4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
22 #include <trace/events/f2fs.h>
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
27 static void clear_node_page_dirty(struct page *page)
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
43 ClearPageUptodate(page);
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
54 struct page *src_page;
55 struct page *dst_page;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
72 dst_page = grab_meta_page(sbi, dst_off);
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
80 set_to_next_nat(nm_i, nid);
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
97 blk_start_plug(&plug);
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
102 index = current_nat_addr(sbi, nid);
104 page = grab_cache_page(mapping, index);
107 if (PageUptodate(page)) {
108 f2fs_put_page(page, 1);
111 if (f2fs_readpage(sbi, page, index, READ))
114 f2fs_put_page(page, 0);
116 blk_finish_plug(&plug);
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
121 return radix_tree_lookup(&nm_i->nat_root, n);
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
135 kmem_cache_free(nat_entry_slab, e);
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
148 read_unlock(&nm_i->nat_tree_lock);
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
154 struct nat_entry *new;
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
178 e = grab_nat_entry(nm_i, nid);
180 write_unlock(&nm_i->nat_tree_lock);
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
188 write_unlock(&nm_i->nat_tree_lock);
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
200 e = grab_nat_entry(nm_i, ni->nid);
202 write_unlock(&nm_i->nat_tree_lock);
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
215 BUG_ON(ni->blk_addr != NULL_ADDR);
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
258 write_unlock(&nm_i->nat_tree_lock);
263 * This function returns always success
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
288 read_unlock(&nm_i->nat_tree_lock);
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
299 mutex_unlock(&curseg->curseg_mutex);
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
318 static int get_node_path(struct f2fs_inode_info *fi, long block,
319 int offset[4], unsigned int noffset[4])
321 const long direct_index = ADDRS_PER_INODE(fi);
322 const long direct_blks = ADDRS_PER_BLOCK;
323 const long dptrs_per_blk = NIDS_PER_BLOCK;
324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
331 if (block < direct_index) {
335 block -= direct_index;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR1_BLOCK;
343 block -= direct_blks;
344 if (block < direct_blks) {
345 offset[n++] = NODE_DIR2_BLOCK;
351 block -= direct_blks;
352 if (block < indirect_blks) {
353 offset[n++] = NODE_IND1_BLOCK;
355 offset[n++] = block / direct_blks;
356 noffset[n] = 4 + offset[n - 1];
357 offset[n] = block % direct_blks;
361 block -= indirect_blks;
362 if (block < indirect_blks) {
363 offset[n++] = NODE_IND2_BLOCK;
364 noffset[n] = 4 + dptrs_per_blk;
365 offset[n++] = block / direct_blks;
366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
367 offset[n] = block % direct_blks;
371 block -= indirect_blks;
372 if (block < dindirect_blks) {
373 offset[n++] = NODE_DIND_BLOCK;
374 noffset[n] = 5 + (dptrs_per_blk * 2);
375 offset[n++] = block / indirect_blks;
376 noffset[n] = 6 + (dptrs_per_blk * 2) +
377 offset[n - 1] * (dptrs_per_blk + 1);
378 offset[n++] = (block / direct_blks) % dptrs_per_blk;
379 noffset[n] = 7 + (dptrs_per_blk * 2) +
380 offset[n - 2] * (dptrs_per_blk + 1) +
382 offset[n] = block % direct_blks;
393 * Caller should call f2fs_put_dnode(dn).
394 * Also, it should grab and release a mutex by calling mutex_lock_op() and
395 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396 * In the case of RDONLY_NODE, we don't need to care about mutex.
398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401 struct page *npage[4];
404 unsigned int noffset[4];
409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
411 nids[0] = dn->inode->i_ino;
412 npage[0] = dn->inode_page;
415 npage[0] = get_node_page(sbi, nids[0]);
416 if (IS_ERR(npage[0]))
417 return PTR_ERR(npage[0]);
421 nids[1] = get_nid(parent, offset[0], true);
422 dn->inode_page = npage[0];
423 dn->inode_page_locked = true;
425 /* get indirect or direct nodes */
426 for (i = 1; i <= level; i++) {
429 if (!nids[i] && mode == ALLOC_NODE) {
431 if (!alloc_nid(sbi, &(nids[i]))) {
437 npage[i] = new_node_page(dn, noffset[i], NULL);
438 if (IS_ERR(npage[i])) {
439 alloc_nid_failed(sbi, nids[i]);
440 err = PTR_ERR(npage[i]);
444 set_nid(parent, offset[i - 1], nids[i], i == 1);
445 alloc_nid_done(sbi, nids[i]);
447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
448 npage[i] = get_node_page_ra(parent, offset[i - 1]);
449 if (IS_ERR(npage[i])) {
450 err = PTR_ERR(npage[i]);
456 dn->inode_page_locked = false;
459 f2fs_put_page(parent, 1);
463 npage[i] = get_node_page(sbi, nids[i]);
464 if (IS_ERR(npage[i])) {
465 err = PTR_ERR(npage[i]);
466 f2fs_put_page(npage[0], 0);
472 nids[i + 1] = get_nid(parent, offset[i], false);
475 dn->nid = nids[level];
476 dn->ofs_in_node = offset[level];
477 dn->node_page = npage[level];
478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
482 f2fs_put_page(parent, 1);
484 f2fs_put_page(npage[0], 0);
486 dn->inode_page = NULL;
487 dn->node_page = NULL;
491 static void truncate_node(struct dnode_of_data *dn)
493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
496 get_node_info(sbi, dn->nid, &ni);
497 if (dn->inode->i_blocks == 0) {
498 BUG_ON(ni.blk_addr != NULL_ADDR);
501 BUG_ON(ni.blk_addr == NULL_ADDR);
503 /* Deallocate node address */
504 invalidate_blocks(sbi, ni.blk_addr);
505 dec_valid_node_count(sbi, dn->inode, 1);
506 set_node_addr(sbi, &ni, NULL_ADDR);
508 if (dn->nid == dn->inode->i_ino) {
509 remove_orphan_inode(sbi, dn->nid);
510 dec_valid_inode_count(sbi);
515 clear_node_page_dirty(dn->node_page);
516 F2FS_SET_SB_DIRT(sbi);
518 f2fs_put_page(dn->node_page, 1);
519 dn->node_page = NULL;
520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
523 static int truncate_dnode(struct dnode_of_data *dn)
525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
531 /* get direct node */
532 page = get_node_page(sbi, dn->nid);
533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
535 else if (IS_ERR(page))
536 return PTR_ERR(page);
538 /* Make dnode_of_data for parameter */
539 dn->node_page = page;
541 truncate_data_blocks(dn);
546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550 struct dnode_of_data rdn = *dn;
552 struct f2fs_node *rn;
554 unsigned int child_nofs;
559 return NIDS_PER_BLOCK + 1;
561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
563 page = get_node_page(sbi, dn->nid);
565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
566 return PTR_ERR(page);
569 rn = F2FS_NODE(page);
571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572 child_nid = le32_to_cpu(rn->in.nid[i]);
576 ret = truncate_dnode(&rdn);
579 set_nid(page, i, 0, false);
582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584 child_nid = le32_to_cpu(rn->in.nid[i]);
585 if (child_nid == 0) {
586 child_nofs += NIDS_PER_BLOCK + 1;
590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591 if (ret == (NIDS_PER_BLOCK + 1)) {
592 set_nid(page, i, 0, false);
594 } else if (ret < 0 && ret != -ENOENT) {
602 /* remove current indirect node */
603 dn->node_page = page;
607 f2fs_put_page(page, 1);
609 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613 f2fs_put_page(page, 1);
614 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618 static int truncate_partial_nodes(struct dnode_of_data *dn,
619 struct f2fs_inode *ri, int *offset, int depth)
621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622 struct page *pages[2];
629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633 /* get indirect nodes in the path */
634 for (i = 0; i < depth - 1; i++) {
635 /* refernece count'll be increased */
636 pages[i] = get_node_page(sbi, nid[i]);
637 if (IS_ERR(pages[i])) {
639 err = PTR_ERR(pages[i]);
642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
645 /* free direct nodes linked to a partial indirect node */
646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647 child_nid = get_nid(pages[idx], i, false);
651 err = truncate_dnode(dn);
654 set_nid(pages[idx], i, 0, false);
657 if (offset[depth - 1] == 0) {
658 dn->node_page = pages[idx];
662 f2fs_put_page(pages[idx], 1);
665 offset[depth - 1] = 0;
667 for (i = depth - 3; i >= 0; i--)
668 f2fs_put_page(pages[i], 1);
670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
676 * All the block addresses of data and nodes should be nullified.
678 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681 struct address_space *node_mapping = sbi->node_inode->i_mapping;
682 int err = 0, cont = 1;
683 int level, offset[4], noffset[4];
684 unsigned int nofs = 0;
685 struct f2fs_node *rn;
686 struct dnode_of_data dn;
689 trace_f2fs_truncate_inode_blocks_enter(inode, from);
691 level = get_node_path(F2FS_I(inode), from, offset, noffset);
693 page = get_node_page(sbi, inode->i_ino);
695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
696 return PTR_ERR(page);
699 set_new_dnode(&dn, inode, page, NULL, 0);
702 rn = F2FS_NODE(page);
710 if (!offset[level - 1])
712 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713 if (err < 0 && err != -ENOENT)
715 nofs += 1 + NIDS_PER_BLOCK;
718 nofs = 5 + 2 * NIDS_PER_BLOCK;
719 if (!offset[level - 1])
721 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722 if (err < 0 && err != -ENOENT)
731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
733 case NODE_DIR1_BLOCK:
734 case NODE_DIR2_BLOCK:
735 err = truncate_dnode(&dn);
738 case NODE_IND1_BLOCK:
739 case NODE_IND2_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 2);
743 case NODE_DIND_BLOCK:
744 err = truncate_nodes(&dn, nofs, offset[1], 3);
751 if (err < 0 && err != -ENOENT)
753 if (offset[1] == 0 &&
754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
756 if (page->mapping != node_mapping) {
757 f2fs_put_page(page, 1);
760 wait_on_page_writeback(page);
761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762 set_page_dirty(page);
770 f2fs_put_page(page, 0);
771 trace_f2fs_truncate_inode_blocks_exit(inode, err);
772 return err > 0 ? 0 : err;
775 int truncate_xattr_node(struct inode *inode, struct page *page)
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 nid_t nid = F2FS_I(inode)->i_xattr_nid;
779 struct dnode_of_data dn;
785 npage = get_node_page(sbi, nid);
787 return PTR_ERR(npage);
789 F2FS_I(inode)->i_xattr_nid = 0;
791 /* need to do checkpoint during fsync */
792 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
794 set_new_dnode(&dn, inode, page, npage, nid);
797 dn.inode_page_locked = 1;
803 * Caller should grab and release a mutex by calling mutex_lock_op() and
806 int remove_inode_page(struct inode *inode)
808 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
810 nid_t ino = inode->i_ino;
811 struct dnode_of_data dn;
814 page = get_node_page(sbi, ino);
816 return PTR_ERR(page);
818 err = truncate_xattr_node(inode, page);
820 f2fs_put_page(page, 1);
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
831 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
833 struct dnode_of_data dn;
835 /* allocate inode page for new inode */
836 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
838 /* caller should f2fs_put_page(page, 1); */
839 return new_node_page(&dn, 0, NULL);
842 struct page *new_node_page(struct dnode_of_data *dn,
843 unsigned int ofs, struct page *ipage)
845 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
846 struct address_space *mapping = sbi->node_inode->i_mapping;
847 struct node_info old_ni, new_ni;
851 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
852 return ERR_PTR(-EPERM);
854 page = grab_cache_page(mapping, dn->nid);
856 return ERR_PTR(-ENOMEM);
858 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
863 get_node_info(sbi, dn->nid, &old_ni);
865 /* Reinitialize old_ni with new node page */
866 BUG_ON(old_ni.blk_addr != NULL_ADDR);
868 new_ni.ino = dn->inode->i_ino;
869 set_node_addr(sbi, &new_ni, NEW_ADDR);
871 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
872 set_cold_node(dn->inode, page);
873 SetPageUptodate(page);
874 set_page_dirty(page);
876 if (ofs == XATTR_NODE_OFFSET)
877 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
879 dn->node_page = page;
881 update_inode(dn->inode, ipage);
885 inc_valid_inode_count(sbi);
890 clear_node_page_dirty(page);
891 f2fs_put_page(page, 1);
896 * Caller should do after getting the following values.
897 * 0: f2fs_put_page(page, 0)
898 * LOCKED_PAGE: f2fs_put_page(page, 1)
901 static int read_node_page(struct page *page, int type)
903 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
906 get_node_info(sbi, page->index, &ni);
908 if (ni.blk_addr == NULL_ADDR) {
909 f2fs_put_page(page, 1);
913 if (PageUptodate(page))
916 return f2fs_readpage(sbi, page, ni.blk_addr, type);
920 * Readahead a node page
922 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
924 struct address_space *mapping = sbi->node_inode->i_mapping;
928 apage = find_get_page(mapping, nid);
929 if (apage && PageUptodate(apage)) {
930 f2fs_put_page(apage, 0);
933 f2fs_put_page(apage, 0);
935 apage = grab_cache_page(mapping, nid);
939 err = read_node_page(apage, READA);
941 f2fs_put_page(apage, 0);
942 else if (err == LOCKED_PAGE)
943 f2fs_put_page(apage, 1);
946 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
948 struct address_space *mapping = sbi->node_inode->i_mapping;
952 page = grab_cache_page(mapping, nid);
954 return ERR_PTR(-ENOMEM);
956 err = read_node_page(page, READ_SYNC);
959 else if (err == LOCKED_PAGE)
963 if (!PageUptodate(page)) {
964 f2fs_put_page(page, 1);
965 return ERR_PTR(-EIO);
967 if (page->mapping != mapping) {
968 f2fs_put_page(page, 1);
972 BUG_ON(nid != nid_of_node(page));
973 mark_page_accessed(page);
978 * Return a locked page for the desired node page.
979 * And, readahead MAX_RA_NODE number of node pages.
981 struct page *get_node_page_ra(struct page *parent, int start)
983 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
984 struct address_space *mapping = sbi->node_inode->i_mapping;
985 struct blk_plug plug;
990 /* First, try getting the desired direct node. */
991 nid = get_nid(parent, start, false);
993 return ERR_PTR(-ENOENT);
995 page = grab_cache_page(mapping, nid);
997 return ERR_PTR(-ENOMEM);
999 err = read_node_page(page, READ_SYNC);
1001 return ERR_PTR(err);
1002 else if (err == LOCKED_PAGE)
1005 blk_start_plug(&plug);
1007 /* Then, try readahead for siblings of the desired node */
1008 end = start + MAX_RA_NODE;
1009 end = min(end, NIDS_PER_BLOCK);
1010 for (i = start + 1; i < end; i++) {
1011 nid = get_nid(parent, i, false);
1014 ra_node_page(sbi, nid);
1017 blk_finish_plug(&plug);
1020 if (page->mapping != mapping) {
1021 f2fs_put_page(page, 1);
1025 if (!PageUptodate(page)) {
1026 f2fs_put_page(page, 1);
1027 return ERR_PTR(-EIO);
1029 mark_page_accessed(page);
1033 void sync_inode_page(struct dnode_of_data *dn)
1035 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1036 update_inode(dn->inode, dn->node_page);
1037 } else if (dn->inode_page) {
1038 if (!dn->inode_page_locked)
1039 lock_page(dn->inode_page);
1040 update_inode(dn->inode, dn->inode_page);
1041 if (!dn->inode_page_locked)
1042 unlock_page(dn->inode_page);
1044 update_inode_page(dn->inode);
1048 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1049 struct writeback_control *wbc)
1051 struct address_space *mapping = sbi->node_inode->i_mapping;
1053 struct pagevec pvec;
1054 int step = ino ? 2 : 0;
1055 int nwritten = 0, wrote = 0;
1057 pagevec_init(&pvec, 0);
1063 while (index <= end) {
1065 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1066 PAGECACHE_TAG_DIRTY,
1067 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1071 for (i = 0; i < nr_pages; i++) {
1072 struct page *page = pvec.pages[i];
1075 * flushing sequence with step:
1080 if (step == 0 && IS_DNODE(page))
1082 if (step == 1 && (!IS_DNODE(page) ||
1083 is_cold_node(page)))
1085 if (step == 2 && (!IS_DNODE(page) ||
1086 !is_cold_node(page)))
1091 * we should not skip writing node pages.
1093 if (ino && ino_of_node(page) == ino)
1095 else if (!trylock_page(page))
1098 if (unlikely(page->mapping != mapping)) {
1103 if (ino && ino_of_node(page) != ino)
1104 goto continue_unlock;
1106 if (!PageDirty(page)) {
1107 /* someone wrote it for us */
1108 goto continue_unlock;
1111 if (!clear_page_dirty_for_io(page))
1112 goto continue_unlock;
1114 /* called by fsync() */
1115 if (ino && IS_DNODE(page)) {
1116 int mark = !is_checkpointed_node(sbi, ino);
1117 set_fsync_mark(page, 1);
1119 set_dentry_mark(page, mark);
1122 set_fsync_mark(page, 0);
1123 set_dentry_mark(page, 0);
1125 mapping->a_ops->writepage(page, wbc);
1128 if (--wbc->nr_to_write == 0)
1131 pagevec_release(&pvec);
1134 if (wbc->nr_to_write == 0) {
1146 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1151 static int f2fs_write_node_page(struct page *page,
1152 struct writeback_control *wbc)
1154 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1157 struct node_info ni;
1159 wait_on_page_writeback(page);
1161 /* get old block addr of this node page */
1162 nid = nid_of_node(page);
1163 BUG_ON(page->index != nid);
1165 get_node_info(sbi, nid, &ni);
1167 /* This page is already truncated */
1168 if (ni.blk_addr == NULL_ADDR) {
1169 dec_page_count(sbi, F2FS_DIRTY_NODES);
1174 if (wbc->for_reclaim) {
1175 dec_page_count(sbi, F2FS_DIRTY_NODES);
1176 wbc->pages_skipped++;
1177 set_page_dirty(page);
1178 return AOP_WRITEPAGE_ACTIVATE;
1181 mutex_lock(&sbi->node_write);
1182 set_page_writeback(page);
1183 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1184 set_node_addr(sbi, &ni, new_addr);
1185 dec_page_count(sbi, F2FS_DIRTY_NODES);
1186 mutex_unlock(&sbi->node_write);
1192 * It is very important to gather dirty pages and write at once, so that we can
1193 * submit a big bio without interfering other data writes.
1194 * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1196 #define COLLECT_DIRTY_NODES 1536
1197 static int f2fs_write_node_pages(struct address_space *mapping,
1198 struct writeback_control *wbc)
1200 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1201 long nr_to_write = wbc->nr_to_write;
1203 /* First check balancing cached NAT entries */
1204 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1205 f2fs_sync_fs(sbi->sb, true);
1209 /* collect a number of dirty node pages and write together */
1210 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1213 /* if mounting is failed, skip writing node pages */
1214 wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1215 sync_node_pages(sbi, 0, wbc);
1216 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1221 static int f2fs_set_node_page_dirty(struct page *page)
1223 struct address_space *mapping = page->mapping;
1224 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1226 SetPageUptodate(page);
1227 if (!PageDirty(page)) {
1228 __set_page_dirty_nobuffers(page);
1229 inc_page_count(sbi, F2FS_DIRTY_NODES);
1230 SetPagePrivate(page);
1236 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1237 unsigned int length)
1239 struct inode *inode = page->mapping->host;
1240 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1241 if (PageDirty(page))
1242 dec_page_count(sbi, F2FS_DIRTY_NODES);
1243 ClearPagePrivate(page);
1246 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1248 ClearPagePrivate(page);
1253 * Structure of the f2fs node operations
1255 const struct address_space_operations f2fs_node_aops = {
1256 .writepage = f2fs_write_node_page,
1257 .writepages = f2fs_write_node_pages,
1258 .set_page_dirty = f2fs_set_node_page_dirty,
1259 .invalidatepage = f2fs_invalidate_node_page,
1260 .releasepage = f2fs_release_node_page,
1263 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1265 struct list_head *this;
1267 list_for_each(this, head) {
1268 i = list_entry(this, struct free_nid, list);
1275 static void __del_from_free_nid_list(struct free_nid *i)
1278 kmem_cache_free(free_nid_slab, i);
1281 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1284 struct nat_entry *ne;
1285 bool allocated = false;
1287 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1290 /* 0 nid should not be used */
1297 /* do not add allocated nids */
1298 read_lock(&nm_i->nat_tree_lock);
1299 ne = __lookup_nat_cache(nm_i, nid);
1300 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1302 read_unlock(&nm_i->nat_tree_lock);
1306 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1314 spin_lock(&nm_i->free_nid_list_lock);
1315 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1316 spin_unlock(&nm_i->free_nid_list_lock);
1317 kmem_cache_free(free_nid_slab, i);
1320 list_add_tail(&i->list, &nm_i->free_nid_list);
1322 spin_unlock(&nm_i->free_nid_list_lock);
1326 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1329 spin_lock(&nm_i->free_nid_list_lock);
1330 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1331 if (i && i->state == NID_NEW) {
1332 __del_from_free_nid_list(i);
1335 spin_unlock(&nm_i->free_nid_list_lock);
1338 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1339 struct page *nat_page, nid_t start_nid)
1341 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1345 i = start_nid % NAT_ENTRY_PER_BLOCK;
1347 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1349 if (start_nid >= nm_i->max_nid)
1352 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1353 BUG_ON(blk_addr == NEW_ADDR);
1354 if (blk_addr == NULL_ADDR) {
1355 if (add_free_nid(nm_i, start_nid, true) < 0)
1361 static void build_free_nids(struct f2fs_sb_info *sbi)
1363 struct f2fs_nm_info *nm_i = NM_I(sbi);
1364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1365 struct f2fs_summary_block *sum = curseg->sum_blk;
1367 nid_t nid = nm_i->next_scan_nid;
1369 /* Enough entries */
1370 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1373 /* readahead nat pages to be scanned */
1374 ra_nat_pages(sbi, nid);
1377 struct page *page = get_current_nat_page(sbi, nid);
1379 scan_nat_page(nm_i, page, nid);
1380 f2fs_put_page(page, 1);
1382 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1383 if (nid >= nm_i->max_nid)
1386 if (i++ == FREE_NID_PAGES)
1390 /* go to the next free nat pages to find free nids abundantly */
1391 nm_i->next_scan_nid = nid;
1393 /* find free nids from current sum_pages */
1394 mutex_lock(&curseg->curseg_mutex);
1395 for (i = 0; i < nats_in_cursum(sum); i++) {
1396 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1397 nid = le32_to_cpu(nid_in_journal(sum, i));
1398 if (addr == NULL_ADDR)
1399 add_free_nid(nm_i, nid, true);
1401 remove_free_nid(nm_i, nid);
1403 mutex_unlock(&curseg->curseg_mutex);
1407 * If this function returns success, caller can obtain a new nid
1408 * from second parameter of this function.
1409 * The returned nid could be used ino as well as nid when inode is created.
1411 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1413 struct f2fs_nm_info *nm_i = NM_I(sbi);
1414 struct free_nid *i = NULL;
1415 struct list_head *this;
1417 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1420 spin_lock(&nm_i->free_nid_list_lock);
1422 /* We should not use stale free nids created by build_free_nids */
1423 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1424 BUG_ON(list_empty(&nm_i->free_nid_list));
1425 list_for_each(this, &nm_i->free_nid_list) {
1426 i = list_entry(this, struct free_nid, list);
1427 if (i->state == NID_NEW)
1431 BUG_ON(i->state != NID_NEW);
1433 i->state = NID_ALLOC;
1435 spin_unlock(&nm_i->free_nid_list_lock);
1438 spin_unlock(&nm_i->free_nid_list_lock);
1440 /* Let's scan nat pages and its caches to get free nids */
1441 mutex_lock(&nm_i->build_lock);
1442 sbi->on_build_free_nids = 1;
1443 build_free_nids(sbi);
1444 sbi->on_build_free_nids = 0;
1445 mutex_unlock(&nm_i->build_lock);
1450 * alloc_nid() should be called prior to this function.
1452 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1454 struct f2fs_nm_info *nm_i = NM_I(sbi);
1457 spin_lock(&nm_i->free_nid_list_lock);
1458 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1459 BUG_ON(!i || i->state != NID_ALLOC);
1460 __del_from_free_nid_list(i);
1461 spin_unlock(&nm_i->free_nid_list_lock);
1465 * alloc_nid() should be called prior to this function.
1467 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1469 struct f2fs_nm_info *nm_i = NM_I(sbi);
1475 spin_lock(&nm_i->free_nid_list_lock);
1476 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1477 BUG_ON(!i || i->state != NID_ALLOC);
1478 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1479 __del_from_free_nid_list(i);
1484 spin_unlock(&nm_i->free_nid_list_lock);
1487 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1488 struct f2fs_summary *sum, struct node_info *ni,
1489 block_t new_blkaddr)
1491 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1492 set_node_addr(sbi, ni, new_blkaddr);
1493 clear_node_page_dirty(page);
1496 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1498 struct address_space *mapping = sbi->node_inode->i_mapping;
1499 struct f2fs_node *src, *dst;
1500 nid_t ino = ino_of_node(page);
1501 struct node_info old_ni, new_ni;
1504 ipage = grab_cache_page(mapping, ino);
1508 /* Should not use this inode from free nid list */
1509 remove_free_nid(NM_I(sbi), ino);
1511 get_node_info(sbi, ino, &old_ni);
1512 SetPageUptodate(ipage);
1513 fill_node_footer(ipage, ino, ino, 0, true);
1515 src = F2FS_NODE(page);
1516 dst = F2FS_NODE(ipage);
1518 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1520 dst->i.i_blocks = cpu_to_le64(1);
1521 dst->i.i_links = cpu_to_le32(1);
1522 dst->i.i_xattr_nid = 0;
1527 if (!inc_valid_node_count(sbi, NULL, 1))
1529 set_node_addr(sbi, &new_ni, NEW_ADDR);
1530 inc_valid_inode_count(sbi);
1531 f2fs_put_page(ipage, 1);
1535 int restore_node_summary(struct f2fs_sb_info *sbi,
1536 unsigned int segno, struct f2fs_summary_block *sum)
1538 struct f2fs_node *rn;
1539 struct f2fs_summary *sum_entry;
1544 /* alloc temporal page for read node */
1545 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1550 /* scan the node segment */
1551 last_offset = sbi->blocks_per_seg;
1552 addr = START_BLOCK(sbi, segno);
1553 sum_entry = &sum->entries[0];
1555 for (i = 0; i < last_offset; i++, sum_entry++) {
1557 * In order to read next node page,
1558 * we must clear PageUptodate flag.
1560 ClearPageUptodate(page);
1562 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1566 rn = F2FS_NODE(page);
1567 sum_entry->nid = rn->footer.nid;
1568 sum_entry->version = 0;
1569 sum_entry->ofs_in_node = 0;
1574 __free_pages(page, 0);
1578 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1580 struct f2fs_nm_info *nm_i = NM_I(sbi);
1581 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1582 struct f2fs_summary_block *sum = curseg->sum_blk;
1585 mutex_lock(&curseg->curseg_mutex);
1587 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1588 mutex_unlock(&curseg->curseg_mutex);
1592 for (i = 0; i < nats_in_cursum(sum); i++) {
1593 struct nat_entry *ne;
1594 struct f2fs_nat_entry raw_ne;
1595 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1597 raw_ne = nat_in_journal(sum, i);
1599 write_lock(&nm_i->nat_tree_lock);
1600 ne = __lookup_nat_cache(nm_i, nid);
1602 __set_nat_cache_dirty(nm_i, ne);
1603 write_unlock(&nm_i->nat_tree_lock);
1606 ne = grab_nat_entry(nm_i, nid);
1608 write_unlock(&nm_i->nat_tree_lock);
1611 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1612 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1613 nat_set_version(ne, raw_ne.version);
1614 __set_nat_cache_dirty(nm_i, ne);
1615 write_unlock(&nm_i->nat_tree_lock);
1617 update_nats_in_cursum(sum, -i);
1618 mutex_unlock(&curseg->curseg_mutex);
1623 * This function is called during the checkpointing process.
1625 void flush_nat_entries(struct f2fs_sb_info *sbi)
1627 struct f2fs_nm_info *nm_i = NM_I(sbi);
1628 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1629 struct f2fs_summary_block *sum = curseg->sum_blk;
1630 struct list_head *cur, *n;
1631 struct page *page = NULL;
1632 struct f2fs_nat_block *nat_blk = NULL;
1633 nid_t start_nid = 0, end_nid = 0;
1636 flushed = flush_nats_in_journal(sbi);
1639 mutex_lock(&curseg->curseg_mutex);
1641 /* 1) flush dirty nat caches */
1642 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1643 struct nat_entry *ne;
1645 struct f2fs_nat_entry raw_ne;
1647 block_t new_blkaddr;
1649 ne = list_entry(cur, struct nat_entry, list);
1650 nid = nat_get_nid(ne);
1652 if (nat_get_blkaddr(ne) == NEW_ADDR)
1657 /* if there is room for nat enries in curseg->sumpage */
1658 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1660 raw_ne = nat_in_journal(sum, offset);
1664 if (!page || (start_nid > nid || nid > end_nid)) {
1666 f2fs_put_page(page, 1);
1669 start_nid = START_NID(nid);
1670 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1673 * get nat block with dirty flag, increased reference
1674 * count, mapped and lock
1676 page = get_next_nat_page(sbi, start_nid);
1677 nat_blk = page_address(page);
1681 raw_ne = nat_blk->entries[nid - start_nid];
1683 new_blkaddr = nat_get_blkaddr(ne);
1685 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1686 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1687 raw_ne.version = nat_get_version(ne);
1690 nat_blk->entries[nid - start_nid] = raw_ne;
1692 nat_in_journal(sum, offset) = raw_ne;
1693 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1696 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1697 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1698 write_lock(&nm_i->nat_tree_lock);
1699 __del_from_nat_cache(nm_i, ne);
1700 write_unlock(&nm_i->nat_tree_lock);
1702 write_lock(&nm_i->nat_tree_lock);
1703 __clear_nat_cache_dirty(nm_i, ne);
1704 ne->checkpointed = true;
1705 write_unlock(&nm_i->nat_tree_lock);
1709 mutex_unlock(&curseg->curseg_mutex);
1710 f2fs_put_page(page, 1);
1712 /* 2) shrink nat caches if necessary */
1713 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1716 static int init_node_manager(struct f2fs_sb_info *sbi)
1718 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1719 struct f2fs_nm_info *nm_i = NM_I(sbi);
1720 unsigned char *version_bitmap;
1721 unsigned int nat_segs, nat_blocks;
1723 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1725 /* segment_count_nat includes pair segment so divide to 2. */
1726 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1727 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1728 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1732 INIT_LIST_HEAD(&nm_i->free_nid_list);
1733 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1734 INIT_LIST_HEAD(&nm_i->nat_entries);
1735 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1737 mutex_init(&nm_i->build_lock);
1738 spin_lock_init(&nm_i->free_nid_list_lock);
1739 rwlock_init(&nm_i->nat_tree_lock);
1741 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1742 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1743 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1744 if (!version_bitmap)
1747 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1749 if (!nm_i->nat_bitmap)
1754 int build_node_manager(struct f2fs_sb_info *sbi)
1758 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1762 err = init_node_manager(sbi);
1766 build_free_nids(sbi);
1770 void destroy_node_manager(struct f2fs_sb_info *sbi)
1772 struct f2fs_nm_info *nm_i = NM_I(sbi);
1773 struct free_nid *i, *next_i;
1774 struct nat_entry *natvec[NATVEC_SIZE];
1781 /* destroy free nid list */
1782 spin_lock(&nm_i->free_nid_list_lock);
1783 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1784 BUG_ON(i->state == NID_ALLOC);
1785 __del_from_free_nid_list(i);
1789 spin_unlock(&nm_i->free_nid_list_lock);
1791 /* destroy nat cache */
1792 write_lock(&nm_i->nat_tree_lock);
1793 while ((found = __gang_lookup_nat_cache(nm_i,
1794 nid, NATVEC_SIZE, natvec))) {
1796 for (idx = 0; idx < found; idx++) {
1797 struct nat_entry *e = natvec[idx];
1798 nid = nat_get_nid(e) + 1;
1799 __del_from_nat_cache(nm_i, e);
1802 BUG_ON(nm_i->nat_cnt);
1803 write_unlock(&nm_i->nat_tree_lock);
1805 kfree(nm_i->nat_bitmap);
1806 sbi->nm_info = NULL;
1810 int __init create_node_manager_caches(void)
1812 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1813 sizeof(struct nat_entry), NULL);
1814 if (!nat_entry_slab)
1817 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1818 sizeof(struct free_nid), NULL);
1819 if (!free_nid_slab) {
1820 kmem_cache_destroy(nat_entry_slab);
1826 void destroy_node_manager_caches(void)
1828 kmem_cache_destroy(free_nid_slab);
1829 kmem_cache_destroy(nat_entry_slab);