1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup *target_mem_cgroup;
80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
81 unsigned int may_writepage:1;
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Allocation order */
105 /* Scan (total_size >> priority) pages at once */
108 /* The highest zone to isolate pages for reclaim from */
111 /* This context's GFP mask */
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
134 if ((_page)->lru.prev != _base) { \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
148 if ((_page)->lru.prev != _base) { \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
160 * From 0 .. 100. Higher means more swappy.
162 int vm_swappiness = 60;
164 * The total number of pages which are beyond the high watermark within all
167 unsigned long vm_total_pages;
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
172 #ifdef CONFIG_MEMCG_KMEM
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
192 int id, ret = -ENOMEM;
194 down_write(&shrinker_rwsem);
195 /* This may call shrinker, so it must use down_read_trylock() */
196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
200 if (id >= shrinker_nr_max) {
201 if (memcg_expand_shrinker_maps(id)) {
202 idr_remove(&shrinker_idr, id);
206 shrinker_nr_max = id + 1;
211 up_write(&shrinker_rwsem);
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
217 int id = shrinker->id;
221 down_write(&shrinker_rwsem);
222 idr_remove(&shrinker_idr, id);
223 up_write(&shrinker_rwsem);
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
234 #endif /* CONFIG_MEMCG_KMEM */
237 static bool global_reclaim(struct scan_control *sc)
239 return !sc->target_mem_cgroup;
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
255 static bool sane_reclaim(struct scan_control *sc)
257 struct mem_cgroup *memcg = sc->target_mem_cgroup;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 struct mem_cgroup *memcg,
272 struct mem_cgroup_per_node *mn;
277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 WRITE_ONCE(mn->congested, congested);
281 static bool memcg_congested(pg_data_t *pgdat,
282 struct mem_cgroup *memcg)
284 struct mem_cgroup_per_node *mn;
286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 return READ_ONCE(mn->congested);
291 static bool global_reclaim(struct scan_control *sc)
296 static bool sane_reclaim(struct scan_control *sc)
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 struct mem_cgroup *memcg, bool congested)
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg)
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
319 unsigned long zone_reclaimable_pages(struct zone *zone)
323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 if (get_nr_swap_pages() > 0)
326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340 unsigned long lru_size;
343 if (!mem_cgroup_disabled())
344 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
352 if (!managed_zone(zone))
355 if (!mem_cgroup_disabled())
356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 NR_ZONE_LRU_BASE + lru);
360 lru_size -= min(size, lru_size);
368 * Add a shrinker callback to be called from the vm.
370 int prealloc_shrinker(struct shrinker *shrinker)
372 size_t size = sizeof(*shrinker->nr_deferred);
374 if (shrinker->flags & SHRINKER_NUMA_AWARE)
377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 if (!shrinker->nr_deferred)
381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 if (prealloc_memcg_shrinker(shrinker))
389 kfree(shrinker->nr_deferred);
390 shrinker->nr_deferred = NULL;
394 void free_prealloced_shrinker(struct shrinker *shrinker)
396 if (!shrinker->nr_deferred)
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 unregister_memcg_shrinker(shrinker);
402 kfree(shrinker->nr_deferred);
403 shrinker->nr_deferred = NULL;
406 void register_shrinker_prepared(struct shrinker *shrinker)
408 down_write(&shrinker_rwsem);
409 list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 up_write(&shrinker_rwsem);
416 int register_shrinker(struct shrinker *shrinker)
418 int err = prealloc_shrinker(shrinker);
422 register_shrinker_prepared(shrinker);
425 EXPORT_SYMBOL(register_shrinker);
430 void unregister_shrinker(struct shrinker *shrinker)
432 if (!shrinker->nr_deferred)
434 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
435 unregister_memcg_shrinker(shrinker);
436 down_write(&shrinker_rwsem);
437 list_del(&shrinker->list);
438 up_write(&shrinker_rwsem);
439 kfree(shrinker->nr_deferred);
440 shrinker->nr_deferred = NULL;
442 EXPORT_SYMBOL(unregister_shrinker);
444 #define SHRINK_BATCH 128
446 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
447 struct shrinker *shrinker, int priority)
449 unsigned long freed = 0;
450 unsigned long long delta;
455 int nid = shrinkctl->nid;
456 long batch_size = shrinker->batch ? shrinker->batch
458 long scanned = 0, next_deferred;
460 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
463 freeable = shrinker->count_objects(shrinker, shrinkctl);
464 if (freeable == 0 || freeable == SHRINK_EMPTY)
468 * copy the current shrinker scan count into a local variable
469 * and zero it so that other concurrent shrinker invocations
470 * don't also do this scanning work.
472 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
475 delta = freeable >> priority;
477 do_div(delta, shrinker->seeks);
479 if (total_scan < 0) {
480 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
481 shrinker->scan_objects, total_scan);
482 total_scan = freeable;
485 next_deferred = total_scan;
488 * We need to avoid excessive windup on filesystem shrinkers
489 * due to large numbers of GFP_NOFS allocations causing the
490 * shrinkers to return -1 all the time. This results in a large
491 * nr being built up so when a shrink that can do some work
492 * comes along it empties the entire cache due to nr >>>
493 * freeable. This is bad for sustaining a working set in
496 * Hence only allow the shrinker to scan the entire cache when
497 * a large delta change is calculated directly.
499 if (delta < freeable / 4)
500 total_scan = min(total_scan, freeable / 2);
503 * Avoid risking looping forever due to too large nr value:
504 * never try to free more than twice the estimate number of
507 if (total_scan > freeable * 2)
508 total_scan = freeable * 2;
510 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
511 freeable, delta, total_scan, priority);
514 * Normally, we should not scan less than batch_size objects in one
515 * pass to avoid too frequent shrinker calls, but if the slab has less
516 * than batch_size objects in total and we are really tight on memory,
517 * we will try to reclaim all available objects, otherwise we can end
518 * up failing allocations although there are plenty of reclaimable
519 * objects spread over several slabs with usage less than the
522 * We detect the "tight on memory" situations by looking at the total
523 * number of objects we want to scan (total_scan). If it is greater
524 * than the total number of objects on slab (freeable), we must be
525 * scanning at high prio and therefore should try to reclaim as much as
528 while (total_scan >= batch_size ||
529 total_scan >= freeable) {
531 unsigned long nr_to_scan = min(batch_size, total_scan);
533 shrinkctl->nr_to_scan = nr_to_scan;
534 shrinkctl->nr_scanned = nr_to_scan;
535 ret = shrinker->scan_objects(shrinker, shrinkctl);
536 if (ret == SHRINK_STOP)
540 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
541 total_scan -= shrinkctl->nr_scanned;
542 scanned += shrinkctl->nr_scanned;
547 if (next_deferred >= scanned)
548 next_deferred -= scanned;
552 * move the unused scan count back into the shrinker in a
553 * manner that handles concurrent updates. If we exhausted the
554 * scan, there is no need to do an update.
556 if (next_deferred > 0)
557 new_nr = atomic_long_add_return(next_deferred,
558 &shrinker->nr_deferred[nid]);
560 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
562 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
566 #ifdef CONFIG_MEMCG_KMEM
567 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
568 struct mem_cgroup *memcg, int priority)
570 struct memcg_shrinker_map *map;
571 unsigned long freed = 0;
574 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
577 if (!down_read_trylock(&shrinker_rwsem))
580 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
585 for_each_set_bit(i, map->map, shrinker_nr_max) {
586 struct shrink_control sc = {
587 .gfp_mask = gfp_mask,
591 struct shrinker *shrinker;
593 shrinker = idr_find(&shrinker_idr, i);
594 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
596 clear_bit(i, map->map);
600 ret = do_shrink_slab(&sc, shrinker, priority);
601 if (ret == SHRINK_EMPTY) {
602 clear_bit(i, map->map);
604 * After the shrinker reported that it had no objects to
605 * free, but before we cleared the corresponding bit in
606 * the memcg shrinker map, a new object might have been
607 * added. To make sure, we have the bit set in this
608 * case, we invoke the shrinker one more time and reset
609 * the bit if it reports that it is not empty anymore.
610 * The memory barrier here pairs with the barrier in
611 * memcg_set_shrinker_bit():
613 * list_lru_add() shrink_slab_memcg()
614 * list_add_tail() clear_bit()
616 * set_bit() do_shrink_slab()
618 smp_mb__after_atomic();
619 ret = do_shrink_slab(&sc, shrinker, priority);
620 if (ret == SHRINK_EMPTY)
623 memcg_set_shrinker_bit(memcg, nid, i);
627 if (rwsem_is_contended(&shrinker_rwsem)) {
633 up_read(&shrinker_rwsem);
636 #else /* CONFIG_MEMCG_KMEM */
637 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
638 struct mem_cgroup *memcg, int priority)
642 #endif /* CONFIG_MEMCG_KMEM */
645 * shrink_slab - shrink slab caches
646 * @gfp_mask: allocation context
647 * @nid: node whose slab caches to target
648 * @memcg: memory cgroup whose slab caches to target
649 * @priority: the reclaim priority
651 * Call the shrink functions to age shrinkable caches.
653 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
654 * unaware shrinkers will receive a node id of 0 instead.
656 * @memcg specifies the memory cgroup to target. Unaware shrinkers
657 * are called only if it is the root cgroup.
659 * @priority is sc->priority, we take the number of objects and >> by priority
660 * in order to get the scan target.
662 * Returns the number of reclaimed slab objects.
664 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
665 struct mem_cgroup *memcg,
668 struct shrinker *shrinker;
669 unsigned long freed = 0;
672 if (!mem_cgroup_is_root(memcg))
673 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
675 if (!down_read_trylock(&shrinker_rwsem))
678 list_for_each_entry(shrinker, &shrinker_list, list) {
679 struct shrink_control sc = {
680 .gfp_mask = gfp_mask,
685 ret = do_shrink_slab(&sc, shrinker, priority);
686 if (ret == SHRINK_EMPTY)
690 * Bail out if someone want to register a new shrinker to
691 * prevent the regsitration from being stalled for long periods
692 * by parallel ongoing shrinking.
694 if (rwsem_is_contended(&shrinker_rwsem)) {
700 up_read(&shrinker_rwsem);
706 void drop_slab_node(int nid)
711 struct mem_cgroup *memcg = NULL;
714 memcg = mem_cgroup_iter(NULL, NULL, NULL);
716 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
717 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
718 } while (freed > 10);
725 for_each_online_node(nid)
729 static inline int is_page_cache_freeable(struct page *page)
732 * A freeable page cache page is referenced only by the caller
733 * that isolated the page, the page cache radix tree and
734 * optional buffer heads at page->private.
736 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
738 return page_count(page) - page_has_private(page) == 1 + radix_pins;
741 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
743 if (current->flags & PF_SWAPWRITE)
745 if (!inode_write_congested(inode))
747 if (inode_to_bdi(inode) == current->backing_dev_info)
753 * We detected a synchronous write error writing a page out. Probably
754 * -ENOSPC. We need to propagate that into the address_space for a subsequent
755 * fsync(), msync() or close().
757 * The tricky part is that after writepage we cannot touch the mapping: nothing
758 * prevents it from being freed up. But we have a ref on the page and once
759 * that page is locked, the mapping is pinned.
761 * We're allowed to run sleeping lock_page() here because we know the caller has
764 static void handle_write_error(struct address_space *mapping,
765 struct page *page, int error)
768 if (page_mapping(page) == mapping)
769 mapping_set_error(mapping, error);
773 /* possible outcome of pageout() */
775 /* failed to write page out, page is locked */
777 /* move page to the active list, page is locked */
779 /* page has been sent to the disk successfully, page is unlocked */
781 /* page is clean and locked */
786 * pageout is called by shrink_page_list() for each dirty page.
787 * Calls ->writepage().
789 static pageout_t pageout(struct page *page, struct address_space *mapping,
790 struct scan_control *sc)
793 * If the page is dirty, only perform writeback if that write
794 * will be non-blocking. To prevent this allocation from being
795 * stalled by pagecache activity. But note that there may be
796 * stalls if we need to run get_block(). We could test
797 * PagePrivate for that.
799 * If this process is currently in __generic_file_write_iter() against
800 * this page's queue, we can perform writeback even if that
803 * If the page is swapcache, write it back even if that would
804 * block, for some throttling. This happens by accident, because
805 * swap_backing_dev_info is bust: it doesn't reflect the
806 * congestion state of the swapdevs. Easy to fix, if needed.
808 if (!is_page_cache_freeable(page))
812 * Some data journaling orphaned pages can have
813 * page->mapping == NULL while being dirty with clean buffers.
815 if (page_has_private(page)) {
816 if (try_to_free_buffers(page)) {
817 ClearPageDirty(page);
818 pr_info("%s: orphaned page\n", __func__);
824 if (mapping->a_ops->writepage == NULL)
825 return PAGE_ACTIVATE;
826 if (!may_write_to_inode(mapping->host, sc))
829 if (clear_page_dirty_for_io(page)) {
831 struct writeback_control wbc = {
832 .sync_mode = WB_SYNC_NONE,
833 .nr_to_write = SWAP_CLUSTER_MAX,
835 .range_end = LLONG_MAX,
839 SetPageReclaim(page);
840 res = mapping->a_ops->writepage(page, &wbc);
842 handle_write_error(mapping, page, res);
843 if (res == AOP_WRITEPAGE_ACTIVATE) {
844 ClearPageReclaim(page);
845 return PAGE_ACTIVATE;
848 if (!PageWriteback(page)) {
849 /* synchronous write or broken a_ops? */
850 ClearPageReclaim(page);
852 trace_mm_vmscan_writepage(page);
853 inc_node_page_state(page, NR_VMSCAN_WRITE);
861 * Same as remove_mapping, but if the page is removed from the mapping, it
862 * gets returned with a refcount of 0.
864 static int __remove_mapping(struct address_space *mapping, struct page *page,
870 BUG_ON(!PageLocked(page));
871 BUG_ON(mapping != page_mapping(page));
873 xa_lock_irqsave(&mapping->i_pages, flags);
875 * The non racy check for a busy page.
877 * Must be careful with the order of the tests. When someone has
878 * a ref to the page, it may be possible that they dirty it then
879 * drop the reference. So if PageDirty is tested before page_count
880 * here, then the following race may occur:
882 * get_user_pages(&page);
883 * [user mapping goes away]
885 * !PageDirty(page) [good]
886 * SetPageDirty(page);
888 * !page_count(page) [good, discard it]
890 * [oops, our write_to data is lost]
892 * Reversing the order of the tests ensures such a situation cannot
893 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
894 * load is not satisfied before that of page->_refcount.
896 * Note that if SetPageDirty is always performed via set_page_dirty,
897 * and thus under the i_pages lock, then this ordering is not required.
899 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
900 refcount = 1 + HPAGE_PMD_NR;
903 if (!page_ref_freeze(page, refcount))
905 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
906 if (unlikely(PageDirty(page))) {
907 page_ref_unfreeze(page, refcount);
911 if (PageSwapCache(page)) {
912 swp_entry_t swap = { .val = page_private(page) };
913 mem_cgroup_swapout(page, swap);
914 __delete_from_swap_cache(page);
915 xa_unlock_irqrestore(&mapping->i_pages, flags);
916 put_swap_page(page, swap);
918 void (*freepage)(struct page *);
921 freepage = mapping->a_ops->freepage;
923 * Remember a shadow entry for reclaimed file cache in
924 * order to detect refaults, thus thrashing, later on.
926 * But don't store shadows in an address space that is
927 * already exiting. This is not just an optizimation,
928 * inode reclaim needs to empty out the radix tree or
929 * the nodes are lost. Don't plant shadows behind its
932 * We also don't store shadows for DAX mappings because the
933 * only page cache pages found in these are zero pages
934 * covering holes, and because we don't want to mix DAX
935 * exceptional entries and shadow exceptional entries in the
936 * same address_space.
938 if (reclaimed && page_is_file_cache(page) &&
939 !mapping_exiting(mapping) && !dax_mapping(mapping))
940 shadow = workingset_eviction(mapping, page);
941 __delete_from_page_cache(page, shadow);
942 xa_unlock_irqrestore(&mapping->i_pages, flags);
944 if (freepage != NULL)
951 xa_unlock_irqrestore(&mapping->i_pages, flags);
956 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
957 * someone else has a ref on the page, abort and return 0. If it was
958 * successfully detached, return 1. Assumes the caller has a single ref on
961 int remove_mapping(struct address_space *mapping, struct page *page)
963 if (__remove_mapping(mapping, page, false)) {
965 * Unfreezing the refcount with 1 rather than 2 effectively
966 * drops the pagecache ref for us without requiring another
969 page_ref_unfreeze(page, 1);
976 * putback_lru_page - put previously isolated page onto appropriate LRU list
977 * @page: page to be put back to appropriate lru list
979 * Add previously isolated @page to appropriate LRU list.
980 * Page may still be unevictable for other reasons.
982 * lru_lock must not be held, interrupts must be enabled.
984 void putback_lru_page(struct page *page)
987 put_page(page); /* drop ref from isolate */
990 enum page_references {
992 PAGEREF_RECLAIM_CLEAN,
997 static enum page_references page_check_references(struct page *page,
998 struct scan_control *sc)
1000 int referenced_ptes, referenced_page;
1001 unsigned long vm_flags;
1003 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1005 referenced_page = TestClearPageReferenced(page);
1008 * Mlock lost the isolation race with us. Let try_to_unmap()
1009 * move the page to the unevictable list.
1011 if (vm_flags & VM_LOCKED)
1012 return PAGEREF_RECLAIM;
1014 if (referenced_ptes) {
1015 if (PageSwapBacked(page))
1016 return PAGEREF_ACTIVATE;
1018 * All mapped pages start out with page table
1019 * references from the instantiating fault, so we need
1020 * to look twice if a mapped file page is used more
1023 * Mark it and spare it for another trip around the
1024 * inactive list. Another page table reference will
1025 * lead to its activation.
1027 * Note: the mark is set for activated pages as well
1028 * so that recently deactivated but used pages are
1029 * quickly recovered.
1031 SetPageReferenced(page);
1033 if (referenced_page || referenced_ptes > 1)
1034 return PAGEREF_ACTIVATE;
1037 * Activate file-backed executable pages after first usage.
1039 if (vm_flags & VM_EXEC)
1040 return PAGEREF_ACTIVATE;
1042 return PAGEREF_KEEP;
1045 /* Reclaim if clean, defer dirty pages to writeback */
1046 if (referenced_page && !PageSwapBacked(page))
1047 return PAGEREF_RECLAIM_CLEAN;
1049 return PAGEREF_RECLAIM;
1052 /* Check if a page is dirty or under writeback */
1053 static void page_check_dirty_writeback(struct page *page,
1054 bool *dirty, bool *writeback)
1056 struct address_space *mapping;
1059 * Anonymous pages are not handled by flushers and must be written
1060 * from reclaim context. Do not stall reclaim based on them
1062 if (!page_is_file_cache(page) ||
1063 (PageAnon(page) && !PageSwapBacked(page))) {
1069 /* By default assume that the page flags are accurate */
1070 *dirty = PageDirty(page);
1071 *writeback = PageWriteback(page);
1073 /* Verify dirty/writeback state if the filesystem supports it */
1074 if (!page_has_private(page))
1077 mapping = page_mapping(page);
1078 if (mapping && mapping->a_ops->is_dirty_writeback)
1079 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1083 * shrink_page_list() returns the number of reclaimed pages
1085 static unsigned long shrink_page_list(struct list_head *page_list,
1086 struct pglist_data *pgdat,
1087 struct scan_control *sc,
1088 enum ttu_flags ttu_flags,
1089 struct reclaim_stat *stat,
1092 LIST_HEAD(ret_pages);
1093 LIST_HEAD(free_pages);
1095 unsigned nr_unqueued_dirty = 0;
1096 unsigned nr_dirty = 0;
1097 unsigned nr_congested = 0;
1098 unsigned nr_reclaimed = 0;
1099 unsigned nr_writeback = 0;
1100 unsigned nr_immediate = 0;
1101 unsigned nr_ref_keep = 0;
1102 unsigned nr_unmap_fail = 0;
1106 while (!list_empty(page_list)) {
1107 struct address_space *mapping;
1110 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1111 bool dirty, writeback;
1115 page = lru_to_page(page_list);
1116 list_del(&page->lru);
1118 if (!trylock_page(page))
1121 VM_BUG_ON_PAGE(PageActive(page), page);
1125 if (unlikely(!page_evictable(page)))
1126 goto activate_locked;
1128 if (!sc->may_unmap && page_mapped(page))
1131 /* Double the slab pressure for mapped and swapcache pages */
1132 if ((page_mapped(page) || PageSwapCache(page)) &&
1133 !(PageAnon(page) && !PageSwapBacked(page)))
1136 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1137 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1140 * The number of dirty pages determines if a node is marked
1141 * reclaim_congested which affects wait_iff_congested. kswapd
1142 * will stall and start writing pages if the tail of the LRU
1143 * is all dirty unqueued pages.
1145 page_check_dirty_writeback(page, &dirty, &writeback);
1146 if (dirty || writeback)
1149 if (dirty && !writeback)
1150 nr_unqueued_dirty++;
1153 * Treat this page as congested if the underlying BDI is or if
1154 * pages are cycling through the LRU so quickly that the
1155 * pages marked for immediate reclaim are making it to the
1156 * end of the LRU a second time.
1158 mapping = page_mapping(page);
1159 if (((dirty || writeback) && mapping &&
1160 inode_write_congested(mapping->host)) ||
1161 (writeback && PageReclaim(page)))
1165 * If a page at the tail of the LRU is under writeback, there
1166 * are three cases to consider.
1168 * 1) If reclaim is encountering an excessive number of pages
1169 * under writeback and this page is both under writeback and
1170 * PageReclaim then it indicates that pages are being queued
1171 * for IO but are being recycled through the LRU before the
1172 * IO can complete. Waiting on the page itself risks an
1173 * indefinite stall if it is impossible to writeback the
1174 * page due to IO error or disconnected storage so instead
1175 * note that the LRU is being scanned too quickly and the
1176 * caller can stall after page list has been processed.
1178 * 2) Global or new memcg reclaim encounters a page that is
1179 * not marked for immediate reclaim, or the caller does not
1180 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1181 * not to fs). In this case mark the page for immediate
1182 * reclaim and continue scanning.
1184 * Require may_enter_fs because we would wait on fs, which
1185 * may not have submitted IO yet. And the loop driver might
1186 * enter reclaim, and deadlock if it waits on a page for
1187 * which it is needed to do the write (loop masks off
1188 * __GFP_IO|__GFP_FS for this reason); but more thought
1189 * would probably show more reasons.
1191 * 3) Legacy memcg encounters a page that is already marked
1192 * PageReclaim. memcg does not have any dirty pages
1193 * throttling so we could easily OOM just because too many
1194 * pages are in writeback and there is nothing else to
1195 * reclaim. Wait for the writeback to complete.
1197 * In cases 1) and 2) we activate the pages to get them out of
1198 * the way while we continue scanning for clean pages on the
1199 * inactive list and refilling from the active list. The
1200 * observation here is that waiting for disk writes is more
1201 * expensive than potentially causing reloads down the line.
1202 * Since they're marked for immediate reclaim, they won't put
1203 * memory pressure on the cache working set any longer than it
1204 * takes to write them to disk.
1206 if (PageWriteback(page)) {
1208 if (current_is_kswapd() &&
1209 PageReclaim(page) &&
1210 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 goto activate_locked;
1215 } else if (sane_reclaim(sc) ||
1216 !PageReclaim(page) || !may_enter_fs) {
1218 * This is slightly racy - end_page_writeback()
1219 * might have just cleared PageReclaim, then
1220 * setting PageReclaim here end up interpreted
1221 * as PageReadahead - but that does not matter
1222 * enough to care. What we do want is for this
1223 * page to have PageReclaim set next time memcg
1224 * reclaim reaches the tests above, so it will
1225 * then wait_on_page_writeback() to avoid OOM;
1226 * and it's also appropriate in global reclaim.
1228 SetPageReclaim(page);
1230 goto activate_locked;
1235 wait_on_page_writeback(page);
1236 /* then go back and try same page again */
1237 list_add_tail(&page->lru, page_list);
1243 references = page_check_references(page, sc);
1245 switch (references) {
1246 case PAGEREF_ACTIVATE:
1247 goto activate_locked;
1251 case PAGEREF_RECLAIM:
1252 case PAGEREF_RECLAIM_CLEAN:
1253 ; /* try to reclaim the page below */
1257 * Anonymous process memory has backing store?
1258 * Try to allocate it some swap space here.
1259 * Lazyfree page could be freed directly
1261 if (PageAnon(page) && PageSwapBacked(page)) {
1262 if (!PageSwapCache(page)) {
1263 if (!(sc->gfp_mask & __GFP_IO))
1265 if (PageTransHuge(page)) {
1266 /* cannot split THP, skip it */
1267 if (!can_split_huge_page(page, NULL))
1268 goto activate_locked;
1270 * Split pages without a PMD map right
1271 * away. Chances are some or all of the
1272 * tail pages can be freed without IO.
1274 if (!compound_mapcount(page) &&
1275 split_huge_page_to_list(page,
1277 goto activate_locked;
1279 if (!add_to_swap(page)) {
1280 if (!PageTransHuge(page))
1281 goto activate_locked;
1282 /* Fallback to swap normal pages */
1283 if (split_huge_page_to_list(page,
1285 goto activate_locked;
1286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1287 count_vm_event(THP_SWPOUT_FALLBACK);
1289 if (!add_to_swap(page))
1290 goto activate_locked;
1295 /* Adding to swap updated mapping */
1296 mapping = page_mapping(page);
1298 } else if (unlikely(PageTransHuge(page))) {
1299 /* Split file THP */
1300 if (split_huge_page_to_list(page, page_list))
1305 * The page is mapped into the page tables of one or more
1306 * processes. Try to unmap it here.
1308 if (page_mapped(page)) {
1309 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1311 if (unlikely(PageTransHuge(page)))
1312 flags |= TTU_SPLIT_HUGE_PMD;
1313 if (!try_to_unmap(page, flags)) {
1315 goto activate_locked;
1319 if (PageDirty(page)) {
1321 * Only kswapd can writeback filesystem pages
1322 * to avoid risk of stack overflow. But avoid
1323 * injecting inefficient single-page IO into
1324 * flusher writeback as much as possible: only
1325 * write pages when we've encountered many
1326 * dirty pages, and when we've already scanned
1327 * the rest of the LRU for clean pages and see
1328 * the same dirty pages again (PageReclaim).
1330 if (page_is_file_cache(page) &&
1331 (!current_is_kswapd() || !PageReclaim(page) ||
1332 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1334 * Immediately reclaim when written back.
1335 * Similar in principal to deactivate_page()
1336 * except we already have the page isolated
1337 * and know it's dirty
1339 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1340 SetPageReclaim(page);
1342 goto activate_locked;
1345 if (references == PAGEREF_RECLAIM_CLEAN)
1349 if (!sc->may_writepage)
1353 * Page is dirty. Flush the TLB if a writable entry
1354 * potentially exists to avoid CPU writes after IO
1355 * starts and then write it out here.
1357 try_to_unmap_flush_dirty();
1358 switch (pageout(page, mapping, sc)) {
1362 goto activate_locked;
1364 if (PageWriteback(page))
1366 if (PageDirty(page))
1370 * A synchronous write - probably a ramdisk. Go
1371 * ahead and try to reclaim the page.
1373 if (!trylock_page(page))
1375 if (PageDirty(page) || PageWriteback(page))
1377 mapping = page_mapping(page);
1379 ; /* try to free the page below */
1384 * If the page has buffers, try to free the buffer mappings
1385 * associated with this page. If we succeed we try to free
1388 * We do this even if the page is PageDirty().
1389 * try_to_release_page() does not perform I/O, but it is
1390 * possible for a page to have PageDirty set, but it is actually
1391 * clean (all its buffers are clean). This happens if the
1392 * buffers were written out directly, with submit_bh(). ext3
1393 * will do this, as well as the blockdev mapping.
1394 * try_to_release_page() will discover that cleanness and will
1395 * drop the buffers and mark the page clean - it can be freed.
1397 * Rarely, pages can have buffers and no ->mapping. These are
1398 * the pages which were not successfully invalidated in
1399 * truncate_complete_page(). We try to drop those buffers here
1400 * and if that worked, and the page is no longer mapped into
1401 * process address space (page_count == 1) it can be freed.
1402 * Otherwise, leave the page on the LRU so it is swappable.
1404 if (page_has_private(page)) {
1405 if (!try_to_release_page(page, sc->gfp_mask))
1406 goto activate_locked;
1407 if (!mapping && page_count(page) == 1) {
1409 if (put_page_testzero(page))
1413 * rare race with speculative reference.
1414 * the speculative reference will free
1415 * this page shortly, so we may
1416 * increment nr_reclaimed here (and
1417 * leave it off the LRU).
1425 if (PageAnon(page) && !PageSwapBacked(page)) {
1426 /* follow __remove_mapping for reference */
1427 if (!page_ref_freeze(page, 1))
1429 if (PageDirty(page)) {
1430 page_ref_unfreeze(page, 1);
1434 count_vm_event(PGLAZYFREED);
1435 count_memcg_page_event(page, PGLAZYFREED);
1436 } else if (!mapping || !__remove_mapping(mapping, page, true))
1439 * At this point, we have no other references and there is
1440 * no way to pick any more up (removed from LRU, removed
1441 * from pagecache). Can use non-atomic bitops now (and
1442 * we obviously don't have to worry about waking up a process
1443 * waiting on the page lock, because there are no references.
1445 __ClearPageLocked(page);
1450 * Is there need to periodically free_page_list? It would
1451 * appear not as the counts should be low
1453 if (unlikely(PageTransHuge(page))) {
1454 mem_cgroup_uncharge(page);
1455 (*get_compound_page_dtor(page))(page);
1457 list_add(&page->lru, &free_pages);
1461 /* Not a candidate for swapping, so reclaim swap space. */
1462 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1464 try_to_free_swap(page);
1465 VM_BUG_ON_PAGE(PageActive(page), page);
1466 if (!PageMlocked(page)) {
1467 SetPageActive(page);
1469 count_memcg_page_event(page, PGACTIVATE);
1474 list_add(&page->lru, &ret_pages);
1475 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1478 mem_cgroup_uncharge_list(&free_pages);
1479 try_to_unmap_flush();
1480 free_unref_page_list(&free_pages);
1482 list_splice(&ret_pages, page_list);
1483 count_vm_events(PGACTIVATE, pgactivate);
1486 stat->nr_dirty = nr_dirty;
1487 stat->nr_congested = nr_congested;
1488 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1489 stat->nr_writeback = nr_writeback;
1490 stat->nr_immediate = nr_immediate;
1491 stat->nr_activate = pgactivate;
1492 stat->nr_ref_keep = nr_ref_keep;
1493 stat->nr_unmap_fail = nr_unmap_fail;
1495 return nr_reclaimed;
1498 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1499 struct list_head *page_list)
1501 struct scan_control sc = {
1502 .gfp_mask = GFP_KERNEL,
1503 .priority = DEF_PRIORITY,
1507 struct page *page, *next;
1508 LIST_HEAD(clean_pages);
1510 list_for_each_entry_safe(page, next, page_list, lru) {
1511 if (page_is_file_cache(page) && !PageDirty(page) &&
1512 !__PageMovable(page)) {
1513 ClearPageActive(page);
1514 list_move(&page->lru, &clean_pages);
1518 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1519 TTU_IGNORE_ACCESS, NULL, true);
1520 list_splice(&clean_pages, page_list);
1521 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1526 * Attempt to remove the specified page from its LRU. Only take this page
1527 * if it is of the appropriate PageActive status. Pages which are being
1528 * freed elsewhere are also ignored.
1530 * page: page to consider
1531 * mode: one of the LRU isolation modes defined above
1533 * returns 0 on success, -ve errno on failure.
1535 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1539 /* Only take pages on the LRU. */
1543 /* Compaction should not handle unevictable pages but CMA can do so */
1544 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1550 * To minimise LRU disruption, the caller can indicate that it only
1551 * wants to isolate pages it will be able to operate on without
1552 * blocking - clean pages for the most part.
1554 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1555 * that it is possible to migrate without blocking
1557 if (mode & ISOLATE_ASYNC_MIGRATE) {
1558 /* All the caller can do on PageWriteback is block */
1559 if (PageWriteback(page))
1562 if (PageDirty(page)) {
1563 struct address_space *mapping;
1567 * Only pages without mappings or that have a
1568 * ->migratepage callback are possible to migrate
1569 * without blocking. However, we can be racing with
1570 * truncation so it's necessary to lock the page
1571 * to stabilise the mapping as truncation holds
1572 * the page lock until after the page is removed
1573 * from the page cache.
1575 if (!trylock_page(page))
1578 mapping = page_mapping(page);
1579 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1589 if (likely(get_page_unless_zero(page))) {
1591 * Be careful not to clear PageLRU until after we're
1592 * sure the page is not being freed elsewhere -- the
1593 * page release code relies on it.
1604 * Update LRU sizes after isolating pages. The LRU size updates must
1605 * be complete before mem_cgroup_update_lru_size due to a santity check.
1607 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1608 enum lru_list lru, unsigned long *nr_zone_taken)
1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 if (!nr_zone_taken[zid])
1616 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1618 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 * zone_lru_lock is heavily contended. Some of the functions that
1626 * shrink the lists perform better by taking out a batch of pages
1627 * and working on them outside the LRU lock.
1629 * For pagecache intensive workloads, this function is the hottest
1630 * spot in the kernel (apart from copy_*_user functions).
1632 * Appropriate locks must be held before calling this function.
1634 * @nr_to_scan: The number of eligible pages to look through on the list.
1635 * @lruvec: The LRU vector to pull pages from.
1636 * @dst: The temp list to put pages on to.
1637 * @nr_scanned: The number of pages that were scanned.
1638 * @sc: The scan_control struct for this reclaim session
1639 * @mode: One of the LRU isolation modes
1640 * @lru: LRU list id for isolating
1642 * returns how many pages were moved onto *@dst.
1644 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1645 struct lruvec *lruvec, struct list_head *dst,
1646 unsigned long *nr_scanned, struct scan_control *sc,
1647 isolate_mode_t mode, enum lru_list lru)
1649 struct list_head *src = &lruvec->lists[lru];
1650 unsigned long nr_taken = 0;
1651 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1652 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1653 unsigned long skipped = 0;
1654 unsigned long scan, total_scan, nr_pages;
1655 LIST_HEAD(pages_skipped);
1658 for (total_scan = 0;
1659 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1663 page = lru_to_page(src);
1664 prefetchw_prev_lru_page(page, src, flags);
1666 VM_BUG_ON_PAGE(!PageLRU(page), page);
1668 if (page_zonenum(page) > sc->reclaim_idx) {
1669 list_move(&page->lru, &pages_skipped);
1670 nr_skipped[page_zonenum(page)]++;
1675 * Do not count skipped pages because that makes the function
1676 * return with no isolated pages if the LRU mostly contains
1677 * ineligible pages. This causes the VM to not reclaim any
1678 * pages, triggering a premature OOM.
1681 switch (__isolate_lru_page(page, mode)) {
1683 nr_pages = hpage_nr_pages(page);
1684 nr_taken += nr_pages;
1685 nr_zone_taken[page_zonenum(page)] += nr_pages;
1686 list_move(&page->lru, dst);
1690 /* else it is being freed elsewhere */
1691 list_move(&page->lru, src);
1700 * Splice any skipped pages to the start of the LRU list. Note that
1701 * this disrupts the LRU order when reclaiming for lower zones but
1702 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1703 * scanning would soon rescan the same pages to skip and put the
1704 * system at risk of premature OOM.
1706 if (!list_empty(&pages_skipped)) {
1709 list_splice(&pages_skipped, src);
1710 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1711 if (!nr_skipped[zid])
1714 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1715 skipped += nr_skipped[zid];
1718 *nr_scanned = total_scan;
1719 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1720 total_scan, skipped, nr_taken, mode, lru);
1721 update_lru_sizes(lruvec, lru, nr_zone_taken);
1726 * isolate_lru_page - tries to isolate a page from its LRU list
1727 * @page: page to isolate from its LRU list
1729 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1730 * vmstat statistic corresponding to whatever LRU list the page was on.
1732 * Returns 0 if the page was removed from an LRU list.
1733 * Returns -EBUSY if the page was not on an LRU list.
1735 * The returned page will have PageLRU() cleared. If it was found on
1736 * the active list, it will have PageActive set. If it was found on
1737 * the unevictable list, it will have the PageUnevictable bit set. That flag
1738 * may need to be cleared by the caller before letting the page go.
1740 * The vmstat statistic corresponding to the list on which the page was
1741 * found will be decremented.
1745 * (1) Must be called with an elevated refcount on the page. This is a
1746 * fundamentnal difference from isolate_lru_pages (which is called
1747 * without a stable reference).
1748 * (2) the lru_lock must not be held.
1749 * (3) interrupts must be enabled.
1751 int isolate_lru_page(struct page *page)
1755 VM_BUG_ON_PAGE(!page_count(page), page);
1756 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1758 if (PageLRU(page)) {
1759 struct zone *zone = page_zone(page);
1760 struct lruvec *lruvec;
1762 spin_lock_irq(zone_lru_lock(zone));
1763 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1764 if (PageLRU(page)) {
1765 int lru = page_lru(page);
1768 del_page_from_lru_list(page, lruvec, lru);
1771 spin_unlock_irq(zone_lru_lock(zone));
1777 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1778 * then get resheduled. When there are massive number of tasks doing page
1779 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1780 * the LRU list will go small and be scanned faster than necessary, leading to
1781 * unnecessary swapping, thrashing and OOM.
1783 static int too_many_isolated(struct pglist_data *pgdat, int file,
1784 struct scan_control *sc)
1786 unsigned long inactive, isolated;
1788 if (current_is_kswapd())
1791 if (!sane_reclaim(sc))
1795 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1796 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1798 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1799 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1803 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1804 * won't get blocked by normal direct-reclaimers, forming a circular
1807 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1810 return isolated > inactive;
1813 static noinline_for_stack void
1814 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1816 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1817 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1818 LIST_HEAD(pages_to_free);
1821 * Put back any unfreeable pages.
1823 while (!list_empty(page_list)) {
1824 struct page *page = lru_to_page(page_list);
1827 VM_BUG_ON_PAGE(PageLRU(page), page);
1828 list_del(&page->lru);
1829 if (unlikely(!page_evictable(page))) {
1830 spin_unlock_irq(&pgdat->lru_lock);
1831 putback_lru_page(page);
1832 spin_lock_irq(&pgdat->lru_lock);
1836 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1839 lru = page_lru(page);
1840 add_page_to_lru_list(page, lruvec, lru);
1842 if (is_active_lru(lru)) {
1843 int file = is_file_lru(lru);
1844 int numpages = hpage_nr_pages(page);
1845 reclaim_stat->recent_rotated[file] += numpages;
1847 if (put_page_testzero(page)) {
1848 __ClearPageLRU(page);
1849 __ClearPageActive(page);
1850 del_page_from_lru_list(page, lruvec, lru);
1852 if (unlikely(PageCompound(page))) {
1853 spin_unlock_irq(&pgdat->lru_lock);
1854 mem_cgroup_uncharge(page);
1855 (*get_compound_page_dtor(page))(page);
1856 spin_lock_irq(&pgdat->lru_lock);
1858 list_add(&page->lru, &pages_to_free);
1863 * To save our caller's stack, now use input list for pages to free.
1865 list_splice(&pages_to_free, page_list);
1869 * If a kernel thread (such as nfsd for loop-back mounts) services
1870 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1871 * In that case we should only throttle if the backing device it is
1872 * writing to is congested. In other cases it is safe to throttle.
1874 static int current_may_throttle(void)
1876 return !(current->flags & PF_LESS_THROTTLE) ||
1877 current->backing_dev_info == NULL ||
1878 bdi_write_congested(current->backing_dev_info);
1882 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1883 * of reclaimed pages
1885 static noinline_for_stack unsigned long
1886 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1887 struct scan_control *sc, enum lru_list lru)
1889 LIST_HEAD(page_list);
1890 unsigned long nr_scanned;
1891 unsigned long nr_reclaimed = 0;
1892 unsigned long nr_taken;
1893 struct reclaim_stat stat = {};
1894 isolate_mode_t isolate_mode = 0;
1895 int file = is_file_lru(lru);
1896 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1897 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1898 bool stalled = false;
1900 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1904 /* wait a bit for the reclaimer. */
1908 /* We are about to die and free our memory. Return now. */
1909 if (fatal_signal_pending(current))
1910 return SWAP_CLUSTER_MAX;
1916 isolate_mode |= ISOLATE_UNMAPPED;
1918 spin_lock_irq(&pgdat->lru_lock);
1920 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1921 &nr_scanned, sc, isolate_mode, lru);
1923 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1924 reclaim_stat->recent_scanned[file] += nr_taken;
1926 if (current_is_kswapd()) {
1927 if (global_reclaim(sc))
1928 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1929 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1932 if (global_reclaim(sc))
1933 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1934 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1937 spin_unlock_irq(&pgdat->lru_lock);
1942 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1945 spin_lock_irq(&pgdat->lru_lock);
1947 if (current_is_kswapd()) {
1948 if (global_reclaim(sc))
1949 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1950 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1953 if (global_reclaim(sc))
1954 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1955 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1959 putback_inactive_pages(lruvec, &page_list);
1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1963 spin_unlock_irq(&pgdat->lru_lock);
1965 mem_cgroup_uncharge_list(&page_list);
1966 free_unref_page_list(&page_list);
1969 * If dirty pages are scanned that are not queued for IO, it
1970 * implies that flushers are not doing their job. This can
1971 * happen when memory pressure pushes dirty pages to the end of
1972 * the LRU before the dirty limits are breached and the dirty
1973 * data has expired. It can also happen when the proportion of
1974 * dirty pages grows not through writes but through memory
1975 * pressure reclaiming all the clean cache. And in some cases,
1976 * the flushers simply cannot keep up with the allocation
1977 * rate. Nudge the flusher threads in case they are asleep.
1979 if (stat.nr_unqueued_dirty == nr_taken)
1980 wakeup_flusher_threads(WB_REASON_VMSCAN);
1982 sc->nr.dirty += stat.nr_dirty;
1983 sc->nr.congested += stat.nr_congested;
1984 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1985 sc->nr.writeback += stat.nr_writeback;
1986 sc->nr.immediate += stat.nr_immediate;
1987 sc->nr.taken += nr_taken;
1989 sc->nr.file_taken += nr_taken;
1991 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993 return nr_reclaimed;
1997 * This moves pages from the active list to the inactive list.
1999 * We move them the other way if the page is referenced by one or more
2000 * processes, from rmap.
2002 * If the pages are mostly unmapped, the processing is fast and it is
2003 * appropriate to hold zone_lru_lock across the whole operation. But if
2004 * the pages are mapped, the processing is slow (page_referenced()) so we
2005 * should drop zone_lru_lock around each page. It's impossible to balance
2006 * this, so instead we remove the pages from the LRU while processing them.
2007 * It is safe to rely on PG_active against the non-LRU pages in here because
2008 * nobody will play with that bit on a non-LRU page.
2010 * The downside is that we have to touch page->_refcount against each page.
2011 * But we had to alter page->flags anyway.
2013 * Returns the number of pages moved to the given lru.
2016 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2017 struct list_head *list,
2018 struct list_head *pages_to_free,
2021 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2026 while (!list_empty(list)) {
2027 page = lru_to_page(list);
2028 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2030 VM_BUG_ON_PAGE(PageLRU(page), page);
2033 nr_pages = hpage_nr_pages(page);
2034 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2035 list_move(&page->lru, &lruvec->lists[lru]);
2037 if (put_page_testzero(page)) {
2038 __ClearPageLRU(page);
2039 __ClearPageActive(page);
2040 del_page_from_lru_list(page, lruvec, lru);
2042 if (unlikely(PageCompound(page))) {
2043 spin_unlock_irq(&pgdat->lru_lock);
2044 mem_cgroup_uncharge(page);
2045 (*get_compound_page_dtor(page))(page);
2046 spin_lock_irq(&pgdat->lru_lock);
2048 list_add(&page->lru, pages_to_free);
2050 nr_moved += nr_pages;
2054 if (!is_active_lru(lru)) {
2055 __count_vm_events(PGDEACTIVATE, nr_moved);
2056 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2063 static void shrink_active_list(unsigned long nr_to_scan,
2064 struct lruvec *lruvec,
2065 struct scan_control *sc,
2068 unsigned long nr_taken;
2069 unsigned long nr_scanned;
2070 unsigned long vm_flags;
2071 LIST_HEAD(l_hold); /* The pages which were snipped off */
2072 LIST_HEAD(l_active);
2073 LIST_HEAD(l_inactive);
2075 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2076 unsigned nr_deactivate, nr_activate;
2077 unsigned nr_rotated = 0;
2078 isolate_mode_t isolate_mode = 0;
2079 int file = is_file_lru(lru);
2080 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2085 isolate_mode |= ISOLATE_UNMAPPED;
2087 spin_lock_irq(&pgdat->lru_lock);
2089 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2090 &nr_scanned, sc, isolate_mode, lru);
2092 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2093 reclaim_stat->recent_scanned[file] += nr_taken;
2095 __count_vm_events(PGREFILL, nr_scanned);
2096 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2098 spin_unlock_irq(&pgdat->lru_lock);
2100 while (!list_empty(&l_hold)) {
2102 page = lru_to_page(&l_hold);
2103 list_del(&page->lru);
2105 if (unlikely(!page_evictable(page))) {
2106 putback_lru_page(page);
2110 if (unlikely(buffer_heads_over_limit)) {
2111 if (page_has_private(page) && trylock_page(page)) {
2112 if (page_has_private(page))
2113 try_to_release_page(page, 0);
2118 if (page_referenced(page, 0, sc->target_mem_cgroup,
2120 nr_rotated += hpage_nr_pages(page);
2122 * Identify referenced, file-backed active pages and
2123 * give them one more trip around the active list. So
2124 * that executable code get better chances to stay in
2125 * memory under moderate memory pressure. Anon pages
2126 * are not likely to be evicted by use-once streaming
2127 * IO, plus JVM can create lots of anon VM_EXEC pages,
2128 * so we ignore them here.
2130 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2131 list_add(&page->lru, &l_active);
2136 ClearPageActive(page); /* we are de-activating */
2137 list_add(&page->lru, &l_inactive);
2141 * Move pages back to the lru list.
2143 spin_lock_irq(&pgdat->lru_lock);
2145 * Count referenced pages from currently used mappings as rotated,
2146 * even though only some of them are actually re-activated. This
2147 * helps balance scan pressure between file and anonymous pages in
2150 reclaim_stat->recent_rotated[file] += nr_rotated;
2152 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2153 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2154 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2155 spin_unlock_irq(&pgdat->lru_lock);
2157 mem_cgroup_uncharge_list(&l_hold);
2158 free_unref_page_list(&l_hold);
2159 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2160 nr_deactivate, nr_rotated, sc->priority, file);
2164 * The inactive anon list should be small enough that the VM never has
2165 * to do too much work.
2167 * The inactive file list should be small enough to leave most memory
2168 * to the established workingset on the scan-resistant active list,
2169 * but large enough to avoid thrashing the aggregate readahead window.
2171 * Both inactive lists should also be large enough that each inactive
2172 * page has a chance to be referenced again before it is reclaimed.
2174 * If that fails and refaulting is observed, the inactive list grows.
2176 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2177 * on this LRU, maintained by the pageout code. An inactive_ratio
2178 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2181 * memory ratio inactive
2182 * -------------------------------------
2191 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2192 struct mem_cgroup *memcg,
2193 struct scan_control *sc, bool actual_reclaim)
2195 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2196 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2197 enum lru_list inactive_lru = file * LRU_FILE;
2198 unsigned long inactive, active;
2199 unsigned long inactive_ratio;
2200 unsigned long refaults;
2204 * If we don't have swap space, anonymous page deactivation
2207 if (!file && !total_swap_pages)
2210 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2211 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2214 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2216 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2219 * When refaults are being observed, it means a new workingset
2220 * is being established. Disable active list protection to get
2221 * rid of the stale workingset quickly.
2223 if (file && actual_reclaim && lruvec->refaults != refaults) {
2226 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2228 inactive_ratio = int_sqrt(10 * gb);
2234 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2235 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2236 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2237 inactive_ratio, file);
2239 return inactive * inactive_ratio < active;
2242 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2243 struct lruvec *lruvec, struct mem_cgroup *memcg,
2244 struct scan_control *sc)
2246 if (is_active_lru(lru)) {
2247 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2249 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2253 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2264 * Determine how aggressively the anon and file LRU lists should be
2265 * scanned. The relative value of each set of LRU lists is determined
2266 * by looking at the fraction of the pages scanned we did rotate back
2267 * onto the active list instead of evict.
2269 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2270 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2272 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2273 struct scan_control *sc, unsigned long *nr,
2274 unsigned long *lru_pages)
2276 int swappiness = mem_cgroup_swappiness(memcg);
2277 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279 u64 denominator = 0; /* gcc */
2280 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2281 unsigned long anon_prio, file_prio;
2282 enum scan_balance scan_balance;
2283 unsigned long anon, file;
2284 unsigned long ap, fp;
2287 /* If we have no swap space, do not bother scanning anon pages. */
2288 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2289 scan_balance = SCAN_FILE;
2294 * Global reclaim will swap to prevent OOM even with no
2295 * swappiness, but memcg users want to use this knob to
2296 * disable swapping for individual groups completely when
2297 * using the memory controller's swap limit feature would be
2300 if (!global_reclaim(sc) && !swappiness) {
2301 scan_balance = SCAN_FILE;
2306 * Do not apply any pressure balancing cleverness when the
2307 * system is close to OOM, scan both anon and file equally
2308 * (unless the swappiness setting disagrees with swapping).
2310 if (!sc->priority && swappiness) {
2311 scan_balance = SCAN_EQUAL;
2316 * Prevent the reclaimer from falling into the cache trap: as
2317 * cache pages start out inactive, every cache fault will tip
2318 * the scan balance towards the file LRU. And as the file LRU
2319 * shrinks, so does the window for rotation from references.
2320 * This means we have a runaway feedback loop where a tiny
2321 * thrashing file LRU becomes infinitely more attractive than
2322 * anon pages. Try to detect this based on file LRU size.
2324 if (global_reclaim(sc)) {
2325 unsigned long pgdatfile;
2326 unsigned long pgdatfree;
2328 unsigned long total_high_wmark = 0;
2330 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2331 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2332 node_page_state(pgdat, NR_INACTIVE_FILE);
2334 for (z = 0; z < MAX_NR_ZONES; z++) {
2335 struct zone *zone = &pgdat->node_zones[z];
2336 if (!managed_zone(zone))
2339 total_high_wmark += high_wmark_pages(zone);
2342 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2344 * Force SCAN_ANON if there are enough inactive
2345 * anonymous pages on the LRU in eligible zones.
2346 * Otherwise, the small LRU gets thrashed.
2348 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2349 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351 scan_balance = SCAN_ANON;
2358 * If there is enough inactive page cache, i.e. if the size of the
2359 * inactive list is greater than that of the active list *and* the
2360 * inactive list actually has some pages to scan on this priority, we
2361 * do not reclaim anything from the anonymous working set right now.
2362 * Without the second condition we could end up never scanning an
2363 * lruvec even if it has plenty of old anonymous pages unless the
2364 * system is under heavy pressure.
2366 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2367 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2368 scan_balance = SCAN_FILE;
2372 scan_balance = SCAN_FRACT;
2375 * With swappiness at 100, anonymous and file have the same priority.
2376 * This scanning priority is essentially the inverse of IO cost.
2378 anon_prio = swappiness;
2379 file_prio = 200 - anon_prio;
2382 * OK, so we have swap space and a fair amount of page cache
2383 * pages. We use the recently rotated / recently scanned
2384 * ratios to determine how valuable each cache is.
2386 * Because workloads change over time (and to avoid overflow)
2387 * we keep these statistics as a floating average, which ends
2388 * up weighing recent references more than old ones.
2390 * anon in [0], file in [1]
2393 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2394 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2395 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2396 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2398 spin_lock_irq(&pgdat->lru_lock);
2399 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2400 reclaim_stat->recent_scanned[0] /= 2;
2401 reclaim_stat->recent_rotated[0] /= 2;
2404 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2405 reclaim_stat->recent_scanned[1] /= 2;
2406 reclaim_stat->recent_rotated[1] /= 2;
2410 * The amount of pressure on anon vs file pages is inversely
2411 * proportional to the fraction of recently scanned pages on
2412 * each list that were recently referenced and in active use.
2414 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2415 ap /= reclaim_stat->recent_rotated[0] + 1;
2417 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2418 fp /= reclaim_stat->recent_rotated[1] + 1;
2419 spin_unlock_irq(&pgdat->lru_lock);
2423 denominator = ap + fp + 1;
2426 for_each_evictable_lru(lru) {
2427 int file = is_file_lru(lru);
2431 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2432 scan = size >> sc->priority;
2434 * If the cgroup's already been deleted, make sure to
2435 * scrape out the remaining cache.
2437 if (!scan && !mem_cgroup_online(memcg))
2438 scan = min(size, SWAP_CLUSTER_MAX);
2440 switch (scan_balance) {
2442 /* Scan lists relative to size */
2446 * Scan types proportional to swappiness and
2447 * their relative recent reclaim efficiency.
2449 scan = div64_u64(scan * fraction[file],
2454 /* Scan one type exclusively */
2455 if ((scan_balance == SCAN_FILE) != file) {
2461 /* Look ma, no brain */
2471 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2473 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2474 struct scan_control *sc, unsigned long *lru_pages)
2476 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2477 unsigned long nr[NR_LRU_LISTS];
2478 unsigned long targets[NR_LRU_LISTS];
2479 unsigned long nr_to_scan;
2481 unsigned long nr_reclaimed = 0;
2482 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2483 struct blk_plug plug;
2486 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2488 /* Record the original scan target for proportional adjustments later */
2489 memcpy(targets, nr, sizeof(nr));
2492 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2493 * event that can occur when there is little memory pressure e.g.
2494 * multiple streaming readers/writers. Hence, we do not abort scanning
2495 * when the requested number of pages are reclaimed when scanning at
2496 * DEF_PRIORITY on the assumption that the fact we are direct
2497 * reclaiming implies that kswapd is not keeping up and it is best to
2498 * do a batch of work at once. For memcg reclaim one check is made to
2499 * abort proportional reclaim if either the file or anon lru has already
2500 * dropped to zero at the first pass.
2502 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2503 sc->priority == DEF_PRIORITY);
2505 blk_start_plug(&plug);
2506 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2507 nr[LRU_INACTIVE_FILE]) {
2508 unsigned long nr_anon, nr_file, percentage;
2509 unsigned long nr_scanned;
2511 for_each_evictable_lru(lru) {
2513 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2514 nr[lru] -= nr_to_scan;
2516 nr_reclaimed += shrink_list(lru, nr_to_scan,
2523 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2527 * For kswapd and memcg, reclaim at least the number of pages
2528 * requested. Ensure that the anon and file LRUs are scanned
2529 * proportionally what was requested by get_scan_count(). We
2530 * stop reclaiming one LRU and reduce the amount scanning
2531 * proportional to the original scan target.
2533 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2534 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2537 * It's just vindictive to attack the larger once the smaller
2538 * has gone to zero. And given the way we stop scanning the
2539 * smaller below, this makes sure that we only make one nudge
2540 * towards proportionality once we've got nr_to_reclaim.
2542 if (!nr_file || !nr_anon)
2545 if (nr_file > nr_anon) {
2546 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2547 targets[LRU_ACTIVE_ANON] + 1;
2549 percentage = nr_anon * 100 / scan_target;
2551 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2552 targets[LRU_ACTIVE_FILE] + 1;
2554 percentage = nr_file * 100 / scan_target;
2557 /* Stop scanning the smaller of the LRU */
2559 nr[lru + LRU_ACTIVE] = 0;
2562 * Recalculate the other LRU scan count based on its original
2563 * scan target and the percentage scanning already complete
2565 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2566 nr_scanned = targets[lru] - nr[lru];
2567 nr[lru] = targets[lru] * (100 - percentage) / 100;
2568 nr[lru] -= min(nr[lru], nr_scanned);
2571 nr_scanned = targets[lru] - nr[lru];
2572 nr[lru] = targets[lru] * (100 - percentage) / 100;
2573 nr[lru] -= min(nr[lru], nr_scanned);
2575 scan_adjusted = true;
2577 blk_finish_plug(&plug);
2578 sc->nr_reclaimed += nr_reclaimed;
2581 * Even if we did not try to evict anon pages at all, we want to
2582 * rebalance the anon lru active/inactive ratio.
2584 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2585 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2586 sc, LRU_ACTIVE_ANON);
2589 /* Use reclaim/compaction for costly allocs or under memory pressure */
2590 static bool in_reclaim_compaction(struct scan_control *sc)
2592 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2593 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2594 sc->priority < DEF_PRIORITY - 2))
2601 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2602 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2603 * true if more pages should be reclaimed such that when the page allocator
2604 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2605 * It will give up earlier than that if there is difficulty reclaiming pages.
2607 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2608 unsigned long nr_reclaimed,
2609 unsigned long nr_scanned,
2610 struct scan_control *sc)
2612 unsigned long pages_for_compaction;
2613 unsigned long inactive_lru_pages;
2616 /* If not in reclaim/compaction mode, stop */
2617 if (!in_reclaim_compaction(sc))
2620 /* Consider stopping depending on scan and reclaim activity */
2621 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2623 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2624 * full LRU list has been scanned and we are still failing
2625 * to reclaim pages. This full LRU scan is potentially
2626 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2628 if (!nr_reclaimed && !nr_scanned)
2632 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2633 * fail without consequence, stop if we failed to reclaim
2634 * any pages from the last SWAP_CLUSTER_MAX number of
2635 * pages that were scanned. This will return to the
2636 * caller faster at the risk reclaim/compaction and
2637 * the resulting allocation attempt fails
2644 * If we have not reclaimed enough pages for compaction and the
2645 * inactive lists are large enough, continue reclaiming
2647 pages_for_compaction = compact_gap(sc->order);
2648 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2649 if (get_nr_swap_pages() > 0)
2650 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2651 if (sc->nr_reclaimed < pages_for_compaction &&
2652 inactive_lru_pages > pages_for_compaction)
2655 /* If compaction would go ahead or the allocation would succeed, stop */
2656 for (z = 0; z <= sc->reclaim_idx; z++) {
2657 struct zone *zone = &pgdat->node_zones[z];
2658 if (!managed_zone(zone))
2661 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2662 case COMPACT_SUCCESS:
2663 case COMPACT_CONTINUE:
2666 /* check next zone */
2673 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2675 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2676 (memcg && memcg_congested(pgdat, memcg));
2679 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2681 struct reclaim_state *reclaim_state = current->reclaim_state;
2682 unsigned long nr_reclaimed, nr_scanned;
2683 bool reclaimable = false;
2686 struct mem_cgroup *root = sc->target_mem_cgroup;
2687 struct mem_cgroup_reclaim_cookie reclaim = {
2689 .priority = sc->priority,
2691 unsigned long node_lru_pages = 0;
2692 struct mem_cgroup *memcg;
2694 memset(&sc->nr, 0, sizeof(sc->nr));
2696 nr_reclaimed = sc->nr_reclaimed;
2697 nr_scanned = sc->nr_scanned;
2699 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2701 unsigned long lru_pages;
2702 unsigned long reclaimed;
2703 unsigned long scanned;
2705 switch (mem_cgroup_protected(root, memcg)) {
2706 case MEMCG_PROT_MIN:
2709 * If there is no reclaimable memory, OOM.
2712 case MEMCG_PROT_LOW:
2715 * Respect the protection only as long as
2716 * there is an unprotected supply
2717 * of reclaimable memory from other cgroups.
2719 if (!sc->memcg_low_reclaim) {
2720 sc->memcg_low_skipped = 1;
2723 memcg_memory_event(memcg, MEMCG_LOW);
2725 case MEMCG_PROT_NONE:
2729 reclaimed = sc->nr_reclaimed;
2730 scanned = sc->nr_scanned;
2731 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2732 node_lru_pages += lru_pages;
2734 shrink_slab(sc->gfp_mask, pgdat->node_id,
2735 memcg, sc->priority);
2737 /* Record the group's reclaim efficiency */
2738 vmpressure(sc->gfp_mask, memcg, false,
2739 sc->nr_scanned - scanned,
2740 sc->nr_reclaimed - reclaimed);
2743 * Direct reclaim and kswapd have to scan all memory
2744 * cgroups to fulfill the overall scan target for the
2747 * Limit reclaim, on the other hand, only cares about
2748 * nr_to_reclaim pages to be reclaimed and it will
2749 * retry with decreasing priority if one round over the
2750 * whole hierarchy is not sufficient.
2752 if (!global_reclaim(sc) &&
2753 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2754 mem_cgroup_iter_break(root, memcg);
2757 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2759 if (reclaim_state) {
2760 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2761 reclaim_state->reclaimed_slab = 0;
2764 /* Record the subtree's reclaim efficiency */
2765 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2766 sc->nr_scanned - nr_scanned,
2767 sc->nr_reclaimed - nr_reclaimed);
2769 if (sc->nr_reclaimed - nr_reclaimed)
2772 if (current_is_kswapd()) {
2774 * If reclaim is isolating dirty pages under writeback,
2775 * it implies that the long-lived page allocation rate
2776 * is exceeding the page laundering rate. Either the
2777 * global limits are not being effective at throttling
2778 * processes due to the page distribution throughout
2779 * zones or there is heavy usage of a slow backing
2780 * device. The only option is to throttle from reclaim
2781 * context which is not ideal as there is no guarantee
2782 * the dirtying process is throttled in the same way
2783 * balance_dirty_pages() manages.
2785 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2786 * count the number of pages under pages flagged for
2787 * immediate reclaim and stall if any are encountered
2788 * in the nr_immediate check below.
2790 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2791 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2794 * Tag a node as congested if all the dirty pages
2795 * scanned were backed by a congested BDI and
2796 * wait_iff_congested will stall.
2798 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2799 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2801 /* Allow kswapd to start writing pages during reclaim.*/
2802 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2803 set_bit(PGDAT_DIRTY, &pgdat->flags);
2806 * If kswapd scans pages marked marked for immediate
2807 * reclaim and under writeback (nr_immediate), it
2808 * implies that pages are cycling through the LRU
2809 * faster than they are written so also forcibly stall.
2811 if (sc->nr.immediate)
2812 congestion_wait(BLK_RW_ASYNC, HZ/10);
2816 * Legacy memcg will stall in page writeback so avoid forcibly
2817 * stalling in wait_iff_congested().
2819 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2820 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2821 set_memcg_congestion(pgdat, root, true);
2824 * Stall direct reclaim for IO completions if underlying BDIs
2825 * and node is congested. Allow kswapd to continue until it
2826 * starts encountering unqueued dirty pages or cycling through
2827 * the LRU too quickly.
2829 if (!sc->hibernation_mode && !current_is_kswapd() &&
2830 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2831 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2833 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2834 sc->nr_scanned - nr_scanned, sc));
2837 * Kswapd gives up on balancing particular nodes after too
2838 * many failures to reclaim anything from them and goes to
2839 * sleep. On reclaim progress, reset the failure counter. A
2840 * successful direct reclaim run will revive a dormant kswapd.
2843 pgdat->kswapd_failures = 0;
2849 * Returns true if compaction should go ahead for a costly-order request, or
2850 * the allocation would already succeed without compaction. Return false if we
2851 * should reclaim first.
2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2855 unsigned long watermark;
2856 enum compact_result suitable;
2858 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2859 if (suitable == COMPACT_SUCCESS)
2860 /* Allocation should succeed already. Don't reclaim. */
2862 if (suitable == COMPACT_SKIPPED)
2863 /* Compaction cannot yet proceed. Do reclaim. */
2867 * Compaction is already possible, but it takes time to run and there
2868 * are potentially other callers using the pages just freed. So proceed
2869 * with reclaim to make a buffer of free pages available to give
2870 * compaction a reasonable chance of completing and allocating the page.
2871 * Note that we won't actually reclaim the whole buffer in one attempt
2872 * as the target watermark in should_continue_reclaim() is lower. But if
2873 * we are already above the high+gap watermark, don't reclaim at all.
2875 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2877 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2881 * This is the direct reclaim path, for page-allocating processes. We only
2882 * try to reclaim pages from zones which will satisfy the caller's allocation
2885 * If a zone is deemed to be full of pinned pages then just give it a light
2886 * scan then give up on it.
2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2892 unsigned long nr_soft_reclaimed;
2893 unsigned long nr_soft_scanned;
2895 pg_data_t *last_pgdat = NULL;
2898 * If the number of buffer_heads in the machine exceeds the maximum
2899 * allowed level, force direct reclaim to scan the highmem zone as
2900 * highmem pages could be pinning lowmem pages storing buffer_heads
2902 orig_mask = sc->gfp_mask;
2903 if (buffer_heads_over_limit) {
2904 sc->gfp_mask |= __GFP_HIGHMEM;
2905 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2908 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909 sc->reclaim_idx, sc->nodemask) {
2911 * Take care memory controller reclaiming has small influence
2914 if (global_reclaim(sc)) {
2915 if (!cpuset_zone_allowed(zone,
2916 GFP_KERNEL | __GFP_HARDWALL))
2920 * If we already have plenty of memory free for
2921 * compaction in this zone, don't free any more.
2922 * Even though compaction is invoked for any
2923 * non-zero order, only frequent costly order
2924 * reclamation is disruptive enough to become a
2925 * noticeable problem, like transparent huge
2928 if (IS_ENABLED(CONFIG_COMPACTION) &&
2929 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930 compaction_ready(zone, sc)) {
2931 sc->compaction_ready = true;
2936 * Shrink each node in the zonelist once. If the
2937 * zonelist is ordered by zone (not the default) then a
2938 * node may be shrunk multiple times but in that case
2939 * the user prefers lower zones being preserved.
2941 if (zone->zone_pgdat == last_pgdat)
2945 * This steals pages from memory cgroups over softlimit
2946 * and returns the number of reclaimed pages and
2947 * scanned pages. This works for global memory pressure
2948 * and balancing, not for a memcg's limit.
2950 nr_soft_scanned = 0;
2951 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952 sc->order, sc->gfp_mask,
2954 sc->nr_reclaimed += nr_soft_reclaimed;
2955 sc->nr_scanned += nr_soft_scanned;
2956 /* need some check for avoid more shrink_zone() */
2959 /* See comment about same check for global reclaim above */
2960 if (zone->zone_pgdat == last_pgdat)
2962 last_pgdat = zone->zone_pgdat;
2963 shrink_node(zone->zone_pgdat, sc);
2967 * Restore to original mask to avoid the impact on the caller if we
2968 * promoted it to __GFP_HIGHMEM.
2970 sc->gfp_mask = orig_mask;
2973 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2975 struct mem_cgroup *memcg;
2977 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2979 unsigned long refaults;
2980 struct lruvec *lruvec;
2983 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2985 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2987 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2988 lruvec->refaults = refaults;
2989 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2993 * This is the main entry point to direct page reclaim.
2995 * If a full scan of the inactive list fails to free enough memory then we
2996 * are "out of memory" and something needs to be killed.
2998 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2999 * high - the zone may be full of dirty or under-writeback pages, which this
3000 * caller can't do much about. We kick the writeback threads and take explicit
3001 * naps in the hope that some of these pages can be written. But if the
3002 * allocating task holds filesystem locks which prevent writeout this might not
3003 * work, and the allocation attempt will fail.
3005 * returns: 0, if no pages reclaimed
3006 * else, the number of pages reclaimed
3008 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009 struct scan_control *sc)
3011 int initial_priority = sc->priority;
3012 pg_data_t *last_pgdat;
3016 delayacct_freepages_start();
3018 if (global_reclaim(sc))
3019 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3022 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3025 shrink_zones(zonelist, sc);
3027 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3030 if (sc->compaction_ready)
3034 * If we're getting trouble reclaiming, start doing
3035 * writepage even in laptop mode.
3037 if (sc->priority < DEF_PRIORITY - 2)
3038 sc->may_writepage = 1;
3039 } while (--sc->priority >= 0);
3042 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044 if (zone->zone_pgdat == last_pgdat)
3046 last_pgdat = zone->zone_pgdat;
3047 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3048 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3051 delayacct_freepages_end();
3053 if (sc->nr_reclaimed)
3054 return sc->nr_reclaimed;
3056 /* Aborted reclaim to try compaction? don't OOM, then */
3057 if (sc->compaction_ready)
3060 /* Untapped cgroup reserves? Don't OOM, retry. */
3061 if (sc->memcg_low_skipped) {
3062 sc->priority = initial_priority;
3063 sc->memcg_low_reclaim = 1;
3064 sc->memcg_low_skipped = 0;
3071 static bool allow_direct_reclaim(pg_data_t *pgdat)
3074 unsigned long pfmemalloc_reserve = 0;
3075 unsigned long free_pages = 0;
3079 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3082 for (i = 0; i <= ZONE_NORMAL; i++) {
3083 zone = &pgdat->node_zones[i];
3084 if (!managed_zone(zone))
3087 if (!zone_reclaimable_pages(zone))
3090 pfmemalloc_reserve += min_wmark_pages(zone);
3091 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3094 /* If there are no reserves (unexpected config) then do not throttle */
3095 if (!pfmemalloc_reserve)
3098 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3100 /* kswapd must be awake if processes are being throttled */
3101 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3102 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3103 (enum zone_type)ZONE_NORMAL);
3104 wake_up_interruptible(&pgdat->kswapd_wait);
3111 * Throttle direct reclaimers if backing storage is backed by the network
3112 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3113 * depleted. kswapd will continue to make progress and wake the processes
3114 * when the low watermark is reached.
3116 * Returns true if a fatal signal was delivered during throttling. If this
3117 * happens, the page allocator should not consider triggering the OOM killer.
3119 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3120 nodemask_t *nodemask)
3124 pg_data_t *pgdat = NULL;
3127 * Kernel threads should not be throttled as they may be indirectly
3128 * responsible for cleaning pages necessary for reclaim to make forward
3129 * progress. kjournald for example may enter direct reclaim while
3130 * committing a transaction where throttling it could forcing other
3131 * processes to block on log_wait_commit().
3133 if (current->flags & PF_KTHREAD)
3137 * If a fatal signal is pending, this process should not throttle.
3138 * It should return quickly so it can exit and free its memory
3140 if (fatal_signal_pending(current))
3144 * Check if the pfmemalloc reserves are ok by finding the first node
3145 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3146 * GFP_KERNEL will be required for allocating network buffers when
3147 * swapping over the network so ZONE_HIGHMEM is unusable.
3149 * Throttling is based on the first usable node and throttled processes
3150 * wait on a queue until kswapd makes progress and wakes them. There
3151 * is an affinity then between processes waking up and where reclaim
3152 * progress has been made assuming the process wakes on the same node.
3153 * More importantly, processes running on remote nodes will not compete
3154 * for remote pfmemalloc reserves and processes on different nodes
3155 * should make reasonable progress.
3157 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3158 gfp_zone(gfp_mask), nodemask) {
3159 if (zone_idx(zone) > ZONE_NORMAL)
3162 /* Throttle based on the first usable node */
3163 pgdat = zone->zone_pgdat;
3164 if (allow_direct_reclaim(pgdat))
3169 /* If no zone was usable by the allocation flags then do not throttle */
3173 /* Account for the throttling */
3174 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3177 * If the caller cannot enter the filesystem, it's possible that it
3178 * is due to the caller holding an FS lock or performing a journal
3179 * transaction in the case of a filesystem like ext[3|4]. In this case,
3180 * it is not safe to block on pfmemalloc_wait as kswapd could be
3181 * blocked waiting on the same lock. Instead, throttle for up to a
3182 * second before continuing.
3184 if (!(gfp_mask & __GFP_FS)) {
3185 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3186 allow_direct_reclaim(pgdat), HZ);
3191 /* Throttle until kswapd wakes the process */
3192 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3193 allow_direct_reclaim(pgdat));
3196 if (fatal_signal_pending(current))
3203 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3204 gfp_t gfp_mask, nodemask_t *nodemask)
3206 unsigned long nr_reclaimed;
3207 struct scan_control sc = {
3208 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3209 .gfp_mask = current_gfp_context(gfp_mask),
3210 .reclaim_idx = gfp_zone(gfp_mask),
3212 .nodemask = nodemask,
3213 .priority = DEF_PRIORITY,
3214 .may_writepage = !laptop_mode,
3220 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3221 * Confirm they are large enough for max values.
3223 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3224 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3225 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3228 * Do not enter reclaim if fatal signal was delivered while throttled.
3229 * 1 is returned so that the page allocator does not OOM kill at this
3232 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3235 trace_mm_vmscan_direct_reclaim_begin(order,
3240 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3242 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3244 return nr_reclaimed;
3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3250 gfp_t gfp_mask, bool noswap,
3252 unsigned long *nr_scanned)
3254 struct scan_control sc = {
3255 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3256 .target_mem_cgroup = memcg,
3257 .may_writepage = !laptop_mode,
3259 .reclaim_idx = MAX_NR_ZONES - 1,
3260 .may_swap = !noswap,
3262 unsigned long lru_pages;
3264 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3265 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3267 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3273 * NOTE: Although we can get the priority field, using it
3274 * here is not a good idea, since it limits the pages we can scan.
3275 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 * will pick up pages from other mem cgroup's as well. We hack
3277 * the priority and make it zero.
3279 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3281 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3283 *nr_scanned = sc.nr_scanned;
3284 return sc.nr_reclaimed;
3287 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3288 unsigned long nr_pages,
3292 struct zonelist *zonelist;
3293 unsigned long nr_reclaimed;
3295 unsigned int noreclaim_flag;
3296 struct scan_control sc = {
3297 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3298 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3299 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3300 .reclaim_idx = MAX_NR_ZONES - 1,
3301 .target_mem_cgroup = memcg,
3302 .priority = DEF_PRIORITY,
3303 .may_writepage = !laptop_mode,
3305 .may_swap = may_swap,
3309 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3310 * take care of from where we get pages. So the node where we start the
3311 * scan does not need to be the current node.
3313 nid = mem_cgroup_select_victim_node(memcg);
3315 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3317 trace_mm_vmscan_memcg_reclaim_begin(0,
3322 noreclaim_flag = memalloc_noreclaim_save();
3323 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3324 memalloc_noreclaim_restore(noreclaim_flag);
3326 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3328 return nr_reclaimed;
3332 static void age_active_anon(struct pglist_data *pgdat,
3333 struct scan_control *sc)
3335 struct mem_cgroup *memcg;
3337 if (!total_swap_pages)
3340 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3342 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3344 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3345 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3346 sc, LRU_ACTIVE_ANON);
3348 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3353 * Returns true if there is an eligible zone balanced for the request order
3356 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3359 unsigned long mark = -1;
3362 for (i = 0; i <= classzone_idx; i++) {
3363 zone = pgdat->node_zones + i;
3365 if (!managed_zone(zone))
3368 mark = high_wmark_pages(zone);
3369 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3374 * If a node has no populated zone within classzone_idx, it does not
3375 * need balancing by definition. This can happen if a zone-restricted
3376 * allocation tries to wake a remote kswapd.
3384 /* Clear pgdat state for congested, dirty or under writeback. */
3385 static void clear_pgdat_congested(pg_data_t *pgdat)
3387 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3388 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3389 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3393 * Prepare kswapd for sleeping. This verifies that there are no processes
3394 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3396 * Returns true if kswapd is ready to sleep
3398 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3401 * The throttled processes are normally woken up in balance_pgdat() as
3402 * soon as allow_direct_reclaim() is true. But there is a potential
3403 * race between when kswapd checks the watermarks and a process gets
3404 * throttled. There is also a potential race if processes get
3405 * throttled, kswapd wakes, a large process exits thereby balancing the
3406 * zones, which causes kswapd to exit balance_pgdat() before reaching
3407 * the wake up checks. If kswapd is going to sleep, no process should
3408 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3409 * the wake up is premature, processes will wake kswapd and get
3410 * throttled again. The difference from wake ups in balance_pgdat() is
3411 * that here we are under prepare_to_wait().
3413 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3414 wake_up_all(&pgdat->pfmemalloc_wait);
3416 /* Hopeless node, leave it to direct reclaim */
3417 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3420 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3421 clear_pgdat_congested(pgdat);
3429 * kswapd shrinks a node of pages that are at or below the highest usable
3430 * zone that is currently unbalanced.
3432 * Returns true if kswapd scanned at least the requested number of pages to
3433 * reclaim or if the lack of progress was due to pages under writeback.
3434 * This is used to determine if the scanning priority needs to be raised.
3436 static bool kswapd_shrink_node(pg_data_t *pgdat,
3437 struct scan_control *sc)
3442 /* Reclaim a number of pages proportional to the number of zones */
3443 sc->nr_to_reclaim = 0;
3444 for (z = 0; z <= sc->reclaim_idx; z++) {
3445 zone = pgdat->node_zones + z;
3446 if (!managed_zone(zone))
3449 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3453 * Historically care was taken to put equal pressure on all zones but
3454 * now pressure is applied based on node LRU order.
3456 shrink_node(pgdat, sc);
3459 * Fragmentation may mean that the system cannot be rebalanced for
3460 * high-order allocations. If twice the allocation size has been
3461 * reclaimed then recheck watermarks only at order-0 to prevent
3462 * excessive reclaim. Assume that a process requested a high-order
3463 * can direct reclaim/compact.
3465 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3468 return sc->nr_scanned >= sc->nr_to_reclaim;
3472 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3473 * that are eligible for use by the caller until at least one zone is
3476 * Returns the order kswapd finished reclaiming at.
3478 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3479 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3480 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3481 * or lower is eligible for reclaim until at least one usable zone is
3484 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3487 unsigned long nr_soft_reclaimed;
3488 unsigned long nr_soft_scanned;
3490 struct scan_control sc = {
3491 .gfp_mask = GFP_KERNEL,
3493 .priority = DEF_PRIORITY,
3494 .may_writepage = !laptop_mode,
3499 __fs_reclaim_acquire();
3501 count_vm_event(PAGEOUTRUN);
3504 unsigned long nr_reclaimed = sc.nr_reclaimed;
3505 bool raise_priority = true;
3508 sc.reclaim_idx = classzone_idx;
3511 * If the number of buffer_heads exceeds the maximum allowed
3512 * then consider reclaiming from all zones. This has a dual
3513 * purpose -- on 64-bit systems it is expected that
3514 * buffer_heads are stripped during active rotation. On 32-bit
3515 * systems, highmem pages can pin lowmem memory and shrinking
3516 * buffers can relieve lowmem pressure. Reclaim may still not
3517 * go ahead if all eligible zones for the original allocation
3518 * request are balanced to avoid excessive reclaim from kswapd.
3520 if (buffer_heads_over_limit) {
3521 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3522 zone = pgdat->node_zones + i;
3523 if (!managed_zone(zone))
3532 * Only reclaim if there are no eligible zones. Note that
3533 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3536 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3540 * Do some background aging of the anon list, to give
3541 * pages a chance to be referenced before reclaiming. All
3542 * pages are rotated regardless of classzone as this is
3543 * about consistent aging.
3545 age_active_anon(pgdat, &sc);
3548 * If we're getting trouble reclaiming, start doing writepage
3549 * even in laptop mode.
3551 if (sc.priority < DEF_PRIORITY - 2)
3552 sc.may_writepage = 1;
3554 /* Call soft limit reclaim before calling shrink_node. */
3556 nr_soft_scanned = 0;
3557 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3558 sc.gfp_mask, &nr_soft_scanned);
3559 sc.nr_reclaimed += nr_soft_reclaimed;
3562 * There should be no need to raise the scanning priority if
3563 * enough pages are already being scanned that that high
3564 * watermark would be met at 100% efficiency.
3566 if (kswapd_shrink_node(pgdat, &sc))
3567 raise_priority = false;
3570 * If the low watermark is met there is no need for processes
3571 * to be throttled on pfmemalloc_wait as they should not be
3572 * able to safely make forward progress. Wake them
3574 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3575 allow_direct_reclaim(pgdat))
3576 wake_up_all(&pgdat->pfmemalloc_wait);
3578 /* Check if kswapd should be suspending */
3579 __fs_reclaim_release();
3580 ret = try_to_freeze();
3581 __fs_reclaim_acquire();
3582 if (ret || kthread_should_stop())
3586 * Raise priority if scanning rate is too low or there was no
3587 * progress in reclaiming pages
3589 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3590 if (raise_priority || !nr_reclaimed)
3592 } while (sc.priority >= 1);
3594 if (!sc.nr_reclaimed)
3595 pgdat->kswapd_failures++;
3598 snapshot_refaults(NULL, pgdat);
3599 __fs_reclaim_release();
3601 * Return the order kswapd stopped reclaiming at as
3602 * prepare_kswapd_sleep() takes it into account. If another caller
3603 * entered the allocator slow path while kswapd was awake, order will
3604 * remain at the higher level.
3610 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3611 * allocation request woke kswapd for. When kswapd has not woken recently,
3612 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3613 * given classzone and returns it or the highest classzone index kswapd
3614 * was recently woke for.
3616 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3617 enum zone_type classzone_idx)
3619 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3620 return classzone_idx;
3622 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3625 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3626 unsigned int classzone_idx)
3631 if (freezing(current) || kthread_should_stop())
3634 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3637 * Try to sleep for a short interval. Note that kcompactd will only be
3638 * woken if it is possible to sleep for a short interval. This is
3639 * deliberate on the assumption that if reclaim cannot keep an
3640 * eligible zone balanced that it's also unlikely that compaction will
3643 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3645 * Compaction records what page blocks it recently failed to
3646 * isolate pages from and skips them in the future scanning.
3647 * When kswapd is going to sleep, it is reasonable to assume
3648 * that pages and compaction may succeed so reset the cache.
3650 reset_isolation_suitable(pgdat);
3653 * We have freed the memory, now we should compact it to make
3654 * allocation of the requested order possible.
3656 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3658 remaining = schedule_timeout(HZ/10);
3661 * If woken prematurely then reset kswapd_classzone_idx and
3662 * order. The values will either be from a wakeup request or
3663 * the previous request that slept prematurely.
3666 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3667 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3670 finish_wait(&pgdat->kswapd_wait, &wait);
3671 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3675 * After a short sleep, check if it was a premature sleep. If not, then
3676 * go fully to sleep until explicitly woken up.
3679 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3680 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3683 * vmstat counters are not perfectly accurate and the estimated
3684 * value for counters such as NR_FREE_PAGES can deviate from the
3685 * true value by nr_online_cpus * threshold. To avoid the zone
3686 * watermarks being breached while under pressure, we reduce the
3687 * per-cpu vmstat threshold while kswapd is awake and restore
3688 * them before going back to sleep.
3690 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3692 if (!kthread_should_stop())
3695 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3698 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3700 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3702 finish_wait(&pgdat->kswapd_wait, &wait);
3706 * The background pageout daemon, started as a kernel thread
3707 * from the init process.
3709 * This basically trickles out pages so that we have _some_
3710 * free memory available even if there is no other activity
3711 * that frees anything up. This is needed for things like routing
3712 * etc, where we otherwise might have all activity going on in
3713 * asynchronous contexts that cannot page things out.
3715 * If there are applications that are active memory-allocators
3716 * (most normal use), this basically shouldn't matter.
3718 static int kswapd(void *p)
3720 unsigned int alloc_order, reclaim_order;
3721 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3722 pg_data_t *pgdat = (pg_data_t*)p;
3723 struct task_struct *tsk = current;
3725 struct reclaim_state reclaim_state = {
3726 .reclaimed_slab = 0,
3728 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3730 if (!cpumask_empty(cpumask))
3731 set_cpus_allowed_ptr(tsk, cpumask);
3732 current->reclaim_state = &reclaim_state;
3735 * Tell the memory management that we're a "memory allocator",
3736 * and that if we need more memory we should get access to it
3737 * regardless (see "__alloc_pages()"). "kswapd" should
3738 * never get caught in the normal page freeing logic.
3740 * (Kswapd normally doesn't need memory anyway, but sometimes
3741 * you need a small amount of memory in order to be able to
3742 * page out something else, and this flag essentially protects
3743 * us from recursively trying to free more memory as we're
3744 * trying to free the first piece of memory in the first place).
3746 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3749 pgdat->kswapd_order = 0;
3750 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3754 alloc_order = reclaim_order = pgdat->kswapd_order;
3755 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3758 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3761 /* Read the new order and classzone_idx */
3762 alloc_order = reclaim_order = pgdat->kswapd_order;
3763 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3764 pgdat->kswapd_order = 0;
3765 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3767 ret = try_to_freeze();
3768 if (kthread_should_stop())
3772 * We can speed up thawing tasks if we don't call balance_pgdat
3773 * after returning from the refrigerator
3779 * Reclaim begins at the requested order but if a high-order
3780 * reclaim fails then kswapd falls back to reclaiming for
3781 * order-0. If that happens, kswapd will consider sleeping
3782 * for the order it finished reclaiming at (reclaim_order)
3783 * but kcompactd is woken to compact for the original
3784 * request (alloc_order).
3786 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3788 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3789 if (reclaim_order < alloc_order)
3790 goto kswapd_try_sleep;
3793 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3794 current->reclaim_state = NULL;
3800 * A zone is low on free memory or too fragmented for high-order memory. If
3801 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3802 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3803 * has failed or is not needed, still wake up kcompactd if only compaction is
3806 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3807 enum zone_type classzone_idx)
3811 if (!managed_zone(zone))
3814 if (!cpuset_zone_allowed(zone, gfp_flags))
3816 pgdat = zone->zone_pgdat;
3817 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3819 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3820 if (!waitqueue_active(&pgdat->kswapd_wait))
3823 /* Hopeless node, leave it to direct reclaim if possible */
3824 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3825 pgdat_balanced(pgdat, order, classzone_idx)) {
3827 * There may be plenty of free memory available, but it's too
3828 * fragmented for high-order allocations. Wake up kcompactd
3829 * and rely on compaction_suitable() to determine if it's
3830 * needed. If it fails, it will defer subsequent attempts to
3831 * ratelimit its work.
3833 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3834 wakeup_kcompactd(pgdat, order, classzone_idx);
3838 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3840 wake_up_interruptible(&pgdat->kswapd_wait);
3843 #ifdef CONFIG_HIBERNATION
3845 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3848 * Rather than trying to age LRUs the aim is to preserve the overall
3849 * LRU order by reclaiming preferentially
3850 * inactive > active > active referenced > active mapped
3852 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3854 struct reclaim_state reclaim_state;
3855 struct scan_control sc = {
3856 .nr_to_reclaim = nr_to_reclaim,
3857 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3858 .reclaim_idx = MAX_NR_ZONES - 1,
3859 .priority = DEF_PRIORITY,
3863 .hibernation_mode = 1,
3865 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3866 struct task_struct *p = current;
3867 unsigned long nr_reclaimed;
3868 unsigned int noreclaim_flag;
3870 fs_reclaim_acquire(sc.gfp_mask);
3871 noreclaim_flag = memalloc_noreclaim_save();
3872 reclaim_state.reclaimed_slab = 0;
3873 p->reclaim_state = &reclaim_state;
3875 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3877 p->reclaim_state = NULL;
3878 memalloc_noreclaim_restore(noreclaim_flag);
3879 fs_reclaim_release(sc.gfp_mask);
3881 return nr_reclaimed;
3883 #endif /* CONFIG_HIBERNATION */
3885 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3886 not required for correctness. So if the last cpu in a node goes
3887 away, we get changed to run anywhere: as the first one comes back,
3888 restore their cpu bindings. */
3889 static int kswapd_cpu_online(unsigned int cpu)
3893 for_each_node_state(nid, N_MEMORY) {
3894 pg_data_t *pgdat = NODE_DATA(nid);
3895 const struct cpumask *mask;
3897 mask = cpumask_of_node(pgdat->node_id);
3899 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3900 /* One of our CPUs online: restore mask */
3901 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3907 * This kswapd start function will be called by init and node-hot-add.
3908 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3910 int kswapd_run(int nid)
3912 pg_data_t *pgdat = NODE_DATA(nid);
3918 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3919 if (IS_ERR(pgdat->kswapd)) {
3920 /* failure at boot is fatal */
3921 BUG_ON(system_state < SYSTEM_RUNNING);
3922 pr_err("Failed to start kswapd on node %d\n", nid);
3923 ret = PTR_ERR(pgdat->kswapd);
3924 pgdat->kswapd = NULL;
3930 * Called by memory hotplug when all memory in a node is offlined. Caller must
3931 * hold mem_hotplug_begin/end().
3933 void kswapd_stop(int nid)
3935 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3938 kthread_stop(kswapd);
3939 NODE_DATA(nid)->kswapd = NULL;
3943 static int __init kswapd_init(void)
3948 for_each_node_state(nid, N_MEMORY)
3950 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3951 "mm/vmscan:online", kswapd_cpu_online,
3957 module_init(kswapd_init)
3963 * If non-zero call node_reclaim when the number of free pages falls below
3966 int node_reclaim_mode __read_mostly;
3968 #define RECLAIM_OFF 0
3969 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3970 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3971 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3974 * Priority for NODE_RECLAIM. This determines the fraction of pages
3975 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3978 #define NODE_RECLAIM_PRIORITY 4
3981 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3984 int sysctl_min_unmapped_ratio = 1;
3987 * If the number of slab pages in a zone grows beyond this percentage then
3988 * slab reclaim needs to occur.
3990 int sysctl_min_slab_ratio = 5;
3992 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3994 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3995 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3996 node_page_state(pgdat, NR_ACTIVE_FILE);
3999 * It's possible for there to be more file mapped pages than
4000 * accounted for by the pages on the file LRU lists because
4001 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4003 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4006 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4007 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4009 unsigned long nr_pagecache_reclaimable;
4010 unsigned long delta = 0;
4013 * If RECLAIM_UNMAP is set, then all file pages are considered
4014 * potentially reclaimable. Otherwise, we have to worry about
4015 * pages like swapcache and node_unmapped_file_pages() provides
4018 if (node_reclaim_mode & RECLAIM_UNMAP)
4019 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4021 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4023 /* If we can't clean pages, remove dirty pages from consideration */
4024 if (!(node_reclaim_mode & RECLAIM_WRITE))
4025 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4027 /* Watch for any possible underflows due to delta */
4028 if (unlikely(delta > nr_pagecache_reclaimable))
4029 delta = nr_pagecache_reclaimable;
4031 return nr_pagecache_reclaimable - delta;
4035 * Try to free up some pages from this node through reclaim.
4037 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4039 /* Minimum pages needed in order to stay on node */
4040 const unsigned long nr_pages = 1 << order;
4041 struct task_struct *p = current;
4042 struct reclaim_state reclaim_state;
4043 unsigned int noreclaim_flag;
4044 struct scan_control sc = {
4045 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4046 .gfp_mask = current_gfp_context(gfp_mask),
4048 .priority = NODE_RECLAIM_PRIORITY,
4049 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4050 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4052 .reclaim_idx = gfp_zone(gfp_mask),
4056 fs_reclaim_acquire(sc.gfp_mask);
4058 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4059 * and we also need to be able to write out pages for RECLAIM_WRITE
4060 * and RECLAIM_UNMAP.
4062 noreclaim_flag = memalloc_noreclaim_save();
4063 p->flags |= PF_SWAPWRITE;
4064 reclaim_state.reclaimed_slab = 0;
4065 p->reclaim_state = &reclaim_state;
4067 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4069 * Free memory by calling shrink node with increasing
4070 * priorities until we have enough memory freed.
4073 shrink_node(pgdat, &sc);
4074 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4077 p->reclaim_state = NULL;
4078 current->flags &= ~PF_SWAPWRITE;
4079 memalloc_noreclaim_restore(noreclaim_flag);
4080 fs_reclaim_release(sc.gfp_mask);
4081 return sc.nr_reclaimed >= nr_pages;
4084 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4089 * Node reclaim reclaims unmapped file backed pages and
4090 * slab pages if we are over the defined limits.
4092 * A small portion of unmapped file backed pages is needed for
4093 * file I/O otherwise pages read by file I/O will be immediately
4094 * thrown out if the node is overallocated. So we do not reclaim
4095 * if less than a specified percentage of the node is used by
4096 * unmapped file backed pages.
4098 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4099 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4100 return NODE_RECLAIM_FULL;
4103 * Do not scan if the allocation should not be delayed.
4105 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4106 return NODE_RECLAIM_NOSCAN;
4109 * Only run node reclaim on the local node or on nodes that do not
4110 * have associated processors. This will favor the local processor
4111 * over remote processors and spread off node memory allocations
4112 * as wide as possible.
4114 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4115 return NODE_RECLAIM_NOSCAN;
4117 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4118 return NODE_RECLAIM_NOSCAN;
4120 ret = __node_reclaim(pgdat, gfp_mask, order);
4121 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4124 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4131 * page_evictable - test whether a page is evictable
4132 * @page: the page to test
4134 * Test whether page is evictable--i.e., should be placed on active/inactive
4135 * lists vs unevictable list.
4137 * Reasons page might not be evictable:
4138 * (1) page's mapping marked unevictable
4139 * (2) page is part of an mlocked VMA
4142 int page_evictable(struct page *page)
4146 /* Prevent address_space of inode and swap cache from being freed */
4148 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4155 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4156 * @pages: array of pages to check
4157 * @nr_pages: number of pages to check
4159 * Checks pages for evictability and moves them to the appropriate lru list.
4161 * This function is only used for SysV IPC SHM_UNLOCK.
4163 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4165 struct lruvec *lruvec;
4166 struct pglist_data *pgdat = NULL;
4171 for (i = 0; i < nr_pages; i++) {
4172 struct page *page = pages[i];
4173 struct pglist_data *pagepgdat = page_pgdat(page);
4176 if (pagepgdat != pgdat) {
4178 spin_unlock_irq(&pgdat->lru_lock);
4180 spin_lock_irq(&pgdat->lru_lock);
4182 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4184 if (!PageLRU(page) || !PageUnevictable(page))
4187 if (page_evictable(page)) {
4188 enum lru_list lru = page_lru_base_type(page);
4190 VM_BUG_ON_PAGE(PageActive(page), page);
4191 ClearPageUnevictable(page);
4192 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4193 add_page_to_lru_list(page, lruvec, lru);
4199 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4200 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4201 spin_unlock_irq(&pgdat->lru_lock);
4204 #endif /* CONFIG_SHMEM */