1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
56 static struct dentry *debugfs_root;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
67 struct regulator_dev *regulator;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
107 const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
110 const char *rdev_get_name(struct regulator_dev *rdev)
112 if (rdev->constraints && rdev->constraints->name)
113 return rdev->constraints->name;
114 else if (rdev->desc->name)
115 return rdev->desc->name;
120 static bool have_full_constraints(void)
122 return has_full_constraints || of_have_populated_dt();
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
132 if (rdev->constraints->valid_ops_mask & ops)
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 struct ww_acquire_ctx *ww_ctx)
155 mutex_lock(®ulator_nesting_mutex);
157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 if (rdev->mutex_owner == current)
164 mutex_unlock(®ulator_nesting_mutex);
165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 mutex_lock(®ulator_nesting_mutex);
172 if (lock && ret != -EDEADLK) {
174 rdev->mutex_owner = current;
177 mutex_unlock(®ulator_nesting_mutex);
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
192 void regulator_lock(struct regulator_dev *rdev)
194 regulator_lock_nested(rdev, NULL);
196 EXPORT_SYMBOL_GPL(regulator_lock);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 void regulator_unlock(struct regulator_dev *rdev)
207 mutex_lock(®ulator_nesting_mutex);
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
216 mutex_unlock(®ulator_nesting_mutex);
218 EXPORT_SYMBOL_GPL(regulator_unlock);
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 struct regulator_dev *c_rdev;
225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228 if (rdev->supply->rdev == c_rdev)
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 unsigned int n_coupled)
238 struct regulator_dev *c_rdev;
241 for (i = n_coupled; i > 0; i--) {
242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 regulator_unlock_recursive(
249 c_rdev->supply->rdev,
250 c_rdev->coupling_desc.n_coupled);
252 regulator_unlock(c_rdev);
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257 struct regulator_dev **new_contended_rdev,
258 struct regulator_dev **old_contended_rdev,
259 struct ww_acquire_ctx *ww_ctx)
261 struct regulator_dev *c_rdev;
264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270 if (c_rdev != *old_contended_rdev) {
271 err = regulator_lock_nested(c_rdev, ww_ctx);
273 if (err == -EDEADLK) {
274 *new_contended_rdev = c_rdev;
278 /* shouldn't happen */
279 WARN_ON_ONCE(err != -EALREADY);
282 *old_contended_rdev = NULL;
285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 regulator_unlock(c_rdev);
300 regulator_unlock_recursive(rdev, i);
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
311 * Unlock all regulators related with rdev by coupling or supplying.
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 struct ww_acquire_ctx *ww_ctx)
316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 ww_acquire_fini(ww_ctx);
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329 struct ww_acquire_ctx *ww_ctx)
331 struct regulator_dev *new_contended_rdev = NULL;
332 struct regulator_dev *old_contended_rdev = NULL;
335 mutex_lock(®ulator_list_mutex);
337 ww_acquire_init(ww_ctx, ®ulator_ww_class);
340 if (new_contended_rdev) {
341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 old_contended_rdev = new_contended_rdev;
343 old_contended_rdev->ref_cnt++;
346 err = regulator_lock_recursive(rdev,
351 if (old_contended_rdev)
352 regulator_unlock(old_contended_rdev);
354 } while (err == -EDEADLK);
356 ww_acquire_done(ww_ctx);
358 mutex_unlock(®ulator_list_mutex);
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373 const char *prop_name)
375 struct device_node *regnode = NULL;
376 struct device_node *child = NULL;
378 for_each_child_of_node(parent, child) {
379 regnode = of_parse_phandle(child, prop_name, 0);
382 regnode = of_get_child_regulator(child, prop_name);
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
407 struct device_node *regnode = NULL;
408 char prop_name[32]; /* 32 is max size of property name */
410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
412 snprintf(prop_name, 32, "%s-supply", supply);
413 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416 regnode = of_get_child_regulator(dev->of_node, prop_name);
420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 prop_name, dev->of_node);
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429 int *min_uV, int *max_uV)
431 BUG_ON(*min_uV > *max_uV);
433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 rdev_err(rdev, "voltage operation not allowed\n");
438 if (*max_uV > rdev->constraints->max_uV)
439 *max_uV = rdev->constraints->max_uV;
440 if (*min_uV < rdev->constraints->min_uV)
441 *min_uV = rdev->constraints->min_uV;
443 if (*min_uV > *max_uV) {
444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 /* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
461 int regulator_check_consumers(struct regulator_dev *rdev,
462 int *min_uV, int *max_uV,
463 suspend_state_t state)
465 struct regulator *regulator;
466 struct regulator_voltage *voltage;
468 list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 voltage = ®ulator->voltage[state];
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
474 if (!voltage->min_uV && !voltage->max_uV)
477 if (*max_uV > voltage->max_uV)
478 *max_uV = voltage->max_uV;
479 if (*min_uV < voltage->min_uV)
480 *min_uV = voltage->min_uV;
483 if (*min_uV > *max_uV) {
484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494 int *min_uA, int *max_uA)
496 BUG_ON(*min_uA > *max_uA);
498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 rdev_err(rdev, "current operation not allowed\n");
503 if (*max_uA > rdev->constraints->max_uA)
504 *max_uA = rdev->constraints->max_uA;
505 if (*min_uA < rdev->constraints->min_uA)
506 *min_uA = rdev->constraints->min_uA;
508 if (*min_uA > *max_uA) {
509 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
522 case REGULATOR_MODE_FAST:
523 case REGULATOR_MODE_NORMAL:
524 case REGULATOR_MODE_IDLE:
525 case REGULATOR_MODE_STANDBY:
528 rdev_err(rdev, "invalid mode %x specified\n", *mode);
532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 rdev_err(rdev, "mode operation not allowed\n");
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
541 if (rdev->constraints->valid_modes_mask & *mode)
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
552 if (rdev->constraints == NULL)
556 case PM_SUSPEND_STANDBY:
557 return &rdev->constraints->state_standby;
559 return &rdev->constraints->state_mem;
561 return &rdev->constraints->state_disk;
567 static ssize_t regulator_uV_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 regulator_lock(rdev);
574 uV = regulator_get_voltage_rdev(rdev);
575 regulator_unlock(rdev);
579 return sprintf(buf, "%d\n", uV);
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 static ssize_t regulator_uA_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 return sprintf(buf, "%s\n", rdev_get_name(rdev));
599 static DEVICE_ATTR_RO(name);
601 static const char *regulator_opmode_to_str(int mode)
604 case REGULATOR_MODE_FAST:
606 case REGULATOR_MODE_NORMAL:
608 case REGULATOR_MODE_IDLE:
610 case REGULATOR_MODE_STANDBY:
616 static ssize_t regulator_print_opmode(char *buf, int mode)
618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 static ssize_t regulator_opmode_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
624 struct regulator_dev *rdev = dev_get_drvdata(dev);
626 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
630 static ssize_t regulator_print_state(char *buf, int state)
633 return sprintf(buf, "enabled\n");
635 return sprintf(buf, "disabled\n");
637 return sprintf(buf, "unknown\n");
640 static ssize_t regulator_state_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
646 regulator_lock(rdev);
647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 regulator_unlock(rdev);
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
654 static ssize_t regulator_status_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
657 struct regulator_dev *rdev = dev_get_drvdata(dev);
661 status = rdev->desc->ops->get_status(rdev);
666 case REGULATOR_STATUS_OFF:
669 case REGULATOR_STATUS_ON:
672 case REGULATOR_STATUS_ERROR:
675 case REGULATOR_STATUS_FAST:
678 case REGULATOR_STATUS_NORMAL:
681 case REGULATOR_STATUS_IDLE:
684 case REGULATOR_STATUS_STANDBY:
687 case REGULATOR_STATUS_BYPASS:
690 case REGULATOR_STATUS_UNDEFINED:
697 return sprintf(buf, "%s\n", label);
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
701 static ssize_t regulator_min_uA_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
704 struct regulator_dev *rdev = dev_get_drvdata(dev);
706 if (!rdev->constraints)
707 return sprintf(buf, "constraint not defined\n");
709 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 static ssize_t regulator_max_uA_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
716 struct regulator_dev *rdev = dev_get_drvdata(dev);
718 if (!rdev->constraints)
719 return sprintf(buf, "constraint not defined\n");
721 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 static ssize_t regulator_min_uV_show(struct device *dev,
726 struct device_attribute *attr, char *buf)
728 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 if (!rdev->constraints)
731 return sprintf(buf, "constraint not defined\n");
733 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 static ssize_t regulator_max_uV_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
745 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 static ssize_t regulator_total_uA_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 struct regulator *regulator;
756 regulator_lock(rdev);
757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 if (regulator->enable_count)
759 uA += regulator->uA_load;
761 regulator_unlock(rdev);
762 return sprintf(buf, "%d\n", uA);
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 return sprintf(buf, "%d\n", rdev->use_count);
772 static DEVICE_ATTR_RO(num_users);
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 switch (rdev->desc->type) {
780 case REGULATOR_VOLTAGE:
781 return sprintf(buf, "voltage\n");
782 case REGULATOR_CURRENT:
783 return sprintf(buf, "current\n");
785 return sprintf(buf, "unknown\n");
787 static DEVICE_ATTR_RO(type);
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 regulator_suspend_mem_uV_show, NULL);
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 regulator_suspend_disk_uV_show, NULL);
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 regulator_suspend_standby_uV_show, NULL);
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
822 struct regulator_dev *rdev = dev_get_drvdata(dev);
824 return regulator_print_opmode(buf,
825 rdev->constraints->state_mem.mode);
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828 regulator_suspend_mem_mode_show, NULL);
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
835 return regulator_print_opmode(buf,
836 rdev->constraints->state_disk.mode);
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839 regulator_suspend_disk_mode_show, NULL);
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
846 return regulator_print_opmode(buf,
847 rdev->constraints->state_standby.mode);
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850 regulator_suspend_standby_mode_show, NULL);
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
857 return regulator_print_state(buf,
858 rdev->constraints->state_mem.enabled);
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861 regulator_suspend_mem_state_show, NULL);
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
868 return regulator_print_state(buf,
869 rdev->constraints->state_disk.enabled);
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872 regulator_suspend_disk_state_show, NULL);
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
879 return regulator_print_state(buf,
880 rdev->constraints->state_standby.enabled);
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883 regulator_suspend_standby_state_show, NULL);
885 static ssize_t regulator_bypass_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
888 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902 return sprintf(buf, "%s\n", report);
904 static DEVICE_ATTR(bypass, 0444,
905 regulator_bypass_show, NULL);
907 /* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
911 struct regulator *sibling;
912 int current_uA = 0, output_uV, input_uV, err;
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 rdev_dbg(rdev, "DRMS operation not allowed\n");
924 if (!rdev->desc->ops->get_optimum_mode &&
925 !rdev->desc->ops->set_load)
928 if (!rdev->desc->ops->set_mode &&
929 !rdev->desc->ops->set_load)
932 /* calc total requested load */
933 list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 if (sibling->enable_count)
935 current_uA += sibling->uA_load;
938 current_uA += rdev->constraints->system_load;
940 if (rdev->desc->ops->set_load) {
941 /* set the optimum mode for our new total regulator load */
942 err = rdev->desc->ops->set_load(rdev, current_uA);
944 rdev_err(rdev, "failed to set load %d\n", current_uA);
946 /* get output voltage */
947 output_uV = regulator_get_voltage_rdev(rdev);
948 if (output_uV <= 0) {
949 rdev_err(rdev, "invalid output voltage found\n");
953 /* get input voltage */
956 input_uV = regulator_get_voltage(rdev->supply);
958 input_uV = rdev->constraints->input_uV;
960 rdev_err(rdev, "invalid input voltage found\n");
964 /* now get the optimum mode for our new total regulator load */
965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 output_uV, current_uA);
968 /* check the new mode is allowed */
969 err = regulator_mode_constrain(rdev, &mode);
971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA, input_uV, output_uV);
976 err = rdev->desc->ops->set_mode(rdev, mode);
978 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
984 static int suspend_set_state(struct regulator_dev *rdev,
985 suspend_state_t state)
988 struct regulator_state *rstate;
990 rstate = regulator_get_suspend_state(rdev, state);
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
998 if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 rstate->enabled != DISABLE_IN_SUSPEND) {
1000 if (rdev->desc->ops->set_suspend_voltage ||
1001 rdev->desc->ops->set_suspend_mode)
1002 rdev_warn(rdev, "No configuration\n");
1006 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_enable)
1008 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 rdev->desc->ops->set_suspend_disable)
1011 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1016 rdev_err(rdev, "failed to enabled/disable\n");
1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1023 rdev_err(rdev, "failed to set voltage\n");
1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1031 rdev_err(rdev, "failed to set mode\n");
1039 static void print_constraints(struct regulator_dev *rdev)
1041 struct regulation_constraints *constraints = rdev->constraints;
1043 size_t len = sizeof(buf) - 1;
1047 if (constraints->min_uV && constraints->max_uV) {
1048 if (constraints->min_uV == constraints->max_uV)
1049 count += scnprintf(buf + count, len - count, "%d mV ",
1050 constraints->min_uV / 1000);
1052 count += scnprintf(buf + count, len - count,
1054 constraints->min_uV / 1000,
1055 constraints->max_uV / 1000);
1058 if (!constraints->min_uV ||
1059 constraints->min_uV != constraints->max_uV) {
1060 ret = regulator_get_voltage_rdev(rdev);
1062 count += scnprintf(buf + count, len - count,
1063 "at %d mV ", ret / 1000);
1066 if (constraints->uV_offset)
1067 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 constraints->uV_offset / 1000);
1070 if (constraints->min_uA && constraints->max_uA) {
1071 if (constraints->min_uA == constraints->max_uA)
1072 count += scnprintf(buf + count, len - count, "%d mA ",
1073 constraints->min_uA / 1000);
1075 count += scnprintf(buf + count, len - count,
1077 constraints->min_uA / 1000,
1078 constraints->max_uA / 1000);
1081 if (!constraints->min_uA ||
1082 constraints->min_uA != constraints->max_uA) {
1083 ret = _regulator_get_current_limit(rdev);
1085 count += scnprintf(buf + count, len - count,
1086 "at %d mA ", ret / 1000);
1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 count += scnprintf(buf + count, len - count, "fast ");
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 count += scnprintf(buf + count, len - count, "normal ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 count += scnprintf(buf + count, len - count, "idle ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 count += scnprintf(buf + count, len - count, "standby");
1099 scnprintf(buf, len, "no parameters");
1101 rdev_dbg(rdev, "%s\n", buf);
1103 if ((constraints->min_uV != constraints->max_uV) &&
1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 struct regulation_constraints *constraints)
1112 const struct regulator_ops *ops = rdev->desc->ops;
1115 /* do we need to apply the constraint voltage */
1116 if (rdev->constraints->apply_uV &&
1117 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 int target_min, target_max;
1119 int current_uV = regulator_get_voltage_rdev(rdev);
1121 if (current_uV == -ENOTRECOVERABLE) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev, "Setting %d-%duV\n",
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 _regulator_do_set_voltage(rdev,
1127 rdev->constraints->min_uV,
1128 rdev->constraints->max_uV);
1129 current_uV = regulator_get_voltage_rdev(rdev);
1132 if (current_uV < 0) {
1134 "failed to get the current voltage(%d)\n",
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1144 target_min = current_uV;
1145 target_max = current_uV;
1147 if (current_uV < rdev->constraints->min_uV) {
1148 target_min = rdev->constraints->min_uV;
1149 target_max = rdev->constraints->min_uV;
1152 if (current_uV > rdev->constraints->max_uV) {
1153 target_min = rdev->constraints->max_uV;
1154 target_max = rdev->constraints->max_uV;
1157 if (target_min != current_uV || target_max != current_uV) {
1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 current_uV, target_min, target_max);
1160 ret = _regulator_do_set_voltage(
1161 rdev, target_min, target_max);
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min, target_max, ret);
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1174 if (ops->list_voltage && rdev->desc->n_voltages) {
1175 int count = rdev->desc->n_voltages;
1177 int min_uV = INT_MAX;
1178 int max_uV = INT_MIN;
1179 int cmin = constraints->min_uV;
1180 int cmax = constraints->max_uV;
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count == 1 && !cmin) {
1187 constraints->min_uV = cmin;
1188 constraints->max_uV = cmax;
1191 /* voltage constraints are optional */
1192 if ((cmin == 0) && (cmax == 0))
1195 /* else require explicit machine-level constraints */
1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 rdev_err(rdev, "invalid voltage constraints\n");
1201 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 for (i = 0; i < count; i++) {
1205 value = ops->list_voltage(rdev, i);
1209 /* maybe adjust [min_uV..max_uV] */
1210 if (value >= cmin && value < min_uV)
1212 if (value <= cmax && value > max_uV)
1216 /* final: [min_uV..max_uV] valid iff constraints valid */
1217 if (max_uV < min_uV) {
1219 "unsupportable voltage constraints %u-%uuV\n",
1224 /* use regulator's subset of machine constraints */
1225 if (constraints->min_uV < min_uV) {
1226 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227 constraints->min_uV, min_uV);
1228 constraints->min_uV = min_uV;
1230 if (constraints->max_uV > max_uV) {
1231 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232 constraints->max_uV, max_uV);
1233 constraints->max_uV = max_uV;
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241 struct regulation_constraints *constraints)
1243 const struct regulator_ops *ops = rdev->desc->ops;
1246 if (!constraints->min_uA && !constraints->max_uA)
1249 if (constraints->min_uA > constraints->max_uA) {
1250 rdev_err(rdev, "Invalid current constraints\n");
1254 if (!ops->set_current_limit || !ops->get_current_limit) {
1255 rdev_warn(rdev, "Operation of current configuration missing\n");
1259 /* Set regulator current in constraints range */
1260 ret = ops->set_current_limit(rdev, constraints->min_uA,
1261 constraints->max_uA);
1263 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284 const struct regulation_constraints *constraints)
1287 const struct regulator_ops *ops = rdev->desc->ops;
1290 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293 rdev->constraints = kzalloc(sizeof(*constraints),
1295 if (!rdev->constraints)
1298 ret = machine_constraints_voltage(rdev, rdev->constraints);
1302 ret = machine_constraints_current(rdev, rdev->constraints);
1306 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307 ret = ops->set_input_current_limit(rdev,
1308 rdev->constraints->ilim_uA);
1310 rdev_err(rdev, "failed to set input limit\n");
1315 /* do we need to setup our suspend state */
1316 if (rdev->constraints->initial_state) {
1317 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1319 rdev_err(rdev, "failed to set suspend state\n");
1324 if (rdev->constraints->initial_mode) {
1325 if (!ops->set_mode) {
1326 rdev_err(rdev, "no set_mode operation\n");
1330 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1332 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335 } else if (rdev->constraints->system_load) {
1337 * We'll only apply the initial system load if an
1338 * initial mode wasn't specified.
1340 drms_uA_update(rdev);
1343 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344 && ops->set_ramp_delay) {
1345 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1347 rdev_err(rdev, "failed to set ramp_delay\n");
1352 if (rdev->constraints->pull_down && ops->set_pull_down) {
1353 ret = ops->set_pull_down(rdev);
1355 rdev_err(rdev, "failed to set pull down\n");
1360 if (rdev->constraints->soft_start && ops->set_soft_start) {
1361 ret = ops->set_soft_start(rdev);
1363 rdev_err(rdev, "failed to set soft start\n");
1368 if (rdev->constraints->over_current_protection
1369 && ops->set_over_current_protection) {
1370 ret = ops->set_over_current_protection(rdev);
1372 rdev_err(rdev, "failed to set over current protection\n");
1377 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378 bool ad_state = (rdev->constraints->active_discharge ==
1379 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1381 ret = ops->set_active_discharge(rdev, ad_state);
1383 rdev_err(rdev, "failed to set active discharge\n");
1388 /* If the constraints say the regulator should be on at this point
1389 * and we have control then make sure it is enabled.
1391 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1393 ret = regulator_enable(rdev->supply);
1395 _regulator_put(rdev->supply);
1396 rdev->supply = NULL;
1401 ret = _regulator_do_enable(rdev);
1402 if (ret < 0 && ret != -EINVAL) {
1403 rdev_err(rdev, "failed to enable\n");
1409 print_constraints(rdev);
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1422 static int set_supply(struct regulator_dev *rdev,
1423 struct regulator_dev *supply_rdev)
1427 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1429 if (!try_module_get(supply_rdev->owner))
1432 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 if (rdev->supply == NULL) {
1437 supply_rdev->open_count++;
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev: regulator source
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply: symbolic name for supply
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices. Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
1453 static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 const char *consumer_dev_name,
1457 struct regulator_map *node;
1463 if (consumer_dev_name != NULL)
1468 list_for_each_entry(node, ®ulator_map_list, list) {
1469 if (node->dev_name && consumer_dev_name) {
1470 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1472 } else if (node->dev_name || consumer_dev_name) {
1476 if (strcmp(node->supply, supply) != 0)
1479 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1481 dev_name(&node->regulator->dev),
1482 node->regulator->desc->name,
1484 dev_name(&rdev->dev), rdev_get_name(rdev));
1488 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1492 node->regulator = rdev;
1493 node->supply = supply;
1496 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497 if (node->dev_name == NULL) {
1503 list_add(&node->list, ®ulator_map_list);
1507 static void unset_regulator_supplies(struct regulator_dev *rdev)
1509 struct regulator_map *node, *n;
1511 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1512 if (rdev == node->regulator) {
1513 list_del(&node->list);
1514 kfree(node->dev_name);
1520 #ifdef CONFIG_DEBUG_FS
1521 static ssize_t constraint_flags_read_file(struct file *file,
1522 char __user *user_buf,
1523 size_t count, loff_t *ppos)
1525 const struct regulator *regulator = file->private_data;
1526 const struct regulation_constraints *c = regulator->rdev->constraints;
1533 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1537 ret = snprintf(buf, PAGE_SIZE,
1541 "ramp_disable: %u\n"
1544 "over_current_protection: %u\n",
1551 c->over_current_protection);
1553 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1561 static const struct file_operations constraint_flags_fops = {
1562 #ifdef CONFIG_DEBUG_FS
1563 .open = simple_open,
1564 .read = constraint_flags_read_file,
1565 .llseek = default_llseek,
1569 #define REG_STR_SIZE 64
1571 static struct regulator *create_regulator(struct regulator_dev *rdev,
1573 const char *supply_name)
1575 struct regulator *regulator;
1576 char buf[REG_STR_SIZE];
1579 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580 if (regulator == NULL)
1583 regulator_lock(rdev);
1584 regulator->rdev = rdev;
1585 list_add(®ulator->list, &rdev->consumer_list);
1588 regulator->dev = dev;
1590 /* Add a link to the device sysfs entry */
1591 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592 dev->kobj.name, supply_name);
1593 if (size >= REG_STR_SIZE)
1596 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597 if (regulator->supply_name == NULL)
1600 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603 rdev_dbg(rdev, "could not add device link %s err %d\n",
1604 dev->kobj.name, err);
1608 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609 if (regulator->supply_name == NULL)
1613 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1615 if (!regulator->debugfs) {
1616 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1618 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619 ®ulator->uA_load);
1620 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1622 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1624 debugfs_create_file("constraint_flags", 0444,
1625 regulator->debugfs, regulator,
1626 &constraint_flags_fops);
1630 * Check now if the regulator is an always on regulator - if
1631 * it is then we don't need to do nearly so much work for
1632 * enable/disable calls.
1634 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 _regulator_is_enabled(rdev))
1636 regulator->always_on = true;
1638 regulator_unlock(rdev);
1641 list_del(®ulator->list);
1643 regulator_unlock(rdev);
1647 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1649 if (rdev->constraints && rdev->constraints->enable_time)
1650 return rdev->constraints->enable_time;
1651 if (rdev->desc->ops->enable_time)
1652 return rdev->desc->ops->enable_time(rdev);
1653 return rdev->desc->enable_time;
1656 static struct regulator_supply_alias *regulator_find_supply_alias(
1657 struct device *dev, const char *supply)
1659 struct regulator_supply_alias *map;
1661 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1662 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1668 static void regulator_supply_alias(struct device **dev, const char **supply)
1670 struct regulator_supply_alias *map;
1672 map = regulator_find_supply_alias(*dev, *supply);
1674 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675 *supply, map->alias_supply,
1676 dev_name(map->alias_dev));
1677 *dev = map->alias_dev;
1678 *supply = map->alias_supply;
1682 static int regulator_match(struct device *dev, const void *data)
1684 struct regulator_dev *r = dev_to_rdev(dev);
1686 return strcmp(rdev_get_name(r), data) == 0;
1689 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1693 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1695 return dev ? dev_to_rdev(dev) : NULL;
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713 struct regulator_dev *r = NULL;
1714 struct device_node *node;
1715 struct regulator_map *map;
1716 const char *devname = NULL;
1718 regulator_supply_alias(&dev, &supply);
1720 /* first do a dt based lookup */
1721 if (dev && dev->of_node) {
1722 node = of_get_regulator(dev, supply);
1724 r = of_find_regulator_by_node(node);
1729 * We have a node, but there is no device.
1730 * assume it has not registered yet.
1732 return ERR_PTR(-EPROBE_DEFER);
1736 /* if not found, try doing it non-dt way */
1738 devname = dev_name(dev);
1740 mutex_lock(®ulator_list_mutex);
1741 list_for_each_entry(map, ®ulator_map_list, list) {
1742 /* If the mapping has a device set up it must match */
1743 if (map->dev_name &&
1744 (!devname || strcmp(map->dev_name, devname)))
1747 if (strcmp(map->supply, supply) == 0 &&
1748 get_device(&map->regulator->dev)) {
1753 mutex_unlock(®ulator_list_mutex);
1758 r = regulator_lookup_by_name(supply);
1762 return ERR_PTR(-ENODEV);
1765 static int regulator_resolve_supply(struct regulator_dev *rdev)
1767 struct regulator_dev *r;
1768 struct device *dev = rdev->dev.parent;
1771 /* No supply to resolve? */
1772 if (!rdev->supply_name)
1775 /* Supply already resolved? */
1779 r = regulator_dev_lookup(dev, rdev->supply_name);
1783 /* Did the lookup explicitly defer for us? */
1784 if (ret == -EPROBE_DEFER)
1787 if (have_full_constraints()) {
1788 r = dummy_regulator_rdev;
1789 get_device(&r->dev);
1791 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792 rdev->supply_name, rdev->desc->name);
1793 return -EPROBE_DEFER;
1798 * If the supply's parent device is not the same as the
1799 * regulator's parent device, then ensure the parent device
1800 * is bound before we resolve the supply, in case the parent
1801 * device get probe deferred and unregisters the supply.
1803 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804 if (!device_is_bound(r->dev.parent)) {
1805 put_device(&r->dev);
1806 return -EPROBE_DEFER;
1810 /* Recursively resolve the supply of the supply */
1811 ret = regulator_resolve_supply(r);
1813 put_device(&r->dev);
1817 ret = set_supply(rdev, r);
1819 put_device(&r->dev);
1824 * In set_machine_constraints() we may have turned this regulator on
1825 * but we couldn't propagate to the supply if it hadn't been resolved
1828 if (rdev->use_count) {
1829 ret = regulator_enable(rdev->supply);
1831 _regulator_put(rdev->supply);
1832 rdev->supply = NULL;
1840 /* Internal regulator request function */
1841 struct regulator *_regulator_get(struct device *dev, const char *id,
1842 enum regulator_get_type get_type)
1844 struct regulator_dev *rdev;
1845 struct regulator *regulator;
1846 const char *devname = dev ? dev_name(dev) : "deviceless";
1849 if (get_type >= MAX_GET_TYPE) {
1850 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851 return ERR_PTR(-EINVAL);
1855 pr_err("get() with no identifier\n");
1856 return ERR_PTR(-EINVAL);
1859 rdev = regulator_dev_lookup(dev, id);
1861 ret = PTR_ERR(rdev);
1864 * If regulator_dev_lookup() fails with error other
1865 * than -ENODEV our job here is done, we simply return it.
1868 return ERR_PTR(ret);
1870 if (!have_full_constraints()) {
1872 "incomplete constraints, dummy supplies not allowed\n");
1873 return ERR_PTR(-ENODEV);
1879 * Assume that a regulator is physically present and
1880 * enabled, even if it isn't hooked up, and just
1884 "%s supply %s not found, using dummy regulator\n",
1886 rdev = dummy_regulator_rdev;
1887 get_device(&rdev->dev);
1892 "dummy supplies not allowed for exclusive requests\n");
1896 return ERR_PTR(-ENODEV);
1900 if (rdev->exclusive) {
1901 regulator = ERR_PTR(-EPERM);
1902 put_device(&rdev->dev);
1906 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907 regulator = ERR_PTR(-EBUSY);
1908 put_device(&rdev->dev);
1912 mutex_lock(®ulator_list_mutex);
1913 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914 mutex_unlock(®ulator_list_mutex);
1917 regulator = ERR_PTR(-EPROBE_DEFER);
1918 put_device(&rdev->dev);
1922 ret = regulator_resolve_supply(rdev);
1924 regulator = ERR_PTR(ret);
1925 put_device(&rdev->dev);
1929 if (!try_module_get(rdev->owner)) {
1930 regulator = ERR_PTR(-EPROBE_DEFER);
1931 put_device(&rdev->dev);
1935 regulator = create_regulator(rdev, dev, id);
1936 if (regulator == NULL) {
1937 regulator = ERR_PTR(-ENOMEM);
1938 put_device(&rdev->dev);
1939 module_put(rdev->owner);
1944 if (get_type == EXCLUSIVE_GET) {
1945 rdev->exclusive = 1;
1947 ret = _regulator_is_enabled(rdev);
1949 rdev->use_count = 1;
1951 rdev->use_count = 0;
1954 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged. It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1972 struct regulator *regulator_get(struct device *dev, const char *id)
1974 return _regulator_get(dev, id, NORMAL_GET);
1976 EXPORT_SYMBOL_GPL(regulator_get);
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno. Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged. It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1999 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2001 return _regulator_get(dev, id, EXCLUSIVE_GET);
2003 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged. It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2025 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2027 return _regulator_get(dev, id, OPTIONAL_GET);
2029 EXPORT_SYMBOL_GPL(regulator_get_optional);
2031 /* regulator_list_mutex lock held by regulator_put() */
2032 static void _regulator_put(struct regulator *regulator)
2034 struct regulator_dev *rdev;
2036 if (IS_ERR_OR_NULL(regulator))
2039 lockdep_assert_held_once(®ulator_list_mutex);
2041 /* Docs say you must disable before calling regulator_put() */
2042 WARN_ON(regulator->enable_count);
2044 rdev = regulator->rdev;
2046 debugfs_remove_recursive(regulator->debugfs);
2048 if (regulator->dev) {
2049 device_link_remove(regulator->dev, &rdev->dev);
2051 /* remove any sysfs entries */
2052 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055 regulator_lock(rdev);
2056 list_del(®ulator->list);
2059 rdev->exclusive = 0;
2060 put_device(&rdev->dev);
2061 regulator_unlock(rdev);
2063 kfree_const(regulator->supply_name);
2066 module_put(rdev->owner);
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2077 void regulator_put(struct regulator *regulator)
2079 mutex_lock(®ulator_list_mutex);
2080 _regulator_put(regulator);
2081 mutex_unlock(®ulator_list_mutex);
2083 EXPORT_SYMBOL_GPL(regulator_put);
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2094 * All lookups for id on dev will instead be conducted for alias_id on
2097 int regulator_register_supply_alias(struct device *dev, const char *id,
2098 struct device *alias_dev,
2099 const char *alias_id)
2101 struct regulator_supply_alias *map;
2103 map = regulator_find_supply_alias(dev, id);
2107 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2112 map->src_supply = id;
2113 map->alias_dev = alias_dev;
2114 map->alias_supply = alias_id;
2116 list_add(&map->list, ®ulator_supply_alias_list);
2118 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119 id, dev_name(dev), alias_id, dev_name(alias_dev));
2123 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2126 * regulator_unregister_supply_alias - Remove device alias
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2131 * Remove a lookup alias if one exists for id on dev.
2133 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2135 struct regulator_supply_alias *map;
2137 map = regulator_find_supply_alias(dev, id);
2139 list_del(&map->list);
2143 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2153 * @num_id: Number of aliases to register
2155 * @return 0 on success, an errno on failure.
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation. If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2162 int regulator_bulk_register_supply_alias(struct device *dev,
2163 const char *const *id,
2164 struct device *alias_dev,
2165 const char *const *alias_id,
2171 for (i = 0; i < num_id; ++i) {
2172 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2182 "Failed to create supply alias %s,%s -> %s,%s\n",
2183 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2186 regulator_unregister_supply_alias(dev, id[i]);
2190 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2202 void regulator_bulk_unregister_supply_alias(struct device *dev,
2203 const char *const *id,
2208 for (i = 0; i < num_id; ++i)
2209 regulator_unregister_supply_alias(dev, id[i]);
2211 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2214 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216 const struct regulator_config *config)
2218 struct regulator_enable_gpio *pin;
2219 struct gpio_desc *gpiod;
2221 gpiod = config->ena_gpiod;
2223 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2224 if (pin->gpiod == gpiod) {
2225 rdev_dbg(rdev, "GPIO is already used\n");
2226 goto update_ena_gpio_to_rdev;
2230 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2235 list_add(&pin->list, ®ulator_ena_gpio_list);
2237 update_ena_gpio_to_rdev:
2238 pin->request_count++;
2239 rdev->ena_pin = pin;
2243 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2245 struct regulator_enable_gpio *pin, *n;
2250 /* Free the GPIO only in case of no use */
2251 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2252 if (pin->gpiod == rdev->ena_pin->gpiod) {
2253 if (pin->request_count <= 1) {
2254 pin->request_count = 0;
2255 gpiod_put(pin->gpiod);
2256 list_del(&pin->list);
2258 rdev->ena_pin = NULL;
2261 pin->request_count--;
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2275 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2277 struct regulator_enable_gpio *pin = rdev->ena_pin;
2283 /* Enable GPIO at initial use */
2284 if (pin->enable_count == 0)
2285 gpiod_set_value_cansleep(pin->gpiod, 1);
2287 pin->enable_count++;
2289 if (pin->enable_count > 1) {
2290 pin->enable_count--;
2294 /* Disable GPIO if not used */
2295 if (pin->enable_count <= 1) {
2296 gpiod_set_value_cansleep(pin->gpiod, 0);
2297 pin->enable_count = 0;
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2308 * Delay for the requested amount of time as per the guidelines in:
2310 * Documentation/timers/timers-howto.rst
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2315 static void _regulator_enable_delay(unsigned int delay)
2317 unsigned int ms = delay / 1000;
2318 unsigned int us = delay % 1000;
2322 * For small enough values, handle super-millisecond
2323 * delays in the usleep_range() call below.
2332 * Give the scheduler some room to coalesce with any other
2333 * wakeup sources. For delays shorter than 10 us, don't even
2334 * bother setting up high-resolution timers and just busy-
2338 usleep_range(us, us + 100);
2343 static int _regulator_do_enable(struct regulator_dev *rdev)
2347 /* Query before enabling in case configuration dependent. */
2348 ret = _regulator_get_enable_time(rdev);
2352 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2356 trace_regulator_enable(rdev_get_name(rdev));
2358 if (rdev->desc->off_on_delay) {
2359 /* if needed, keep a distance of off_on_delay from last time
2360 * this regulator was disabled.
2362 unsigned long start_jiffy = jiffies;
2363 unsigned long intended, max_delay, remaining;
2365 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366 intended = rdev->last_off_jiffy + max_delay;
2368 if (time_before(start_jiffy, intended)) {
2369 /* calc remaining jiffies to deal with one-time
2371 * in case of multiple timer wrapping, either it can be
2372 * detected by out-of-range remaining, or it cannot be
2373 * detected and we get a penalty of
2374 * _regulator_enable_delay().
2376 remaining = intended - start_jiffy;
2377 if (remaining <= max_delay)
2378 _regulator_enable_delay(
2379 jiffies_to_usecs(remaining));
2383 if (rdev->ena_pin) {
2384 if (!rdev->ena_gpio_state) {
2385 ret = regulator_ena_gpio_ctrl(rdev, true);
2388 rdev->ena_gpio_state = 1;
2390 } else if (rdev->desc->ops->enable) {
2391 ret = rdev->desc->ops->enable(rdev);
2398 /* Allow the regulator to ramp; it would be useful to extend
2399 * this for bulk operations so that the regulators can ramp
2401 trace_regulator_enable_delay(rdev_get_name(rdev));
2403 _regulator_enable_delay(delay);
2405 trace_regulator_enable_complete(rdev_get_name(rdev));
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled. Explained in example with two consumers of the same
2418 * consumer A: set_load(100); => total load = 0
2419 * consumer A: regulator_enable(); => total load = 100
2420 * consumer B: set_load(1000); => total load = 100
2421 * consumer B: regulator_enable(); => total load = 1100
2422 * consumer A: regulator_disable(); => total_load = 1000
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2428 * Returns 0 upon no error; -error upon error.
2430 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2432 struct regulator_dev *rdev = regulator->rdev;
2434 lockdep_assert_held_once(&rdev->mutex.base);
2436 regulator->enable_count++;
2437 if (regulator->uA_load && regulator->enable_count == 1)
2438 return drms_uA_update(rdev);
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2447 * The opposite of _regulator_handle_consumer_enable().
2449 * Returns 0 upon no error; -error upon error.
2451 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2453 struct regulator_dev *rdev = regulator->rdev;
2455 lockdep_assert_held_once(&rdev->mutex.base);
2457 if (!regulator->enable_count) {
2458 rdev_err(rdev, "Underflow of regulator enable count\n");
2462 regulator->enable_count--;
2463 if (regulator->uA_load && regulator->enable_count == 0)
2464 return drms_uA_update(rdev);
2469 /* locks held by regulator_enable() */
2470 static int _regulator_enable(struct regulator *regulator)
2472 struct regulator_dev *rdev = regulator->rdev;
2475 lockdep_assert_held_once(&rdev->mutex.base);
2477 if (rdev->use_count == 0 && rdev->supply) {
2478 ret = _regulator_enable(rdev->supply);
2483 /* balance only if there are regulators coupled */
2484 if (rdev->coupling_desc.n_coupled > 1) {
2485 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2487 goto err_disable_supply;
2490 ret = _regulator_handle_consumer_enable(regulator);
2492 goto err_disable_supply;
2494 if (rdev->use_count == 0) {
2495 /* The regulator may on if it's not switchable or left on */
2496 ret = _regulator_is_enabled(rdev);
2497 if (ret == -EINVAL || ret == 0) {
2498 if (!regulator_ops_is_valid(rdev,
2499 REGULATOR_CHANGE_STATUS)) {
2501 goto err_consumer_disable;
2504 ret = _regulator_do_enable(rdev);
2506 goto err_consumer_disable;
2508 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2510 } else if (ret < 0) {
2511 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512 goto err_consumer_disable;
2514 /* Fallthrough on positive return values - already enabled */
2521 err_consumer_disable:
2522 _regulator_handle_consumer_disable(regulator);
2525 if (rdev->use_count == 0 && rdev->supply)
2526 _regulator_disable(rdev->supply);
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value. Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2542 int regulator_enable(struct regulator *regulator)
2544 struct regulator_dev *rdev = regulator->rdev;
2545 struct ww_acquire_ctx ww_ctx;
2548 regulator_lock_dependent(rdev, &ww_ctx);
2549 ret = _regulator_enable(regulator);
2550 regulator_unlock_dependent(rdev, &ww_ctx);
2554 EXPORT_SYMBOL_GPL(regulator_enable);
2556 static int _regulator_do_disable(struct regulator_dev *rdev)
2560 trace_regulator_disable(rdev_get_name(rdev));
2562 if (rdev->ena_pin) {
2563 if (rdev->ena_gpio_state) {
2564 ret = regulator_ena_gpio_ctrl(rdev, false);
2567 rdev->ena_gpio_state = 0;
2570 } else if (rdev->desc->ops->disable) {
2571 ret = rdev->desc->ops->disable(rdev);
2576 /* cares about last_off_jiffy only if off_on_delay is required by
2579 if (rdev->desc->off_on_delay)
2580 rdev->last_off_jiffy = jiffies;
2582 trace_regulator_disable_complete(rdev_get_name(rdev));
2587 /* locks held by regulator_disable() */
2588 static int _regulator_disable(struct regulator *regulator)
2590 struct regulator_dev *rdev = regulator->rdev;
2593 lockdep_assert_held_once(&rdev->mutex.base);
2595 if (WARN(rdev->use_count <= 0,
2596 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2599 /* are we the last user and permitted to disable ? */
2600 if (rdev->use_count == 1 &&
2601 (rdev->constraints && !rdev->constraints->always_on)) {
2603 /* we are last user */
2604 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605 ret = _notifier_call_chain(rdev,
2606 REGULATOR_EVENT_PRE_DISABLE,
2608 if (ret & NOTIFY_STOP_MASK)
2611 ret = _regulator_do_disable(rdev);
2613 rdev_err(rdev, "failed to disable\n");
2614 _notifier_call_chain(rdev,
2615 REGULATOR_EVENT_ABORT_DISABLE,
2619 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2623 rdev->use_count = 0;
2624 } else if (rdev->use_count > 1) {
2629 ret = _regulator_handle_consumer_disable(regulator);
2631 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2634 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635 ret = _regulator_disable(rdev->supply);
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2644 * Disable the regulator output voltage or current. Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2652 int regulator_disable(struct regulator *regulator)
2654 struct regulator_dev *rdev = regulator->rdev;
2655 struct ww_acquire_ctx ww_ctx;
2658 regulator_lock_dependent(rdev, &ww_ctx);
2659 ret = _regulator_disable(regulator);
2660 regulator_unlock_dependent(rdev, &ww_ctx);
2664 EXPORT_SYMBOL_GPL(regulator_disable);
2666 /* locks held by regulator_force_disable() */
2667 static int _regulator_force_disable(struct regulator_dev *rdev)
2671 lockdep_assert_held_once(&rdev->mutex.base);
2673 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674 REGULATOR_EVENT_PRE_DISABLE, NULL);
2675 if (ret & NOTIFY_STOP_MASK)
2678 ret = _regulator_do_disable(rdev);
2680 rdev_err(rdev, "failed to force disable\n");
2681 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2686 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687 REGULATOR_EVENT_DISABLE, NULL);
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2701 int regulator_force_disable(struct regulator *regulator)
2703 struct regulator_dev *rdev = regulator->rdev;
2704 struct ww_acquire_ctx ww_ctx;
2707 regulator_lock_dependent(rdev, &ww_ctx);
2709 ret = _regulator_force_disable(regulator->rdev);
2711 if (rdev->coupling_desc.n_coupled > 1)
2712 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2714 if (regulator->uA_load) {
2715 regulator->uA_load = 0;
2716 ret = drms_uA_update(rdev);
2719 if (rdev->use_count != 0 && rdev->supply)
2720 _regulator_disable(rdev->supply);
2722 regulator_unlock_dependent(rdev, &ww_ctx);
2726 EXPORT_SYMBOL_GPL(regulator_force_disable);
2728 static void regulator_disable_work(struct work_struct *work)
2730 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2732 struct ww_acquire_ctx ww_ctx;
2734 struct regulator *regulator;
2735 int total_count = 0;
2737 regulator_lock_dependent(rdev, &ww_ctx);
2740 * Workqueue functions queue the new work instance while the previous
2741 * work instance is being processed. Cancel the queued work instance
2742 * as the work instance under processing does the job of the queued
2745 cancel_delayed_work(&rdev->disable_work);
2747 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748 count = regulator->deferred_disables;
2753 total_count += count;
2754 regulator->deferred_disables = 0;
2756 for (i = 0; i < count; i++) {
2757 ret = _regulator_disable(regulator);
2759 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2762 WARN_ON(!total_count);
2764 if (rdev->coupling_desc.n_coupled > 1)
2765 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2767 regulator_unlock_dependent(rdev, &ww_ctx);
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2775 * Execute regulator_disable() on the regulator after a delay. This
2776 * is intended for use with devices that require some time to quiesce.
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2782 int regulator_disable_deferred(struct regulator *regulator, int ms)
2784 struct regulator_dev *rdev = regulator->rdev;
2787 return regulator_disable(regulator);
2789 regulator_lock(rdev);
2790 regulator->deferred_disables++;
2791 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792 msecs_to_jiffies(ms));
2793 regulator_unlock(rdev);
2797 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2799 static int _regulator_is_enabled(struct regulator_dev *rdev)
2801 /* A GPIO control always takes precedence */
2803 return rdev->ena_gpio_state;
2805 /* If we don't know then assume that the regulator is always on */
2806 if (!rdev->desc->ops->is_enabled)
2809 return rdev->desc->ops->is_enabled(rdev);
2812 static int _regulator_list_voltage(struct regulator_dev *rdev,
2813 unsigned selector, int lock)
2815 const struct regulator_ops *ops = rdev->desc->ops;
2818 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819 return rdev->desc->fixed_uV;
2821 if (ops->list_voltage) {
2822 if (selector >= rdev->desc->n_voltages)
2825 regulator_lock(rdev);
2826 ret = ops->list_voltage(rdev, selector);
2828 regulator_unlock(rdev);
2829 } else if (rdev->is_switch && rdev->supply) {
2830 ret = _regulator_list_voltage(rdev->supply->rdev,
2837 if (ret < rdev->constraints->min_uV)
2839 else if (ret > rdev->constraints->max_uV)
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2858 int regulator_is_enabled(struct regulator *regulator)
2862 if (regulator->always_on)
2865 regulator_lock(regulator->rdev);
2866 ret = _regulator_is_enabled(regulator->rdev);
2867 regulator_unlock(regulator->rdev);
2871 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2877 * Returns number of selectors, or negative errno. Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2881 int regulator_count_voltages(struct regulator *regulator)
2883 struct regulator_dev *rdev = regulator->rdev;
2885 if (rdev->desc->n_voltages)
2886 return rdev->desc->n_voltages;
2888 if (!rdev->is_switch || !rdev->supply)
2891 return regulator_count_voltages(rdev->supply);
2893 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2905 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2907 return _regulator_list_voltage(regulator->rdev, selector, 1);
2909 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2918 struct regmap *regulator_get_regmap(struct regulator *regulator)
2920 struct regmap *map = regulator->rdev->regmap;
2922 return map ? map : ERR_PTR(-EOPNOTSUPP);
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2939 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2941 unsigned *vsel_mask)
2943 struct regulator_dev *rdev = regulator->rdev;
2944 const struct regulator_ops *ops = rdev->desc->ops;
2946 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2949 *vsel_reg = rdev->desc->vsel_reg;
2950 *vsel_mask = rdev->desc->vsel_mask;
2954 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2965 * On error a negative errno is returned.
2967 int regulator_list_hardware_vsel(struct regulator *regulator,
2970 struct regulator_dev *rdev = regulator->rdev;
2971 const struct regulator_ops *ops = rdev->desc->ops;
2973 if (selector >= rdev->desc->n_voltages)
2975 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2980 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2989 unsigned int regulator_get_linear_step(struct regulator *regulator)
2991 struct regulator_dev *rdev = regulator->rdev;
2993 return rdev->desc->uV_step;
2995 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3004 * Returns a boolean.
3006 int regulator_is_supported_voltage(struct regulator *regulator,
3007 int min_uV, int max_uV)
3009 struct regulator_dev *rdev = regulator->rdev;
3010 int i, voltages, ret;
3012 /* If we can't change voltage check the current voltage */
3013 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014 ret = regulator_get_voltage(regulator);
3016 return min_uV <= ret && ret <= max_uV;
3021 /* Any voltage within constrains range is fine? */
3022 if (rdev->desc->continuous_voltage_range)
3023 return min_uV >= rdev->constraints->min_uV &&
3024 max_uV <= rdev->constraints->max_uV;
3026 ret = regulator_count_voltages(regulator);
3031 for (i = 0; i < voltages; i++) {
3032 ret = regulator_list_voltage(regulator, i);
3034 if (ret >= min_uV && ret <= max_uV)
3040 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3042 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3045 const struct regulator_desc *desc = rdev->desc;
3047 if (desc->ops->map_voltage)
3048 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3050 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3053 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3056 if (desc->ops->list_voltage ==
3057 regulator_list_voltage_pickable_linear_range)
3058 return regulator_map_voltage_pickable_linear_range(rdev,
3061 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3064 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065 int min_uV, int max_uV,
3068 struct pre_voltage_change_data data;
3071 data.old_uV = regulator_get_voltage_rdev(rdev);
3072 data.min_uV = min_uV;
3073 data.max_uV = max_uV;
3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3076 if (ret & NOTIFY_STOP_MASK)
3079 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3083 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084 (void *)data.old_uV);
3089 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090 int uV, unsigned selector)
3092 struct pre_voltage_change_data data;
3095 data.old_uV = regulator_get_voltage_rdev(rdev);
3098 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3100 if (ret & NOTIFY_STOP_MASK)
3103 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3107 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108 (void *)data.old_uV);
3113 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114 int uV, int new_selector)
3116 const struct regulator_ops *ops = rdev->desc->ops;
3117 int diff, old_sel, curr_sel, ret;
3119 /* Stepping is only needed if the regulator is enabled. */
3120 if (!_regulator_is_enabled(rdev))
3123 if (!ops->get_voltage_sel)
3126 old_sel = ops->get_voltage_sel(rdev);
3130 diff = new_selector - old_sel;
3132 return 0; /* No change needed. */
3136 for (curr_sel = old_sel + rdev->desc->vsel_step;
3137 curr_sel < new_selector;
3138 curr_sel += rdev->desc->vsel_step) {
3140 * Call the callback directly instead of using
3141 * _regulator_call_set_voltage_sel() as we don't
3142 * want to notify anyone yet. Same in the branch
3145 ret = ops->set_voltage_sel(rdev, curr_sel);
3150 /* Stepping down. */
3151 for (curr_sel = old_sel - rdev->desc->vsel_step;
3152 curr_sel > new_selector;
3153 curr_sel -= rdev->desc->vsel_step) {
3154 ret = ops->set_voltage_sel(rdev, curr_sel);
3161 /* The final selector will trigger the notifiers. */
3162 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3166 * At least try to return to the previous voltage if setting a new
3169 (void)ops->set_voltage_sel(rdev, old_sel);
3173 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174 int old_uV, int new_uV)
3176 unsigned int ramp_delay = 0;
3178 if (rdev->constraints->ramp_delay)
3179 ramp_delay = rdev->constraints->ramp_delay;
3180 else if (rdev->desc->ramp_delay)
3181 ramp_delay = rdev->desc->ramp_delay;
3182 else if (rdev->constraints->settling_time)
3183 return rdev->constraints->settling_time;
3184 else if (rdev->constraints->settling_time_up &&
3186 return rdev->constraints->settling_time_up;
3187 else if (rdev->constraints->settling_time_down &&
3189 return rdev->constraints->settling_time_down;
3191 if (ramp_delay == 0) {
3192 rdev_dbg(rdev, "ramp_delay not set\n");
3196 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3199 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200 int min_uV, int max_uV)
3205 unsigned int selector;
3206 int old_selector = -1;
3207 const struct regulator_ops *ops = rdev->desc->ops;
3208 int old_uV = regulator_get_voltage_rdev(rdev);
3210 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3212 min_uV += rdev->constraints->uV_offset;
3213 max_uV += rdev->constraints->uV_offset;
3216 * If we can't obtain the old selector there is not enough
3217 * info to call set_voltage_time_sel().
3219 if (_regulator_is_enabled(rdev) &&
3220 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221 old_selector = ops->get_voltage_sel(rdev);
3222 if (old_selector < 0)
3223 return old_selector;
3226 if (ops->set_voltage) {
3227 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3231 if (ops->list_voltage)
3232 best_val = ops->list_voltage(rdev,
3235 best_val = regulator_get_voltage_rdev(rdev);
3238 } else if (ops->set_voltage_sel) {
3239 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3241 best_val = ops->list_voltage(rdev, ret);
3242 if (min_uV <= best_val && max_uV >= best_val) {
3244 if (old_selector == selector)
3246 else if (rdev->desc->vsel_step)
3247 ret = _regulator_set_voltage_sel_step(
3248 rdev, best_val, selector);
3250 ret = _regulator_call_set_voltage_sel(
3251 rdev, best_val, selector);
3263 if (ops->set_voltage_time_sel) {
3265 * Call set_voltage_time_sel if successfully obtained
3268 if (old_selector >= 0 && old_selector != selector)
3269 delay = ops->set_voltage_time_sel(rdev, old_selector,
3272 if (old_uV != best_val) {
3273 if (ops->set_voltage_time)
3274 delay = ops->set_voltage_time(rdev, old_uV,
3277 delay = _regulator_set_voltage_time(rdev,
3284 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3288 /* Insert any necessary delays */
3289 if (delay >= 1000) {
3290 mdelay(delay / 1000);
3291 udelay(delay % 1000);
3296 if (best_val >= 0) {
3297 unsigned long data = best_val;
3299 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3304 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3309 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310 int min_uV, int max_uV, suspend_state_t state)
3312 struct regulator_state *rstate;
3315 rstate = regulator_get_suspend_state(rdev, state);
3319 if (min_uV < rstate->min_uV)
3320 min_uV = rstate->min_uV;
3321 if (max_uV > rstate->max_uV)
3322 max_uV = rstate->max_uV;
3324 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3328 uV = rdev->desc->ops->list_voltage(rdev, sel);
3329 if (uV >= min_uV && uV <= max_uV)
3335 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336 int min_uV, int max_uV,
3337 suspend_state_t state)
3339 struct regulator_dev *rdev = regulator->rdev;
3340 struct regulator_voltage *voltage = ®ulator->voltage[state];
3342 int old_min_uV, old_max_uV;
3345 /* If we're setting the same range as last time the change
3346 * should be a noop (some cpufreq implementations use the same
3347 * voltage for multiple frequencies, for example).
3349 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3352 /* If we're trying to set a range that overlaps the current voltage,
3353 * return successfully even though the regulator does not support
3354 * changing the voltage.
3356 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357 current_uV = regulator_get_voltage_rdev(rdev);
3358 if (min_uV <= current_uV && current_uV <= max_uV) {
3359 voltage->min_uV = min_uV;
3360 voltage->max_uV = max_uV;
3366 if (!rdev->desc->ops->set_voltage &&
3367 !rdev->desc->ops->set_voltage_sel) {
3372 /* constraints check */
3373 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3377 /* restore original values in case of error */
3378 old_min_uV = voltage->min_uV;
3379 old_max_uV = voltage->max_uV;
3380 voltage->min_uV = min_uV;
3381 voltage->max_uV = max_uV;
3383 /* for not coupled regulators this will just set the voltage */
3384 ret = regulator_balance_voltage(rdev, state);
3386 voltage->min_uV = old_min_uV;
3387 voltage->max_uV = old_max_uV;
3394 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395 int max_uV, suspend_state_t state)
3397 int best_supply_uV = 0;
3398 int supply_change_uV = 0;
3402 regulator_ops_is_valid(rdev->supply->rdev,
3403 REGULATOR_CHANGE_VOLTAGE) &&
3404 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405 rdev->desc->ops->get_voltage_sel))) {
3406 int current_supply_uV;
3409 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3415 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416 if (best_supply_uV < 0) {
3417 ret = best_supply_uV;
3421 best_supply_uV += rdev->desc->min_dropout_uV;
3423 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424 if (current_supply_uV < 0) {
3425 ret = current_supply_uV;
3429 supply_change_uV = best_supply_uV - current_supply_uV;
3432 if (supply_change_uV > 0) {
3433 ret = regulator_set_voltage_unlocked(rdev->supply,
3434 best_supply_uV, INT_MAX, state);
3436 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3442 if (state == PM_SUSPEND_ON)
3443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3445 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3450 if (supply_change_uV < 0) {
3451 ret = regulator_set_voltage_unlocked(rdev->supply,
3452 best_supply_uV, INT_MAX, state);
3454 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3456 /* No need to fail here */
3464 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465 int *current_uV, int *min_uV)
3467 struct regulation_constraints *constraints = rdev->constraints;
3469 /* Limit voltage change only if necessary */
3470 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3473 if (*current_uV < 0) {
3474 *current_uV = regulator_get_voltage_rdev(rdev);
3476 if (*current_uV < 0)
3480 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3483 /* Clamp target voltage within the given step */
3484 if (*current_uV < *min_uV)
3485 *min_uV = min(*current_uV + constraints->max_uV_step,
3488 *min_uV = max(*current_uV - constraints->max_uV_step,
3494 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3496 int *min_uV, int *max_uV,
3497 suspend_state_t state,
3500 struct coupling_desc *c_desc = &rdev->coupling_desc;
3501 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502 struct regulation_constraints *constraints = rdev->constraints;
3503 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504 int max_current_uV = 0, min_current_uV = INT_MAX;
3505 int highest_min_uV = 0, target_uV, possible_uV;
3506 int i, ret, max_spread;
3512 * If there are no coupled regulators, simply set the voltage
3513 * demanded by consumers.
3515 if (n_coupled == 1) {
3517 * If consumers don't provide any demands, set voltage
3520 desired_min_uV = constraints->min_uV;
3521 desired_max_uV = constraints->max_uV;
3523 ret = regulator_check_consumers(rdev,
3525 &desired_max_uV, state);
3529 possible_uV = desired_min_uV;
3535 /* Find highest min desired voltage */
3536 for (i = 0; i < n_coupled; i++) {
3538 int tmp_max = INT_MAX;
3540 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3542 ret = regulator_check_consumers(c_rdevs[i],
3548 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3552 highest_min_uV = max(highest_min_uV, tmp_min);
3555 desired_min_uV = tmp_min;
3556 desired_max_uV = tmp_max;
3560 max_spread = constraints->max_spread[0];
3563 * Let target_uV be equal to the desired one if possible.
3564 * If not, set it to minimum voltage, allowed by other coupled
3567 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3570 * Find min and max voltages, which currently aren't violating
3573 for (i = 1; i < n_coupled; i++) {
3576 if (!_regulator_is_enabled(c_rdevs[i]))
3579 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3583 min_current_uV = min(tmp_act, min_current_uV);
3584 max_current_uV = max(tmp_act, max_current_uV);
3587 /* There aren't any other regulators enabled */
3588 if (max_current_uV == 0) {
3589 possible_uV = target_uV;
3592 * Correct target voltage, so as it currently isn't
3593 * violating max_spread
3595 possible_uV = max(target_uV, max_current_uV - max_spread);
3596 possible_uV = min(possible_uV, min_current_uV + max_spread);
3599 if (possible_uV > desired_max_uV)
3602 done = (possible_uV == target_uV);
3603 desired_min_uV = possible_uV;
3606 /* Apply max_uV_step constraint if necessary */
3607 if (state == PM_SUSPEND_ON) {
3608 ret = regulator_limit_voltage_step(rdev, current_uV,
3617 /* Set current_uV if wasn't done earlier in the code and if necessary */
3618 if (n_coupled > 1 && *current_uV == -1) {
3620 if (_regulator_is_enabled(rdev)) {
3621 ret = regulator_get_voltage_rdev(rdev);
3627 *current_uV = desired_min_uV;
3631 *min_uV = desired_min_uV;
3632 *max_uV = desired_max_uV;
3637 static int regulator_balance_voltage(struct regulator_dev *rdev,
3638 suspend_state_t state)
3640 struct regulator_dev **c_rdevs;
3641 struct regulator_dev *best_rdev;
3642 struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 struct regulator_coupler *coupler = c_desc->coupler;
3644 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645 unsigned int delta, best_delta;
3646 unsigned long c_rdev_done = 0;
3647 bool best_c_rdev_done;
3649 c_rdevs = c_desc->coupled_rdevs;
3650 n_coupled = c_desc->n_coupled;
3653 * If system is in a state other than PM_SUSPEND_ON, don't check
3654 * other coupled regulators.
3656 if (state != PM_SUSPEND_ON)
3659 if (c_desc->n_resolved < n_coupled) {
3660 rdev_err(rdev, "Not all coupled regulators registered\n");
3664 /* Invoke custom balancer for customized couplers */
3665 if (coupler && coupler->balance_voltage)
3666 return coupler->balance_voltage(coupler, rdev, state);
3669 * Find the best possible voltage change on each loop. Leave the loop
3670 * if there isn't any possible change.
3673 best_c_rdev_done = false;
3681 * Find highest difference between optimal voltage
3682 * and current voltage.
3684 for (i = 0; i < n_coupled; i++) {
3686 * optimal_uV is the best voltage that can be set for
3687 * i-th regulator at the moment without violating
3688 * max_spread constraint in order to balance
3689 * the coupled voltages.
3691 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3693 if (test_bit(i, &c_rdev_done))
3696 ret = regulator_get_optimal_voltage(c_rdevs[i],
3704 delta = abs(optimal_uV - current_uV);
3706 if (delta && best_delta <= delta) {
3707 best_c_rdev_done = ret;
3709 best_rdev = c_rdevs[i];
3710 best_min_uV = optimal_uV;
3711 best_max_uV = optimal_max_uV;
3716 /* Nothing to change, return successfully */
3722 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723 best_max_uV, state);
3728 if (best_c_rdev_done)
3729 set_bit(best_c_rdev, &c_rdev_done);
3731 } while (n_coupled > 1);
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3755 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3757 struct ww_acquire_ctx ww_ctx;
3760 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3762 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3765 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3769 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3771 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772 suspend_state_t state, bool en)
3774 struct regulator_state *rstate;
3776 rstate = regulator_get_suspend_state(rdev, state);
3780 if (!rstate->changeable)
3783 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3788 int regulator_suspend_enable(struct regulator_dev *rdev,
3789 suspend_state_t state)
3791 return regulator_suspend_toggle(rdev, state, true);
3793 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3795 int regulator_suspend_disable(struct regulator_dev *rdev,
3796 suspend_state_t state)
3798 struct regulator *regulator;
3799 struct regulator_voltage *voltage;
3802 * if any consumer wants this regulator device keeping on in
3803 * suspend states, don't set it as disabled.
3805 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806 voltage = ®ulator->voltage[state];
3807 if (voltage->min_uV || voltage->max_uV)
3811 return regulator_suspend_toggle(rdev, state, false);
3813 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3815 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816 int min_uV, int max_uV,
3817 suspend_state_t state)
3819 struct regulator_dev *rdev = regulator->rdev;
3820 struct regulator_state *rstate;
3822 rstate = regulator_get_suspend_state(rdev, state);
3826 if (rstate->min_uV == rstate->max_uV) {
3827 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3831 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3834 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835 int max_uV, suspend_state_t state)
3837 struct ww_acquire_ctx ww_ctx;
3840 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3844 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3846 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3849 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3853 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3865 int regulator_set_voltage_time(struct regulator *regulator,
3866 int old_uV, int new_uV)
3868 struct regulator_dev *rdev = regulator->rdev;
3869 const struct regulator_ops *ops = rdev->desc->ops;
3875 if (ops->set_voltage_time)
3876 return ops->set_voltage_time(rdev, old_uV, new_uV);
3877 else if (!ops->set_voltage_time_sel)
3878 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3880 /* Currently requires operations to do this */
3881 if (!ops->list_voltage || !rdev->desc->n_voltages)
3884 for (i = 0; i < rdev->desc->n_voltages; i++) {
3885 /* We only look for exact voltage matches here */
3886 voltage = regulator_list_voltage(regulator, i);
3891 if (voltage == old_uV)
3893 if (voltage == new_uV)
3897 if (old_sel < 0 || new_sel < 0)
3900 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3916 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917 unsigned int old_selector,
3918 unsigned int new_selector)
3920 int old_volt, new_volt;
3923 if (!rdev->desc->ops->list_voltage)
3926 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3929 if (rdev->desc->ops->set_voltage_time)
3930 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3933 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3935 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3941 * Re-apply the last configured voltage. This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3945 int regulator_sync_voltage(struct regulator *regulator)
3947 struct regulator_dev *rdev = regulator->rdev;
3948 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
3949 int ret, min_uV, max_uV;
3951 regulator_lock(rdev);
3953 if (!rdev->desc->ops->set_voltage &&
3954 !rdev->desc->ops->set_voltage_sel) {
3959 /* This is only going to work if we've had a voltage configured. */
3960 if (!voltage->min_uV && !voltage->max_uV) {
3965 min_uV = voltage->min_uV;
3966 max_uV = voltage->max_uV;
3968 /* This should be a paranoia check... */
3969 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3973 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3977 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3980 regulator_unlock(rdev);
3983 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3985 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3990 if (rdev->desc->ops->get_bypass) {
3991 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3995 /* if bypassed the regulator must have a supply */
3996 if (!rdev->supply) {
3998 "bypassed regulator has no supply!\n");
3999 return -EPROBE_DEFER;
4002 return regulator_get_voltage_rdev(rdev->supply->rdev);
4006 if (rdev->desc->ops->get_voltage_sel) {
4007 sel = rdev->desc->ops->get_voltage_sel(rdev);
4010 ret = rdev->desc->ops->list_voltage(rdev, sel);
4011 } else if (rdev->desc->ops->get_voltage) {
4012 ret = rdev->desc->ops->get_voltage(rdev);
4013 } else if (rdev->desc->ops->list_voltage) {
4014 ret = rdev->desc->ops->list_voltage(rdev, 0);
4015 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016 ret = rdev->desc->fixed_uV;
4017 } else if (rdev->supply) {
4018 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4025 return ret - rdev->constraints->uV_offset;
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4032 * This returns the current regulator voltage in uV.
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4037 int regulator_get_voltage(struct regulator *regulator)
4039 struct ww_acquire_ctx ww_ctx;
4042 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043 ret = regulator_get_voltage_rdev(regulator->rdev);
4044 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4048 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4066 int regulator_set_current_limit(struct regulator *regulator,
4067 int min_uA, int max_uA)
4069 struct regulator_dev *rdev = regulator->rdev;
4072 regulator_lock(rdev);
4075 if (!rdev->desc->ops->set_current_limit) {
4080 /* constraints check */
4081 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4085 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4087 regulator_unlock(rdev);
4090 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4092 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4095 if (!rdev->desc->ops->get_current_limit)
4098 return rdev->desc->ops->get_current_limit(rdev);
4101 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4105 regulator_lock(rdev);
4106 ret = _regulator_get_current_limit_unlocked(rdev);
4107 regulator_unlock(rdev);
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4116 * This returns the current supplied by the specified current sink in uA.
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4121 int regulator_get_current_limit(struct regulator *regulator)
4123 return _regulator_get_current_limit(regulator->rdev);
4125 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4138 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4140 struct regulator_dev *rdev = regulator->rdev;
4142 int regulator_curr_mode;
4144 regulator_lock(rdev);
4147 if (!rdev->desc->ops->set_mode) {
4152 /* return if the same mode is requested */
4153 if (rdev->desc->ops->get_mode) {
4154 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155 if (regulator_curr_mode == mode) {
4161 /* constraints check */
4162 ret = regulator_mode_constrain(rdev, &mode);
4166 ret = rdev->desc->ops->set_mode(rdev, mode);
4168 regulator_unlock(rdev);
4171 EXPORT_SYMBOL_GPL(regulator_set_mode);
4173 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4176 if (!rdev->desc->ops->get_mode)
4179 return rdev->desc->ops->get_mode(rdev);
4182 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4186 regulator_lock(rdev);
4187 ret = _regulator_get_mode_unlocked(rdev);
4188 regulator_unlock(rdev);
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4197 * Get the current regulator operating mode.
4199 unsigned int regulator_get_mode(struct regulator *regulator)
4201 return _regulator_get_mode(regulator->rdev);
4203 EXPORT_SYMBOL_GPL(regulator_get_mode);
4205 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206 unsigned int *flags)
4210 regulator_lock(rdev);
4213 if (!rdev->desc->ops->get_error_flags) {
4218 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4220 regulator_unlock(rdev);
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4229 * Get the current regulator error information.
4231 int regulator_get_error_flags(struct regulator *regulator,
4232 unsigned int *flags)
4234 return _regulator_get_error_flags(regulator->rdev, flags);
4236 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4253 * o Device is opened / closed.
4254 * o Device I/O is about to begin or has just finished.
4255 * o Device is idling in between work.
4257 * This information is also exported via sysfs to userspace.
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load. If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4270 * On error a negative errno is returned.
4272 int regulator_set_load(struct regulator *regulator, int uA_load)
4274 struct regulator_dev *rdev = regulator->rdev;
4278 regulator_lock(rdev);
4279 old_uA_load = regulator->uA_load;
4280 regulator->uA_load = uA_load;
4281 if (regulator->enable_count && old_uA_load != uA_load) {
4282 ret = drms_uA_update(rdev);
4284 regulator->uA_load = old_uA_load;
4286 regulator_unlock(rdev);
4290 EXPORT_SYMBOL_GPL(regulator_set_load);
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this. Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4303 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4305 struct regulator_dev *rdev = regulator->rdev;
4308 if (!rdev->desc->ops->set_bypass)
4311 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4314 regulator_lock(rdev);
4316 if (enable && !regulator->bypass) {
4317 rdev->bypass_count++;
4319 if (rdev->bypass_count == rdev->open_count) {
4320 ret = rdev->desc->ops->set_bypass(rdev, enable);
4322 rdev->bypass_count--;
4325 } else if (!enable && regulator->bypass) {
4326 rdev->bypass_count--;
4328 if (rdev->bypass_count != rdev->open_count) {
4329 ret = rdev->desc->ops->set_bypass(rdev, enable);
4331 rdev->bypass_count++;
4336 regulator->bypass = enable;
4338 regulator_unlock(rdev);
4342 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4349 * Register notifier block to receive regulator events.
4351 int regulator_register_notifier(struct regulator *regulator,
4352 struct notifier_block *nb)
4354 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4357 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4364 * Unregister regulator event notifier block.
4366 int regulator_unregister_notifier(struct regulator *regulator,
4367 struct notifier_block *nb)
4369 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4372 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4374 /* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4377 static int _notifier_call_chain(struct regulator_dev *rdev,
4378 unsigned long event, void *data)
4380 /* call rdev chain first */
4381 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4385 * regulator_bulk_get - get multiple regulator consumers
4387 * @dev: Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers: Configuration of consumers; clients are stored here.
4391 * @return 0 on success, an errno on failure.
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation. If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4398 int regulator_bulk_get(struct device *dev, int num_consumers,
4399 struct regulator_bulk_data *consumers)
4404 for (i = 0; i < num_consumers; i++)
4405 consumers[i].consumer = NULL;
4407 for (i = 0; i < num_consumers; i++) {
4408 consumers[i].consumer = regulator_get(dev,
4409 consumers[i].supply);
4410 if (IS_ERR(consumers[i].consumer)) {
4411 ret = PTR_ERR(consumers[i].consumer);
4412 consumers[i].consumer = NULL;
4420 if (ret != -EPROBE_DEFER)
4421 dev_err(dev, "Failed to get supply '%s': %d\n",
4422 consumers[i].supply, ret);
4424 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425 consumers[i].supply);
4428 regulator_put(consumers[i].consumer);
4432 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4434 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4436 struct regulator_bulk_data *bulk = data;
4438 bulk->ret = regulator_enable(bulk->consumer);
4442 * regulator_bulk_enable - enable multiple regulator consumers
4444 * @num_consumers: Number of consumers
4445 * @consumers: Consumer data; clients are stored here.
4446 * @return 0 on success, an errno on failure
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call. If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4453 int regulator_bulk_enable(int num_consumers,
4454 struct regulator_bulk_data *consumers)
4456 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4460 for (i = 0; i < num_consumers; i++) {
4461 async_schedule_domain(regulator_bulk_enable_async,
4462 &consumers[i], &async_domain);
4465 async_synchronize_full_domain(&async_domain);
4467 /* If any consumer failed we need to unwind any that succeeded */
4468 for (i = 0; i < num_consumers; i++) {
4469 if (consumers[i].ret != 0) {
4470 ret = consumers[i].ret;
4478 for (i = 0; i < num_consumers; i++) {
4479 if (consumers[i].ret < 0)
4480 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4483 regulator_disable(consumers[i].consumer);
4488 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4491 * regulator_bulk_disable - disable multiple regulator consumers
4493 * @num_consumers: Number of consumers
4494 * @consumers: Consumer data; clients are stored here.
4495 * @return 0 on success, an errno on failure
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call. If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4502 int regulator_bulk_disable(int num_consumers,
4503 struct regulator_bulk_data *consumers)
4508 for (i = num_consumers - 1; i >= 0; --i) {
4509 ret = regulator_disable(consumers[i].consumer);
4517 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518 for (++i; i < num_consumers; ++i) {
4519 r = regulator_enable(consumers[i].consumer);
4521 pr_err("Failed to re-enable %s: %d\n",
4522 consumers[i].supply, r);
4527 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4532 * @num_consumers: Number of consumers
4533 * @consumers: Consumer data; clients are stored here.
4534 * @return 0 on success, an errno on failure
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4543 int regulator_bulk_force_disable(int num_consumers,
4544 struct regulator_bulk_data *consumers)
4549 for (i = 0; i < num_consumers; i++) {
4551 regulator_force_disable(consumers[i].consumer);
4553 /* Store first error for reporting */
4554 if (consumers[i].ret && !ret)
4555 ret = consumers[i].ret;
4560 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4563 * regulator_bulk_free - free multiple regulator consumers
4565 * @num_consumers: Number of consumers
4566 * @consumers: Consumer data; clients are stored here.
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4571 void regulator_bulk_free(int num_consumers,
4572 struct regulator_bulk_data *consumers)
4576 for (i = 0; i < num_consumers; i++) {
4577 regulator_put(consumers[i].consumer);
4578 consumers[i].consumer = NULL;
4581 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4593 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594 unsigned long event, void *data)
4596 lockdep_assert_held_once(&rdev->mutex.base);
4598 _notifier_call_chain(rdev, event, data);
4602 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4605 * regulator_mode_to_status - convert a regulator mode into a status
4607 * @mode: Mode to convert
4609 * Convert a regulator mode into a status.
4611 int regulator_mode_to_status(unsigned int mode)
4614 case REGULATOR_MODE_FAST:
4615 return REGULATOR_STATUS_FAST;
4616 case REGULATOR_MODE_NORMAL:
4617 return REGULATOR_STATUS_NORMAL;
4618 case REGULATOR_MODE_IDLE:
4619 return REGULATOR_STATUS_IDLE;
4620 case REGULATOR_MODE_STANDBY:
4621 return REGULATOR_STATUS_STANDBY;
4623 return REGULATOR_STATUS_UNDEFINED;
4626 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4628 static struct attribute *regulator_dev_attrs[] = {
4629 &dev_attr_name.attr,
4630 &dev_attr_num_users.attr,
4631 &dev_attr_type.attr,
4632 &dev_attr_microvolts.attr,
4633 &dev_attr_microamps.attr,
4634 &dev_attr_opmode.attr,
4635 &dev_attr_state.attr,
4636 &dev_attr_status.attr,
4637 &dev_attr_bypass.attr,
4638 &dev_attr_requested_microamps.attr,
4639 &dev_attr_min_microvolts.attr,
4640 &dev_attr_max_microvolts.attr,
4641 &dev_attr_min_microamps.attr,
4642 &dev_attr_max_microamps.attr,
4643 &dev_attr_suspend_standby_state.attr,
4644 &dev_attr_suspend_mem_state.attr,
4645 &dev_attr_suspend_disk_state.attr,
4646 &dev_attr_suspend_standby_microvolts.attr,
4647 &dev_attr_suspend_mem_microvolts.attr,
4648 &dev_attr_suspend_disk_microvolts.attr,
4649 &dev_attr_suspend_standby_mode.attr,
4650 &dev_attr_suspend_mem_mode.attr,
4651 &dev_attr_suspend_disk_mode.attr,
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4659 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660 struct attribute *attr, int idx)
4662 struct device *dev = kobj_to_dev(kobj);
4663 struct regulator_dev *rdev = dev_to_rdev(dev);
4664 const struct regulator_ops *ops = rdev->desc->ops;
4665 umode_t mode = attr->mode;
4667 /* these three are always present */
4668 if (attr == &dev_attr_name.attr ||
4669 attr == &dev_attr_num_users.attr ||
4670 attr == &dev_attr_type.attr)
4673 /* some attributes need specific methods to be displayed */
4674 if (attr == &dev_attr_microvolts.attr) {
4675 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4683 if (attr == &dev_attr_microamps.attr)
4684 return ops->get_current_limit ? mode : 0;
4686 if (attr == &dev_attr_opmode.attr)
4687 return ops->get_mode ? mode : 0;
4689 if (attr == &dev_attr_state.attr)
4690 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4692 if (attr == &dev_attr_status.attr)
4693 return ops->get_status ? mode : 0;
4695 if (attr == &dev_attr_bypass.attr)
4696 return ops->get_bypass ? mode : 0;
4698 /* constraints need specific supporting methods */
4699 if (attr == &dev_attr_min_microvolts.attr ||
4700 attr == &dev_attr_max_microvolts.attr)
4701 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4703 if (attr == &dev_attr_min_microamps.attr ||
4704 attr == &dev_attr_max_microamps.attr)
4705 return ops->set_current_limit ? mode : 0;
4707 if (attr == &dev_attr_suspend_standby_state.attr ||
4708 attr == &dev_attr_suspend_mem_state.attr ||
4709 attr == &dev_attr_suspend_disk_state.attr)
4712 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713 attr == &dev_attr_suspend_mem_microvolts.attr ||
4714 attr == &dev_attr_suspend_disk_microvolts.attr)
4715 return ops->set_suspend_voltage ? mode : 0;
4717 if (attr == &dev_attr_suspend_standby_mode.attr ||
4718 attr == &dev_attr_suspend_mem_mode.attr ||
4719 attr == &dev_attr_suspend_disk_mode.attr)
4720 return ops->set_suspend_mode ? mode : 0;
4725 static const struct attribute_group regulator_dev_group = {
4726 .attrs = regulator_dev_attrs,
4727 .is_visible = regulator_attr_is_visible,
4730 static const struct attribute_group *regulator_dev_groups[] = {
4731 ®ulator_dev_group,
4735 static void regulator_dev_release(struct device *dev)
4737 struct regulator_dev *rdev = dev_get_drvdata(dev);
4739 kfree(rdev->constraints);
4740 of_node_put(rdev->dev.of_node);
4744 static void rdev_init_debugfs(struct regulator_dev *rdev)
4746 struct device *parent = rdev->dev.parent;
4747 const char *rname = rdev_get_name(rdev);
4748 char name[NAME_MAX];
4750 /* Avoid duplicate debugfs directory names */
4751 if (parent && rname == rdev->desc->name) {
4752 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4757 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758 if (!rdev->debugfs) {
4759 rdev_warn(rdev, "Failed to create debugfs directory\n");
4763 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4765 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4767 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768 &rdev->bypass_count);
4771 static int regulator_register_resolve_supply(struct device *dev, void *data)
4773 struct regulator_dev *rdev = dev_to_rdev(dev);
4775 if (regulator_resolve_supply(rdev))
4776 rdev_dbg(rdev, "unable to resolve supply\n");
4781 int regulator_coupler_register(struct regulator_coupler *coupler)
4783 mutex_lock(®ulator_list_mutex);
4784 list_add_tail(&coupler->list, ®ulator_coupler_list);
4785 mutex_unlock(®ulator_list_mutex);
4790 static struct regulator_coupler *
4791 regulator_find_coupler(struct regulator_dev *rdev)
4793 struct regulator_coupler *coupler;
4797 * Note that regulators are appended to the list and the generic
4798 * coupler is registered first, hence it will be attached at last
4801 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4802 err = coupler->attach_regulator(coupler, rdev);
4804 if (!coupler->balance_voltage &&
4805 rdev->coupling_desc.n_coupled > 2)
4806 goto err_unsupported;
4812 return ERR_PTR(err);
4820 return ERR_PTR(-EINVAL);
4823 if (coupler->detach_regulator)
4824 coupler->detach_regulator(coupler, rdev);
4827 "Voltage balancing for multiple regulator couples is unimplemented\n");
4829 return ERR_PTR(-EPERM);
4832 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4834 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835 struct coupling_desc *c_desc = &rdev->coupling_desc;
4836 int n_coupled = c_desc->n_coupled;
4837 struct regulator_dev *c_rdev;
4840 for (i = 1; i < n_coupled; i++) {
4841 /* already resolved */
4842 if (c_desc->coupled_rdevs[i])
4845 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4850 if (c_rdev->coupling_desc.coupler != coupler) {
4851 rdev_err(rdev, "coupler mismatch with %s\n",
4852 rdev_get_name(c_rdev));
4856 regulator_lock(c_rdev);
4858 c_desc->coupled_rdevs[i] = c_rdev;
4859 c_desc->n_resolved++;
4861 regulator_unlock(c_rdev);
4863 regulator_resolve_coupling(c_rdev);
4867 static void regulator_remove_coupling(struct regulator_dev *rdev)
4869 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871 struct regulator_dev *__c_rdev, *c_rdev;
4872 unsigned int __n_coupled, n_coupled;
4876 n_coupled = c_desc->n_coupled;
4878 for (i = 1; i < n_coupled; i++) {
4879 c_rdev = c_desc->coupled_rdevs[i];
4884 regulator_lock(c_rdev);
4886 __c_desc = &c_rdev->coupling_desc;
4887 __n_coupled = __c_desc->n_coupled;
4889 for (k = 1; k < __n_coupled; k++) {
4890 __c_rdev = __c_desc->coupled_rdevs[k];
4892 if (__c_rdev == rdev) {
4893 __c_desc->coupled_rdevs[k] = NULL;
4894 __c_desc->n_resolved--;
4899 regulator_unlock(c_rdev);
4901 c_desc->coupled_rdevs[i] = NULL;
4902 c_desc->n_resolved--;
4905 if (coupler && coupler->detach_regulator) {
4906 err = coupler->detach_regulator(coupler, rdev);
4908 rdev_err(rdev, "failed to detach from coupler: %d\n",
4912 kfree(rdev->coupling_desc.coupled_rdevs);
4913 rdev->coupling_desc.coupled_rdevs = NULL;
4916 static int regulator_init_coupling(struct regulator_dev *rdev)
4918 int err, n_phandles;
4921 if (!IS_ENABLED(CONFIG_OF))
4924 n_phandles = of_get_n_coupled(rdev);
4926 alloc_size = sizeof(*rdev) * (n_phandles + 1);
4928 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929 if (!rdev->coupling_desc.coupled_rdevs)
4933 * Every regulator should always have coupling descriptor filled with
4934 * at least pointer to itself.
4936 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937 rdev->coupling_desc.n_coupled = n_phandles + 1;
4938 rdev->coupling_desc.n_resolved++;
4940 /* regulator isn't coupled */
4941 if (n_phandles == 0)
4944 if (!of_check_coupling_data(rdev))
4947 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948 if (IS_ERR(rdev->coupling_desc.coupler)) {
4949 err = PTR_ERR(rdev->coupling_desc.coupler);
4950 rdev_err(rdev, "failed to get coupler: %d\n", err);
4957 static int generic_coupler_attach(struct regulator_coupler *coupler,
4958 struct regulator_dev *rdev)
4960 if (rdev->coupling_desc.n_coupled > 2) {
4962 "Voltage balancing for multiple regulator couples is unimplemented\n");
4969 static struct regulator_coupler generic_regulator_coupler = {
4970 .attach_regulator = generic_coupler_attach,
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4982 struct regulator_dev *
4983 regulator_register(const struct regulator_desc *regulator_desc,
4984 const struct regulator_config *cfg)
4986 const struct regulation_constraints *constraints = NULL;
4987 const struct regulator_init_data *init_data;
4988 struct regulator_config *config = NULL;
4989 static atomic_t regulator_no = ATOMIC_INIT(-1);
4990 struct regulator_dev *rdev;
4991 bool dangling_cfg_gpiod = false;
4992 bool dangling_of_gpiod = false;
4997 return ERR_PTR(-EINVAL);
4999 dangling_cfg_gpiod = true;
5000 if (regulator_desc == NULL) {
5008 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5013 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014 regulator_desc->type != REGULATOR_CURRENT) {
5019 /* Only one of each should be implemented */
5020 WARN_ON(regulator_desc->ops->get_voltage &&
5021 regulator_desc->ops->get_voltage_sel);
5022 WARN_ON(regulator_desc->ops->set_voltage &&
5023 regulator_desc->ops->set_voltage_sel);
5025 /* If we're using selectors we must implement list_voltage. */
5026 if (regulator_desc->ops->get_voltage_sel &&
5027 !regulator_desc->ops->list_voltage) {
5031 if (regulator_desc->ops->set_voltage_sel &&
5032 !regulator_desc->ops->list_voltage) {
5037 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5044 * Duplicate the config so the driver could override it after
5045 * parsing init data.
5047 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048 if (config == NULL) {
5054 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055 &rdev->dev.of_node);
5058 * Sometimes not all resources are probed already so we need to take
5059 * that into account. This happens most the time if the ena_gpiod comes
5060 * from a gpio extender or something else.
5062 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5065 ret = -EPROBE_DEFER;
5070 * We need to keep track of any GPIO descriptor coming from the
5071 * device tree until we have handled it over to the core. If the
5072 * config that was passed in to this function DOES NOT contain
5073 * a descriptor, and the config after this call DOES contain
5074 * a descriptor, we definitely got one from parsing the device
5077 if (!cfg->ena_gpiod && config->ena_gpiod)
5078 dangling_of_gpiod = true;
5080 init_data = config->init_data;
5081 rdev->dev.of_node = of_node_get(config->of_node);
5084 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5085 rdev->reg_data = config->driver_data;
5086 rdev->owner = regulator_desc->owner;
5087 rdev->desc = regulator_desc;
5089 rdev->regmap = config->regmap;
5090 else if (dev_get_regmap(dev, NULL))
5091 rdev->regmap = dev_get_regmap(dev, NULL);
5092 else if (dev->parent)
5093 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094 INIT_LIST_HEAD(&rdev->consumer_list);
5095 INIT_LIST_HEAD(&rdev->list);
5096 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5099 /* preform any regulator specific init */
5100 if (init_data && init_data->regulator_init) {
5101 ret = init_data->regulator_init(rdev->reg_data);
5106 if (config->ena_gpiod) {
5107 mutex_lock(®ulator_list_mutex);
5108 ret = regulator_ena_gpio_request(rdev, config);
5109 mutex_unlock(®ulator_list_mutex);
5111 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5115 /* The regulator core took over the GPIO descriptor */
5116 dangling_cfg_gpiod = false;
5117 dangling_of_gpiod = false;
5120 /* register with sysfs */
5121 rdev->dev.class = ®ulator_class;
5122 rdev->dev.parent = dev;
5123 dev_set_name(&rdev->dev, "regulator.%lu",
5124 (unsigned long) atomic_inc_return(®ulator_no));
5126 /* set regulator constraints */
5128 constraints = &init_data->constraints;
5130 if (init_data && init_data->supply_regulator)
5131 rdev->supply_name = init_data->supply_regulator;
5132 else if (regulator_desc->supply_name)
5133 rdev->supply_name = regulator_desc->supply_name;
5136 * Attempt to resolve the regulator supply, if specified,
5137 * but don't return an error if we fail because we will try
5138 * to resolve it again later as more regulators are added.
5140 if (regulator_resolve_supply(rdev))
5141 rdev_dbg(rdev, "unable to resolve supply\n");
5143 ret = set_machine_constraints(rdev, constraints);
5147 mutex_lock(®ulator_list_mutex);
5148 ret = regulator_init_coupling(rdev);
5149 mutex_unlock(®ulator_list_mutex);
5153 /* add consumers devices */
5155 mutex_lock(®ulator_list_mutex);
5156 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157 ret = set_consumer_device_supply(rdev,
5158 init_data->consumer_supplies[i].dev_name,
5159 init_data->consumer_supplies[i].supply);
5161 mutex_unlock(®ulator_list_mutex);
5162 dev_err(dev, "Failed to set supply %s\n",
5163 init_data->consumer_supplies[i].supply);
5164 goto unset_supplies;
5167 mutex_unlock(®ulator_list_mutex);
5170 if (!rdev->desc->ops->get_voltage &&
5171 !rdev->desc->ops->list_voltage &&
5172 !rdev->desc->fixed_uV)
5173 rdev->is_switch = true;
5175 dev_set_drvdata(&rdev->dev, rdev);
5176 ret = device_register(&rdev->dev);
5178 put_device(&rdev->dev);
5179 goto unset_supplies;
5182 rdev_init_debugfs(rdev);
5184 /* try to resolve regulators coupling since a new one was registered */
5185 mutex_lock(®ulator_list_mutex);
5186 regulator_resolve_coupling(rdev);
5187 mutex_unlock(®ulator_list_mutex);
5189 /* try to resolve regulators supply since a new one was registered */
5190 class_for_each_device(®ulator_class, NULL, NULL,
5191 regulator_register_resolve_supply);
5196 mutex_lock(®ulator_list_mutex);
5197 unset_regulator_supplies(rdev);
5198 regulator_remove_coupling(rdev);
5199 mutex_unlock(®ulator_list_mutex);
5201 kfree(rdev->constraints);
5202 mutex_lock(®ulator_list_mutex);
5203 regulator_ena_gpio_free(rdev);
5204 mutex_unlock(®ulator_list_mutex);
5206 if (dangling_of_gpiod)
5207 gpiod_put(config->ena_gpiod);
5211 if (dangling_cfg_gpiod)
5212 gpiod_put(cfg->ena_gpiod);
5213 return ERR_PTR(ret);
5215 EXPORT_SYMBOL_GPL(regulator_register);
5218 * regulator_unregister - unregister regulator
5219 * @rdev: regulator to unregister
5221 * Called by regulator drivers to unregister a regulator.
5223 void regulator_unregister(struct regulator_dev *rdev)
5229 while (rdev->use_count--)
5230 regulator_disable(rdev->supply);
5231 regulator_put(rdev->supply);
5234 flush_work(&rdev->disable_work.work);
5236 mutex_lock(®ulator_list_mutex);
5238 debugfs_remove_recursive(rdev->debugfs);
5239 WARN_ON(rdev->open_count);
5240 regulator_remove_coupling(rdev);
5241 unset_regulator_supplies(rdev);
5242 list_del(&rdev->list);
5243 regulator_ena_gpio_free(rdev);
5244 device_unregister(&rdev->dev);
5246 mutex_unlock(®ulator_list_mutex);
5248 EXPORT_SYMBOL_GPL(regulator_unregister);
5250 #ifdef CONFIG_SUSPEND
5252 * regulator_suspend - prepare regulators for system wide suspend
5253 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5255 * Configure each regulator with it's suspend operating parameters for state.
5257 static int regulator_suspend(struct device *dev)
5259 struct regulator_dev *rdev = dev_to_rdev(dev);
5260 suspend_state_t state = pm_suspend_target_state;
5263 regulator_lock(rdev);
5264 ret = suspend_set_state(rdev, state);
5265 regulator_unlock(rdev);
5270 static int regulator_resume(struct device *dev)
5272 suspend_state_t state = pm_suspend_target_state;
5273 struct regulator_dev *rdev = dev_to_rdev(dev);
5274 struct regulator_state *rstate;
5277 rstate = regulator_get_suspend_state(rdev, state);
5281 regulator_lock(rdev);
5283 if (rdev->desc->ops->resume &&
5284 (rstate->enabled == ENABLE_IN_SUSPEND ||
5285 rstate->enabled == DISABLE_IN_SUSPEND))
5286 ret = rdev->desc->ops->resume(rdev);
5288 regulator_unlock(rdev);
5292 #else /* !CONFIG_SUSPEND */
5294 #define regulator_suspend NULL
5295 #define regulator_resume NULL
5297 #endif /* !CONFIG_SUSPEND */
5300 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301 .suspend = regulator_suspend,
5302 .resume = regulator_resume,
5306 struct class regulator_class = {
5307 .name = "regulator",
5308 .dev_release = regulator_dev_release,
5309 .dev_groups = regulator_dev_groups,
5311 .pm = ®ulator_pm_ops,
5315 * regulator_has_full_constraints - the system has fully specified constraints
5317 * Calling this function will cause the regulator API to disable all
5318 * regulators which have a zero use count and don't have an always_on
5319 * constraint in a late_initcall.
5321 * The intention is that this will become the default behaviour in a
5322 * future kernel release so users are encouraged to use this facility
5325 void regulator_has_full_constraints(void)
5327 has_full_constraints = 1;
5329 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5332 * rdev_get_drvdata - get rdev regulator driver data
5335 * Get rdev regulator driver private data. This call can be used in the
5336 * regulator driver context.
5338 void *rdev_get_drvdata(struct regulator_dev *rdev)
5340 return rdev->reg_data;
5342 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5345 * regulator_get_drvdata - get regulator driver data
5346 * @regulator: regulator
5348 * Get regulator driver private data. This call can be used in the consumer
5349 * driver context when non API regulator specific functions need to be called.
5351 void *regulator_get_drvdata(struct regulator *regulator)
5353 return regulator->rdev->reg_data;
5355 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5358 * regulator_set_drvdata - set regulator driver data
5359 * @regulator: regulator
5362 void regulator_set_drvdata(struct regulator *regulator, void *data)
5364 regulator->rdev->reg_data = data;
5366 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5369 * regulator_get_id - get regulator ID
5372 int rdev_get_id(struct regulator_dev *rdev)
5374 return rdev->desc->id;
5376 EXPORT_SYMBOL_GPL(rdev_get_id);
5378 struct device *rdev_get_dev(struct regulator_dev *rdev)
5382 EXPORT_SYMBOL_GPL(rdev_get_dev);
5384 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5386 return rdev->regmap;
5388 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5390 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5392 return reg_init_data->driver_data;
5394 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5396 #ifdef CONFIG_DEBUG_FS
5397 static int supply_map_show(struct seq_file *sf, void *data)
5399 struct regulator_map *map;
5401 list_for_each_entry(map, ®ulator_map_list, list) {
5402 seq_printf(sf, "%s -> %s.%s\n",
5403 rdev_get_name(map->regulator), map->dev_name,
5409 DEFINE_SHOW_ATTRIBUTE(supply_map);
5411 struct summary_data {
5413 struct regulator_dev *parent;
5417 static void regulator_summary_show_subtree(struct seq_file *s,
5418 struct regulator_dev *rdev,
5421 static int regulator_summary_show_children(struct device *dev, void *data)
5423 struct regulator_dev *rdev = dev_to_rdev(dev);
5424 struct summary_data *summary_data = data;
5426 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427 regulator_summary_show_subtree(summary_data->s, rdev,
5428 summary_data->level + 1);
5433 static void regulator_summary_show_subtree(struct seq_file *s,
5434 struct regulator_dev *rdev,
5437 struct regulation_constraints *c;
5438 struct regulator *consumer;
5439 struct summary_data summary_data;
5440 unsigned int opmode;
5445 opmode = _regulator_get_mode_unlocked(rdev);
5446 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5448 30 - level * 3, rdev_get_name(rdev),
5449 rdev->use_count, rdev->open_count, rdev->bypass_count,
5450 regulator_opmode_to_str(opmode));
5452 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453 seq_printf(s, "%5dmA ",
5454 _regulator_get_current_limit_unlocked(rdev) / 1000);
5456 c = rdev->constraints;
5458 switch (rdev->desc->type) {
5459 case REGULATOR_VOLTAGE:
5460 seq_printf(s, "%5dmV %5dmV ",
5461 c->min_uV / 1000, c->max_uV / 1000);
5463 case REGULATOR_CURRENT:
5464 seq_printf(s, "%5dmA %5dmA ",
5465 c->min_uA / 1000, c->max_uA / 1000);
5472 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473 if (consumer->dev && consumer->dev->class == ®ulator_class)
5476 seq_printf(s, "%*s%-*s ",
5477 (level + 1) * 3 + 1, "",
5478 30 - (level + 1) * 3,
5479 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5481 switch (rdev->desc->type) {
5482 case REGULATOR_VOLTAGE:
5483 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484 consumer->enable_count,
5485 consumer->uA_load / 1000,
5486 consumer->uA_load && !consumer->enable_count ?
5488 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5491 case REGULATOR_CURRENT:
5499 summary_data.level = level;
5500 summary_data.parent = rdev;
5502 class_for_each_device(®ulator_class, NULL, &summary_data,
5503 regulator_summary_show_children);
5506 struct summary_lock_data {
5507 struct ww_acquire_ctx *ww_ctx;
5508 struct regulator_dev **new_contended_rdev;
5509 struct regulator_dev **old_contended_rdev;
5512 static int regulator_summary_lock_one(struct device *dev, void *data)
5514 struct regulator_dev *rdev = dev_to_rdev(dev);
5515 struct summary_lock_data *lock_data = data;
5518 if (rdev != *lock_data->old_contended_rdev) {
5519 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5521 if (ret == -EDEADLK)
5522 *lock_data->new_contended_rdev = rdev;
5526 *lock_data->old_contended_rdev = NULL;
5532 static int regulator_summary_unlock_one(struct device *dev, void *data)
5534 struct regulator_dev *rdev = dev_to_rdev(dev);
5535 struct summary_lock_data *lock_data = data;
5538 if (rdev == *lock_data->new_contended_rdev)
5542 regulator_unlock(rdev);
5547 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548 struct regulator_dev **new_contended_rdev,
5549 struct regulator_dev **old_contended_rdev)
5551 struct summary_lock_data lock_data;
5554 lock_data.ww_ctx = ww_ctx;
5555 lock_data.new_contended_rdev = new_contended_rdev;
5556 lock_data.old_contended_rdev = old_contended_rdev;
5558 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5559 regulator_summary_lock_one);
5561 class_for_each_device(®ulator_class, NULL, &lock_data,
5562 regulator_summary_unlock_one);
5567 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5569 struct regulator_dev *new_contended_rdev = NULL;
5570 struct regulator_dev *old_contended_rdev = NULL;
5573 mutex_lock(®ulator_list_mutex);
5575 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5578 if (new_contended_rdev) {
5579 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580 old_contended_rdev = new_contended_rdev;
5581 old_contended_rdev->ref_cnt++;
5584 err = regulator_summary_lock_all(ww_ctx,
5585 &new_contended_rdev,
5586 &old_contended_rdev);
5588 if (old_contended_rdev)
5589 regulator_unlock(old_contended_rdev);
5591 } while (err == -EDEADLK);
5593 ww_acquire_done(ww_ctx);
5596 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5598 class_for_each_device(®ulator_class, NULL, NULL,
5599 regulator_summary_unlock_one);
5600 ww_acquire_fini(ww_ctx);
5602 mutex_unlock(®ulator_list_mutex);
5605 static int regulator_summary_show_roots(struct device *dev, void *data)
5607 struct regulator_dev *rdev = dev_to_rdev(dev);
5608 struct seq_file *s = data;
5611 regulator_summary_show_subtree(s, rdev, 0);
5616 static int regulator_summary_show(struct seq_file *s, void *data)
5618 struct ww_acquire_ctx ww_ctx;
5620 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5621 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5623 regulator_summary_lock(&ww_ctx);
5625 class_for_each_device(®ulator_class, NULL, s,
5626 regulator_summary_show_roots);
5628 regulator_summary_unlock(&ww_ctx);
5632 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633 #endif /* CONFIG_DEBUG_FS */
5635 static int __init regulator_init(void)
5639 ret = class_register(®ulator_class);
5641 debugfs_root = debugfs_create_dir("regulator", NULL);
5643 pr_warn("regulator: Failed to create debugfs directory\n");
5645 #ifdef CONFIG_DEBUG_FS
5646 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5649 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650 NULL, ®ulator_summary_fops);
5652 regulator_dummy_init();
5654 regulator_coupler_register(&generic_regulator_coupler);
5659 /* init early to allow our consumers to complete system booting */
5660 core_initcall(regulator_init);
5662 static int regulator_late_cleanup(struct device *dev, void *data)
5664 struct regulator_dev *rdev = dev_to_rdev(dev);
5665 const struct regulator_ops *ops = rdev->desc->ops;
5666 struct regulation_constraints *c = rdev->constraints;
5669 if (c && c->always_on)
5672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5675 regulator_lock(rdev);
5677 if (rdev->use_count)
5680 /* If we can't read the status assume it's on. */
5681 if (ops->is_enabled)
5682 enabled = ops->is_enabled(rdev);
5689 if (have_full_constraints()) {
5690 /* We log since this may kill the system if it goes
5692 rdev_info(rdev, "disabling\n");
5693 ret = _regulator_do_disable(rdev);
5695 rdev_err(rdev, "couldn't disable: %d\n", ret);
5697 /* The intention is that in future we will
5698 * assume that full constraints are provided
5699 * so warn even if we aren't going to do
5702 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5706 regulator_unlock(rdev);
5711 static void regulator_init_complete_work_function(struct work_struct *work)
5714 * Regulators may had failed to resolve their input supplies
5715 * when were registered, either because the input supply was
5716 * not registered yet or because its parent device was not
5717 * bound yet. So attempt to resolve the input supplies for
5718 * pending regulators before trying to disable unused ones.
5720 class_for_each_device(®ulator_class, NULL, NULL,
5721 regulator_register_resolve_supply);
5723 /* If we have a full configuration then disable any regulators
5724 * we have permission to change the status for and which are
5725 * not in use or always_on. This is effectively the default
5726 * for DT and ACPI as they have full constraints.
5728 class_for_each_device(®ulator_class, NULL, NULL,
5729 regulator_late_cleanup);
5732 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733 regulator_init_complete_work_function);
5735 static int __init regulator_init_complete(void)
5738 * Since DT doesn't provide an idiomatic mechanism for
5739 * enabling full constraints and since it's much more natural
5740 * with DT to provide them just assume that a DT enabled
5741 * system has full constraints.
5743 if (of_have_populated_dt())
5744 has_full_constraints = true;
5747 * We punt completion for an arbitrary amount of time since
5748 * systems like distros will load many drivers from userspace
5749 * so consumers might not always be ready yet, this is
5750 * particularly an issue with laptops where this might bounce
5751 * the display off then on. Ideally we'd get a notification
5752 * from userspace when this happens but we don't so just wait
5753 * a bit and hope we waited long enough. It'd be better if
5754 * we'd only do this on systems that need it, and a kernel
5755 * command line option might be useful.
5757 schedule_delayed_work(®ulator_init_complete_work,
5758 msecs_to_jiffies(30000));
5762 late_initcall_sync(regulator_init_complete);