  */
2170 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2171 {
2172         return __spi_queued_transfer(spi, msg, true);
2173 }
2174
2175 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2176 {
2177         int ret;
2178
2179         ctlr->transfer = spi_queued_transfer;
2180         if (!ctlr->transfer_one_message)
2181                 ctlr->transfer_one_message = spi_transfer_one_message;
2182
2183         /* Initialize and start queue */
2184         ret = spi_init_queue(ctlr);
2185         if (ret) {
2186                 dev_err(&ctlr->dev, "problem initializing queue\n");
2187                 goto err_init_queue;
2188         }
2189         ctlr->queued = true;
2190         ret = spi_start_queue(ctlr);
2191         if (ret) {
2192                 dev_err(&ctlr->dev, "problem starting queue\n");
2193                 goto err_start_queue;
2194         }
2195
2196         return 0;
2197
2198 err_start_queue:
2199         spi_destroy_queue(ctlr);
2200 err_init_queue:
2201         return ret;
2202 }
2203
2204 /**
2205  * spi_flush_queue - Send all pending messages in the queue from the callers'
2206  *                   context
2207  * @ctlr: controller to process queue for
2208  *
2209  * This should be used when one wants to ensure all pending messages have been
2210  * sent before doing something. Is used by the spi-mem code to make sure SPI
2211  * memory operations do not preempt regular SPI transfers that have been queued
2212  * before the spi-mem operation.
2213  */
2214 void spi_flush_queue(struct spi_controller *ctlr)
2215 {
2216         if (ctlr->transfer == spi_queued_transfer)
2217                 __spi_pump_messages(ctlr, false);
2218 }
2219
2220 /*-------------------------------------------------------------------------*/
2221
2222 #if defined(CONFIG_OF)
2223 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2224                            struct device_node *nc)
2225 {
2226         u32 value;
2227         u16 cs_setup;
2228         int rc;
2229
2230         /* Mode (clock phase/polarity/etc.) */
2231         if (of_property_read_bool(nc, "spi-cpha"))
2232                 spi->mode |= SPI_CPHA;
2233         if (of_property_read_bool(nc, "spi-cpol"))
2234                 spi->mode |= SPI_CPOL;
2235         if (of_property_read_bool(nc, "spi-3wire"))
2236                 spi->mode |= SPI_3WIRE;
2237         if (of_property_read_bool(nc, "spi-lsb-first"))
2238                 spi->mode |= SPI_LSB_FIRST;
2239         if (of_property_read_bool(nc, "spi-cs-high"))
2240                 spi->mode |= SPI_CS_HIGH;
2241
2242         /* Device DUAL/QUAD mode */
2243         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2244                 switch (value) {
2245                 case 0:
2246                         spi->mode |= SPI_NO_TX;
2247                         break;
2248                 case 1:
2249                         break;
2250                 case 2:
2251                         spi->mode |= SPI_TX_DUAL;
2252                         break;
2253                 case 4:
2254                         spi->mode |= SPI_TX_QUAD;
2255                         break;
2256                 case 8:
2257                         spi->mode |= SPI_TX_OCTAL;
2258                         break;
2259                 default:
2260                         dev_warn(&ctlr->dev,
2261                                 "spi-tx-bus-width %d not supported\n",
2262                                 value);
2263                         break;
2264                 }
2265         }
2266
2267         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2268                 switch (value) {
2269                 case 0:
2270                         spi->mode |= SPI_NO_RX;
2271                         break;
2272                 case 1:
2273                         break;
2274                 case 2:
2275                         spi->mode |= SPI_RX_DUAL;
2276                         break;
2277                 case 4:
2278                         spi->mode |= SPI_RX_QUAD;
2279                         break;
2280                 case 8:
2281                         spi->mode |= SPI_RX_OCTAL;
2282                         break;
2283                 default:
2284                         dev_warn(&ctlr->dev,
2285                                 "spi-rx-bus-width %d not supported\n",
2286                                 value);
2287                         break;
2288                 }
2289         }
2290
2291         if (spi_controller_is_slave(ctlr)) {
2292                 if (!of_node_name_eq(nc, "slave")) {
2293                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2294                                 nc);
2295                         return -EINVAL;
2296                 }
2297                 return 0;
2298         }
2299
2300         /* Device address */
2301         rc = of_property_read_u32(nc, "reg", &value);
2302         if (rc) {
2303                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2304                         nc, rc);
2305                 return rc;
2306         }
2307         spi->chip_select = value;
2308
2309         /* Device speed */
2310         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2311                 spi->max_speed_hz = value;
2312
2313         if (!of_property_read_u16(nc, "spi-cs-setup-delay-ns", &cs_setup)) {
2314                 spi->cs_setup.value = cs_setup;
2315                 spi->cs_setup.unit = SPI_DELAY_UNIT_NSECS;
2316         }
2317
2318         return 0;
2319 }
2320
2321 static struct spi_device *
2322 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2323 {
2324         struct spi_device *spi;
2325         int rc;
2326
2327         /* Alloc an spi_device */
2328         spi = spi_alloc_device(ctlr);
2329         if (!spi) {
2330                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2331                 rc = -ENOMEM;
2332                 goto err_out;
2333         }
2334
2335         /* Select device driver */
2336         rc = of_modalias_node(nc, spi->modalias,
2337                                 sizeof(spi->modalias));
2338         if (rc < 0) {
2339                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2340                 goto err_out;
2341         }
2342
2343         rc = of_spi_parse_dt(ctlr, spi, nc);
2344         if (rc)
2345                 goto err_out;
2346
2347         /* Store a pointer to the node in the device structure */
2348         of_node_get(nc);
2349         spi->dev.of_node = nc;
2350         spi->dev.fwnode = of_fwnode_handle(nc);
2351
2352         /* Register the new device */
2353         rc = spi_add_device(spi);
2354         if (rc) {
2355                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2356                 goto err_of_node_put;
2357         }
2358
2359         return spi;
2360
2361 err_of_node_put:
2362         of_node_put(nc);
2363 err_out:
2364         spi_dev_put(spi);
2365         return ERR_PTR(rc);
2366 }
2367
2368 /**
2369  * of_register_spi_devices() - Register child devices onto the SPI bus
2370  * @ctlr:       Pointer to spi_controller device
2371  *
2372  * Registers an spi_device for each child node of controller node which
2373  * represents a valid SPI slave.
2374  */
2375 static void of_register_spi_devices(struct spi_controller *ctlr)
2376 {
2377         struct spi_device *spi;
2378         struct device_node *nc;
2379
2380         if (!ctlr->dev.of_node)
2381                 return;
2382
2383         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2384                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2385                         continue;
2386                 spi = of_register_spi_device(ctlr, nc);
2387                 if (IS_ERR(spi)) {
2388                         dev_warn(&ctlr->dev,
2389                                  "Failed to create SPI device for %pOF\n", nc);
2390                         of_node_clear_flag(nc, OF_POPULATED);
2391                 }
2392         }
2393 }
2394 #else
2395 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2396 #endif
2397
2398 /**
2399  * spi_new_ancillary_device() - Register ancillary SPI device
2400  * @spi:         Pointer to the main SPI device registering the ancillary device
2401  * @chip_select: Chip Select of the ancillary device
2402  *
2403  * Register an ancillary SPI device; for example some chips have a chip-select
2404  * for normal device usage and another one for setup/firmware upload.
2405  *
2406  * This may only be called from main SPI device's probe routine.
2407  *
2408  * Return: 0 on success; negative errno on failure
2409  */
2410 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2411                                              u8 chip_select)
2412 {
2413         struct spi_device *ancillary;
2414         int rc = 0;
2415
2416         /* Alloc an spi_device */
2417         ancillary = spi_alloc_device(spi->controller);
2418         if (!ancillary) {
2419                 rc = -ENOMEM;
2420                 goto err_out;
2421         }
2422
2423         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2424
2425         /* Use provided chip-select for ancillary device */
2426         ancillary->chip_select = chip_select;
2427
2428         /* Take over SPI mode/speed from SPI main device */
2429         ancillary->max_speed_hz = spi->max_speed_hz;
2430         ancillary->mode = spi->mode;
2431
2432         /* Register the new device */
2433         rc = spi_add_device_locked(ancillary);
2434         if (rc) {
2435                 dev_err(&spi->dev, "failed to register ancillary device\n");
2436                 goto err_out;
2437         }
2438
2439         return ancillary;
2440
2441 err_out:
2442         spi_dev_put(ancillary);
2443         return ERR_PTR(rc);
2444 }
2445 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2446
2447 #ifdef CONFIG_ACPI
2448 struct acpi_spi_lookup {
2449         struct spi_controller   *ctlr;
2450         u32                     max_speed_hz;
2451         u32                     mode;
2452         int                     irq;
2453         u8                      bits_per_word;
2454         u8                      chip_select;
2455         int                     n;
2456         int                     index;
2457 };
2458
2459 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2460 {
2461         struct acpi_resource_spi_serialbus *sb;
2462         int *count = data;
2463
2464         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2465                 return 1;
2466
2467         sb = &ares->data.spi_serial_bus;
2468         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2469                 return 1;
2470
2471         *count = *count + 1;
2472
2473         return 1;
2474 }
2475
2476 /**
2477  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2478  * @adev:       ACPI device
2479  *
2480  * Returns the number of SpiSerialBus resources in the ACPI-device's
2481  * resource-list; or a negative error code.
2482  */
2483 int acpi_spi_count_resources(struct acpi_device *adev)
2484 {
2485         LIST_HEAD(r);
2486         int count = 0;
2487         int ret;
2488
2489         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2490         if (ret < 0)
2491                 return ret;
2492
2493         acpi_dev_free_resource_list(&r);
2494
2495         return count;
2496 }
2497 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2498
2499 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2500                                             struct acpi_spi_lookup *lookup)
2501 {
2502         const union acpi_object *obj;
2503
2504         if (!x86_apple_machine)
2505                 return;
2506
2507         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2508             && obj->buffer.length >= 4)
2509                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2510
2511         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2512             && obj->buffer.length == 8)
2513                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2514
2515         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2516             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2517                 lookup->mode |= SPI_LSB_FIRST;
2518
2519         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2520             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2521                 lookup->mode |= SPI_CPOL;
2522
2523         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2524             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2525                 lookup->mode |= SPI_CPHA;
2526 }
2527
2528 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2529
2530 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2531 {
2532         struct acpi_spi_lookup *lookup = data;
2533         struct spi_controller *ctlr = lookup->ctlr;
2534
2535         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2536                 struct acpi_resource_spi_serialbus *sb;
2537                 acpi_handle parent_handle;
2538                 acpi_status status;
2539
2540                 sb = &ares->data.spi_serial_bus;
2541                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2542
2543                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2544                                 return 1;
2545
2546                         status = acpi_get_handle(NULL,
2547                                                  sb->resource_source.string_ptr,
2548                                                  &parent_handle);
2549
2550                         if (ACPI_FAILURE(status))
2551                                 return -ENODEV;
2552
2553                         if (ctlr) {
2554                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2555                                         return -ENODEV;
2556                         } else {
2557                                 struct acpi_device *adev;
2558
2559                                 adev = acpi_fetch_acpi_dev(parent_handle);
2560                                 if (!adev)
2561                                         return -ENODEV;
2562
2563                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2564                                 if (!ctlr)
2565                                         return -EPROBE_DEFER;
2566
2567                                 lookup->ctlr = ctlr;
2568                         }
2569
2570                         /*
2571                          * ACPI DeviceSelection numbering is handled by the
2572                          * host controller driver in Windows and can vary
2573                          * from driver to driver. In Linux we always expect
2574                          * 0 .. max - 1 so we need to ask the driver to
2575                          * translate between the two schemes.
2576                          */
2577                         if (ctlr->fw_translate_cs) {
2578                                 int cs = ctlr->fw_translate_cs(ctlr,
2579                                                 sb->device_selection);
2580                                 if (cs < 0)
2581                                         return cs;
2582                                 lookup->chip_select = cs;
2583                         } else {
2584                                 lookup->chip_select = sb->device_selection;
2585                         }
2586
2587                         lookup->max_speed_hz = sb->connection_speed;
2588                         lookup->bits_per_word = sb->data_bit_length;
2589
2590                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2591                                 lookup->mode |= SPI_CPHA;
2592                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2593                                 lookup->mode |= SPI_CPOL;
2594                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2595                                 lookup->mode |= SPI_CS_HIGH;
2596                 }
2597         } else if (lookup->irq < 0) {
2598                 struct resource r;
2599
2600                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2601                         lookup->irq = r.start;
2602         }
2603
2604         /* Always tell the ACPI core to skip this resource */
2605         return 1;
2606 }
2607
2608 /**
2609  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2610  * @ctlr: controller to which the spi device belongs
2611  * @adev: ACPI Device for the spi device
2612  * @index: Index of the spi resource inside the ACPI Node
2613  *
2614  * This should be used to allocate a new spi device from and ACPI Node.
2615  * The caller is responsible for calling spi_add_device to register the spi device.
2616  *
2617  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2618  * using the resource.
2619  * If index is set to -1, index is not used.
2620  * Note: If index is -1, ctlr must be set.
2621  *
2622  * Return: a pointer to the new device, or ERR_PTR on error.
2623  */
2624 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2625                                          struct acpi_device *adev,
2626                                          int index)
2627 {
2628         acpi_handle parent_handle = NULL;
2629         struct list_head resource_list;
2630         struct acpi_spi_lookup lookup = {};
2631         struct spi_device *spi;
2632         int ret;
2633
2634         if (!ctlr && index == -1)
2635                 return ERR_PTR(-EINVAL);
2636
2637         lookup.ctlr             = ctlr;
2638         lookup.irq              = -1;
2639         lookup.index            = index;
2640         lookup.n                = 0;
2641
2642         INIT_LIST_HEAD(&resource_list);
2643         ret = acpi_dev_get_resources(adev, &resource_list,
2644                                      acpi_spi_add_resource, &lookup);
2645         acpi_dev_free_resource_list(&resource_list);
2646
2647         if (ret < 0)
2648                 /* Found SPI in _CRS but it points to another controller */
2649                 return ERR_PTR(ret);
2650
2651         if (!lookup.max_speed_hz &&
2652             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2653             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2654                 /* Apple does not use _CRS but nested devices for SPI slaves */
2655                 acpi_spi_parse_apple_properties(adev, &lookup);
2656         }
2657
2658         if (!lookup.max_speed_hz)
2659                 return ERR_PTR(-ENODEV);
2660
2661         spi = spi_alloc_device(lookup.ctlr);
2662         if (!spi) {
2663                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2664                         dev_name(&adev->dev));
2665                 return ERR_PTR(-ENOMEM);
2666         }
2667
2668         ACPI_COMPANION_SET(&spi->dev, adev);
2669         spi->max_speed_hz       = lookup.max_speed_hz;
2670         spi->mode               |= lookup.mode;
2671         spi->irq                = lookup.irq;
2672         spi->bits_per_word      = lookup.bits_per_word;
2673         spi->chip_select        = lookup.chip_select;
2674
2675         return spi;
2676 }
2677 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2678
2679 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2680                                             struct acpi_device *adev)
2681 {
2682         struct spi_device *spi;
2683
2684         if (acpi_bus_get_status(adev) || !adev->status.present ||
2685             acpi_device_enumerated(adev))
2686                 return AE_OK;
2687
2688         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2689         if (IS_ERR(spi)) {
2690                 if (PTR_ERR(spi) == -ENOMEM)
2691                         return AE_NO_MEMORY;
2692                 else
2693                         return AE_OK;
2694         }
2695
2696         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2697                           sizeof(spi->modalias));
2698
2699         if (spi->irq < 0)
2700                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2701
2702         acpi_device_set_enumerated(adev);
2703
2704         adev->power.flags.ignore_parent = true;
2705         if (spi_add_device(spi)) {
2706                 adev->power.flags.ignore_parent = false;
2707                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2708                         dev_name(&adev->dev));
2709                 spi_dev_put(spi);
2710         }
2711
2712         return AE_OK;
2713 }
2714
2715 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2716                                        void *data, void **return_value)
2717 {
2718         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2719         struct spi_controller *ctlr = data;
2720
2721         if (!adev)
2722                 return AE_OK;
2723
2724         return acpi_register_spi_device(ctlr, adev);
2725 }
2726
2727 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2728
2729 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2730 {
2731         acpi_status status;
2732         acpi_handle handle;
2733
2734         handle = ACPI_HANDLE(ctlr->dev.parent);
2735         if (!handle)
2736                 return;
2737
2738         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2739                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2740                                      acpi_spi_add_device, NULL, ctlr, NULL);
2741         if (ACPI_FAILURE(status))
2742                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2743 }
2744 #else
2745 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2746 #endif /* CONFIG_ACPI */
2747
2748 static void spi_controller_release(struct device *dev)
2749 {
2750         struct spi_controller *ctlr;
2751
2752         ctlr = container_of(dev, struct spi_controller, dev);
2753         kfree(ctlr);
2754 }
2755
2756 static struct class spi_master_class = {
2757         .name           = "spi_master",
2758         .owner          = THIS_MODULE,
2759         .dev_release    = spi_controller_release,
2760         .dev_groups     = spi_master_groups,
2761 };
2762
2763 #ifdef CONFIG_SPI_SLAVE
2764 /**
2765  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2766  *                   controller
2767  * @spi: device used for the current transfer
2768  */
2769 int spi_slave_abort(struct spi_device *spi)
2770 {
2771         struct spi_controller *ctlr = spi->controller;
2772
2773         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2774                 return ctlr->slave_abort(ctlr);
2775
2776         return -ENOTSUPP;
2777 }
2778 EXPORT_SYMBOL_GPL(spi_slave_abort);
2779
2780 int spi_target_abort(struct spi_device *spi)
2781 {
2782         struct spi_controller *ctlr = spi->controller;
2783
2784         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2785                 return ctlr->target_abort(ctlr);
2786
2787         return -ENOTSUPP;
2788 }
2789 EXPORT_SYMBOL_GPL(spi_target_abort);
2790
2791 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2792                           char *buf)
2793 {
2794         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2795                                                    dev);
2796         struct device *child;
2797
2798         child = device_find_any_child(&ctlr->dev);
2799         return sprintf(buf, "%s\n",
2800                        child ? to_spi_device(child)->modalias : NULL);
2801 }
2802
2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2804                            const char *buf, size_t count)
2805 {
2806         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2807                                                    dev);
2808         struct spi_device *spi;
2809         struct device *child;
2810         char name[32];
2811         int rc;
2812
2813         rc = sscanf(buf, "%31s", name);
2814         if (rc != 1 || !name[0])
2815                 return -EINVAL;
2816
2817         child = device_find_any_child(&ctlr->dev);
2818         if (child) {
2819                 /* Remove registered slave */
2820                 device_unregister(child);
2821                 put_device(child);
2822         }
2823
2824         if (strcmp(name, "(null)")) {
2825                 /* Register new slave */
2826                 spi = spi_alloc_device(ctlr);
2827                 if (!spi)
2828                         return -ENOMEM;
2829
2830                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2831
2832                 rc = spi_add_device(spi);
2833                 if (rc) {
2834                         spi_dev_put(spi);
2835                         return rc;
2836                 }
2837         }
2838
2839         return count;
2840 }
2841
2842 static DEVICE_ATTR_RW(slave);
2843
2844 static struct attribute *spi_slave_attrs[] = {
2845         &dev_attr_slave.attr,
2846         NULL,
2847 };
2848
2849 static const struct attribute_group spi_slave_group = {
2850         .attrs = spi_slave_attrs,
2851 };
2852
2853 static const struct attribute_group *spi_slave_groups[] = {
2854         &spi_controller_statistics_group,
2855         &spi_slave_group,
2856         NULL,
2857 };
2858
2859 static struct class spi_slave_class = {
2860         .name           = "spi_slave",
2861         .owner          = THIS_MODULE,
2862         .dev_release    = spi_controller_release,
2863         .dev_groups     = spi_slave_groups,
2864 };
2865 #else
2866 extern struct class spi_slave_class;    /* dummy */
2867 #endif
2868
2869 /**
2870  * __spi_alloc_controller - allocate an SPI master or slave controller
2871  * @dev: the controller, possibly using the platform_bus
2872  * @size: how much zeroed driver-private data to allocate; the pointer to this
2873  *      memory is in the driver_data field of the returned device, accessible
2874  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2875  *      drivers granting DMA access to portions of their private data need to
2876  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2877  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2878  *      slave (true) controller
2879  * Context: can sleep
2880  *
2881  * This call is used only by SPI controller drivers, which are the
2882  * only ones directly touching chip registers.  It's how they allocate
2883  * an spi_controller structure, prior to calling spi_register_controller().
2884  *
2885  * This must be called from context that can sleep.
2886  *
2887  * The caller is responsible for assigning the bus number and initializing the
2888  * controller's methods before calling spi_register_controller(); and (after
2889  * errors adding the device) calling spi_controller_put() to prevent a memory
2890  * leak.
2891  *
2892  * Return: the SPI controller structure on success, else NULL.
2893  */
2894 struct spi_controller *__spi_alloc_controller(struct device *dev,
2895                                               unsigned int size, bool slave)
2896 {
2897         struct spi_controller   *ctlr;
2898         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2899
2900         if (!dev)
2901                 return NULL;
2902
2903         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2904         if (!ctlr)
2905                 return NULL;
2906
2907         device_initialize(&ctlr->dev);
2908         INIT_LIST_HEAD(&ctlr->queue);
2909         spin_lock_init(&ctlr->queue_lock);
2910         spin_lock_init(&ctlr->bus_lock_spinlock);
2911         mutex_init(&ctlr->bus_lock_mutex);
2912         mutex_init(&ctlr->io_mutex);
2913         mutex_init(&ctlr->add_lock);
2914         ctlr->bus_num = -1;
2915         ctlr->num_chipselect = 1;
2916         ctlr->slave = slave;
2917         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2918                 ctlr->dev.class = &spi_slave_class;
2919         else
2920                 ctlr->dev.class = &spi_master_class;
2921         ctlr->dev.parent = dev;
2922         pm_suspend_ignore_children(&ctlr->dev, true);
2923         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2924
2925         return ctlr;
2926 }
2927 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2928
2929 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2930 {
2931         spi_controller_put(*(struct spi_controller **)ctlr);
2932 }
2933
2934 /**
2935  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2936  * @dev: physical device of SPI controller
2937  * @size: how much zeroed driver-private data to allocate
2938  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2939  * Context: can sleep
2940  *
2941  * Allocate an SPI controller and automatically release a reference on it
2942  * when @dev is unbound from its driver.  Drivers are thus relieved from
2943  * having to call spi_controller_put().
2944  *
2945  * The arguments to this function are identical to __spi_alloc_controller().
2946  *
2947  * Return: the SPI controller structure on success, else NULL.
2948  */
2949 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2950                                                    unsigned int size,
2951                                                    bool slave)
2952 {
2953         struct spi_controller **ptr, *ctlr;
2954
2955         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2956                            GFP_KERNEL);
2957         if (!ptr)
2958                 return NULL;
2959
2960         ctlr = __spi_alloc_controller(dev, size, slave);
2961         if (ctlr) {
2962                 ctlr->devm_allocated = true;
2963                 *ptr = ctlr;
2964                 devres_add(dev, ptr);
2965         } else {
2966                 devres_free(ptr);
2967         }
2968
2969         return ctlr;
2970 }
2971 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2972
2973 /**
2974  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2975  * @ctlr: The SPI master to grab GPIO descriptors for
2976  */
2977 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2978 {
2979         int nb, i;
2980         struct gpio_desc **cs;
2981         struct device *dev = &ctlr->dev;
2982         unsigned long native_cs_mask = 0;
2983         unsigned int num_cs_gpios = 0;
2984
2985         nb = gpiod_count(dev, "cs");
2986         if (nb < 0) {
2987                 /* No GPIOs at all is fine, else return the error */
2988                 if (nb == -ENOENT)
2989                         return 0;
2990                 return nb;
2991         }
2992
2993         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2994
2995         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2996                           GFP_KERNEL);
2997         if (!cs)
2998                 return -ENOMEM;
2999         ctlr->cs_gpiods = cs;
3000
3001         for (i = 0; i < nb; i++) {
3002                 /*
3003                  * Most chipselects are active low, the inverted
3004                  * semantics are handled by special quirks in gpiolib,
3005                  * so initializing them GPIOD_OUT_LOW here means
3006                  * "unasserted", in most cases this will drive the physical
3007                  * line high.
3008                  */
3009                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3010                                                       GPIOD_OUT_LOW);
3011                 if (IS_ERR(cs[i]))
3012                         return PTR_ERR(cs[i]);
3013
3014                 if (cs[i]) {
3015                         /*
3016                          * If we find a CS GPIO, name it after the device and
3017                          * chip select line.
3018                          */
3019                         char *gpioname;
3020
3021                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3022                                                   dev_name(dev), i);
3023                         if (!gpioname)
3024                                 return -ENOMEM;
3025                         gpiod_set_consumer_name(cs[i], gpioname);
3026                         num_cs_gpios++;
3027                         continue;
3028                 }
3029
3030                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3031                         dev_err(dev, "Invalid native chip select %d\n", i);
3032                         return -EINVAL;
3033                 }
3034                 native_cs_mask |= BIT(i);
3035         }
3036
3037         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3038
3039         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3040             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3041                 dev_err(dev, "No unused native chip select available\n");
3042                 return -EINVAL;
3043         }
3044
3045         return 0;
3046 }
3047
3048 static int spi_controller_check_ops(struct spi_controller *ctlr)
3049 {
3050         /*
3051          * The controller may implement only the high-level SPI-memory like
3052          * operations if it does not support regular SPI transfers, and this is
3053          * valid use case.
3054          * If ->mem_ops is NULL, we request that at least one of the
3055          * ->transfer_xxx() method be implemented.
3056          */
3057         if (ctlr->mem_ops) {
3058                 if (!ctlr->mem_ops->exec_op)
3059                         return -EINVAL;
3060         } else if (!ctlr->transfer && !ctlr->transfer_one &&
3061                    !ctlr->transfer_one_message) {
3062                 return -EINVAL;
3063         }
3064
3065         return 0;
3066 }
3067
3068 /**
3069  * spi_register_controller - register SPI master or slave controller
3070  * @ctlr: initialized master, originally from spi_alloc_master() or
3071  *      spi_alloc_slave()
3072  * Context: can sleep
3073  *
3074  * SPI controllers connect to their drivers using some non-SPI bus,
3075  * such as the platform bus.  The final stage of probe() in that code
3076  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3077  *
3078  * SPI controllers use board specific (often SOC specific) bus numbers,
3079  * and board-specific addressing for SPI devices combines those numbers
3080  * with chip select numbers.  Since SPI does not directly support dynamic
3081  * device identification, boards need configuration tables telling which
3082  * chip is at which address.
3083  *
3084  * This must be called from context that can sleep.  It returns zero on
3085  * success, else a negative error code (dropping the controller's refcount).
3086  * After a successful return, the caller is responsible for calling
3087  * spi_unregister_controller().
3088  *
3089  * Return: zero on success, else a negative error code.
3090  */
3091 int spi_register_controller(struct spi_controller *ctlr)
3092 {
3093         struct device           *dev = ctlr->dev.parent;
3094         struct boardinfo        *bi;
3095         int                     status;
3096         int                     id, first_dynamic;
3097
3098         if (!dev)
3099                 return -ENODEV;
3100
3101         /*
3102          * Make sure all necessary hooks are implemented before registering
3103          * the SPI controller.
3104          */
3105         status = spi_controller_check_ops(ctlr);
3106         if (status)
3107                 return status;
3108
3109         if (ctlr->bus_num >= 0) {
3110                 /* Devices with a fixed bus num must check-in with the num */
3111                 mutex_lock(&board_lock);
3112                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3113                         ctlr->bus_num + 1, GFP_KERNEL);
3114                 mutex_unlock(&board_lock);
3115                 if (WARN(id < 0, "couldn't get idr"))
3116                         return id == -ENOSPC ? -EBUSY : id;
3117                 ctlr->bus_num = id;
3118         } else if (ctlr->dev.of_node) {
3119                 /* Allocate dynamic bus number using Linux idr */
3120                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3121                 if (id >= 0) {
3122                         ctlr->bus_num = id;
3123                         mutex_lock(&board_lock);
3124                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3125                                        ctlr->bus_num + 1, GFP_KERNEL);
3126                         mutex_unlock(&board_lock);
3127                         if (WARN(id < 0, "couldn't get idr"))
3128                                 return id == -ENOSPC ? -EBUSY : id;
3129                 }
3130         }
3131         if (ctlr->bus_num < 0) {
3132                 first_dynamic = of_alias_get_highest_id("spi");
3133                 if (first_dynamic < 0)
3134                         first_dynamic = 0;
3135                 else
3136                         first_dynamic++;
3137
3138                 mutex_lock(&board_lock);
3139                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3140                                0, GFP_KERNEL);
3141                 mutex_unlock(&board_lock);
3142                 if (WARN(id < 0, "couldn't get idr"))
3143                         return id;
3144                 ctlr->bus_num = id;
3145         }
3146         ctlr->bus_lock_flag = 0;
3147         init_completion(&ctlr->xfer_completion);
3148         init_completion(&ctlr->cur_msg_completion);
3149         if (!ctlr->max_dma_len)
3150                 ctlr->max_dma_len = INT_MAX;
3151
3152         /*
3153          * Register the device, then userspace will see it.
3154          * Registration fails if the bus ID is in use.
3155          */
3156         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3157
3158         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3159                 status = spi_get_gpio_descs(ctlr);
3160                 if (status)
3161                         goto free_bus_id;
3162                 /*
3163                  * A controller using GPIO descriptors always
3164                  * supports SPI_CS_HIGH if need be.
3165                  */
3166                 ctlr->mode_bits |= SPI_CS_HIGH;
3167         }
3168
3169         /*
3170          * Even if it's just one always-selected device, there must
3171          * be at least one chipselect.
3172          */
3173         if (!ctlr->num_chipselect) {
3174                 status = -EINVAL;
3175                 goto free_bus_id;
3176         }
3177
3178         /* Setting last_cs to -1 means no chip selected */
3179         ctlr->last_cs = -1;
3180
3181         status = device_add(&ctlr->dev);
3182         if (status < 0)
3183                 goto free_bus_id;
3184         dev_dbg(dev, "registered %s %s\n",
3185                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3186                         dev_name(&ctlr->dev));
3187
3188         /*
3189          * If we're using a queued driver, start the queue. Note that we don't
3190          * need the queueing logic if the driver is only supporting high-level
3191          * memory operations.
3192          */
3193         if (ctlr->transfer) {
3194                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3195         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3196                 status = spi_controller_initialize_queue(ctlr);
3197                 if (status) {
3198                         device_del(&ctlr->dev);
3199                         goto free_bus_id;
3200                 }
3201         }
3202         /* Add statistics */
3203         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3204         if (!ctlr->pcpu_statistics) {
3205                 dev_err(dev, "Error allocating per-cpu statistics\n");
3206                 status = -ENOMEM;
3207                 goto destroy_queue;
3208         }
3209
3210         mutex_lock(&board_lock);
3211         list_add_tail(&ctlr->list, &spi_controller_list);
3212         list_for_each_entry(bi, &board_list, list)
3213                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3214         mutex_unlock(&board_lock);
3215
3216         /* Register devices from the device tree and ACPI */
3217         of_register_spi_devices(ctlr);
3218         acpi_register_spi_devices(ctlr);
3219         return status;
3220
3221 destroy_queue:
3222         spi_destroy_queue(ctlr);
3223 free_bus_id:
3224         mutex_lock(&board_lock);
3225         idr_remove(&spi_master_idr, ctlr->bus_num);
3226         mutex_unlock(&board_lock);
3227         return status;
3228 }
3229 EXPORT_SYMBOL_GPL(spi_register_controller);
3230
3231 static void devm_spi_unregister(struct device *dev, void *res)
3232 {
3233         spi_unregister_controller(*(struct spi_controller **)res);
3234 }
3235
3236 /**
3237  * devm_spi_register_controller - register managed SPI master or slave
3238  *      controller
3239  * @dev:    device managing SPI controller
3240  * @ctlr: initialized controller, originally from spi_alloc_master() or
3241  *      spi_alloc_slave()
3242  * Context: can sleep
3243  *
3244  * Register a SPI device as with spi_register_controller() which will
3245  * automatically be unregistered and freed.
3246  *
3247  * Return: zero on success, else a negative error code.
3248  */
3249 int devm_spi_register_controller(struct device *dev,
3250                                  struct spi_controller *ctlr)
3251 {
3252         struct spi_controller **ptr;
3253         int ret;
3254
3255         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3256         if (!ptr)
3257                 return -ENOMEM;
3258
3259         ret = spi_register_controller(ctlr);
3260         if (!ret) {
3261                 *ptr = ctlr;
3262                 devres_add(dev, ptr);
3263         } else {
3264                 devres_free(ptr);
3265         }
3266
3267         return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3270
3271 static int __unregister(struct device *dev, void *null)
3272 {
3273         spi_unregister_device(to_spi_device(dev));
3274         return 0;
3275 }
3276
3277 /**
3278  * spi_unregister_controller - unregister SPI master or slave controller
3279  * @ctlr: the controller being unregistered
3280  * Context: can sleep
3281  *
3282  * This call is used only by SPI controller drivers, which are the
3283  * only ones directly touching chip registers.
3284  *
3285  * This must be called from context that can sleep.
3286  *
3287  * Note that this function also drops a reference to the controller.
3288  */
3289 void spi_unregister_controller(struct spi_controller *ctlr)
3290 {
3291         struct spi_controller *found;
3292         int id = ctlr->bus_num;
3293
3294         /* Prevent addition of new devices, unregister existing ones */
3295         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3296                 mutex_lock(&ctlr->add_lock);
3297
3298         device_for_each_child(&ctlr->dev, NULL, __unregister);
3299
3300         /* First make sure that this controller was ever added */
3301         mutex_lock(&board_lock);
3302         found = idr_find(&spi_master_idr, id);
3303         mutex_unlock(&board_lock);
3304         if (ctlr->queued) {
3305                 if (spi_destroy_queue(ctlr))
3306                         dev_err(&ctlr->dev, "queue remove failed\n");
3307         }
3308         mutex_lock(&board_lock);
3309         list_del(&ctlr->list);
3310         mutex_unlock(&board_lock);
3311
3312         device_del(&ctlr->dev);
3313
3314         /* Free bus id */
3315         mutex_lock(&board_lock);
3316         if (found == ctlr)
3317                 idr_remove(&spi_master_idr, id);
3318         mutex_unlock(&board_lock);
3319
3320         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3321                 mutex_unlock(&ctlr->add_lock);
3322
3323         /* Release the last reference on the controller if its driver
3324          * has not yet been converted to devm_spi_alloc_master/slave().
3325          */
3326         if (!ctlr->devm_allocated)
3327                 put_device(&ctlr->dev);
3328 }
3329 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3330
3331 int spi_controller_suspend(struct spi_controller *ctlr)
3332 {
3333         int ret;
3334
3335         /* Basically no-ops for non-queued controllers */
3336         if (!ctlr->queued)
3337                 return 0;
3338
3339         ret = spi_stop_queue(ctlr);
3340         if (ret)
3341                 dev_err(&ctlr->dev, "queue stop failed\n");
3342
3343         return ret;
3344 }
3345 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3346
3347 int spi_controller_resume(struct spi_controller *ctlr)
3348 {
3349         int ret;
3350
3351         if (!ctlr->queued)
3352                 return 0;
3353
3354         ret = spi_start_queue(ctlr);
3355         if (ret)
3356                 dev_err(&ctlr->dev, "queue restart failed\n");
3357
3358         return ret;
3359 }
3360 EXPORT_SYMBOL_GPL(spi_controller_resume);
3361
3362 /*-------------------------------------------------------------------------*/
3363
3364 /* Core methods for spi_message alterations */
3365
3366 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3367                                             struct spi_message *msg,
3368                                             void *res)
3369 {
3370         struct spi_replaced_transfers *rxfer = res;
3371         size_t i;
3372
3373         /* Call extra callback if requested */
3374         if (rxfer->release)
3375                 rxfer->release(ctlr, msg, res);
3376
3377         /* Insert replaced transfers back into the message */
3378         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3379
3380         /* Remove the formerly inserted entries */
3381         for (i = 0; i < rxfer->inserted; i++)
3382                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3383 }
3384
3385 /**
3386  * spi_replace_transfers - replace transfers with several transfers
3387  *                         and register change with spi_message.resources
3388  * @msg:           the spi_message we work upon
3389  * @xfer_first:    the first spi_transfer we want to replace
3390  * @remove:        number of transfers to remove
3391  * @insert:        the number of transfers we want to insert instead
3392  * @release:       extra release code necessary in some circumstances
3393  * @extradatasize: extra data to allocate (with alignment guarantees
3394  *                 of struct @spi_transfer)
3395  * @gfp:           gfp flags
3396  *
3397  * Returns: pointer to @spi_replaced_transfers,
3398  *          PTR_ERR(...) in case of errors.
3399  */
3400 static struct spi_replaced_transfers *spi_replace_transfers(
3401         struct spi_message *msg,
3402         struct spi_transfer *xfer_first,
3403         size_t remove,
3404         size_t insert,
3405         spi_replaced_release_t release,
3406         size_t extradatasize,
3407         gfp_t gfp)
3408 {
3409         struct spi_replaced_transfers *rxfer;
3410         struct spi_transfer *xfer;
3411         size_t i;
3412
3413         /* Allocate the structure using spi_res */
3414         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3415                               struct_size(rxfer, inserted_transfers, insert)
3416                               + extradatasize,
3417                               gfp);
3418         if (!rxfer)
3419                 return ERR_PTR(-ENOMEM);
3420
3421         /* The release code to invoke before running the generic release */
3422         rxfer->release = release;
3423
3424         /* Assign extradata */
3425         if (extradatasize)
3426                 rxfer->extradata =
3427                         &rxfer->inserted_transfers[insert];
3428
3429         /* Init the replaced_transfers list */
3430         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3431
3432         /*
3433          * Assign the list_entry after which we should reinsert
3434          * the @replaced_transfers - it may be spi_message.messages!
3435          */
3436         rxfer->replaced_after = xfer_first->transfer_list.prev;
3437
3438         /* Remove the requested number of transfers */
3439         for (i = 0; i < remove; i++) {
3440                 /*
3441                  * If the entry after replaced_after it is msg->transfers
3442                  * then we have been requested to remove more transfers
3443                  * than are in the list.
3444                  */
3445                 if (rxfer->replaced_after->next == &msg->transfers) {
3446                         dev_err(&msg->spi->dev,
3447                                 "requested to remove more spi_transfers than are available\n");
3448                         /* Insert replaced transfers back into the message */
3449                         list_splice(&rxfer->replaced_transfers,
3450                                     rxfer->replaced_after);
3451
3452                         /* Free the spi_replace_transfer structure... */
3453                         spi_res_free(rxfer);
3454
3455                         /* ...and return with an error */
3456                         return ERR_PTR(-EINVAL);
3457                 }
3458
3459                 /*
3460                  * Remove the entry after replaced_after from list of
3461                  * transfers and add it to list of replaced_transfers.
3462                  */
3463                 list_move_tail(rxfer->replaced_after->next,
3464                                &rxfer->replaced_transfers);
3465         }
3466
3467         /*
3468          * Create copy of the given xfer with identical settings
3469          * based on the first transfer to get removed.
3470          */
3471         for (i = 0; i < insert; i++) {
3472                 /* We need to run in reverse order */
3473                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3474
3475                 /* Copy all spi_transfer data */
3476                 memcpy(xfer, xfer_first, sizeof(*xfer));
3477
3478                 /* Add to list */
3479                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3480
3481                 /* Clear cs_change and delay for all but the last */
3482                 if (i) {
3483                         xfer->cs_change = false;
3484                         xfer->delay.value = 0;
3485                 }
3486         }
3487
3488         /* Set up inserted... */
3489         rxfer->inserted = insert;
3490
3491         /* ...and register it with spi_res/spi_message */
3492         spi_res_add(msg, rxfer);
3493
3494         return rxfer;
3495 }
3496
3497 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3498                                         struct spi_message *msg,
3499                                         struct spi_transfer **xferp,
3500                                         size_t maxsize,
3501                                         gfp_t gfp)
3502 {
3503         struct spi_transfer *xfer = *xferp, *xfers;
3504         struct spi_replaced_transfers *srt;
3505         size_t offset;
3506         size_t count, i;
3507
3508         /* Calculate how many we have to replace */
3509         count = DIV_ROUND_UP(xfer->len, maxsize);
3510
3511         /* Create replacement */
3512         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3513         if (IS_ERR(srt))
3514                 return PTR_ERR(srt);
3515         xfers = srt->inserted_transfers;
3516
3517         /*
3518          * Now handle each of those newly inserted spi_transfers.
3519          * Note that the replacements spi_transfers all are preset
3520          * to the same values as *xferp, so tx_buf, rx_buf and len
3521          * are all identical (as well as most others)
3522          * so we just have to fix up len and the pointers.
3523          *
3524          * This also includes support for the depreciated
3525          * spi_message.is_dma_mapped interface.
3526          */
3527
3528         /*
3529          * The first transfer just needs the length modified, so we
3530          * run it outside the loop.
3531          */
3532         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3533
3534         /* All the others need rx_buf/tx_buf also set */
3535         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3536                 /* Update rx_buf, tx_buf and dma */
3537                 if (xfers[i].rx_buf)
3538                         xfers[i].rx_buf += offset;
3539                 if (xfers[i].rx_dma)
3540                         xfers[i].rx_dma += offset;
3541                 if (xfers[i].tx_buf)
3542                         xfers[i].tx_buf += offset;
3543                 if (xfers[i].tx_dma)
3544                         xfers[i].tx_dma += offset;
3545
3546                 /* Update length */
3547                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3548         }
3549
3550         /*
3551          * We set up xferp to the last entry we have inserted,
3552          * so that we skip those already split transfers.
3553          */
3554         *xferp = &xfers[count - 1];
3555
3556         /* Increment statistics counters */
3557         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3558                                        transfers_split_maxsize);
3559         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3560                                        transfers_split_maxsize);
3561
3562         return 0;
3563 }
3564
3565 /**
3566  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3567  *                               when an individual transfer exceeds a
3568  *                               certain size
3569  * @ctlr:    the @spi_controller for this transfer
3570  * @msg:   the @spi_message to transform
3571  * @maxsize:  the maximum when to apply this
3572  * @gfp: GFP allocation flags
3573  *
3574  * Return: status of transformation
3575  */
3576 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3577                                 struct spi_message *msg,
3578                                 size_t maxsize,
3579                                 gfp_t gfp)
3580 {
3581         struct spi_transfer *xfer;
3582         int ret;
3583
3584         /*
3585          * Iterate over the transfer_list,
3586          * but note that xfer is advanced to the last transfer inserted
3587          * to avoid checking sizes again unnecessarily (also xfer does
3588          * potentially belong to a different list by the time the
3589          * replacement has happened).
3590          */
3591         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3592                 if (xfer->len > maxsize) {
3593                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3594                                                            maxsize, gfp);
3595                         if (ret)
3596                                 return ret;
3597                 }
3598         }
3599
3600         return 0;
3601 }
3602 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3603
3604 /*-------------------------------------------------------------------------*/
3605
3606 /* Core methods for SPI controller protocol drivers.  Some of the
3607  * other core methods are currently defined as inline functions.
3608  */
3609
3610 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3611                                         u8 bits_per_word)
3612 {
3613         if (ctlr->bits_per_word_mask) {
3614                 /* Only 32 bits fit in the mask */
3615                 if (bits_per_word > 32)
3616                         return -EINVAL;
3617                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3618                         return -EINVAL;
3619         }
3620
3621         return 0;
3622 }
3623
3624 /**
3625  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3626  * @spi: the device that requires specific CS timing configuration
3627  *
3628  * Return: zero on success, else a negative error code.
3629  */
3630 static int spi_set_cs_timing(struct spi_device *spi)
3631 {
3632         struct device *parent = spi->controller->dev.parent;
3633         int status = 0;
3634
3635         if (spi->controller->set_cs_timing && !spi->cs_gpiod) {
3636                 if (spi->controller->auto_runtime_pm) {
3637                         status = pm_runtime_get_sync(parent);
3638                         if (status < 0) {
3639                                 pm_runtime_put_noidle(parent);
3640                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3641                                         status);
3642                                 return status;
3643                         }
3644
3645                         status = spi->controller->set_cs_timing(spi);
3646                         pm_runtime_mark_last_busy(parent);
3647                         pm_runtime_put_autosuspend(parent);
3648                 } else {
3649                         status = spi->controller->set_cs_timing(spi);
3650                 }
3651         }
3652         return status;
3653 }
3654
3655 /**
3656  * spi_setup - setup SPI mode and clock rate
3657  * @spi: the device whose settings are being modified
3658  * Context: can sleep, and no requests are queued to the device
3659  *
3660  * SPI protocol drivers may need to update the transfer mode if the
3661  * device doesn't work with its default.  They may likewise need
3662  * to update clock rates or word sizes from initial values.  This function
3663  * changes those settings, and must be called from a context that can sleep.
3664  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3665  * effect the next time the device is selected and data is transferred to
3666  * or from it.  When this function returns, the spi device is deselected.
3667  *
3668  * Note that this call will fail if the protocol driver specifies an option
3669  * that the underlying controller or its driver does not support.  For
3670  * example, not all hardware supports wire transfers using nine bit words,
3671  * LSB-first wire encoding, or active-high chipselects.
3672  *
3673  * Return: zero on success, else a negative error code.
3674  */
3675 int spi_setup(struct spi_device *spi)
3676 {
3677         unsigned        bad_bits, ugly_bits;
3678         int             status = 0;
3679
3680         /*
3681          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3682          * are set at the same time.
3683          */
3684         if ((hweight_long(spi->mode &
3685                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3686             (hweight_long(spi->mode &
3687                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3688                 dev_err(&spi->dev,
3689                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3690                 return -EINVAL;
3691         }
3692         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3693         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3694                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3695                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3696                 return -EINVAL;
3697         /*
3698          * Help drivers fail *cleanly* when they need options
3699          * that aren't supported with their current controller.
3700          * SPI_CS_WORD has a fallback software implementation,
3701          * so it is ignored here.
3702          */
3703         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3704                                  SPI_NO_TX | SPI_NO_RX);
3705         ugly_bits = bad_bits &
3706                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3707                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3708         if (ugly_bits) {
3709                 dev_warn(&spi->dev,
3710                          "setup: ignoring unsupported mode bits %x\n",
3711                          ugly_bits);
3712                 spi->mode &= ~ugly_bits;
3713                 bad_bits &= ~ugly_bits;
3714         }
3715         if (bad_bits) {
3716                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3717                         bad_bits);
3718                 return -EINVAL;
3719         }
3720
3721         if (!spi->bits_per_word) {
3722                 spi->bits_per_word = 8;
3723         } else {
3724                 /*
3725                  * Some controllers may not support the default 8 bits-per-word
3726                  * so only perform the check when this is explicitly provided.
3727                  */
3728                 status = __spi_validate_bits_per_word(spi->controller,
3729                                                       spi->bits_per_word);
3730                 if (status)
3731                         return status;
3732         }
3733
3734         if (spi->controller->max_speed_hz &&
3735             (!spi->max_speed_hz ||
3736              spi->max_speed_hz > spi->controller->max_speed_hz))
3737                 spi->max_speed_hz = spi->controller->max_speed_hz;
3738
3739         mutex_lock(&spi->controller->io_mutex);
3740
3741         if (spi->controller->setup) {
3742                 status = spi->controller->setup(spi);
3743                 if (status) {
3744                         mutex_unlock(&spi->controller->io_mutex);
3745                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3746                                 status);
3747                         return status;
3748                 }
3749         }
3750
3751         status = spi_set_cs_timing(spi);
3752         if (status) {
3753                 mutex_unlock(&spi->controller->io_mutex);
3754                 return status;
3755         }
3756
3757         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3758                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3759                 if (status < 0) {
3760                         mutex_unlock(&spi->controller->io_mutex);
3761                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3762                                 status);
3763                         return status;
3764                 }
3765
3766                 /*
3767                  * We do not want to return positive value from pm_runtime_get,
3768                  * there are many instances of devices calling spi_setup() and
3769                  * checking for a non-zero return value instead of a negative
3770                  * return value.
3771                  */
3772                 status = 0;
3773
3774                 spi_set_cs(spi, false, true);
3775                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3776                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3777         } else {
3778                 spi_set_cs(spi, false, true);
3779         }
3780
3781         mutex_unlock(&spi->controller->io_mutex);
3782
3783         if (spi->rt && !spi->controller->rt) {
3784                 spi->controller->rt = true;
3785                 spi_set_thread_rt(spi->controller);
3786         }
3787
3788         trace_spi_setup(spi, status);
3789
3790         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3791                         spi->mode & SPI_MODE_X_MASK,
3792                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3793                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3794                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3795                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3796                         spi->bits_per_word, spi->max_speed_hz,
3797                         status);
3798
3799         return status;
3800 }
3801 EXPORT_SYMBOL_GPL(spi_setup);
3802
3803 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3804                                        struct spi_device *spi)
3805 {
3806         int delay1, delay2;
3807
3808         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3809         if (delay1 < 0)
3810                 return delay1;
3811
3812         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3813         if (delay2 < 0)
3814                 return delay2;
3815
3816         if (delay1 < delay2)
3817                 memcpy(&xfer->word_delay, &spi->word_delay,
3818                        sizeof(xfer->word_delay));
3819
3820         return 0;
3821 }
3822
3823 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3824 {
3825         struct spi_controller *ctlr = spi->controller;
3826         struct spi_transfer *xfer;
3827         int w_size;
3828
3829         if (list_empty(&message->transfers))
3830                 return -EINVAL;
3831
3832         /*
3833          * If an SPI controller does not support toggling the CS line on each
3834          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3835          * for the CS line, we can emulate the CS-per-word hardware function by
3836          * splitting transfers into one-word transfers and ensuring that
3837          * cs_change is set for each transfer.
3838          */
3839         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3840                                           spi->cs_gpiod)) {
3841                 size_t maxsize;
3842                 int ret;
3843
3844                 maxsize = (spi->bits_per_word + 7) / 8;
3845
3846                 /* spi_split_transfers_maxsize() requires message->spi */
3847                 message->spi = spi;
3848
3849                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3850                                                   GFP_KERNEL);
3851                 if (ret)
3852                         return ret;
3853
3854                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3855                         /* Don't change cs_change on the last entry in the list */
3856                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3857                                 break;
3858                         xfer->cs_change = 1;
3859                 }
3860         }
3861
3862         /*
3863          * Half-duplex links include original MicroWire, and ones with
3864          * only one data pin like SPI_3WIRE (switches direction) or where
3865          * either MOSI or MISO is missing.  They can also be caused by
3866          * software limitations.
3867          */
3868         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3869             (spi->mode & SPI_3WIRE)) {
3870                 unsigned flags = ctlr->flags;
3871
3872                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3873                         if (xfer->rx_buf && xfer->tx_buf)
3874                                 return -EINVAL;
3875                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3876                                 return -EINVAL;
3877                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3878                                 return -EINVAL;
3879                 }
3880         }
3881
3882         /*
3883          * Set transfer bits_per_word and max speed as spi device default if
3884          * it is not set for this transfer.
3885          * Set transfer tx_nbits and rx_nbits as single transfer default
3886          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3887          * Ensure transfer word_delay is at least as long as that required by
3888          * device itself.
3889          */
3890         message->frame_length = 0;
3891         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3892                 xfer->effective_speed_hz = 0;
3893                 message->frame_length += xfer->len;
3894                 if (!xfer->bits_per_word)
3895                         xfer->bits_per_word = spi->bits_per_word;
3896
3897                 if (!xfer->speed_hz)
3898                         xfer->speed_hz = spi->max_speed_hz;
3899
3900                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3901                         xfer->speed_hz = ctlr->max_speed_hz;
3902
3903                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3904                         return -EINVAL;
3905
3906                 /*
3907                  * SPI transfer length should be multiple of SPI word size
3908                  * where SPI word size should be power-of-two multiple.
3909                  */
3910                 if (xfer->bits_per_word <= 8)
3911                         w_size = 1;
3912                 else if (xfer->bits_per_word <= 16)
3913                         w_size = 2;
3914                 else
3915                         w_size = 4;
3916
3917                 /* No partial transfers accepted */
3918                 if (xfer->len % w_size)
3919                         return -EINVAL;
3920
3921                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3922                     xfer->speed_hz < ctlr->min_speed_hz)
3923                         return -EINVAL;
3924
3925                 if (xfer->tx_buf && !xfer->tx_nbits)
3926                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3927                 if (xfer->rx_buf && !xfer->rx_nbits)
3928                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3929                 /*
3930                  * Check transfer tx/rx_nbits:
3931                  * 1. check the value matches one of single, dual and quad
3932                  * 2. check tx/rx_nbits match the mode in spi_device
3933                  */
3934                 if (xfer->tx_buf) {
3935                         if (spi->mode & SPI_NO_TX)
3936                                 return -EINVAL;
3937                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3938                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3939                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3940                                 return -EINVAL;
3941                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3942                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3943                                 return -EINVAL;
3944                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3945                                 !(spi->mode & SPI_TX_QUAD))
3946                                 return -EINVAL;
3947                 }
3948                 /* Check transfer rx_nbits */
3949                 if (xfer->rx_buf) {
3950                         if (spi->mode & SPI_NO_RX)
3951                                 return -EINVAL;
3952                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3953                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3954                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3955                                 return -EINVAL;
3956                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3957                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3958                                 return -EINVAL;
3959                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3960                                 !(spi->mode & SPI_RX_QUAD))
3961                                 return -EINVAL;
3962                 }
3963
3964                 if (_spi_xfer_word_delay_update(xfer, spi))
3965                         return -EINVAL;
3966         }
3967
3968         message->status = -EINPROGRESS;
3969
3970         return 0;
3971 }
3972
3973 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3974 {
3975         struct spi_controller *ctlr = spi->controller;
3976         struct spi_transfer *xfer;
3977
3978         /*
3979          * Some controllers do not support doing regular SPI transfers. Return
3980          * ENOTSUPP when this is the case.
3981          */
3982         if (!ctlr->transfer)
3983                 return -ENOTSUPP;
3984
3985         message->spi = spi;
3986
3987         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3988         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3989
3990         trace_spi_message_submit(message);
3991
3992         if (!ctlr->ptp_sts_supported) {
3993                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3994                         xfer->ptp_sts_word_pre = 0;
3995                         ptp_read_system_prets(xfer->ptp_sts);
3996                 }
3997         }
3998
3999         return ctlr->transfer(spi, message);
4000 }
4001
4002 /**
4003  * spi_async - asynchronous SPI transfer
4004  * @spi: device with which data will be exchanged
4005  * @message: describes the data transfers, including completion callback
4006  * Context: any (irqs may be blocked, etc)
4007  *
4008  * This call may be used in_irq and other contexts which can't sleep,
4009  * as well as from task contexts which can sleep.
4010  *
4011  * The completion callback is invoked in a context which can't sleep.
4012  * Before that invocation, the value of message->status is undefined.
4013  * When the callback is issued, message->status holds either zero (to
4014  * indicate complete success) or a negative error code.  After that
4015  * callback returns, the driver which issued the transfer request may
4016  * deallocate the associated memory; it's no longer in use by any SPI
4017  * core or controller driver code.
4018  *
4019  * Note that although all messages to a spi_device are handled in
4020  * FIFO order, messages may go to different devices in other orders.
4021  * Some device might be higher priority, or have various "hard" access
4022  * time requirements, for example.
4023  *
4024  * On detection of any fault during the transfer, processing of
4025  * the entire message is aborted, and the device is deselected.
4026  * Until returning from the associated message completion callback,
4027  * no other spi_message queued to that device will be processed.
4028  * (This rule applies equally to all the synchronous transfer calls,
4029  * which are wrappers around this core asynchronous primitive.)
4030  *
4031  * Return: zero on success, else a negative error code.
4032  */
4033 int spi_async(struct spi_device *spi, struct spi_message *message)
4034 {
4035         struct spi_controller *ctlr = spi->controller;
4036         int ret;
4037         unsigned long flags;
4038
4039         ret = __spi_validate(spi, message);
4040         if (ret != 0)
4041                 return ret;
4042
4043         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4044
4045         if (ctlr->bus_lock_flag)
4046                 ret = -EBUSY;
4047         else
4048                 ret = __spi_async(spi, message);
4049
4050         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4051
4052         return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(spi_async);
4055
4056 /**
4057  * spi_async_locked - version of spi_async with exclusive bus usage
4058  * @spi: device with which data will be exchanged
4059  * @message: describes the data transfers, including completion callback
4060  * Context: any (irqs may be blocked, etc)
4061  *
4062  * This call may be used in_irq and other contexts which can't sleep,
4063  * as well as from task contexts which can sleep.
4064  *
4065  * The completion callback is invoked in a context which can't sleep.
4066  * Before that invocation, the value of message->status is undefined.
4067  * When the callback is issued, message->status holds either zero (to
4068  * indicate complete success) or a negative error code.  After that
4069  * callback returns, the driver which issued the transfer request may
4070  * deallocate the associated memory; it's no longer in use by any SPI
4071  * core or controller driver code.
4072  *
4073  * Note that although all messages to a spi_device are handled in
4074  * FIFO order, messages may go to different devices in other orders.
4075  * Some device might be higher priority, or have various "hard" access
4076  * time requirements, for example.
4077  *
4078  * On detection of any fault during the transfer, processing of
4079  * the entire message is aborted, and the device is deselected.
4080  * Until returning from the associated message completion callback,
4081  * no other spi_message queued to that device will be processed.
4082  * (This rule applies equally to all the synchronous transfer calls,
4083  * which are wrappers around this core asynchronous primitive.)
4084  *
4085  * Return: zero on success, else a negative error code.
4086  */
4087 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4088 {
4089         struct spi_controller *ctlr = spi->controller;
4090         int ret;
4091         unsigned long flags;
4092
4093         ret = __spi_validate(spi, message);
4094         if (ret != 0)
4095                 return ret;
4096
4097         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4098
4099         ret = __spi_async(spi, message);
4100
4101         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4102
4103         return ret;
4104
4105 }
4106
4107 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4108 {
4109         bool was_busy;
4110         int ret;
4111
4112         mutex_lock(&ctlr->io_mutex);
4113
4114         was_busy = ctlr->busy;
4115
4116         ctlr->cur_msg = msg;
4117         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4118         if (ret)
4119                 goto out;
4120
4121         ctlr->cur_msg = NULL;
4122         ctlr->fallback = false;
4123
4124         if (!was_busy) {
4125                 kfree(ctlr->dummy_rx);
4126                 ctlr->dummy_rx = NULL;
4127                 kfree(ctlr->dummy_tx);
4128                 ctlr->dummy_tx = NULL;
4129                 if (ctlr->unprepare_transfer_hardware &&
4130                     ctlr->unprepare_transfer_hardware(ctlr))
4131                         dev_err(&ctlr->dev,
4132                                 "failed to unprepare transfer hardware\n");
4133                 spi_idle_runtime_pm(ctlr);
4134         }
4135
4136 out:
4137         mutex_unlock(&ctlr->io_mutex);
4138 }
4139
4140 /*-------------------------------------------------------------------------*/
4141
4142 /*
4143  * Utility methods for SPI protocol drivers, layered on
4144  * top of the core.  Some other utility methods are defined as
4145  * inline functions.
4146  */
4147
4148 static void spi_complete(void *arg)
4149 {
4150         complete(arg);
4151 }
4152
4153 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4154 {
4155         DECLARE_COMPLETION_ONSTACK(done);
4156         int status;
4157         struct spi_controller *ctlr = spi->controller;
4158
4159         status = __spi_validate(spi, message);
4160         if (status != 0)
4161                 return status;
4162
4163         message->spi = spi;
4164
4165         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4166         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4167
4168         /*
4169          * Checking queue_empty here only guarantees async/sync message
4170          * ordering when coming from the same context. It does not need to
4171          * guard against reentrancy from a different context. The io_mutex
4172          * will catch those cases.
4173          */
4174         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4175                 message->actual_length = 0;
4176                 message->status = -EINPROGRESS;
4177
4178                 trace_spi_message_submit(message);
4179
4180                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4181                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4182
4183                 __spi_transfer_message_noqueue(ctlr, message);
4184
4185                 return message->status;
4186         }
4187
4188         /*
4189          * There are messages in the async queue that could have originated
4190          * from the same context, so we need to preserve ordering.
4191          * Therefor we send the message to the async queue and wait until they
4192          * are completed.
4193          */
4194         message->complete = spi_complete;
4195         message->context = &done;
4196         status = spi_async_locked(spi, message);
4197         if (status == 0) {
4198                 wait_for_completion(&done);
4199                 status = message->status;
4200         }
4201         message->context = NULL;
4202
4203         return status;
4204 }
4205
4206 /**
4207  * spi_sync - blocking/synchronous SPI data transfers
4208  * @spi: device with which data will be exchanged
4209  * @message: describes the data transfers
4210  * Context: can sleep
4211  *
4212  * This call may only be used from a context that may sleep.  The sleep
4213  * is non-interruptible, and has no timeout.  Low-overhead controller
4214  * drivers may DMA directly into and out of the message buffers.
4215  *
4216  * Note that the SPI device's chip select is active during the message,
4217  * and then is normally disabled between messages.  Drivers for some
4218  * frequently-used devices may want to minimize costs of selecting a chip,
4219  * by leaving it selected in anticipation that the next message will go
4220  * to the same chip.  (That may increase power usage.)
4221  *
4222  * Also, the caller is guaranteeing that the memory associated with the
4223  * message will not be freed before this call returns.
4224  *
4225  * Return: zero on success, else a negative error code.
4226  */
4227 int spi_sync(struct spi_device *spi, struct spi_message *message)
4228 {
4229         int ret;
4230
4231         mutex_lock(&spi->controller->bus_lock_mutex);
4232         ret = __spi_sync(spi, message);
4233         mutex_unlock(&spi->controller->bus_lock_mutex);
4234
4235         return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(spi_sync);
4238
4239 /**
4240  * spi_sync_locked - version of spi_sync with exclusive bus usage
4241  * @spi: device with which data will be exchanged
4242  * @message: describes the data transfers
4243  * Context: can sleep
4244  *
4245  * This call may only be used from a context that may sleep.  The sleep
4246  * is non-interruptible, and has no timeout.  Low-overhead controller
4247  * drivers may DMA directly into and out of the message buffers.
4248  *
4249  * This call should be used by drivers that require exclusive access to the
4250  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4251  * be released by a spi_bus_unlock call when the exclusive access is over.
4252  *
4253  * Return: zero on success, else a negative error code.
4254  */
4255 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4256 {
4257         return __spi_sync(spi, message);
4258 }
4259 EXPORT_SYMBOL_GPL(spi_sync_locked);
4260
4261 /**
4262  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4263  * @ctlr: SPI bus master that should be locked for exclusive bus access
4264  * Context: can sleep
4265  *
4266  * This call may only be used from a context that may sleep.  The sleep
4267  * is non-interruptible, and has no timeout.
4268  *
4269  * This call should be used by drivers that require exclusive access to the
4270  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4271  * exclusive access is over. Data transfer must be done by spi_sync_locked
4272  * and spi_async_locked calls when the SPI bus lock is held.
4273  *
4274  * Return: always zero.
4275  */
4276 int spi_bus_lock(struct spi_controller *ctlr)
4277 {
4278         unsigned long flags;
4279
4280         mutex_lock(&ctlr->bus_lock_mutex);
4281
4282         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4283         ctlr->bus_lock_flag = 1;
4284         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4285
4286         /* Mutex remains locked until spi_bus_unlock() is called */
4287
4288         return 0;
4289 }
4290 EXPORT_SYMBOL_GPL(spi_bus_lock);
4291
4292 /**
4293  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4294  * @ctlr: SPI bus master that was locked for exclusive bus access
4295  * Context: can sleep
4296  *
4297  * This call may only be used from a context that may sleep.  The sleep
4298  * is non-interruptible, and has no timeout.
4299  *
4300  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4301  * call.
4302  *
4303  * Return: always zero.
4304  */
4305 int spi_bus_unlock(struct spi_controller *ctlr)
4306 {
4307         ctlr->bus_lock_flag = 0;
4308
4309         mutex_unlock(&ctlr->bus_lock_mutex);
4310
4311         return 0;
4312 }
4313 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4314
4315 /* Portable code must never pass more than 32 bytes */
4316 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4317
4318 static u8       *buf;
4319
4320 /**
4321  * spi_write_then_read - SPI synchronous write followed by read
4322  * @spi: device with which data will be exchanged
4323  * @txbuf: data to be written (need not be dma-safe)
4324  * @n_tx: size of txbuf, in bytes
4325  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4326  * @n_rx: size of rxbuf, in bytes
4327  * Context: can sleep
4328  *
4329  * This performs a half duplex MicroWire style transaction with the
4330  * device, sending txbuf and then reading rxbuf.  The return value
4331  * is zero for success, else a negative errno status code.
4332  * This call may only be used from a context that may sleep.
4333  *
4334  * Parameters to this routine are always copied using a small buffer.
4335  * Performance-sensitive or bulk transfer code should instead use
4336  * spi_{async,sync}() calls with dma-safe buffers.
4337  *
4338  * Return: zero on success, else a negative error code.
4339  */
4340 int spi_write_then_read(struct spi_device *spi,
4341                 const void *txbuf, unsigned n_tx,
4342                 void *rxbuf, unsigned n_rx)
4343 {
4344         static DEFINE_MUTEX(lock);
4345
4346         int                     status;
4347         struct spi_message      message;
4348         struct spi_transfer     x[2];
4349         u8                      *local_buf;
4350
4351         /*
4352          * Use preallocated DMA-safe buffer if we can. We can't avoid
4353          * copying here, (as a pure convenience thing), but we can
4354          * keep heap costs out of the hot path unless someone else is
4355          * using the pre-allocated buffer or the transfer is too large.
4356          */
4357         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4358                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4359                                     GFP_KERNEL | GFP_DMA);
4360                 if (!local_buf)
4361                         return -ENOMEM;
4362         } else {
4363                 local_buf = buf;
4364         }
4365
4366         spi_message_init(&message);
4367         memset(x, 0, sizeof(x));
4368         if (n_tx) {
4369                 x[0].len = n_tx;
4370                 spi_message_add_tail(&x[0], &message);
4371         }
4372         if (n_rx) {
4373                 x[1].len = n_rx;
4374                 spi_message_add_tail(&x[1], &message);
4375         }
4376
4377         memcpy(local_buf, txbuf, n_tx);
4378         x[0].tx_buf = local_buf;
4379         x[1].rx_buf = local_buf + n_tx;
4380
4381         /* Do the i/o */
4382         status = spi_sync(spi, &message);
4383         if (status == 0)
4384                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4385
4386         if (x[0].tx_buf == buf)
4387                 mutex_unlock(&lock);
4388         else
4389                 kfree(local_buf);
4390
4391         return status;
4392 }
4393 EXPORT_SYMBOL_GPL(spi_write_then_read);
4394
4395 /*-------------------------------------------------------------------------*/
4396
4397 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4398 /* Must call put_device() when done with returned spi_device device */
4399 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4400 {
4401         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4402
4403         return dev ? to_spi_device(dev) : NULL;
4404 }
4405
4406 /* The spi controllers are not using spi_bus, so we find it with another way */
4407 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4408 {
4409         struct device *dev;
4410
4411         dev = class_find_device_by_of_node(&spi_master_class, node);
4412         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4413                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4414         if (!dev)
4415                 return NULL;
4416
4417         /* Reference got in class_find_device */
4418         return container_of(dev, struct spi_controller, dev);
4419 }
4420
4421 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4422                          void *arg)
4423 {
4424         struct of_reconfig_data *rd = arg;
4425         struct spi_controller *ctlr;
4426         struct spi_device *spi;
4427
4428         switch (of_reconfig_get_state_change(action, arg)) {
4429         case OF_RECONFIG_CHANGE_ADD:
4430                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4431                 if (ctlr == NULL)
4432                         return NOTIFY_OK;       /* Not for us */
4433
4434                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4435                         put_device(&ctlr->dev);
4436                         return NOTIFY_OK;
4437                 }
4438
4439                 spi = of_register_spi_device(ctlr, rd->dn);
4440                 put_device(&ctlr->dev);
4441
4442                 if (IS_ERR(spi)) {
4443                         pr_err("%s: failed to create for '%pOF'\n",
4444                                         __func__, rd->dn);
4445                         of_node_clear_flag(rd->dn, OF_POPULATED);
4446                         return notifier_from_errno(PTR_ERR(spi));
4447                 }
4448                 break;
4449
4450         case OF_RECONFIG_CHANGE_REMOVE:
4451                 /* Already depopulated? */
4452                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4453                         return NOTIFY_OK;
4454
4455                 /* Find our device by node */
4456                 spi = of_find_spi_device_by_node(rd->dn);
4457                 if (spi == NULL)
4458                         return NOTIFY_OK;       /* No? not meant for us */
4459
4460                 /* Unregister takes one ref away */
4461                 spi_unregister_device(spi);
4462
4463                 /* And put the reference of the find */
4464                 put_device(&spi->dev);
4465                 break;
4466         }
4467
4468         return NOTIFY_OK;
4469 }
4470
4471 static struct notifier_block spi_of_notifier = {
4472         .notifier_call = of_spi_notify,
4473 };
4474 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4475 extern struct notifier_block spi_of_notifier;
4476 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4477
4478 #if IS_ENABLED(CONFIG_ACPI)
4479 static int spi_acpi_controller_match(struct device *dev, const void *data)
4480 {
4481         return ACPI_COMPANION(dev->parent) == data;
4482 }
4483
4484 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4485 {
4486         struct device *dev;
4487
4488         dev = class_find_device(&spi_master_class, NULL, adev,
4489                                 spi_acpi_controller_match);
4490         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4491                 dev = class_find_device(&spi_slave_class, NULL, adev,
4492                                         spi_acpi_controller_match);
4493         if (!dev)
4494                 return NULL;
4495
4496         return container_of(dev, struct spi_controller, dev);
4497 }
4498
4499 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4500 {
4501         struct device *dev;
4502
4503         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4504         return to_spi_device(dev);
4505 }
4506
4507 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4508                            void *arg)
4509 {
4510         struct acpi_device *adev = arg;
4511         struct spi_controller *ctlr;
4512         struct spi_device *spi;
4513
4514         switch (value) {
4515         case ACPI_RECONFIG_DEVICE_ADD:
4516                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4517                 if (!ctlr)
4518                         break;
4519
4520                 acpi_register_spi_device(ctlr, adev);
4521                 put_device(&ctlr->dev);
4522                 break;
4523         case ACPI_RECONFIG_DEVICE_REMOVE:
4524                 if (!acpi_device_enumerated(adev))
4525                         break;
4526
4527                 spi = acpi_spi_find_device_by_adev(adev);
4528                 if (!spi)
4529                         break;
4530
4531                 spi_unregister_device(spi);
4532                 put_device(&spi->dev);
4533                 break;
4534         }
4535
4536         return NOTIFY_OK;
4537 }
4538
4539 static struct notifier_block spi_acpi_notifier = {
4540         .notifier_call = acpi_spi_notify,
4541 };
4542 #else
4543 extern struct notifier_block spi_acpi_notifier;
4544 #endif
4545
4546 static int __init spi_init(void)
4547 {
4548         int     status;
4549
4550         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4551         if (!buf) {
4552                 status = -ENOMEM;
4553                 goto err0;
4554         }
4555
4556         status = bus_register(&spi_bus_type);
4557         if (status < 0)
4558                 goto err1;
4559
4560         status = class_register(&spi_master_class);
4561         if (status < 0)
4562                 goto err2;
4563
4564         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4565                 status = class_register(&spi_slave_class);
4566                 if (status < 0)
4567                         goto err3;
4568         }
4569
4570         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4571                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4572         if (IS_ENABLED(CONFIG_ACPI))
4573                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4574
4575         return 0;
4576
4577 err3:
4578         class_unregister(&spi_master_class);
4579 err2:
4580         bus_unregister(&spi_bus_type);
4581 err1:
4582         kfree(buf);
4583         buf = NULL;
4584 err0:
4585         return status;
4586 }
4587
4588 /*
4589  * A board_info is normally registered in arch_initcall(),
4590  * but even essential drivers wait till later.
4591  *
4592  * REVISIT only boardinfo really needs static linking. The rest (device and
4593  * driver registration) _could_ be dynamically linked (modular) ... Costs
4594  * include needing to have boardinfo data structures be much more public.
4595  */
4596 postcore_initcall(spi_init);
This page took 0.284913 seconds and 4 git commands to generate.