1 /* SPDX-License-Identifier: GPL-2.0 */
4 * Copyright IBM Corp. 1999, 2000
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
38 static inline void update_page_count(int level, long count)
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
45 void arch_report_meminfo(struct seq_file *m);
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
51 #define update_mmu_cache(vma, address, ptep) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
67 /* TODO: s390 cannot support io_remap_pfn_range... */
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
102 static inline int is_module_addr(void *addr)
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
107 if (addr > (void *)MODULES_END)
113 * A 64 bit pagetable entry of S390 has following format:
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
137 * I Segment-Invalid Bit: Segment is not available for address-translation
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
154 * A storage key has the following format:
158 * F : fetch protection bit
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
181 #define _PAGE_SOFT_DIRTY 0x000
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
204 * prot-none, clean, old .11.xx0000.1
205 * prot-none, clean, young .11.xx0001.1
206 * prot-none, dirty, old .11.xx0010.1
207 * prot-none, dirty, young .11.xx0011.1
208 * read-only, clean, old .11.xx0100.1
209 * read-only, clean, young .01.xx0101.1
210 * read-only, dirty, old .11.xx0110.1
211 * read-only, dirty, young .01.xx0111.1
212 * read-write, clean, old .11.xx1100.1
213 * read-write, clean, young .01.xx1101.1
214 * read-write, dirty, old .10.xx1110.1
215 * read-write, dirty, young .00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
220 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
227 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
228 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
230 #define _ASCE_REAL_SPACE 0x20 /* real space control */
231 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
232 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
233 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
234 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
235 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
236 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
240 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
241 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
242 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
243 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
244 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
245 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
246 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
247 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
248 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
250 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
258 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
260 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
261 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
262 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS 0xf000000000000000UL
370 #define PGSTE_FP_BIT 0x0800000000000000UL
371 #define PGSTE_PCL_BIT 0x0080000000000000UL
372 #define PGSTE_HR_BIT 0x0040000000000000UL
373 #define PGSTE_HC_BIT 0x0020000000000000UL
374 #define PGSTE_GR_BIT 0x0004000000000000UL
375 #define PGSTE_GC_BIT 0x0002000000000000UL
376 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
394 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
398 * Page protection definitions.
400 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
410 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
425 #define __P000 PAGE_NONE
426 #define __P001 PAGE_RO
427 #define __P010 PAGE_RO
428 #define __P011 PAGE_RO
429 #define __P100 PAGE_RX
430 #define __P101 PAGE_RX
431 #define __P110 PAGE_RX
432 #define __P111 PAGE_RX
434 #define __S000 PAGE_NONE
435 #define __S001 PAGE_RO
436 #define __S010 PAGE_RW
437 #define __S011 PAGE_RW
438 #define __S100 PAGE_RX
439 #define __S101 PAGE_RX
440 #define __S110 PAGE_RWX
441 #define __S111 PAGE_RWX
444 * Segment entry (large page) protection definitions.
446 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
453 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
479 * Region3 entry (large page) protection definitions.
482 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
496 static inline bool mm_p4d_folded(struct mm_struct *mm)
498 return mm->context.asce_limit <= _REGION1_SIZE;
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
502 static inline bool mm_pud_folded(struct mm_struct *mm)
504 return mm->context.asce_limit <= _REGION2_SIZE;
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
508 static inline bool mm_pmd_folded(struct mm_struct *mm)
510 return mm->context.asce_limit <= _REGION3_SIZE;
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
514 static inline int mm_has_pgste(struct mm_struct *mm)
517 if (unlikely(mm->context.has_pgste))
523 static inline int mm_is_protected(struct mm_struct *mm)
526 if (unlikely(atomic_read(&mm->context.is_protected)))
532 static inline int mm_alloc_pgste(struct mm_struct *mm)
535 if (unlikely(mm->context.alloc_pgste))
542 * In the case that a guest uses storage keys
543 * faults should no longer be backed by zero pages
545 #define mm_forbids_zeropage mm_has_pgste
546 static inline int mm_uses_skeys(struct mm_struct *mm)
549 if (mm->context.uses_skeys)
555 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
557 union register_pair r1 = { .even = old, .odd = new, };
558 unsigned long address = (unsigned long)ptr | 1;
561 " csp %[r1],%[address]"
562 : [r1] "+&d" (r1.pair), "+m" (*ptr)
563 : [address] "d" (address)
567 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
569 union register_pair r1 = { .even = old, .odd = new, };
570 unsigned long address = (unsigned long)ptr | 1;
573 " .insn rre,0xb98a0000,%[r1],%[address]"
574 : [r1] "+&d" (r1.pair), "+m" (*ptr)
575 : [address] "d" (address)
579 #define CRDTE_DTT_PAGE 0x00UL
580 #define CRDTE_DTT_SEGMENT 0x10UL
581 #define CRDTE_DTT_REGION3 0x14UL
582 #define CRDTE_DTT_REGION2 0x18UL
583 #define CRDTE_DTT_REGION1 0x1cUL
585 static inline void crdte(unsigned long old, unsigned long new,
586 unsigned long table, unsigned long dtt,
587 unsigned long address, unsigned long asce)
589 union register_pair r1 = { .even = old, .odd = new, };
590 union register_pair r2 = { .even = table | dtt, .odd = address, };
592 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
593 : [r1] "+&d" (r1.pair)
594 : [r2] "d" (r2.pair), [asce] "a" (asce)
599 * pgd/p4d/pud/pmd/pte query functions
601 static inline int pgd_folded(pgd_t pgd)
603 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
606 static inline int pgd_present(pgd_t pgd)
610 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
613 static inline int pgd_none(pgd_t pgd)
617 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
620 static inline int pgd_bad(pgd_t pgd)
622 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
624 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
627 static inline unsigned long pgd_pfn(pgd_t pgd)
629 unsigned long origin_mask;
631 origin_mask = _REGION_ENTRY_ORIGIN;
632 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
635 static inline int p4d_folded(p4d_t p4d)
637 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
640 static inline int p4d_present(p4d_t p4d)
644 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
647 static inline int p4d_none(p4d_t p4d)
651 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
654 static inline unsigned long p4d_pfn(p4d_t p4d)
656 unsigned long origin_mask;
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
662 static inline int pud_folded(pud_t pud)
664 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
667 static inline int pud_present(pud_t pud)
671 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
674 static inline int pud_none(pud_t pud)
678 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
681 #define pud_leaf pud_large
682 static inline int pud_large(pud_t pud)
684 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
686 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
689 #define pmd_leaf pmd_large
690 static inline int pmd_large(pmd_t pmd)
692 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
695 static inline int pmd_bad(pmd_t pmd)
697 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
699 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
702 static inline int pud_bad(pud_t pud)
704 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
706 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
708 if (type < _REGION_ENTRY_TYPE_R3)
710 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
713 static inline int p4d_bad(p4d_t p4d)
715 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
717 if (type > _REGION_ENTRY_TYPE_R2)
719 if (type < _REGION_ENTRY_TYPE_R2)
721 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
724 static inline int pmd_present(pmd_t pmd)
726 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
729 static inline int pmd_none(pmd_t pmd)
731 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
734 #define pmd_write pmd_write
735 static inline int pmd_write(pmd_t pmd)
737 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
740 #define pud_write pud_write
741 static inline int pud_write(pud_t pud)
743 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
746 static inline int pmd_dirty(pmd_t pmd)
748 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
751 static inline int pmd_young(pmd_t pmd)
753 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
756 static inline int pte_present(pte_t pte)
758 /* Bit pattern: (pte & 0x001) == 0x001 */
759 return (pte_val(pte) & _PAGE_PRESENT) != 0;
762 static inline int pte_none(pte_t pte)
764 /* Bit pattern: pte == 0x400 */
765 return pte_val(pte) == _PAGE_INVALID;
768 static inline int pte_swap(pte_t pte)
770 /* Bit pattern: (pte & 0x201) == 0x200 */
771 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
775 static inline int pte_special(pte_t pte)
777 return (pte_val(pte) & _PAGE_SPECIAL);
780 #define __HAVE_ARCH_PTE_SAME
781 static inline int pte_same(pte_t a, pte_t b)
783 return pte_val(a) == pte_val(b);
786 #ifdef CONFIG_NUMA_BALANCING
787 static inline int pte_protnone(pte_t pte)
789 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
792 static inline int pmd_protnone(pmd_t pmd)
794 /* pmd_large(pmd) implies pmd_present(pmd) */
795 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
799 static inline int pte_soft_dirty(pte_t pte)
801 return pte_val(pte) & _PAGE_SOFT_DIRTY;
803 #define pte_swp_soft_dirty pte_soft_dirty
805 static inline pte_t pte_mksoft_dirty(pte_t pte)
807 pte_val(pte) |= _PAGE_SOFT_DIRTY;
810 #define pte_swp_mksoft_dirty pte_mksoft_dirty
812 static inline pte_t pte_clear_soft_dirty(pte_t pte)
814 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
817 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
819 static inline int pmd_soft_dirty(pmd_t pmd)
821 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
824 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
826 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
830 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
832 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
840 static inline int pte_write(pte_t pte)
842 return (pte_val(pte) & _PAGE_WRITE) != 0;
845 static inline int pte_dirty(pte_t pte)
847 return (pte_val(pte) & _PAGE_DIRTY) != 0;
850 static inline int pte_young(pte_t pte)
852 return (pte_val(pte) & _PAGE_YOUNG) != 0;
855 #define __HAVE_ARCH_PTE_UNUSED
856 static inline int pte_unused(pte_t pte)
858 return pte_val(pte) & _PAGE_UNUSED;
862 * Extract the pgprot value from the given pte while at the same time making it
863 * usable for kernel address space mappings where fault driven dirty and
864 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
867 static inline pgprot_t pte_pgprot(pte_t pte)
869 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
872 pte_flags |= pgprot_val(PAGE_KERNEL);
874 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
875 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
877 return __pgprot(pte_flags);
881 * pgd/pmd/pte modification functions
884 static inline void pgd_clear(pgd_t *pgd)
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
890 static inline void p4d_clear(p4d_t *p4d)
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
896 static inline void pud_clear(pud_t *pud)
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
902 static inline void pmd_clear(pmd_t *pmdp)
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
909 pte_val(*ptep) = _PAGE_INVALID;
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
935 static inline pte_t pte_wrprotect(pte_t pte)
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
942 static inline pte_t pte_mkwrite(pte_t pte)
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
950 static inline pte_t pte_mkclean(pte_t pte)
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
957 static inline pte_t pte_mkdirty(pte_t pte)
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
965 static inline pte_t pte_mkold(pte_t pte)
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
972 static inline pte_t pte_mkyoung(pte_t pte)
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
980 static inline pte_t pte_mkspecial(pte_t pte)
982 pte_val(pte) |= _PAGE_SPECIAL;
986 #ifdef CONFIG_HUGETLB_PAGE
987 static inline pte_t pte_mkhuge(pte_t pte)
989 pte_val(pte) |= _PAGE_LARGE;
994 #define IPTE_GLOBAL 0
997 #define IPTE_NODAT 0x400
998 #define IPTE_GUEST_ASCE 0x800
1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1004 unsigned long pto = (unsigned long) ptep;
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
1026 unsigned long pto = (unsigned long) ptep;
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1067 return ptep_test_and_clear_young(vma, address, ptep);
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1076 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1077 if (mm_is_protected(mm) && pte_present(res))
1078 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1082 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1083 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1084 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1085 pte_t *, pte_t, pte_t);
1087 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1088 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1089 unsigned long addr, pte_t *ptep)
1093 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1094 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1095 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1100 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1101 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1102 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1103 * cannot be accessed while the batched unmap is running. In this case
1104 * full==1 and a simple pte_clear is enough. See tlb.h.
1106 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1109 pte_t *ptep, int full)
1115 *ptep = __pte(_PAGE_INVALID);
1117 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1119 if (mm_is_protected(mm) && pte_present(res))
1120 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1124 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1125 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1126 unsigned long addr, pte_t *ptep)
1131 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1134 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1135 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1136 unsigned long addr, pte_t *ptep,
1137 pte_t entry, int dirty)
1139 if (pte_same(*ptep, entry))
1141 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1146 * Additional functions to handle KVM guest page tables
1148 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1149 pte_t *ptep, pte_t entry);
1150 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1151 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1152 pte_t *ptep, unsigned long bits);
1153 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1154 pte_t *ptep, int prot, unsigned long bit);
1155 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1156 pte_t *ptep , int reset);
1157 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1158 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1159 pte_t *sptep, pte_t *tptep, pte_t pte);
1160 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1162 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1164 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1165 unsigned char key, bool nq);
1166 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1167 unsigned char key, unsigned char *oldkey,
1168 bool nq, bool mr, bool mc);
1169 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1170 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 unsigned char *key);
1173 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1174 unsigned long bits, unsigned long value);
1175 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1176 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1177 unsigned long *oldpte, unsigned long *oldpgste);
1178 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1179 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1180 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1181 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1183 #define pgprot_writecombine pgprot_writecombine
1184 pgprot_t pgprot_writecombine(pgprot_t prot);
1186 #define pgprot_writethrough pgprot_writethrough
1187 pgprot_t pgprot_writethrough(pgprot_t prot);
1190 * Certain architectures need to do special things when PTEs
1191 * within a page table are directly modified. Thus, the following
1192 * hook is made available.
1194 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1195 pte_t *ptep, pte_t entry)
1197 if (pte_present(entry))
1198 pte_val(entry) &= ~_PAGE_UNUSED;
1199 if (mm_has_pgste(mm))
1200 ptep_set_pte_at(mm, addr, ptep, entry);
1206 * Conversion functions: convert a page and protection to a page entry,
1207 * and a page entry and page directory to the page they refer to.
1209 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1213 pte_val(__pte) = physpage | pgprot_val(pgprot);
1214 if (!MACHINE_HAS_NX)
1215 pte_val(__pte) &= ~_PAGE_NOEXEC;
1216 return pte_mkyoung(__pte);
1219 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1221 unsigned long physpage = page_to_phys(page);
1222 pte_t __pte = mk_pte_phys(physpage, pgprot);
1224 if (pte_write(__pte) && PageDirty(page))
1225 __pte = pte_mkdirty(__pte);
1229 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1230 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1231 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1232 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1234 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1235 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1237 static inline unsigned long pmd_deref(pmd_t pmd)
1239 unsigned long origin_mask;
1241 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1243 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1244 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1247 static inline unsigned long pmd_pfn(pmd_t pmd)
1249 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1252 static inline unsigned long pud_deref(pud_t pud)
1254 unsigned long origin_mask;
1256 origin_mask = _REGION_ENTRY_ORIGIN;
1258 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1259 return (unsigned long)__va(pud_val(pud) & origin_mask);
1262 static inline unsigned long pud_pfn(pud_t pud)
1264 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1268 * The pgd_offset function *always* adds the index for the top-level
1269 * region/segment table. This is done to get a sequence like the
1270 * following to work:
1271 * pgdp = pgd_offset(current->mm, addr);
1272 * pgd = READ_ONCE(*pgdp);
1273 * p4dp = p4d_offset(&pgd, addr);
1275 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1276 * only add an index if they dereferenced the pointer.
1278 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1283 /* Get the first entry of the top level table */
1284 rste = pgd_val(*pgd);
1285 /* Pick up the shift from the table type of the first entry */
1286 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1287 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1290 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1292 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1294 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1295 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1296 return (p4d_t *) pgdp;
1298 #define p4d_offset_lockless p4d_offset_lockless
1300 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1302 return p4d_offset_lockless(pgdp, *pgdp, address);
1305 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1307 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1308 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1309 return (pud_t *) p4dp;
1311 #define pud_offset_lockless pud_offset_lockless
1313 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1315 return pud_offset_lockless(p4dp, *p4dp, address);
1317 #define pud_offset pud_offset
1319 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1321 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1322 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1323 return (pmd_t *) pudp;
1325 #define pmd_offset_lockless pmd_offset_lockless
1327 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1329 return pmd_offset_lockless(pudp, *pudp, address);
1331 #define pmd_offset pmd_offset
1333 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1335 return (unsigned long) pmd_deref(pmd);
1338 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1340 return end <= current->mm->context.asce_limit;
1342 #define gup_fast_permitted gup_fast_permitted
1344 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1345 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1346 #define pte_page(x) pfn_to_page(pte_pfn(x))
1348 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1349 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1350 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1351 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1353 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1355 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1356 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1362 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1363 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1364 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1368 static inline pmd_t pmd_mkclean(pmd_t pmd)
1370 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1371 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1375 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1377 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1378 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1379 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1383 static inline pud_t pud_wrprotect(pud_t pud)
1385 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1386 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1390 static inline pud_t pud_mkwrite(pud_t pud)
1392 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1393 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1394 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1398 static inline pud_t pud_mkclean(pud_t pud)
1400 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1401 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1405 static inline pud_t pud_mkdirty(pud_t pud)
1407 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1408 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1409 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1413 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1414 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1417 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1418 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1420 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1421 return pgprot_val(SEGMENT_NONE);
1422 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1423 return pgprot_val(SEGMENT_RO);
1424 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1425 return pgprot_val(SEGMENT_RX);
1426 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1427 return pgprot_val(SEGMENT_RW);
1428 return pgprot_val(SEGMENT_RWX);
1431 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1433 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1434 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1435 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1439 static inline pmd_t pmd_mkold(pmd_t pmd)
1441 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1442 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1446 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1448 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1449 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1450 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1451 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1452 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1453 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1454 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1455 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1459 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1462 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1468 static inline void __pmdp_csp(pmd_t *pmdp)
1470 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1471 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1474 #define IDTE_GLOBAL 0
1475 #define IDTE_LOCAL 1
1477 #define IDTE_PTOA 0x0800
1478 #define IDTE_NODAT 0x1000
1479 #define IDTE_GUEST_ASCE 0x2000
1481 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1482 unsigned long opt, unsigned long asce,
1487 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1488 if (__builtin_constant_p(opt) && opt == 0) {
1489 /* flush without guest asce */
1491 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1493 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1497 /* flush with guest asce */
1499 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1501 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1502 [r3] "a" (asce), [m4] "i" (local)
1507 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1508 unsigned long opt, unsigned long asce,
1513 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1514 r3o |= _ASCE_TYPE_REGION3;
1515 if (__builtin_constant_p(opt) && opt == 0) {
1516 /* flush without guest asce */
1518 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1520 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1524 /* flush with guest asce */
1526 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1528 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1529 [r3] "a" (asce), [m4] "i" (local)
1534 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1535 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1536 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1541 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1544 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1545 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1547 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1548 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1549 unsigned long addr, pmd_t *pmdp,
1550 pmd_t entry, int dirty)
1552 VM_BUG_ON(addr & ~HPAGE_MASK);
1554 entry = pmd_mkyoung(entry);
1556 entry = pmd_mkdirty(entry);
1557 if (pmd_val(*pmdp) == pmd_val(entry))
1559 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1563 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1564 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1565 unsigned long addr, pmd_t *pmdp)
1569 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1570 return pmd_young(pmd);
1573 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1574 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1575 unsigned long addr, pmd_t *pmdp)
1577 VM_BUG_ON(addr & ~HPAGE_MASK);
1578 return pmdp_test_and_clear_young(vma, addr, pmdp);
1581 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1582 pmd_t *pmdp, pmd_t entry)
1584 if (!MACHINE_HAS_NX)
1585 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1589 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1591 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1592 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1593 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1597 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1598 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1599 unsigned long addr, pmd_t *pmdp)
1601 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1604 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1605 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1607 pmd_t *pmdp, int full)
1611 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1614 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1617 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1618 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1619 unsigned long addr, pmd_t *pmdp)
1621 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1624 #define __HAVE_ARCH_PMDP_INVALIDATE
1625 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1626 unsigned long addr, pmd_t *pmdp)
1628 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1630 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1633 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1634 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1635 unsigned long addr, pmd_t *pmdp)
1640 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1643 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1644 unsigned long address,
1647 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1649 #define pmdp_collapse_flush pmdp_collapse_flush
1651 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1652 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1654 static inline int pmd_trans_huge(pmd_t pmd)
1656 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1659 #define has_transparent_hugepage has_transparent_hugepage
1660 static inline int has_transparent_hugepage(void)
1662 return MACHINE_HAS_EDAT1 ? 1 : 0;
1664 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1667 * 64 bit swap entry format:
1668 * A page-table entry has some bits we have to treat in a special way.
1669 * Bits 52 and bit 55 have to be zero, otherwise a specification
1670 * exception will occur instead of a page translation exception. The
1671 * specification exception has the bad habit not to store necessary
1672 * information in the lowcore.
1673 * Bits 54 and 63 are used to indicate the page type.
1674 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1675 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1676 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1678 * | offset |01100|type |00|
1679 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1680 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1683 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1684 #define __SWP_OFFSET_SHIFT 12
1685 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1686 #define __SWP_TYPE_SHIFT 2
1688 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1692 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1693 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1694 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1698 static inline unsigned long __swp_type(swp_entry_t entry)
1700 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1703 static inline unsigned long __swp_offset(swp_entry_t entry)
1705 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1708 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1710 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1713 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1714 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1716 #define kern_addr_valid(addr) (1)
1718 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1719 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1720 extern int s390_enable_sie(void);
1721 extern int s390_enable_skey(void);
1722 extern void s390_reset_cmma(struct mm_struct *mm);
1724 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1725 #define HAVE_ARCH_UNMAPPED_AREA
1726 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1728 #define pmd_pgtable(pmd) \
1729 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1731 #endif /* _S390_PAGE_H */