2 * linux/fs/jbd2/journal.c
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <linux/uaccess.h>
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
73 EXPORT_SYMBOL(journal_sync_buffer);
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 unsigned int line, const char *fmt, ...)
112 struct va_format vaf;
115 if (level > jbd2_journal_enable_debug)
120 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
123 EXPORT_SYMBOL(__jbd2_debug);
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
129 if (!jbd2_journal_has_csum_v2or3_feature(j))
132 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
140 old_csum = sb->s_checksum;
142 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 sb->s_checksum = old_csum;
145 return cpu_to_be32(csum);
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
150 if (!jbd2_journal_has_csum_v2or3(j))
153 return sb->s_checksum == jbd2_superblock_csum(j, sb);
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
158 if (!jbd2_journal_has_csum_v2or3(j))
161 sb->s_checksum = jbd2_superblock_csum(j, sb);
165 * Helper function used to manage commit timeouts
168 static void commit_timeout(struct timer_list *t)
170 journal_t *journal = from_timer(journal, t, j_commit_timer);
172 wake_up_process(journal->j_task);
176 * kjournald2: The main thread function used to manage a logging device
179 * This kernel thread is responsible for two things:
181 * 1) COMMIT: Every so often we need to commit the current state of the
182 * filesystem to disk. The journal thread is responsible for writing
183 * all of the metadata buffers to disk.
185 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186 * of the data in that part of the log has been rewritten elsewhere on
187 * the disk. Flushing these old buffers to reclaim space in the log is
188 * known as checkpointing, and this thread is responsible for that job.
191 static int kjournald2(void *arg)
193 journal_t *journal = arg;
194 transaction_t *transaction;
197 * Set up an interval timer which can be used to trigger a commit wakeup
198 * after the commit interval expires
200 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
209 * Make sure that no allocations from this kernel thread will ever
210 * recurse to the fs layer because we are responsible for the
211 * transaction commit and any fs involvement might get stuck waiting for
214 memalloc_nofs_save();
217 * And now, wait forever for commit wakeup events.
219 write_lock(&journal->j_state_lock);
222 if (journal->j_flags & JBD2_UNMOUNT)
225 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226 journal->j_commit_sequence, journal->j_commit_request);
228 if (journal->j_commit_sequence != journal->j_commit_request) {
229 jbd_debug(1, "OK, requests differ\n");
230 write_unlock(&journal->j_state_lock);
231 del_timer_sync(&journal->j_commit_timer);
232 jbd2_journal_commit_transaction(journal);
233 write_lock(&journal->j_state_lock);
237 wake_up(&journal->j_wait_done_commit);
238 if (freezing(current)) {
240 * The simpler the better. Flushing journal isn't a
241 * good idea, because that depends on threads that may
242 * be already stopped.
244 jbd_debug(1, "Now suspending kjournald2\n");
245 write_unlock(&journal->j_state_lock);
247 write_lock(&journal->j_state_lock);
250 * We assume on resume that commits are already there,
254 int should_sleep = 1;
256 prepare_to_wait(&journal->j_wait_commit, &wait,
258 if (journal->j_commit_sequence != journal->j_commit_request)
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies,
262 transaction->t_expires))
264 if (journal->j_flags & JBD2_UNMOUNT)
267 write_unlock(&journal->j_state_lock);
269 write_lock(&journal->j_state_lock);
271 finish_wait(&journal->j_wait_commit, &wait);
274 jbd_debug(1, "kjournald2 wakes\n");
277 * Were we woken up by a commit wakeup event?
279 transaction = journal->j_running_transaction;
280 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281 journal->j_commit_request = transaction->t_tid;
282 jbd_debug(1, "woke because of timeout\n");
287 del_timer_sync(&journal->j_commit_timer);
288 journal->j_task = NULL;
289 wake_up(&journal->j_wait_done_commit);
290 jbd_debug(1, "Journal thread exiting.\n");
291 write_unlock(&journal->j_state_lock);
295 static int jbd2_journal_start_thread(journal_t *journal)
297 struct task_struct *t;
299 t = kthread_run(kjournald2, journal, "jbd2/%s",
304 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
308 static void journal_kill_thread(journal_t *journal)
310 write_lock(&journal->j_state_lock);
311 journal->j_flags |= JBD2_UNMOUNT;
313 while (journal->j_task) {
314 write_unlock(&journal->j_state_lock);
315 wake_up(&journal->j_wait_commit);
316 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317 write_lock(&journal->j_state_lock);
319 write_unlock(&journal->j_state_lock);
323 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
325 * Writes a metadata buffer to a given disk block. The actual IO is not
326 * performed but a new buffer_head is constructed which labels the data
327 * to be written with the correct destination disk block.
329 * Any magic-number escaping which needs to be done will cause a
330 * copy-out here. If the buffer happens to start with the
331 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332 * magic number is only written to the log for descripter blocks. In
333 * this case, we copy the data and replace the first word with 0, and we
334 * return a result code which indicates that this buffer needs to be
335 * marked as an escaped buffer in the corresponding log descriptor
336 * block. The missing word can then be restored when the block is read
339 * If the source buffer has already been modified by a new transaction
340 * since we took the last commit snapshot, we use the frozen copy of
341 * that data for IO. If we end up using the existing buffer_head's data
342 * for the write, then we have to make sure nobody modifies it while the
343 * IO is in progress. do_get_write_access() handles this.
345 * The function returns a pointer to the buffer_head to be used for IO.
353 * Bit 0 set == escape performed on the data
354 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358 struct journal_head *jh_in,
359 struct buffer_head **bh_out,
362 int need_copy_out = 0;
363 int done_copy_out = 0;
366 struct buffer_head *new_bh;
367 struct page *new_page;
368 unsigned int new_offset;
369 struct buffer_head *bh_in = jh2bh(jh_in);
370 journal_t *journal = transaction->t_journal;
373 * The buffer really shouldn't be locked: only the current committing
374 * transaction is allowed to write it, so nobody else is allowed
377 * akpm: except if we're journalling data, and write() output is
378 * also part of a shared mapping, and another thread has
379 * decided to launch a writepage() against this buffer.
381 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
383 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh->b_count, 1);
388 jbd_lock_bh_state(bh_in);
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
394 if (jh_in->b_frozen_data) {
396 new_page = virt_to_page(jh_in->b_frozen_data);
397 new_offset = offset_in_page(jh_in->b_frozen_data);
399 new_page = jh2bh(jh_in)->b_page;
400 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
403 mapped_data = kmap_atomic(new_page);
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
417 if (*((__be32 *)(mapped_data + new_offset)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
422 kunmap_atomic(mapped_data);
425 * Do we need to do a data copy?
427 if (need_copy_out && !done_copy_out) {
430 jbd_unlock_bh_state(bh_in);
431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
436 jbd_lock_bh_state(bh_in);
437 if (jh_in->b_frozen_data) {
438 jbd2_free(tmp, bh_in->b_size);
442 jh_in->b_frozen_data = tmp;
443 mapped_data = kmap_atomic(new_page);
444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 kunmap_atomic(mapped_data);
447 new_page = virt_to_page(tmp);
448 new_offset = offset_in_page(tmp);
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
456 jh_in->b_frozen_triggers = jh_in->b_triggers;
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
464 mapped_data = kmap_atomic(new_page);
465 *((unsigned int *)(mapped_data + new_offset)) = 0;
466 kunmap_atomic(mapped_data);
469 set_bh_page(new_bh, new_page, new_offset);
470 new_bh->b_size = bh_in->b_size;
471 new_bh->b_bdev = journal->j_dev;
472 new_bh->b_blocknr = blocknr;
473 new_bh->b_private = bh_in;
474 set_buffer_mapped(new_bh);
475 set_buffer_dirty(new_bh);
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 spin_lock(&journal->j_list_lock);
486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 spin_unlock(&journal->j_list_lock);
488 set_buffer_shadow(bh_in);
489 jbd_unlock_bh_state(bh_in);
491 return do_escape | (done_copy_out << 1);
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 /* Return if the txn has already requested to be committed */
506 if (journal->j_commit_request == target)
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
514 if (journal->j_running_transaction &&
515 journal->j_running_transaction->t_tid == target) {
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
521 journal->j_commit_request = target;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal->j_commit_request,
524 journal->j_commit_sequence);
525 journal->j_running_transaction->t_requested = jiffies;
526 wake_up(&journal->j_wait_commit);
528 } else if (!tid_geq(journal->j_commit_request, target))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal->j_commit_request,
534 journal->j_commit_sequence,
535 target, journal->j_running_transaction ?
536 journal->j_running_transaction->t_tid : 0);
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
544 write_lock(&journal->j_state_lock);
545 ret = __jbd2_log_start_commit(journal, tid);
546 write_unlock(&journal->j_state_lock);
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
557 static int __jbd2_journal_force_commit(journal_t *journal)
559 transaction_t *transaction = NULL;
561 int need_to_start = 0, ret = 0;
563 read_lock(&journal->j_state_lock);
564 if (journal->j_running_transaction && !current->journal_info) {
565 transaction = journal->j_running_transaction;
566 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
568 } else if (journal->j_committing_transaction)
569 transaction = journal->j_committing_transaction;
572 /* Nothing to commit */
573 read_unlock(&journal->j_state_lock);
576 tid = transaction->t_tid;
577 read_unlock(&journal->j_state_lock);
579 jbd2_log_start_commit(journal, tid);
580 ret = jbd2_log_wait_commit(journal, tid);
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
592 * @journal: journal to force
593 * Returns true if progress was made.
595 int jbd2_journal_force_commit_nested(journal_t *journal)
599 ret = __jbd2_journal_force_commit(journal);
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
610 int jbd2_journal_force_commit(journal_t *journal)
614 J_ASSERT(!current->journal_info);
615 ret = __jbd2_journal_force_commit(journal);
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
630 write_lock(&journal->j_state_lock);
631 if (journal->j_running_transaction) {
632 tid_t tid = journal->j_running_transaction->t_tid;
634 __jbd2_log_start_commit(journal, tid);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
640 } else if (journal->j_committing_transaction) {
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
646 *ptid = journal->j_committing_transaction->t_tid;
649 write_unlock(&journal->j_state_lock);
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
662 transaction_t *commit_trans;
664 if (!(journal->j_flags & JBD2_BARRIER))
666 read_lock(&journal->j_state_lock);
667 /* Transaction already committed? */
668 if (tid_geq(journal->j_commit_sequence, tid))
670 commit_trans = journal->j_committing_transaction;
671 if (!commit_trans || commit_trans->t_tid != tid) {
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
679 if (journal->j_fs_dev != journal->j_dev) {
680 if (!commit_trans->t_need_data_flush ||
681 commit_trans->t_state >= T_COMMIT_DFLUSH)
684 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
689 read_unlock(&journal->j_state_lock);
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
702 read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
705 * Some callers make sure transaction is already committing and in that
706 * case we cannot block on open handles anymore. So don't warn in that
709 if (tid_gt(tid, journal->j_commit_sequence) &&
710 (!journal->j_committing_transaction ||
711 journal->j_committing_transaction->t_tid != tid)) {
712 read_unlock(&journal->j_state_lock);
713 jbd2_might_wait_for_commit(journal);
714 read_lock(&journal->j_state_lock);
717 #ifdef CONFIG_JBD2_DEBUG
718 if (!tid_geq(journal->j_commit_request, tid)) {
720 "%s: error: j_commit_request=%d, tid=%d\n",
721 __func__, journal->j_commit_request, tid);
724 while (tid_gt(tid, journal->j_commit_sequence)) {
725 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726 tid, journal->j_commit_sequence);
727 read_unlock(&journal->j_state_lock);
728 wake_up(&journal->j_wait_commit);
729 wait_event(journal->j_wait_done_commit,
730 !tid_gt(tid, journal->j_commit_sequence));
731 read_lock(&journal->j_state_lock);
733 read_unlock(&journal->j_state_lock);
735 if (unlikely(is_journal_aborted(journal)))
741 * When this function returns the transaction corresponding to tid
742 * will be completed. If the transaction has currently running, start
743 * committing that transaction before waiting for it to complete. If
744 * the transaction id is stale, it is by definition already completed,
745 * so just return SUCCESS.
747 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
749 int need_to_wait = 1;
751 read_lock(&journal->j_state_lock);
752 if (journal->j_running_transaction &&
753 journal->j_running_transaction->t_tid == tid) {
754 if (journal->j_commit_request != tid) {
755 /* transaction not yet started, so request it */
756 read_unlock(&journal->j_state_lock);
757 jbd2_log_start_commit(journal, tid);
760 } else if (!(journal->j_committing_transaction &&
761 journal->j_committing_transaction->t_tid == tid))
763 read_unlock(&journal->j_state_lock);
767 return jbd2_log_wait_commit(journal, tid);
769 EXPORT_SYMBOL(jbd2_complete_transaction);
772 * Log buffer allocation routines:
775 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
777 unsigned long blocknr;
779 write_lock(&journal->j_state_lock);
780 J_ASSERT(journal->j_free > 1);
782 blocknr = journal->j_head;
785 if (journal->j_head == journal->j_last)
786 journal->j_head = journal->j_first;
787 write_unlock(&journal->j_state_lock);
788 return jbd2_journal_bmap(journal, blocknr, retp);
792 * Conversion of logical to physical block numbers for the journal
794 * On external journals the journal blocks are identity-mapped, so
795 * this is a no-op. If needed, we can use j_blk_offset - everything is
798 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
799 unsigned long long *retp)
802 unsigned long long ret;
804 if (journal->j_inode) {
805 ret = bmap(journal->j_inode, blocknr);
809 printk(KERN_ALERT "%s: journal block not found "
810 "at offset %lu on %s\n",
811 __func__, blocknr, journal->j_devname);
813 __journal_abort_soft(journal, err);
816 *retp = blocknr; /* +journal->j_blk_offset */
822 * We play buffer_head aliasing tricks to write data/metadata blocks to
823 * the journal without copying their contents, but for journal
824 * descriptor blocks we do need to generate bona fide buffers.
826 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
827 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
828 * But we don't bother doing that, so there will be coherency problems with
829 * mmaps of blockdevs which hold live JBD-controlled filesystems.
832 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
834 journal_t *journal = transaction->t_journal;
835 struct buffer_head *bh;
836 unsigned long long blocknr;
837 journal_header_t *header;
840 err = jbd2_journal_next_log_block(journal, &blocknr);
845 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
849 memset(bh->b_data, 0, journal->j_blocksize);
850 header = (journal_header_t *)bh->b_data;
851 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
852 header->h_blocktype = cpu_to_be32(type);
853 header->h_sequence = cpu_to_be32(transaction->t_tid);
854 set_buffer_uptodate(bh);
856 BUFFER_TRACE(bh, "return this buffer");
860 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
862 struct jbd2_journal_block_tail *tail;
865 if (!jbd2_journal_has_csum_v2or3(j))
868 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
869 sizeof(struct jbd2_journal_block_tail));
870 tail->t_checksum = 0;
871 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
872 tail->t_checksum = cpu_to_be32(csum);
876 * Return tid of the oldest transaction in the journal and block in the journal
877 * where the transaction starts.
879 * If the journal is now empty, return which will be the next transaction ID
880 * we will write and where will that transaction start.
882 * The return value is 0 if journal tail cannot be pushed any further, 1 if
885 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
886 unsigned long *block)
888 transaction_t *transaction;
891 read_lock(&journal->j_state_lock);
892 spin_lock(&journal->j_list_lock);
893 transaction = journal->j_checkpoint_transactions;
895 *tid = transaction->t_tid;
896 *block = transaction->t_log_start;
897 } else if ((transaction = journal->j_committing_transaction) != NULL) {
898 *tid = transaction->t_tid;
899 *block = transaction->t_log_start;
900 } else if ((transaction = journal->j_running_transaction) != NULL) {
901 *tid = transaction->t_tid;
902 *block = journal->j_head;
904 *tid = journal->j_transaction_sequence;
905 *block = journal->j_head;
907 ret = tid_gt(*tid, journal->j_tail_sequence);
908 spin_unlock(&journal->j_list_lock);
909 read_unlock(&journal->j_state_lock);
915 * Update information in journal structure and in on disk journal superblock
916 * about log tail. This function does not check whether information passed in
917 * really pushes log tail further. It's responsibility of the caller to make
918 * sure provided log tail information is valid (e.g. by holding
919 * j_checkpoint_mutex all the time between computing log tail and calling this
920 * function as is the case with jbd2_cleanup_journal_tail()).
922 * Requires j_checkpoint_mutex
924 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
929 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
932 * We cannot afford for write to remain in drive's caches since as
933 * soon as we update j_tail, next transaction can start reusing journal
934 * space and if we lose sb update during power failure we'd replay
935 * old transaction with possibly newly overwritten data.
937 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
942 write_lock(&journal->j_state_lock);
943 freed = block - journal->j_tail;
944 if (block < journal->j_tail)
945 freed += journal->j_last - journal->j_first;
947 trace_jbd2_update_log_tail(journal, tid, block, freed);
949 "Cleaning journal tail from %d to %d (offset %lu), "
951 journal->j_tail_sequence, tid, block, freed);
953 journal->j_free += freed;
954 journal->j_tail_sequence = tid;
955 journal->j_tail = block;
956 write_unlock(&journal->j_state_lock);
963 * This is a variaon of __jbd2_update_log_tail which checks for validity of
964 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
965 * with other threads updating log tail.
967 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
969 mutex_lock_io(&journal->j_checkpoint_mutex);
970 if (tid_gt(tid, journal->j_tail_sequence))
971 __jbd2_update_log_tail(journal, tid, block);
972 mutex_unlock(&journal->j_checkpoint_mutex);
975 struct jbd2_stats_proc_session {
977 struct transaction_stats_s *stats;
982 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
984 return *pos ? NULL : SEQ_START_TOKEN;
987 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
994 struct jbd2_stats_proc_session *s = seq->private;
996 if (v != SEQ_START_TOKEN)
998 seq_printf(seq, "%lu transactions (%lu requested), "
999 "each up to %u blocks\n",
1000 s->stats->ts_tid, s->stats->ts_requested,
1001 s->journal->j_max_transaction_buffers);
1002 if (s->stats->ts_tid == 0)
1004 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1005 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 seq_printf(seq, " %ums request delay\n",
1007 (s->stats->ts_requested == 0) ? 0 :
1008 jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 s->stats->ts_requested));
1010 seq_printf(seq, " %ums running transaction\n",
1011 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 seq_printf(seq, " %ums transaction was being locked\n",
1013 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1015 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 seq_printf(seq, " %ums logging transaction\n",
1017 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 seq_printf(seq, " %lluus average transaction commit time\n",
1019 div_u64(s->journal->j_average_commit_time, 1000));
1020 seq_printf(seq, " %lu handles per transaction\n",
1021 s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 seq_printf(seq, " %lu blocks per transaction\n",
1023 s->stats->run.rs_blocks / s->stats->ts_tid);
1024 seq_printf(seq, " %lu logged blocks per transaction\n",
1025 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034 .start = jbd2_seq_info_start,
1035 .next = jbd2_seq_info_next,
1036 .stop = jbd2_seq_info_stop,
1037 .show = jbd2_seq_info_show,
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042 journal_t *journal = PDE_DATA(inode);
1043 struct jbd2_stats_proc_session *s;
1046 s = kmalloc(sizeof(*s), GFP_KERNEL);
1049 size = sizeof(struct transaction_stats_s);
1050 s->stats = kmalloc(size, GFP_KERNEL);
1051 if (s->stats == NULL) {
1055 spin_lock(&journal->j_history_lock);
1056 memcpy(s->stats, &journal->j_stats, size);
1057 s->journal = journal;
1058 spin_unlock(&journal->j_history_lock);
1060 rc = seq_open(file, &jbd2_seq_info_ops);
1062 struct seq_file *m = file->private_data;
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074 struct seq_file *seq = file->private_data;
1075 struct jbd2_stats_proc_session *s = seq->private;
1078 return seq_release(inode, file);
1081 static const struct file_operations jbd2_seq_info_fops = {
1082 .owner = THIS_MODULE,
1083 .open = jbd2_seq_info_open,
1085 .llseek = seq_lseek,
1086 .release = jbd2_seq_info_release,
1089 static struct proc_dir_entry *proc_jbd2_stats;
1091 static void jbd2_stats_proc_init(journal_t *journal)
1093 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1094 if (journal->j_proc_entry) {
1095 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1096 &jbd2_seq_info_fops, journal);
1100 static void jbd2_stats_proc_exit(journal_t *journal)
1102 remove_proc_entry("info", journal->j_proc_entry);
1103 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1107 * Management for journal control blocks: functions to create and
1108 * destroy journal_t structures, and to initialise and read existing
1109 * journal blocks from disk. */
1111 /* First: create and setup a journal_t object in memory. We initialise
1112 * very few fields yet: that has to wait until we have created the
1113 * journal structures from from scratch, or loaded them from disk. */
1115 static journal_t *journal_init_common(struct block_device *bdev,
1116 struct block_device *fs_dev,
1117 unsigned long long start, int len, int blocksize)
1119 static struct lock_class_key jbd2_trans_commit_key;
1122 struct buffer_head *bh;
1125 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1129 init_waitqueue_head(&journal->j_wait_transaction_locked);
1130 init_waitqueue_head(&journal->j_wait_done_commit);
1131 init_waitqueue_head(&journal->j_wait_commit);
1132 init_waitqueue_head(&journal->j_wait_updates);
1133 init_waitqueue_head(&journal->j_wait_reserved);
1134 mutex_init(&journal->j_barrier);
1135 mutex_init(&journal->j_checkpoint_mutex);
1136 spin_lock_init(&journal->j_revoke_lock);
1137 spin_lock_init(&journal->j_list_lock);
1138 rwlock_init(&journal->j_state_lock);
1140 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1141 journal->j_min_batch_time = 0;
1142 journal->j_max_batch_time = 15000; /* 15ms */
1143 atomic_set(&journal->j_reserved_credits, 0);
1145 /* The journal is marked for error until we succeed with recovery! */
1146 journal->j_flags = JBD2_ABORT;
1148 /* Set up a default-sized revoke table for the new mount. */
1149 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1153 spin_lock_init(&journal->j_history_lock);
1155 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1156 &jbd2_trans_commit_key, 0);
1158 /* journal descriptor can store up to n blocks -bzzz */
1159 journal->j_blocksize = blocksize;
1160 journal->j_dev = bdev;
1161 journal->j_fs_dev = fs_dev;
1162 journal->j_blk_offset = start;
1163 journal->j_maxlen = len;
1164 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165 journal->j_wbufsize = n;
1166 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1168 if (!journal->j_wbuf)
1171 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1173 pr_err("%s: Cannot get buffer for journal superblock\n",
1177 journal->j_sb_buffer = bh;
1178 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1183 kfree(journal->j_wbuf);
1184 jbd2_journal_destroy_revoke(journal);
1189 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1191 * Create a journal structure assigned some fixed set of disk blocks to
1192 * the journal. We don't actually touch those disk blocks yet, but we
1193 * need to set up all of the mapping information to tell the journaling
1194 * system where the journal blocks are.
1199 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1200 * @bdev: Block device on which to create the journal
1201 * @fs_dev: Device which hold journalled filesystem for this journal.
1202 * @start: Block nr Start of journal.
1203 * @len: Length of the journal in blocks.
1204 * @blocksize: blocksize of journalling device
1206 * Returns: a newly created journal_t *
1208 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1209 * range of blocks on an arbitrary block device.
1212 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1213 struct block_device *fs_dev,
1214 unsigned long long start, int len, int blocksize)
1218 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1222 bdevname(journal->j_dev, journal->j_devname);
1223 strreplace(journal->j_devname, '/', '!');
1224 jbd2_stats_proc_init(journal);
1230 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1231 * @inode: An inode to create the journal in
1233 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1234 * the journal. The inode must exist already, must support bmap() and
1235 * must have all data blocks preallocated.
1237 journal_t *jbd2_journal_init_inode(struct inode *inode)
1241 unsigned long long blocknr;
1243 blocknr = bmap(inode, 0);
1245 pr_err("%s: Cannot locate journal superblock\n",
1250 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1251 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1252 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1254 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1255 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1256 inode->i_sb->s_blocksize);
1260 journal->j_inode = inode;
1261 bdevname(journal->j_dev, journal->j_devname);
1262 p = strreplace(journal->j_devname, '/', '!');
1263 sprintf(p, "-%lu", journal->j_inode->i_ino);
1264 jbd2_stats_proc_init(journal);
1270 * If the journal init or create aborts, we need to mark the journal
1271 * superblock as being NULL to prevent the journal destroy from writing
1272 * back a bogus superblock.
1274 static void journal_fail_superblock (journal_t *journal)
1276 struct buffer_head *bh = journal->j_sb_buffer;
1278 journal->j_sb_buffer = NULL;
1282 * Given a journal_t structure, initialise the various fields for
1283 * startup of a new journaling session. We use this both when creating
1284 * a journal, and after recovering an old journal to reset it for
1288 static int journal_reset(journal_t *journal)
1290 journal_superblock_t *sb = journal->j_superblock;
1291 unsigned long long first, last;
1293 first = be32_to_cpu(sb->s_first);
1294 last = be32_to_cpu(sb->s_maxlen);
1295 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1296 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1298 journal_fail_superblock(journal);
1302 journal->j_first = first;
1303 journal->j_last = last;
1305 journal->j_head = first;
1306 journal->j_tail = first;
1307 journal->j_free = last - first;
1309 journal->j_tail_sequence = journal->j_transaction_sequence;
1310 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1311 journal->j_commit_request = journal->j_commit_sequence;
1313 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1316 * As a special case, if the on-disk copy is already marked as needing
1317 * no recovery (s_start == 0), then we can safely defer the superblock
1318 * update until the next commit by setting JBD2_FLUSHED. This avoids
1319 * attempting a write to a potential-readonly device.
1321 if (sb->s_start == 0) {
1322 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1323 "(start %ld, seq %d, errno %d)\n",
1324 journal->j_tail, journal->j_tail_sequence,
1326 journal->j_flags |= JBD2_FLUSHED;
1328 /* Lock here to make assertions happy... */
1329 mutex_lock_io(&journal->j_checkpoint_mutex);
1331 * Update log tail information. We use REQ_FUA since new
1332 * transaction will start reusing journal space and so we
1333 * must make sure information about current log tail is on
1336 jbd2_journal_update_sb_log_tail(journal,
1337 journal->j_tail_sequence,
1339 REQ_SYNC | REQ_FUA);
1340 mutex_unlock(&journal->j_checkpoint_mutex);
1342 return jbd2_journal_start_thread(journal);
1345 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 struct buffer_head *bh = journal->j_sb_buffer;
1348 journal_superblock_t *sb = journal->j_superblock;
1351 trace_jbd2_write_superblock(journal, write_flags);
1352 if (!(journal->j_flags & JBD2_BARRIER))
1353 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1355 if (buffer_write_io_error(bh)) {
1357 * Oh, dear. A previous attempt to write the journal
1358 * superblock failed. This could happen because the
1359 * USB device was yanked out. Or it could happen to
1360 * be a transient write error and maybe the block will
1361 * be remapped. Nothing we can do but to retry the
1362 * write and hope for the best.
1364 printk(KERN_ERR "JBD2: previous I/O error detected "
1365 "for journal superblock update for %s.\n",
1366 journal->j_devname);
1367 clear_buffer_write_io_error(bh);
1368 set_buffer_uptodate(bh);
1370 jbd2_superblock_csum_set(journal, sb);
1372 bh->b_end_io = end_buffer_write_sync;
1373 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1375 if (buffer_write_io_error(bh)) {
1376 clear_buffer_write_io_error(bh);
1377 set_buffer_uptodate(bh);
1381 printk(KERN_ERR "JBD2: Error %d detected when updating "
1382 "journal superblock for %s.\n", ret,
1383 journal->j_devname);
1384 jbd2_journal_abort(journal, ret);
1391 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1392 * @journal: The journal to update.
1393 * @tail_tid: TID of the new transaction at the tail of the log
1394 * @tail_block: The first block of the transaction at the tail of the log
1395 * @write_op: With which operation should we write the journal sb
1397 * Update a journal's superblock information about log tail and write it to
1398 * disk, waiting for the IO to complete.
1400 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1401 unsigned long tail_block, int write_op)
1403 journal_superblock_t *sb = journal->j_superblock;
1406 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1407 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1408 tail_block, tail_tid);
1410 sb->s_sequence = cpu_to_be32(tail_tid);
1411 sb->s_start = cpu_to_be32(tail_block);
1413 ret = jbd2_write_superblock(journal, write_op);
1417 /* Log is no longer empty */
1418 write_lock(&journal->j_state_lock);
1419 WARN_ON(!sb->s_sequence);
1420 journal->j_flags &= ~JBD2_FLUSHED;
1421 write_unlock(&journal->j_state_lock);
1428 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1429 * @journal: The journal to update.
1430 * @write_op: With which operation should we write the journal sb
1432 * Update a journal's dynamic superblock fields to show that journal is empty.
1433 * Write updated superblock to disk waiting for IO to complete.
1435 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1437 journal_superblock_t *sb = journal->j_superblock;
1439 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1440 read_lock(&journal->j_state_lock);
1441 /* Is it already empty? */
1442 if (sb->s_start == 0) {
1443 read_unlock(&journal->j_state_lock);
1446 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1447 journal->j_tail_sequence);
1449 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1450 sb->s_start = cpu_to_be32(0);
1451 read_unlock(&journal->j_state_lock);
1453 jbd2_write_superblock(journal, write_op);
1455 /* Log is no longer empty */
1456 write_lock(&journal->j_state_lock);
1457 journal->j_flags |= JBD2_FLUSHED;
1458 write_unlock(&journal->j_state_lock);
1463 * jbd2_journal_update_sb_errno() - Update error in the journal.
1464 * @journal: The journal to update.
1466 * Update a journal's errno. Write updated superblock to disk waiting for IO
1469 void jbd2_journal_update_sb_errno(journal_t *journal)
1471 journal_superblock_t *sb = journal->j_superblock;
1473 read_lock(&journal->j_state_lock);
1474 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1476 sb->s_errno = cpu_to_be32(journal->j_errno);
1477 read_unlock(&journal->j_state_lock);
1479 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1481 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1484 * Read the superblock for a given journal, performing initial
1485 * validation of the format.
1487 static int journal_get_superblock(journal_t *journal)
1489 struct buffer_head *bh;
1490 journal_superblock_t *sb;
1493 bh = journal->j_sb_buffer;
1495 J_ASSERT(bh != NULL);
1496 if (!buffer_uptodate(bh)) {
1497 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1499 if (!buffer_uptodate(bh)) {
1501 "JBD2: IO error reading journal superblock\n");
1506 if (buffer_verified(bh))
1509 sb = journal->j_superblock;
1513 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1514 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1515 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1519 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1520 case JBD2_SUPERBLOCK_V1:
1521 journal->j_format_version = 1;
1523 case JBD2_SUPERBLOCK_V2:
1524 journal->j_format_version = 2;
1527 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1531 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1532 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1533 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1534 printk(KERN_WARNING "JBD2: journal file too short\n");
1538 if (be32_to_cpu(sb->s_first) == 0 ||
1539 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1541 "JBD2: Invalid start block of journal: %u\n",
1542 be32_to_cpu(sb->s_first));
1546 if (jbd2_has_feature_csum2(journal) &&
1547 jbd2_has_feature_csum3(journal)) {
1548 /* Can't have checksum v2 and v3 at the same time! */
1549 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1550 "at the same time!\n");
1554 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1555 jbd2_has_feature_checksum(journal)) {
1556 /* Can't have checksum v1 and v2 on at the same time! */
1557 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1558 "at the same time!\n");
1562 if (!jbd2_verify_csum_type(journal, sb)) {
1563 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1567 /* Load the checksum driver */
1568 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1569 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1570 if (IS_ERR(journal->j_chksum_driver)) {
1571 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1572 err = PTR_ERR(journal->j_chksum_driver);
1573 journal->j_chksum_driver = NULL;
1578 /* Check superblock checksum */
1579 if (!jbd2_superblock_csum_verify(journal, sb)) {
1580 printk(KERN_ERR "JBD2: journal checksum error\n");
1585 /* Precompute checksum seed for all metadata */
1586 if (jbd2_journal_has_csum_v2or3(journal))
1587 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1588 sizeof(sb->s_uuid));
1590 set_buffer_verified(bh);
1595 journal_fail_superblock(journal);
1600 * Load the on-disk journal superblock and read the key fields into the
1604 static int load_superblock(journal_t *journal)
1607 journal_superblock_t *sb;
1609 err = journal_get_superblock(journal);
1613 sb = journal->j_superblock;
1615 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1616 journal->j_tail = be32_to_cpu(sb->s_start);
1617 journal->j_first = be32_to_cpu(sb->s_first);
1618 journal->j_last = be32_to_cpu(sb->s_maxlen);
1619 journal->j_errno = be32_to_cpu(sb->s_errno);
1626 * int jbd2_journal_load() - Read journal from disk.
1627 * @journal: Journal to act on.
1629 * Given a journal_t structure which tells us which disk blocks contain
1630 * a journal, read the journal from disk to initialise the in-memory
1633 int jbd2_journal_load(journal_t *journal)
1636 journal_superblock_t *sb;
1638 err = load_superblock(journal);
1642 sb = journal->j_superblock;
1643 /* If this is a V2 superblock, then we have to check the
1644 * features flags on it. */
1646 if (journal->j_format_version >= 2) {
1647 if ((sb->s_feature_ro_compat &
1648 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1649 (sb->s_feature_incompat &
1650 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1652 "JBD2: Unrecognised features on journal\n");
1658 * Create a slab for this blocksize
1660 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1664 /* Let the recovery code check whether it needs to recover any
1665 * data from the journal. */
1666 if (jbd2_journal_recover(journal))
1667 goto recovery_error;
1669 if (journal->j_failed_commit) {
1670 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1671 "is corrupt.\n", journal->j_failed_commit,
1672 journal->j_devname);
1673 return -EFSCORRUPTED;
1676 /* OK, we've finished with the dynamic journal bits:
1677 * reinitialise the dynamic contents of the superblock in memory
1678 * and reset them on disk. */
1679 if (journal_reset(journal))
1680 goto recovery_error;
1682 journal->j_flags &= ~JBD2_ABORT;
1683 journal->j_flags |= JBD2_LOADED;
1687 printk(KERN_WARNING "JBD2: recovery failed\n");
1692 * void jbd2_journal_destroy() - Release a journal_t structure.
1693 * @journal: Journal to act on.
1695 * Release a journal_t structure once it is no longer in use by the
1697 * Return <0 if we couldn't clean up the journal.
1699 int jbd2_journal_destroy(journal_t *journal)
1703 /* Wait for the commit thread to wake up and die. */
1704 journal_kill_thread(journal);
1706 /* Force a final log commit */
1707 if (journal->j_running_transaction)
1708 jbd2_journal_commit_transaction(journal);
1710 /* Force any old transactions to disk */
1712 /* Totally anal locking here... */
1713 spin_lock(&journal->j_list_lock);
1714 while (journal->j_checkpoint_transactions != NULL) {
1715 spin_unlock(&journal->j_list_lock);
1716 mutex_lock_io(&journal->j_checkpoint_mutex);
1717 err = jbd2_log_do_checkpoint(journal);
1718 mutex_unlock(&journal->j_checkpoint_mutex);
1720 * If checkpointing failed, just free the buffers to avoid
1724 jbd2_journal_destroy_checkpoint(journal);
1725 spin_lock(&journal->j_list_lock);
1728 spin_lock(&journal->j_list_lock);
1731 J_ASSERT(journal->j_running_transaction == NULL);
1732 J_ASSERT(journal->j_committing_transaction == NULL);
1733 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1734 spin_unlock(&journal->j_list_lock);
1736 if (journal->j_sb_buffer) {
1737 if (!is_journal_aborted(journal)) {
1738 mutex_lock_io(&journal->j_checkpoint_mutex);
1740 write_lock(&journal->j_state_lock);
1741 journal->j_tail_sequence =
1742 ++journal->j_transaction_sequence;
1743 write_unlock(&journal->j_state_lock);
1745 jbd2_mark_journal_empty(journal,
1746 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1747 mutex_unlock(&journal->j_checkpoint_mutex);
1750 brelse(journal->j_sb_buffer);
1753 if (journal->j_proc_entry)
1754 jbd2_stats_proc_exit(journal);
1755 iput(journal->j_inode);
1756 if (journal->j_revoke)
1757 jbd2_journal_destroy_revoke(journal);
1758 if (journal->j_chksum_driver)
1759 crypto_free_shash(journal->j_chksum_driver);
1760 kfree(journal->j_wbuf);
1768 *int jbd2_journal_check_used_features () - Check if features specified are used.
1769 * @journal: Journal to check.
1770 * @compat: bitmask of compatible features
1771 * @ro: bitmask of features that force read-only mount
1772 * @incompat: bitmask of incompatible features
1774 * Check whether the journal uses all of a given set of
1775 * features. Return true (non-zero) if it does.
1778 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1779 unsigned long ro, unsigned long incompat)
1781 journal_superblock_t *sb;
1783 if (!compat && !ro && !incompat)
1785 /* Load journal superblock if it is not loaded yet. */
1786 if (journal->j_format_version == 0 &&
1787 journal_get_superblock(journal) != 0)
1789 if (journal->j_format_version == 1)
1792 sb = journal->j_superblock;
1794 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1795 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1796 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1803 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1804 * @journal: Journal to check.
1805 * @compat: bitmask of compatible features
1806 * @ro: bitmask of features that force read-only mount
1807 * @incompat: bitmask of incompatible features
1809 * Check whether the journaling code supports the use of
1810 * all of a given set of features on this journal. Return true
1811 * (non-zero) if it can. */
1813 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1814 unsigned long ro, unsigned long incompat)
1816 if (!compat && !ro && !incompat)
1819 /* We can support any known requested features iff the
1820 * superblock is in version 2. Otherwise we fail to support any
1821 * extended sb features. */
1823 if (journal->j_format_version != 2)
1826 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1827 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1828 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1835 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1836 * @journal: Journal to act on.
1837 * @compat: bitmask of compatible features
1838 * @ro: bitmask of features that force read-only mount
1839 * @incompat: bitmask of incompatible features
1841 * Mark a given journal feature as present on the
1842 * superblock. Returns true if the requested features could be set.
1846 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1847 unsigned long ro, unsigned long incompat)
1849 #define INCOMPAT_FEATURE_ON(f) \
1850 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1851 #define COMPAT_FEATURE_ON(f) \
1852 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1853 journal_superblock_t *sb;
1855 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1858 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1861 /* If enabling v2 checksums, turn on v3 instead */
1862 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1863 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1864 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1867 /* Asking for checksumming v3 and v1? Only give them v3. */
1868 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1869 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1870 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1872 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1873 compat, ro, incompat);
1875 sb = journal->j_superblock;
1877 /* If enabling v3 checksums, update superblock */
1878 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1879 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1880 sb->s_feature_compat &=
1881 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1883 /* Load the checksum driver */
1884 if (journal->j_chksum_driver == NULL) {
1885 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1887 if (IS_ERR(journal->j_chksum_driver)) {
1888 printk(KERN_ERR "JBD2: Cannot load crc32c "
1890 journal->j_chksum_driver = NULL;
1894 /* Precompute checksum seed for all metadata */
1895 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1897 sizeof(sb->s_uuid));
1901 /* If enabling v1 checksums, downgrade superblock */
1902 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1903 sb->s_feature_incompat &=
1904 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1905 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1907 sb->s_feature_compat |= cpu_to_be32(compat);
1908 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1909 sb->s_feature_incompat |= cpu_to_be32(incompat);
1912 #undef COMPAT_FEATURE_ON
1913 #undef INCOMPAT_FEATURE_ON
1917 * jbd2_journal_clear_features () - Clear a given journal feature in the
1919 * @journal: Journal to act on.
1920 * @compat: bitmask of compatible features
1921 * @ro: bitmask of features that force read-only mount
1922 * @incompat: bitmask of incompatible features
1924 * Clear a given journal feature as present on the
1927 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1928 unsigned long ro, unsigned long incompat)
1930 journal_superblock_t *sb;
1932 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1933 compat, ro, incompat);
1935 sb = journal->j_superblock;
1937 sb->s_feature_compat &= ~cpu_to_be32(compat);
1938 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1939 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1941 EXPORT_SYMBOL(jbd2_journal_clear_features);
1944 * int jbd2_journal_flush () - Flush journal
1945 * @journal: Journal to act on.
1947 * Flush all data for a given journal to disk and empty the journal.
1948 * Filesystems can use this when remounting readonly to ensure that
1949 * recovery does not need to happen on remount.
1952 int jbd2_journal_flush(journal_t *journal)
1955 transaction_t *transaction = NULL;
1957 write_lock(&journal->j_state_lock);
1959 /* Force everything buffered to the log... */
1960 if (journal->j_running_transaction) {
1961 transaction = journal->j_running_transaction;
1962 __jbd2_log_start_commit(journal, transaction->t_tid);
1963 } else if (journal->j_committing_transaction)
1964 transaction = journal->j_committing_transaction;
1966 /* Wait for the log commit to complete... */
1968 tid_t tid = transaction->t_tid;
1970 write_unlock(&journal->j_state_lock);
1971 jbd2_log_wait_commit(journal, tid);
1973 write_unlock(&journal->j_state_lock);
1976 /* ...and flush everything in the log out to disk. */
1977 spin_lock(&journal->j_list_lock);
1978 while (!err && journal->j_checkpoint_transactions != NULL) {
1979 spin_unlock(&journal->j_list_lock);
1980 mutex_lock_io(&journal->j_checkpoint_mutex);
1981 err = jbd2_log_do_checkpoint(journal);
1982 mutex_unlock(&journal->j_checkpoint_mutex);
1983 spin_lock(&journal->j_list_lock);
1985 spin_unlock(&journal->j_list_lock);
1987 if (is_journal_aborted(journal))
1990 mutex_lock_io(&journal->j_checkpoint_mutex);
1992 err = jbd2_cleanup_journal_tail(journal);
1994 mutex_unlock(&journal->j_checkpoint_mutex);
2000 /* Finally, mark the journal as really needing no recovery.
2001 * This sets s_start==0 in the underlying superblock, which is
2002 * the magic code for a fully-recovered superblock. Any future
2003 * commits of data to the journal will restore the current
2005 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2006 mutex_unlock(&journal->j_checkpoint_mutex);
2007 write_lock(&journal->j_state_lock);
2008 J_ASSERT(!journal->j_running_transaction);
2009 J_ASSERT(!journal->j_committing_transaction);
2010 J_ASSERT(!journal->j_checkpoint_transactions);
2011 J_ASSERT(journal->j_head == journal->j_tail);
2012 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2013 write_unlock(&journal->j_state_lock);
2019 * int jbd2_journal_wipe() - Wipe journal contents
2020 * @journal: Journal to act on.
2021 * @write: flag (see below)
2023 * Wipe out all of the contents of a journal, safely. This will produce
2024 * a warning if the journal contains any valid recovery information.
2025 * Must be called between journal_init_*() and jbd2_journal_load().
2027 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2028 * we merely suppress recovery.
2031 int jbd2_journal_wipe(journal_t *journal, int write)
2035 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2037 err = load_superblock(journal);
2041 if (!journal->j_tail)
2044 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2045 write ? "Clearing" : "Ignoring");
2047 err = jbd2_journal_skip_recovery(journal);
2049 /* Lock to make assertions happy... */
2050 mutex_lock(&journal->j_checkpoint_mutex);
2051 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2052 mutex_unlock(&journal->j_checkpoint_mutex);
2060 * Journal abort has very specific semantics, which we describe
2061 * for journal abort.
2063 * Two internal functions, which provide abort to the jbd layer
2068 * Quick version for internal journal use (doesn't lock the journal).
2069 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2070 * and don't attempt to make any other journal updates.
2072 void __jbd2_journal_abort_hard(journal_t *journal)
2074 transaction_t *transaction;
2076 if (journal->j_flags & JBD2_ABORT)
2079 printk(KERN_ERR "Aborting journal on device %s.\n",
2080 journal->j_devname);
2082 write_lock(&journal->j_state_lock);
2083 journal->j_flags |= JBD2_ABORT;
2084 transaction = journal->j_running_transaction;
2086 __jbd2_log_start_commit(journal, transaction->t_tid);
2087 write_unlock(&journal->j_state_lock);
2090 /* Soft abort: record the abort error status in the journal superblock,
2091 * but don't do any other IO. */
2092 static void __journal_abort_soft (journal_t *journal, int errno)
2094 if (journal->j_flags & JBD2_ABORT)
2097 if (!journal->j_errno)
2098 journal->j_errno = errno;
2100 __jbd2_journal_abort_hard(journal);
2103 jbd2_journal_update_sb_errno(journal);
2104 write_lock(&journal->j_state_lock);
2105 journal->j_flags |= JBD2_REC_ERR;
2106 write_unlock(&journal->j_state_lock);
2111 * void jbd2_journal_abort () - Shutdown the journal immediately.
2112 * @journal: the journal to shutdown.
2113 * @errno: an error number to record in the journal indicating
2114 * the reason for the shutdown.
2116 * Perform a complete, immediate shutdown of the ENTIRE
2117 * journal (not of a single transaction). This operation cannot be
2118 * undone without closing and reopening the journal.
2120 * The jbd2_journal_abort function is intended to support higher level error
2121 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2124 * Journal abort has very specific semantics. Any existing dirty,
2125 * unjournaled buffers in the main filesystem will still be written to
2126 * disk by bdflush, but the journaling mechanism will be suspended
2127 * immediately and no further transaction commits will be honoured.
2129 * Any dirty, journaled buffers will be written back to disk without
2130 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2131 * filesystem, but we _do_ attempt to leave as much data as possible
2132 * behind for fsck to use for cleanup.
2134 * Any attempt to get a new transaction handle on a journal which is in
2135 * ABORT state will just result in an -EROFS error return. A
2136 * jbd2_journal_stop on an existing handle will return -EIO if we have
2137 * entered abort state during the update.
2139 * Recursive transactions are not disturbed by journal abort until the
2140 * final jbd2_journal_stop, which will receive the -EIO error.
2142 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2143 * which will be recorded (if possible) in the journal superblock. This
2144 * allows a client to record failure conditions in the middle of a
2145 * transaction without having to complete the transaction to record the
2146 * failure to disk. ext3_error, for example, now uses this
2149 * Errors which originate from within the journaling layer will NOT
2150 * supply an errno; a null errno implies that absolutely no further
2151 * writes are done to the journal (unless there are any already in
2156 void jbd2_journal_abort(journal_t *journal, int errno)
2158 __journal_abort_soft(journal, errno);
2162 * int jbd2_journal_errno () - returns the journal's error state.
2163 * @journal: journal to examine.
2165 * This is the errno number set with jbd2_journal_abort(), the last
2166 * time the journal was mounted - if the journal was stopped
2167 * without calling abort this will be 0.
2169 * If the journal has been aborted on this mount time -EROFS will
2172 int jbd2_journal_errno(journal_t *journal)
2176 read_lock(&journal->j_state_lock);
2177 if (journal->j_flags & JBD2_ABORT)
2180 err = journal->j_errno;
2181 read_unlock(&journal->j_state_lock);
2186 * int jbd2_journal_clear_err () - clears the journal's error state
2187 * @journal: journal to act on.
2189 * An error must be cleared or acked to take a FS out of readonly
2192 int jbd2_journal_clear_err(journal_t *journal)
2196 write_lock(&journal->j_state_lock);
2197 if (journal->j_flags & JBD2_ABORT)
2200 journal->j_errno = 0;
2201 write_unlock(&journal->j_state_lock);
2206 * void jbd2_journal_ack_err() - Ack journal err.
2207 * @journal: journal to act on.
2209 * An error must be cleared or acked to take a FS out of readonly
2212 void jbd2_journal_ack_err(journal_t *journal)
2214 write_lock(&journal->j_state_lock);
2215 if (journal->j_errno)
2216 journal->j_flags |= JBD2_ACK_ERR;
2217 write_unlock(&journal->j_state_lock);
2220 int jbd2_journal_blocks_per_page(struct inode *inode)
2222 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2226 * helper functions to deal with 32 or 64bit block numbers.
2228 size_t journal_tag_bytes(journal_t *journal)
2232 if (jbd2_has_feature_csum3(journal))
2233 return sizeof(journal_block_tag3_t);
2235 sz = sizeof(journal_block_tag_t);
2237 if (jbd2_has_feature_csum2(journal))
2238 sz += sizeof(__u16);
2240 if (jbd2_has_feature_64bit(journal))
2243 return sz - sizeof(__u32);
2247 * JBD memory management
2249 * These functions are used to allocate block-sized chunks of memory
2250 * used for making copies of buffer_head data. Very often it will be
2251 * page-sized chunks of data, but sometimes it will be in
2252 * sub-page-size chunks. (For example, 16k pages on Power systems
2253 * with a 4k block file system.) For blocks smaller than a page, we
2254 * use a SLAB allocator. There are slab caches for each block size,
2255 * which are allocated at mount time, if necessary, and we only free
2256 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2257 * this reason we don't need to a mutex to protect access to
2258 * jbd2_slab[] allocating or releasing memory; only in
2259 * jbd2_journal_create_slab().
2261 #define JBD2_MAX_SLABS 8
2262 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2264 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2265 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2266 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2270 static void jbd2_journal_destroy_slabs(void)
2274 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2276 kmem_cache_destroy(jbd2_slab[i]);
2277 jbd2_slab[i] = NULL;
2281 static int jbd2_journal_create_slab(size_t size)
2283 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2284 int i = order_base_2(size) - 10;
2287 if (size == PAGE_SIZE)
2290 if (i >= JBD2_MAX_SLABS)
2293 if (unlikely(i < 0))
2295 mutex_lock(&jbd2_slab_create_mutex);
2297 mutex_unlock(&jbd2_slab_create_mutex);
2298 return 0; /* Already created */
2301 slab_size = 1 << (i+10);
2302 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2303 slab_size, 0, NULL);
2304 mutex_unlock(&jbd2_slab_create_mutex);
2305 if (!jbd2_slab[i]) {
2306 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2312 static struct kmem_cache *get_slab(size_t size)
2314 int i = order_base_2(size) - 10;
2316 BUG_ON(i >= JBD2_MAX_SLABS);
2317 if (unlikely(i < 0))
2319 BUG_ON(jbd2_slab[i] == NULL);
2320 return jbd2_slab[i];
2323 void *jbd2_alloc(size_t size, gfp_t flags)
2327 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2329 if (size < PAGE_SIZE)
2330 ptr = kmem_cache_alloc(get_slab(size), flags);
2332 ptr = (void *)__get_free_pages(flags, get_order(size));
2334 /* Check alignment; SLUB has gotten this wrong in the past,
2335 * and this can lead to user data corruption! */
2336 BUG_ON(((unsigned long) ptr) & (size-1));
2341 void jbd2_free(void *ptr, size_t size)
2343 if (size < PAGE_SIZE)
2344 kmem_cache_free(get_slab(size), ptr);
2346 free_pages((unsigned long)ptr, get_order(size));
2350 * Journal_head storage management
2352 static struct kmem_cache *jbd2_journal_head_cache;
2353 #ifdef CONFIG_JBD2_DEBUG
2354 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2357 static int jbd2_journal_init_journal_head_cache(void)
2361 J_ASSERT(jbd2_journal_head_cache == NULL);
2362 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2363 sizeof(struct journal_head),
2365 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2368 if (!jbd2_journal_head_cache) {
2370 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2375 static void jbd2_journal_destroy_journal_head_cache(void)
2377 if (jbd2_journal_head_cache) {
2378 kmem_cache_destroy(jbd2_journal_head_cache);
2379 jbd2_journal_head_cache = NULL;
2384 * journal_head splicing and dicing
2386 static struct journal_head *journal_alloc_journal_head(void)
2388 struct journal_head *ret;
2390 #ifdef CONFIG_JBD2_DEBUG
2391 atomic_inc(&nr_journal_heads);
2393 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2395 jbd_debug(1, "out of memory for journal_head\n");
2396 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2397 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2398 GFP_NOFS | __GFP_NOFAIL);
2403 static void journal_free_journal_head(struct journal_head *jh)
2405 #ifdef CONFIG_JBD2_DEBUG
2406 atomic_dec(&nr_journal_heads);
2407 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2409 kmem_cache_free(jbd2_journal_head_cache, jh);
2413 * A journal_head is attached to a buffer_head whenever JBD has an
2414 * interest in the buffer.
2416 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2417 * is set. This bit is tested in core kernel code where we need to take
2418 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2421 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2423 * When a buffer has its BH_JBD bit set it is immune from being released by
2424 * core kernel code, mainly via ->b_count.
2426 * A journal_head is detached from its buffer_head when the journal_head's
2427 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2428 * transaction (b_cp_transaction) hold their references to b_jcount.
2430 * Various places in the kernel want to attach a journal_head to a buffer_head
2431 * _before_ attaching the journal_head to a transaction. To protect the
2432 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2433 * journal_head's b_jcount refcount by one. The caller must call
2434 * jbd2_journal_put_journal_head() to undo this.
2436 * So the typical usage would be:
2438 * (Attach a journal_head if needed. Increments b_jcount)
2439 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2441 * (Get another reference for transaction)
2442 * jbd2_journal_grab_journal_head(bh);
2443 * jh->b_transaction = xxx;
2444 * (Put original reference)
2445 * jbd2_journal_put_journal_head(jh);
2449 * Give a buffer_head a journal_head.
2453 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2455 struct journal_head *jh;
2456 struct journal_head *new_jh = NULL;
2459 if (!buffer_jbd(bh))
2460 new_jh = journal_alloc_journal_head();
2462 jbd_lock_bh_journal_head(bh);
2463 if (buffer_jbd(bh)) {
2467 (atomic_read(&bh->b_count) > 0) ||
2468 (bh->b_page && bh->b_page->mapping));
2471 jbd_unlock_bh_journal_head(bh);
2476 new_jh = NULL; /* We consumed it */
2481 BUFFER_TRACE(bh, "added journal_head");
2484 jbd_unlock_bh_journal_head(bh);
2486 journal_free_journal_head(new_jh);
2487 return bh->b_private;
2491 * Grab a ref against this buffer_head's journal_head. If it ended up not
2492 * having a journal_head, return NULL
2494 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2496 struct journal_head *jh = NULL;
2498 jbd_lock_bh_journal_head(bh);
2499 if (buffer_jbd(bh)) {
2503 jbd_unlock_bh_journal_head(bh);
2507 static void __journal_remove_journal_head(struct buffer_head *bh)
2509 struct journal_head *jh = bh2jh(bh);
2511 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2512 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2513 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2514 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2515 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2516 J_ASSERT_BH(bh, buffer_jbd(bh));
2517 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2518 BUFFER_TRACE(bh, "remove journal_head");
2519 if (jh->b_frozen_data) {
2520 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2521 jbd2_free(jh->b_frozen_data, bh->b_size);
2523 if (jh->b_committed_data) {
2524 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2525 jbd2_free(jh->b_committed_data, bh->b_size);
2527 bh->b_private = NULL;
2528 jh->b_bh = NULL; /* debug, really */
2529 clear_buffer_jbd(bh);
2530 journal_free_journal_head(jh);
2534 * Drop a reference on the passed journal_head. If it fell to zero then
2535 * release the journal_head from the buffer_head.
2537 void jbd2_journal_put_journal_head(struct journal_head *jh)
2539 struct buffer_head *bh = jh2bh(jh);
2541 jbd_lock_bh_journal_head(bh);
2542 J_ASSERT_JH(jh, jh->b_jcount > 0);
2544 if (!jh->b_jcount) {
2545 __journal_remove_journal_head(bh);
2546 jbd_unlock_bh_journal_head(bh);
2549 jbd_unlock_bh_journal_head(bh);
2553 * Initialize jbd inode head
2555 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2557 jinode->i_transaction = NULL;
2558 jinode->i_next_transaction = NULL;
2559 jinode->i_vfs_inode = inode;
2560 jinode->i_flags = 0;
2561 INIT_LIST_HEAD(&jinode->i_list);
2565 * Function to be called before we start removing inode from memory (i.e.,
2566 * clear_inode() is a fine place to be called from). It removes inode from
2567 * transaction's lists.
2569 void jbd2_journal_release_jbd_inode(journal_t *journal,
2570 struct jbd2_inode *jinode)
2575 spin_lock(&journal->j_list_lock);
2576 /* Is commit writing out inode - we have to wait */
2577 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2578 wait_queue_head_t *wq;
2579 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2580 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2581 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2582 spin_unlock(&journal->j_list_lock);
2584 finish_wait(wq, &wait.wq_entry);
2588 if (jinode->i_transaction) {
2589 list_del(&jinode->i_list);
2590 jinode->i_transaction = NULL;
2592 spin_unlock(&journal->j_list_lock);
2596 #ifdef CONFIG_PROC_FS
2598 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2600 static void __init jbd2_create_jbd_stats_proc_entry(void)
2602 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2605 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2607 if (proc_jbd2_stats)
2608 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2613 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2614 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2618 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2620 static int __init jbd2_journal_init_handle_cache(void)
2622 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2623 if (jbd2_handle_cache == NULL) {
2624 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2627 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2628 if (jbd2_inode_cache == NULL) {
2629 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2630 kmem_cache_destroy(jbd2_handle_cache);
2636 static void jbd2_journal_destroy_handle_cache(void)
2638 if (jbd2_handle_cache)
2639 kmem_cache_destroy(jbd2_handle_cache);
2640 if (jbd2_inode_cache)
2641 kmem_cache_destroy(jbd2_inode_cache);
2646 * Module startup and shutdown
2649 static int __init journal_init_caches(void)
2653 ret = jbd2_journal_init_revoke_caches();
2655 ret = jbd2_journal_init_journal_head_cache();
2657 ret = jbd2_journal_init_handle_cache();
2659 ret = jbd2_journal_init_transaction_cache();
2663 static void jbd2_journal_destroy_caches(void)
2665 jbd2_journal_destroy_revoke_caches();
2666 jbd2_journal_destroy_journal_head_cache();
2667 jbd2_journal_destroy_handle_cache();
2668 jbd2_journal_destroy_transaction_cache();
2669 jbd2_journal_destroy_slabs();
2672 static int __init journal_init(void)
2676 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2678 ret = journal_init_caches();
2680 jbd2_create_jbd_stats_proc_entry();
2682 jbd2_journal_destroy_caches();
2687 static void __exit journal_exit(void)
2689 #ifdef CONFIG_JBD2_DEBUG
2690 int n = atomic_read(&nr_journal_heads);
2692 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2694 jbd2_remove_jbd_stats_proc_entry();
2695 jbd2_journal_destroy_caches();
2698 MODULE_LICENSE("GPL");
2699 module_init(journal_init);
2700 module_exit(journal_exit);