2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: Instruction/Exception emulation
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
32 #include "interrupt.h"
37 * Compute the return address and do emulate branch simulation, if required.
38 * This function should be called only in branch delay slot active.
40 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
43 unsigned int dspcontrol;
44 union mips_instruction insn;
45 struct kvm_vcpu_arch *arch = &vcpu->arch;
51 kvm_err("%s: unaligned epc\n", __func__);
55 /* Read the instruction */
56 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
60 switch (insn.i_format.opcode) {
61 /* jr and jalr are in r_format format. */
63 switch (insn.r_format.func) {
65 arch->gprs[insn.r_format.rd] = epc + 8;
68 nextpc = arch->gprs[insn.r_format.rs];
76 * This group contains:
77 * bltz_op, bgez_op, bltzl_op, bgezl_op,
78 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
81 switch (insn.i_format.rt) {
84 if ((long)arch->gprs[insn.i_format.rs] < 0)
85 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 if ((long)arch->gprs[insn.i_format.rs] >= 0)
94 epc = epc + 4 + (insn.i_format.simmediate << 2);
102 arch->gprs[31] = epc + 8;
103 if ((long)arch->gprs[insn.i_format.rs] < 0)
104 epc = epc + 4 + (insn.i_format.simmediate << 2);
112 arch->gprs[31] = epc + 8;
113 if ((long)arch->gprs[insn.i_format.rs] >= 0)
114 epc = epc + 4 + (insn.i_format.simmediate << 2);
121 kvm_err("%s: DSP branch but not DSP ASE\n",
126 dspcontrol = rddsp(0x01);
128 if (dspcontrol >= 32)
129 epc = epc + 4 + (insn.i_format.simmediate << 2);
139 /* These are unconditional and in j_format. */
141 arch->gprs[31] = instpc + 8;
147 epc |= (insn.j_format.target << 2);
151 /* These are conditional and in i_format. */
154 if (arch->gprs[insn.i_format.rs] ==
155 arch->gprs[insn.i_format.rt])
156 epc = epc + 4 + (insn.i_format.simmediate << 2);
164 if (arch->gprs[insn.i_format.rs] !=
165 arch->gprs[insn.i_format.rt])
166 epc = epc + 4 + (insn.i_format.simmediate << 2);
172 case blez_op: /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174 case blezl_op: /* removed in R6 */
176 if (insn.i_format.rt != 0)
178 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179 epc = epc + 4 + (insn.i_format.simmediate << 2);
185 case bgtz_op: /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187 case bgtzl_op: /* removed in R6 */
189 if (insn.i_format.rt != 0)
191 if ((long)arch->gprs[insn.i_format.rs] > 0)
192 epc = epc + 4 + (insn.i_format.simmediate << 2);
198 /* And now the FPA/cp1 branch instructions. */
200 kvm_err("%s: unsupported cop1_op\n", __func__);
203 #ifdef CONFIG_CPU_MIPSR6
204 /* R6 added the following compact branches with forbidden slots */
205 case blezl_op: /* POP26 */
206 case bgtzl_op: /* POP27 */
207 /* only rt == 0 isn't compact branch */
208 if (insn.i_format.rt != 0)
213 /* only rs == rt == 0 is reserved, rest are compact branches */
214 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
219 /* only rs == 0 isn't compact branch */
220 if (insn.i_format.rs != 0)
225 * If we've hit an exception on the forbidden slot, then
226 * the branch must not have been taken.
233 /* Fall through - Compact branches not supported before R6 */
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
247 if (cause & CAUSEF_BD) {
248 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
256 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
262 * kvm_get_badinstr() - Get bad instruction encoding.
263 * @opc: Guest pointer to faulting instruction.
264 * @vcpu: KVM VCPU information.
266 * Gets the instruction encoding of the faulting instruction, using the saved
267 * BadInstr register value if it exists, otherwise falling back to reading guest
270 * Returns: The instruction encoding of the faulting instruction.
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274 if (cpu_has_badinstr) {
275 *out = vcpu->arch.host_cp0_badinstr;
278 WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc: Guest pointer to prior faulting instruction.
286 * @vcpu: KVM VCPU information.
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
292 * Returns: The instruction encoding of the prior faulting instruction.
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
296 if (cpu_has_badinstrp) {
297 *out = vcpu->arch.host_cp0_badinstrp;
300 WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
306 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
307 * @vcpu: Virtual CPU.
309 * Returns: 1 if the CP0_Count timer is disabled by either the guest
310 * CP0_Cause.DC bit or the count_ctl.DC bit.
311 * 0 otherwise (in which case CP0_Count timer is running).
313 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
315 struct mips_coproc *cop0 = vcpu->arch.cop0;
317 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
318 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
322 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
324 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
326 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
328 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
333 now_ns = ktime_to_ns(now);
334 delta = now_ns + vcpu->arch.count_dyn_bias;
336 if (delta >= vcpu->arch.count_period) {
337 /* If delta is out of safe range the bias needs adjusting */
338 periods = div64_s64(now_ns, vcpu->arch.count_period);
339 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
340 /* Recalculate delta with new bias */
341 delta = now_ns + vcpu->arch.count_dyn_bias;
345 * We've ensured that:
346 * delta < count_period
348 * Therefore the intermediate delta*count_hz will never overflow since
349 * at the boundary condition:
350 * delta = count_period
351 * delta = NSEC_PER_SEC * 2^32 / count_hz
352 * delta * count_hz = NSEC_PER_SEC * 2^32
354 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
358 * kvm_mips_count_time() - Get effective current time.
359 * @vcpu: Virtual CPU.
361 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
362 * except when the master disable bit is set in count_ctl, in which case it is
363 * count_resume, i.e. the time that the count was disabled.
365 * Returns: Effective monotonic ktime for CP0_Count.
367 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
369 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
370 return vcpu->arch.count_resume;
376 * kvm_mips_read_count_running() - Read the current count value as if running.
377 * @vcpu: Virtual CPU.
378 * @now: Kernel time to read CP0_Count at.
380 * Returns the current guest CP0_Count register at time @now and handles if the
381 * timer interrupt is pending and hasn't been handled yet.
383 * Returns: The current value of the guest CP0_Count register.
385 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
387 struct mips_coproc *cop0 = vcpu->arch.cop0;
388 ktime_t expires, threshold;
392 /* Calculate the biased and scaled guest CP0_Count */
393 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
394 compare = kvm_read_c0_guest_compare(cop0);
397 * Find whether CP0_Count has reached the closest timer interrupt. If
398 * not, we shouldn't inject it.
400 if ((s32)(count - compare) < 0)
404 * The CP0_Count we're going to return has already reached the closest
405 * timer interrupt. Quickly check if it really is a new interrupt by
406 * looking at whether the interval until the hrtimer expiry time is
407 * less than 1/4 of the timer period.
409 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
410 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
411 if (ktime_before(expires, threshold)) {
413 * Cancel it while we handle it so there's no chance of
414 * interference with the timeout handler.
416 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
418 /* Nothing should be waiting on the timeout */
419 kvm_mips_callbacks->queue_timer_int(vcpu);
422 * Restart the timer if it was running based on the expiry time
423 * we read, so that we don't push it back 2 periods.
426 expires = ktime_add_ns(expires,
427 vcpu->arch.count_period);
428 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
437 * kvm_mips_read_count() - Read the current count value.
438 * @vcpu: Virtual CPU.
440 * Read the current guest CP0_Count value, taking into account whether the timer
443 * Returns: The current guest CP0_Count value.
445 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
447 struct mips_coproc *cop0 = vcpu->arch.cop0;
449 /* If count disabled just read static copy of count */
450 if (kvm_mips_count_disabled(vcpu))
451 return kvm_read_c0_guest_count(cop0);
453 return kvm_mips_read_count_running(vcpu, ktime_get());
457 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
458 * @vcpu: Virtual CPU.
459 * @count: Output pointer for CP0_Count value at point of freeze.
461 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
462 * at the point it was frozen. It is guaranteed that any pending interrupts at
463 * the point it was frozen are handled, and none after that point.
465 * This is useful where the time/CP0_Count is needed in the calculation of the
468 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
470 * Returns: The ktime at the point of freeze.
472 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
476 /* stop hrtimer before finding time */
477 hrtimer_cancel(&vcpu->arch.comparecount_timer);
480 /* find count at this point and handle pending hrtimer */
481 *count = kvm_mips_read_count_running(vcpu, now);
487 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
488 * @vcpu: Virtual CPU.
489 * @now: ktime at point of resume.
490 * @count: CP0_Count at point of resume.
492 * Resumes the timer and updates the timer expiry based on @now and @count.
493 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
494 * parameters need to be changed.
496 * It is guaranteed that a timer interrupt immediately after resume will be
497 * handled, but not if CP_Compare is exactly at @count. That case is already
498 * handled by kvm_mips_freeze_timer().
500 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
502 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
503 ktime_t now, u32 count)
505 struct mips_coproc *cop0 = vcpu->arch.cop0;
510 /* Calculate timeout (wrap 0 to 2^32) */
511 compare = kvm_read_c0_guest_compare(cop0);
512 delta = (u64)(u32)(compare - count - 1) + 1;
513 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
514 expire = ktime_add_ns(now, delta);
516 /* Update hrtimer to use new timeout */
517 hrtimer_cancel(&vcpu->arch.comparecount_timer);
518 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
522 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
523 * @vcpu: Virtual CPU.
524 * @before: Time before Count was saved, lower bound of drift calculation.
525 * @count: CP0_Count at point of restore.
526 * @min_drift: Minimum amount of drift permitted before correction.
529 * Restores the timer from a particular @count, accounting for drift. This can
530 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
531 * to be used for a period of time, but the exact ktime corresponding to the
532 * final Count that must be restored is not known.
534 * It is gauranteed that a timer interrupt immediately after restore will be
535 * handled, but not if CP0_Compare is exactly at @count. That case should
536 * already be handled when the hardware timer state is saved.
538 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
541 * Returns: Amount of correction to count_bias due to drift.
543 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
544 u32 count, int min_drift)
546 ktime_t now, count_time;
547 u32 now_count, before_count;
551 /* Calculate expected count at before */
552 before_count = vcpu->arch.count_bias +
553 kvm_mips_ktime_to_count(vcpu, before);
556 * Detect significantly negative drift, where count is lower than
557 * expected. Some negative drift is expected when hardware counter is
558 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
559 * time to jump forwards a little, within reason. If the drift is too
560 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
562 drift = count - before_count;
563 if (drift < min_drift) {
565 vcpu->arch.count_bias += drift;
570 /* Calculate expected count right now */
572 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
575 * Detect positive drift, where count is higher than expected, and
576 * adjust the bias to avoid guest time going backwards.
578 drift = count - now_count;
581 vcpu->arch.count_bias += drift;
586 /* Subtract nanosecond delta to find ktime when count was read */
587 delta = (u64)(u32)(now_count - count);
588 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
589 count_time = ktime_sub_ns(now, delta);
592 /* Resume using the calculated ktime */
593 kvm_mips_resume_hrtimer(vcpu, count_time, count);
598 * kvm_mips_write_count() - Modify the count and update timer.
599 * @vcpu: Virtual CPU.
600 * @count: Guest CP0_Count value to set.
602 * Sets the CP0_Count value and updates the timer accordingly.
604 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
606 struct mips_coproc *cop0 = vcpu->arch.cop0;
610 now = kvm_mips_count_time(vcpu);
611 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
613 if (kvm_mips_count_disabled(vcpu))
614 /* The timer's disabled, adjust the static count */
615 kvm_write_c0_guest_count(cop0, count);
618 kvm_mips_resume_hrtimer(vcpu, now, count);
622 * kvm_mips_init_count() - Initialise timer.
623 * @vcpu: Virtual CPU.
624 * @count_hz: Frequency of timer.
626 * Initialise the timer to the specified frequency, zero it, and set it going if
629 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
631 vcpu->arch.count_hz = count_hz;
632 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
633 vcpu->arch.count_dyn_bias = 0;
636 kvm_mips_write_count(vcpu, 0);
640 * kvm_mips_set_count_hz() - Update the frequency of the timer.
641 * @vcpu: Virtual CPU.
642 * @count_hz: Frequency of CP0_Count timer in Hz.
644 * Change the frequency of the CP0_Count timer. This is done atomically so that
645 * CP0_Count is continuous and no timer interrupt is lost.
647 * Returns: -EINVAL if @count_hz is out of range.
650 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
652 struct mips_coproc *cop0 = vcpu->arch.cop0;
657 /* ensure the frequency is in a sensible range... */
658 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
660 /* ... and has actually changed */
661 if (vcpu->arch.count_hz == count_hz)
664 /* Safely freeze timer so we can keep it continuous */
665 dc = kvm_mips_count_disabled(vcpu);
667 now = kvm_mips_count_time(vcpu);
668 count = kvm_read_c0_guest_count(cop0);
670 now = kvm_mips_freeze_hrtimer(vcpu, &count);
673 /* Update the frequency */
674 vcpu->arch.count_hz = count_hz;
675 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
676 vcpu->arch.count_dyn_bias = 0;
678 /* Calculate adjusted bias so dynamic count is unchanged */
679 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
681 /* Update and resume hrtimer */
683 kvm_mips_resume_hrtimer(vcpu, now, count);
688 * kvm_mips_write_compare() - Modify compare and update timer.
689 * @vcpu: Virtual CPU.
690 * @compare: New CP0_Compare value.
691 * @ack: Whether to acknowledge timer interrupt.
693 * Update CP0_Compare to a new value and update the timeout.
694 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
695 * any pending timer interrupt is preserved.
697 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
699 struct mips_coproc *cop0 = vcpu->arch.cop0;
701 u32 old_compare = kvm_read_c0_guest_compare(cop0);
702 s32 delta = compare - old_compare;
704 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
707 /* if unchanged, must just be an ack */
708 if (old_compare == compare) {
711 kvm_mips_callbacks->dequeue_timer_int(vcpu);
712 kvm_write_c0_guest_compare(cop0, compare);
717 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
718 * too to prevent guest CP0_Count hitting guest CP0_Compare.
720 * The new GTOffset corresponds to the new value of CP0_Compare, and is
721 * set prior to it being written into the guest context. We disable
722 * preemption until the new value is written to prevent restore of a
723 * GTOffset corresponding to the old CP0_Compare value.
727 write_c0_gtoffset(compare - read_c0_count());
728 back_to_back_c0_hazard();
731 /* freeze_hrtimer() takes care of timer interrupts <= count */
732 dc = kvm_mips_count_disabled(vcpu);
734 now = kvm_mips_freeze_hrtimer(vcpu, &count);
737 kvm_mips_callbacks->dequeue_timer_int(vcpu);
740 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
741 * preserve guest CP0_Cause.TI if we don't want to ack it.
743 cause = kvm_read_c0_guest_cause(cop0);
745 kvm_write_c0_guest_compare(cop0, compare);
750 back_to_back_c0_hazard();
752 if (!ack && cause & CAUSEF_TI)
753 kvm_write_c0_guest_cause(cop0, cause);
755 /* resume_hrtimer() takes care of timer interrupts > count */
757 kvm_mips_resume_hrtimer(vcpu, now, count);
760 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761 * until after the new CP0_Compare is written, otherwise new guest
762 * CP0_Count could hit new guest CP0_Compare.
765 write_c0_gtoffset(compare - read_c0_count());
769 * kvm_mips_count_disable() - Disable count.
770 * @vcpu: Virtual CPU.
772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773 * time will be handled but not after.
775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776 * count_ctl.DC has been set (count disabled).
778 * Returns: The time that the timer was stopped.
780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782 struct mips_coproc *cop0 = vcpu->arch.cop0;
787 hrtimer_cancel(&vcpu->arch.comparecount_timer);
789 /* Set the static count from the dynamic count, handling pending TI */
791 count = kvm_mips_read_count_running(vcpu, now);
792 kvm_write_c0_guest_count(cop0, count);
798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799 * @vcpu: Virtual CPU.
801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802 * before the final stop time will be handled if the timer isn't disabled by
803 * count_ctl.DC, but not after.
805 * Assumes CP0_Cause.DC is clear (count enabled).
807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809 struct mips_coproc *cop0 = vcpu->arch.cop0;
811 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813 kvm_mips_count_disable(vcpu);
817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818 * @vcpu: Virtual CPU.
820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822 * potentially before even returning, so the caller should be careful with
823 * ordering of CP0_Cause modifications so as not to lose it.
825 * Assumes CP0_Cause.DC is set (count disabled).
827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829 struct mips_coproc *cop0 = vcpu->arch.cop0;
832 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
835 * Set the dynamic count to match the static count.
836 * This starts the hrtimer if count_ctl.DC allows it.
837 * Otherwise it conveniently updates the biases.
839 count = kvm_read_c0_guest_count(cop0);
840 kvm_mips_write_count(vcpu, count);
844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
845 * @vcpu: Virtual CPU.
846 * @count_ctl: Count control register new value.
848 * Set the count control KVM register. The timer is updated accordingly.
850 * Returns: -EINVAL if reserved bits are set.
853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855 struct mips_coproc *cop0 = vcpu->arch.cop0;
856 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
861 /* Only allow defined bits to be changed */
862 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
865 /* Apply new value */
866 vcpu->arch.count_ctl = count_ctl;
868 /* Master CP0_Count disable */
869 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870 /* Is CP0_Cause.DC already disabling CP0_Count? */
871 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873 /* Just record the current time */
874 vcpu->arch.count_resume = ktime_get();
875 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876 /* disable timer and record current time */
877 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
880 * Calculate timeout relative to static count at resume
881 * time (wrap 0 to 2^32).
883 count = kvm_read_c0_guest_count(cop0);
884 compare = kvm_read_c0_guest_compare(cop0);
885 delta = (u64)(u32)(compare - count - 1) + 1;
886 delta = div_u64(delta * NSEC_PER_SEC,
887 vcpu->arch.count_hz);
888 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890 /* Handle pending interrupt */
892 if (ktime_compare(now, expire) >= 0)
893 /* Nothing should be waiting on the timeout */
894 kvm_mips_callbacks->queue_timer_int(vcpu);
896 /* Resume hrtimer without changing bias */
897 count = kvm_mips_read_count_running(vcpu, now);
898 kvm_mips_resume_hrtimer(vcpu, now, count);
906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
907 * @vcpu: Virtual CPU.
908 * @count_resume: Count resume register new value.
910 * Set the count resume KVM register.
912 * Returns: -EINVAL if out of valid range (0..now).
915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
918 * It doesn't make sense for the resume time to be in the future, as it
919 * would be possible for the next interrupt to be more than a full
920 * period in the future.
922 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
925 vcpu->arch.count_resume = ns_to_ktime(count_resume);
930 * kvm_mips_count_timeout() - Push timer forward on timeout.
931 * @vcpu: Virtual CPU.
933 * Handle an hrtimer event by push the hrtimer forward a period.
935 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939 /* Add the Count period to the current expiry time */
940 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941 vcpu->arch.count_period);
942 return HRTIMER_RESTART;
945 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
947 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
948 vcpu->arch.pending_exceptions);
950 ++vcpu->stat.wait_exits;
951 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
952 if (!vcpu->arch.pending_exceptions) {
953 kvm_vz_lose_htimer(vcpu);
955 kvm_vcpu_block(vcpu);
958 * We we are runnable, then definitely go off to user space to
959 * check if any I/O interrupts are pending.
961 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
962 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
963 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
970 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
972 struct kvm_vcpu *vcpu)
975 enum emulation_result er;
977 struct kvm_run *run = vcpu->run;
978 void *data = run->mmio.data;
980 unsigned long curr_pc;
983 * Update PC and hold onto current PC in case there is
984 * an error and we want to rollback the PC
986 curr_pc = vcpu->arch.pc;
987 er = update_pc(vcpu, cause);
988 if (er == EMULATE_FAIL)
991 rt = inst.i_format.rt;
993 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
994 vcpu->arch.host_cp0_badvaddr);
995 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
998 switch (inst.i_format.opcode) {
999 #if defined(CONFIG_64BIT)
1002 *(u64 *)data = vcpu->arch.gprs[rt];
1004 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1005 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1006 vcpu->arch.gprs[rt], *(u64 *)data);
1012 *(u32 *)data = vcpu->arch.gprs[rt];
1014 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1015 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1016 vcpu->arch.gprs[rt], *(u32 *)data);
1021 *(u16 *)data = vcpu->arch.gprs[rt];
1023 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1024 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1025 vcpu->arch.gprs[rt], *(u16 *)data);
1030 *(u8 *)data = vcpu->arch.gprs[rt];
1032 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1033 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1034 vcpu->arch.gprs[rt], *(u8 *)data);
1038 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1039 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1041 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1044 *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1045 (vcpu->arch.gprs[rt] >> 24);
1048 *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1049 (vcpu->arch.gprs[rt] >> 16);
1052 *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1053 (vcpu->arch.gprs[rt] >> 8);
1056 *(u32 *)data = vcpu->arch.gprs[rt];
1062 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1063 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1064 vcpu->arch.gprs[rt], *(u32 *)data);
1068 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1069 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1071 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1074 *(u32 *)data = vcpu->arch.gprs[rt];
1077 *(u32 *)data = ((*(u32 *)data) & 0xff) |
1078 (vcpu->arch.gprs[rt] << 8);
1081 *(u32 *)data = ((*(u32 *)data) & 0xffff) |
1082 (vcpu->arch.gprs[rt] << 16);
1085 *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1086 (vcpu->arch.gprs[rt] << 24);
1092 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1093 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1094 vcpu->arch.gprs[rt], *(u32 *)data);
1097 #if defined(CONFIG_64BIT)
1099 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1100 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1103 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1106 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1107 ((vcpu->arch.gprs[rt] >> 56) & 0xff);
1110 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1111 ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1114 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1115 ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1118 *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1119 ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1122 *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1123 ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1126 *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1127 ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1130 *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1131 ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1134 *(u64 *)data = vcpu->arch.gprs[rt];
1140 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1141 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1142 vcpu->arch.gprs[rt], *(u64 *)data);
1146 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1147 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1150 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1153 *(u64 *)data = vcpu->arch.gprs[rt];
1156 *(u64 *)data = ((*(u64 *)data) & 0xff) |
1157 (vcpu->arch.gprs[rt] << 8);
1160 *(u64 *)data = ((*(u64 *)data) & 0xffff) |
1161 (vcpu->arch.gprs[rt] << 16);
1164 *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1165 (vcpu->arch.gprs[rt] << 24);
1168 *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1169 (vcpu->arch.gprs[rt] << 32);
1172 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1173 (vcpu->arch.gprs[rt] << 40);
1176 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1177 (vcpu->arch.gprs[rt] << 48);
1180 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1181 (vcpu->arch.gprs[rt] << 56);
1187 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1188 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1189 vcpu->arch.gprs[rt], *(u64 *)data);
1193 #ifdef CONFIG_CPU_LOONGSON64
1195 rt = inst.loongson3_lsdc2_format.rt;
1196 switch (inst.loongson3_lsdc2_format.opcode1) {
1198 * Loongson-3 overridden sdc2 instructions.
1199 * opcode1 instruction
1200 * 0x0 gssbx: store 1 bytes from GPR
1201 * 0x1 gsshx: store 2 bytes from GPR
1202 * 0x2 gsswx: store 4 bytes from GPR
1203 * 0x3 gssdx: store 8 bytes from GPR
1207 *(u8 *)data = vcpu->arch.gprs[rt];
1209 kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1210 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1211 vcpu->arch.gprs[rt], *(u8 *)data);
1215 *(u16 *)data = vcpu->arch.gprs[rt];
1217 kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1218 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1219 vcpu->arch.gprs[rt], *(u16 *)data);
1223 *(u32 *)data = vcpu->arch.gprs[rt];
1225 kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1226 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1227 vcpu->arch.gprs[rt], *(u32 *)data);
1231 *(u64 *)data = vcpu->arch.gprs[rt];
1233 kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1234 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1235 vcpu->arch.gprs[rt], *(u64 *)data);
1238 kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1245 kvm_err("Store not yet supported (inst=0x%08x)\n",
1250 vcpu->mmio_needed = 1;
1251 run->mmio.is_write = 1;
1252 vcpu->mmio_is_write = 1;
1254 r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1255 run->mmio.phys_addr, run->mmio.len, data);
1258 vcpu->mmio_needed = 0;
1259 return EMULATE_DONE;
1262 return EMULATE_DO_MMIO;
1265 /* Rollback PC if emulation was unsuccessful */
1266 vcpu->arch.pc = curr_pc;
1267 return EMULATE_FAIL;
1270 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1271 u32 cause, struct kvm_vcpu *vcpu)
1273 struct kvm_run *run = vcpu->run;
1275 enum emulation_result er;
1276 unsigned long curr_pc;
1280 rt = inst.i_format.rt;
1281 op = inst.i_format.opcode;
1284 * Find the resume PC now while we have safe and easy access to the
1285 * prior branch instruction, and save it for
1286 * kvm_mips_complete_mmio_load() to restore later.
1288 curr_pc = vcpu->arch.pc;
1289 er = update_pc(vcpu, cause);
1290 if (er == EMULATE_FAIL)
1292 vcpu->arch.io_pc = vcpu->arch.pc;
1293 vcpu->arch.pc = curr_pc;
1295 vcpu->arch.io_gpr = rt;
1297 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1298 vcpu->arch.host_cp0_badvaddr);
1299 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1300 return EMULATE_FAIL;
1302 vcpu->mmio_needed = 2; /* signed */
1304 #if defined(CONFIG_64BIT)
1310 vcpu->mmio_needed = 1; /* unsigned */
1318 vcpu->mmio_needed = 1; /* unsigned */
1325 vcpu->mmio_needed = 1; /* unsigned */
1332 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1333 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1336 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1339 vcpu->mmio_needed = 3; /* 1 byte */
1342 vcpu->mmio_needed = 4; /* 2 bytes */
1345 vcpu->mmio_needed = 5; /* 3 bytes */
1348 vcpu->mmio_needed = 6; /* 4 bytes */
1356 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1357 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1360 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1363 vcpu->mmio_needed = 7; /* 4 bytes */
1366 vcpu->mmio_needed = 8; /* 3 bytes */
1369 vcpu->mmio_needed = 9; /* 2 bytes */
1372 vcpu->mmio_needed = 10; /* 1 byte */
1379 #if defined(CONFIG_64BIT)
1381 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1382 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1385 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1388 vcpu->mmio_needed = 11; /* 1 byte */
1391 vcpu->mmio_needed = 12; /* 2 bytes */
1394 vcpu->mmio_needed = 13; /* 3 bytes */
1397 vcpu->mmio_needed = 14; /* 4 bytes */
1400 vcpu->mmio_needed = 15; /* 5 bytes */
1403 vcpu->mmio_needed = 16; /* 6 bytes */
1406 vcpu->mmio_needed = 17; /* 7 bytes */
1409 vcpu->mmio_needed = 18; /* 8 bytes */
1417 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1418 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1421 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1424 vcpu->mmio_needed = 19; /* 8 bytes */
1427 vcpu->mmio_needed = 20; /* 7 bytes */
1430 vcpu->mmio_needed = 21; /* 6 bytes */
1433 vcpu->mmio_needed = 22; /* 5 bytes */
1436 vcpu->mmio_needed = 23; /* 4 bytes */
1439 vcpu->mmio_needed = 24; /* 3 bytes */
1442 vcpu->mmio_needed = 25; /* 2 bytes */
1445 vcpu->mmio_needed = 26; /* 1 byte */
1453 #ifdef CONFIG_CPU_LOONGSON64
1455 rt = inst.loongson3_lsdc2_format.rt;
1456 switch (inst.loongson3_lsdc2_format.opcode1) {
1458 * Loongson-3 overridden ldc2 instructions.
1459 * opcode1 instruction
1460 * 0x0 gslbx: store 1 bytes from GPR
1461 * 0x1 gslhx: store 2 bytes from GPR
1462 * 0x2 gslwx: store 4 bytes from GPR
1463 * 0x3 gsldx: store 8 bytes from GPR
1467 vcpu->mmio_needed = 27; /* signed */
1471 vcpu->mmio_needed = 28; /* signed */
1475 vcpu->mmio_needed = 29; /* signed */
1479 vcpu->mmio_needed = 30; /* signed */
1482 kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1490 kvm_err("Load not yet supported (inst=0x%08x)\n",
1492 vcpu->mmio_needed = 0;
1493 return EMULATE_FAIL;
1496 run->mmio.is_write = 0;
1497 vcpu->mmio_is_write = 0;
1499 r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1500 run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1503 kvm_mips_complete_mmio_load(vcpu);
1504 vcpu->mmio_needed = 0;
1505 return EMULATE_DONE;
1508 return EMULATE_DO_MMIO;
1511 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1513 struct kvm_run *run = vcpu->run;
1514 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1515 enum emulation_result er = EMULATE_DONE;
1517 if (run->mmio.len > sizeof(*gpr)) {
1518 kvm_err("Bad MMIO length: %d", run->mmio.len);
1523 /* Restore saved resume PC */
1524 vcpu->arch.pc = vcpu->arch.io_pc;
1526 switch (run->mmio.len) {
1528 switch (vcpu->mmio_needed) {
1530 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1531 (((*(s64 *)run->mmio.data) & 0xff) << 56);
1534 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1535 (((*(s64 *)run->mmio.data) & 0xffff) << 48);
1538 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1539 (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1542 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1543 (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1546 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1547 (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1550 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1551 (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1554 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1555 (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1559 *gpr = *(s64 *)run->mmio.data;
1562 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1563 ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1566 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1567 ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1570 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1571 ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1574 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1575 ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1578 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1579 ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1582 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1583 ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1586 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1587 ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1590 *gpr = *(s64 *)run->mmio.data;
1595 switch (vcpu->mmio_needed) {
1597 *gpr = *(u32 *)run->mmio.data;
1600 *gpr = *(s32 *)run->mmio.data;
1603 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1604 (((*(s32 *)run->mmio.data) & 0xff) << 24);
1607 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1608 (((*(s32 *)run->mmio.data) & 0xffff) << 16);
1611 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1612 (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1616 *gpr = *(s32 *)run->mmio.data;
1619 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1620 ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1623 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1624 ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1627 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1628 ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1631 *gpr = *(s32 *)run->mmio.data;
1636 if (vcpu->mmio_needed == 1)
1637 *gpr = *(u16 *)run->mmio.data;
1639 *gpr = *(s16 *)run->mmio.data;
1643 if (vcpu->mmio_needed == 1)
1644 *gpr = *(u8 *)run->mmio.data;
1646 *gpr = *(s8 *)run->mmio.data;