2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
13 - kmod support by: Cyrus Durgin
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
58 static void autostart_arrays(int part);
61 /* pers_list is a list of registered personalities protected
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
134 .mode = S_IRUGO|S_IXUGO,
140 static ctl_table raid_root_table[] = {
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 struct mddev *mddev, **mddevp;
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
172 struct mddev **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
183 b->bi_destructor = mddev_bio_destructor;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
192 struct mddev **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
203 b->bi_destructor = mddev_bio_destructor;
205 if (bio_integrity(bio)) {
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
227 struct bio_vec *bvec;
231 if (offset == 0 && size == bio->bi_size)
234 bio->bi_sector += offset;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
347 smp_rmb(); /* Ensure implications of 'active' are visible */
349 if (mddev->suspended) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
360 finish_wait(&mddev->sb_wait, &__wait);
362 atomic_inc(&mddev->active_io);
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
387 void mddev_suspend(struct mddev *mddev)
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
395 EXPORT_SYMBOL_GPL(mddev_suspend);
397 void mddev_resume(struct mddev *mddev)
399 mddev->suspended = 0;
400 wake_up(&mddev->sb_wait);
401 mddev->pers->quiesce(mddev, 0);
403 md_wakeup_thread(mddev->thread);
404 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 EXPORT_SYMBOL_GPL(mddev_resume);
408 int mddev_congested(struct mddev *mddev, int bits)
410 return mddev->suspended;
412 EXPORT_SYMBOL(mddev_congested);
415 * Generic flush handling for md
418 static void md_end_flush(struct bio *bio, int err)
420 struct md_rdev *rdev = bio->bi_private;
421 struct mddev *mddev = rdev->mddev;
423 rdev_dec_pending(rdev, mddev);
425 if (atomic_dec_and_test(&mddev->flush_pending)) {
426 /* The pre-request flush has finished */
427 queue_work(md_wq, &mddev->flush_work);
432 static void md_submit_flush_data(struct work_struct *ws);
434 static void submit_flushes(struct work_struct *ws)
436 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 struct md_rdev *rdev;
439 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 atomic_set(&mddev->flush_pending, 1);
442 rdev_for_each_rcu(rdev, mddev)
443 if (rdev->raid_disk >= 0 &&
444 !test_bit(Faulty, &rdev->flags)) {
445 /* Take two references, one is dropped
446 * when request finishes, one after
447 * we reclaim rcu_read_lock
450 atomic_inc(&rdev->nr_pending);
451 atomic_inc(&rdev->nr_pending);
453 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 bi->bi_end_io = md_end_flush;
455 bi->bi_private = rdev;
456 bi->bi_bdev = rdev->bdev;
457 atomic_inc(&mddev->flush_pending);
458 submit_bio(WRITE_FLUSH, bi);
460 rdev_dec_pending(rdev, mddev);
463 if (atomic_dec_and_test(&mddev->flush_pending))
464 queue_work(md_wq, &mddev->flush_work);
467 static void md_submit_flush_data(struct work_struct *ws)
469 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 struct bio *bio = mddev->flush_bio;
472 if (bio->bi_size == 0)
473 /* an empty barrier - all done */
476 bio->bi_rw &= ~REQ_FLUSH;
477 mddev->pers->make_request(mddev, bio);
480 mddev->flush_bio = NULL;
481 wake_up(&mddev->sb_wait);
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 spin_lock_irq(&mddev->write_lock);
487 wait_event_lock_irq(mddev->sb_wait,
489 mddev->write_lock, /*nothing*/);
490 mddev->flush_bio = bio;
491 spin_unlock_irq(&mddev->write_lock);
493 INIT_WORK(&mddev->flush_work, submit_flushes);
494 queue_work(md_wq, &mddev->flush_work);
496 EXPORT_SYMBOL(md_flush_request);
498 /* Support for plugging.
499 * This mirrors the plugging support in request_queue, but does not
500 * require having a whole queue or request structures.
501 * We allocate an md_plug_cb for each md device and each thread it gets
502 * plugged on. This links tot the private plug_handle structure in the
503 * personality data where we keep a count of the number of outstanding
504 * plugs so other code can see if a plug is active.
507 struct blk_plug_cb cb;
511 static void plugger_unplug(struct blk_plug_cb *cb)
513 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 md_wakeup_thread(mdcb->mddev->thread);
519 /* Check that an unplug wakeup will come shortly.
520 * If not, wakeup the md thread immediately
522 int mddev_check_plugged(struct mddev *mddev)
524 struct blk_plug *plug = current->plug;
525 struct md_plug_cb *mdcb;
530 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 if (mdcb->cb.callback == plugger_unplug &&
532 mdcb->mddev == mddev) {
533 /* Already on the list, move to top */
534 if (mdcb != list_first_entry(&plug->cb_list,
537 list_move(&mdcb->cb.list, &plug->cb_list);
541 /* Not currently on the callback list */
542 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
547 mdcb->cb.callback = plugger_unplug;
548 atomic_inc(&mddev->plug_cnt);
549 list_add(&mdcb->cb.list, &plug->cb_list);
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554 static inline struct mddev *mddev_get(struct mddev *mddev)
556 atomic_inc(&mddev->active);
560 static void mddev_delayed_delete(struct work_struct *ws);
562 static void mddev_put(struct mddev *mddev)
564 struct bio_set *bs = NULL;
566 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 mddev->ctime == 0 && !mddev->hold_active) {
570 /* Array is not configured at all, and not held active,
572 list_del_init(&mddev->all_mddevs);
574 mddev->bio_set = NULL;
575 if (mddev->gendisk) {
576 /* We did a probe so need to clean up. Call
577 * queue_work inside the spinlock so that
578 * flush_workqueue() after mddev_find will
579 * succeed in waiting for the work to be done.
581 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 queue_work(md_misc_wq, &mddev->del_work);
586 spin_unlock(&all_mddevs_lock);
591 void mddev_init(struct mddev *mddev)
593 mutex_init(&mddev->open_mutex);
594 mutex_init(&mddev->reconfig_mutex);
595 mutex_init(&mddev->bitmap_info.mutex);
596 INIT_LIST_HEAD(&mddev->disks);
597 INIT_LIST_HEAD(&mddev->all_mddevs);
598 init_timer(&mddev->safemode_timer);
599 atomic_set(&mddev->active, 1);
600 atomic_set(&mddev->openers, 0);
601 atomic_set(&mddev->active_io, 0);
602 atomic_set(&mddev->plug_cnt, 0);
603 spin_lock_init(&mddev->write_lock);
604 atomic_set(&mddev->flush_pending, 0);
605 init_waitqueue_head(&mddev->sb_wait);
606 init_waitqueue_head(&mddev->recovery_wait);
607 mddev->reshape_position = MaxSector;
608 mddev->resync_min = 0;
609 mddev->resync_max = MaxSector;
610 mddev->level = LEVEL_NONE;
612 EXPORT_SYMBOL_GPL(mddev_init);
614 static struct mddev * mddev_find(dev_t unit)
616 struct mddev *mddev, *new = NULL;
618 if (unit && MAJOR(unit) != MD_MAJOR)
619 unit &= ~((1<<MdpMinorShift)-1);
622 spin_lock(&all_mddevs_lock);
625 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 if (mddev->unit == unit) {
628 spin_unlock(&all_mddevs_lock);
634 list_add(&new->all_mddevs, &all_mddevs);
635 spin_unlock(&all_mddevs_lock);
636 new->hold_active = UNTIL_IOCTL;
640 /* find an unused unit number */
641 static int next_minor = 512;
642 int start = next_minor;
646 dev = MKDEV(MD_MAJOR, next_minor);
648 if (next_minor > MINORMASK)
650 if (next_minor == start) {
651 /* Oh dear, all in use. */
652 spin_unlock(&all_mddevs_lock);
658 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 if (mddev->unit == dev) {
665 new->md_minor = MINOR(dev);
666 new->hold_active = UNTIL_STOP;
667 list_add(&new->all_mddevs, &all_mddevs);
668 spin_unlock(&all_mddevs_lock);
671 spin_unlock(&all_mddevs_lock);
673 new = kzalloc(sizeof(*new), GFP_KERNEL);
678 if (MAJOR(unit) == MD_MAJOR)
679 new->md_minor = MINOR(unit);
681 new->md_minor = MINOR(unit) >> MdpMinorShift;
688 static inline int mddev_lock(struct mddev * mddev)
690 return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 static inline int mddev_is_locked(struct mddev *mddev)
695 return mutex_is_locked(&mddev->reconfig_mutex);
698 static inline int mddev_trylock(struct mddev * mddev)
700 return mutex_trylock(&mddev->reconfig_mutex);
703 static struct attribute_group md_redundancy_group;
705 static void mddev_unlock(struct mddev * mddev)
707 if (mddev->to_remove) {
708 /* These cannot be removed under reconfig_mutex as
709 * an access to the files will try to take reconfig_mutex
710 * while holding the file unremovable, which leads to
712 * So hold set sysfs_active while the remove in happeing,
713 * and anything else which might set ->to_remove or my
714 * otherwise change the sysfs namespace will fail with
715 * -EBUSY if sysfs_active is still set.
716 * We set sysfs_active under reconfig_mutex and elsewhere
717 * test it under the same mutex to ensure its correct value
720 struct attribute_group *to_remove = mddev->to_remove;
721 mddev->to_remove = NULL;
722 mddev->sysfs_active = 1;
723 mutex_unlock(&mddev->reconfig_mutex);
725 if (mddev->kobj.sd) {
726 if (to_remove != &md_redundancy_group)
727 sysfs_remove_group(&mddev->kobj, to_remove);
728 if (mddev->pers == NULL ||
729 mddev->pers->sync_request == NULL) {
730 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 if (mddev->sysfs_action)
732 sysfs_put(mddev->sysfs_action);
733 mddev->sysfs_action = NULL;
736 mddev->sysfs_active = 0;
738 mutex_unlock(&mddev->reconfig_mutex);
740 /* As we've dropped the mutex we need a spinlock to
741 * make sure the thread doesn't disappear
743 spin_lock(&pers_lock);
744 md_wakeup_thread(mddev->thread);
745 spin_unlock(&pers_lock);
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 struct md_rdev *rdev;
752 rdev_for_each(rdev, mddev)
753 if (rdev->desc_nr == nr)
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 struct md_rdev *rdev;
763 rdev_for_each(rdev, mddev)
764 if (rdev->bdev->bd_dev == dev)
770 static struct md_personality *find_pers(int level, char *clevel)
772 struct md_personality *pers;
773 list_for_each_entry(pers, &pers_list, list) {
774 if (level != LEVEL_NONE && pers->level == level)
776 if (strcmp(pers->name, clevel)==0)
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 return MD_NEW_SIZE_SECTORS(num_sectors);
789 static int alloc_disk_sb(struct md_rdev * rdev)
794 rdev->sb_page = alloc_page(GFP_KERNEL);
795 if (!rdev->sb_page) {
796 printk(KERN_ALERT "md: out of memory.\n");
803 static void free_disk_sb(struct md_rdev * rdev)
806 put_page(rdev->sb_page);
808 rdev->sb_page = NULL;
813 put_page(rdev->bb_page);
814 rdev->bb_page = NULL;
819 static void super_written(struct bio *bio, int error)
821 struct md_rdev *rdev = bio->bi_private;
822 struct mddev *mddev = rdev->mddev;
824 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 printk("md: super_written gets error=%d, uptodate=%d\n",
826 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 md_error(mddev, rdev);
831 if (atomic_dec_and_test(&mddev->pending_writes))
832 wake_up(&mddev->sb_wait);
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 sector_t sector, int size, struct page *page)
839 /* write first size bytes of page to sector of rdev
840 * Increment mddev->pending_writes before returning
841 * and decrement it on completion, waking up sb_wait
842 * if zero is reached.
843 * If an error occurred, call md_error
845 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 bio->bi_sector = sector;
849 bio_add_page(bio, page, size, 0);
850 bio->bi_private = rdev;
851 bio->bi_end_io = super_written;
853 atomic_inc(&mddev->pending_writes);
854 submit_bio(WRITE_FLUSH_FUA, bio);
857 void md_super_wait(struct mddev *mddev)
859 /* wait for all superblock writes that were scheduled to complete */
862 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 if (atomic_read(&mddev->pending_writes)==0)
867 finish_wait(&mddev->sb_wait, &wq);
870 static void bi_complete(struct bio *bio, int error)
872 complete((struct completion*)bio->bi_private);
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 struct page *page, int rw, bool metadata_op)
878 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 struct completion event;
884 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 rdev->meta_bdev : rdev->bdev;
887 bio->bi_sector = sector + rdev->sb_start;
889 bio->bi_sector = sector + rdev->data_offset;
890 bio_add_page(bio, page, size, 0);
891 init_completion(&event);
892 bio->bi_private = &event;
893 bio->bi_end_io = bi_complete;
895 wait_for_completion(&event);
897 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
901 EXPORT_SYMBOL_GPL(sync_page_io);
903 static int read_disk_sb(struct md_rdev * rdev, int size)
905 char b[BDEVNAME_SIZE];
906 if (!rdev->sb_page) {
914 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
920 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 bdevname(rdev->bdev,b));
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 return sb1->set_uuid0 == sb2->set_uuid0 &&
928 sb1->set_uuid1 == sb2->set_uuid1 &&
929 sb1->set_uuid2 == sb2->set_uuid2 &&
930 sb1->set_uuid3 == sb2->set_uuid3;
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 mdp_super_t *tmp1, *tmp2;
938 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941 if (!tmp1 || !tmp2) {
943 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
951 * nr_disks is not constant
956 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
964 static u32 md_csum_fold(u32 csum)
966 csum = (csum & 0xffff) + (csum >> 16);
967 return (csum & 0xffff) + (csum >> 16);
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
973 u32 *sb32 = (u32*)sb;
975 unsigned int disk_csum, csum;
977 disk_csum = sb->sb_csum;
980 for (i = 0; i < MD_SB_BYTES/4 ; i++)
982 csum = (newcsum & 0xffffffff) + (newcsum>>32);
986 /* This used to use csum_partial, which was wrong for several
987 * reasons including that different results are returned on
988 * different architectures. It isn't critical that we get exactly
989 * the same return value as before (we always csum_fold before
990 * testing, and that removes any differences). However as we
991 * know that csum_partial always returned a 16bit value on
992 * alphas, do a fold to maximise conformity to previous behaviour.
994 sb->sb_csum = md_csum_fold(disk_csum);
996 sb->sb_csum = disk_csum;
1003 * Handle superblock details.
1004 * We want to be able to handle multiple superblock formats
1005 * so we have a common interface to them all, and an array of
1006 * different handlers.
1007 * We rely on user-space to write the initial superblock, and support
1008 * reading and updating of superblocks.
1009 * Interface methods are:
1010 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011 * loads and validates a superblock on dev.
1012 * if refdev != NULL, compare superblocks on both devices
1014 * 0 - dev has a superblock that is compatible with refdev
1015 * 1 - dev has a superblock that is compatible and newer than refdev
1016 * so dev should be used as the refdev in future
1017 * -EINVAL superblock incompatible or invalid
1018 * -othererror e.g. -EIO
1020 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021 * Verify that dev is acceptable into mddev.
1022 * The first time, mddev->raid_disks will be 0, and data from
1023 * dev should be merged in. Subsequent calls check that dev
1024 * is new enough. Return 0 or -EINVAL
1026 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027 * Update the superblock for rdev with data in mddev
1028 * This does not write to disc.
1034 struct module *owner;
1035 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1040 sector_t num_sectors);
1044 * Check that the given mddev has no bitmap.
1046 * This function is called from the run method of all personalities that do not
1047 * support bitmaps. It prints an error message and returns non-zero if mddev
1048 * has a bitmap. Otherwise, it returns 0.
1051 int md_check_no_bitmap(struct mddev *mddev)
1053 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 mdname(mddev), mddev->pers->name);
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1062 * load_super for 0.90.0
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1071 * Calculate the position of the superblock (512byte sectors),
1072 * it's at the end of the disk.
1074 * It also happens to be a multiple of 4Kb.
1076 rdev->sb_start = calc_dev_sboffset(rdev);
1078 ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 if (ret) return ret;
1083 bdevname(rdev->bdev, b);
1084 sb = page_address(rdev->sb_page);
1086 if (sb->md_magic != MD_SB_MAGIC) {
1087 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1092 if (sb->major_version != 0 ||
1093 sb->minor_version < 90 ||
1094 sb->minor_version > 91) {
1095 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 sb->major_version, sb->minor_version,
1101 if (sb->raid_disks <= 0)
1104 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1110 rdev->preferred_minor = sb->md_minor;
1111 rdev->data_offset = 0;
1112 rdev->sb_size = MD_SB_BYTES;
1113 rdev->badblocks.shift = -1;
1115 if (sb->level == LEVEL_MULTIPATH)
1118 rdev->desc_nr = sb->this_disk.number;
1124 mdp_super_t *refsb = page_address(refdev->sb_page);
1125 if (!uuid_equal(refsb, sb)) {
1126 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 b, bdevname(refdev->bdev,b2));
1130 if (!sb_equal(refsb, sb)) {
1131 printk(KERN_WARNING "md: %s has same UUID"
1132 " but different superblock to %s\n",
1133 b, bdevname(refdev->bdev, b2));
1137 ev2 = md_event(refsb);
1143 rdev->sectors = rdev->sb_start;
1144 /* Limit to 4TB as metadata cannot record more than that */
1145 if (rdev->sectors >= (2ULL << 32))
1146 rdev->sectors = (2ULL << 32) - 2;
1148 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 /* "this cannot possibly happen" ... */
1157 * validate_super for 0.90.0
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1162 mdp_super_t *sb = page_address(rdev->sb_page);
1163 __u64 ev1 = md_event(sb);
1165 rdev->raid_disk = -1;
1166 clear_bit(Faulty, &rdev->flags);
1167 clear_bit(In_sync, &rdev->flags);
1168 clear_bit(WriteMostly, &rdev->flags);
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 0;
1172 mddev->minor_version = sb->minor_version;
1173 mddev->patch_version = sb->patch_version;
1174 mddev->external = 0;
1175 mddev->chunk_sectors = sb->chunk_size >> 9;
1176 mddev->ctime = sb->ctime;
1177 mddev->utime = sb->utime;
1178 mddev->level = sb->level;
1179 mddev->clevel[0] = 0;
1180 mddev->layout = sb->layout;
1181 mddev->raid_disks = sb->raid_disks;
1182 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 mddev->events = ev1;
1184 mddev->bitmap_info.offset = 0;
1185 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187 if (mddev->minor_version >= 91) {
1188 mddev->reshape_position = sb->reshape_position;
1189 mddev->delta_disks = sb->delta_disks;
1190 mddev->new_level = sb->new_level;
1191 mddev->new_layout = sb->new_layout;
1192 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194 mddev->reshape_position = MaxSector;
1195 mddev->delta_disks = 0;
1196 mddev->new_level = mddev->level;
1197 mddev->new_layout = mddev->layout;
1198 mddev->new_chunk_sectors = mddev->chunk_sectors;
1201 if (sb->state & (1<<MD_SB_CLEAN))
1202 mddev->recovery_cp = MaxSector;
1204 if (sb->events_hi == sb->cp_events_hi &&
1205 sb->events_lo == sb->cp_events_lo) {
1206 mddev->recovery_cp = sb->recovery_cp;
1208 mddev->recovery_cp = 0;
1211 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216 mddev->max_disks = MD_SB_DISKS;
1218 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 mddev->bitmap_info.file == NULL)
1220 mddev->bitmap_info.offset =
1221 mddev->bitmap_info.default_offset;
1223 } else if (mddev->pers == NULL) {
1224 /* Insist on good event counter while assembling, except
1225 * for spares (which don't need an event count) */
1227 if (sb->disks[rdev->desc_nr].state & (
1228 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 if (ev1 < mddev->events)
1231 } else if (mddev->bitmap) {
1232 /* if adding to array with a bitmap, then we can accept an
1233 * older device ... but not too old.
1235 if (ev1 < mddev->bitmap->events_cleared)
1238 if (ev1 < mddev->events)
1239 /* just a hot-add of a new device, leave raid_disk at -1 */
1243 if (mddev->level != LEVEL_MULTIPATH) {
1244 desc = sb->disks + rdev->desc_nr;
1246 if (desc->state & (1<<MD_DISK_FAULTY))
1247 set_bit(Faulty, &rdev->flags);
1248 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 desc->raid_disk < mddev->raid_disks */) {
1250 set_bit(In_sync, &rdev->flags);
1251 rdev->raid_disk = desc->raid_disk;
1252 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 /* active but not in sync implies recovery up to
1254 * reshape position. We don't know exactly where
1255 * that is, so set to zero for now */
1256 if (mddev->minor_version >= 91) {
1257 rdev->recovery_offset = 0;
1258 rdev->raid_disk = desc->raid_disk;
1261 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 set_bit(WriteMostly, &rdev->flags);
1263 } else /* MULTIPATH are always insync */
1264 set_bit(In_sync, &rdev->flags);
1269 * sync_super for 0.90.0
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1274 struct md_rdev *rdev2;
1275 int next_spare = mddev->raid_disks;
1278 /* make rdev->sb match mddev data..
1281 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 * 3/ any empty disks < next_spare become removed
1284 * disks[0] gets initialised to REMOVED because
1285 * we cannot be sure from other fields if it has
1286 * been initialised or not.
1289 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291 rdev->sb_size = MD_SB_BYTES;
1293 sb = page_address(rdev->sb_page);
1295 memset(sb, 0, sizeof(*sb));
1297 sb->md_magic = MD_SB_MAGIC;
1298 sb->major_version = mddev->major_version;
1299 sb->patch_version = mddev->patch_version;
1300 sb->gvalid_words = 0; /* ignored */
1301 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306 sb->ctime = mddev->ctime;
1307 sb->level = mddev->level;
1308 sb->size = mddev->dev_sectors / 2;
1309 sb->raid_disks = mddev->raid_disks;
1310 sb->md_minor = mddev->md_minor;
1311 sb->not_persistent = 0;
1312 sb->utime = mddev->utime;
1314 sb->events_hi = (mddev->events>>32);
1315 sb->events_lo = (u32)mddev->events;
1317 if (mddev->reshape_position == MaxSector)
1318 sb->minor_version = 90;
1320 sb->minor_version = 91;
1321 sb->reshape_position = mddev->reshape_position;
1322 sb->new_level = mddev->new_level;
1323 sb->delta_disks = mddev->delta_disks;
1324 sb->new_layout = mddev->new_layout;
1325 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327 mddev->minor_version = sb->minor_version;
1330 sb->recovery_cp = mddev->recovery_cp;
1331 sb->cp_events_hi = (mddev->events>>32);
1332 sb->cp_events_lo = (u32)mddev->events;
1333 if (mddev->recovery_cp == MaxSector)
1334 sb->state = (1<< MD_SB_CLEAN);
1336 sb->recovery_cp = 0;
1338 sb->layout = mddev->layout;
1339 sb->chunk_size = mddev->chunk_sectors << 9;
1341 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 rdev_for_each(rdev2, mddev) {
1348 int is_active = test_bit(In_sync, &rdev2->flags);
1350 if (rdev2->raid_disk >= 0 &&
1351 sb->minor_version >= 91)
1352 /* we have nowhere to store the recovery_offset,
1353 * but if it is not below the reshape_position,
1354 * we can piggy-back on that.
1357 if (rdev2->raid_disk < 0 ||
1358 test_bit(Faulty, &rdev2->flags))
1361 desc_nr = rdev2->raid_disk;
1363 desc_nr = next_spare++;
1364 rdev2->desc_nr = desc_nr;
1365 d = &sb->disks[rdev2->desc_nr];
1367 d->number = rdev2->desc_nr;
1368 d->major = MAJOR(rdev2->bdev->bd_dev);
1369 d->minor = MINOR(rdev2->bdev->bd_dev);
1371 d->raid_disk = rdev2->raid_disk;
1373 d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 if (test_bit(Faulty, &rdev2->flags))
1375 d->state = (1<<MD_DISK_FAULTY);
1376 else if (is_active) {
1377 d->state = (1<<MD_DISK_ACTIVE);
1378 if (test_bit(In_sync, &rdev2->flags))
1379 d->state |= (1<<MD_DISK_SYNC);
1387 if (test_bit(WriteMostly, &rdev2->flags))
1388 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390 /* now set the "removed" and "faulty" bits on any missing devices */
1391 for (i=0 ; i < mddev->raid_disks ; i++) {
1392 mdp_disk_t *d = &sb->disks[i];
1393 if (d->state == 0 && d->number == 0) {
1396 d->state = (1<<MD_DISK_REMOVED);
1397 d->state |= (1<<MD_DISK_FAULTY);
1401 sb->nr_disks = nr_disks;
1402 sb->active_disks = active;
1403 sb->working_disks = working;
1404 sb->failed_disks = failed;
1405 sb->spare_disks = spare;
1407 sb->this_disk = sb->disks[rdev->desc_nr];
1408 sb->sb_csum = calc_sb_csum(sb);
1412 * rdev_size_change for 0.90.0
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 return 0; /* component must fit device */
1419 if (rdev->mddev->bitmap_info.offset)
1420 return 0; /* can't move bitmap */
1421 rdev->sb_start = calc_dev_sboffset(rdev);
1422 if (!num_sectors || num_sectors > rdev->sb_start)
1423 num_sectors = rdev->sb_start;
1424 /* Limit to 4TB as metadata cannot record more than that.
1425 * 4TB == 2^32 KB, or 2*2^32 sectors.
1427 if (num_sectors >= (2ULL << 32))
1428 num_sectors = (2ULL << 32) - 2;
1429 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431 md_super_wait(rdev->mddev);
1437 * version 1 superblock
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1444 unsigned long long newcsum;
1445 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 __le32 *isuper = (__le32*)sb;
1449 disk_csum = sb->sb_csum;
1452 for (i=0; size>=4; size -= 4 )
1453 newcsum += le32_to_cpu(*isuper++);
1456 newcsum += le16_to_cpu(*(__le16*) isuper);
1458 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 sb->sb_csum = disk_csum;
1460 return cpu_to_le32(csum);
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 struct mdp_superblock_1 *sb;
1470 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1474 * Calculate the position of the superblock in 512byte sectors.
1475 * It is always aligned to a 4K boundary and
1476 * depeding on minor_version, it can be:
1477 * 0: At least 8K, but less than 12K, from end of device
1478 * 1: At start of device
1479 * 2: 4K from start of device.
1481 switch(minor_version) {
1483 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485 sb_start &= ~(sector_t)(4*2-1);
1496 rdev->sb_start = sb_start;
1498 /* superblock is rarely larger than 1K, but it can be larger,
1499 * and it is safe to read 4k, so we do that
1501 ret = read_disk_sb(rdev, 4096);
1502 if (ret) return ret;
1505 sb = page_address(rdev->sb_page);
1507 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 sb->major_version != cpu_to_le32(1) ||
1509 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1514 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 printk("md: invalid superblock checksum on %s\n",
1516 bdevname(rdev->bdev,b));
1519 if (le64_to_cpu(sb->data_size) < 10) {
1520 printk("md: data_size too small on %s\n",
1521 bdevname(rdev->bdev,b));
1525 rdev->preferred_minor = 0xffff;
1526 rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 if (rdev->sb_size & bmask)
1532 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1535 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1538 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1541 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543 if (!rdev->bb_page) {
1544 rdev->bb_page = alloc_page(GFP_KERNEL);
1548 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 rdev->badblocks.count == 0) {
1550 /* need to load the bad block list.
1551 * Currently we limit it to one page.
1557 int sectors = le16_to_cpu(sb->bblog_size);
1558 if (sectors > (PAGE_SIZE / 512))
1560 offset = le32_to_cpu(sb->bblog_offset);
1563 bb_sector = (long long)offset;
1564 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 rdev->bb_page, READ, true))
1567 bbp = (u64 *)page_address(rdev->bb_page);
1568 rdev->badblocks.shift = sb->bblog_shift;
1569 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 u64 bb = le64_to_cpu(*bbp);
1571 int count = bb & (0x3ff);
1572 u64 sector = bb >> 10;
1573 sector <<= sb->bblog_shift;
1574 count <<= sb->bblog_shift;
1577 if (md_set_badblocks(&rdev->badblocks,
1578 sector, count, 1) == 0)
1581 } else if (sb->bblog_offset == 0)
1582 rdev->badblocks.shift = -1;
1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 sb->level != refsb->level ||
1592 sb->layout != refsb->layout ||
1593 sb->chunksize != refsb->chunksize) {
1594 printk(KERN_WARNING "md: %s has strangely different"
1595 " superblock to %s\n",
1596 bdevname(rdev->bdev,b),
1597 bdevname(refdev->bdev,b2));
1600 ev1 = le64_to_cpu(sb->events);
1601 ev2 = le64_to_cpu(refsb->events);
1609 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 le64_to_cpu(sb->data_offset);
1612 rdev->sectors = rdev->sb_start;
1613 if (rdev->sectors < le64_to_cpu(sb->data_size))
1615 rdev->sectors = le64_to_cpu(sb->data_size);
1616 if (le64_to_cpu(sb->size) > rdev->sectors)
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 __u64 ev1 = le64_to_cpu(sb->events);
1626 rdev->raid_disk = -1;
1627 clear_bit(Faulty, &rdev->flags);
1628 clear_bit(In_sync, &rdev->flags);
1629 clear_bit(WriteMostly, &rdev->flags);
1631 if (mddev->raid_disks == 0) {
1632 mddev->major_version = 1;
1633 mddev->patch_version = 0;
1634 mddev->external = 0;
1635 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 mddev->level = le32_to_cpu(sb->level);
1639 mddev->clevel[0] = 0;
1640 mddev->layout = le32_to_cpu(sb->layout);
1641 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 mddev->dev_sectors = le64_to_cpu(sb->size);
1643 mddev->events = ev1;
1644 mddev->bitmap_info.offset = 0;
1645 mddev->bitmap_info.default_offset = 1024 >> 9;
1647 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 memcpy(mddev->uuid, sb->set_uuid, 16);
1650 mddev->max_disks = (4096-256)/2;
1652 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 mddev->bitmap_info.file == NULL )
1654 mddev->bitmap_info.offset =
1655 (__s32)le32_to_cpu(sb->bitmap_offset);
1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 mddev->new_level = le32_to_cpu(sb->new_level);
1661 mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 mddev->reshape_position = MaxSector;
1665 mddev->delta_disks = 0;
1666 mddev->new_level = mddev->level;
1667 mddev->new_layout = mddev->layout;
1668 mddev->new_chunk_sectors = mddev->chunk_sectors;
1671 } else if (mddev->pers == NULL) {
1672 /* Insist of good event counter while assembling, except for
1673 * spares (which don't need an event count) */
1675 if (rdev->desc_nr >= 0 &&
1676 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 if (ev1 < mddev->events)
1680 } else if (mddev->bitmap) {
1681 /* If adding to array with a bitmap, then we can accept an
1682 * older device, but not too old.
1684 if (ev1 < mddev->bitmap->events_cleared)
1687 if (ev1 < mddev->events)
1688 /* just a hot-add of a new device, leave raid_disk at -1 */
1691 if (mddev->level != LEVEL_MULTIPATH) {
1693 if (rdev->desc_nr < 0 ||
1694 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1698 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700 case 0xffff: /* spare */
1702 case 0xfffe: /* faulty */
1703 set_bit(Faulty, &rdev->flags);
1706 if ((le32_to_cpu(sb->feature_map) &
1707 MD_FEATURE_RECOVERY_OFFSET))
1708 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710 set_bit(In_sync, &rdev->flags);
1711 rdev->raid_disk = role;
1714 if (sb->devflags & WriteMostly1)
1715 set_bit(WriteMostly, &rdev->flags);
1716 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 set_bit(Replacement, &rdev->flags);
1718 } else /* MULTIPATH are always insync */
1719 set_bit(In_sync, &rdev->flags);
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1726 struct mdp_superblock_1 *sb;
1727 struct md_rdev *rdev2;
1729 /* make rdev->sb match mddev and rdev data. */
1731 sb = page_address(rdev->sb_page);
1733 sb->feature_map = 0;
1735 sb->recovery_offset = cpu_to_le64(0);
1736 memset(sb->pad1, 0, sizeof(sb->pad1));
1737 memset(sb->pad3, 0, sizeof(sb->pad3));
1739 sb->utime = cpu_to_le64((__u64)mddev->utime);
1740 sb->events = cpu_to_le64(mddev->events);
1742 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1744 sb->resync_offset = cpu_to_le64(0);
1746 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749 sb->size = cpu_to_le64(mddev->dev_sectors);
1750 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751 sb->level = cpu_to_le32(mddev->level);
1752 sb->layout = cpu_to_le32(mddev->layout);
1754 if (test_bit(WriteMostly, &rdev->flags))
1755 sb->devflags |= WriteMostly1;
1757 sb->devflags &= ~WriteMostly1;
1759 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764 if (rdev->raid_disk >= 0 &&
1765 !test_bit(In_sync, &rdev->flags)) {
1767 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768 sb->recovery_offset =
1769 cpu_to_le64(rdev->recovery_offset);
1771 if (test_bit(Replacement, &rdev->flags))
1773 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1775 if (mddev->reshape_position != MaxSector) {
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 sb->new_level = cpu_to_le32(mddev->new_level);
1781 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784 if (rdev->badblocks.count == 0)
1785 /* Nothing to do for bad blocks*/ ;
1786 else if (sb->bblog_offset == 0)
1787 /* Cannot record bad blocks on this device */
1788 md_error(mddev, rdev);
1790 struct badblocks *bb = &rdev->badblocks;
1791 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1793 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1798 seq = read_seqbegin(&bb->lock);
1800 memset(bbp, 0xff, PAGE_SIZE);
1802 for (i = 0 ; i < bb->count ; i++) {
1803 u64 internal_bb = *p++;
1804 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 | BB_LEN(internal_bb));
1806 *bbp++ = cpu_to_le64(store_bb);
1809 if (read_seqretry(&bb->lock, seq))
1812 bb->sector = (rdev->sb_start +
1813 (int)le32_to_cpu(sb->bblog_offset));
1814 bb->size = le16_to_cpu(sb->bblog_size);
1819 rdev_for_each(rdev2, mddev)
1820 if (rdev2->desc_nr+1 > max_dev)
1821 max_dev = rdev2->desc_nr+1;
1823 if (max_dev > le32_to_cpu(sb->max_dev)) {
1825 sb->max_dev = cpu_to_le32(max_dev);
1826 rdev->sb_size = max_dev * 2 + 256;
1827 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 if (rdev->sb_size & bmask)
1829 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1831 max_dev = le32_to_cpu(sb->max_dev);
1833 for (i=0; i<max_dev;i++)
1834 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836 rdev_for_each(rdev2, mddev) {
1838 if (test_bit(Faulty, &rdev2->flags))
1839 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 else if (test_bit(In_sync, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 else if (rdev2->raid_disk >= 0)
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1845 sb->dev_roles[i] = cpu_to_le16(0xffff);
1848 sb->sb_csum = calc_sb_1_csum(sb);
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1854 struct mdp_superblock_1 *sb;
1855 sector_t max_sectors;
1856 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 return 0; /* component must fit device */
1858 if (rdev->sb_start < rdev->data_offset) {
1859 /* minor versions 1 and 2; superblock before data */
1860 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 max_sectors -= rdev->data_offset;
1862 if (!num_sectors || num_sectors > max_sectors)
1863 num_sectors = max_sectors;
1864 } else if (rdev->mddev->bitmap_info.offset) {
1865 /* minor version 0 with bitmap we can't move */
1868 /* minor version 0; superblock after data */
1870 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 sb_start &= ~(sector_t)(4*2 - 1);
1872 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 if (!num_sectors || num_sectors > max_sectors)
1874 num_sectors = max_sectors;
1875 rdev->sb_start = sb_start;
1877 sb = page_address(rdev->sb_page);
1878 sb->data_size = cpu_to_le64(num_sectors);
1879 sb->super_offset = rdev->sb_start;
1880 sb->sb_csum = calc_sb_1_csum(sb);
1881 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1883 md_super_wait(rdev->mddev);
1887 static struct super_type super_types[] = {
1890 .owner = THIS_MODULE,
1891 .load_super = super_90_load,
1892 .validate_super = super_90_validate,
1893 .sync_super = super_90_sync,
1894 .rdev_size_change = super_90_rdev_size_change,
1898 .owner = THIS_MODULE,
1899 .load_super = super_1_load,
1900 .validate_super = super_1_validate,
1901 .sync_super = super_1_sync,
1902 .rdev_size_change = super_1_rdev_size_change,
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1908 if (mddev->sync_super) {
1909 mddev->sync_super(mddev, rdev);
1913 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1915 super_types[mddev->major_version].sync_super(mddev, rdev);
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1920 struct md_rdev *rdev, *rdev2;
1923 rdev_for_each_rcu(rdev, mddev1)
1924 rdev_for_each_rcu(rdev2, mddev2)
1925 if (rdev->bdev->bd_contains ==
1926 rdev2->bdev->bd_contains) {
1934 static LIST_HEAD(pending_raid_disks);
1937 * Try to register data integrity profile for an mddev
1939 * This is called when an array is started and after a disk has been kicked
1940 * from the array. It only succeeds if all working and active component devices
1941 * are integrity capable with matching profiles.
1943 int md_integrity_register(struct mddev *mddev)
1945 struct md_rdev *rdev, *reference = NULL;
1947 if (list_empty(&mddev->disks))
1948 return 0; /* nothing to do */
1949 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 return 0; /* shouldn't register, or already is */
1951 rdev_for_each(rdev, mddev) {
1952 /* skip spares and non-functional disks */
1953 if (test_bit(Faulty, &rdev->flags))
1955 if (rdev->raid_disk < 0)
1958 /* Use the first rdev as the reference */
1962 /* does this rdev's profile match the reference profile? */
1963 if (blk_integrity_compare(reference->bdev->bd_disk,
1964 rdev->bdev->bd_disk) < 0)
1967 if (!reference || !bdev_get_integrity(reference->bdev))
1970 * All component devices are integrity capable and have matching
1971 * profiles, register the common profile for the md device.
1973 if (blk_integrity_register(mddev->gendisk,
1974 bdev_get_integrity(reference->bdev)) != 0) {
1975 printk(KERN_ERR "md: failed to register integrity for %s\n",
1979 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1987 EXPORT_SYMBOL(md_integrity_register);
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1992 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1995 if (!bi_mddev) /* nothing to do */
1997 if (rdev->raid_disk < 0) /* skip spares */
1999 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 rdev->bdev->bd_disk) >= 0)
2002 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 blk_integrity_unregister(mddev->gendisk);
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2009 char b[BDEVNAME_SIZE];
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2031 if (mddev->level > 0)
2034 mddev->dev_sectors = rdev->sectors;
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2041 if (rdev->desc_nr < 0) {
2043 if (mddev->pers) choice = mddev->raid_disks;
2044 while (find_rdev_nr(mddev, choice))
2046 rdev->desc_nr = choice;
2048 if (find_rdev_nr(mddev, rdev->desc_nr))
2051 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 mdname(mddev), mddev->max_disks);
2056 bdevname(rdev->bdev,b);
2057 while ( (s=strchr(b, '/')) != NULL)
2060 rdev->mddev = mddev;
2061 printk(KERN_INFO "md: bind<%s>\n", b);
2063 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 /* failure here is OK */;
2069 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2071 list_add_rcu(&rdev->same_set, &mddev->disks);
2072 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2074 /* May as well allow recovery to be retried once */
2075 mddev->recovery_disabled++;
2080 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2085 static void md_delayed_delete(struct work_struct *ws)
2087 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 kobject_del(&rdev->kobj);
2089 kobject_put(&rdev->kobj);
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2094 char b[BDEVNAME_SIZE];
2099 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 list_del_rcu(&rdev->same_set);
2101 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2103 sysfs_remove_link(&rdev->kobj, "block");
2104 sysfs_put(rdev->sysfs_state);
2105 rdev->sysfs_state = NULL;
2106 kfree(rdev->badblocks.page);
2107 rdev->badblocks.count = 0;
2108 rdev->badblocks.page = NULL;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2141 static void unlock_rdev(struct md_rdev *rdev)
2143 struct block_device *bdev = rdev->bdev;
2147 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 void md_autodetect_dev(dev_t dev);
2152 static void export_rdev(struct md_rdev * rdev)
2154 char b[BDEVNAME_SIZE];
2155 printk(KERN_INFO "md: export_rdev(%s)\n",
2156 bdevname(rdev->bdev,b));
2161 if (test_bit(AutoDetected, &rdev->flags))
2162 md_autodetect_dev(rdev->bdev->bd_dev);
2165 kobject_put(&rdev->kobj);
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2170 unbind_rdev_from_array(rdev);
2174 static void export_array(struct mddev *mddev)
2176 struct md_rdev *rdev, *tmp;
2178 rdev_for_each_safe(rdev, tmp, mddev) {
2183 kick_rdev_from_array(rdev);
2185 if (!list_empty(&mddev->disks))
2187 mddev->raid_disks = 0;
2188 mddev->major_version = 0;
2191 static void print_desc(mdp_disk_t *desc)
2193 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 desc->major,desc->minor,desc->raid_disk,desc->state);
2197 static void print_sb_90(mdp_super_t *sb)
2202 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 sb->major_version, sb->minor_version, sb->patch_version,
2204 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2206 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 sb->md_minor, sb->layout, sb->chunk_size);
2209 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2210 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 sb->failed_disks, sb->spare_disks,
2213 sb->sb_csum, (unsigned long)sb->events_lo);
2216 for (i = 0; i < MD_SB_DISKS; i++) {
2219 desc = sb->disks + i;
2220 if (desc->number || desc->major || desc->minor ||
2221 desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 printk(" D %2d: ", i);
2226 printk(KERN_INFO "md: THIS: ");
2227 print_desc(&sb->this_disk);
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2234 uuid = sb->set_uuid;
2236 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 "md: Name: \"%s\" CT:%llu\n",
2238 le32_to_cpu(sb->major_version),
2239 le32_to_cpu(sb->feature_map),
2242 (unsigned long long)le64_to_cpu(sb->ctime)
2243 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2245 uuid = sb->device_uuid;
2247 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2249 "md: Dev:%08x UUID: %pU\n"
2250 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 "md: (MaxDev:%u) \n",
2252 le32_to_cpu(sb->level),
2253 (unsigned long long)le64_to_cpu(sb->size),
2254 le32_to_cpu(sb->raid_disks),
2255 le32_to_cpu(sb->layout),
2256 le32_to_cpu(sb->chunksize),
2257 (unsigned long long)le64_to_cpu(sb->data_offset),
2258 (unsigned long long)le64_to_cpu(sb->data_size),
2259 (unsigned long long)le64_to_cpu(sb->super_offset),
2260 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 le32_to_cpu(sb->dev_number),
2264 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 (unsigned long long)le64_to_cpu(sb->events),
2266 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267 le32_to_cpu(sb->sb_csum),
2268 le32_to_cpu(sb->max_dev)
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2274 char b[BDEVNAME_SIZE];
2275 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2279 if (rdev->sb_loaded) {
2280 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 switch (major_version) {
2283 print_sb_90(page_address(rdev->sb_page));
2286 print_sb_1(page_address(rdev->sb_page));
2290 printk(KERN_INFO "md: no rdev superblock!\n");
2293 static void md_print_devices(void)
2295 struct list_head *tmp;
2296 struct md_rdev *rdev;
2297 struct mddev *mddev;
2298 char b[BDEVNAME_SIZE];
2301 printk("md: **********************************\n");
2302 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2303 printk("md: **********************************\n");
2304 for_each_mddev(mddev, tmp) {
2307 bitmap_print_sb(mddev->bitmap);
2309 printk("%s: ", mdname(mddev));
2310 rdev_for_each(rdev, mddev)
2311 printk("<%s>", bdevname(rdev->bdev,b));
2314 rdev_for_each(rdev, mddev)
2315 print_rdev(rdev, mddev->major_version);
2317 printk("md: **********************************\n");
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2324 /* Update each superblock (in-memory image), but
2325 * if we are allowed to, skip spares which already
2326 * have the right event counter, or have one earlier
2327 * (which would mean they aren't being marked as dirty
2328 * with the rest of the array)
2330 struct md_rdev *rdev;
2331 rdev_for_each(rdev, mddev) {
2332 if (rdev->sb_events == mddev->events ||
2334 rdev->raid_disk < 0 &&
2335 rdev->sb_events+1 == mddev->events)) {
2336 /* Don't update this superblock */
2337 rdev->sb_loaded = 2;
2339 sync_super(mddev, rdev);
2340 rdev->sb_loaded = 1;
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2347 struct md_rdev *rdev;
2350 int any_badblocks_changed = 0;
2353 /* First make sure individual recovery_offsets are correct */
2354 rdev_for_each(rdev, mddev) {
2355 if (rdev->raid_disk >= 0 &&
2356 mddev->delta_disks >= 0 &&
2357 !test_bit(In_sync, &rdev->flags) &&
2358 mddev->curr_resync_completed > rdev->recovery_offset)
2359 rdev->recovery_offset = mddev->curr_resync_completed;
2362 if (!mddev->persistent) {
2363 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 if (!mddev->external) {
2366 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 rdev_for_each(rdev, mddev) {
2368 if (rdev->badblocks.changed) {
2369 rdev->badblocks.changed = 0;
2370 md_ack_all_badblocks(&rdev->badblocks);
2371 md_error(mddev, rdev);
2373 clear_bit(Blocked, &rdev->flags);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2378 wake_up(&mddev->sb_wait);
2382 spin_lock_irq(&mddev->write_lock);
2384 mddev->utime = get_seconds();
2386 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2388 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389 /* just a clean<-> dirty transition, possibly leave spares alone,
2390 * though if events isn't the right even/odd, we will have to do
2396 if (mddev->degraded)
2397 /* If the array is degraded, then skipping spares is both
2398 * dangerous and fairly pointless.
2399 * Dangerous because a device that was removed from the array
2400 * might have a event_count that still looks up-to-date,
2401 * so it can be re-added without a resync.
2402 * Pointless because if there are any spares to skip,
2403 * then a recovery will happen and soon that array won't
2404 * be degraded any more and the spare can go back to sleep then.
2408 sync_req = mddev->in_sync;
2410 /* If this is just a dirty<->clean transition, and the array is clean
2411 * and 'events' is odd, we can roll back to the previous clean state */
2413 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414 && mddev->can_decrease_events
2415 && mddev->events != 1) {
2417 mddev->can_decrease_events = 0;
2419 /* otherwise we have to go forward and ... */
2421 mddev->can_decrease_events = nospares;
2424 if (!mddev->events) {
2426 * oops, this 64-bit counter should never wrap.
2427 * Either we are in around ~1 trillion A.C., assuming
2428 * 1 reboot per second, or we have a bug:
2434 rdev_for_each(rdev, mddev) {
2435 if (rdev->badblocks.changed)
2436 any_badblocks_changed++;
2437 if (test_bit(Faulty, &rdev->flags))
2438 set_bit(FaultRecorded, &rdev->flags);
2441 sync_sbs(mddev, nospares);
2442 spin_unlock_irq(&mddev->write_lock);
2444 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445 mdname(mddev), mddev->in_sync);
2447 bitmap_update_sb(mddev->bitmap);
2448 rdev_for_each(rdev, mddev) {
2449 char b[BDEVNAME_SIZE];
2451 if (rdev->sb_loaded != 1)
2452 continue; /* no noise on spare devices */
2454 if (!test_bit(Faulty, &rdev->flags) &&
2455 rdev->saved_raid_disk == -1) {
2456 md_super_write(mddev,rdev,
2457 rdev->sb_start, rdev->sb_size,
2459 pr_debug("md: (write) %s's sb offset: %llu\n",
2460 bdevname(rdev->bdev, b),
2461 (unsigned long long)rdev->sb_start);
2462 rdev->sb_events = mddev->events;
2463 if (rdev->badblocks.size) {
2464 md_super_write(mddev, rdev,
2465 rdev->badblocks.sector,
2466 rdev->badblocks.size << 9,
2468 rdev->badblocks.size = 0;
2471 } else if (test_bit(Faulty, &rdev->flags))
2472 pr_debug("md: %s (skipping faulty)\n",
2473 bdevname(rdev->bdev, b));
2475 pr_debug("(skipping incremental s/r ");
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2497 rdev_for_each(rdev, mddev) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2511 static int cmd_match(const char *cmd, const char *str)
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2517 while (*cmd && *str && *cmd == *str) {
2528 struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(struct md_rdev *, char *);
2531 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2535 state_show(struct md_rdev *rdev, char *page)
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 (rdev->badblocks.unacked_exist
2555 && !test_bit(Faulty, &rdev->flags))) {
2556 len += sprintf(page+len, "%sblocked", sep);
2559 if (!test_bit(Faulty, &rdev->flags) &&
2560 !test_bit(In_sync, &rdev->flags)) {
2561 len += sprintf(page+len, "%sspare", sep);
2564 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565 len += sprintf(page+len, "%swrite_error", sep);
2568 if (test_bit(WantReplacement, &rdev->flags)) {
2569 len += sprintf(page+len, "%swant_replacement", sep);
2572 if (test_bit(Replacement, &rdev->flags)) {
2573 len += sprintf(page+len, "%sreplacement", sep);
2577 return len+sprintf(page+len, "\n");
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2584 * faulty - simulates an error
2585 * remove - disconnects the device
2586 * writemostly - sets write_mostly
2587 * -writemostly - clears write_mostly
2588 * blocked - sets the Blocked flags
2589 * -blocked - clears the Blocked and possibly simulates an error
2590 * insync - sets Insync providing device isn't active
2591 * write_error - sets WriteErrorSeen
2592 * -write_error - clears WriteErrorSeen
2595 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 md_error(rdev->mddev, rdev);
2597 if (test_bit(Faulty, &rdev->flags))
2601 } else if (cmd_match(buf, "remove")) {
2602 if (rdev->raid_disk >= 0)
2605 struct mddev *mddev = rdev->mddev;
2606 kick_rdev_from_array(rdev);
2608 md_update_sb(mddev, 1);
2609 md_new_event(mddev);
2612 } else if (cmd_match(buf, "writemostly")) {
2613 set_bit(WriteMostly, &rdev->flags);
2615 } else if (cmd_match(buf, "-writemostly")) {
2616 clear_bit(WriteMostly, &rdev->flags);
2618 } else if (cmd_match(buf, "blocked")) {
2619 set_bit(Blocked, &rdev->flags);
2621 } else if (cmd_match(buf, "-blocked")) {
2622 if (!test_bit(Faulty, &rdev->flags) &&
2623 rdev->badblocks.unacked_exist) {
2624 /* metadata handler doesn't understand badblocks,
2625 * so we need to fail the device
2627 md_error(rdev->mddev, rdev);
2629 clear_bit(Blocked, &rdev->flags);
2630 clear_bit(BlockedBadBlocks, &rdev->flags);
2631 wake_up(&rdev->blocked_wait);
2632 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 md_wakeup_thread(rdev->mddev->thread);
2636 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 set_bit(In_sync, &rdev->flags);
2639 } else if (cmd_match(buf, "write_error")) {
2640 set_bit(WriteErrorSeen, &rdev->flags);
2642 } else if (cmd_match(buf, "-write_error")) {
2643 clear_bit(WriteErrorSeen, &rdev->flags);
2645 } else if (cmd_match(buf, "want_replacement")) {
2646 /* Any non-spare device that is not a replacement can
2647 * become want_replacement at any time, but we then need to
2648 * check if recovery is needed.
2650 if (rdev->raid_disk >= 0 &&
2651 !test_bit(Replacement, &rdev->flags))
2652 set_bit(WantReplacement, &rdev->flags);
2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 md_wakeup_thread(rdev->mddev->thread);
2656 } else if (cmd_match(buf, "-want_replacement")) {
2657 /* Clearing 'want_replacement' is always allowed.
2658 * Once replacements starts it is too late though.
2661 clear_bit(WantReplacement, &rdev->flags);
2662 } else if (cmd_match(buf, "replacement")) {
2663 /* Can only set a device as a replacement when array has not
2664 * yet been started. Once running, replacement is automatic
2665 * from spares, or by assigning 'slot'.
2667 if (rdev->mddev->pers)
2670 set_bit(Replacement, &rdev->flags);
2673 } else if (cmd_match(buf, "-replacement")) {
2674 /* Similarly, can only clear Replacement before start */
2675 if (rdev->mddev->pers)
2678 clear_bit(Replacement, &rdev->flags);
2683 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684 return err ? err : len;
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2690 errors_show(struct md_rdev *rdev, char *page)
2692 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2699 unsigned long n = simple_strtoul(buf, &e, 10);
2700 if (*buf && (*e == 0 || *e == '\n')) {
2701 atomic_set(&rdev->corrected_errors, n);
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2710 slot_show(struct md_rdev *rdev, char *page)
2712 if (rdev->raid_disk < 0)
2713 return sprintf(page, "none\n");
2715 return sprintf(page, "%d\n", rdev->raid_disk);
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 int slot = simple_strtoul(buf, &e, 10);
2724 if (strncmp(buf, "none", 4)==0)
2726 else if (e==buf || (*e && *e!= '\n'))
2728 if (rdev->mddev->pers && slot == -1) {
2729 /* Setting 'slot' on an active array requires also
2730 * updating the 'rd%d' link, and communicating
2731 * with the personality with ->hot_*_disk.
2732 * For now we only support removing
2733 * failed/spare devices. This normally happens automatically,
2734 * but not when the metadata is externally managed.
2736 if (rdev->raid_disk == -1)
2738 /* personality does all needed checks */
2739 if (rdev->mddev->pers->hot_remove_disk == NULL)
2741 err = rdev->mddev->pers->
2742 hot_remove_disk(rdev->mddev, rdev);
2745 sysfs_unlink_rdev(rdev->mddev, rdev);
2746 rdev->raid_disk = -1;
2747 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748 md_wakeup_thread(rdev->mddev->thread);
2749 } else if (rdev->mddev->pers) {
2750 /* Activating a spare .. or possibly reactivating
2751 * if we ever get bitmaps working here.
2754 if (rdev->raid_disk != -1)
2757 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2760 if (rdev->mddev->pers->hot_add_disk == NULL)
2763 if (slot >= rdev->mddev->raid_disks &&
2764 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2767 rdev->raid_disk = slot;
2768 if (test_bit(In_sync, &rdev->flags))
2769 rdev->saved_raid_disk = slot;
2771 rdev->saved_raid_disk = -1;
2772 clear_bit(In_sync, &rdev->flags);
2773 err = rdev->mddev->pers->
2774 hot_add_disk(rdev->mddev, rdev);
2776 rdev->raid_disk = -1;
2779 sysfs_notify_dirent_safe(rdev->sysfs_state);
2780 if (sysfs_link_rdev(rdev->mddev, rdev))
2781 /* failure here is OK */;
2782 /* don't wakeup anyone, leave that to userspace. */
2784 if (slot >= rdev->mddev->raid_disks &&
2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2787 rdev->raid_disk = slot;
2788 /* assume it is working */
2789 clear_bit(Faulty, &rdev->flags);
2790 clear_bit(WriteMostly, &rdev->flags);
2791 set_bit(In_sync, &rdev->flags);
2792 sysfs_notify_dirent_safe(rdev->sysfs_state);
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2802 offset_show(struct md_rdev *rdev, char *page)
2804 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 unsigned long long offset = simple_strtoull(buf, &e, 10);
2812 if (e==buf || (*e && *e != '\n'))
2814 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2816 if (rdev->sectors && rdev->mddev->external)
2817 /* Must set offset before size, so overlap checks
2820 rdev->data_offset = offset;
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2830 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2835 /* check if two start/length pairs overlap */
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2845 unsigned long long blocks;
2848 if (strict_strtoull(buf, 10, &blocks) < 0)
2851 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852 return -EINVAL; /* sector conversion overflow */
2855 if (new != blocks * 2)
2856 return -EINVAL; /* unsigned long long to sector_t overflow */
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2865 struct mddev *my_mddev = rdev->mddev;
2866 sector_t oldsectors = rdev->sectors;
2869 if (strict_blocks_to_sectors(buf, §ors) < 0)
2871 if (my_mddev->pers && rdev->raid_disk >= 0) {
2872 if (my_mddev->persistent) {
2873 sectors = super_types[my_mddev->major_version].
2874 rdev_size_change(rdev, sectors);
2877 } else if (!sectors)
2878 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2881 if (sectors < my_mddev->dev_sectors)
2882 return -EINVAL; /* component must fit device */
2884 rdev->sectors = sectors;
2885 if (sectors > oldsectors && my_mddev->external) {
2886 /* need to check that all other rdevs with the same ->bdev
2887 * do not overlap. We need to unlock the mddev to avoid
2888 * a deadlock. We have already changed rdev->sectors, and if
2889 * we have to change it back, we will have the lock again.
2891 struct mddev *mddev;
2893 struct list_head *tmp;
2895 mddev_unlock(my_mddev);
2896 for_each_mddev(mddev, tmp) {
2897 struct md_rdev *rdev2;
2900 rdev_for_each(rdev2, mddev)
2901 if (rdev->bdev == rdev2->bdev &&
2903 overlaps(rdev->data_offset, rdev->sectors,
2909 mddev_unlock(mddev);
2915 mddev_lock(my_mddev);
2917 /* Someone else could have slipped in a size
2918 * change here, but doing so is just silly.
2919 * We put oldsectors back because we *know* it is
2920 * safe, and trust userspace not to race with
2923 rdev->sectors = oldsectors;
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2936 unsigned long long recovery_start = rdev->recovery_offset;
2938 if (test_bit(In_sync, &rdev->flags) ||
2939 recovery_start == MaxSector)
2940 return sprintf(page, "none\n");
2942 return sprintf(page, "%llu\n", recovery_start);
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2947 unsigned long long recovery_start;
2949 if (cmd_match(buf, "none"))
2950 recovery_start = MaxSector;
2951 else if (strict_strtoull(buf, 10, &recovery_start))
2954 if (rdev->mddev->pers &&
2955 rdev->raid_disk >= 0)
2958 rdev->recovery_offset = recovery_start;
2959 if (recovery_start == MaxSector)
2960 set_bit(In_sync, &rdev->flags);
2962 clear_bit(In_sync, &rdev->flags);
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2977 return badblocks_show(&rdev->badblocks, page, 0);
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2981 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982 /* Maybe that ack was all we needed */
2983 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984 wake_up(&rdev->blocked_wait);
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2993 return badblocks_show(&rdev->badblocks, page, 1);
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2997 return badblocks_store(&rdev->badblocks, page, len, 1);
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3002 static struct attribute *rdev_default_attrs[] = {
3008 &rdev_recovery_start.attr,
3009 &rdev_bad_blocks.attr,
3010 &rdev_unack_bad_blocks.attr,
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3016 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018 struct mddev *mddev = rdev->mddev;
3024 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3026 if (rdev->mddev == NULL)
3029 rv = entry->show(rdev, page);
3030 mddev_unlock(mddev);
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037 const char *page, size_t length)
3039 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3042 struct mddev *mddev = rdev->mddev;
3046 if (!capable(CAP_SYS_ADMIN))
3048 rv = mddev ? mddev_lock(mddev): -EBUSY;
3050 if (rdev->mddev == NULL)
3053 rv = entry->store(rdev, page, length);
3054 mddev_unlock(mddev);
3059 static void rdev_free(struct kobject *ko)
3061 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065 .show = rdev_attr_show,
3066 .store = rdev_attr_store,
3068 static struct kobj_type rdev_ktype = {
3069 .release = rdev_free,
3070 .sysfs_ops = &rdev_sysfs_ops,
3071 .default_attrs = rdev_default_attrs,
3074 int md_rdev_init(struct md_rdev *rdev)
3077 rdev->saved_raid_disk = -1;
3078 rdev->raid_disk = -1;
3080 rdev->data_offset = 0;
3081 rdev->sb_events = 0;
3082 rdev->last_read_error.tv_sec = 0;
3083 rdev->last_read_error.tv_nsec = 0;
3084 rdev->sb_loaded = 0;
3085 rdev->bb_page = NULL;
3086 atomic_set(&rdev->nr_pending, 0);
3087 atomic_set(&rdev->read_errors, 0);
3088 atomic_set(&rdev->corrected_errors, 0);
3090 INIT_LIST_HEAD(&rdev->same_set);
3091 init_waitqueue_head(&rdev->blocked_wait);
3093 /* Add space to store bad block list.
3094 * This reserves the space even on arrays where it cannot
3095 * be used - I wonder if that matters
3097 rdev->badblocks.count = 0;
3098 rdev->badblocks.shift = 0;
3099 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100 seqlock_init(&rdev->badblocks.lock);
3101 if (rdev->badblocks.page == NULL)
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3108 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3110 * mark the device faulty if:
3112 * - the device is nonexistent (zero size)
3113 * - the device has no valid superblock
3115 * a faulty rdev _never_ has rdev->sb set.
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3119 char b[BDEVNAME_SIZE];
3121 struct md_rdev *rdev;
3124 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3126 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127 return ERR_PTR(-ENOMEM);
3130 err = md_rdev_init(rdev);
3133 err = alloc_disk_sb(rdev);
3137 err = lock_rdev(rdev, newdev, super_format == -2);
3141 kobject_init(&rdev->kobj, &rdev_ktype);
3143 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3146 "md: %s has zero or unknown size, marking faulty!\n",
3147 bdevname(rdev->bdev,b));
3152 if (super_format >= 0) {
3153 err = super_types[super_format].
3154 load_super(rdev, NULL, super_minor);
3155 if (err == -EINVAL) {
3157 "md: %s does not have a valid v%d.%d "
3158 "superblock, not importing!\n",
3159 bdevname(rdev->bdev,b),
3160 super_format, super_minor);
3165 "md: could not read %s's sb, not importing!\n",
3166 bdevname(rdev->bdev,b));
3170 if (super_format == -1)
3171 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172 rdev->badblocks.shift = -1;
3180 kfree(rdev->badblocks.page);
3182 return ERR_PTR(err);
3186 * Check a full RAID array for plausibility
3190 static void analyze_sbs(struct mddev * mddev)
3193 struct md_rdev *rdev, *freshest, *tmp;
3194 char b[BDEVNAME_SIZE];
3197 rdev_for_each_safe(rdev, tmp, mddev)
3198 switch (super_types[mddev->major_version].
3199 load_super(rdev, freshest, mddev->minor_version)) {
3207 "md: fatal superblock inconsistency in %s"
3208 " -- removing from array\n",
3209 bdevname(rdev->bdev,b));
3210 kick_rdev_from_array(rdev);
3214 super_types[mddev->major_version].
3215 validate_super(mddev, freshest);
3218 rdev_for_each_safe(rdev, tmp, mddev) {
3219 if (mddev->max_disks &&
3220 (rdev->desc_nr >= mddev->max_disks ||
3221 i > mddev->max_disks)) {
3223 "md: %s: %s: only %d devices permitted\n",
3224 mdname(mddev), bdevname(rdev->bdev, b),
3226 kick_rdev_from_array(rdev);
3229 if (rdev != freshest)
3230 if (super_types[mddev->major_version].
3231 validate_super(mddev, rdev)) {
3232 printk(KERN_WARNING "md: kicking non-fresh %s"
3234 bdevname(rdev->bdev,b));
3235 kick_rdev_from_array(rdev);
3238 if (mddev->level == LEVEL_MULTIPATH) {
3239 rdev->desc_nr = i++;
3240 rdev->raid_disk = rdev->desc_nr;
3241 set_bit(In_sync, &rdev->flags);
3242 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243 rdev->raid_disk = -1;
3244 clear_bit(In_sync, &rdev->flags);
3249 /* Read a fixed-point number.
3250 * Numbers in sysfs attributes should be in "standard" units where
3251 * possible, so time should be in seconds.
3252 * However we internally use a a much smaller unit such as
3253 * milliseconds or jiffies.
3254 * This function takes a decimal number with a possible fractional
3255 * component, and produces an integer which is the result of
3256 * multiplying that number by 10^'scale'.
3257 * all without any floating-point arithmetic.
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3261 unsigned long result = 0;
3263 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3266 else if (decimals < scale) {
3269 result = result * 10 + value;
3281 while (decimals < scale) {
3290 static void md_safemode_timeout(unsigned long data);
3293 safe_delay_show(struct mddev *mddev, char *page)
3295 int msec = (mddev->safemode_delay*1000)/HZ;
3296 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3303 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3306 mddev->safemode_delay = 0;
3308 unsigned long old_delay = mddev->safemode_delay;
3309 mddev->safemode_delay = (msec*HZ)/1000;
3310 if (mddev->safemode_delay == 0)
3311 mddev->safemode_delay = 1;
3312 if (mddev->safemode_delay < old_delay)
3313 md_safemode_timeout((unsigned long)mddev);
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3321 level_show(struct mddev *mddev, char *page)
3323 struct md_personality *p = mddev->pers;
3325 return sprintf(page, "%s\n", p->name);
3326 else if (mddev->clevel[0])
3327 return sprintf(page, "%s\n", mddev->clevel);
3328 else if (mddev->level != LEVEL_NONE)
3329 return sprintf(page, "%d\n", mddev->level);
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3339 struct md_personality *pers;
3342 struct md_rdev *rdev;
3344 if (mddev->pers == NULL) {
3347 if (len >= sizeof(mddev->clevel))
3349 strncpy(mddev->clevel, buf, len);
3350 if (mddev->clevel[len-1] == '\n')
3352 mddev->clevel[len] = 0;
3353 mddev->level = LEVEL_NONE;
3357 /* request to change the personality. Need to ensure:
3358 * - array is not engaged in resync/recovery/reshape
3359 * - old personality can be suspended
3360 * - new personality will access other array.
3363 if (mddev->sync_thread ||
3364 mddev->reshape_position != MaxSector ||
3365 mddev->sysfs_active)
3368 if (!mddev->pers->quiesce) {
3369 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370 mdname(mddev), mddev->pers->name);
3374 /* Now find the new personality */
3375 if (len == 0 || len >= sizeof(clevel))
3377 strncpy(clevel, buf, len);
3378 if (clevel[len-1] == '\n')
3381 if (strict_strtol(clevel, 10, &level))
3384 if (request_module("md-%s", clevel) != 0)
3385 request_module("md-level-%s", clevel);
3386 spin_lock(&pers_lock);
3387 pers = find_pers(level, clevel);
3388 if (!pers || !try_module_get(pers->owner)) {
3389 spin_unlock(&pers_lock);
3390 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3393 spin_unlock(&pers_lock);
3395 if (pers == mddev->pers) {
3396 /* Nothing to do! */
3397 module_put(pers->owner);
3400 if (!pers->takeover) {
3401 module_put(pers->owner);
3402 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403 mdname(mddev), clevel);
3407 rdev_for_each(rdev, mddev)
3408 rdev->new_raid_disk = rdev->raid_disk;
3410 /* ->takeover must set new_* and/or delta_disks
3411 * if it succeeds, and may set them when it fails.
3413 priv = pers->takeover(mddev);
3415 mddev->new_level = mddev->level;
3416 mddev->new_layout = mddev->layout;
3417 mddev->new_chunk_sectors = mddev->chunk_sectors;
3418 mddev->raid_disks -= mddev->delta_disks;
3419 mddev->delta_disks = 0;
3420 module_put(pers->owner);
3421 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422 mdname(mddev), clevel);
3423 return PTR_ERR(priv);
3426 /* Looks like we have a winner */
3427 mddev_suspend(mddev);
3428 mddev->pers->stop(mddev);
3430 if (mddev->pers->sync_request == NULL &&
3431 pers->sync_request != NULL) {
3432 /* need to add the md_redundancy_group */
3433 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3435 "md: cannot register extra attributes for %s\n",
3437 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3439 if (mddev->pers->sync_request != NULL &&
3440 pers->sync_request == NULL) {
3441 /* need to remove the md_redundancy_group */
3442 if (mddev->to_remove == NULL)
3443 mddev->to_remove = &md_redundancy_group;
3446 if (mddev->pers->sync_request == NULL &&
3448 /* We are converting from a no-redundancy array
3449 * to a redundancy array and metadata is managed
3450 * externally so we need to be sure that writes
3451 * won't block due to a need to transition
3453 * until external management is started.
3456 mddev->safemode_delay = 0;
3457 mddev->safemode = 0;
3460 rdev_for_each(rdev, mddev) {
3461 if (rdev->raid_disk < 0)
3463 if (rdev->new_raid_disk >= mddev->raid_disks)
3464 rdev->new_raid_disk = -1;
3465 if (rdev->new_raid_disk == rdev->raid_disk)
3467 sysfs_unlink_rdev(mddev, rdev);
3469 rdev_for_each(rdev, mddev) {
3470 if (rdev->raid_disk < 0)
3472 if (rdev->new_raid_disk == rdev->raid_disk)
3474 rdev->raid_disk = rdev->new_raid_disk;
3475 if (rdev->raid_disk < 0)
3476 clear_bit(In_sync, &rdev->flags);
3478 if (sysfs_link_rdev(mddev, rdev))
3479 printk(KERN_WARNING "md: cannot register rd%d"
3480 " for %s after level change\n",
3481 rdev->raid_disk, mdname(mddev));
3485 module_put(mddev->pers->owner);
3487 mddev->private = priv;
3488 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489 mddev->level = mddev->new_level;
3490 mddev->layout = mddev->new_layout;
3491 mddev->chunk_sectors = mddev->new_chunk_sectors;
3492 mddev->delta_disks = 0;
3493 mddev->degraded = 0;
3494 if (mddev->pers->sync_request == NULL) {
3495 /* this is now an array without redundancy, so
3496 * it must always be in_sync
3499 del_timer_sync(&mddev->safemode_timer);
3502 mddev_resume(mddev);
3503 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 md_wakeup_thread(mddev->thread);
3506 sysfs_notify(&mddev->kobj, NULL, "level");
3507 md_new_event(mddev);
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3516 layout_show(struct mddev *mddev, char *page)
3518 /* just a number, not meaningful for all levels */
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->layout != mddev->new_layout)
3521 return sprintf(page, "%d (%d)\n",
3522 mddev->new_layout, mddev->layout);
3523 return sprintf(page, "%d\n", mddev->layout);
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3530 unsigned long n = simple_strtoul(buf, &e, 10);
3532 if (!*buf || (*e && *e != '\n'))
3537 if (mddev->pers->check_reshape == NULL)
3539 mddev->new_layout = n;
3540 err = mddev->pers->check_reshape(mddev);
3542 mddev->new_layout = mddev->layout;
3546 mddev->new_layout = n;
3547 if (mddev->reshape_position == MaxSector)
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3557 raid_disks_show(struct mddev *mddev, char *page)
3559 if (mddev->raid_disks == 0)
3561 if (mddev->reshape_position != MaxSector &&
3562 mddev->delta_disks != 0)
3563 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564 mddev->raid_disks - mddev->delta_disks);
3565 return sprintf(page, "%d\n", mddev->raid_disks);
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3575 unsigned long n = simple_strtoul(buf, &e, 10);
3577 if (!*buf || (*e && *e != '\n'))
3581 rv = update_raid_disks(mddev, n);
3582 else if (mddev->reshape_position != MaxSector) {
3583 int olddisks = mddev->raid_disks - mddev->delta_disks;
3584 mddev->delta_disks = n - olddisks;
3585 mddev->raid_disks = n;
3587 mddev->raid_disks = n;
3588 return rv ? rv : len;
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3594 chunk_size_show(struct mddev *mddev, char *page)
3596 if (mddev->reshape_position != MaxSector &&
3597 mddev->chunk_sectors != mddev->new_chunk_sectors)
3598 return sprintf(page, "%d (%d)\n",
3599 mddev->new_chunk_sectors << 9,
3600 mddev->chunk_sectors << 9);
3601 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3608 unsigned long n = simple_strtoul(buf, &e, 10);
3610 if (!*buf || (*e && *e != '\n'))
3615 if (mddev->pers->check_reshape == NULL)
3617 mddev->new_chunk_sectors = n >> 9;
3618 err = mddev->pers->check_reshape(mddev);
3620 mddev->new_chunk_sectors = mddev->chunk_sectors;
3624 mddev->new_chunk_sectors = n >> 9;
3625 if (mddev->reshape_position == MaxSector)
3626 mddev->chunk_sectors = n >> 9;
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3634 resync_start_show(struct mddev *mddev, char *page)
3636 if (mddev->recovery_cp == MaxSector)
3637 return sprintf(page, "none\n");
3638 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3645 unsigned long long n = simple_strtoull(buf, &e, 10);
3647 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3649 if (cmd_match(buf, "none"))
3651 else if (!*buf || (*e && *e != '\n'))
3654 mddev->recovery_cp = n;
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3661 * The array state can be:
3664 * No devices, no size, no level
3665 * Equivalent to STOP_ARRAY ioctl
3667 * May have some settings, but array is not active
3668 * all IO results in error
3669 * When written, doesn't tear down array, but just stops it
3670 * suspended (not supported yet)
3671 * All IO requests will block. The array can be reconfigured.
3672 * Writing this, if accepted, will block until array is quiescent
3674 * no resync can happen. no superblocks get written.
3675 * write requests fail
3677 * like readonly, but behaves like 'clean' on a write request.
3679 * clean - no pending writes, but otherwise active.
3680 * When written to inactive array, starts without resync
3681 * If a write request arrives then
3682 * if metadata is known, mark 'dirty' and switch to 'active'.
3683 * if not known, block and switch to write-pending
3684 * If written to an active array that has pending writes, then fails.
3686 * fully active: IO and resync can be happening.
3687 * When written to inactive array, starts with resync
3690 * clean, but writes are blocked waiting for 'active' to be written.
3693 * like active, but no writes have been seen for a while (100msec).
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697 write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700 "write-pending", "active-idle", NULL };
3702 static int match_word(const char *word, char **list)
3705 for (n=0; list[n]; n++)
3706 if (cmd_match(word, list[n]))
3712 array_state_show(struct mddev *mddev, char *page)
3714 enum array_state st = inactive;
3727 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3729 else if (mddev->safemode)
3735 if (list_empty(&mddev->disks) &&
3736 mddev->raid_disks == 0 &&
3737 mddev->dev_sectors == 0)
3742 return sprintf(page, "%s\n", array_states[st]);
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3754 enum array_state st = match_word(buf, array_states);
3759 /* stopping an active array */
3760 if (atomic_read(&mddev->openers) > 0)
3762 err = do_md_stop(mddev, 0, 0);
3765 /* stopping an active array */
3767 if (atomic_read(&mddev->openers) > 0)
3769 err = do_md_stop(mddev, 2, 0);
3771 err = 0; /* already inactive */
3774 break; /* not supported yet */
3777 err = md_set_readonly(mddev, 0);
3780 set_disk_ro(mddev->gendisk, 1);
3781 err = do_md_run(mddev);
3787 err = md_set_readonly(mddev, 0);
3788 else if (mddev->ro == 1)
3789 err = restart_array(mddev);
3792 set_disk_ro(mddev->gendisk, 0);
3796 err = do_md_run(mddev);
3801 restart_array(mddev);
3802 spin_lock_irq(&mddev->write_lock);
3803 if (atomic_read(&mddev->writes_pending) == 0) {
3804 if (mddev->in_sync == 0) {
3806 if (mddev->safemode == 1)
3807 mddev->safemode = 0;
3808 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3813 spin_unlock_irq(&mddev->write_lock);
3819 restart_array(mddev);
3820 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 wake_up(&mddev->sb_wait);
3825 set_disk_ro(mddev->gendisk, 0);
3826 err = do_md_run(mddev);
3831 /* these cannot be set */
3837 if (mddev->hold_active == UNTIL_IOCTL)
3838 mddev->hold_active = 0;
3839 sysfs_notify_dirent_safe(mddev->sysfs_state);
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848 return sprintf(page, "%d\n",
3849 atomic_read(&mddev->max_corr_read_errors));
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3856 unsigned long n = simple_strtoul(buf, &e, 10);
3858 if (*buf && (*e == 0 || *e == '\n')) {
3859 atomic_set(&mddev->max_corr_read_errors, n);
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867 max_corrected_read_errors_store);
3870 null_show(struct mddev *mddev, char *page)
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3878 /* buf must be %d:%d\n? giving major and minor numbers */
3879 /* The new device is added to the array.
3880 * If the array has a persistent superblock, we read the
3881 * superblock to initialise info and check validity.
3882 * Otherwise, only checking done is that in bind_rdev_to_array,
3883 * which mainly checks size.
3886 int major = simple_strtoul(buf, &e, 10);
3889 struct md_rdev *rdev;
3892 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3894 minor = simple_strtoul(e+1, &e, 10);
3895 if (*e && *e != '\n')
3897 dev = MKDEV(major, minor);
3898 if (major != MAJOR(dev) ||
3899 minor != MINOR(dev))
3903 if (mddev->persistent) {
3904 rdev = md_import_device(dev, mddev->major_version,
3905 mddev->minor_version);
3906 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907 struct md_rdev *rdev0
3908 = list_entry(mddev->disks.next,
3909 struct md_rdev, same_set);
3910 err = super_types[mddev->major_version]
3911 .load_super(rdev, rdev0, mddev->minor_version);
3915 } else if (mddev->external)
3916 rdev = md_import_device(dev, -2, -1);
3918 rdev = md_import_device(dev, -1, -1);
3921 return PTR_ERR(rdev);
3922 err = bind_rdev_to_array(rdev, mddev);
3926 return err ? err : len;
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3936 unsigned long chunk, end_chunk;
3940 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3942 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943 if (buf == end) break;
3944 if (*end == '-') { /* range */
3946 end_chunk = simple_strtoul(buf, &end, 0);
3947 if (buf == end) break;
3949 if (*end && !isspace(*end)) break;
3950 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951 buf = skip_spaces(end);
3953 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3962 size_show(struct mddev *mddev, char *page)
3964 return sprintf(page, "%llu\n",
3965 (unsigned long long)mddev->dev_sectors / 2);
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3973 /* If array is inactive, we can reduce the component size, but
3974 * not increase it (except from 0).
3975 * If array is active, we can try an on-line resize
3978 int err = strict_blocks_to_sectors(buf, §ors);
3983 err = update_size(mddev, sectors);
3984 md_update_sb(mddev, 1);
3986 if (mddev->dev_sectors == 0 ||
3987 mddev->dev_sectors > sectors)
3988 mddev->dev_sectors = sectors;
3992 return err ? err : len;
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4001 * 'none' for arrays with no metadata (good luck...)
4002 * 'external' for arrays with externally managed metadata,
4003 * or N.M for internally known formats
4006 metadata_show(struct mddev *mddev, char *page)
4008 if (mddev->persistent)
4009 return sprintf(page, "%d.%d\n",
4010 mddev->major_version, mddev->minor_version);
4011 else if (mddev->external)
4012 return sprintf(page, "external:%s\n", mddev->metadata_type);
4014 return sprintf(page, "none\n");
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4022 /* Changing the details of 'external' metadata is
4023 * always permitted. Otherwise there must be
4024 * no devices attached to the array.
4026 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4028 else if (!list_empty(&mddev->disks))
4031 if (cmd_match(buf, "none")) {
4032 mddev->persistent = 0;
4033 mddev->external = 0;
4034 mddev->major_version = 0;
4035 mddev->minor_version = 90;
4038 if (strncmp(buf, "external:", 9) == 0) {
4039 size_t namelen = len-9;
4040 if (namelen >= sizeof(mddev->metadata_type))
4041 namelen = sizeof(mddev->metadata_type)-1;
4042 strncpy(mddev->metadata_type, buf+9, namelen);
4043 mddev->metadata_type[namelen] = 0;
4044 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045 mddev->metadata_type[--namelen] = 0;
4046 mddev->persistent = 0;
4047 mddev->external = 1;
4048 mddev->major_version = 0;
4049 mddev->minor_version = 90;
4052 major = simple_strtoul(buf, &e, 10);
4053 if (e==buf || *e != '.')
4056 minor = simple_strtoul(buf, &e, 10);
4057 if (e==buf || (*e && *e != '\n') )
4059 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4061 mddev->major_version = major;
4062 mddev->minor_version = minor;
4063 mddev->persistent = 1;
4064 mddev->external = 0;
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4072 action_show(struct mddev *mddev, char *page)
4074 char *type = "idle";
4075 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4077 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4081 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4084 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4088 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4091 return sprintf(page, "%s\n", type);
4094 static void reap_sync_thread(struct mddev *mddev);
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4099 if (!mddev->pers || !mddev->pers->sync_request)
4102 if (cmd_match(page, "frozen"))
4103 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4105 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4107 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108 if (mddev->sync_thread) {
4109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110 reap_sync_thread(mddev);
4112 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4115 else if (cmd_match(page, "resync"))
4116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117 else if (cmd_match(page, "recover")) {
4118 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120 } else if (cmd_match(page, "reshape")) {
4122 if (mddev->pers->start_reshape == NULL)
4124 err = mddev->pers->start_reshape(mddev);
4127 sysfs_notify(&mddev->kobj, NULL, "degraded");
4129 if (cmd_match(page, "check"))
4130 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131 else if (!cmd_match(page, "repair"))
4133 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137 md_wakeup_thread(mddev->thread);
4138 sysfs_notify_dirent_safe(mddev->sysfs_action);
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4145 return sprintf(page, "%llu\n",
4146 (unsigned long long) mddev->resync_mismatches);
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4156 sync_min_show(struct mddev *mddev, char *page)
4158 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159 mddev->sync_speed_min ? "local": "system");
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4167 if (strncmp(buf, "system", 6)==0) {
4168 mddev->sync_speed_min = 0;
4171 min = simple_strtoul(buf, &e, 10);
4172 if (buf == e || (*e && *e != '\n') || min <= 0)
4174 mddev->sync_speed_min = min;
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4182 sync_max_show(struct mddev *mddev, char *page)
4184 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185 mddev->sync_speed_max ? "local": "system");
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4193 if (strncmp(buf, "system", 6)==0) {
4194 mddev->sync_speed_max = 0;
4197 max = simple_strtoul(buf, &e, 10);
4198 if (buf == e || (*e && *e != '\n') || max <= 0)
4200 mddev->sync_speed_max = max;
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4208 degraded_show(struct mddev *mddev, char *page)
4210 return sprintf(page, "%d\n", mddev->degraded);
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4217 return sprintf(page, "%d\n", mddev->parallel_resync);
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4225 if (strict_strtol(buf, 10, &n))
4228 if (n != 0 && n != 1)
4231 mddev->parallel_resync = n;
4233 if (mddev->sync_thread)
4234 wake_up(&resync_wait);
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242 sync_force_parallel_show, sync_force_parallel_store);
4245 sync_speed_show(struct mddev *mddev, char *page)
4247 unsigned long resync, dt, db;
4248 if (mddev->curr_resync == 0)
4249 return sprintf(page, "none\n");
4250 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251 dt = (jiffies - mddev->resync_mark) / HZ;
4253 db = resync - mddev->resync_mark_cnt;
4254 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4260 sync_completed_show(struct mddev *mddev, char *page)
4262 unsigned long long max_sectors, resync;
4264 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265 return sprintf(page, "none\n");
4267 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268 max_sectors = mddev->resync_max_sectors;
4270 max_sectors = mddev->dev_sectors;
4272 resync = mddev->curr_resync_completed;
4273 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4279 min_sync_show(struct mddev *mddev, char *page)
4281 return sprintf(page, "%llu\n",
4282 (unsigned long long)mddev->resync_min);
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4287 unsigned long long min;
4288 if (strict_strtoull(buf, 10, &min))
4290 if (min > mddev->resync_max)
4292 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4295 /* Must be a multiple of chunk_size */
4296 if (mddev->chunk_sectors) {
4297 sector_t temp = min;
4298 if (sector_div(temp, mddev->chunk_sectors))
4301 mddev->resync_min = min;
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4310 max_sync_show(struct mddev *mddev, char *page)
4312 if (mddev->resync_max == MaxSector)
4313 return sprintf(page, "max\n");
4315 return sprintf(page, "%llu\n",
4316 (unsigned long long)mddev->resync_max);
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4321 if (strncmp(buf, "max", 3) == 0)
4322 mddev->resync_max = MaxSector;
4324 unsigned long long max;
4325 if (strict_strtoull(buf, 10, &max))
4327 if (max < mddev->resync_min)
4329 if (max < mddev->resync_max &&
4331 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334 /* Must be a multiple of chunk_size */
4335 if (mddev->chunk_sectors) {
4336 sector_t temp = max;
4337 if (sector_div(temp, mddev->chunk_sectors))
4340 mddev->resync_max = max;
4342 wake_up(&mddev->recovery_wait);
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4350 suspend_lo_show(struct mddev *mddev, char *page)
4352 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4359 unsigned long long new = simple_strtoull(buf, &e, 10);
4360 unsigned long long old = mddev->suspend_lo;
4362 if (mddev->pers == NULL ||
4363 mddev->pers->quiesce == NULL)
4365 if (buf == e || (*e && *e != '\n'))
4368 mddev->suspend_lo = new;
4370 /* Shrinking suspended region */
4371 mddev->pers->quiesce(mddev, 2);
4373 /* Expanding suspended region - need to wait */
4374 mddev->pers->quiesce(mddev, 1);
4375 mddev->pers->quiesce(mddev, 0);
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4384 suspend_hi_show(struct mddev *mddev, char *page)
4386 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4393 unsigned long long new = simple_strtoull(buf, &e, 10);
4394 unsigned long long old = mddev->suspend_hi;
4396 if (mddev->pers == NULL ||
4397 mddev->pers->quiesce == NULL)
4399 if (buf == e || (*e && *e != '\n'))
4402 mddev->suspend_hi = new;
4404 /* Shrinking suspended region */
4405 mddev->pers->quiesce(mddev, 2);
4407 /* Expanding suspended region - need to wait */
4408 mddev->pers->quiesce(mddev, 1);
4409 mddev->pers->quiesce(mddev, 0);
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4417 reshape_position_show(struct mddev *mddev, char *page)
4419 if (mddev->reshape_position != MaxSector)
4420 return sprintf(page, "%llu\n",
4421 (unsigned long long)mddev->reshape_position);
4422 strcpy(page, "none\n");
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4430 unsigned long long new = simple_strtoull(buf, &e, 10);
4433 if (buf == e || (*e && *e != '\n'))
4435 mddev->reshape_position = new;
4436 mddev->delta_disks = 0;
4437 mddev->new_level = mddev->level;
4438 mddev->new_layout = mddev->layout;
4439 mddev->new_chunk_sectors = mddev->chunk_sectors;
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445 reshape_position_store);
4448 array_size_show(struct mddev *mddev, char *page)
4450 if (mddev->external_size)
4451 return sprintf(page, "%llu\n",
4452 (unsigned long long)mddev->array_sectors/2);
4454 return sprintf(page, "default\n");
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4462 if (strncmp(buf, "default", 7) == 0) {
4464 sectors = mddev->pers->size(mddev, 0, 0);
4466 sectors = mddev->array_sectors;
4468 mddev->external_size = 0;
4470 if (strict_blocks_to_sectors(buf, §ors) < 0)
4472 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4475 mddev->external_size = 1;
4478 mddev->array_sectors = sectors;
4480 set_capacity(mddev->gendisk, mddev->array_sectors);
4481 revalidate_disk(mddev->gendisk);
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4490 static struct attribute *md_default_attrs[] = {
4493 &md_raid_disks.attr,
4494 &md_chunk_size.attr,
4496 &md_resync_start.attr,
4498 &md_new_device.attr,
4499 &md_safe_delay.attr,
4500 &md_array_state.attr,
4501 &md_reshape_position.attr,
4502 &md_array_size.attr,
4503 &max_corr_read_errors.attr,
4507 static struct attribute *md_redundancy_attrs[] = {
4509 &md_mismatches.attr,
4512 &md_sync_speed.attr,
4513 &md_sync_force_parallel.attr,
4514 &md_sync_completed.attr,
4517 &md_suspend_lo.attr,
4518 &md_suspend_hi.attr,
4523 static struct attribute_group md_redundancy_group = {
4525 .attrs = md_redundancy_attrs,
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4532 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4538 spin_lock(&all_mddevs_lock);
4539 if (list_empty(&mddev->all_mddevs)) {
4540 spin_unlock(&all_mddevs_lock);
4544 spin_unlock(&all_mddevs_lock);
4546 rv = mddev_lock(mddev);
4548 rv = entry->show(mddev, page);
4549 mddev_unlock(mddev);
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557 const char *page, size_t length)
4559 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4565 if (!capable(CAP_SYS_ADMIN))
4567 spin_lock(&all_mddevs_lock);
4568 if (list_empty(&mddev->all_mddevs)) {
4569 spin_unlock(&all_mddevs_lock);
4573 spin_unlock(&all_mddevs_lock);
4574 rv = mddev_lock(mddev);
4576 rv = entry->store(mddev, page, length);
4577 mddev_unlock(mddev);
4583 static void md_free(struct kobject *ko)
4585 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4587 if (mddev->sysfs_state)
4588 sysfs_put(mddev->sysfs_state);
4590 if (mddev->gendisk) {
4591 del_gendisk(mddev->gendisk);
4592 put_disk(mddev->gendisk);
4595 blk_cleanup_queue(mddev->queue);
4600 static const struct sysfs_ops md_sysfs_ops = {
4601 .show = md_attr_show,
4602 .store = md_attr_store,
4604 static struct kobj_type md_ktype = {
4606 .sysfs_ops = &md_sysfs_ops,
4607 .default_attrs = md_default_attrs,
4612 static void mddev_delayed_delete(struct work_struct *ws)
4614 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4616 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617 kobject_del(&mddev->kobj);
4618 kobject_put(&mddev->kobj);
4621 static int md_alloc(dev_t dev, char *name)
4623 static DEFINE_MUTEX(disks_mutex);
4624 struct mddev *mddev = mddev_find(dev);
4625 struct gendisk *disk;
4634 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635 shift = partitioned ? MdpMinorShift : 0;
4636 unit = MINOR(mddev->unit) >> shift;
4638 /* wait for any previous instance of this device to be
4639 * completely removed (mddev_delayed_delete).
4641 flush_workqueue(md_misc_wq);
4643 mutex_lock(&disks_mutex);
4649 /* Need to ensure that 'name' is not a duplicate.
4651 struct mddev *mddev2;
4652 spin_lock(&all_mddevs_lock);
4654 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655 if (mddev2->gendisk &&
4656 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657 spin_unlock(&all_mddevs_lock);
4660 spin_unlock(&all_mddevs_lock);
4664 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4667 mddev->queue->queuedata = mddev;
4669 blk_queue_make_request(mddev->queue, md_make_request);
4670 blk_set_stacking_limits(&mddev->queue->limits);
4672 disk = alloc_disk(1 << shift);
4674 blk_cleanup_queue(mddev->queue);
4675 mddev->queue = NULL;
4678 disk->major = MAJOR(mddev->unit);
4679 disk->first_minor = unit << shift;
4681 strcpy(disk->disk_name, name);
4682 else if (partitioned)
4683 sprintf(disk->disk_name, "md_d%d", unit);
4685 sprintf(disk->disk_name, "md%d", unit);
4686 disk->fops = &md_fops;
4687 disk->private_data = mddev;
4688 disk->queue = mddev->queue;
4689 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4690 /* Allow extended partitions. This makes the
4691 * 'mdp' device redundant, but we can't really
4694 disk->flags |= GENHD_FL_EXT_DEVT;
4695 mddev->gendisk = disk;
4696 /* As soon as we call add_disk(), another thread could get
4697 * through to md_open, so make sure it doesn't get too far
4699 mutex_lock(&mddev->open_mutex);
4702 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4703 &disk_to_dev(disk)->kobj, "%s", "md");
4705 /* This isn't possible, but as kobject_init_and_add is marked
4706 * __must_check, we must do something with the result
4708 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4712 if (mddev->kobj.sd &&
4713 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4714 printk(KERN_DEBUG "pointless warning\n");
4715 mutex_unlock(&mddev->open_mutex);
4717 mutex_unlock(&disks_mutex);
4718 if (!error && mddev->kobj.sd) {
4719 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4720 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4726 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4728 md_alloc(dev, NULL);
4732 static int add_named_array(const char *val, struct kernel_param *kp)
4734 /* val must be "md_*" where * is not all digits.
4735 * We allocate an array with a large free minor number, and
4736 * set the name to val. val must not already be an active name.
4738 int len = strlen(val);
4739 char buf[DISK_NAME_LEN];
4741 while (len && val[len-1] == '\n')
4743 if (len >= DISK_NAME_LEN)
4745 strlcpy(buf, val, len+1);
4746 if (strncmp(buf, "md_", 3) != 0)
4748 return md_alloc(0, buf);
4751 static void md_safemode_timeout(unsigned long data)
4753 struct mddev *mddev = (struct mddev *) data;
4755 if (!atomic_read(&mddev->writes_pending)) {
4756 mddev->safemode = 1;
4757 if (mddev->external)
4758 sysfs_notify_dirent_safe(mddev->sysfs_state);
4760 md_wakeup_thread(mddev->thread);
4763 static int start_dirty_degraded;
4765 int md_run(struct mddev *mddev)
4768 struct md_rdev *rdev;
4769 struct md_personality *pers;
4771 if (list_empty(&mddev->disks))
4772 /* cannot run an array with no devices.. */
4777 /* Cannot run until previous stop completes properly */
4778 if (mddev->sysfs_active)
4782 * Analyze all RAID superblock(s)
4784 if (!mddev->raid_disks) {
4785 if (!mddev->persistent)
4790 if (mddev->level != LEVEL_NONE)
4791 request_module("md-level-%d", mddev->level);
4792 else if (mddev->clevel[0])
4793 request_module("md-%s", mddev->clevel);
4796 * Drop all container device buffers, from now on
4797 * the only valid external interface is through the md
4800 rdev_for_each(rdev, mddev) {
4801 if (test_bit(Faulty, &rdev->flags))
4803 sync_blockdev(rdev->bdev);
4804 invalidate_bdev(rdev->bdev);
4806 /* perform some consistency tests on the device.
4807 * We don't want the data to overlap the metadata,
4808 * Internal Bitmap issues have been handled elsewhere.
4810 if (rdev->meta_bdev) {
4811 /* Nothing to check */;
4812 } else if (rdev->data_offset < rdev->sb_start) {
4813 if (mddev->dev_sectors &&
4814 rdev->data_offset + mddev->dev_sectors
4816 printk("md: %s: data overlaps metadata\n",
4821 if (rdev->sb_start + rdev->sb_size/512
4822 > rdev->data_offset) {
4823 printk("md: %s: metadata overlaps data\n",
4828 sysfs_notify_dirent_safe(rdev->sysfs_state);
4831 if (mddev->bio_set == NULL)
4832 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4833 sizeof(struct mddev *));
4835 spin_lock(&pers_lock);
4836 pers = find_pers(mddev->level, mddev->clevel);
4837 if (!pers || !try_module_get(pers->owner)) {
4838 spin_unlock(&pers_lock);
4839 if (mddev->level != LEVEL_NONE)
4840 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4843 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4848 spin_unlock(&pers_lock);
4849 if (mddev->level != pers->level) {
4850 mddev->level = pers->level;
4851 mddev->new_level = pers->level;
4853 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4855 if (mddev->reshape_position != MaxSector &&
4856 pers->start_reshape == NULL) {
4857 /* This personality cannot handle reshaping... */
4859 module_put(pers->owner);
4863 if (pers->sync_request) {
4864 /* Warn if this is a potentially silly
4867 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4868 struct md_rdev *rdev2;
4871 rdev_for_each(rdev, mddev)
4872 rdev_for_each(rdev2, mddev) {
4874 rdev->bdev->bd_contains ==
4875 rdev2->bdev->bd_contains) {
4877 "%s: WARNING: %s appears to be"
4878 " on the same physical disk as"
4881 bdevname(rdev->bdev,b),
4882 bdevname(rdev2->bdev,b2));
4889 "True protection against single-disk"
4890 " failure might be compromised.\n");
4893 mddev->recovery = 0;
4894 /* may be over-ridden by personality */
4895 mddev->resync_max_sectors = mddev->dev_sectors;
4897 mddev->ok_start_degraded = start_dirty_degraded;
4899 if (start_readonly && mddev->ro == 0)
4900 mddev->ro = 2; /* read-only, but switch on first write */
4902 err = mddev->pers->run(mddev);
4904 printk(KERN_ERR "md: pers->run() failed ...\n");
4905 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4906 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4907 " but 'external_size' not in effect?\n", __func__);
4909 "md: invalid array_size %llu > default size %llu\n",
4910 (unsigned long long)mddev->array_sectors / 2,
4911 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4913 mddev->pers->stop(mddev);
4915 if (err == 0 && mddev->pers->sync_request) {
4916 err = bitmap_create(mddev);
4918 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4919 mdname(mddev), err);
4920 mddev->pers->stop(mddev);
4924 module_put(mddev->pers->owner);
4926 bitmap_destroy(mddev);
4929 if (mddev->pers->sync_request) {
4930 if (mddev->kobj.sd &&
4931 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4933 "md: cannot register extra attributes for %s\n",
4935 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4936 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4939 atomic_set(&mddev->writes_pending,0);
4940 atomic_set(&mddev->max_corr_read_errors,
4941 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4942 mddev->safemode = 0;
4943 mddev->safemode_timer.function = md_safemode_timeout;
4944 mddev->safemode_timer.data = (unsigned long) mddev;
4945 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4949 rdev_for_each(rdev, mddev)
4950 if (rdev->raid_disk >= 0)
4951 if (sysfs_link_rdev(mddev, rdev))
4952 /* failure here is OK */;
4954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4957 md_update_sb(mddev, 0);
4959 md_new_event(mddev);
4960 sysfs_notify_dirent_safe(mddev->sysfs_state);
4961 sysfs_notify_dirent_safe(mddev->sysfs_action);
4962 sysfs_notify(&mddev->kobj, NULL, "degraded");
4965 EXPORT_SYMBOL_GPL(md_run);
4967 static int do_md_run(struct mddev *mddev)
4971 err = md_run(mddev);
4974 err = bitmap_load(mddev);
4976 bitmap_destroy(mddev);
4980 md_wakeup_thread(mddev->thread);
4981 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4983 set_capacity(mddev->gendisk, mddev->array_sectors);
4984 revalidate_disk(mddev->gendisk);
4986 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4991 static int restart_array(struct mddev *mddev)
4993 struct gendisk *disk = mddev->gendisk;
4995 /* Complain if it has no devices */
4996 if (list_empty(&mddev->disks))
5002 mddev->safemode = 0;
5004 set_disk_ro(disk, 0);
5005 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5007 /* Kick recovery or resync if necessary */
5008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5009 md_wakeup_thread(mddev->thread);
5010 md_wakeup_thread(mddev->sync_thread);
5011 sysfs_notify_dirent_safe(mddev->sysfs_state);
5015 /* similar to deny_write_access, but accounts for our holding a reference
5016 * to the file ourselves */
5017 static int deny_bitmap_write_access(struct file * file)
5019 struct inode *inode = file->f_mapping->host;
5021 spin_lock(&inode->i_lock);
5022 if (atomic_read(&inode->i_writecount) > 1) {
5023 spin_unlock(&inode->i_lock);
5026 atomic_set(&inode->i_writecount, -1);
5027 spin_unlock(&inode->i_lock);
5032 void restore_bitmap_write_access(struct file *file)
5034 struct inode *inode = file->f_mapping->host;
5036 spin_lock(&inode->i_lock);
5037 atomic_set(&inode->i_writecount, 1);
5038 spin_unlock(&inode->i_lock);
5041 static void md_clean(struct mddev *mddev)
5043 mddev->array_sectors = 0;
5044 mddev->external_size = 0;
5045 mddev->dev_sectors = 0;
5046 mddev->raid_disks = 0;
5047 mddev->recovery_cp = 0;
5048 mddev->resync_min = 0;
5049 mddev->resync_max = MaxSector;
5050 mddev->reshape_position = MaxSector;
5051 mddev->external = 0;
5052 mddev->persistent = 0;
5053 mddev->level = LEVEL_NONE;
5054 mddev->clevel[0] = 0;
5057 mddev->metadata_type[0] = 0;
5058 mddev->chunk_sectors = 0;
5059 mddev->ctime = mddev->utime = 0;
5061 mddev->max_disks = 0;
5063 mddev->can_decrease_events = 0;
5064 mddev->delta_disks = 0;
5065 mddev->new_level = LEVEL_NONE;
5066 mddev->new_layout = 0;
5067 mddev->new_chunk_sectors = 0;
5068 mddev->curr_resync = 0;
5069 mddev->resync_mismatches = 0;
5070 mddev->suspend_lo = mddev->suspend_hi = 0;
5071 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5072 mddev->recovery = 0;
5075 mddev->degraded = 0;
5076 mddev->safemode = 0;
5077 mddev->merge_check_needed = 0;
5078 mddev->bitmap_info.offset = 0;
5079 mddev->bitmap_info.default_offset = 0;
5080 mddev->bitmap_info.chunksize = 0;
5081 mddev->bitmap_info.daemon_sleep = 0;
5082 mddev->bitmap_info.max_write_behind = 0;
5085 static void __md_stop_writes(struct mddev *mddev)
5087 if (mddev->sync_thread) {
5088 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5089 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5090 reap_sync_thread(mddev);
5093 del_timer_sync(&mddev->safemode_timer);
5095 bitmap_flush(mddev);
5096 md_super_wait(mddev);
5098 if (!mddev->in_sync || mddev->flags) {
5099 /* mark array as shutdown cleanly */
5101 md_update_sb(mddev, 1);
5105 void md_stop_writes(struct mddev *mddev)
5108 __md_stop_writes(mddev);
5109 mddev_unlock(mddev);
5111 EXPORT_SYMBOL_GPL(md_stop_writes);
5113 void md_stop(struct mddev *mddev)
5116 mddev->pers->stop(mddev);
5117 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5118 mddev->to_remove = &md_redundancy_group;
5119 module_put(mddev->pers->owner);
5121 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5123 EXPORT_SYMBOL_GPL(md_stop);
5125 static int md_set_readonly(struct mddev *mddev, int is_open)
5128 mutex_lock(&mddev->open_mutex);
5129 if (atomic_read(&mddev->openers) > is_open) {
5130 printk("md: %s still in use.\n",mdname(mddev));
5135 __md_stop_writes(mddev);
5141 set_disk_ro(mddev->gendisk, 1);
5142 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5143 sysfs_notify_dirent_safe(mddev->sysfs_state);
5147 mutex_unlock(&mddev->open_mutex);
5152 * 0 - completely stop and dis-assemble array
5153 * 2 - stop but do not disassemble array
5155 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5157 struct gendisk *disk = mddev->gendisk;
5158 struct md_rdev *rdev;
5160 mutex_lock(&mddev->open_mutex);
5161 if (atomic_read(&mddev->openers) > is_open ||
5162 mddev->sysfs_active) {
5163 printk("md: %s still in use.\n",mdname(mddev));
5164 mutex_unlock(&mddev->open_mutex);
5170 set_disk_ro(disk, 0);
5172 __md_stop_writes(mddev);
5174 mddev->queue->merge_bvec_fn = NULL;
5175 mddev->queue->backing_dev_info.congested_fn = NULL;
5177 /* tell userspace to handle 'inactive' */
5178 sysfs_notify_dirent_safe(mddev->sysfs_state);
5180 rdev_for_each(rdev, mddev)
5181 if (rdev->raid_disk >= 0)
5182 sysfs_unlink_rdev(mddev, rdev);
5184 set_capacity(disk, 0);
5185 mutex_unlock(&mddev->open_mutex);
5187 revalidate_disk(disk);
5192 mutex_unlock(&mddev->open_mutex);
5194 * Free resources if final stop
5197 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5199 bitmap_destroy(mddev);
5200 if (mddev->bitmap_info.file) {
5201 restore_bitmap_write_access(mddev->bitmap_info.file);
5202 fput(mddev->bitmap_info.file);
5203 mddev->bitmap_info.file = NULL;
5205 mddev->bitmap_info.offset = 0;
5207 export_array(mddev);
5210 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5211 if (mddev->hold_active == UNTIL_STOP)
5212 mddev->hold_active = 0;
5214 blk_integrity_unregister(disk);
5215 md_new_event(mddev);
5216 sysfs_notify_dirent_safe(mddev->sysfs_state);
5221 static void autorun_array(struct mddev *mddev)
5223 struct md_rdev *rdev;
5226 if (list_empty(&mddev->disks))
5229 printk(KERN_INFO "md: running: ");
5231 rdev_for_each(rdev, mddev) {
5232 char b[BDEVNAME_SIZE];
5233 printk("<%s>", bdevname(rdev->bdev,b));
5237 err = do_md_run(mddev);
5239 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5240 do_md_stop(mddev, 0, 0);
5245 * lets try to run arrays based on all disks that have arrived
5246 * until now. (those are in pending_raid_disks)
5248 * the method: pick the first pending disk, collect all disks with
5249 * the same UUID, remove all from the pending list and put them into
5250 * the 'same_array' list. Then order this list based on superblock
5251 * update time (freshest comes first), kick out 'old' disks and
5252 * compare superblocks. If everything's fine then run it.
5254 * If "unit" is allocated, then bump its reference count
5256 static void autorun_devices(int part)
5258 struct md_rdev *rdev0, *rdev, *tmp;
5259 struct mddev *mddev;
5260 char b[BDEVNAME_SIZE];
5262 printk(KERN_INFO "md: autorun ...\n");
5263 while (!list_empty(&pending_raid_disks)) {
5266 LIST_HEAD(candidates);
5267 rdev0 = list_entry(pending_raid_disks.next,
5268 struct md_rdev, same_set);
5270 printk(KERN_INFO "md: considering %s ...\n",
5271 bdevname(rdev0->bdev,b));
5272 INIT_LIST_HEAD(&candidates);
5273 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5274 if (super_90_load(rdev, rdev0, 0) >= 0) {
5275 printk(KERN_INFO "md: adding %s ...\n",
5276 bdevname(rdev->bdev,b));
5277 list_move(&rdev->same_set, &candidates);
5280 * now we have a set of devices, with all of them having
5281 * mostly sane superblocks. It's time to allocate the
5285 dev = MKDEV(mdp_major,
5286 rdev0->preferred_minor << MdpMinorShift);
5287 unit = MINOR(dev) >> MdpMinorShift;
5289 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5292 if (rdev0->preferred_minor != unit) {
5293 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5294 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5298 md_probe(dev, NULL, NULL);
5299 mddev = mddev_find(dev);
5300 if (!mddev || !mddev->gendisk) {
5304 "md: cannot allocate memory for md drive.\n");
5307 if (mddev_lock(mddev))
5308 printk(KERN_WARNING "md: %s locked, cannot run\n",
5310 else if (mddev->raid_disks || mddev->major_version
5311 || !list_empty(&mddev->disks)) {
5313 "md: %s already running, cannot run %s\n",
5314 mdname(mddev), bdevname(rdev0->bdev,b));
5315 mddev_unlock(mddev);
5317 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5318 mddev->persistent = 1;
5319 rdev_for_each_list(rdev, tmp, &candidates) {
5320 list_del_init(&rdev->same_set);
5321 if (bind_rdev_to_array(rdev, mddev))
5324 autorun_array(mddev);
5325 mddev_unlock(mddev);
5327 /* on success, candidates will be empty, on error
5330 rdev_for_each_list(rdev, tmp, &candidates) {
5331 list_del_init(&rdev->same_set);
5336 printk(KERN_INFO "md: ... autorun DONE.\n");
5338 #endif /* !MODULE */
5340 static int get_version(void __user * arg)
5344 ver.major = MD_MAJOR_VERSION;
5345 ver.minor = MD_MINOR_VERSION;
5346 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5348 if (copy_to_user(arg, &ver, sizeof(ver)))
5354 static int get_array_info(struct mddev * mddev, void __user * arg)
5356 mdu_array_info_t info;
5357 int nr,working,insync,failed,spare;
5358 struct md_rdev *rdev;
5360 nr=working=insync=failed=spare=0;
5361 rdev_for_each(rdev, mddev) {
5363 if (test_bit(Faulty, &rdev->flags))
5367 if (test_bit(In_sync, &rdev->flags))
5374 info.major_version = mddev->major_version;
5375 info.minor_version = mddev->minor_version;
5376 info.patch_version = MD_PATCHLEVEL_VERSION;
5377 info.ctime = mddev->ctime;
5378 info.level = mddev->level;
5379 info.size = mddev->dev_sectors / 2;
5380 if (info.size != mddev->dev_sectors / 2) /* overflow */
5383 info.raid_disks = mddev->raid_disks;
5384 info.md_minor = mddev->md_minor;
5385 info.not_persistent= !mddev->persistent;
5387 info.utime = mddev->utime;
5390 info.state = (1<<MD_SB_CLEAN);
5391 if (mddev->bitmap && mddev->bitmap_info.offset)
5392 info.state = (1<<MD_SB_BITMAP_PRESENT);
5393 info.active_disks = insync;
5394 info.working_disks = working;
5395 info.failed_disks = failed;
5396 info.spare_disks = spare;
5398 info.layout = mddev->layout;
5399 info.chunk_size = mddev->chunk_sectors << 9;
5401 if (copy_to_user(arg, &info, sizeof(info)))
5407 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5409 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5410 char *ptr, *buf = NULL;
5413 if (md_allow_write(mddev))
5414 file = kmalloc(sizeof(*file), GFP_NOIO);
5416 file = kmalloc(sizeof(*file), GFP_KERNEL);
5421 /* bitmap disabled, zero the first byte and copy out */
5422 if (!mddev->bitmap || !mddev->bitmap->file) {
5423 file->pathname[0] = '\0';
5427 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5431 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5435 strcpy(file->pathname, ptr);
5439 if (copy_to_user(arg, file, sizeof(*file)))
5447 static int get_disk_info(struct mddev * mddev, void __user * arg)
5449 mdu_disk_info_t info;
5450 struct md_rdev *rdev;
5452 if (copy_from_user(&info, arg, sizeof(info)))
5455 rdev = find_rdev_nr(mddev, info.number);
5457 info.major = MAJOR(rdev->bdev->bd_dev);
5458 info.minor = MINOR(rdev->bdev->bd_dev);
5459 info.raid_disk = rdev->raid_disk;
5461 if (test_bit(Faulty, &rdev->flags))
5462 info.state |= (1<<MD_DISK_FAULTY);
5463 else if (test_bit(In_sync, &rdev->flags)) {
5464 info.state |= (1<<MD_DISK_ACTIVE);
5465 info.state |= (1<<MD_DISK_SYNC);
5467 if (test_bit(WriteMostly, &rdev->flags))
5468 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5470 info.major = info.minor = 0;
5471 info.raid_disk = -1;
5472 info.state = (1<<MD_DISK_REMOVED);
5475 if (copy_to_user(arg, &info, sizeof(info)))
5481 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5483 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5484 struct md_rdev *rdev;
5485 dev_t dev = MKDEV(info->major,info->minor);
5487 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5490 if (!mddev->raid_disks) {
5492 /* expecting a device which has a superblock */
5493 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5496 "md: md_import_device returned %ld\n",
5498 return PTR_ERR(rdev);
5500 if (!list_empty(&mddev->disks)) {
5501 struct md_rdev *rdev0
5502 = list_entry(mddev->disks.next,
5503 struct md_rdev, same_set);
5504 err = super_types[mddev->major_version]
5505 .load_super(rdev, rdev0, mddev->minor_version);
5508 "md: %s has different UUID to %s\n",
5509 bdevname(rdev->bdev,b),
5510 bdevname(rdev0->bdev,b2));
5515 err = bind_rdev_to_array(rdev, mddev);
5522 * add_new_disk can be used once the array is assembled
5523 * to add "hot spares". They must already have a superblock
5528 if (!mddev->pers->hot_add_disk) {
5530 "%s: personality does not support diskops!\n",
5534 if (mddev->persistent)
5535 rdev = md_import_device(dev, mddev->major_version,
5536 mddev->minor_version);
5538 rdev = md_import_device(dev, -1, -1);
5541 "md: md_import_device returned %ld\n",
5543 return PTR_ERR(rdev);
5545 /* set saved_raid_disk if appropriate */
5546 if (!mddev->persistent) {
5547 if (info->state & (1<<MD_DISK_SYNC) &&
5548 info->raid_disk < mddev->raid_disks) {
5549 rdev->raid_disk = info->raid_disk;
5550 set_bit(In_sync, &rdev->flags);
5552 rdev->raid_disk = -1;
5554 super_types[mddev->major_version].
5555 validate_super(mddev, rdev);
5556 if ((info->state & (1<<MD_DISK_SYNC)) &&
5557 (!test_bit(In_sync, &rdev->flags) ||
5558 rdev->raid_disk != info->raid_disk)) {
5559 /* This was a hot-add request, but events doesn't
5560 * match, so reject it.
5566 if (test_bit(In_sync, &rdev->flags))
5567 rdev->saved_raid_disk = rdev->raid_disk;
5569 rdev->saved_raid_disk = -1;
5571 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5572 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5573 set_bit(WriteMostly, &rdev->flags);
5575 clear_bit(WriteMostly, &rdev->flags);
5577 rdev->raid_disk = -1;
5578 err = bind_rdev_to_array(rdev, mddev);
5579 if (!err && !mddev->pers->hot_remove_disk) {
5580 /* If there is hot_add_disk but no hot_remove_disk
5581 * then added disks for geometry changes,
5582 * and should be added immediately.
5584 super_types[mddev->major_version].
5585 validate_super(mddev, rdev);
5586 err = mddev->pers->hot_add_disk(mddev, rdev);
5588 unbind_rdev_from_array(rdev);
5593 sysfs_notify_dirent_safe(rdev->sysfs_state);
5595 md_update_sb(mddev, 1);
5596 if (mddev->degraded)
5597 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5598 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5600 md_new_event(mddev);
5601 md_wakeup_thread(mddev->thread);
5605 /* otherwise, add_new_disk is only allowed
5606 * for major_version==0 superblocks
5608 if (mddev->major_version != 0) {
5609 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5614 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5616 rdev = md_import_device(dev, -1, 0);
5619 "md: error, md_import_device() returned %ld\n",
5621 return PTR_ERR(rdev);
5623 rdev->desc_nr = info->number;
5624 if (info->raid_disk < mddev->raid_disks)
5625 rdev->raid_disk = info->raid_disk;
5627 rdev->raid_disk = -1;
5629 if (rdev->raid_disk < mddev->raid_disks)
5630 if (info->state & (1<<MD_DISK_SYNC))
5631 set_bit(In_sync, &rdev->flags);
5633 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5634 set_bit(WriteMostly, &rdev->flags);
5636 if (!mddev->persistent) {
5637 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5638 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5640 rdev->sb_start = calc_dev_sboffset(rdev);
5641 rdev->sectors = rdev->sb_start;
5643 err = bind_rdev_to_array(rdev, mddev);
5653 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5655 char b[BDEVNAME_SIZE];
5656 struct md_rdev *rdev;
5658 rdev = find_rdev(mddev, dev);
5662 if (rdev->raid_disk >= 0)
5665 kick_rdev_from_array(rdev);
5666 md_update_sb(mddev, 1);
5667 md_new_event(mddev);
5671 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5672 bdevname(rdev->bdev,b), mdname(mddev));
5676 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5678 char b[BDEVNAME_SIZE];
5680 struct md_rdev *rdev;
5685 if (mddev->major_version != 0) {
5686 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5687 " version-0 superblocks.\n",
5691 if (!mddev->pers->hot_add_disk) {
5693 "%s: personality does not support diskops!\n",
5698 rdev = md_import_device(dev, -1, 0);
5701 "md: error, md_import_device() returned %ld\n",
5706 if (mddev->persistent)
5707 rdev->sb_start = calc_dev_sboffset(rdev);
5709 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5711 rdev->sectors = rdev->sb_start;
5713 if (test_bit(Faulty, &rdev->flags)) {
5715 "md: can not hot-add faulty %s disk to %s!\n",
5716 bdevname(rdev->bdev,b), mdname(mddev));
5720 clear_bit(In_sync, &rdev->flags);
5722 rdev->saved_raid_disk = -1;
5723 err = bind_rdev_to_array(rdev, mddev);
5728 * The rest should better be atomic, we can have disk failures
5729 * noticed in interrupt contexts ...
5732 rdev->raid_disk = -1;
5734 md_update_sb(mddev, 1);
5737 * Kick recovery, maybe this spare has to be added to the
5738 * array immediately.
5740 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5741 md_wakeup_thread(mddev->thread);
5742 md_new_event(mddev);
5750 static int set_bitmap_file(struct mddev *mddev, int fd)
5755 if (!mddev->pers->quiesce)
5757 if (mddev->recovery || mddev->sync_thread)
5759 /* we should be able to change the bitmap.. */
5765 return -EEXIST; /* cannot add when bitmap is present */
5766 mddev->bitmap_info.file = fget(fd);
5768 if (mddev->bitmap_info.file == NULL) {
5769 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5774 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5776 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5778 fput(mddev->bitmap_info.file);
5779 mddev->bitmap_info.file = NULL;
5782 mddev->bitmap_info.offset = 0; /* file overrides offset */
5783 } else if (mddev->bitmap == NULL)
5784 return -ENOENT; /* cannot remove what isn't there */
5787 mddev->pers->quiesce(mddev, 1);
5789 err = bitmap_create(mddev);
5791 err = bitmap_load(mddev);
5793 if (fd < 0 || err) {
5794 bitmap_destroy(mddev);
5795 fd = -1; /* make sure to put the file */
5797 mddev->pers->quiesce(mddev, 0);
5800 if (mddev->bitmap_info.file) {
5801 restore_bitmap_write_access(mddev->bitmap_info.file);
5802 fput(mddev->bitmap_info.file);
5804 mddev->bitmap_info.file = NULL;
5811 * set_array_info is used two different ways
5812 * The original usage is when creating a new array.
5813 * In this usage, raid_disks is > 0 and it together with
5814 * level, size, not_persistent,layout,chunksize determine the
5815 * shape of the array.
5816 * This will always create an array with a type-0.90.0 superblock.
5817 * The newer usage is when assembling an array.
5818 * In this case raid_disks will be 0, and the major_version field is
5819 * use to determine which style super-blocks are to be found on the devices.
5820 * The minor and patch _version numbers are also kept incase the
5821 * super_block handler wishes to interpret them.
5823 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5826 if (info->raid_disks == 0) {
5827 /* just setting version number for superblock loading */
5828 if (info->major_version < 0 ||
5829 info->major_version >= ARRAY_SIZE(super_types) ||
5830 super_types[info->major_version].name == NULL) {
5831 /* maybe try to auto-load a module? */
5833 "md: superblock version %d not known\n",
5834 info->major_version);
5837 mddev->major_version = info->major_version;
5838 mddev->minor_version = info->minor_version;
5839 mddev->patch_version = info->patch_version;
5840 mddev->persistent = !info->not_persistent;
5841 /* ensure mddev_put doesn't delete this now that there
5842 * is some minimal configuration.
5844 mddev->ctime = get_seconds();
5847 mddev->major_version = MD_MAJOR_VERSION;
5848 mddev->minor_version = MD_MINOR_VERSION;
5849 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5850 mddev->ctime = get_seconds();
5852 mddev->level = info->level;
5853 mddev->clevel[0] = 0;
5854 mddev->dev_sectors = 2 * (sector_t)info->size;
5855 mddev->raid_disks = info->raid_disks;
5856 /* don't set md_minor, it is determined by which /dev/md* was
5859 if (info->state & (1<<MD_SB_CLEAN))
5860 mddev->recovery_cp = MaxSector;
5862 mddev->recovery_cp = 0;
5863 mddev->persistent = ! info->not_persistent;
5864 mddev->external = 0;
5866 mddev->layout = info->layout;
5867 mddev->chunk_sectors = info->chunk_size >> 9;
5869 mddev->max_disks = MD_SB_DISKS;
5871 if (mddev->persistent)
5873 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5875 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5876 mddev->bitmap_info.offset = 0;
5878 mddev->reshape_position = MaxSector;
5881 * Generate a 128 bit UUID
5883 get_random_bytes(mddev->uuid, 16);
5885 mddev->new_level = mddev->level;
5886 mddev->new_chunk_sectors = mddev->chunk_sectors;
5887 mddev->new_layout = mddev->layout;
5888 mddev->delta_disks = 0;
5893 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5895 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5897 if (mddev->external_size)
5900 mddev->array_sectors = array_sectors;
5902 EXPORT_SYMBOL(md_set_array_sectors);
5904 static int update_size(struct mddev *mddev, sector_t num_sectors)
5906 struct md_rdev *rdev;
5908 int fit = (num_sectors == 0);
5910 if (mddev->pers->resize == NULL)
5912 /* The "num_sectors" is the number of sectors of each device that
5913 * is used. This can only make sense for arrays with redundancy.
5914 * linear and raid0 always use whatever space is available. We can only
5915 * consider changing this number if no resync or reconstruction is
5916 * happening, and if the new size is acceptable. It must fit before the
5917 * sb_start or, if that is <data_offset, it must fit before the size
5918 * of each device. If num_sectors is zero, we find the largest size
5921 if (mddev->sync_thread)
5924 /* Sorry, cannot grow a bitmap yet, just remove it,
5928 rdev_for_each(rdev, mddev) {
5929 sector_t avail = rdev->sectors;
5931 if (fit && (num_sectors == 0 || num_sectors > avail))
5932 num_sectors = avail;
5933 if (avail < num_sectors)
5936 rv = mddev->pers->resize(mddev, num_sectors);
5938 revalidate_disk(mddev->gendisk);
5942 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5945 /* change the number of raid disks */
5946 if (mddev->pers->check_reshape == NULL)
5948 if (raid_disks <= 0 ||
5949 (mddev->max_disks && raid_disks >= mddev->max_disks))
5951 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5953 mddev->delta_disks = raid_disks - mddev->raid_disks;
5955 rv = mddev->pers->check_reshape(mddev);
5957 mddev->delta_disks = 0;
5963 * update_array_info is used to change the configuration of an
5965 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5966 * fields in the info are checked against the array.
5967 * Any differences that cannot be handled will cause an error.
5968 * Normally, only one change can be managed at a time.
5970 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5976 /* calculate expected state,ignoring low bits */
5977 if (mddev->bitmap && mddev->bitmap_info.offset)
5978 state |= (1 << MD_SB_BITMAP_PRESENT);
5980 if (mddev->major_version != info->major_version ||
5981 mddev->minor_version != info->minor_version ||
5982 /* mddev->patch_version != info->patch_version || */
5983 mddev->ctime != info->ctime ||
5984 mddev->level != info->level ||
5985 /* mddev->layout != info->layout || */
5986 !mddev->persistent != info->not_persistent||
5987 mddev->chunk_sectors != info->chunk_size >> 9 ||
5988 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5989 ((state^info->state) & 0xfffffe00)
5992 /* Check there is only one change */
5993 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5995 if (mddev->raid_disks != info->raid_disks)
5997 if (mddev->layout != info->layout)
5999 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6006 if (mddev->layout != info->layout) {
6008 * we don't need to do anything at the md level, the
6009 * personality will take care of it all.
6011 if (mddev->pers->check_reshape == NULL)
6014 mddev->new_layout = info->layout;
6015 rv = mddev->pers->check_reshape(mddev);
6017 mddev->new_layout = mddev->layout;
6021 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6022 rv = update_size(mddev, (sector_t)info->size * 2);
6024 if (mddev->raid_disks != info->raid_disks)
6025 rv = update_raid_disks(mddev, info->raid_disks);
6027 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6028 if (mddev->pers->quiesce == NULL)
6030 if (mddev->recovery || mddev->sync_thread)
6032 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6033 /* add the bitmap */
6036 if (mddev->bitmap_info.default_offset == 0)
6038 mddev->bitmap_info.offset =
6039 mddev->bitmap_info.default_offset;
6040 mddev->pers->quiesce(mddev, 1);
6041 rv = bitmap_create(mddev);
6043 rv = bitmap_load(mddev);
6045 bitmap_destroy(mddev);
6046 mddev->pers->quiesce(mddev, 0);
6048 /* remove the bitmap */
6051 if (mddev->bitmap->file)
6053 mddev->pers->quiesce(mddev, 1);
6054 bitmap_destroy(mddev);
6055 mddev->pers->quiesce(mddev, 0);
6056 mddev->bitmap_info.offset = 0;
6059 md_update_sb(mddev, 1);
6063 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6065 struct md_rdev *rdev;
6067 if (mddev->pers == NULL)
6070 rdev = find_rdev(mddev, dev);
6074 md_error(mddev, rdev);
6075 if (!test_bit(Faulty, &rdev->flags))
6081 * We have a problem here : there is no easy way to give a CHS
6082 * virtual geometry. We currently pretend that we have a 2 heads
6083 * 4 sectors (with a BIG number of cylinders...). This drives
6084 * dosfs just mad... ;-)
6086 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6088 struct mddev *mddev = bdev->bd_disk->private_data;
6092 geo->cylinders = mddev->array_sectors / 8;
6096 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6097 unsigned int cmd, unsigned long arg)
6100 void __user *argp = (void __user *)arg;
6101 struct mddev *mddev = NULL;
6106 case GET_ARRAY_INFO:
6110 if (!capable(CAP_SYS_ADMIN))
6115 * Commands dealing with the RAID driver but not any
6121 err = get_version(argp);
6124 case PRINT_RAID_DEBUG:
6132 autostart_arrays(arg);
6139 * Commands creating/starting a new array:
6142 mddev = bdev->bd_disk->private_data;
6149 err = mddev_lock(mddev);
6152 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6159 case SET_ARRAY_INFO:
6161 mdu_array_info_t info;
6163 memset(&info, 0, sizeof(info));
6164 else if (copy_from_user(&info, argp, sizeof(info))) {
6169 err = update_array_info(mddev, &info);
6171 printk(KERN_WARNING "md: couldn't update"
6172 " array info. %d\n", err);
6177 if (!list_empty(&mddev->disks)) {
6179 "md: array %s already has disks!\n",
6184 if (mddev->raid_disks) {
6186 "md: array %s already initialised!\n",
6191 err = set_array_info(mddev, &info);
6193 printk(KERN_WARNING "md: couldn't set"
6194 " array info. %d\n", err);
6204 * Commands querying/configuring an existing array:
6206 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6207 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6208 if ((!mddev->raid_disks && !mddev->external)
6209 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6210 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6211 && cmd != GET_BITMAP_FILE) {
6217 * Commands even a read-only array can execute:
6221 case GET_ARRAY_INFO:
6222 err = get_array_info(mddev, argp);
6225 case GET_BITMAP_FILE:
6226 err = get_bitmap_file(mddev, argp);
6230 err = get_disk_info(mddev, argp);
6233 case RESTART_ARRAY_RW:
6234 err = restart_array(mddev);
6238 err = do_md_stop(mddev, 0, 1);
6242 err = md_set_readonly(mddev, 1);
6246 if (get_user(ro, (int __user *)(arg))) {
6252 /* if the bdev is going readonly the value of mddev->ro
6253 * does not matter, no writes are coming
6258 /* are we are already prepared for writes? */
6262 /* transitioning to readauto need only happen for
6263 * arrays that call md_write_start
6266 err = restart_array(mddev);
6269 set_disk_ro(mddev->gendisk, 0);
6276 * The remaining ioctls are changing the state of the
6277 * superblock, so we do not allow them on read-only arrays.
6278 * However non-MD ioctls (e.g. get-size) will still come through
6279 * here and hit the 'default' below, so only disallow
6280 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6282 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6283 if (mddev->ro == 2) {
6285 sysfs_notify_dirent_safe(mddev->sysfs_state);
6286 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6287 md_wakeup_thread(mddev->thread);
6298 mdu_disk_info_t info;
6299 if (copy_from_user(&info, argp, sizeof(info)))
6302 err = add_new_disk(mddev, &info);
6306 case HOT_REMOVE_DISK:
6307 err = hot_remove_disk(mddev, new_decode_dev(arg));
6311 err = hot_add_disk(mddev, new_decode_dev(arg));
6314 case SET_DISK_FAULTY:
6315 err = set_disk_faulty(mddev, new_decode_dev(arg));
6319 err = do_md_run(mddev);
6322 case SET_BITMAP_FILE:
6323 err = set_bitmap_file(mddev, (int)arg);
6333 if (mddev->hold_active == UNTIL_IOCTL &&
6335 mddev->hold_active = 0;
6336 mddev_unlock(mddev);
6345 #ifdef CONFIG_COMPAT
6346 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6347 unsigned int cmd, unsigned long arg)
6350 case HOT_REMOVE_DISK:
6352 case SET_DISK_FAULTY:
6353 case SET_BITMAP_FILE:
6354 /* These take in integer arg, do not convert */
6357 arg = (unsigned long)compat_ptr(arg);
6361 return md_ioctl(bdev, mode, cmd, arg);
6363 #endif /* CONFIG_COMPAT */
6365 static int md_open(struct block_device *bdev, fmode_t mode)
6368 * Succeed if we can lock the mddev, which confirms that
6369 * it isn't being stopped right now.
6371 struct mddev *mddev = mddev_find(bdev->bd_dev);
6374 if (mddev->gendisk != bdev->bd_disk) {
6375 /* we are racing with mddev_put which is discarding this
6379 /* Wait until bdev->bd_disk is definitely gone */
6380 flush_workqueue(md_misc_wq);
6381 /* Then retry the open from the top */
6382 return -ERESTARTSYS;
6384 BUG_ON(mddev != bdev->bd_disk->private_data);
6386 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6390 atomic_inc(&mddev->openers);
6391 mutex_unlock(&mddev->open_mutex);
6393 check_disk_change(bdev);
6398 static int md_release(struct gendisk *disk, fmode_t mode)
6400 struct mddev *mddev = disk->private_data;
6403 atomic_dec(&mddev->openers);
6409 static int md_media_changed(struct gendisk *disk)
6411 struct mddev *mddev = disk->private_data;
6413 return mddev->changed;
6416 static int md_revalidate(struct gendisk *disk)
6418 struct mddev *mddev = disk->private_data;
6423 static const struct block_device_operations md_fops =
6425 .owner = THIS_MODULE,
6427 .release = md_release,
6429 #ifdef CONFIG_COMPAT
6430 .compat_ioctl = md_compat_ioctl,
6432 .getgeo = md_getgeo,
6433 .media_changed = md_media_changed,
6434 .revalidate_disk= md_revalidate,
6437 static int md_thread(void * arg)
6439 struct md_thread *thread = arg;
6442 * md_thread is a 'system-thread', it's priority should be very
6443 * high. We avoid resource deadlocks individually in each
6444 * raid personality. (RAID5 does preallocation) We also use RR and
6445 * the very same RT priority as kswapd, thus we will never get
6446 * into a priority inversion deadlock.
6448 * we definitely have to have equal or higher priority than
6449 * bdflush, otherwise bdflush will deadlock if there are too
6450 * many dirty RAID5 blocks.
6453 allow_signal(SIGKILL);
6454 while (!kthread_should_stop()) {
6456 /* We need to wait INTERRUPTIBLE so that
6457 * we don't add to the load-average.
6458 * That means we need to be sure no signals are
6461 if (signal_pending(current))
6462 flush_signals(current);
6464 wait_event_interruptible_timeout
6466 test_bit(THREAD_WAKEUP, &thread->flags)
6467 || kthread_should_stop(),
6470 clear_bit(THREAD_WAKEUP, &thread->flags);
6471 if (!kthread_should_stop())
6472 thread->run(thread->mddev);
6478 void md_wakeup_thread(struct md_thread *thread)
6481 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6482 set_bit(THREAD_WAKEUP, &thread->flags);
6483 wake_up(&thread->wqueue);
6487 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6490 struct md_thread *thread;
6492 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6496 init_waitqueue_head(&thread->wqueue);
6499 thread->mddev = mddev;
6500 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6501 thread->tsk = kthread_run(md_thread, thread,
6503 mdname(thread->mddev),
6504 name ?: mddev->pers->name);
6505 if (IS_ERR(thread->tsk)) {
6512 void md_unregister_thread(struct md_thread **threadp)
6514 struct md_thread *thread = *threadp;
6517 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6518 /* Locking ensures that mddev_unlock does not wake_up a
6519 * non-existent thread
6521 spin_lock(&pers_lock);
6523 spin_unlock(&pers_lock);
6525 kthread_stop(thread->tsk);
6529 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6536 if (!rdev || test_bit(Faulty, &rdev->flags))
6539 if (!mddev->pers || !mddev->pers->error_handler)
6541 mddev->pers->error_handler(mddev,rdev);
6542 if (mddev->degraded)
6543 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6544 sysfs_notify_dirent_safe(rdev->sysfs_state);
6545 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6546 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6547 md_wakeup_thread(mddev->thread);
6548 if (mddev->event_work.func)
6549 queue_work(md_misc_wq, &mddev->event_work);
6550 md_new_event_inintr(mddev);
6553 /* seq_file implementation /proc/mdstat */
6555 static void status_unused(struct seq_file *seq)
6558 struct md_rdev *rdev;
6560 seq_printf(seq, "unused devices: ");
6562 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6563 char b[BDEVNAME_SIZE];
6565 seq_printf(seq, "%s ",
6566 bdevname(rdev->bdev,b));
6569 seq_printf(seq, "<none>");
6571 seq_printf(seq, "\n");
6575 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6577 sector_t max_sectors, resync, res;
6578 unsigned long dt, db;
6581 unsigned int per_milli;
6583 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6585 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6586 max_sectors = mddev->resync_max_sectors;
6588 max_sectors = mddev->dev_sectors;
6591 * Should not happen.
6597 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6598 * in a sector_t, and (max_sectors>>scale) will fit in a
6599 * u32, as those are the requirements for sector_div.
6600 * Thus 'scale' must be at least 10
6603 if (sizeof(sector_t) > sizeof(unsigned long)) {
6604 while ( max_sectors/2 > (1ULL<<(scale+32)))
6607 res = (resync>>scale)*1000;
6608 sector_div(res, (u32)((max_sectors>>scale)+1));
6612 int i, x = per_milli/50, y = 20-x;
6613 seq_printf(seq, "[");
6614 for (i = 0; i < x; i++)
6615 seq_printf(seq, "=");
6616 seq_printf(seq, ">");
6617 for (i = 0; i < y; i++)
6618 seq_printf(seq, ".");
6619 seq_printf(seq, "] ");
6621 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6622 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6624 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6626 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6627 "resync" : "recovery"))),
6628 per_milli/10, per_milli % 10,
6629 (unsigned long long) resync/2,
6630 (unsigned long long) max_sectors/2);
6633 * dt: time from mark until now
6634 * db: blocks written from mark until now
6635 * rt: remaining time
6637 * rt is a sector_t, so could be 32bit or 64bit.
6638 * So we divide before multiply in case it is 32bit and close
6640 * We scale the divisor (db) by 32 to avoid losing precision
6641 * near the end of resync when the number of remaining sectors
6643 * We then divide rt by 32 after multiplying by db to compensate.
6644 * The '+1' avoids division by zero if db is very small.
6646 dt = ((jiffies - mddev->resync_mark) / HZ);
6648 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6649 - mddev->resync_mark_cnt;
6651 rt = max_sectors - resync; /* number of remaining sectors */
6652 sector_div(rt, db/32+1);
6656 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6657 ((unsigned long)rt % 60)/6);
6659 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6662 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6664 struct list_head *tmp;
6666 struct mddev *mddev;
6674 spin_lock(&all_mddevs_lock);
6675 list_for_each(tmp,&all_mddevs)
6677 mddev = list_entry(tmp, struct mddev, all_mddevs);
6679 spin_unlock(&all_mddevs_lock);
6682 spin_unlock(&all_mddevs_lock);
6684 return (void*)2;/* tail */
6688 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6690 struct list_head *tmp;
6691 struct mddev *next_mddev, *mddev = v;
6697 spin_lock(&all_mddevs_lock);
6699 tmp = all_mddevs.next;
6701 tmp = mddev->all_mddevs.next;
6702 if (tmp != &all_mddevs)
6703 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6705 next_mddev = (void*)2;
6708 spin_unlock(&all_mddevs_lock);
6716 static void md_seq_stop(struct seq_file *seq, void *v)
6718 struct mddev *mddev = v;
6720 if (mddev && v != (void*)1 && v != (void*)2)
6724 static int md_seq_show(struct seq_file *seq, void *v)
6726 struct mddev *mddev = v;
6728 struct md_rdev *rdev;
6730 if (v == (void*)1) {
6731 struct md_personality *pers;
6732 seq_printf(seq, "Personalities : ");
6733 spin_lock(&pers_lock);
6734 list_for_each_entry(pers, &pers_list, list)
6735 seq_printf(seq, "[%s] ", pers->name);
6737 spin_unlock(&pers_lock);
6738 seq_printf(seq, "\n");
6739 seq->poll_event = atomic_read(&md_event_count);
6742 if (v == (void*)2) {
6747 if (mddev_lock(mddev) < 0)
6750 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6751 seq_printf(seq, "%s : %sactive", mdname(mddev),
6752 mddev->pers ? "" : "in");
6755 seq_printf(seq, " (read-only)");
6757 seq_printf(seq, " (auto-read-only)");
6758 seq_printf(seq, " %s", mddev->pers->name);
6762 rdev_for_each(rdev, mddev) {
6763 char b[BDEVNAME_SIZE];
6764 seq_printf(seq, " %s[%d]",
6765 bdevname(rdev->bdev,b), rdev->desc_nr);
6766 if (test_bit(WriteMostly, &rdev->flags))
6767 seq_printf(seq, "(W)");
6768 if (test_bit(Faulty, &rdev->flags)) {
6769 seq_printf(seq, "(F)");
6772 if (rdev->raid_disk < 0)
6773 seq_printf(seq, "(S)"); /* spare */
6774 if (test_bit(Replacement, &rdev->flags))
6775 seq_printf(seq, "(R)");
6776 sectors += rdev->sectors;
6779 if (!list_empty(&mddev->disks)) {
6781 seq_printf(seq, "\n %llu blocks",
6782 (unsigned long long)
6783 mddev->array_sectors / 2);
6785 seq_printf(seq, "\n %llu blocks",
6786 (unsigned long long)sectors / 2);
6788 if (mddev->persistent) {
6789 if (mddev->major_version != 0 ||
6790 mddev->minor_version != 90) {
6791 seq_printf(seq," super %d.%d",
6792 mddev->major_version,
6793 mddev->minor_version);
6795 } else if (mddev->external)
6796 seq_printf(seq, " super external:%s",
6797 mddev->metadata_type);
6799 seq_printf(seq, " super non-persistent");
6802 mddev->pers->status(seq, mddev);
6803 seq_printf(seq, "\n ");
6804 if (mddev->pers->sync_request) {
6805 if (mddev->curr_resync > 2) {
6806 status_resync(seq, mddev);
6807 seq_printf(seq, "\n ");
6808 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6809 seq_printf(seq, "\tresync=DELAYED\n ");
6810 else if (mddev->recovery_cp < MaxSector)
6811 seq_printf(seq, "\tresync=PENDING\n ");
6814 seq_printf(seq, "\n ");
6816 bitmap_status(seq, mddev->bitmap);
6818 seq_printf(seq, "\n");
6820 mddev_unlock(mddev);
6825 static const struct seq_operations md_seq_ops = {
6826 .start = md_seq_start,
6827 .next = md_seq_next,
6828 .stop = md_seq_stop,
6829 .show = md_seq_show,
6832 static int md_seq_open(struct inode *inode, struct file *file)
6834 struct seq_file *seq;
6837 error = seq_open(file, &md_seq_ops);
6841 seq = file->private_data;
6842 seq->poll_event = atomic_read(&md_event_count);
6846 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6848 struct seq_file *seq = filp->private_data;
6851 poll_wait(filp, &md_event_waiters, wait);
6853 /* always allow read */
6854 mask = POLLIN | POLLRDNORM;
6856 if (seq->poll_event != atomic_read(&md_event_count))
6857 mask |= POLLERR | POLLPRI;
6861 static const struct file_operations md_seq_fops = {
6862 .owner = THIS_MODULE,
6863 .open = md_seq_open,
6865 .llseek = seq_lseek,
6866 .release = seq_release_private,
6867 .poll = mdstat_poll,
6870 int register_md_personality(struct md_personality *p)
6872 spin_lock(&pers_lock);
6873 list_add_tail(&p->list, &pers_list);
6874 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6875 spin_unlock(&pers_lock);
6879 int unregister_md_personality(struct md_personality *p)
6881 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6882 spin_lock(&pers_lock);
6883 list_del_init(&p->list);
6884 spin_unlock(&pers_lock);
6888 static int is_mddev_idle(struct mddev *mddev, int init)
6890 struct md_rdev * rdev;
6896 rdev_for_each_rcu(rdev, mddev) {
6897 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6898 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6899 (int)part_stat_read(&disk->part0, sectors[1]) -
6900 atomic_read(&disk->sync_io);
6901 /* sync IO will cause sync_io to increase before the disk_stats
6902 * as sync_io is counted when a request starts, and
6903 * disk_stats is counted when it completes.
6904 * So resync activity will cause curr_events to be smaller than
6905 * when there was no such activity.
6906 * non-sync IO will cause disk_stat to increase without
6907 * increasing sync_io so curr_events will (eventually)
6908 * be larger than it was before. Once it becomes
6909 * substantially larger, the test below will cause
6910 * the array to appear non-idle, and resync will slow
6912 * If there is a lot of outstanding resync activity when
6913 * we set last_event to curr_events, then all that activity
6914 * completing might cause the array to appear non-idle
6915 * and resync will be slowed down even though there might
6916 * not have been non-resync activity. This will only
6917 * happen once though. 'last_events' will soon reflect
6918 * the state where there is little or no outstanding
6919 * resync requests, and further resync activity will
6920 * always make curr_events less than last_events.
6923 if (init || curr_events - rdev->last_events > 64) {
6924 rdev->last_events = curr_events;
6932 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6934 /* another "blocks" (512byte) blocks have been synced */
6935 atomic_sub(blocks, &mddev->recovery_active);
6936 wake_up(&mddev->recovery_wait);
6938 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6939 md_wakeup_thread(mddev->thread);
6940 // stop recovery, signal do_sync ....
6945 /* md_write_start(mddev, bi)
6946 * If we need to update some array metadata (e.g. 'active' flag
6947 * in superblock) before writing, schedule a superblock update
6948 * and wait for it to complete.
6950 void md_write_start(struct mddev *mddev, struct bio *bi)
6953 if (bio_data_dir(bi) != WRITE)
6956 BUG_ON(mddev->ro == 1);
6957 if (mddev->ro == 2) {
6958 /* need to switch to read/write */
6960 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6961 md_wakeup_thread(mddev->thread);
6962 md_wakeup_thread(mddev->sync_thread);
6965 atomic_inc(&mddev->writes_pending);
6966 if (mddev->safemode == 1)
6967 mddev->safemode = 0;
6968 if (mddev->in_sync) {
6969 spin_lock_irq(&mddev->write_lock);
6970 if (mddev->in_sync) {
6972 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6973 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6974 md_wakeup_thread(mddev->thread);
6977 spin_unlock_irq(&mddev->write_lock);
6980 sysfs_notify_dirent_safe(mddev->sysfs_state);
6981 wait_event(mddev->sb_wait,
6982 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6985 void md_write_end(struct mddev *mddev)
6987 if (atomic_dec_and_test(&mddev->writes_pending)) {
6988 if (mddev->safemode == 2)
6989 md_wakeup_thread(mddev->thread);
6990 else if (mddev->safemode_delay)
6991 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6995 /* md_allow_write(mddev)
6996 * Calling this ensures that the array is marked 'active' so that writes
6997 * may proceed without blocking. It is important to call this before
6998 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6999 * Must be called with mddev_lock held.
7001 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7002 * is dropped, so return -EAGAIN after notifying userspace.
7004 int md_allow_write(struct mddev *mddev)
7010 if (!mddev->pers->sync_request)
7013 spin_lock_irq(&mddev->write_lock);
7014 if (mddev->in_sync) {
7016 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7017 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7018 if (mddev->safemode_delay &&
7019 mddev->safemode == 0)
7020 mddev->safemode = 1;
7021 spin_unlock_irq(&mddev->write_lock);
7022 md_update_sb(mddev, 0);
7023 sysfs_notify_dirent_safe(mddev->sysfs_state);
7025 spin_unlock_irq(&mddev->write_lock);
7027 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7032 EXPORT_SYMBOL_GPL(md_allow_write);
7034 #define SYNC_MARKS 10
7035 #define SYNC_MARK_STEP (3*HZ)
7036 void md_do_sync(struct mddev *mddev)
7038 struct mddev *mddev2;
7039 unsigned int currspeed = 0,
7041 sector_t max_sectors,j, io_sectors;
7042 unsigned long mark[SYNC_MARKS];
7043 sector_t mark_cnt[SYNC_MARKS];
7045 struct list_head *tmp;
7046 sector_t last_check;
7048 struct md_rdev *rdev;
7051 /* just incase thread restarts... */
7052 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7054 if (mddev->ro) /* never try to sync a read-only array */
7057 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7058 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7059 desc = "data-check";
7060 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7061 desc = "requested-resync";
7064 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7069 /* we overload curr_resync somewhat here.
7070 * 0 == not engaged in resync at all
7071 * 2 == checking that there is no conflict with another sync
7072 * 1 == like 2, but have yielded to allow conflicting resync to
7074 * other == active in resync - this many blocks
7076 * Before starting a resync we must have set curr_resync to
7077 * 2, and then checked that every "conflicting" array has curr_resync
7078 * less than ours. When we find one that is the same or higher
7079 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7080 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7081 * This will mean we have to start checking from the beginning again.
7086 mddev->curr_resync = 2;
7089 if (kthread_should_stop())
7090 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7092 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7094 for_each_mddev(mddev2, tmp) {
7095 if (mddev2 == mddev)
7097 if (!mddev->parallel_resync
7098 && mddev2->curr_resync
7099 && match_mddev_units(mddev, mddev2)) {
7101 if (mddev < mddev2 && mddev->curr_resync == 2) {
7102 /* arbitrarily yield */
7103 mddev->curr_resync = 1;
7104 wake_up(&resync_wait);
7106 if (mddev > mddev2 && mddev->curr_resync == 1)
7107 /* no need to wait here, we can wait the next
7108 * time 'round when curr_resync == 2
7111 /* We need to wait 'interruptible' so as not to
7112 * contribute to the load average, and not to
7113 * be caught by 'softlockup'
7115 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7116 if (!kthread_should_stop() &&
7117 mddev2->curr_resync >= mddev->curr_resync) {
7118 printk(KERN_INFO "md: delaying %s of %s"
7119 " until %s has finished (they"
7120 " share one or more physical units)\n",
7121 desc, mdname(mddev), mdname(mddev2));
7123 if (signal_pending(current))
7124 flush_signals(current);
7126 finish_wait(&resync_wait, &wq);
7129 finish_wait(&resync_wait, &wq);
7132 } while (mddev->curr_resync < 2);
7135 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7136 /* resync follows the size requested by the personality,
7137 * which defaults to physical size, but can be virtual size
7139 max_sectors = mddev->resync_max_sectors;
7140 mddev->resync_mismatches = 0;
7141 /* we don't use the checkpoint if there's a bitmap */
7142 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7143 j = mddev->resync_min;
7144 else if (!mddev->bitmap)
7145 j = mddev->recovery_cp;
7147 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7148 max_sectors = mddev->dev_sectors;
7150 /* recovery follows the physical size of devices */
7151 max_sectors = mddev->dev_sectors;
7154 rdev_for_each_rcu(rdev, mddev)
7155 if (rdev->raid_disk >= 0 &&
7156 !test_bit(Faulty, &rdev->flags) &&
7157 !test_bit(In_sync, &rdev->flags) &&
7158 rdev->recovery_offset < j)
7159 j = rdev->recovery_offset;
7163 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7164 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7165 " %d KB/sec/disk.\n", speed_min(mddev));
7166 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7167 "(but not more than %d KB/sec) for %s.\n",
7168 speed_max(mddev), desc);
7170 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7173 for (m = 0; m < SYNC_MARKS; m++) {
7175 mark_cnt[m] = io_sectors;
7178 mddev->resync_mark = mark[last_mark];
7179 mddev->resync_mark_cnt = mark_cnt[last_mark];
7182 * Tune reconstruction:
7184 window = 32*(PAGE_SIZE/512);
7185 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7186 window/2, (unsigned long long)max_sectors/2);
7188 atomic_set(&mddev->recovery_active, 0);
7193 "md: resuming %s of %s from checkpoint.\n",
7194 desc, mdname(mddev));
7195 mddev->curr_resync = j;
7197 mddev->curr_resync_completed = j;
7199 while (j < max_sectors) {
7204 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7205 ((mddev->curr_resync > mddev->curr_resync_completed &&
7206 (mddev->curr_resync - mddev->curr_resync_completed)
7207 > (max_sectors >> 4)) ||
7208 (j - mddev->curr_resync_completed)*2
7209 >= mddev->resync_max - mddev->curr_resync_completed
7211 /* time to update curr_resync_completed */
7212 wait_event(mddev->recovery_wait,
7213 atomic_read(&mddev->recovery_active) == 0);
7214 mddev->curr_resync_completed = j;
7215 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7216 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7219 while (j >= mddev->resync_max && !kthread_should_stop()) {
7220 /* As this condition is controlled by user-space,
7221 * we can block indefinitely, so use '_interruptible'
7222 * to avoid triggering warnings.
7224 flush_signals(current); /* just in case */
7225 wait_event_interruptible(mddev->recovery_wait,
7226 mddev->resync_max > j
7227 || kthread_should_stop());
7230 if (kthread_should_stop())
7233 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7234 currspeed < speed_min(mddev));
7236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7240 if (!skipped) { /* actual IO requested */
7241 io_sectors += sectors;
7242 atomic_add(sectors, &mddev->recovery_active);
7245 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7249 if (j>1) mddev->curr_resync = j;
7250 mddev->curr_mark_cnt = io_sectors;
7251 if (last_check == 0)
7252 /* this is the earliest that rebuild will be
7253 * visible in /proc/mdstat
7255 md_new_event(mddev);
7257 if (last_check + window > io_sectors || j == max_sectors)
7260 last_check = io_sectors;
7262 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7264 int next = (last_mark+1) % SYNC_MARKS;
7266 mddev->resync_mark = mark[next];
7267 mddev->resync_mark_cnt = mark_cnt[next];
7268 mark[next] = jiffies;
7269 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7274 if (kthread_should_stop())
7279 * this loop exits only if either when we are slower than
7280 * the 'hard' speed limit, or the system was IO-idle for
7282 * the system might be non-idle CPU-wise, but we only care
7283 * about not overloading the IO subsystem. (things like an
7284 * e2fsck being done on the RAID array should execute fast)
7288 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7289 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7291 if (currspeed > speed_min(mddev)) {
7292 if ((currspeed > speed_max(mddev)) ||
7293 !is_mddev_idle(mddev, 0)) {
7299 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7301 * this also signals 'finished resyncing' to md_stop
7304 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7306 /* tell personality that we are finished */
7307 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7309 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7310 mddev->curr_resync > 2) {
7311 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7312 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7313 if (mddev->curr_resync >= mddev->recovery_cp) {
7315 "md: checkpointing %s of %s.\n",
7316 desc, mdname(mddev));
7317 mddev->recovery_cp =
7318 mddev->curr_resync_completed;
7321 mddev->recovery_cp = MaxSector;
7323 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7324 mddev->curr_resync = MaxSector;
7326 rdev_for_each_rcu(rdev, mddev)
7327 if (rdev->raid_disk >= 0 &&
7328 mddev->delta_disks >= 0 &&
7329 !test_bit(Faulty, &rdev->flags) &&
7330 !test_bit(In_sync, &rdev->flags) &&
7331 rdev->recovery_offset < mddev->curr_resync)
7332 rdev->recovery_offset = mddev->curr_resync;
7337 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7339 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7340 /* We completed so min/max setting can be forgotten if used. */
7341 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7342 mddev->resync_min = 0;
7343 mddev->resync_max = MaxSector;
7344 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7345 mddev->resync_min = mddev->curr_resync_completed;
7346 mddev->curr_resync = 0;
7347 wake_up(&resync_wait);
7348 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7349 md_wakeup_thread(mddev->thread);
7354 * got a signal, exit.
7357 "md: md_do_sync() got signal ... exiting\n");
7358 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7362 EXPORT_SYMBOL_GPL(md_do_sync);
7364 static int remove_and_add_spares(struct mddev *mddev)
7366 struct md_rdev *rdev;
7370 mddev->curr_resync_completed = 0;
7372 rdev_for_each(rdev, mddev)
7373 if (rdev->raid_disk >= 0 &&
7374 !test_bit(Blocked, &rdev->flags) &&
7375 (test_bit(Faulty, &rdev->flags) ||
7376 ! test_bit(In_sync, &rdev->flags)) &&
7377 atomic_read(&rdev->nr_pending)==0) {
7378 if (mddev->pers->hot_remove_disk(
7379 mddev, rdev) == 0) {
7380 sysfs_unlink_rdev(mddev, rdev);
7381 rdev->raid_disk = -1;
7386 sysfs_notify(&mddev->kobj, NULL,
7390 rdev_for_each(rdev, mddev) {
7391 if (rdev->raid_disk >= 0 &&
7392 !test_bit(In_sync, &rdev->flags) &&
7393 !test_bit(Faulty, &rdev->flags))
7395 if (rdev->raid_disk < 0
7396 && !test_bit(Faulty, &rdev->flags)) {
7397 rdev->recovery_offset = 0;
7399 hot_add_disk(mddev, rdev) == 0) {
7400 if (sysfs_link_rdev(mddev, rdev))
7401 /* failure here is OK */;
7403 md_new_event(mddev);
7404 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7411 static void reap_sync_thread(struct mddev *mddev)
7413 struct md_rdev *rdev;
7415 /* resync has finished, collect result */
7416 md_unregister_thread(&mddev->sync_thread);
7417 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7418 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7420 /* activate any spares */
7421 if (mddev->pers->spare_active(mddev))
7422 sysfs_notify(&mddev->kobj, NULL,
7425 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7426 mddev->pers->finish_reshape)
7427 mddev->pers->finish_reshape(mddev);
7429 /* If array is no-longer degraded, then any saved_raid_disk
7430 * information must be scrapped. Also if any device is now
7431 * In_sync we must scrape the saved_raid_disk for that device
7432 * do the superblock for an incrementally recovered device
7435 rdev_for_each(rdev, mddev)
7436 if (!mddev->degraded ||
7437 test_bit(In_sync, &rdev->flags))
7438 rdev->saved_raid_disk = -1;
7440 md_update_sb(mddev, 1);
7441 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7442 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7443 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7444 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7445 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7446 /* flag recovery needed just to double check */
7447 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7448 sysfs_notify_dirent_safe(mddev->sysfs_action);
7449 md_new_event(mddev);
7450 if (mddev->event_work.func)
7451 queue_work(md_misc_wq, &mddev->event_work);
7455 * This routine is regularly called by all per-raid-array threads to
7456 * deal with generic issues like resync and super-block update.
7457 * Raid personalities that don't have a thread (linear/raid0) do not
7458 * need this as they never do any recovery or update the superblock.
7460 * It does not do any resync itself, but rather "forks" off other threads
7461 * to do that as needed.
7462 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7463 * "->recovery" and create a thread at ->sync_thread.
7464 * When the thread finishes it sets MD_RECOVERY_DONE
7465 * and wakeups up this thread which will reap the thread and finish up.
7466 * This thread also removes any faulty devices (with nr_pending == 0).
7468 * The overall approach is:
7469 * 1/ if the superblock needs updating, update it.
7470 * 2/ If a recovery thread is running, don't do anything else.
7471 * 3/ If recovery has finished, clean up, possibly marking spares active.
7472 * 4/ If there are any faulty devices, remove them.
7473 * 5/ If array is degraded, try to add spares devices
7474 * 6/ If array has spares or is not in-sync, start a resync thread.
7476 void md_check_recovery(struct mddev *mddev)
7478 if (mddev->suspended)
7482 bitmap_daemon_work(mddev);
7484 if (signal_pending(current)) {
7485 if (mddev->pers->sync_request && !mddev->external) {
7486 printk(KERN_INFO "md: %s in immediate safe mode\n",
7488 mddev->safemode = 2;
7490 flush_signals(current);
7493 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7496 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7497 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7498 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7499 (mddev->external == 0 && mddev->safemode == 1) ||
7500 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7501 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7505 if (mddev_trylock(mddev)) {
7509 /* Only thing we do on a ro array is remove
7512 struct md_rdev *rdev;
7513 rdev_for_each(rdev, mddev)
7514 if (rdev->raid_disk >= 0 &&
7515 !test_bit(Blocked, &rdev->flags) &&
7516 test_bit(Faulty, &rdev->flags) &&
7517 atomic_read(&rdev->nr_pending)==0) {
7518 if (mddev->pers->hot_remove_disk(
7519 mddev, rdev) == 0) {
7520 sysfs_unlink_rdev(mddev, rdev);
7521 rdev->raid_disk = -1;
7524 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7528 if (!mddev->external) {
7530 spin_lock_irq(&mddev->write_lock);
7531 if (mddev->safemode &&
7532 !atomic_read(&mddev->writes_pending) &&
7534 mddev->recovery_cp == MaxSector) {
7537 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7539 if (mddev->safemode == 1)
7540 mddev->safemode = 0;
7541 spin_unlock_irq(&mddev->write_lock);
7543 sysfs_notify_dirent_safe(mddev->sysfs_state);
7547 md_update_sb(mddev, 0);
7549 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7550 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7551 /* resync/recovery still happening */
7552 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7555 if (mddev->sync_thread) {
7556 reap_sync_thread(mddev);
7559 /* Set RUNNING before clearing NEEDED to avoid
7560 * any transients in the value of "sync_action".
7562 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7563 /* Clear some bits that don't mean anything, but
7566 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7567 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7569 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7570 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7572 /* no recovery is running.
7573 * remove any failed drives, then
7574 * add spares if possible.
7575 * Spare are also removed and re-added, to allow
7576 * the personality to fail the re-add.
7579 if (mddev->reshape_position != MaxSector) {
7580 if (mddev->pers->check_reshape == NULL ||
7581 mddev->pers->check_reshape(mddev) != 0)
7582 /* Cannot proceed */
7584 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7585 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7586 } else if ((spares = remove_and_add_spares(mddev))) {
7587 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7588 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7589 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7590 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7591 } else if (mddev->recovery_cp < MaxSector) {
7592 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7593 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7594 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7595 /* nothing to be done ... */
7598 if (mddev->pers->sync_request) {
7599 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7600 /* We are adding a device or devices to an array
7601 * which has the bitmap stored on all devices.
7602 * So make sure all bitmap pages get written
7604 bitmap_write_all(mddev->bitmap);
7606 mddev->sync_thread = md_register_thread(md_do_sync,
7609 if (!mddev->sync_thread) {
7610 printk(KERN_ERR "%s: could not start resync"
7613 /* leave the spares where they are, it shouldn't hurt */
7614 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7615 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7616 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7617 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7618 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7620 md_wakeup_thread(mddev->sync_thread);
7621 sysfs_notify_dirent_safe(mddev->sysfs_action);
7622 md_new_event(mddev);
7625 if (!mddev->sync_thread) {
7626 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7627 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7629 if (mddev->sysfs_action)
7630 sysfs_notify_dirent_safe(mddev->sysfs_action);
7632 mddev_unlock(mddev);
7636 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7638 sysfs_notify_dirent_safe(rdev->sysfs_state);
7639 wait_event_timeout(rdev->blocked_wait,
7640 !test_bit(Blocked, &rdev->flags) &&
7641 !test_bit(BlockedBadBlocks, &rdev->flags),
7642 msecs_to_jiffies(5000));
7643 rdev_dec_pending(rdev, mddev);
7645 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7648 /* Bad block management.
7649 * We can record which blocks on each device are 'bad' and so just
7650 * fail those blocks, or that stripe, rather than the whole device.
7651 * Entries in the bad-block table are 64bits wide. This comprises:
7652 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7653 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7654 * A 'shift' can be set so that larger blocks are tracked and
7655 * consequently larger devices can be covered.
7656 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7658 * Locking of the bad-block table uses a seqlock so md_is_badblock
7659 * might need to retry if it is very unlucky.
7660 * We will sometimes want to check for bad blocks in a bi_end_io function,
7661 * so we use the write_seqlock_irq variant.
7663 * When looking for a bad block we specify a range and want to
7664 * know if any block in the range is bad. So we binary-search
7665 * to the last range that starts at-or-before the given endpoint,
7666 * (or "before the sector after the target range")
7667 * then see if it ends after the given start.
7669 * 0 if there are no known bad blocks in the range
7670 * 1 if there are known bad block which are all acknowledged
7671 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7672 * plus the start/length of the first bad section we overlap.
7674 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7675 sector_t *first_bad, int *bad_sectors)
7681 sector_t target = s + sectors;
7684 if (bb->shift > 0) {
7685 /* round the start down, and the end up */
7687 target += (1<<bb->shift) - 1;
7688 target >>= bb->shift;
7689 sectors = target - s;
7691 /* 'target' is now the first block after the bad range */
7694 seq = read_seqbegin(&bb->lock);
7698 /* Binary search between lo and hi for 'target'
7699 * i.e. for the last range that starts before 'target'
7701 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7702 * are known not to be the last range before target.
7703 * VARIANT: hi-lo is the number of possible
7704 * ranges, and decreases until it reaches 1
7706 while (hi - lo > 1) {
7707 int mid = (lo + hi) / 2;
7708 sector_t a = BB_OFFSET(p[mid]);
7710 /* This could still be the one, earlier ranges
7714 /* This and later ranges are definitely out. */
7717 /* 'lo' might be the last that started before target, but 'hi' isn't */
7719 /* need to check all range that end after 's' to see if
7720 * any are unacknowledged.
7723 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7724 if (BB_OFFSET(p[lo]) < target) {
7725 /* starts before the end, and finishes after
7726 * the start, so they must overlap
7728 if (rv != -1 && BB_ACK(p[lo]))
7732 *first_bad = BB_OFFSET(p[lo]);
7733 *bad_sectors = BB_LEN(p[lo]);
7739 if (read_seqretry(&bb->lock, seq))
7744 EXPORT_SYMBOL_GPL(md_is_badblock);
7747 * Add a range of bad blocks to the table.
7748 * This might extend the table, or might contract it
7749 * if two adjacent ranges can be merged.
7750 * We binary-search to find the 'insertion' point, then
7751 * decide how best to handle it.
7753 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7761 /* badblocks are disabled */
7765 /* round the start down, and the end up */
7766 sector_t next = s + sectors;
7768 next += (1<<bb->shift) - 1;
7773 write_seqlock_irq(&bb->lock);
7778 /* Find the last range that starts at-or-before 's' */
7779 while (hi - lo > 1) {
7780 int mid = (lo + hi) / 2;
7781 sector_t a = BB_OFFSET(p[mid]);
7787 if (hi > lo && BB_OFFSET(p[lo]) > s)
7791 /* we found a range that might merge with the start
7794 sector_t a = BB_OFFSET(p[lo]);
7795 sector_t e = a + BB_LEN(p[lo]);
7796 int ack = BB_ACK(p[lo]);
7798 /* Yes, we can merge with a previous range */
7799 if (s == a && s + sectors >= e)
7800 /* new range covers old */
7803 ack = ack && acknowledged;
7805 if (e < s + sectors)
7807 if (e - a <= BB_MAX_LEN) {
7808 p[lo] = BB_MAKE(a, e-a, ack);
7811 /* does not all fit in one range,
7812 * make p[lo] maximal
7814 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7815 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7821 if (sectors && hi < bb->count) {
7822 /* 'hi' points to the first range that starts after 's'.
7823 * Maybe we can merge with the start of that range */
7824 sector_t a = BB_OFFSET(p[hi]);
7825 sector_t e = a + BB_LEN(p[hi]);
7826 int ack = BB_ACK(p[hi]);
7827 if (a <= s + sectors) {
7828 /* merging is possible */
7829 if (e <= s + sectors) {
7834 ack = ack && acknowledged;
7837 if (e - a <= BB_MAX_LEN) {
7838 p[hi] = BB_MAKE(a, e-a, ack);
7841 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7849 if (sectors == 0 && hi < bb->count) {
7850 /* we might be able to combine lo and hi */
7851 /* Note: 's' is at the end of 'lo' */
7852 sector_t a = BB_OFFSET(p[hi]);
7853 int lolen = BB_LEN(p[lo]);
7854 int hilen = BB_LEN(p[hi]);
7855 int newlen = lolen + hilen - (s - a);
7856 if (s >= a && newlen < BB_MAX_LEN) {
7857 /* yes, we can combine them */
7858 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7859 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7860 memmove(p + hi, p + hi + 1,
7861 (bb->count - hi - 1) * 8);
7866 /* didn't merge (it all).
7867 * Need to add a range just before 'hi' */
7868 if (bb->count >= MD_MAX_BADBLOCKS) {
7869 /* No room for more */
7873 int this_sectors = sectors;
7874 memmove(p + hi + 1, p + hi,
7875 (bb->count - hi) * 8);
7878 if (this_sectors > BB_MAX_LEN)
7879 this_sectors = BB_MAX_LEN;
7880 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7881 sectors -= this_sectors;
7888 bb->unacked_exist = 1;
7889 write_sequnlock_irq(&bb->lock);
7894 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7897 int rv = md_set_badblocks(&rdev->badblocks,
7898 s + rdev->data_offset, sectors, acknowledged);
7900 /* Make sure they get written out promptly */
7901 sysfs_notify_dirent_safe(rdev->sysfs_state);
7902 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7903 md_wakeup_thread(rdev->mddev->thread);
7907 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7910 * Remove a range of bad blocks from the table.
7911 * This may involve extending the table if we spilt a region,
7912 * but it must not fail. So if the table becomes full, we just
7913 * drop the remove request.
7915 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7919 sector_t target = s + sectors;
7922 if (bb->shift > 0) {
7923 /* When clearing we round the start up and the end down.
7924 * This should not matter as the shift should align with
7925 * the block size and no rounding should ever be needed.
7926 * However it is better the think a block is bad when it
7927 * isn't than to think a block is not bad when it is.
7929 s += (1<<bb->shift) - 1;
7931 target >>= bb->shift;
7932 sectors = target - s;
7935 write_seqlock_irq(&bb->lock);
7940 /* Find the last range that starts before 'target' */
7941 while (hi - lo > 1) {
7942 int mid = (lo + hi) / 2;
7943 sector_t a = BB_OFFSET(p[mid]);
7950 /* p[lo] is the last range that could overlap the
7951 * current range. Earlier ranges could also overlap,
7952 * but only this one can overlap the end of the range.
7954 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7955 /* Partial overlap, leave the tail of this range */
7956 int ack = BB_ACK(p[lo]);
7957 sector_t a = BB_OFFSET(p[lo]);
7958 sector_t end = a + BB_LEN(p[lo]);
7961 /* we need to split this range */
7962 if (bb->count >= MD_MAX_BADBLOCKS) {
7966 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7968 p[lo] = BB_MAKE(a, s-a, ack);
7971 p[lo] = BB_MAKE(target, end - target, ack);
7972 /* there is no longer an overlap */
7977 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7978 /* This range does overlap */
7979 if (BB_OFFSET(p[lo]) < s) {
7980 /* Keep the early parts of this range. */
7981 int ack = BB_ACK(p[lo]);
7982 sector_t start = BB_OFFSET(p[lo]);
7983 p[lo] = BB_MAKE(start, s - start, ack);
7984 /* now low doesn't overlap, so.. */
7989 /* 'lo' is strictly before, 'hi' is strictly after,
7990 * anything between needs to be discarded
7993 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7994 bb->count -= (hi - lo - 1);
8000 write_sequnlock_irq(&bb->lock);
8004 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8006 return md_clear_badblocks(&rdev->badblocks,
8007 s + rdev->data_offset,
8010 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8013 * Acknowledge all bad blocks in a list.
8014 * This only succeeds if ->changed is clear. It is used by
8015 * in-kernel metadata updates
8017 void md_ack_all_badblocks(struct badblocks *bb)
8019 if (bb->page == NULL || bb->changed)
8020 /* no point even trying */
8022 write_seqlock_irq(&bb->lock);
8024 if (bb->changed == 0 && bb->unacked_exist) {
8027 for (i = 0; i < bb->count ; i++) {
8028 if (!BB_ACK(p[i])) {
8029 sector_t start = BB_OFFSET(p[i]);
8030 int len = BB_LEN(p[i]);
8031 p[i] = BB_MAKE(start, len, 1);
8034 bb->unacked_exist = 0;
8036 write_sequnlock_irq(&bb->lock);
8038 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8040 /* sysfs access to bad-blocks list.
8041 * We present two files.
8042 * 'bad-blocks' lists sector numbers and lengths of ranges that
8043 * are recorded as bad. The list is truncated to fit within
8044 * the one-page limit of sysfs.
8045 * Writing "sector length" to this file adds an acknowledged
8047 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8048 * been acknowledged. Writing to this file adds bad blocks
8049 * without acknowledging them. This is largely for testing.
8053 badblocks_show(struct badblocks *bb, char *page, int unack)
8064 seq = read_seqbegin(&bb->lock);
8069 while (len < PAGE_SIZE && i < bb->count) {
8070 sector_t s = BB_OFFSET(p[i]);
8071 unsigned int length = BB_LEN(p[i]);
8072 int ack = BB_ACK(p[i]);
8078 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8079 (unsigned long long)s << bb->shift,
8080 length << bb->shift);
8082 if (unack && len == 0)
8083 bb->unacked_exist = 0;
8085 if (read_seqretry(&bb->lock, seq))
8094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8096 unsigned long long sector;
8100 /* Allow clearing via sysfs *only* for testing/debugging.
8101 * Normally only a successful write may clear a badblock
8104 if (page[0] == '-') {
8108 #endif /* DO_DEBUG */
8110 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8112 if (newline != '\n')
8124 md_clear_badblocks(bb, sector, length);
8127 #endif /* DO_DEBUG */
8128 if (md_set_badblocks(bb, sector, length, !unack))
8134 static int md_notify_reboot(struct notifier_block *this,
8135 unsigned long code, void *x)
8137 struct list_head *tmp;
8138 struct mddev *mddev;
8141 for_each_mddev(mddev, tmp) {
8142 if (mddev_trylock(mddev)) {
8144 __md_stop_writes(mddev);
8145 mddev->safemode = 2;
8146 mddev_unlock(mddev);
8151 * certain more exotic SCSI devices are known to be
8152 * volatile wrt too early system reboots. While the
8153 * right place to handle this issue is the given
8154 * driver, we do want to have a safe RAID driver ...
8162 static struct notifier_block md_notifier = {
8163 .notifier_call = md_notify_reboot,
8165 .priority = INT_MAX, /* before any real devices */
8168 static void md_geninit(void)
8170 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8172 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8175 static int __init md_init(void)
8179 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8183 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8187 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8190 if ((ret = register_blkdev(0, "mdp")) < 0)
8194 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8195 md_probe, NULL, NULL);
8196 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8197 md_probe, NULL, NULL);
8199 register_reboot_notifier(&md_notifier);
8200 raid_table_header = register_sysctl_table(raid_root_table);
8206 unregister_blkdev(MD_MAJOR, "md");
8208 destroy_workqueue(md_misc_wq);
8210 destroy_workqueue(md_wq);
8218 * Searches all registered partitions for autorun RAID arrays
8222 static LIST_HEAD(all_detected_devices);
8223 struct detected_devices_node {
8224 struct list_head list;
8228 void md_autodetect_dev(dev_t dev)
8230 struct detected_devices_node *node_detected_dev;
8232 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8233 if (node_detected_dev) {
8234 node_detected_dev->dev = dev;
8235 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8237 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8238 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8243 static void autostart_arrays(int part)
8245 struct md_rdev *rdev;
8246 struct detected_devices_node *node_detected_dev;
8248 int i_scanned, i_passed;
8253 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8255 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8257 node_detected_dev = list_entry(all_detected_devices.next,
8258 struct detected_devices_node, list);
8259 list_del(&node_detected_dev->list);
8260 dev = node_detected_dev->dev;
8261 kfree(node_detected_dev);
8262 rdev = md_import_device(dev,0, 90);
8266 if (test_bit(Faulty, &rdev->flags)) {
8270 set_bit(AutoDetected, &rdev->flags);
8271 list_add(&rdev->same_set, &pending_raid_disks);
8275 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8276 i_scanned, i_passed);
8278 autorun_devices(part);
8281 #endif /* !MODULE */
8283 static __exit void md_exit(void)
8285 struct mddev *mddev;
8286 struct list_head *tmp;
8288 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8289 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8291 unregister_blkdev(MD_MAJOR,"md");
8292 unregister_blkdev(mdp_major, "mdp");
8293 unregister_reboot_notifier(&md_notifier);
8294 unregister_sysctl_table(raid_table_header);
8295 remove_proc_entry("mdstat", NULL);
8296 for_each_mddev(mddev, tmp) {
8297 export_array(mddev);
8298 mddev->hold_active = 0;
8300 destroy_workqueue(md_misc_wq);
8301 destroy_workqueue(md_wq);
8304 subsys_initcall(md_init);
8305 module_exit(md_exit)
8307 static int get_ro(char *buffer, struct kernel_param *kp)
8309 return sprintf(buffer, "%d", start_readonly);
8311 static int set_ro(const char *val, struct kernel_param *kp)
8314 int num = simple_strtoul(val, &e, 10);
8315 if (*val && (*e == '\0' || *e == '\n')) {
8316 start_readonly = num;
8322 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8323 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8325 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8327 EXPORT_SYMBOL(register_md_personality);
8328 EXPORT_SYMBOL(unregister_md_personality);
8329 EXPORT_SYMBOL(md_error);
8330 EXPORT_SYMBOL(md_done_sync);
8331 EXPORT_SYMBOL(md_write_start);
8332 EXPORT_SYMBOL(md_write_end);
8333 EXPORT_SYMBOL(md_register_thread);
8334 EXPORT_SYMBOL(md_unregister_thread);
8335 EXPORT_SYMBOL(md_wakeup_thread);
8336 EXPORT_SYMBOL(md_check_recovery);
8337 MODULE_LICENSE("GPL");
8338 MODULE_DESCRIPTION("MD RAID framework");
8340 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);