2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
51 static int __init init_dax_wait_table(void)
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
59 fs_initcall(init_dax_wait_table);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_pfn(void *entry)
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
87 static unsigned int dax_radix_order(void *entry)
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
94 static int dax_is_pmd_entry(void *entry)
96 return (unsigned long)entry & RADIX_DAX_PMD;
99 static int dax_is_pte_entry(void *entry)
101 return !((unsigned long)entry & RADIX_DAX_PMD);
104 static int dax_is_zero_entry(void *entry)
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
109 static int dax_is_empty_entry(void *entry)
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
115 * DAX radix tree locking
117 struct exceptional_entry_key {
118 struct address_space *mapping;
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
140 key->mapping = mapping;
141 key->entry_start = index;
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
157 return autoremove_wake_function(wait, mode, sync, NULL);
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 pgoff_t index, void *entry, bool wake_all)
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
184 * Check whether the given slot is locked. Must be called with the i_pages
187 static inline int slot_locked(struct address_space *mapping, void **slot)
189 unsigned long entry = (unsigned long)
190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 return entry & RADIX_DAX_ENTRY_LOCK;
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 return (void *)entry;
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
212 unsigned long entry = (unsigned long)
213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 return (void *)entry;
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
227 * Must be called with the i_pages lock held.
229 static void *get_unlocked_mapping_entry(struct address_space *mapping,
230 pgoff_t index, void ***slotp)
233 struct wait_exceptional_entry_queue ewait;
234 wait_queue_head_t *wq;
236 init_wait(&ewait.wait);
237 ewait.wait.func = wake_exceptional_entry_func;
240 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
244 !slot_locked(mapping, slot)) {
250 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
251 prepare_to_wait_exclusive(wq, &ewait.wait,
252 TASK_UNINTERRUPTIBLE);
253 xa_unlock_irq(&mapping->i_pages);
255 finish_wait(wq, &ewait.wait);
256 xa_lock_irq(&mapping->i_pages);
260 static void dax_unlock_mapping_entry(struct address_space *mapping,
265 xa_lock_irq(&mapping->i_pages);
266 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
267 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268 !slot_locked(mapping, slot))) {
269 xa_unlock_irq(&mapping->i_pages);
272 unlock_slot(mapping, slot);
273 xa_unlock_irq(&mapping->i_pages);
274 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
277 static void put_locked_mapping_entry(struct address_space *mapping,
280 dax_unlock_mapping_entry(mapping, index);
284 * Called when we are done with radix tree entry we looked up via
285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
287 static void put_unlocked_mapping_entry(struct address_space *mapping,
288 pgoff_t index, void *entry)
293 /* We have to wake up next waiter for the radix tree entry lock */
294 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
297 static unsigned long dax_entry_size(void *entry)
299 if (dax_is_zero_entry(entry))
301 else if (dax_is_empty_entry(entry))
303 else if (dax_is_pmd_entry(entry))
309 static unsigned long dax_radix_end_pfn(void *entry)
311 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
318 #define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_radix_pfn(entry); \
320 pfn < dax_radix_end_pfn(entry); pfn++)
322 static void dax_associate_entry(void *entry, struct address_space *mapping)
326 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
329 for_each_mapped_pfn(entry, pfn) {
330 struct page *page = pfn_to_page(pfn);
332 WARN_ON_ONCE(page->mapping);
333 page->mapping = mapping;
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
354 static struct page *dax_busy_page(void *entry)
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
361 if (page_ref_count(page) > 1)
368 * Find radix tree entry at given index. If it points to an exceptional entry,
369 * return it with the radix tree entry locked. If the radix tree doesn't
370 * contain given index, create an empty exceptional entry for the index and
371 * return with it locked.
373 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
374 * either return that locked entry or will return an error. This error will
375 * happen if there are any 4k entries within the 2MiB range that we are
378 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
379 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
380 * insertion will fail if it finds any 4k entries already in the tree, and a
381 * 4k insertion will cause an existing 2MiB entry to be unmapped and
382 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
383 * well as 2MiB empty entries.
385 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
386 * real storage backing them. We will leave these real 2MiB DAX entries in
387 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
389 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
390 * persistent memory the benefit is doubtful. We can add that later if we can
393 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
394 unsigned long size_flag)
396 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
400 xa_lock_irq(&mapping->i_pages);
401 entry = get_unlocked_mapping_entry(mapping, index, &slot);
403 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
404 entry = ERR_PTR(-EIO);
409 if (size_flag & RADIX_DAX_PMD) {
410 if (dax_is_pte_entry(entry)) {
411 put_unlocked_mapping_entry(mapping, index,
413 entry = ERR_PTR(-EEXIST);
416 } else { /* trying to grab a PTE entry */
417 if (dax_is_pmd_entry(entry) &&
418 (dax_is_zero_entry(entry) ||
419 dax_is_empty_entry(entry))) {
420 pmd_downgrade = true;
425 /* No entry for given index? Make sure radix tree is big enough. */
426 if (!entry || pmd_downgrade) {
431 * Make sure 'entry' remains valid while we drop
434 entry = lock_slot(mapping, slot);
437 xa_unlock_irq(&mapping->i_pages);
439 * Besides huge zero pages the only other thing that gets
440 * downgraded are empty entries which don't need to be
443 if (pmd_downgrade && dax_is_zero_entry(entry))
444 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
447 err = radix_tree_preload(
448 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
451 put_locked_mapping_entry(mapping, index);
454 xa_lock_irq(&mapping->i_pages);
458 * We needed to drop the i_pages lock while calling
459 * radix_tree_preload() and we didn't have an entry to
460 * lock. See if another thread inserted an entry at
461 * our index during this time.
463 entry = __radix_tree_lookup(&mapping->i_pages, index,
466 radix_tree_preload_end();
467 xa_unlock_irq(&mapping->i_pages);
473 dax_disassociate_entry(entry, mapping, false);
474 radix_tree_delete(&mapping->i_pages, index);
475 mapping->nrexceptional--;
476 dax_wake_mapping_entry_waiter(mapping, index, entry,
480 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
482 err = __radix_tree_insert(&mapping->i_pages, index,
483 dax_radix_order(entry), entry);
484 radix_tree_preload_end();
486 xa_unlock_irq(&mapping->i_pages);
488 * Our insertion of a DAX entry failed, most likely
489 * because we were inserting a PMD entry and it
490 * collided with a PTE sized entry at a different
491 * index in the PMD range. We haven't inserted
492 * anything into the radix tree and have no waiters to
497 /* Good, we have inserted empty locked entry into the tree. */
498 mapping->nrexceptional++;
499 xa_unlock_irq(&mapping->i_pages);
502 entry = lock_slot(mapping, slot);
504 xa_unlock_irq(&mapping->i_pages);
509 * dax_layout_busy_page - find first pinned page in @mapping
510 * @mapping: address space to scan for a page with ref count > 1
512 * DAX requires ZONE_DEVICE mapped pages. These pages are never
513 * 'onlined' to the page allocator so they are considered idle when
514 * page->count == 1. A filesystem uses this interface to determine if
515 * any page in the mapping is busy, i.e. for DMA, or other
516 * get_user_pages() usages.
518 * It is expected that the filesystem is holding locks to block the
519 * establishment of new mappings in this address_space. I.e. it expects
520 * to be able to run unmap_mapping_range() and subsequently not race
521 * mapping_mapped() becoming true.
523 struct page *dax_layout_busy_page(struct address_space *mapping)
525 pgoff_t indices[PAGEVEC_SIZE];
526 struct page *page = NULL;
532 * In the 'limited' case get_user_pages() for dax is disabled.
534 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
537 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
545 * If we race get_user_pages_fast() here either we'll see the
546 * elevated page count in the pagevec_lookup and wait, or
547 * get_user_pages_fast() will see that the page it took a reference
548 * against is no longer mapped in the page tables and bail to the
549 * get_user_pages() slow path. The slow path is protected by
550 * pte_lock() and pmd_lock(). New references are not taken without
551 * holding those locks, and unmap_mapping_range() will not zero the
552 * pte or pmd without holding the respective lock, so we are
553 * guaranteed to either see new references or prevent new
554 * references from being established.
556 unmap_mapping_range(mapping, 0, 0, 1);
558 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
559 min(end - index, (pgoff_t)PAGEVEC_SIZE),
561 for (i = 0; i < pagevec_count(&pvec); i++) {
562 struct page *pvec_ent = pvec.pages[i];
570 !radix_tree_exceptional_entry(pvec_ent)))
573 xa_lock_irq(&mapping->i_pages);
574 entry = get_unlocked_mapping_entry(mapping, index, NULL);
576 page = dax_busy_page(entry);
577 put_unlocked_mapping_entry(mapping, index, entry);
578 xa_unlock_irq(&mapping->i_pages);
584 * We don't expect normal struct page entries to exist in our
585 * tree, but we keep these pagevec calls so that this code is
586 * consistent with the common pattern for handling pagevecs
587 * throughout the kernel.
589 pagevec_remove_exceptionals(&pvec);
590 pagevec_release(&pvec);
598 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
600 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
601 pgoff_t index, bool trunc)
605 struct radix_tree_root *pages = &mapping->i_pages;
608 entry = get_unlocked_mapping_entry(mapping, index, NULL);
609 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
612 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
613 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
615 dax_disassociate_entry(entry, mapping, trunc);
616 radix_tree_delete(pages, index);
617 mapping->nrexceptional--;
620 put_unlocked_mapping_entry(mapping, index, entry);
621 xa_unlock_irq(pages);
625 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
626 * entry to get unlocked before deleting it.
628 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
630 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
633 * This gets called from truncate / punch_hole path. As such, the caller
634 * must hold locks protecting against concurrent modifications of the
635 * radix tree (usually fs-private i_mmap_sem for writing). Since the
636 * caller has seen exceptional entry for this index, we better find it
637 * at that index as well...
644 * Invalidate exceptional DAX entry if it is clean.
646 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
649 return __dax_invalidate_mapping_entry(mapping, index, false);
652 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
653 sector_t sector, size_t size, struct page *to,
662 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
666 id = dax_read_lock();
667 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
672 vto = kmap_atomic(to);
673 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
680 * By this point grab_mapping_entry() has ensured that we have a locked entry
681 * of the appropriate size so we don't have to worry about downgrading PMDs to
682 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
683 * already in the tree, we will skip the insertion and just dirty the PMD as
686 static void *dax_insert_mapping_entry(struct address_space *mapping,
687 struct vm_fault *vmf,
688 void *entry, pfn_t pfn_t,
689 unsigned long flags, bool dirty)
691 struct radix_tree_root *pages = &mapping->i_pages;
692 unsigned long pfn = pfn_t_to_pfn(pfn_t);
693 pgoff_t index = vmf->pgoff;
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
700 /* we are replacing a zero page with block mapping */
701 if (dax_is_pmd_entry(entry))
702 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
705 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
709 new_entry = dax_radix_locked_entry(pfn, flags);
710 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
711 dax_disassociate_entry(entry, mapping, false);
712 dax_associate_entry(new_entry, mapping);
715 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
717 * Only swap our new entry into the radix tree if the current
718 * entry is a zero page or an empty entry. If a normal PTE or
719 * PMD entry is already in the tree, we leave it alone. This
720 * means that if we are trying to insert a PTE and the
721 * existing entry is a PMD, we will just leave the PMD in the
722 * tree and dirty it if necessary.
724 struct radix_tree_node *node;
728 ret = __radix_tree_lookup(pages, index, &node, &slot);
729 WARN_ON_ONCE(ret != entry);
730 __radix_tree_replace(pages, node, slot,
736 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
738 xa_unlock_irq(pages);
742 static inline unsigned long
743 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
745 unsigned long address;
747 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
748 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
752 /* Walk all mappings of a given index of a file and writeprotect them */
753 static void dax_mapping_entry_mkclean(struct address_space *mapping,
754 pgoff_t index, unsigned long pfn)
756 struct vm_area_struct *vma;
757 pte_t pte, *ptep = NULL;
761 i_mmap_lock_read(mapping);
762 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
763 unsigned long address, start, end;
767 if (!(vma->vm_flags & VM_SHARED))
770 address = pgoff_address(index, vma);
773 * Note because we provide start/end to follow_pte_pmd it will
774 * call mmu_notifier_invalidate_range_start() on our behalf
775 * before taking any lock.
777 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
781 * No need to call mmu_notifier_invalidate_range() as we are
782 * downgrading page table protection not changing it to point
785 * See Documentation/vm/mmu_notifier.rst
788 #ifdef CONFIG_FS_DAX_PMD
791 if (pfn != pmd_pfn(*pmdp))
793 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
796 flush_cache_page(vma, address, pfn);
797 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
798 pmd = pmd_wrprotect(pmd);
799 pmd = pmd_mkclean(pmd);
800 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
805 if (pfn != pte_pfn(*ptep))
807 if (!pte_dirty(*ptep) && !pte_write(*ptep))
810 flush_cache_page(vma, address, pfn);
811 pte = ptep_clear_flush(vma, address, ptep);
812 pte = pte_wrprotect(pte);
813 pte = pte_mkclean(pte);
814 set_pte_at(vma->vm_mm, address, ptep, pte);
816 pte_unmap_unlock(ptep, ptl);
819 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
821 i_mmap_unlock_read(mapping);
824 static int dax_writeback_one(struct dax_device *dax_dev,
825 struct address_space *mapping, pgoff_t index, void *entry)
827 struct radix_tree_root *pages = &mapping->i_pages;
828 void *entry2, **slot;
834 * A page got tagged dirty in DAX mapping? Something is seriously
837 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
841 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
842 /* Entry got punched out / reallocated? */
843 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
846 * Entry got reallocated elsewhere? No need to writeback. We have to
847 * compare pfns as we must not bail out due to difference in lockbit
850 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
852 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
853 dax_is_zero_entry(entry))) {
858 /* Another fsync thread may have already written back this entry */
859 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
861 /* Lock the entry to serialize with page faults */
862 entry = lock_slot(mapping, slot);
864 * We can clear the tag now but we have to be careful so that concurrent
865 * dax_writeback_one() calls for the same index cannot finish before we
866 * actually flush the caches. This is achieved as the calls will look
867 * at the entry only under the i_pages lock and once they do that
868 * they will see the entry locked and wait for it to unlock.
870 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
871 xa_unlock_irq(pages);
874 * Even if dax_writeback_mapping_range() was given a wbc->range_start
875 * in the middle of a PMD, the 'index' we are given will be aligned to
876 * the start index of the PMD, as will the pfn we pull from 'entry'.
877 * This allows us to flush for PMD_SIZE and not have to worry about
878 * partial PMD writebacks.
880 pfn = dax_radix_pfn(entry);
881 size = PAGE_SIZE << dax_radix_order(entry);
883 dax_mapping_entry_mkclean(mapping, index, pfn);
884 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
886 * After we have flushed the cache, we can clear the dirty tag. There
887 * cannot be new dirty data in the pfn after the flush has completed as
888 * the pfn mappings are writeprotected and fault waits for mapping
892 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
893 xa_unlock_irq(pages);
894 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
895 put_locked_mapping_entry(mapping, index);
899 put_unlocked_mapping_entry(mapping, index, entry2);
900 xa_unlock_irq(pages);
905 * Flush the mapping to the persistent domain within the byte range of [start,
906 * end]. This is required by data integrity operations to ensure file data is
907 * on persistent storage prior to completion of the operation.
909 int dax_writeback_mapping_range(struct address_space *mapping,
910 struct block_device *bdev, struct writeback_control *wbc)
912 struct inode *inode = mapping->host;
913 pgoff_t start_index, end_index;
914 pgoff_t indices[PAGEVEC_SIZE];
915 struct dax_device *dax_dev;
920 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
923 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
926 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
930 start_index = wbc->range_start >> PAGE_SHIFT;
931 end_index = wbc->range_end >> PAGE_SHIFT;
933 trace_dax_writeback_range(inode, start_index, end_index);
935 tag_pages_for_writeback(mapping, start_index, end_index);
939 pvec.nr = find_get_entries_tag(mapping, start_index,
940 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
941 pvec.pages, indices);
946 for (i = 0; i < pvec.nr; i++) {
947 if (indices[i] > end_index) {
952 ret = dax_writeback_one(dax_dev, mapping, indices[i],
955 mapping_set_error(mapping, ret);
959 start_index = indices[pvec.nr - 1] + 1;
963 trace_dax_writeback_range_done(inode, start_index, end_index);
964 return (ret < 0 ? ret : 0);
966 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
968 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
970 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
973 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
976 const sector_t sector = dax_iomap_sector(iomap, pos);
982 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
985 id = dax_read_lock();
986 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
993 if (PFN_PHYS(length) < size)
995 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
997 /* For larger pages we need devmap */
998 if (length > 1 && !pfn_t_devmap(*pfnp))
1002 dax_read_unlock(id);
1007 * The user has performed a load from a hole in the file. Allocating a new
1008 * page in the file would cause excessive storage usage for workloads with
1009 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1010 * If this page is ever written to we will re-fault and change the mapping to
1011 * point to real DAX storage instead.
1013 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1014 struct vm_fault *vmf)
1016 struct inode *inode = mapping->host;
1017 unsigned long vaddr = vmf->address;
1018 vm_fault_t ret = VM_FAULT_NOPAGE;
1019 struct page *zero_page;
1022 zero_page = ZERO_PAGE(0);
1023 if (unlikely(!zero_page)) {
1028 pfn = page_to_pfn_t(zero_page);
1029 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1031 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1033 trace_dax_load_hole(inode, vmf, ret);
1037 static bool dax_range_is_aligned(struct block_device *bdev,
1038 unsigned int offset, unsigned int length)
1040 unsigned short sector_size = bdev_logical_block_size(bdev);
1042 if (!IS_ALIGNED(offset, sector_size))
1044 if (!IS_ALIGNED(length, sector_size))
1050 int __dax_zero_page_range(struct block_device *bdev,
1051 struct dax_device *dax_dev, sector_t sector,
1052 unsigned int offset, unsigned int size)
1054 if (dax_range_is_aligned(bdev, offset, size)) {
1055 sector_t start_sector = sector + (offset >> 9);
1057 return blkdev_issue_zeroout(bdev, start_sector,
1058 size >> 9, GFP_NOFS, 0);
1065 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1069 id = dax_read_lock();
1070 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
1073 dax_read_unlock(id);
1076 memset(kaddr + offset, 0, size);
1077 dax_flush(dax_dev, kaddr + offset, size);
1078 dax_read_unlock(id);
1082 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1085 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1086 struct iomap *iomap)
1088 struct block_device *bdev = iomap->bdev;
1089 struct dax_device *dax_dev = iomap->dax_dev;
1090 struct iov_iter *iter = data;
1091 loff_t end = pos + length, done = 0;
1096 if (iov_iter_rw(iter) == READ) {
1097 end = min(end, i_size_read(inode));
1101 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1102 return iov_iter_zero(min(length, end - pos), iter);
1105 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1109 * Write can allocate block for an area which has a hole page mapped
1110 * into page tables. We have to tear down these mappings so that data
1111 * written by write(2) is visible in mmap.
1113 if (iomap->flags & IOMAP_F_NEW) {
1114 invalidate_inode_pages2_range(inode->i_mapping,
1116 (end - 1) >> PAGE_SHIFT);
1119 id = dax_read_lock();
1121 unsigned offset = pos & (PAGE_SIZE - 1);
1122 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1123 const sector_t sector = dax_iomap_sector(iomap, pos);
1129 if (fatal_signal_pending(current)) {
1134 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1138 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1145 map_len = PFN_PHYS(map_len);
1148 if (map_len > end - pos)
1149 map_len = end - pos;
1152 * The userspace address for the memory copy has already been
1153 * validated via access_ok() in either vfs_read() or
1154 * vfs_write(), depending on which operation we are doing.
1156 if (iov_iter_rw(iter) == WRITE)
1157 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1172 dax_read_unlock(id);
1174 return done ? done : ret;
1178 * dax_iomap_rw - Perform I/O to a DAX file
1179 * @iocb: The control block for this I/O
1180 * @iter: The addresses to do I/O from or to
1181 * @ops: iomap ops passed from the file system
1183 * This function performs read and write operations to directly mapped
1184 * persistent memory. The callers needs to take care of read/write exclusion
1185 * and evicting any page cache pages in the region under I/O.
1188 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1189 const struct iomap_ops *ops)
1191 struct address_space *mapping = iocb->ki_filp->f_mapping;
1192 struct inode *inode = mapping->host;
1193 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196 if (iov_iter_rw(iter) == WRITE) {
1197 lockdep_assert_held_exclusive(&inode->i_rwsem);
1198 flags |= IOMAP_WRITE;
1200 lockdep_assert_held(&inode->i_rwsem);
1203 while (iov_iter_count(iter)) {
1204 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1205 iter, dax_iomap_actor);
1212 iocb->ki_pos += done;
1213 return done ? done : ret;
1215 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1217 static vm_fault_t dax_fault_return(int error)
1220 return VM_FAULT_NOPAGE;
1221 if (error == -ENOMEM)
1222 return VM_FAULT_OOM;
1223 return VM_FAULT_SIGBUS;
1227 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1228 * flushed on write-faults (non-cow), but not read-faults.
1230 static bool dax_fault_is_synchronous(unsigned long flags,
1231 struct vm_area_struct *vma, struct iomap *iomap)
1233 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1234 && (iomap->flags & IOMAP_F_DIRTY);
1237 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1238 int *iomap_errp, const struct iomap_ops *ops)
1240 struct vm_area_struct *vma = vmf->vma;
1241 struct address_space *mapping = vma->vm_file->f_mapping;
1242 struct inode *inode = mapping->host;
1243 unsigned long vaddr = vmf->address;
1244 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1245 struct iomap iomap = { 0 };
1246 unsigned flags = IOMAP_FAULT;
1247 int error, major = 0;
1248 bool write = vmf->flags & FAULT_FLAG_WRITE;
1254 trace_dax_pte_fault(inode, vmf, ret);
1256 * Check whether offset isn't beyond end of file now. Caller is supposed
1257 * to hold locks serializing us with truncate / punch hole so this is
1260 if (pos >= i_size_read(inode)) {
1261 ret = VM_FAULT_SIGBUS;
1265 if (write && !vmf->cow_page)
1266 flags |= IOMAP_WRITE;
1268 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1269 if (IS_ERR(entry)) {
1270 ret = dax_fault_return(PTR_ERR(entry));
1275 * It is possible, particularly with mixed reads & writes to private
1276 * mappings, that we have raced with a PMD fault that overlaps with
1277 * the PTE we need to set up. If so just return and the fault will be
1280 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1281 ret = VM_FAULT_NOPAGE;
1286 * Note that we don't bother to use iomap_apply here: DAX required
1287 * the file system block size to be equal the page size, which means
1288 * that we never have to deal with more than a single extent here.
1290 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1292 *iomap_errp = error;
1294 ret = dax_fault_return(error);
1297 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1298 error = -EIO; /* fs corruption? */
1299 goto error_finish_iomap;
1302 if (vmf->cow_page) {
1303 sector_t sector = dax_iomap_sector(&iomap, pos);
1305 switch (iomap.type) {
1307 case IOMAP_UNWRITTEN:
1308 clear_user_highpage(vmf->cow_page, vaddr);
1311 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1312 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1321 goto error_finish_iomap;
1323 __SetPageUptodate(vmf->cow_page);
1324 ret = finish_fault(vmf);
1326 ret = VM_FAULT_DONE_COW;
1330 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1332 switch (iomap.type) {
1334 if (iomap.flags & IOMAP_F_NEW) {
1335 count_vm_event(PGMAJFAULT);
1336 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1337 major = VM_FAULT_MAJOR;
1339 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1341 goto error_finish_iomap;
1343 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1347 * If we are doing synchronous page fault and inode needs fsync,
1348 * we can insert PTE into page tables only after that happens.
1349 * Skip insertion for now and return the pfn so that caller can
1350 * insert it after fsync is done.
1353 if (WARN_ON_ONCE(!pfnp)) {
1355 goto error_finish_iomap;
1358 ret = VM_FAULT_NEEDDSYNC | major;
1361 trace_dax_insert_mapping(inode, vmf, entry);
1363 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1365 ret = vmf_insert_mixed(vma, vaddr, pfn);
1368 case IOMAP_UNWRITTEN:
1371 ret = dax_load_hole(mapping, entry, vmf);
1382 ret = dax_fault_return(error);
1384 if (ops->iomap_end) {
1385 int copied = PAGE_SIZE;
1387 if (ret & VM_FAULT_ERROR)
1390 * The fault is done by now and there's no way back (other
1391 * thread may be already happily using PTE we have installed).
1392 * Just ignore error from ->iomap_end since we cannot do much
1395 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1398 put_locked_mapping_entry(mapping, vmf->pgoff);
1400 trace_dax_pte_fault_done(inode, vmf, ret);
1404 #ifdef CONFIG_FS_DAX_PMD
1405 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1408 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1409 unsigned long pmd_addr = vmf->address & PMD_MASK;
1410 struct inode *inode = mapping->host;
1411 struct page *zero_page;
1417 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1419 if (unlikely(!zero_page))
1422 pfn = page_to_pfn_t(zero_page);
1423 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1424 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1426 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1427 if (!pmd_none(*(vmf->pmd))) {
1432 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1433 pmd_entry = pmd_mkhuge(pmd_entry);
1434 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1436 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1437 return VM_FAULT_NOPAGE;
1440 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1441 return VM_FAULT_FALLBACK;
1444 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1445 const struct iomap_ops *ops)
1447 struct vm_area_struct *vma = vmf->vma;
1448 struct address_space *mapping = vma->vm_file->f_mapping;
1449 unsigned long pmd_addr = vmf->address & PMD_MASK;
1450 bool write = vmf->flags & FAULT_FLAG_WRITE;
1452 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1453 struct inode *inode = mapping->host;
1454 vm_fault_t result = VM_FAULT_FALLBACK;
1455 struct iomap iomap = { 0 };
1456 pgoff_t max_pgoff, pgoff;
1463 * Check whether offset isn't beyond end of file now. Caller is
1464 * supposed to hold locks serializing us with truncate / punch hole so
1465 * this is a reliable test.
1467 pgoff = linear_page_index(vma, pmd_addr);
1468 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1470 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1473 * Make sure that the faulting address's PMD offset (color) matches
1474 * the PMD offset from the start of the file. This is necessary so
1475 * that a PMD range in the page table overlaps exactly with a PMD
1476 * range in the radix tree.
1478 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1479 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1482 /* Fall back to PTEs if we're going to COW */
1483 if (write && !(vma->vm_flags & VM_SHARED))
1486 /* If the PMD would extend outside the VMA */
1487 if (pmd_addr < vma->vm_start)
1489 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1492 if (pgoff >= max_pgoff) {
1493 result = VM_FAULT_SIGBUS;
1497 /* If the PMD would extend beyond the file size */
1498 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1502 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1503 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1504 * is already in the tree, for instance), it will return -EEXIST and
1505 * we just fall back to 4k entries.
1507 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1512 * It is possible, particularly with mixed reads & writes to private
1513 * mappings, that we have raced with a PTE fault that overlaps with
1514 * the PMD we need to set up. If so just return and the fault will be
1517 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1518 !pmd_devmap(*vmf->pmd)) {
1524 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1525 * setting up a mapping, so really we're using iomap_begin() as a way
1526 * to look up our filesystem block.
1528 pos = (loff_t)pgoff << PAGE_SHIFT;
1529 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1533 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1536 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1538 switch (iomap.type) {
1540 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1544 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1545 RADIX_DAX_PMD, write && !sync);
1548 * If we are doing synchronous page fault and inode needs fsync,
1549 * we can insert PMD into page tables only after that happens.
1550 * Skip insertion for now and return the pfn so that caller can
1551 * insert it after fsync is done.
1554 if (WARN_ON_ONCE(!pfnp))
1557 result = VM_FAULT_NEEDDSYNC;
1561 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1562 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1565 case IOMAP_UNWRITTEN:
1567 if (WARN_ON_ONCE(write))
1569 result = dax_pmd_load_hole(vmf, &iomap, entry);
1577 if (ops->iomap_end) {
1578 int copied = PMD_SIZE;
1580 if (result == VM_FAULT_FALLBACK)
1583 * The fault is done by now and there's no way back (other
1584 * thread may be already happily using PMD we have installed).
1585 * Just ignore error from ->iomap_end since we cannot do much
1588 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1592 put_locked_mapping_entry(mapping, pgoff);
1594 if (result == VM_FAULT_FALLBACK) {
1595 split_huge_pmd(vma, vmf->pmd, vmf->address);
1596 count_vm_event(THP_FAULT_FALLBACK);
1599 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1603 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1604 const struct iomap_ops *ops)
1606 return VM_FAULT_FALLBACK;
1608 #endif /* CONFIG_FS_DAX_PMD */
1611 * dax_iomap_fault - handle a page fault on a DAX file
1612 * @vmf: The description of the fault
1613 * @pe_size: Size of the page to fault in
1614 * @pfnp: PFN to insert for synchronous faults if fsync is required
1615 * @iomap_errp: Storage for detailed error code in case of error
1616 * @ops: Iomap ops passed from the file system
1618 * When a page fault occurs, filesystems may call this helper in
1619 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1620 * has done all the necessary locking for page fault to proceed
1623 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1624 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1628 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1630 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1632 return VM_FAULT_FALLBACK;
1635 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1638 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1639 * @vmf: The description of the fault
1640 * @pe_size: Size of entry to be inserted
1641 * @pfn: PFN to insert
1643 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1644 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1647 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1648 enum page_entry_size pe_size,
1651 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1652 void *entry, **slot;
1653 pgoff_t index = vmf->pgoff;
1656 xa_lock_irq(&mapping->i_pages);
1657 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1658 /* Did we race with someone splitting entry or so? */
1660 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1661 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1662 put_unlocked_mapping_entry(mapping, index, entry);
1663 xa_unlock_irq(&mapping->i_pages);
1664 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1666 return VM_FAULT_NOPAGE;
1668 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1669 entry = lock_slot(mapping, slot);
1670 xa_unlock_irq(&mapping->i_pages);
1673 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1675 #ifdef CONFIG_FS_DAX_PMD
1677 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1682 ret = VM_FAULT_FALLBACK;
1684 put_locked_mapping_entry(mapping, index);
1685 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690 * dax_finish_sync_fault - finish synchronous page fault
1691 * @vmf: The description of the fault
1692 * @pe_size: Size of entry to be inserted
1693 * @pfn: PFN to insert
1695 * This function ensures that the file range touched by the page fault is
1696 * stored persistently on the media and handles inserting of appropriate page
1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700 enum page_entry_size pe_size, pfn_t pfn)
1703 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1706 if (pe_size == PE_SIZE_PTE)
1708 else if (pe_size == PE_SIZE_PMD)
1712 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1714 return VM_FAULT_SIGBUS;
1715 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1717 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);