2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
59 /* Mask out flags that are inappropriate for the given type of inode. */
60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
64 else if (S_ISREG(mode))
65 return flags & ~FS_DIRSYNC_FL;
67 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
71 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 unsigned int iflags = 0;
77 if (flags & BTRFS_INODE_SYNC)
79 if (flags & BTRFS_INODE_IMMUTABLE)
80 iflags |= FS_IMMUTABLE_FL;
81 if (flags & BTRFS_INODE_APPEND)
82 iflags |= FS_APPEND_FL;
83 if (flags & BTRFS_INODE_NODUMP)
84 iflags |= FS_NODUMP_FL;
85 if (flags & BTRFS_INODE_NOATIME)
86 iflags |= FS_NOATIME_FL;
87 if (flags & BTRFS_INODE_DIRSYNC)
88 iflags |= FS_DIRSYNC_FL;
89 if (flags & BTRFS_INODE_NODATACOW)
90 iflags |= FS_NOCOW_FL;
92 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
93 iflags |= FS_COMPR_FL;
94 else if (flags & BTRFS_INODE_NOCOMPRESS)
95 iflags |= FS_NOCOMP_FL;
101 * Update inode->i_flags based on the btrfs internal flags.
103 void btrfs_update_iflags(struct inode *inode)
105 struct btrfs_inode *ip = BTRFS_I(inode);
107 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109 if (ip->flags & BTRFS_INODE_SYNC)
110 inode->i_flags |= S_SYNC;
111 if (ip->flags & BTRFS_INODE_IMMUTABLE)
112 inode->i_flags |= S_IMMUTABLE;
113 if (ip->flags & BTRFS_INODE_APPEND)
114 inode->i_flags |= S_APPEND;
115 if (ip->flags & BTRFS_INODE_NOATIME)
116 inode->i_flags |= S_NOATIME;
117 if (ip->flags & BTRFS_INODE_DIRSYNC)
118 inode->i_flags |= S_DIRSYNC;
122 * Inherit flags from the parent inode.
124 * Currently only the compression flags and the cow flags are inherited.
126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
133 flags = BTRFS_I(dir)->flags;
135 if (flags & BTRFS_INODE_NOCOMPRESS) {
136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
137 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
138 } else if (flags & BTRFS_INODE_COMPRESS) {
139 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
140 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
143 if (flags & BTRFS_INODE_NODATACOW)
144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 btrfs_update_iflags(inode);
149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
151 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
152 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
154 if (copy_to_user(arg, &flags, sizeof(flags)))
159 static int check_flags(unsigned int flags)
161 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
162 FS_NOATIME_FL | FS_NODUMP_FL | \
163 FS_SYNC_FL | FS_DIRSYNC_FL | \
164 FS_NOCOMP_FL | FS_COMPR_FL |
168 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
176 struct inode *inode = file->f_path.dentry->d_inode;
177 struct btrfs_inode *ip = BTRFS_I(inode);
178 struct btrfs_root *root = ip->root;
179 struct btrfs_trans_handle *trans;
180 unsigned int flags, oldflags;
183 unsigned int i_oldflags;
186 if (btrfs_root_readonly(root))
189 if (copy_from_user(&flags, arg, sizeof(flags)))
192 ret = check_flags(flags);
196 if (!inode_owner_or_capable(inode))
199 ret = mnt_want_write_file(file);
203 mutex_lock(&inode->i_mutex);
205 ip_oldflags = ip->flags;
206 i_oldflags = inode->i_flags;
207 mode = inode->i_mode;
209 flags = btrfs_mask_flags(inode->i_mode, flags);
210 oldflags = btrfs_flags_to_ioctl(ip->flags);
211 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
212 if (!capable(CAP_LINUX_IMMUTABLE)) {
218 if (flags & FS_SYNC_FL)
219 ip->flags |= BTRFS_INODE_SYNC;
221 ip->flags &= ~BTRFS_INODE_SYNC;
222 if (flags & FS_IMMUTABLE_FL)
223 ip->flags |= BTRFS_INODE_IMMUTABLE;
225 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
226 if (flags & FS_APPEND_FL)
227 ip->flags |= BTRFS_INODE_APPEND;
229 ip->flags &= ~BTRFS_INODE_APPEND;
230 if (flags & FS_NODUMP_FL)
231 ip->flags |= BTRFS_INODE_NODUMP;
233 ip->flags &= ~BTRFS_INODE_NODUMP;
234 if (flags & FS_NOATIME_FL)
235 ip->flags |= BTRFS_INODE_NOATIME;
237 ip->flags &= ~BTRFS_INODE_NOATIME;
238 if (flags & FS_DIRSYNC_FL)
239 ip->flags |= BTRFS_INODE_DIRSYNC;
241 ip->flags &= ~BTRFS_INODE_DIRSYNC;
242 if (flags & FS_NOCOW_FL) {
245 * It's safe to turn csums off here, no extents exist.
246 * Otherwise we want the flag to reflect the real COW
247 * status of the file and will not set it.
249 if (inode->i_size == 0)
250 ip->flags |= BTRFS_INODE_NODATACOW
251 | BTRFS_INODE_NODATASUM;
253 ip->flags |= BTRFS_INODE_NODATACOW;
257 * Revert back under same assuptions as above
260 if (inode->i_size == 0)
261 ip->flags &= ~(BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM);
264 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
270 * flag may be changed automatically if compression code won't make
273 if (flags & FS_NOCOMP_FL) {
274 ip->flags &= ~BTRFS_INODE_COMPRESS;
275 ip->flags |= BTRFS_INODE_NOCOMPRESS;
276 } else if (flags & FS_COMPR_FL) {
277 ip->flags |= BTRFS_INODE_COMPRESS;
278 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
280 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
283 trans = btrfs_start_transaction(root, 1);
285 ret = PTR_ERR(trans);
289 btrfs_update_iflags(inode);
290 inode_inc_iversion(inode);
291 inode->i_ctime = CURRENT_TIME;
292 ret = btrfs_update_inode(trans, root, inode);
294 btrfs_end_transaction(trans, root);
297 ip->flags = ip_oldflags;
298 inode->i_flags = i_oldflags;
302 mutex_unlock(&inode->i_mutex);
303 mnt_drop_write_file(file);
307 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
309 struct inode *inode = file->f_path.dentry->d_inode;
311 return put_user(inode->i_generation, arg);
314 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
316 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
317 struct btrfs_device *device;
318 struct request_queue *q;
319 struct fstrim_range range;
320 u64 minlen = ULLONG_MAX;
322 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
325 if (!capable(CAP_SYS_ADMIN))
329 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
333 q = bdev_get_queue(device->bdev);
334 if (blk_queue_discard(q)) {
336 minlen = min((u64)q->limits.discard_granularity,
344 if (copy_from_user(&range, arg, sizeof(range)))
346 if (range.start > total_bytes)
349 range.len = min(range.len, total_bytes - range.start);
350 range.minlen = max(range.minlen, minlen);
351 ret = btrfs_trim_fs(fs_info->tree_root, &range);
355 if (copy_to_user(arg, &range, sizeof(range)))
361 static noinline int create_subvol(struct btrfs_root *root,
362 struct dentry *dentry,
363 char *name, int namelen,
365 struct btrfs_qgroup_inherit **inherit)
367 struct btrfs_trans_handle *trans;
368 struct btrfs_key key;
369 struct btrfs_root_item root_item;
370 struct btrfs_inode_item *inode_item;
371 struct extent_buffer *leaf;
372 struct btrfs_root *new_root;
373 struct dentry *parent = dentry->d_parent;
375 struct timespec cur_time = CURRENT_TIME;
379 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
383 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
387 dir = parent->d_inode;
395 trans = btrfs_start_transaction(root, 6);
397 return PTR_ERR(trans);
399 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
400 inherit ? *inherit : NULL);
404 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
405 0, objectid, NULL, 0, 0, 0);
411 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
412 btrfs_set_header_bytenr(leaf, leaf->start);
413 btrfs_set_header_generation(leaf, trans->transid);
414 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
415 btrfs_set_header_owner(leaf, objectid);
417 write_extent_buffer(leaf, root->fs_info->fsid,
418 (unsigned long)btrfs_header_fsid(leaf),
420 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
421 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
423 btrfs_mark_buffer_dirty(leaf);
425 memset(&root_item, 0, sizeof(root_item));
427 inode_item = &root_item.inode;
428 inode_item->generation = cpu_to_le64(1);
429 inode_item->size = cpu_to_le64(3);
430 inode_item->nlink = cpu_to_le32(1);
431 inode_item->nbytes = cpu_to_le64(root->leafsize);
432 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
435 root_item.byte_limit = 0;
436 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
438 btrfs_set_root_bytenr(&root_item, leaf->start);
439 btrfs_set_root_generation(&root_item, trans->transid);
440 btrfs_set_root_level(&root_item, 0);
441 btrfs_set_root_refs(&root_item, 1);
442 btrfs_set_root_used(&root_item, leaf->len);
443 btrfs_set_root_last_snapshot(&root_item, 0);
445 btrfs_set_root_generation_v2(&root_item,
446 btrfs_root_generation(&root_item));
447 uuid_le_gen(&new_uuid);
448 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
449 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
450 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
451 root_item.ctime = root_item.otime;
452 btrfs_set_root_ctransid(&root_item, trans->transid);
453 btrfs_set_root_otransid(&root_item, trans->transid);
455 btrfs_tree_unlock(leaf);
456 free_extent_buffer(leaf);
459 btrfs_set_root_dirid(&root_item, new_dirid);
461 key.objectid = objectid;
463 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
464 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
469 key.offset = (u64)-1;
470 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
471 if (IS_ERR(new_root)) {
472 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
473 ret = PTR_ERR(new_root);
477 btrfs_record_root_in_trans(trans, new_root);
479 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
481 /* We potentially lose an unused inode item here */
482 btrfs_abort_transaction(trans, root, ret);
487 * insert the directory item
489 ret = btrfs_set_inode_index(dir, &index);
491 btrfs_abort_transaction(trans, root, ret);
495 ret = btrfs_insert_dir_item(trans, root,
496 name, namelen, dir, &key,
497 BTRFS_FT_DIR, index);
499 btrfs_abort_transaction(trans, root, ret);
503 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
504 ret = btrfs_update_inode(trans, root, dir);
507 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
508 objectid, root->root_key.objectid,
509 btrfs_ino(dir), index, name, namelen);
513 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
516 *async_transid = trans->transid;
517 err = btrfs_commit_transaction_async(trans, root, 1);
519 err = btrfs_commit_transaction(trans, root);
526 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
527 char *name, int namelen, u64 *async_transid,
528 bool readonly, struct btrfs_qgroup_inherit **inherit)
531 struct btrfs_pending_snapshot *pending_snapshot;
532 struct btrfs_trans_handle *trans;
538 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
539 if (!pending_snapshot)
542 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
543 BTRFS_BLOCK_RSV_TEMP);
544 pending_snapshot->dentry = dentry;
545 pending_snapshot->root = root;
546 pending_snapshot->readonly = readonly;
548 pending_snapshot->inherit = *inherit;
549 *inherit = NULL; /* take responsibility to free it */
552 trans = btrfs_start_transaction(root->fs_info->extent_root, 6);
554 ret = PTR_ERR(trans);
558 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
561 spin_lock(&root->fs_info->trans_lock);
562 list_add(&pending_snapshot->list,
563 &trans->transaction->pending_snapshots);
564 spin_unlock(&root->fs_info->trans_lock);
566 *async_transid = trans->transid;
567 ret = btrfs_commit_transaction_async(trans,
568 root->fs_info->extent_root, 1);
570 ret = btrfs_commit_transaction(trans,
571 root->fs_info->extent_root);
575 ret = pending_snapshot->error;
579 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
583 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
585 ret = PTR_ERR(inode);
589 d_instantiate(dentry, inode);
592 kfree(pending_snapshot);
596 /* copy of check_sticky in fs/namei.c()
597 * It's inline, so penalty for filesystems that don't use sticky bit is
600 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
602 uid_t fsuid = current_fsuid();
604 if (!(dir->i_mode & S_ISVTX))
606 if (inode->i_uid == fsuid)
608 if (dir->i_uid == fsuid)
610 return !capable(CAP_FOWNER);
613 /* copy of may_delete in fs/namei.c()
614 * Check whether we can remove a link victim from directory dir, check
615 * whether the type of victim is right.
616 * 1. We can't do it if dir is read-only (done in permission())
617 * 2. We should have write and exec permissions on dir
618 * 3. We can't remove anything from append-only dir
619 * 4. We can't do anything with immutable dir (done in permission())
620 * 5. If the sticky bit on dir is set we should either
621 * a. be owner of dir, or
622 * b. be owner of victim, or
623 * c. have CAP_FOWNER capability
624 * 6. If the victim is append-only or immutable we can't do antyhing with
625 * links pointing to it.
626 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
627 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
628 * 9. We can't remove a root or mountpoint.
629 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
630 * nfs_async_unlink().
633 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
637 if (!victim->d_inode)
640 BUG_ON(victim->d_parent->d_inode != dir);
641 audit_inode_child(victim, dir);
643 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
648 if (btrfs_check_sticky(dir, victim->d_inode)||
649 IS_APPEND(victim->d_inode)||
650 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
653 if (!S_ISDIR(victim->d_inode->i_mode))
657 } else if (S_ISDIR(victim->d_inode->i_mode))
661 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
666 /* copy of may_create in fs/namei.c() */
667 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
673 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
677 * Create a new subvolume below @parent. This is largely modeled after
678 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
679 * inside this filesystem so it's quite a bit simpler.
681 static noinline int btrfs_mksubvol(struct path *parent,
682 char *name, int namelen,
683 struct btrfs_root *snap_src,
684 u64 *async_transid, bool readonly,
685 struct btrfs_qgroup_inherit **inherit)
687 struct inode *dir = parent->dentry->d_inode;
688 struct dentry *dentry;
691 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
693 dentry = lookup_one_len(name, parent->dentry, namelen);
694 error = PTR_ERR(dentry);
702 error = btrfs_may_create(dir, dentry);
706 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
708 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
712 error = create_snapshot(snap_src, dentry, name, namelen,
713 async_transid, readonly, inherit);
715 error = create_subvol(BTRFS_I(dir)->root, dentry,
716 name, namelen, async_transid, inherit);
719 fsnotify_mkdir(dir, dentry);
721 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
725 mutex_unlock(&dir->i_mutex);
730 * When we're defragging a range, we don't want to kick it off again
731 * if it is really just waiting for delalloc to send it down.
732 * If we find a nice big extent or delalloc range for the bytes in the
733 * file you want to defrag, we return 0 to let you know to skip this
736 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
738 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
739 struct extent_map *em = NULL;
740 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
743 read_lock(&em_tree->lock);
744 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
745 read_unlock(&em_tree->lock);
748 end = extent_map_end(em);
750 if (end - offset > thresh)
753 /* if we already have a nice delalloc here, just stop */
755 end = count_range_bits(io_tree, &offset, offset + thresh,
756 thresh, EXTENT_DELALLOC, 1);
763 * helper function to walk through a file and find extents
764 * newer than a specific transid, and smaller than thresh.
766 * This is used by the defragging code to find new and small
769 static int find_new_extents(struct btrfs_root *root,
770 struct inode *inode, u64 newer_than,
771 u64 *off, int thresh)
773 struct btrfs_path *path;
774 struct btrfs_key min_key;
775 struct btrfs_key max_key;
776 struct extent_buffer *leaf;
777 struct btrfs_file_extent_item *extent;
780 u64 ino = btrfs_ino(inode);
782 path = btrfs_alloc_path();
786 min_key.objectid = ino;
787 min_key.type = BTRFS_EXTENT_DATA_KEY;
788 min_key.offset = *off;
790 max_key.objectid = ino;
791 max_key.type = (u8)-1;
792 max_key.offset = (u64)-1;
794 path->keep_locks = 1;
797 ret = btrfs_search_forward(root, &min_key, &max_key,
798 path, 0, newer_than);
801 if (min_key.objectid != ino)
803 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
806 leaf = path->nodes[0];
807 extent = btrfs_item_ptr(leaf, path->slots[0],
808 struct btrfs_file_extent_item);
810 type = btrfs_file_extent_type(leaf, extent);
811 if (type == BTRFS_FILE_EXTENT_REG &&
812 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
813 check_defrag_in_cache(inode, min_key.offset, thresh)) {
814 *off = min_key.offset;
815 btrfs_free_path(path);
819 if (min_key.offset == (u64)-1)
823 btrfs_release_path(path);
826 btrfs_free_path(path);
830 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
833 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
834 struct extent_map *em;
835 u64 len = PAGE_CACHE_SIZE;
838 * hopefully we have this extent in the tree already, try without
839 * the full extent lock
841 read_lock(&em_tree->lock);
842 em = lookup_extent_mapping(em_tree, start, len);
843 read_unlock(&em_tree->lock);
846 /* get the big lock and read metadata off disk */
847 lock_extent(io_tree, start, start + len - 1);
848 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
849 unlock_extent(io_tree, start, start + len - 1);
858 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
860 struct extent_map *next;
863 /* this is the last extent */
864 if (em->start + em->len >= i_size_read(inode))
867 next = defrag_lookup_extent(inode, em->start + em->len);
868 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
871 free_extent_map(next);
875 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
876 u64 *last_len, u64 *skip, u64 *defrag_end,
879 struct extent_map *em;
881 bool next_mergeable = true;
884 * make sure that once we start defragging an extent, we keep on
887 if (start < *defrag_end)
892 em = defrag_lookup_extent(inode, start);
896 /* this will cover holes, and inline extents */
897 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
902 next_mergeable = defrag_check_next_extent(inode, em);
905 * we hit a real extent, if it is big or the next extent is not a
906 * real extent, don't bother defragging it
908 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
909 (em->len >= thresh || !next_mergeable))
913 * last_len ends up being a counter of how many bytes we've defragged.
914 * every time we choose not to defrag an extent, we reset *last_len
915 * so that the next tiny extent will force a defrag.
917 * The end result of this is that tiny extents before a single big
918 * extent will force at least part of that big extent to be defragged.
921 *defrag_end = extent_map_end(em);
924 *skip = extent_map_end(em);
933 * it doesn't do much good to defrag one or two pages
934 * at a time. This pulls in a nice chunk of pages
937 * It also makes sure the delalloc code has enough
938 * dirty data to avoid making new small extents as part
941 * It's a good idea to start RA on this range
942 * before calling this.
944 static int cluster_pages_for_defrag(struct inode *inode,
946 unsigned long start_index,
949 unsigned long file_end;
950 u64 isize = i_size_read(inode);
957 struct btrfs_ordered_extent *ordered;
958 struct extent_state *cached_state = NULL;
959 struct extent_io_tree *tree;
960 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
962 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
963 if (!isize || start_index > file_end)
966 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
968 ret = btrfs_delalloc_reserve_space(inode,
969 page_cnt << PAGE_CACHE_SHIFT);
973 tree = &BTRFS_I(inode)->io_tree;
975 /* step one, lock all the pages */
976 for (i = 0; i < page_cnt; i++) {
979 page = find_or_create_page(inode->i_mapping,
980 start_index + i, mask);
984 page_start = page_offset(page);
985 page_end = page_start + PAGE_CACHE_SIZE - 1;
987 lock_extent(tree, page_start, page_end);
988 ordered = btrfs_lookup_ordered_extent(inode,
990 unlock_extent(tree, page_start, page_end);
995 btrfs_start_ordered_extent(inode, ordered, 1);
996 btrfs_put_ordered_extent(ordered);
999 * we unlocked the page above, so we need check if
1000 * it was released or not.
1002 if (page->mapping != inode->i_mapping) {
1004 page_cache_release(page);
1009 if (!PageUptodate(page)) {
1010 btrfs_readpage(NULL, page);
1012 if (!PageUptodate(page)) {
1014 page_cache_release(page);
1020 if (page->mapping != inode->i_mapping) {
1022 page_cache_release(page);
1032 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1036 * so now we have a nice long stream of locked
1037 * and up to date pages, lets wait on them
1039 for (i = 0; i < i_done; i++)
1040 wait_on_page_writeback(pages[i]);
1042 page_start = page_offset(pages[0]);
1043 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1045 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1046 page_start, page_end - 1, 0, &cached_state);
1047 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1048 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1049 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1050 &cached_state, GFP_NOFS);
1052 if (i_done != page_cnt) {
1053 spin_lock(&BTRFS_I(inode)->lock);
1054 BTRFS_I(inode)->outstanding_extents++;
1055 spin_unlock(&BTRFS_I(inode)->lock);
1056 btrfs_delalloc_release_space(inode,
1057 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1061 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1062 &cached_state, GFP_NOFS);
1064 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1065 page_start, page_end - 1, &cached_state,
1068 for (i = 0; i < i_done; i++) {
1069 clear_page_dirty_for_io(pages[i]);
1070 ClearPageChecked(pages[i]);
1071 set_page_extent_mapped(pages[i]);
1072 set_page_dirty(pages[i]);
1073 unlock_page(pages[i]);
1074 page_cache_release(pages[i]);
1078 for (i = 0; i < i_done; i++) {
1079 unlock_page(pages[i]);
1080 page_cache_release(pages[i]);
1082 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1087 int btrfs_defrag_file(struct inode *inode, struct file *file,
1088 struct btrfs_ioctl_defrag_range_args *range,
1089 u64 newer_than, unsigned long max_to_defrag)
1091 struct btrfs_root *root = BTRFS_I(inode)->root;
1092 struct file_ra_state *ra = NULL;
1093 unsigned long last_index;
1094 u64 isize = i_size_read(inode);
1098 u64 newer_off = range->start;
1100 unsigned long ra_index = 0;
1102 int defrag_count = 0;
1103 int compress_type = BTRFS_COMPRESS_ZLIB;
1104 int extent_thresh = range->extent_thresh;
1105 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1106 int cluster = max_cluster;
1107 u64 new_align = ~((u64)128 * 1024 - 1);
1108 struct page **pages = NULL;
1110 if (extent_thresh == 0)
1111 extent_thresh = 256 * 1024;
1113 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1114 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1116 if (range->compress_type)
1117 compress_type = range->compress_type;
1124 * if we were not given a file, allocate a readahead
1128 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1131 file_ra_state_init(ra, inode->i_mapping);
1136 pages = kmalloc(sizeof(struct page *) * max_cluster,
1143 /* find the last page to defrag */
1144 if (range->start + range->len > range->start) {
1145 last_index = min_t(u64, isize - 1,
1146 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1148 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1152 ret = find_new_extents(root, inode, newer_than,
1153 &newer_off, 64 * 1024);
1155 range->start = newer_off;
1157 * we always align our defrag to help keep
1158 * the extents in the file evenly spaced
1160 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1164 i = range->start >> PAGE_CACHE_SHIFT;
1167 max_to_defrag = last_index + 1;
1170 * make writeback starts from i, so the defrag range can be
1171 * written sequentially.
1173 if (i < inode->i_mapping->writeback_index)
1174 inode->i_mapping->writeback_index = i;
1176 while (i <= last_index && defrag_count < max_to_defrag &&
1177 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1178 PAGE_CACHE_SHIFT)) {
1180 * make sure we stop running if someone unmounts
1183 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1186 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1187 extent_thresh, &last_len, &skip,
1188 &defrag_end, range->flags &
1189 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1192 * the should_defrag function tells us how much to skip
1193 * bump our counter by the suggested amount
1195 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1196 i = max(i + 1, next);
1201 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1202 PAGE_CACHE_SHIFT) - i;
1203 cluster = min(cluster, max_cluster);
1205 cluster = max_cluster;
1208 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1209 BTRFS_I(inode)->force_compress = compress_type;
1211 if (i + cluster > ra_index) {
1212 ra_index = max(i, ra_index);
1213 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1215 ra_index += max_cluster;
1218 mutex_lock(&inode->i_mutex);
1219 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1221 mutex_unlock(&inode->i_mutex);
1225 defrag_count += ret;
1226 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1227 mutex_unlock(&inode->i_mutex);
1230 if (newer_off == (u64)-1)
1236 newer_off = max(newer_off + 1,
1237 (u64)i << PAGE_CACHE_SHIFT);
1239 ret = find_new_extents(root, inode,
1240 newer_than, &newer_off,
1243 range->start = newer_off;
1244 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1251 last_len += ret << PAGE_CACHE_SHIFT;
1259 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1260 filemap_flush(inode->i_mapping);
1262 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1263 /* the filemap_flush will queue IO into the worker threads, but
1264 * we have to make sure the IO is actually started and that
1265 * ordered extents get created before we return
1267 atomic_inc(&root->fs_info->async_submit_draining);
1268 while (atomic_read(&root->fs_info->nr_async_submits) ||
1269 atomic_read(&root->fs_info->async_delalloc_pages)) {
1270 wait_event(root->fs_info->async_submit_wait,
1271 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1272 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1274 atomic_dec(&root->fs_info->async_submit_draining);
1276 mutex_lock(&inode->i_mutex);
1277 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1278 mutex_unlock(&inode->i_mutex);
1281 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1282 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1294 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1300 struct btrfs_ioctl_vol_args *vol_args;
1301 struct btrfs_trans_handle *trans;
1302 struct btrfs_device *device = NULL;
1304 char *devstr = NULL;
1308 if (root->fs_info->sb->s_flags & MS_RDONLY)
1311 if (!capable(CAP_SYS_ADMIN))
1314 mutex_lock(&root->fs_info->volume_mutex);
1315 if (root->fs_info->balance_ctl) {
1316 printk(KERN_INFO "btrfs: balance in progress\n");
1321 vol_args = memdup_user(arg, sizeof(*vol_args));
1322 if (IS_ERR(vol_args)) {
1323 ret = PTR_ERR(vol_args);
1327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1329 sizestr = vol_args->name;
1330 devstr = strchr(sizestr, ':');
1333 sizestr = devstr + 1;
1335 devstr = vol_args->name;
1336 devid = simple_strtoull(devstr, &end, 10);
1337 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1338 (unsigned long long)devid);
1340 device = btrfs_find_device(root, devid, NULL, NULL);
1342 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1343 (unsigned long long)devid);
1347 if (device->fs_devices && device->fs_devices->seeding) {
1348 printk(KERN_INFO "btrfs: resizer unable to apply on "
1349 "seeding device %llu\n",
1350 (unsigned long long)devid);
1355 if (!strcmp(sizestr, "max"))
1356 new_size = device->bdev->bd_inode->i_size;
1358 if (sizestr[0] == '-') {
1361 } else if (sizestr[0] == '+') {
1365 new_size = memparse(sizestr, NULL);
1366 if (new_size == 0) {
1372 old_size = device->total_bytes;
1375 if (new_size > old_size) {
1379 new_size = old_size - new_size;
1380 } else if (mod > 0) {
1381 new_size = old_size + new_size;
1384 if (new_size < 256 * 1024 * 1024) {
1388 if (new_size > device->bdev->bd_inode->i_size) {
1393 do_div(new_size, root->sectorsize);
1394 new_size *= root->sectorsize;
1396 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1397 rcu_str_deref(device->name),
1398 (unsigned long long)new_size);
1400 if (new_size > old_size) {
1401 trans = btrfs_start_transaction(root, 0);
1402 if (IS_ERR(trans)) {
1403 ret = PTR_ERR(trans);
1406 ret = btrfs_grow_device(trans, device, new_size);
1407 btrfs_commit_transaction(trans, root);
1408 } else if (new_size < old_size) {
1409 ret = btrfs_shrink_device(device, new_size);
1415 mutex_unlock(&root->fs_info->volume_mutex);
1419 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1420 char *name, unsigned long fd, int subvol,
1421 u64 *transid, bool readonly,
1422 struct btrfs_qgroup_inherit **inherit)
1424 struct file *src_file;
1428 ret = mnt_want_write_file(file);
1432 namelen = strlen(name);
1433 if (strchr(name, '/')) {
1435 goto out_drop_write;
1438 if (name[0] == '.' &&
1439 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1441 goto out_drop_write;
1445 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1446 NULL, transid, readonly, inherit);
1448 struct inode *src_inode;
1449 src_file = fget(fd);
1452 goto out_drop_write;
1455 src_inode = src_file->f_path.dentry->d_inode;
1456 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1457 printk(KERN_INFO "btrfs: Snapshot src from "
1461 goto out_drop_write;
1463 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1464 BTRFS_I(src_inode)->root,
1465 transid, readonly, inherit);
1469 mnt_drop_write_file(file);
1474 static noinline int btrfs_ioctl_snap_create(struct file *file,
1475 void __user *arg, int subvol)
1477 struct btrfs_ioctl_vol_args *vol_args;
1480 vol_args = memdup_user(arg, sizeof(*vol_args));
1481 if (IS_ERR(vol_args))
1482 return PTR_ERR(vol_args);
1483 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1485 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1486 vol_args->fd, subvol,
1493 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1494 void __user *arg, int subvol)
1496 struct btrfs_ioctl_vol_args_v2 *vol_args;
1500 bool readonly = false;
1501 struct btrfs_qgroup_inherit *inherit = NULL;
1503 vol_args = memdup_user(arg, sizeof(*vol_args));
1504 if (IS_ERR(vol_args))
1505 return PTR_ERR(vol_args);
1506 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1508 if (vol_args->flags &
1509 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1510 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1515 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1517 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1519 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1520 if (vol_args->size > PAGE_CACHE_SIZE) {
1524 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1525 if (IS_ERR(inherit)) {
1526 ret = PTR_ERR(inherit);
1531 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1532 vol_args->fd, subvol, ptr,
1533 readonly, &inherit);
1535 if (ret == 0 && ptr &&
1537 offsetof(struct btrfs_ioctl_vol_args_v2,
1538 transid), ptr, sizeof(*ptr)))
1546 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1549 struct inode *inode = fdentry(file)->d_inode;
1550 struct btrfs_root *root = BTRFS_I(inode)->root;
1554 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1557 down_read(&root->fs_info->subvol_sem);
1558 if (btrfs_root_readonly(root))
1559 flags |= BTRFS_SUBVOL_RDONLY;
1560 up_read(&root->fs_info->subvol_sem);
1562 if (copy_to_user(arg, &flags, sizeof(flags)))
1568 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1571 struct inode *inode = fdentry(file)->d_inode;
1572 struct btrfs_root *root = BTRFS_I(inode)->root;
1573 struct btrfs_trans_handle *trans;
1578 ret = mnt_want_write_file(file);
1582 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1584 goto out_drop_write;
1587 if (copy_from_user(&flags, arg, sizeof(flags))) {
1589 goto out_drop_write;
1592 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1594 goto out_drop_write;
1597 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1599 goto out_drop_write;
1602 if (!inode_owner_or_capable(inode)) {
1604 goto out_drop_write;
1607 down_write(&root->fs_info->subvol_sem);
1610 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1613 root_flags = btrfs_root_flags(&root->root_item);
1614 if (flags & BTRFS_SUBVOL_RDONLY)
1615 btrfs_set_root_flags(&root->root_item,
1616 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1618 btrfs_set_root_flags(&root->root_item,
1619 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1621 trans = btrfs_start_transaction(root, 1);
1622 if (IS_ERR(trans)) {
1623 ret = PTR_ERR(trans);
1627 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1628 &root->root_key, &root->root_item);
1630 btrfs_commit_transaction(trans, root);
1633 btrfs_set_root_flags(&root->root_item, root_flags);
1635 up_write(&root->fs_info->subvol_sem);
1637 mnt_drop_write_file(file);
1643 * helper to check if the subvolume references other subvolumes
1645 static noinline int may_destroy_subvol(struct btrfs_root *root)
1647 struct btrfs_path *path;
1648 struct btrfs_key key;
1651 path = btrfs_alloc_path();
1655 key.objectid = root->root_key.objectid;
1656 key.type = BTRFS_ROOT_REF_KEY;
1657 key.offset = (u64)-1;
1659 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1666 if (path->slots[0] > 0) {
1668 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669 if (key.objectid == root->root_key.objectid &&
1670 key.type == BTRFS_ROOT_REF_KEY)
1674 btrfs_free_path(path);
1678 static noinline int key_in_sk(struct btrfs_key *key,
1679 struct btrfs_ioctl_search_key *sk)
1681 struct btrfs_key test;
1684 test.objectid = sk->min_objectid;
1685 test.type = sk->min_type;
1686 test.offset = sk->min_offset;
1688 ret = btrfs_comp_cpu_keys(key, &test);
1692 test.objectid = sk->max_objectid;
1693 test.type = sk->max_type;
1694 test.offset = sk->max_offset;
1696 ret = btrfs_comp_cpu_keys(key, &test);
1702 static noinline int copy_to_sk(struct btrfs_root *root,
1703 struct btrfs_path *path,
1704 struct btrfs_key *key,
1705 struct btrfs_ioctl_search_key *sk,
1707 unsigned long *sk_offset,
1711 struct extent_buffer *leaf;
1712 struct btrfs_ioctl_search_header sh;
1713 unsigned long item_off;
1714 unsigned long item_len;
1720 leaf = path->nodes[0];
1721 slot = path->slots[0];
1722 nritems = btrfs_header_nritems(leaf);
1724 if (btrfs_header_generation(leaf) > sk->max_transid) {
1728 found_transid = btrfs_header_generation(leaf);
1730 for (i = slot; i < nritems; i++) {
1731 item_off = btrfs_item_ptr_offset(leaf, i);
1732 item_len = btrfs_item_size_nr(leaf, i);
1734 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1737 if (sizeof(sh) + item_len + *sk_offset >
1738 BTRFS_SEARCH_ARGS_BUFSIZE) {
1743 btrfs_item_key_to_cpu(leaf, key, i);
1744 if (!key_in_sk(key, sk))
1747 sh.objectid = key->objectid;
1748 sh.offset = key->offset;
1749 sh.type = key->type;
1751 sh.transid = found_transid;
1753 /* copy search result header */
1754 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1755 *sk_offset += sizeof(sh);
1758 char *p = buf + *sk_offset;
1760 read_extent_buffer(leaf, p,
1761 item_off, item_len);
1762 *sk_offset += item_len;
1766 if (*num_found >= sk->nr_items)
1771 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1773 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1776 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1786 static noinline int search_ioctl(struct inode *inode,
1787 struct btrfs_ioctl_search_args *args)
1789 struct btrfs_root *root;
1790 struct btrfs_key key;
1791 struct btrfs_key max_key;
1792 struct btrfs_path *path;
1793 struct btrfs_ioctl_search_key *sk = &args->key;
1794 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1797 unsigned long sk_offset = 0;
1799 path = btrfs_alloc_path();
1803 if (sk->tree_id == 0) {
1804 /* search the root of the inode that was passed */
1805 root = BTRFS_I(inode)->root;
1807 key.objectid = sk->tree_id;
1808 key.type = BTRFS_ROOT_ITEM_KEY;
1809 key.offset = (u64)-1;
1810 root = btrfs_read_fs_root_no_name(info, &key);
1812 printk(KERN_ERR "could not find root %llu\n",
1814 btrfs_free_path(path);
1819 key.objectid = sk->min_objectid;
1820 key.type = sk->min_type;
1821 key.offset = sk->min_offset;
1823 max_key.objectid = sk->max_objectid;
1824 max_key.type = sk->max_type;
1825 max_key.offset = sk->max_offset;
1827 path->keep_locks = 1;
1830 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1837 ret = copy_to_sk(root, path, &key, sk, args->buf,
1838 &sk_offset, &num_found);
1839 btrfs_release_path(path);
1840 if (ret || num_found >= sk->nr_items)
1846 sk->nr_items = num_found;
1847 btrfs_free_path(path);
1851 static noinline int btrfs_ioctl_tree_search(struct file *file,
1854 struct btrfs_ioctl_search_args *args;
1855 struct inode *inode;
1858 if (!capable(CAP_SYS_ADMIN))
1861 args = memdup_user(argp, sizeof(*args));
1863 return PTR_ERR(args);
1865 inode = fdentry(file)->d_inode;
1866 ret = search_ioctl(inode, args);
1867 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1874 * Search INODE_REFs to identify path name of 'dirid' directory
1875 * in a 'tree_id' tree. and sets path name to 'name'.
1877 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1878 u64 tree_id, u64 dirid, char *name)
1880 struct btrfs_root *root;
1881 struct btrfs_key key;
1887 struct btrfs_inode_ref *iref;
1888 struct extent_buffer *l;
1889 struct btrfs_path *path;
1891 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1896 path = btrfs_alloc_path();
1900 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1902 key.objectid = tree_id;
1903 key.type = BTRFS_ROOT_ITEM_KEY;
1904 key.offset = (u64)-1;
1905 root = btrfs_read_fs_root_no_name(info, &key);
1907 printk(KERN_ERR "could not find root %llu\n", tree_id);
1912 key.objectid = dirid;
1913 key.type = BTRFS_INODE_REF_KEY;
1914 key.offset = (u64)-1;
1917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1922 slot = path->slots[0];
1923 if (ret > 0 && slot > 0)
1925 btrfs_item_key_to_cpu(l, &key, slot);
1927 if (ret > 0 && (key.objectid != dirid ||
1928 key.type != BTRFS_INODE_REF_KEY)) {
1933 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1934 len = btrfs_inode_ref_name_len(l, iref);
1936 total_len += len + 1;
1941 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1943 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1946 btrfs_release_path(path);
1947 key.objectid = key.offset;
1948 key.offset = (u64)-1;
1949 dirid = key.objectid;
1953 memmove(name, ptr, total_len);
1954 name[total_len]='\0';
1957 btrfs_free_path(path);
1961 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1964 struct btrfs_ioctl_ino_lookup_args *args;
1965 struct inode *inode;
1968 if (!capable(CAP_SYS_ADMIN))
1971 args = memdup_user(argp, sizeof(*args));
1973 return PTR_ERR(args);
1975 inode = fdentry(file)->d_inode;
1977 if (args->treeid == 0)
1978 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1980 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1981 args->treeid, args->objectid,
1984 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1991 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1994 struct dentry *parent = fdentry(file);
1995 struct dentry *dentry;
1996 struct inode *dir = parent->d_inode;
1997 struct inode *inode;
1998 struct btrfs_root *root = BTRFS_I(dir)->root;
1999 struct btrfs_root *dest = NULL;
2000 struct btrfs_ioctl_vol_args *vol_args;
2001 struct btrfs_trans_handle *trans;
2006 vol_args = memdup_user(arg, sizeof(*vol_args));
2007 if (IS_ERR(vol_args))
2008 return PTR_ERR(vol_args);
2010 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2011 namelen = strlen(vol_args->name);
2012 if (strchr(vol_args->name, '/') ||
2013 strncmp(vol_args->name, "..", namelen) == 0) {
2018 err = mnt_want_write_file(file);
2022 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2023 dentry = lookup_one_len(vol_args->name, parent, namelen);
2024 if (IS_ERR(dentry)) {
2025 err = PTR_ERR(dentry);
2026 goto out_unlock_dir;
2029 if (!dentry->d_inode) {
2034 inode = dentry->d_inode;
2035 dest = BTRFS_I(inode)->root;
2036 if (!capable(CAP_SYS_ADMIN)){
2038 * Regular user. Only allow this with a special mount
2039 * option, when the user has write+exec access to the
2040 * subvol root, and when rmdir(2) would have been
2043 * Note that this is _not_ check that the subvol is
2044 * empty or doesn't contain data that we wouldn't
2045 * otherwise be able to delete.
2047 * Users who want to delete empty subvols should try
2051 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2055 * Do not allow deletion if the parent dir is the same
2056 * as the dir to be deleted. That means the ioctl
2057 * must be called on the dentry referencing the root
2058 * of the subvol, not a random directory contained
2065 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2069 /* check if subvolume may be deleted by a non-root user */
2070 err = btrfs_may_delete(dir, dentry, 1);
2075 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2080 mutex_lock(&inode->i_mutex);
2081 err = d_invalidate(dentry);
2085 down_write(&root->fs_info->subvol_sem);
2087 err = may_destroy_subvol(dest);
2091 trans = btrfs_start_transaction(root, 0);
2092 if (IS_ERR(trans)) {
2093 err = PTR_ERR(trans);
2096 trans->block_rsv = &root->fs_info->global_block_rsv;
2098 ret = btrfs_unlink_subvol(trans, root, dir,
2099 dest->root_key.objectid,
2100 dentry->d_name.name,
2101 dentry->d_name.len);
2104 btrfs_abort_transaction(trans, root, ret);
2108 btrfs_record_root_in_trans(trans, dest);
2110 memset(&dest->root_item.drop_progress, 0,
2111 sizeof(dest->root_item.drop_progress));
2112 dest->root_item.drop_level = 0;
2113 btrfs_set_root_refs(&dest->root_item, 0);
2115 if (!xchg(&dest->orphan_item_inserted, 1)) {
2116 ret = btrfs_insert_orphan_item(trans,
2117 root->fs_info->tree_root,
2118 dest->root_key.objectid);
2120 btrfs_abort_transaction(trans, root, ret);
2126 ret = btrfs_end_transaction(trans, root);
2129 inode->i_flags |= S_DEAD;
2131 up_write(&root->fs_info->subvol_sem);
2133 mutex_unlock(&inode->i_mutex);
2135 shrink_dcache_sb(root->fs_info->sb);
2136 btrfs_invalidate_inodes(dest);
2142 mutex_unlock(&dir->i_mutex);
2143 mnt_drop_write_file(file);
2149 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2151 struct inode *inode = fdentry(file)->d_inode;
2152 struct btrfs_root *root = BTRFS_I(inode)->root;
2153 struct btrfs_ioctl_defrag_range_args *range;
2156 if (btrfs_root_readonly(root))
2159 ret = mnt_want_write_file(file);
2163 switch (inode->i_mode & S_IFMT) {
2165 if (!capable(CAP_SYS_ADMIN)) {
2169 ret = btrfs_defrag_root(root, 0);
2172 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2175 if (!(file->f_mode & FMODE_WRITE)) {
2180 range = kzalloc(sizeof(*range), GFP_KERNEL);
2187 if (copy_from_user(range, argp,
2193 /* compression requires us to start the IO */
2194 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2195 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2196 range->extent_thresh = (u32)-1;
2199 /* the rest are all set to zero by kzalloc */
2200 range->len = (u64)-1;
2202 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2212 mnt_drop_write_file(file);
2216 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2218 struct btrfs_ioctl_vol_args *vol_args;
2221 if (!capable(CAP_SYS_ADMIN))
2224 mutex_lock(&root->fs_info->volume_mutex);
2225 if (root->fs_info->balance_ctl) {
2226 printk(KERN_INFO "btrfs: balance in progress\n");
2231 vol_args = memdup_user(arg, sizeof(*vol_args));
2232 if (IS_ERR(vol_args)) {
2233 ret = PTR_ERR(vol_args);
2237 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2238 ret = btrfs_init_new_device(root, vol_args->name);
2242 mutex_unlock(&root->fs_info->volume_mutex);
2246 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2248 struct btrfs_ioctl_vol_args *vol_args;
2251 if (!capable(CAP_SYS_ADMIN))
2254 if (root->fs_info->sb->s_flags & MS_RDONLY)
2257 mutex_lock(&root->fs_info->volume_mutex);
2258 if (root->fs_info->balance_ctl) {
2259 printk(KERN_INFO "btrfs: balance in progress\n");
2264 vol_args = memdup_user(arg, sizeof(*vol_args));
2265 if (IS_ERR(vol_args)) {
2266 ret = PTR_ERR(vol_args);
2270 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2271 ret = btrfs_rm_device(root, vol_args->name);
2275 mutex_unlock(&root->fs_info->volume_mutex);
2279 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2281 struct btrfs_ioctl_fs_info_args *fi_args;
2282 struct btrfs_device *device;
2283 struct btrfs_device *next;
2284 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2287 if (!capable(CAP_SYS_ADMIN))
2290 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2294 fi_args->num_devices = fs_devices->num_devices;
2295 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2297 mutex_lock(&fs_devices->device_list_mutex);
2298 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2299 if (device->devid > fi_args->max_id)
2300 fi_args->max_id = device->devid;
2302 mutex_unlock(&fs_devices->device_list_mutex);
2304 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2311 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2313 struct btrfs_ioctl_dev_info_args *di_args;
2314 struct btrfs_device *dev;
2315 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2317 char *s_uuid = NULL;
2318 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2320 if (!capable(CAP_SYS_ADMIN))
2323 di_args = memdup_user(arg, sizeof(*di_args));
2324 if (IS_ERR(di_args))
2325 return PTR_ERR(di_args);
2327 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2328 s_uuid = di_args->uuid;
2330 mutex_lock(&fs_devices->device_list_mutex);
2331 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2332 mutex_unlock(&fs_devices->device_list_mutex);
2339 di_args->devid = dev->devid;
2340 di_args->bytes_used = dev->bytes_used;
2341 di_args->total_bytes = dev->total_bytes;
2342 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2344 struct rcu_string *name;
2347 name = rcu_dereference(dev->name);
2348 strncpy(di_args->path, name->str, sizeof(di_args->path));
2350 di_args->path[sizeof(di_args->path) - 1] = 0;
2352 di_args->path[0] = '\0';
2356 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2363 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2364 u64 off, u64 olen, u64 destoff)
2366 struct inode *inode = fdentry(file)->d_inode;
2367 struct btrfs_root *root = BTRFS_I(inode)->root;
2368 struct file *src_file;
2370 struct btrfs_trans_handle *trans;
2371 struct btrfs_path *path;
2372 struct extent_buffer *leaf;
2374 struct btrfs_key key;
2379 u64 bs = root->fs_info->sb->s_blocksize;
2383 * - split compressed inline extents. annoying: we need to
2384 * decompress into destination's address_space (the file offset
2385 * may change, so source mapping won't do), then recompress (or
2386 * otherwise reinsert) a subrange.
2387 * - allow ranges within the same file to be cloned (provided
2388 * they don't overlap)?
2391 /* the destination must be opened for writing */
2392 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2395 if (btrfs_root_readonly(root))
2398 ret = mnt_want_write_file(file);
2402 src_file = fget(srcfd);
2405 goto out_drop_write;
2409 if (src_file->f_path.mnt != file->f_path.mnt)
2412 src = src_file->f_dentry->d_inode;
2418 /* the src must be open for reading */
2419 if (!(src_file->f_mode & FMODE_READ))
2422 /* don't make the dst file partly checksummed */
2423 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2424 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2428 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2432 if (src->i_sb != inode->i_sb)
2436 buf = vmalloc(btrfs_level_size(root, 0));
2440 path = btrfs_alloc_path();
2448 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2449 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2451 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2452 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2455 /* determine range to clone */
2457 if (off + len > src->i_size || off + len < off)
2460 olen = len = src->i_size - off;
2461 /* if we extend to eof, continue to block boundary */
2462 if (off + len == src->i_size)
2463 len = ALIGN(src->i_size, bs) - off;
2465 /* verify the end result is block aligned */
2466 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2467 !IS_ALIGNED(destoff, bs))
2470 if (destoff > inode->i_size) {
2471 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2476 /* truncate page cache pages from target inode range */
2477 truncate_inode_pages_range(&inode->i_data, destoff,
2478 PAGE_CACHE_ALIGN(destoff + len) - 1);
2480 /* do any pending delalloc/csum calc on src, one way or
2481 another, and lock file content */
2483 struct btrfs_ordered_extent *ordered;
2484 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2485 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2487 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2488 EXTENT_DELALLOC, 0, NULL))
2490 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2492 btrfs_put_ordered_extent(ordered);
2493 btrfs_wait_ordered_range(src, off, len);
2497 key.objectid = btrfs_ino(src);
2498 key.type = BTRFS_EXTENT_DATA_KEY;
2503 * note the key will change type as we walk through the
2506 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2511 nritems = btrfs_header_nritems(path->nodes[0]);
2512 if (path->slots[0] >= nritems) {
2513 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2518 nritems = btrfs_header_nritems(path->nodes[0]);
2520 leaf = path->nodes[0];
2521 slot = path->slots[0];
2523 btrfs_item_key_to_cpu(leaf, &key, slot);
2524 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2525 key.objectid != btrfs_ino(src))
2528 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2529 struct btrfs_file_extent_item *extent;
2532 struct btrfs_key new_key;
2533 u64 disko = 0, diskl = 0;
2534 u64 datao = 0, datal = 0;
2538 size = btrfs_item_size_nr(leaf, slot);
2539 read_extent_buffer(leaf, buf,
2540 btrfs_item_ptr_offset(leaf, slot),
2543 extent = btrfs_item_ptr(leaf, slot,
2544 struct btrfs_file_extent_item);
2545 comp = btrfs_file_extent_compression(leaf, extent);
2546 type = btrfs_file_extent_type(leaf, extent);
2547 if (type == BTRFS_FILE_EXTENT_REG ||
2548 type == BTRFS_FILE_EXTENT_PREALLOC) {
2549 disko = btrfs_file_extent_disk_bytenr(leaf,
2551 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2553 datao = btrfs_file_extent_offset(leaf, extent);
2554 datal = btrfs_file_extent_num_bytes(leaf,
2556 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2557 /* take upper bound, may be compressed */
2558 datal = btrfs_file_extent_ram_bytes(leaf,
2561 btrfs_release_path(path);
2563 if (key.offset + datal <= off ||
2564 key.offset >= off + len - 1)
2567 memcpy(&new_key, &key, sizeof(new_key));
2568 new_key.objectid = btrfs_ino(inode);
2569 if (off <= key.offset)
2570 new_key.offset = key.offset + destoff - off;
2572 new_key.offset = destoff;
2575 * 1 - adjusting old extent (we may have to split it)
2576 * 1 - add new extent
2579 trans = btrfs_start_transaction(root, 3);
2580 if (IS_ERR(trans)) {
2581 ret = PTR_ERR(trans);
2585 if (type == BTRFS_FILE_EXTENT_REG ||
2586 type == BTRFS_FILE_EXTENT_PREALLOC) {
2588 * a | --- range to clone ---| b
2589 * | ------------- extent ------------- |
2592 /* substract range b */
2593 if (key.offset + datal > off + len)
2594 datal = off + len - key.offset;
2596 /* substract range a */
2597 if (off > key.offset) {
2598 datao += off - key.offset;
2599 datal -= off - key.offset;
2602 ret = btrfs_drop_extents(trans, root, inode,
2604 new_key.offset + datal,
2607 btrfs_abort_transaction(trans, root,
2609 btrfs_end_transaction(trans, root);
2613 ret = btrfs_insert_empty_item(trans, root, path,
2616 btrfs_abort_transaction(trans, root,
2618 btrfs_end_transaction(trans, root);
2622 leaf = path->nodes[0];
2623 slot = path->slots[0];
2624 write_extent_buffer(leaf, buf,
2625 btrfs_item_ptr_offset(leaf, slot),
2628 extent = btrfs_item_ptr(leaf, slot,
2629 struct btrfs_file_extent_item);
2631 /* disko == 0 means it's a hole */
2635 btrfs_set_file_extent_offset(leaf, extent,
2637 btrfs_set_file_extent_num_bytes(leaf, extent,
2640 inode_add_bytes(inode, datal);
2641 ret = btrfs_inc_extent_ref(trans, root,
2643 root->root_key.objectid,
2645 new_key.offset - datao,
2648 btrfs_abort_transaction(trans,
2651 btrfs_end_transaction(trans,
2657 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2660 if (off > key.offset) {
2661 skip = off - key.offset;
2662 new_key.offset += skip;
2665 if (key.offset + datal > off + len)
2666 trim = key.offset + datal - (off + len);
2668 if (comp && (skip || trim)) {
2670 btrfs_end_transaction(trans, root);
2673 size -= skip + trim;
2674 datal -= skip + trim;
2676 ret = btrfs_drop_extents(trans, root, inode,
2678 new_key.offset + datal,
2681 btrfs_abort_transaction(trans, root,
2683 btrfs_end_transaction(trans, root);
2687 ret = btrfs_insert_empty_item(trans, root, path,
2690 btrfs_abort_transaction(trans, root,
2692 btrfs_end_transaction(trans, root);
2698 btrfs_file_extent_calc_inline_size(0);
2699 memmove(buf+start, buf+start+skip,
2703 leaf = path->nodes[0];
2704 slot = path->slots[0];
2705 write_extent_buffer(leaf, buf,
2706 btrfs_item_ptr_offset(leaf, slot),
2708 inode_add_bytes(inode, datal);
2711 btrfs_mark_buffer_dirty(leaf);
2712 btrfs_release_path(path);
2714 inode_inc_iversion(inode);
2715 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2718 * we round up to the block size at eof when
2719 * determining which extents to clone above,
2720 * but shouldn't round up the file size
2722 endoff = new_key.offset + datal;
2723 if (endoff > destoff+olen)
2724 endoff = destoff+olen;
2725 if (endoff > inode->i_size)
2726 btrfs_i_size_write(inode, endoff);
2728 ret = btrfs_update_inode(trans, root, inode);
2730 btrfs_abort_transaction(trans, root, ret);
2731 btrfs_end_transaction(trans, root);
2734 ret = btrfs_end_transaction(trans, root);
2737 btrfs_release_path(path);
2742 btrfs_release_path(path);
2743 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2745 mutex_unlock(&src->i_mutex);
2746 mutex_unlock(&inode->i_mutex);
2748 btrfs_free_path(path);
2752 mnt_drop_write_file(file);
2756 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2758 struct btrfs_ioctl_clone_range_args args;
2760 if (copy_from_user(&args, argp, sizeof(args)))
2762 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2763 args.src_length, args.dest_offset);
2767 * there are many ways the trans_start and trans_end ioctls can lead
2768 * to deadlocks. They should only be used by applications that
2769 * basically own the machine, and have a very in depth understanding
2770 * of all the possible deadlocks and enospc problems.
2772 static long btrfs_ioctl_trans_start(struct file *file)
2774 struct inode *inode = fdentry(file)->d_inode;
2775 struct btrfs_root *root = BTRFS_I(inode)->root;
2776 struct btrfs_trans_handle *trans;
2780 if (!capable(CAP_SYS_ADMIN))
2784 if (file->private_data)
2788 if (btrfs_root_readonly(root))
2791 ret = mnt_want_write_file(file);
2795 atomic_inc(&root->fs_info->open_ioctl_trans);
2798 trans = btrfs_start_ioctl_transaction(root);
2802 file->private_data = trans;
2806 atomic_dec(&root->fs_info->open_ioctl_trans);
2807 mnt_drop_write_file(file);
2812 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2814 struct inode *inode = fdentry(file)->d_inode;
2815 struct btrfs_root *root = BTRFS_I(inode)->root;
2816 struct btrfs_root *new_root;
2817 struct btrfs_dir_item *di;
2818 struct btrfs_trans_handle *trans;
2819 struct btrfs_path *path;
2820 struct btrfs_key location;
2821 struct btrfs_disk_key disk_key;
2825 if (!capable(CAP_SYS_ADMIN))
2828 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2832 objectid = root->root_key.objectid;
2834 location.objectid = objectid;
2835 location.type = BTRFS_ROOT_ITEM_KEY;
2836 location.offset = (u64)-1;
2838 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2839 if (IS_ERR(new_root))
2840 return PTR_ERR(new_root);
2842 if (btrfs_root_refs(&new_root->root_item) == 0)
2845 path = btrfs_alloc_path();
2848 path->leave_spinning = 1;
2850 trans = btrfs_start_transaction(root, 1);
2851 if (IS_ERR(trans)) {
2852 btrfs_free_path(path);
2853 return PTR_ERR(trans);
2856 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2857 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2858 dir_id, "default", 7, 1);
2859 if (IS_ERR_OR_NULL(di)) {
2860 btrfs_free_path(path);
2861 btrfs_end_transaction(trans, root);
2862 printk(KERN_ERR "Umm, you don't have the default dir item, "
2863 "this isn't going to work\n");
2867 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2868 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2869 btrfs_mark_buffer_dirty(path->nodes[0]);
2870 btrfs_free_path(path);
2872 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2873 btrfs_end_transaction(trans, root);
2878 void btrfs_get_block_group_info(struct list_head *groups_list,
2879 struct btrfs_ioctl_space_info *space)
2881 struct btrfs_block_group_cache *block_group;
2883 space->total_bytes = 0;
2884 space->used_bytes = 0;
2886 list_for_each_entry(block_group, groups_list, list) {
2887 space->flags = block_group->flags;
2888 space->total_bytes += block_group->key.offset;
2889 space->used_bytes +=
2890 btrfs_block_group_used(&block_group->item);
2894 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2896 struct btrfs_ioctl_space_args space_args;
2897 struct btrfs_ioctl_space_info space;
2898 struct btrfs_ioctl_space_info *dest;
2899 struct btrfs_ioctl_space_info *dest_orig;
2900 struct btrfs_ioctl_space_info __user *user_dest;
2901 struct btrfs_space_info *info;
2902 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2903 BTRFS_BLOCK_GROUP_SYSTEM,
2904 BTRFS_BLOCK_GROUP_METADATA,
2905 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2912 if (copy_from_user(&space_args,
2913 (struct btrfs_ioctl_space_args __user *)arg,
2914 sizeof(space_args)))
2917 for (i = 0; i < num_types; i++) {
2918 struct btrfs_space_info *tmp;
2922 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2924 if (tmp->flags == types[i]) {
2934 down_read(&info->groups_sem);
2935 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2936 if (!list_empty(&info->block_groups[c]))
2939 up_read(&info->groups_sem);
2942 /* space_slots == 0 means they are asking for a count */
2943 if (space_args.space_slots == 0) {
2944 space_args.total_spaces = slot_count;
2948 slot_count = min_t(u64, space_args.space_slots, slot_count);
2950 alloc_size = sizeof(*dest) * slot_count;
2952 /* we generally have at most 6 or so space infos, one for each raid
2953 * level. So, a whole page should be more than enough for everyone
2955 if (alloc_size > PAGE_CACHE_SIZE)
2958 space_args.total_spaces = 0;
2959 dest = kmalloc(alloc_size, GFP_NOFS);
2964 /* now we have a buffer to copy into */
2965 for (i = 0; i < num_types; i++) {
2966 struct btrfs_space_info *tmp;
2973 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2975 if (tmp->flags == types[i]) {
2984 down_read(&info->groups_sem);
2985 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2986 if (!list_empty(&info->block_groups[c])) {
2987 btrfs_get_block_group_info(
2988 &info->block_groups[c], &space);
2989 memcpy(dest, &space, sizeof(space));
2991 space_args.total_spaces++;
2997 up_read(&info->groups_sem);
3000 user_dest = (struct btrfs_ioctl_space_info __user *)
3001 (arg + sizeof(struct btrfs_ioctl_space_args));
3003 if (copy_to_user(user_dest, dest_orig, alloc_size))
3008 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3015 * there are many ways the trans_start and trans_end ioctls can lead
3016 * to deadlocks. They should only be used by applications that
3017 * basically own the machine, and have a very in depth understanding
3018 * of all the possible deadlocks and enospc problems.
3020 long btrfs_ioctl_trans_end(struct file *file)
3022 struct inode *inode = fdentry(file)->d_inode;
3023 struct btrfs_root *root = BTRFS_I(inode)->root;
3024 struct btrfs_trans_handle *trans;
3026 trans = file->private_data;
3029 file->private_data = NULL;
3031 btrfs_end_transaction(trans, root);
3033 atomic_dec(&root->fs_info->open_ioctl_trans);
3035 mnt_drop_write_file(file);
3039 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
3041 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3042 struct btrfs_trans_handle *trans;
3046 trans = btrfs_start_transaction(root, 0);
3048 return PTR_ERR(trans);
3049 transid = trans->transid;
3050 ret = btrfs_commit_transaction_async(trans, root, 0);
3052 btrfs_end_transaction(trans, root);
3057 if (copy_to_user(argp, &transid, sizeof(transid)))
3062 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3064 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3068 if (copy_from_user(&transid, argp, sizeof(transid)))
3071 transid = 0; /* current trans */
3073 return btrfs_wait_for_commit(root, transid);
3076 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3079 struct btrfs_ioctl_scrub_args *sa;
3081 if (!capable(CAP_SYS_ADMIN))
3084 sa = memdup_user(arg, sizeof(*sa));
3088 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3089 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3091 if (copy_to_user(arg, sa, sizeof(*sa)))
3098 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3100 if (!capable(CAP_SYS_ADMIN))
3103 return btrfs_scrub_cancel(root);
3106 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3109 struct btrfs_ioctl_scrub_args *sa;
3112 if (!capable(CAP_SYS_ADMIN))
3115 sa = memdup_user(arg, sizeof(*sa));
3119 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3121 if (copy_to_user(arg, sa, sizeof(*sa)))
3128 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3131 struct btrfs_ioctl_get_dev_stats *sa;
3134 sa = memdup_user(arg, sizeof(*sa));
3138 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3143 ret = btrfs_get_dev_stats(root, sa);
3145 if (copy_to_user(arg, sa, sizeof(*sa)))
3152 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3158 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3159 struct inode_fs_paths *ipath = NULL;
3160 struct btrfs_path *path;
3162 if (!capable(CAP_SYS_ADMIN))
3165 path = btrfs_alloc_path();
3171 ipa = memdup_user(arg, sizeof(*ipa));
3178 size = min_t(u32, ipa->size, 4096);
3179 ipath = init_ipath(size, root, path);
3180 if (IS_ERR(ipath)) {
3181 ret = PTR_ERR(ipath);
3186 ret = paths_from_inode(ipa->inum, ipath);
3190 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3191 rel_ptr = ipath->fspath->val[i] -
3192 (u64)(unsigned long)ipath->fspath->val;
3193 ipath->fspath->val[i] = rel_ptr;
3196 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3197 (void *)(unsigned long)ipath->fspath, size);
3204 btrfs_free_path(path);
3211 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3213 struct btrfs_data_container *inodes = ctx;
3214 const size_t c = 3 * sizeof(u64);
3216 if (inodes->bytes_left >= c) {
3217 inodes->bytes_left -= c;
3218 inodes->val[inodes->elem_cnt] = inum;
3219 inodes->val[inodes->elem_cnt + 1] = offset;
3220 inodes->val[inodes->elem_cnt + 2] = root;
3221 inodes->elem_cnt += 3;
3223 inodes->bytes_missing += c - inodes->bytes_left;
3224 inodes->bytes_left = 0;
3225 inodes->elem_missed += 3;
3231 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3236 struct btrfs_ioctl_logical_ino_args *loi;
3237 struct btrfs_data_container *inodes = NULL;
3238 struct btrfs_path *path = NULL;
3240 if (!capable(CAP_SYS_ADMIN))
3243 loi = memdup_user(arg, sizeof(*loi));
3250 path = btrfs_alloc_path();
3256 size = min_t(u32, loi->size, 64 * 1024);
3257 inodes = init_data_container(size);
3258 if (IS_ERR(inodes)) {
3259 ret = PTR_ERR(inodes);
3264 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3265 build_ino_list, inodes);
3271 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3272 (void *)(unsigned long)inodes, size);
3277 btrfs_free_path(path);
3284 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3285 struct btrfs_ioctl_balance_args *bargs)
3287 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3289 bargs->flags = bctl->flags;
3291 if (atomic_read(&fs_info->balance_running))
3292 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3293 if (atomic_read(&fs_info->balance_pause_req))
3294 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3295 if (atomic_read(&fs_info->balance_cancel_req))
3296 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3298 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3299 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3300 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3303 spin_lock(&fs_info->balance_lock);
3304 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3305 spin_unlock(&fs_info->balance_lock);
3307 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3311 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3313 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3314 struct btrfs_fs_info *fs_info = root->fs_info;
3315 struct btrfs_ioctl_balance_args *bargs;
3316 struct btrfs_balance_control *bctl;
3319 if (!capable(CAP_SYS_ADMIN))
3322 ret = mnt_want_write_file(file);
3326 mutex_lock(&fs_info->volume_mutex);
3327 mutex_lock(&fs_info->balance_mutex);
3330 bargs = memdup_user(arg, sizeof(*bargs));
3331 if (IS_ERR(bargs)) {
3332 ret = PTR_ERR(bargs);
3336 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3337 if (!fs_info->balance_ctl) {
3342 bctl = fs_info->balance_ctl;
3343 spin_lock(&fs_info->balance_lock);
3344 bctl->flags |= BTRFS_BALANCE_RESUME;
3345 spin_unlock(&fs_info->balance_lock);
3353 if (fs_info->balance_ctl) {
3358 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3364 bctl->fs_info = fs_info;
3366 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3367 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3368 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3370 bctl->flags = bargs->flags;
3372 /* balance everything - no filters */
3373 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3377 ret = btrfs_balance(bctl, bargs);
3379 * bctl is freed in __cancel_balance or in free_fs_info if
3380 * restriper was paused all the way until unmount
3383 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3390 mutex_unlock(&fs_info->balance_mutex);
3391 mutex_unlock(&fs_info->volume_mutex);
3392 mnt_drop_write_file(file);
3396 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3398 if (!capable(CAP_SYS_ADMIN))
3402 case BTRFS_BALANCE_CTL_PAUSE:
3403 return btrfs_pause_balance(root->fs_info);
3404 case BTRFS_BALANCE_CTL_CANCEL:
3405 return btrfs_cancel_balance(root->fs_info);
3411 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3414 struct btrfs_fs_info *fs_info = root->fs_info;
3415 struct btrfs_ioctl_balance_args *bargs;
3418 if (!capable(CAP_SYS_ADMIN))
3421 mutex_lock(&fs_info->balance_mutex);
3422 if (!fs_info->balance_ctl) {
3427 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3433 update_ioctl_balance_args(fs_info, 1, bargs);
3435 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3440 mutex_unlock(&fs_info->balance_mutex);
3444 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg)
3446 struct btrfs_ioctl_quota_ctl_args *sa;
3447 struct btrfs_trans_handle *trans = NULL;
3451 if (!capable(CAP_SYS_ADMIN))
3454 if (root->fs_info->sb->s_flags & MS_RDONLY)
3457 sa = memdup_user(arg, sizeof(*sa));
3461 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3462 trans = btrfs_start_transaction(root, 2);
3463 if (IS_ERR(trans)) {
3464 ret = PTR_ERR(trans);
3470 case BTRFS_QUOTA_CTL_ENABLE:
3471 ret = btrfs_quota_enable(trans, root->fs_info);
3473 case BTRFS_QUOTA_CTL_DISABLE:
3474 ret = btrfs_quota_disable(trans, root->fs_info);
3476 case BTRFS_QUOTA_CTL_RESCAN:
3477 ret = btrfs_quota_rescan(root->fs_info);
3484 if (copy_to_user(arg, sa, sizeof(*sa)))
3488 err = btrfs_commit_transaction(trans, root);
3498 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg)
3500 struct btrfs_ioctl_qgroup_assign_args *sa;
3501 struct btrfs_trans_handle *trans;
3505 if (!capable(CAP_SYS_ADMIN))
3508 if (root->fs_info->sb->s_flags & MS_RDONLY)
3511 sa = memdup_user(arg, sizeof(*sa));
3515 trans = btrfs_join_transaction(root);
3516 if (IS_ERR(trans)) {
3517 ret = PTR_ERR(trans);
3521 /* FIXME: check if the IDs really exist */
3523 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3526 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3530 err = btrfs_end_transaction(trans, root);
3539 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg)
3541 struct btrfs_ioctl_qgroup_create_args *sa;
3542 struct btrfs_trans_handle *trans;
3546 if (!capable(CAP_SYS_ADMIN))
3549 if (root->fs_info->sb->s_flags & MS_RDONLY)
3552 sa = memdup_user(arg, sizeof(*sa));
3556 trans = btrfs_join_transaction(root);
3557 if (IS_ERR(trans)) {
3558 ret = PTR_ERR(trans);
3562 /* FIXME: check if the IDs really exist */
3564 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3567 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3570 err = btrfs_end_transaction(trans, root);
3579 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg)
3581 struct btrfs_ioctl_qgroup_limit_args *sa;
3582 struct btrfs_trans_handle *trans;
3587 if (!capable(CAP_SYS_ADMIN))
3590 if (root->fs_info->sb->s_flags & MS_RDONLY)
3593 sa = memdup_user(arg, sizeof(*sa));
3597 trans = btrfs_join_transaction(root);
3598 if (IS_ERR(trans)) {
3599 ret = PTR_ERR(trans);
3603 qgroupid = sa->qgroupid;
3605 /* take the current subvol as qgroup */
3606 qgroupid = root->root_key.objectid;
3609 /* FIXME: check if the IDs really exist */
3610 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3612 err = btrfs_end_transaction(trans, root);
3621 static long btrfs_ioctl_set_received_subvol(struct file *file,
3624 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3625 struct inode *inode = fdentry(file)->d_inode;
3626 struct btrfs_root *root = BTRFS_I(inode)->root;
3627 struct btrfs_root_item *root_item = &root->root_item;
3628 struct btrfs_trans_handle *trans;
3629 struct timespec ct = CURRENT_TIME;
3632 ret = mnt_want_write_file(file);
3636 down_write(&root->fs_info->subvol_sem);
3638 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3643 if (btrfs_root_readonly(root)) {
3648 if (!inode_owner_or_capable(inode)) {
3653 sa = memdup_user(arg, sizeof(*sa));
3660 trans = btrfs_start_transaction(root, 1);
3661 if (IS_ERR(trans)) {
3662 ret = PTR_ERR(trans);
3667 sa->rtransid = trans->transid;
3668 sa->rtime.sec = ct.tv_sec;
3669 sa->rtime.nsec = ct.tv_nsec;
3671 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3672 btrfs_set_root_stransid(root_item, sa->stransid);
3673 btrfs_set_root_rtransid(root_item, sa->rtransid);
3674 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3675 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3676 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3677 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3679 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3680 &root->root_key, &root->root_item);
3682 btrfs_end_transaction(trans, root);
3686 ret = btrfs_commit_transaction(trans, root);
3691 ret = copy_to_user(arg, sa, sizeof(*sa));
3697 up_write(&root->fs_info->subvol_sem);
3698 mnt_drop_write_file(file);
3702 long btrfs_ioctl(struct file *file, unsigned int
3703 cmd, unsigned long arg)
3705 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3706 void __user *argp = (void __user *)arg;
3709 case FS_IOC_GETFLAGS:
3710 return btrfs_ioctl_getflags(file, argp);
3711 case FS_IOC_SETFLAGS:
3712 return btrfs_ioctl_setflags(file, argp);
3713 case FS_IOC_GETVERSION:
3714 return btrfs_ioctl_getversion(file, argp);
3716 return btrfs_ioctl_fitrim(file, argp);
3717 case BTRFS_IOC_SNAP_CREATE:
3718 return btrfs_ioctl_snap_create(file, argp, 0);
3719 case BTRFS_IOC_SNAP_CREATE_V2:
3720 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3721 case BTRFS_IOC_SUBVOL_CREATE:
3722 return btrfs_ioctl_snap_create(file, argp, 1);
3723 case BTRFS_IOC_SUBVOL_CREATE_V2:
3724 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3725 case BTRFS_IOC_SNAP_DESTROY:
3726 return btrfs_ioctl_snap_destroy(file, argp);
3727 case BTRFS_IOC_SUBVOL_GETFLAGS:
3728 return btrfs_ioctl_subvol_getflags(file, argp);
3729 case BTRFS_IOC_SUBVOL_SETFLAGS:
3730 return btrfs_ioctl_subvol_setflags(file, argp);
3731 case BTRFS_IOC_DEFAULT_SUBVOL:
3732 return btrfs_ioctl_default_subvol(file, argp);
3733 case BTRFS_IOC_DEFRAG:
3734 return btrfs_ioctl_defrag(file, NULL);
3735 case BTRFS_IOC_DEFRAG_RANGE:
3736 return btrfs_ioctl_defrag(file, argp);
3737 case BTRFS_IOC_RESIZE:
3738 return btrfs_ioctl_resize(root, argp);
3739 case BTRFS_IOC_ADD_DEV:
3740 return btrfs_ioctl_add_dev(root, argp);
3741 case BTRFS_IOC_RM_DEV:
3742 return btrfs_ioctl_rm_dev(root, argp);
3743 case BTRFS_IOC_FS_INFO:
3744 return btrfs_ioctl_fs_info(root, argp);
3745 case BTRFS_IOC_DEV_INFO:
3746 return btrfs_ioctl_dev_info(root, argp);
3747 case BTRFS_IOC_BALANCE:
3748 return btrfs_ioctl_balance(file, NULL);
3749 case BTRFS_IOC_CLONE:
3750 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3751 case BTRFS_IOC_CLONE_RANGE:
3752 return btrfs_ioctl_clone_range(file, argp);
3753 case BTRFS_IOC_TRANS_START:
3754 return btrfs_ioctl_trans_start(file);
3755 case BTRFS_IOC_TRANS_END:
3756 return btrfs_ioctl_trans_end(file);
3757 case BTRFS_IOC_TREE_SEARCH:
3758 return btrfs_ioctl_tree_search(file, argp);
3759 case BTRFS_IOC_INO_LOOKUP:
3760 return btrfs_ioctl_ino_lookup(file, argp);
3761 case BTRFS_IOC_INO_PATHS:
3762 return btrfs_ioctl_ino_to_path(root, argp);
3763 case BTRFS_IOC_LOGICAL_INO:
3764 return btrfs_ioctl_logical_to_ino(root, argp);
3765 case BTRFS_IOC_SPACE_INFO:
3766 return btrfs_ioctl_space_info(root, argp);
3767 case BTRFS_IOC_SYNC:
3768 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3770 case BTRFS_IOC_START_SYNC:
3771 return btrfs_ioctl_start_sync(file, argp);
3772 case BTRFS_IOC_WAIT_SYNC:
3773 return btrfs_ioctl_wait_sync(file, argp);
3774 case BTRFS_IOC_SCRUB:
3775 return btrfs_ioctl_scrub(root, argp);
3776 case BTRFS_IOC_SCRUB_CANCEL:
3777 return btrfs_ioctl_scrub_cancel(root, argp);
3778 case BTRFS_IOC_SCRUB_PROGRESS:
3779 return btrfs_ioctl_scrub_progress(root, argp);
3780 case BTRFS_IOC_BALANCE_V2:
3781 return btrfs_ioctl_balance(file, argp);
3782 case BTRFS_IOC_BALANCE_CTL:
3783 return btrfs_ioctl_balance_ctl(root, arg);
3784 case BTRFS_IOC_BALANCE_PROGRESS:
3785 return btrfs_ioctl_balance_progress(root, argp);
3786 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3787 return btrfs_ioctl_set_received_subvol(file, argp);
3788 case BTRFS_IOC_SEND:
3789 return btrfs_ioctl_send(file, argp);
3790 case BTRFS_IOC_GET_DEV_STATS:
3791 return btrfs_ioctl_get_dev_stats(root, argp);
3792 case BTRFS_IOC_QUOTA_CTL:
3793 return btrfs_ioctl_quota_ctl(root, argp);
3794 case BTRFS_IOC_QGROUP_ASSIGN:
3795 return btrfs_ioctl_qgroup_assign(root, argp);
3796 case BTRFS_IOC_QGROUP_CREATE:
3797 return btrfs_ioctl_qgroup_create(root, argp);
3798 case BTRFS_IOC_QGROUP_LIMIT:
3799 return btrfs_ioctl_qgroup_limit(root, argp);