]> Git Repo - linux.git/blob - fs/btrfs/delayed-inode.c
btrfs: always abort the transaction if we abort a trans handle
[linux.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <[email protected]>
5  */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17
18 #define BTRFS_DELAYED_WRITEBACK         512
19 #define BTRFS_DELAYED_BACKGROUND        128
20 #define BTRFS_DELAYED_BATCH             16
21
22 static struct kmem_cache *delayed_node_cache;
23
24 int __init btrfs_delayed_inode_init(void)
25 {
26         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27                                         sizeof(struct btrfs_delayed_node),
28                                         0,
29                                         SLAB_MEM_SPREAD,
30                                         NULL);
31         if (!delayed_node_cache)
32                 return -ENOMEM;
33         return 0;
34 }
35
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38         kmem_cache_destroy(delayed_node_cache);
39 }
40
41 static inline void btrfs_init_delayed_node(
42                                 struct btrfs_delayed_node *delayed_node,
43                                 struct btrfs_root *root, u64 inode_id)
44 {
45         delayed_node->root = root;
46         delayed_node->inode_id = inode_id;
47         refcount_set(&delayed_node->refs, 0);
48         delayed_node->ins_root = RB_ROOT_CACHED;
49         delayed_node->del_root = RB_ROOT_CACHED;
50         mutex_init(&delayed_node->mutex);
51         INIT_LIST_HEAD(&delayed_node->n_list);
52         INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
55 static inline int btrfs_is_continuous_delayed_item(
56                                         struct btrfs_delayed_item *item1,
57                                         struct btrfs_delayed_item *item2)
58 {
59         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60             item1->key.objectid == item2->key.objectid &&
61             item1->key.type == item2->key.type &&
62             item1->key.offset + 1 == item2->key.offset)
63                 return 1;
64         return 0;
65 }
66
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68                 struct btrfs_inode *btrfs_inode)
69 {
70         struct btrfs_root *root = btrfs_inode->root;
71         u64 ino = btrfs_ino(btrfs_inode);
72         struct btrfs_delayed_node *node;
73
74         node = READ_ONCE(btrfs_inode->delayed_node);
75         if (node) {
76                 refcount_inc(&node->refs);
77                 return node;
78         }
79
80         spin_lock(&root->inode_lock);
81         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83         if (node) {
84                 if (btrfs_inode->delayed_node) {
85                         refcount_inc(&node->refs);      /* can be accessed */
86                         BUG_ON(btrfs_inode->delayed_node != node);
87                         spin_unlock(&root->inode_lock);
88                         return node;
89                 }
90
91                 /*
92                  * It's possible that we're racing into the middle of removing
93                  * this node from the radix tree.  In this case, the refcount
94                  * was zero and it should never go back to one.  Just return
95                  * NULL like it was never in the radix at all; our release
96                  * function is in the process of removing it.
97                  *
98                  * Some implementations of refcount_inc refuse to bump the
99                  * refcount once it has hit zero.  If we don't do this dance
100                  * here, refcount_inc() may decide to just WARN_ONCE() instead
101                  * of actually bumping the refcount.
102                  *
103                  * If this node is properly in the radix, we want to bump the
104                  * refcount twice, once for the inode and once for this get
105                  * operation.
106                  */
107                 if (refcount_inc_not_zero(&node->refs)) {
108                         refcount_inc(&node->refs);
109                         btrfs_inode->delayed_node = node;
110                 } else {
111                         node = NULL;
112                 }
113
114                 spin_unlock(&root->inode_lock);
115                 return node;
116         }
117         spin_unlock(&root->inode_lock);
118
119         return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124                 struct btrfs_inode *btrfs_inode)
125 {
126         struct btrfs_delayed_node *node;
127         struct btrfs_root *root = btrfs_inode->root;
128         u64 ino = btrfs_ino(btrfs_inode);
129         int ret;
130
131 again:
132         node = btrfs_get_delayed_node(btrfs_inode);
133         if (node)
134                 return node;
135
136         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137         if (!node)
138                 return ERR_PTR(-ENOMEM);
139         btrfs_init_delayed_node(node, root, ino);
140
141         /* cached in the btrfs inode and can be accessed */
142         refcount_set(&node->refs, 2);
143
144         ret = radix_tree_preload(GFP_NOFS);
145         if (ret) {
146                 kmem_cache_free(delayed_node_cache, node);
147                 return ERR_PTR(ret);
148         }
149
150         spin_lock(&root->inode_lock);
151         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152         if (ret == -EEXIST) {
153                 spin_unlock(&root->inode_lock);
154                 kmem_cache_free(delayed_node_cache, node);
155                 radix_tree_preload_end();
156                 goto again;
157         }
158         btrfs_inode->delayed_node = node;
159         spin_unlock(&root->inode_lock);
160         radix_tree_preload_end();
161
162         return node;
163 }
164
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171                                      struct btrfs_delayed_node *node,
172                                      int mod)
173 {
174         spin_lock(&root->lock);
175         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176                 if (!list_empty(&node->p_list))
177                         list_move_tail(&node->p_list, &root->prepare_list);
178                 else if (mod)
179                         list_add_tail(&node->p_list, &root->prepare_list);
180         } else {
181                 list_add_tail(&node->n_list, &root->node_list);
182                 list_add_tail(&node->p_list, &root->prepare_list);
183                 refcount_inc(&node->refs);      /* inserted into list */
184                 root->nodes++;
185                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186         }
187         spin_unlock(&root->lock);
188 }
189
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192                                        struct btrfs_delayed_node *node)
193 {
194         spin_lock(&root->lock);
195         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196                 root->nodes--;
197                 refcount_dec(&node->refs);      /* not in the list */
198                 list_del_init(&node->n_list);
199                 if (!list_empty(&node->p_list))
200                         list_del_init(&node->p_list);
201                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202         }
203         spin_unlock(&root->lock);
204 }
205
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207                         struct btrfs_delayed_root *delayed_root)
208 {
209         struct list_head *p;
210         struct btrfs_delayed_node *node = NULL;
211
212         spin_lock(&delayed_root->lock);
213         if (list_empty(&delayed_root->node_list))
214                 goto out;
215
216         p = delayed_root->node_list.next;
217         node = list_entry(p, struct btrfs_delayed_node, n_list);
218         refcount_inc(&node->refs);
219 out:
220         spin_unlock(&delayed_root->lock);
221
222         return node;
223 }
224
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226                                                 struct btrfs_delayed_node *node)
227 {
228         struct btrfs_delayed_root *delayed_root;
229         struct list_head *p;
230         struct btrfs_delayed_node *next = NULL;
231
232         delayed_root = node->root->fs_info->delayed_root;
233         spin_lock(&delayed_root->lock);
234         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235                 /* not in the list */
236                 if (list_empty(&delayed_root->node_list))
237                         goto out;
238                 p = delayed_root->node_list.next;
239         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240                 goto out;
241         else
242                 p = node->n_list.next;
243
244         next = list_entry(p, struct btrfs_delayed_node, n_list);
245         refcount_inc(&next->refs);
246 out:
247         spin_unlock(&delayed_root->lock);
248
249         return next;
250 }
251
252 static void __btrfs_release_delayed_node(
253                                 struct btrfs_delayed_node *delayed_node,
254                                 int mod)
255 {
256         struct btrfs_delayed_root *delayed_root;
257
258         if (!delayed_node)
259                 return;
260
261         delayed_root = delayed_node->root->fs_info->delayed_root;
262
263         mutex_lock(&delayed_node->mutex);
264         if (delayed_node->count)
265                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266         else
267                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268         mutex_unlock(&delayed_node->mutex);
269
270         if (refcount_dec_and_test(&delayed_node->refs)) {
271                 struct btrfs_root *root = delayed_node->root;
272
273                 spin_lock(&root->inode_lock);
274                 /*
275                  * Once our refcount goes to zero, nobody is allowed to bump it
276                  * back up.  We can delete it now.
277                  */
278                 ASSERT(refcount_read(&delayed_node->refs) == 0);
279                 radix_tree_delete(&root->delayed_nodes_tree,
280                                   delayed_node->inode_id);
281                 spin_unlock(&root->inode_lock);
282                 kmem_cache_free(delayed_node_cache, delayed_node);
283         }
284 }
285
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288         __btrfs_release_delayed_node(node, 0);
289 }
290
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292                                         struct btrfs_delayed_root *delayed_root)
293 {
294         struct list_head *p;
295         struct btrfs_delayed_node *node = NULL;
296
297         spin_lock(&delayed_root->lock);
298         if (list_empty(&delayed_root->prepare_list))
299                 goto out;
300
301         p = delayed_root->prepare_list.next;
302         list_del_init(p);
303         node = list_entry(p, struct btrfs_delayed_node, p_list);
304         refcount_inc(&node->refs);
305 out:
306         spin_unlock(&delayed_root->lock);
307
308         return node;
309 }
310
311 static inline void btrfs_release_prepared_delayed_node(
312                                         struct btrfs_delayed_node *node)
313 {
314         __btrfs_release_delayed_node(node, 1);
315 }
316
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319         struct btrfs_delayed_item *item;
320         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321         if (item) {
322                 item->data_len = data_len;
323                 item->ins_or_del = 0;
324                 item->bytes_reserved = 0;
325                 item->delayed_node = NULL;
326                 refcount_set(&item->refs, 1);
327         }
328         return item;
329 }
330
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:          the key to look up
335  * @prev:         used to store the prev item if the right item isn't found
336  * @next:         used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342                                 struct rb_root *root,
343                                 struct btrfs_key *key,
344                                 struct btrfs_delayed_item **prev,
345                                 struct btrfs_delayed_item **next)
346 {
347         struct rb_node *node, *prev_node = NULL;
348         struct btrfs_delayed_item *delayed_item = NULL;
349         int ret = 0;
350
351         node = root->rb_node;
352
353         while (node) {
354                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355                                         rb_node);
356                 prev_node = node;
357                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358                 if (ret < 0)
359                         node = node->rb_right;
360                 else if (ret > 0)
361                         node = node->rb_left;
362                 else
363                         return delayed_item;
364         }
365
366         if (prev) {
367                 if (!prev_node)
368                         *prev = NULL;
369                 else if (ret < 0)
370                         *prev = delayed_item;
371                 else if ((node = rb_prev(prev_node)) != NULL) {
372                         *prev = rb_entry(node, struct btrfs_delayed_item,
373                                          rb_node);
374                 } else
375                         *prev = NULL;
376         }
377
378         if (next) {
379                 if (!prev_node)
380                         *next = NULL;
381                 else if (ret > 0)
382                         *next = delayed_item;
383                 else if ((node = rb_next(prev_node)) != NULL) {
384                         *next = rb_entry(node, struct btrfs_delayed_item,
385                                          rb_node);
386                 } else
387                         *next = NULL;
388         }
389         return NULL;
390 }
391
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393                                         struct btrfs_delayed_node *delayed_node,
394                                         struct btrfs_key *key)
395 {
396         return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397                                            NULL, NULL);
398 }
399
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401                                     struct btrfs_delayed_item *ins,
402                                     int action)
403 {
404         struct rb_node **p, *node;
405         struct rb_node *parent_node = NULL;
406         struct rb_root_cached *root;
407         struct btrfs_delayed_item *item;
408         int cmp;
409         bool leftmost = true;
410
411         if (action == BTRFS_DELAYED_INSERTION_ITEM)
412                 root = &delayed_node->ins_root;
413         else if (action == BTRFS_DELAYED_DELETION_ITEM)
414                 root = &delayed_node->del_root;
415         else
416                 BUG();
417         p = &root->rb_root.rb_node;
418         node = &ins->rb_node;
419
420         while (*p) {
421                 parent_node = *p;
422                 item = rb_entry(parent_node, struct btrfs_delayed_item,
423                                  rb_node);
424
425                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426                 if (cmp < 0) {
427                         p = &(*p)->rb_right;
428                         leftmost = false;
429                 } else if (cmp > 0) {
430                         p = &(*p)->rb_left;
431                 } else {
432                         return -EEXIST;
433                 }
434         }
435
436         rb_link_node(node, parent_node, p);
437         rb_insert_color_cached(node, root, leftmost);
438         ins->delayed_node = delayed_node;
439         ins->ins_or_del = action;
440
441         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442             action == BTRFS_DELAYED_INSERTION_ITEM &&
443             ins->key.offset >= delayed_node->index_cnt)
444                         delayed_node->index_cnt = ins->key.offset + 1;
445
446         delayed_node->count++;
447         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448         return 0;
449 }
450
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452                                               struct btrfs_delayed_item *item)
453 {
454         return __btrfs_add_delayed_item(node, item,
455                                         BTRFS_DELAYED_INSERTION_ITEM);
456 }
457
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459                                              struct btrfs_delayed_item *item)
460 {
461         return __btrfs_add_delayed_item(node, item,
462                                         BTRFS_DELAYED_DELETION_ITEM);
463 }
464
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467         int seq = atomic_inc_return(&delayed_root->items_seq);
468
469         /* atomic_dec_return implies a barrier */
470         if ((atomic_dec_return(&delayed_root->items) <
471             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472                 cond_wake_up_nomb(&delayed_root->wait);
473 }
474
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477         struct rb_root_cached *root;
478         struct btrfs_delayed_root *delayed_root;
479
480         /* Not associated with any delayed_node */
481         if (!delayed_item->delayed_node)
482                 return;
483         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485         BUG_ON(!delayed_root);
486         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490                 root = &delayed_item->delayed_node->ins_root;
491         else
492                 root = &delayed_item->delayed_node->del_root;
493
494         rb_erase_cached(&delayed_item->rb_node, root);
495         delayed_item->delayed_node->count--;
496
497         finish_one_item(delayed_root);
498 }
499
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502         if (item) {
503                 __btrfs_remove_delayed_item(item);
504                 if (refcount_dec_and_test(&item->refs))
505                         kfree(item);
506         }
507 }
508
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510                                         struct btrfs_delayed_node *delayed_node)
511 {
512         struct rb_node *p;
513         struct btrfs_delayed_item *item = NULL;
514
515         p = rb_first_cached(&delayed_node->ins_root);
516         if (p)
517                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519         return item;
520 }
521
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523                                         struct btrfs_delayed_node *delayed_node)
524 {
525         struct rb_node *p;
526         struct btrfs_delayed_item *item = NULL;
527
528         p = rb_first_cached(&delayed_node->del_root);
529         if (p)
530                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532         return item;
533 }
534
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536                                                 struct btrfs_delayed_item *item)
537 {
538         struct rb_node *p;
539         struct btrfs_delayed_item *next = NULL;
540
541         p = rb_next(&item->rb_node);
542         if (p)
543                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545         return next;
546 }
547
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549                                                struct btrfs_root *root,
550                                                struct btrfs_delayed_item *item)
551 {
552         struct btrfs_block_rsv *src_rsv;
553         struct btrfs_block_rsv *dst_rsv;
554         struct btrfs_fs_info *fs_info = root->fs_info;
555         u64 num_bytes;
556         int ret;
557
558         if (!trans->bytes_reserved)
559                 return 0;
560
561         src_rsv = trans->block_rsv;
562         dst_rsv = &fs_info->delayed_block_rsv;
563
564         num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566         /*
567          * Here we migrate space rsv from transaction rsv, since have already
568          * reserved space when starting a transaction.  So no need to reserve
569          * qgroup space here.
570          */
571         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572         if (!ret) {
573                 trace_btrfs_space_reservation(fs_info, "delayed_item",
574                                               item->key.objectid,
575                                               num_bytes, 1);
576                 item->bytes_reserved = num_bytes;
577         }
578
579         return ret;
580 }
581
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583                                                 struct btrfs_delayed_item *item)
584 {
585         struct btrfs_block_rsv *rsv;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587
588         if (!item->bytes_reserved)
589                 return;
590
591         rsv = &fs_info->delayed_block_rsv;
592         /*
593          * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594          * to release/reserve qgroup space.
595          */
596         trace_btrfs_space_reservation(fs_info, "delayed_item",
597                                       item->key.objectid, item->bytes_reserved,
598                                       0);
599         btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601
602 static int btrfs_delayed_inode_reserve_metadata(
603                                         struct btrfs_trans_handle *trans,
604                                         struct btrfs_root *root,
605                                         struct btrfs_delayed_node *node)
606 {
607         struct btrfs_fs_info *fs_info = root->fs_info;
608         struct btrfs_block_rsv *src_rsv;
609         struct btrfs_block_rsv *dst_rsv;
610         u64 num_bytes;
611         int ret;
612
613         src_rsv = trans->block_rsv;
614         dst_rsv = &fs_info->delayed_block_rsv;
615
616         num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618         /*
619          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620          * which doesn't reserve space for speed.  This is a problem since we
621          * still need to reserve space for this update, so try to reserve the
622          * space.
623          *
624          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625          * we always reserve enough to update the inode item.
626          */
627         if (!src_rsv || (!trans->bytes_reserved &&
628                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629                 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630                                           BTRFS_QGROUP_RSV_META_PREALLOC, true);
631                 if (ret < 0)
632                         return ret;
633                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634                                           BTRFS_RESERVE_NO_FLUSH);
635                 /* NO_FLUSH could only fail with -ENOSPC */
636                 ASSERT(ret == 0 || ret == -ENOSPC);
637                 if (ret)
638                         btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639         } else {
640                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641         }
642
643         if (!ret) {
644                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
645                                               node->inode_id, num_bytes, 1);
646                 node->bytes_reserved = num_bytes;
647         }
648
649         return ret;
650 }
651
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653                                                 struct btrfs_delayed_node *node,
654                                                 bool qgroup_free)
655 {
656         struct btrfs_block_rsv *rsv;
657
658         if (!node->bytes_reserved)
659                 return;
660
661         rsv = &fs_info->delayed_block_rsv;
662         trace_btrfs_space_reservation(fs_info, "delayed_inode",
663                                       node->inode_id, node->bytes_reserved, 0);
664         btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665         if (qgroup_free)
666                 btrfs_qgroup_free_meta_prealloc(node->root,
667                                 node->bytes_reserved);
668         else
669                 btrfs_qgroup_convert_reserved_meta(node->root,
670                                 node->bytes_reserved);
671         node->bytes_reserved = 0;
672 }
673
674 /*
675  * This helper will insert some continuous items into the same leaf according
676  * to the free space of the leaf.
677  */
678 static int btrfs_batch_insert_items(struct btrfs_root *root,
679                                     struct btrfs_path *path,
680                                     struct btrfs_delayed_item *item)
681 {
682         struct btrfs_delayed_item *curr, *next;
683         int free_space;
684         int total_data_size = 0, total_size = 0;
685         struct extent_buffer *leaf;
686         char *data_ptr;
687         struct btrfs_key *keys;
688         u32 *data_size;
689         struct list_head head;
690         int slot;
691         int nitems;
692         int i;
693         int ret = 0;
694
695         BUG_ON(!path->nodes[0]);
696
697         leaf = path->nodes[0];
698         free_space = btrfs_leaf_free_space(leaf);
699         INIT_LIST_HEAD(&head);
700
701         next = item;
702         nitems = 0;
703
704         /*
705          * count the number of the continuous items that we can insert in batch
706          */
707         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
708                free_space) {
709                 total_data_size += next->data_len;
710                 total_size += next->data_len + sizeof(struct btrfs_item);
711                 list_add_tail(&next->tree_list, &head);
712                 nitems++;
713
714                 curr = next;
715                 next = __btrfs_next_delayed_item(curr);
716                 if (!next)
717                         break;
718
719                 if (!btrfs_is_continuous_delayed_item(curr, next))
720                         break;
721         }
722
723         if (!nitems) {
724                 ret = 0;
725                 goto out;
726         }
727
728         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
729         if (!keys) {
730                 ret = -ENOMEM;
731                 goto out;
732         }
733
734         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
735         if (!data_size) {
736                 ret = -ENOMEM;
737                 goto error;
738         }
739
740         /* get keys of all the delayed items */
741         i = 0;
742         list_for_each_entry(next, &head, tree_list) {
743                 keys[i] = next->key;
744                 data_size[i] = next->data_len;
745                 i++;
746         }
747
748         /* insert the keys of the items */
749         setup_items_for_insert(root, path, keys, data_size, nitems);
750
751         /* insert the dir index items */
752         slot = path->slots[0];
753         list_for_each_entry_safe(curr, next, &head, tree_list) {
754                 data_ptr = btrfs_item_ptr(leaf, slot, char);
755                 write_extent_buffer(leaf, &curr->data,
756                                     (unsigned long)data_ptr,
757                                     curr->data_len);
758                 slot++;
759
760                 btrfs_delayed_item_release_metadata(root, curr);
761
762                 list_del(&curr->tree_list);
763                 btrfs_release_delayed_item(curr);
764         }
765
766 error:
767         kfree(data_size);
768         kfree(keys);
769 out:
770         return ret;
771 }
772
773 /*
774  * This helper can just do simple insertion that needn't extend item for new
775  * data, such as directory name index insertion, inode insertion.
776  */
777 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
778                                      struct btrfs_root *root,
779                                      struct btrfs_path *path,
780                                      struct btrfs_delayed_item *delayed_item)
781 {
782         struct extent_buffer *leaf;
783         unsigned int nofs_flag;
784         char *ptr;
785         int ret;
786
787         nofs_flag = memalloc_nofs_save();
788         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
789                                       delayed_item->data_len);
790         memalloc_nofs_restore(nofs_flag);
791         if (ret < 0 && ret != -EEXIST)
792                 return ret;
793
794         leaf = path->nodes[0];
795
796         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
797
798         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
799                             delayed_item->data_len);
800         btrfs_mark_buffer_dirty(leaf);
801
802         btrfs_delayed_item_release_metadata(root, delayed_item);
803         return 0;
804 }
805
806 /*
807  * we insert an item first, then if there are some continuous items, we try
808  * to insert those items into the same leaf.
809  */
810 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
811                                       struct btrfs_path *path,
812                                       struct btrfs_root *root,
813                                       struct btrfs_delayed_node *node)
814 {
815         struct btrfs_delayed_item *curr, *prev;
816         int ret = 0;
817
818 do_again:
819         mutex_lock(&node->mutex);
820         curr = __btrfs_first_delayed_insertion_item(node);
821         if (!curr)
822                 goto insert_end;
823
824         ret = btrfs_insert_delayed_item(trans, root, path, curr);
825         if (ret < 0) {
826                 btrfs_release_path(path);
827                 goto insert_end;
828         }
829
830         prev = curr;
831         curr = __btrfs_next_delayed_item(prev);
832         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
833                 /* insert the continuous items into the same leaf */
834                 path->slots[0]++;
835                 btrfs_batch_insert_items(root, path, curr);
836         }
837         btrfs_release_delayed_item(prev);
838         btrfs_mark_buffer_dirty(path->nodes[0]);
839
840         btrfs_release_path(path);
841         mutex_unlock(&node->mutex);
842         goto do_again;
843
844 insert_end:
845         mutex_unlock(&node->mutex);
846         return ret;
847 }
848
849 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
850                                     struct btrfs_root *root,
851                                     struct btrfs_path *path,
852                                     struct btrfs_delayed_item *item)
853 {
854         struct btrfs_delayed_item *curr, *next;
855         struct extent_buffer *leaf;
856         struct btrfs_key key;
857         struct list_head head;
858         int nitems, i, last_item;
859         int ret = 0;
860
861         BUG_ON(!path->nodes[0]);
862
863         leaf = path->nodes[0];
864
865         i = path->slots[0];
866         last_item = btrfs_header_nritems(leaf) - 1;
867         if (i > last_item)
868                 return -ENOENT; /* FIXME: Is errno suitable? */
869
870         next = item;
871         INIT_LIST_HEAD(&head);
872         btrfs_item_key_to_cpu(leaf, &key, i);
873         nitems = 0;
874         /*
875          * count the number of the dir index items that we can delete in batch
876          */
877         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
878                 list_add_tail(&next->tree_list, &head);
879                 nitems++;
880
881                 curr = next;
882                 next = __btrfs_next_delayed_item(curr);
883                 if (!next)
884                         break;
885
886                 if (!btrfs_is_continuous_delayed_item(curr, next))
887                         break;
888
889                 i++;
890                 if (i > last_item)
891                         break;
892                 btrfs_item_key_to_cpu(leaf, &key, i);
893         }
894
895         if (!nitems)
896                 return 0;
897
898         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
899         if (ret)
900                 goto out;
901
902         list_for_each_entry_safe(curr, next, &head, tree_list) {
903                 btrfs_delayed_item_release_metadata(root, curr);
904                 list_del(&curr->tree_list);
905                 btrfs_release_delayed_item(curr);
906         }
907
908 out:
909         return ret;
910 }
911
912 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
913                                       struct btrfs_path *path,
914                                       struct btrfs_root *root,
915                                       struct btrfs_delayed_node *node)
916 {
917         struct btrfs_delayed_item *curr, *prev;
918         unsigned int nofs_flag;
919         int ret = 0;
920
921 do_again:
922         mutex_lock(&node->mutex);
923         curr = __btrfs_first_delayed_deletion_item(node);
924         if (!curr)
925                 goto delete_fail;
926
927         nofs_flag = memalloc_nofs_save();
928         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
929         memalloc_nofs_restore(nofs_flag);
930         if (ret < 0)
931                 goto delete_fail;
932         else if (ret > 0) {
933                 /*
934                  * can't find the item which the node points to, so this node
935                  * is invalid, just drop it.
936                  */
937                 prev = curr;
938                 curr = __btrfs_next_delayed_item(prev);
939                 btrfs_release_delayed_item(prev);
940                 ret = 0;
941                 btrfs_release_path(path);
942                 if (curr) {
943                         mutex_unlock(&node->mutex);
944                         goto do_again;
945                 } else
946                         goto delete_fail;
947         }
948
949         btrfs_batch_delete_items(trans, root, path, curr);
950         btrfs_release_path(path);
951         mutex_unlock(&node->mutex);
952         goto do_again;
953
954 delete_fail:
955         btrfs_release_path(path);
956         mutex_unlock(&node->mutex);
957         return ret;
958 }
959
960 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
961 {
962         struct btrfs_delayed_root *delayed_root;
963
964         if (delayed_node &&
965             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
966                 BUG_ON(!delayed_node->root);
967                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
968                 delayed_node->count--;
969
970                 delayed_root = delayed_node->root->fs_info->delayed_root;
971                 finish_one_item(delayed_root);
972         }
973 }
974
975 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
976 {
977
978         if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
979                 struct btrfs_delayed_root *delayed_root;
980
981                 ASSERT(delayed_node->root);
982                 delayed_node->count--;
983
984                 delayed_root = delayed_node->root->fs_info->delayed_root;
985                 finish_one_item(delayed_root);
986         }
987 }
988
989 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
990                                         struct btrfs_root *root,
991                                         struct btrfs_path *path,
992                                         struct btrfs_delayed_node *node)
993 {
994         struct btrfs_fs_info *fs_info = root->fs_info;
995         struct btrfs_key key;
996         struct btrfs_inode_item *inode_item;
997         struct extent_buffer *leaf;
998         unsigned int nofs_flag;
999         int mod;
1000         int ret;
1001
1002         key.objectid = node->inode_id;
1003         key.type = BTRFS_INODE_ITEM_KEY;
1004         key.offset = 0;
1005
1006         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1007                 mod = -1;
1008         else
1009                 mod = 1;
1010
1011         nofs_flag = memalloc_nofs_save();
1012         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1013         memalloc_nofs_restore(nofs_flag);
1014         if (ret > 0)
1015                 ret = -ENOENT;
1016         if (ret < 0)
1017                 goto out;
1018
1019         leaf = path->nodes[0];
1020         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1021                                     struct btrfs_inode_item);
1022         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1023                             sizeof(struct btrfs_inode_item));
1024         btrfs_mark_buffer_dirty(leaf);
1025
1026         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027                 goto out;
1028
1029         path->slots[0]++;
1030         if (path->slots[0] >= btrfs_header_nritems(leaf))
1031                 goto search;
1032 again:
1033         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1034         if (key.objectid != node->inode_id)
1035                 goto out;
1036
1037         if (key.type != BTRFS_INODE_REF_KEY &&
1038             key.type != BTRFS_INODE_EXTREF_KEY)
1039                 goto out;
1040
1041         /*
1042          * Delayed iref deletion is for the inode who has only one link,
1043          * so there is only one iref. The case that several irefs are
1044          * in the same item doesn't exist.
1045          */
1046         btrfs_del_item(trans, root, path);
1047 out:
1048         btrfs_release_delayed_iref(node);
1049         btrfs_release_path(path);
1050 err_out:
1051         btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1052         btrfs_release_delayed_inode(node);
1053
1054         /*
1055          * If we fail to update the delayed inode we need to abort the
1056          * transaction, because we could leave the inode with the improper
1057          * counts behind.
1058          */
1059         if (ret && ret != -ENOENT)
1060                 btrfs_abort_transaction(trans, ret);
1061
1062         return ret;
1063
1064 search:
1065         btrfs_release_path(path);
1066
1067         key.type = BTRFS_INODE_EXTREF_KEY;
1068         key.offset = -1;
1069
1070         nofs_flag = memalloc_nofs_save();
1071         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1072         memalloc_nofs_restore(nofs_flag);
1073         if (ret < 0)
1074                 goto err_out;
1075         ASSERT(ret);
1076
1077         ret = 0;
1078         leaf = path->nodes[0];
1079         path->slots[0]--;
1080         goto again;
1081 }
1082
1083 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1084                                              struct btrfs_root *root,
1085                                              struct btrfs_path *path,
1086                                              struct btrfs_delayed_node *node)
1087 {
1088         int ret;
1089
1090         mutex_lock(&node->mutex);
1091         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1092                 mutex_unlock(&node->mutex);
1093                 return 0;
1094         }
1095
1096         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1097         mutex_unlock(&node->mutex);
1098         return ret;
1099 }
1100
1101 static inline int
1102 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1103                                    struct btrfs_path *path,
1104                                    struct btrfs_delayed_node *node)
1105 {
1106         int ret;
1107
1108         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1109         if (ret)
1110                 return ret;
1111
1112         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1113         if (ret)
1114                 return ret;
1115
1116         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1117         return ret;
1118 }
1119
1120 /*
1121  * Called when committing the transaction.
1122  * Returns 0 on success.
1123  * Returns < 0 on error and returns with an aborted transaction with any
1124  * outstanding delayed items cleaned up.
1125  */
1126 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1127 {
1128         struct btrfs_fs_info *fs_info = trans->fs_info;
1129         struct btrfs_delayed_root *delayed_root;
1130         struct btrfs_delayed_node *curr_node, *prev_node;
1131         struct btrfs_path *path;
1132         struct btrfs_block_rsv *block_rsv;
1133         int ret = 0;
1134         bool count = (nr > 0);
1135
1136         if (TRANS_ABORTED(trans))
1137                 return -EIO;
1138
1139         path = btrfs_alloc_path();
1140         if (!path)
1141                 return -ENOMEM;
1142
1143         block_rsv = trans->block_rsv;
1144         trans->block_rsv = &fs_info->delayed_block_rsv;
1145
1146         delayed_root = fs_info->delayed_root;
1147
1148         curr_node = btrfs_first_delayed_node(delayed_root);
1149         while (curr_node && (!count || nr--)) {
1150                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1151                                                          curr_node);
1152                 if (ret) {
1153                         btrfs_release_delayed_node(curr_node);
1154                         curr_node = NULL;
1155                         btrfs_abort_transaction(trans, ret);
1156                         break;
1157                 }
1158
1159                 prev_node = curr_node;
1160                 curr_node = btrfs_next_delayed_node(curr_node);
1161                 btrfs_release_delayed_node(prev_node);
1162         }
1163
1164         if (curr_node)
1165                 btrfs_release_delayed_node(curr_node);
1166         btrfs_free_path(path);
1167         trans->block_rsv = block_rsv;
1168
1169         return ret;
1170 }
1171
1172 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1173 {
1174         return __btrfs_run_delayed_items(trans, -1);
1175 }
1176
1177 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1178 {
1179         return __btrfs_run_delayed_items(trans, nr);
1180 }
1181
1182 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1183                                      struct btrfs_inode *inode)
1184 {
1185         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1186         struct btrfs_path *path;
1187         struct btrfs_block_rsv *block_rsv;
1188         int ret;
1189
1190         if (!delayed_node)
1191                 return 0;
1192
1193         mutex_lock(&delayed_node->mutex);
1194         if (!delayed_node->count) {
1195                 mutex_unlock(&delayed_node->mutex);
1196                 btrfs_release_delayed_node(delayed_node);
1197                 return 0;
1198         }
1199         mutex_unlock(&delayed_node->mutex);
1200
1201         path = btrfs_alloc_path();
1202         if (!path) {
1203                 btrfs_release_delayed_node(delayed_node);
1204                 return -ENOMEM;
1205         }
1206
1207         block_rsv = trans->block_rsv;
1208         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1209
1210         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1211
1212         btrfs_release_delayed_node(delayed_node);
1213         btrfs_free_path(path);
1214         trans->block_rsv = block_rsv;
1215
1216         return ret;
1217 }
1218
1219 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1220 {
1221         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1222         struct btrfs_trans_handle *trans;
1223         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224         struct btrfs_path *path;
1225         struct btrfs_block_rsv *block_rsv;
1226         int ret;
1227
1228         if (!delayed_node)
1229                 return 0;
1230
1231         mutex_lock(&delayed_node->mutex);
1232         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1233                 mutex_unlock(&delayed_node->mutex);
1234                 btrfs_release_delayed_node(delayed_node);
1235                 return 0;
1236         }
1237         mutex_unlock(&delayed_node->mutex);
1238
1239         trans = btrfs_join_transaction(delayed_node->root);
1240         if (IS_ERR(trans)) {
1241                 ret = PTR_ERR(trans);
1242                 goto out;
1243         }
1244
1245         path = btrfs_alloc_path();
1246         if (!path) {
1247                 ret = -ENOMEM;
1248                 goto trans_out;
1249         }
1250
1251         block_rsv = trans->block_rsv;
1252         trans->block_rsv = &fs_info->delayed_block_rsv;
1253
1254         mutex_lock(&delayed_node->mutex);
1255         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1256                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1257                                                    path, delayed_node);
1258         else
1259                 ret = 0;
1260         mutex_unlock(&delayed_node->mutex);
1261
1262         btrfs_free_path(path);
1263         trans->block_rsv = block_rsv;
1264 trans_out:
1265         btrfs_end_transaction(trans);
1266         btrfs_btree_balance_dirty(fs_info);
1267 out:
1268         btrfs_release_delayed_node(delayed_node);
1269
1270         return ret;
1271 }
1272
1273 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1274 {
1275         struct btrfs_delayed_node *delayed_node;
1276
1277         delayed_node = READ_ONCE(inode->delayed_node);
1278         if (!delayed_node)
1279                 return;
1280
1281         inode->delayed_node = NULL;
1282         btrfs_release_delayed_node(delayed_node);
1283 }
1284
1285 struct btrfs_async_delayed_work {
1286         struct btrfs_delayed_root *delayed_root;
1287         int nr;
1288         struct btrfs_work work;
1289 };
1290
1291 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1292 {
1293         struct btrfs_async_delayed_work *async_work;
1294         struct btrfs_delayed_root *delayed_root;
1295         struct btrfs_trans_handle *trans;
1296         struct btrfs_path *path;
1297         struct btrfs_delayed_node *delayed_node = NULL;
1298         struct btrfs_root *root;
1299         struct btrfs_block_rsv *block_rsv;
1300         int total_done = 0;
1301
1302         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1303         delayed_root = async_work->delayed_root;
1304
1305         path = btrfs_alloc_path();
1306         if (!path)
1307                 goto out;
1308
1309         do {
1310                 if (atomic_read(&delayed_root->items) <
1311                     BTRFS_DELAYED_BACKGROUND / 2)
1312                         break;
1313
1314                 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1315                 if (!delayed_node)
1316                         break;
1317
1318                 root = delayed_node->root;
1319
1320                 trans = btrfs_join_transaction(root);
1321                 if (IS_ERR(trans)) {
1322                         btrfs_release_path(path);
1323                         btrfs_release_prepared_delayed_node(delayed_node);
1324                         total_done++;
1325                         continue;
1326                 }
1327
1328                 block_rsv = trans->block_rsv;
1329                 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1330
1331                 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1332
1333                 trans->block_rsv = block_rsv;
1334                 btrfs_end_transaction(trans);
1335                 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1336
1337                 btrfs_release_path(path);
1338                 btrfs_release_prepared_delayed_node(delayed_node);
1339                 total_done++;
1340
1341         } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1342                  || total_done < async_work->nr);
1343
1344         btrfs_free_path(path);
1345 out:
1346         wake_up(&delayed_root->wait);
1347         kfree(async_work);
1348 }
1349
1350
1351 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1352                                      struct btrfs_fs_info *fs_info, int nr)
1353 {
1354         struct btrfs_async_delayed_work *async_work;
1355
1356         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1357         if (!async_work)
1358                 return -ENOMEM;
1359
1360         async_work->delayed_root = delayed_root;
1361         btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1362                         NULL);
1363         async_work->nr = nr;
1364
1365         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1366         return 0;
1367 }
1368
1369 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1370 {
1371         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1372 }
1373
1374 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1375 {
1376         int val = atomic_read(&delayed_root->items_seq);
1377
1378         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1379                 return 1;
1380
1381         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1382                 return 1;
1383
1384         return 0;
1385 }
1386
1387 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1388 {
1389         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1390
1391         if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1392                 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1393                 return;
1394
1395         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1396                 int seq;
1397                 int ret;
1398
1399                 seq = atomic_read(&delayed_root->items_seq);
1400
1401                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1402                 if (ret)
1403                         return;
1404
1405                 wait_event_interruptible(delayed_root->wait,
1406                                          could_end_wait(delayed_root, seq));
1407                 return;
1408         }
1409
1410         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1411 }
1412
1413 /* Will return 0 or -ENOMEM */
1414 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1415                                    const char *name, int name_len,
1416                                    struct btrfs_inode *dir,
1417                                    struct btrfs_disk_key *disk_key, u8 type,
1418                                    u64 index)
1419 {
1420         struct btrfs_delayed_node *delayed_node;
1421         struct btrfs_delayed_item *delayed_item;
1422         struct btrfs_dir_item *dir_item;
1423         int ret;
1424
1425         delayed_node = btrfs_get_or_create_delayed_node(dir);
1426         if (IS_ERR(delayed_node))
1427                 return PTR_ERR(delayed_node);
1428
1429         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1430         if (!delayed_item) {
1431                 ret = -ENOMEM;
1432                 goto release_node;
1433         }
1434
1435         delayed_item->key.objectid = btrfs_ino(dir);
1436         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1437         delayed_item->key.offset = index;
1438
1439         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1440         dir_item->location = *disk_key;
1441         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1442         btrfs_set_stack_dir_data_len(dir_item, 0);
1443         btrfs_set_stack_dir_name_len(dir_item, name_len);
1444         btrfs_set_stack_dir_type(dir_item, type);
1445         memcpy((char *)(dir_item + 1), name, name_len);
1446
1447         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1448         /*
1449          * we have reserved enough space when we start a new transaction,
1450          * so reserving metadata failure is impossible
1451          */
1452         BUG_ON(ret);
1453
1454         mutex_lock(&delayed_node->mutex);
1455         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1456         if (unlikely(ret)) {
1457                 btrfs_err(trans->fs_info,
1458                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1459                           name_len, name, delayed_node->root->root_key.objectid,
1460                           delayed_node->inode_id, ret);
1461                 BUG();
1462         }
1463         mutex_unlock(&delayed_node->mutex);
1464
1465 release_node:
1466         btrfs_release_delayed_node(delayed_node);
1467         return ret;
1468 }
1469
1470 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471                                                struct btrfs_delayed_node *node,
1472                                                struct btrfs_key *key)
1473 {
1474         struct btrfs_delayed_item *item;
1475
1476         mutex_lock(&node->mutex);
1477         item = __btrfs_lookup_delayed_insertion_item(node, key);
1478         if (!item) {
1479                 mutex_unlock(&node->mutex);
1480                 return 1;
1481         }
1482
1483         btrfs_delayed_item_release_metadata(node->root, item);
1484         btrfs_release_delayed_item(item);
1485         mutex_unlock(&node->mutex);
1486         return 0;
1487 }
1488
1489 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490                                    struct btrfs_inode *dir, u64 index)
1491 {
1492         struct btrfs_delayed_node *node;
1493         struct btrfs_delayed_item *item;
1494         struct btrfs_key item_key;
1495         int ret;
1496
1497         node = btrfs_get_or_create_delayed_node(dir);
1498         if (IS_ERR(node))
1499                 return PTR_ERR(node);
1500
1501         item_key.objectid = btrfs_ino(dir);
1502         item_key.type = BTRFS_DIR_INDEX_KEY;
1503         item_key.offset = index;
1504
1505         ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1506                                                   &item_key);
1507         if (!ret)
1508                 goto end;
1509
1510         item = btrfs_alloc_delayed_item(0);
1511         if (!item) {
1512                 ret = -ENOMEM;
1513                 goto end;
1514         }
1515
1516         item->key = item_key;
1517
1518         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1519         /*
1520          * we have reserved enough space when we start a new transaction,
1521          * so reserving metadata failure is impossible.
1522          */
1523         if (ret < 0) {
1524                 btrfs_err(trans->fs_info,
1525 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1526                 btrfs_release_delayed_item(item);
1527                 goto end;
1528         }
1529
1530         mutex_lock(&node->mutex);
1531         ret = __btrfs_add_delayed_deletion_item(node, item);
1532         if (unlikely(ret)) {
1533                 btrfs_err(trans->fs_info,
1534                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1535                           index, node->root->root_key.objectid,
1536                           node->inode_id, ret);
1537                 btrfs_delayed_item_release_metadata(dir->root, item);
1538                 btrfs_release_delayed_item(item);
1539         }
1540         mutex_unlock(&node->mutex);
1541 end:
1542         btrfs_release_delayed_node(node);
1543         return ret;
1544 }
1545
1546 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1547 {
1548         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1549
1550         if (!delayed_node)
1551                 return -ENOENT;
1552
1553         /*
1554          * Since we have held i_mutex of this directory, it is impossible that
1555          * a new directory index is added into the delayed node and index_cnt
1556          * is updated now. So we needn't lock the delayed node.
1557          */
1558         if (!delayed_node->index_cnt) {
1559                 btrfs_release_delayed_node(delayed_node);
1560                 return -EINVAL;
1561         }
1562
1563         inode->index_cnt = delayed_node->index_cnt;
1564         btrfs_release_delayed_node(delayed_node);
1565         return 0;
1566 }
1567
1568 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1569                                      struct list_head *ins_list,
1570                                      struct list_head *del_list)
1571 {
1572         struct btrfs_delayed_node *delayed_node;
1573         struct btrfs_delayed_item *item;
1574
1575         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1576         if (!delayed_node)
1577                 return false;
1578
1579         /*
1580          * We can only do one readdir with delayed items at a time because of
1581          * item->readdir_list.
1582          */
1583         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1584         btrfs_inode_lock(inode, 0);
1585
1586         mutex_lock(&delayed_node->mutex);
1587         item = __btrfs_first_delayed_insertion_item(delayed_node);
1588         while (item) {
1589                 refcount_inc(&item->refs);
1590                 list_add_tail(&item->readdir_list, ins_list);
1591                 item = __btrfs_next_delayed_item(item);
1592         }
1593
1594         item = __btrfs_first_delayed_deletion_item(delayed_node);
1595         while (item) {
1596                 refcount_inc(&item->refs);
1597                 list_add_tail(&item->readdir_list, del_list);
1598                 item = __btrfs_next_delayed_item(item);
1599         }
1600         mutex_unlock(&delayed_node->mutex);
1601         /*
1602          * This delayed node is still cached in the btrfs inode, so refs
1603          * must be > 1 now, and we needn't check it is going to be freed
1604          * or not.
1605          *
1606          * Besides that, this function is used to read dir, we do not
1607          * insert/delete delayed items in this period. So we also needn't
1608          * requeue or dequeue this delayed node.
1609          */
1610         refcount_dec(&delayed_node->refs);
1611
1612         return true;
1613 }
1614
1615 void btrfs_readdir_put_delayed_items(struct inode *inode,
1616                                      struct list_head *ins_list,
1617                                      struct list_head *del_list)
1618 {
1619         struct btrfs_delayed_item *curr, *next;
1620
1621         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1622                 list_del(&curr->readdir_list);
1623                 if (refcount_dec_and_test(&curr->refs))
1624                         kfree(curr);
1625         }
1626
1627         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1628                 list_del(&curr->readdir_list);
1629                 if (refcount_dec_and_test(&curr->refs))
1630                         kfree(curr);
1631         }
1632
1633         /*
1634          * The VFS is going to do up_read(), so we need to downgrade back to a
1635          * read lock.
1636          */
1637         downgrade_write(&inode->i_rwsem);
1638 }
1639
1640 int btrfs_should_delete_dir_index(struct list_head *del_list,
1641                                   u64 index)
1642 {
1643         struct btrfs_delayed_item *curr;
1644         int ret = 0;
1645
1646         list_for_each_entry(curr, del_list, readdir_list) {
1647                 if (curr->key.offset > index)
1648                         break;
1649                 if (curr->key.offset == index) {
1650                         ret = 1;
1651                         break;
1652                 }
1653         }
1654         return ret;
1655 }
1656
1657 /*
1658  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1659  *
1660  */
1661 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1662                                     struct list_head *ins_list)
1663 {
1664         struct btrfs_dir_item *di;
1665         struct btrfs_delayed_item *curr, *next;
1666         struct btrfs_key location;
1667         char *name;
1668         int name_len;
1669         int over = 0;
1670         unsigned char d_type;
1671
1672         if (list_empty(ins_list))
1673                 return 0;
1674
1675         /*
1676          * Changing the data of the delayed item is impossible. So
1677          * we needn't lock them. And we have held i_mutex of the
1678          * directory, nobody can delete any directory indexes now.
1679          */
1680         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1681                 list_del(&curr->readdir_list);
1682
1683                 if (curr->key.offset < ctx->pos) {
1684                         if (refcount_dec_and_test(&curr->refs))
1685                                 kfree(curr);
1686                         continue;
1687                 }
1688
1689                 ctx->pos = curr->key.offset;
1690
1691                 di = (struct btrfs_dir_item *)curr->data;
1692                 name = (char *)(di + 1);
1693                 name_len = btrfs_stack_dir_name_len(di);
1694
1695                 d_type = fs_ftype_to_dtype(di->type);
1696                 btrfs_disk_key_to_cpu(&location, &di->location);
1697
1698                 over = !dir_emit(ctx, name, name_len,
1699                                location.objectid, d_type);
1700
1701                 if (refcount_dec_and_test(&curr->refs))
1702                         kfree(curr);
1703
1704                 if (over)
1705                         return 1;
1706                 ctx->pos++;
1707         }
1708         return 0;
1709 }
1710
1711 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1712                                   struct btrfs_inode_item *inode_item,
1713                                   struct inode *inode)
1714 {
1715         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1716         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1717         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1718         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1719         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1720         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1721         btrfs_set_stack_inode_generation(inode_item,
1722                                          BTRFS_I(inode)->generation);
1723         btrfs_set_stack_inode_sequence(inode_item,
1724                                        inode_peek_iversion(inode));
1725         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1726         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1727         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1728         btrfs_set_stack_inode_block_group(inode_item, 0);
1729
1730         btrfs_set_stack_timespec_sec(&inode_item->atime,
1731                                      inode->i_atime.tv_sec);
1732         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1733                                       inode->i_atime.tv_nsec);
1734
1735         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1736                                      inode->i_mtime.tv_sec);
1737         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1738                                       inode->i_mtime.tv_nsec);
1739
1740         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1741                                      inode->i_ctime.tv_sec);
1742         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1743                                       inode->i_ctime.tv_nsec);
1744
1745         btrfs_set_stack_timespec_sec(&inode_item->otime,
1746                                      BTRFS_I(inode)->i_otime.tv_sec);
1747         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1748                                      BTRFS_I(inode)->i_otime.tv_nsec);
1749 }
1750
1751 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1752 {
1753         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1754         struct btrfs_delayed_node *delayed_node;
1755         struct btrfs_inode_item *inode_item;
1756
1757         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1758         if (!delayed_node)
1759                 return -ENOENT;
1760
1761         mutex_lock(&delayed_node->mutex);
1762         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1763                 mutex_unlock(&delayed_node->mutex);
1764                 btrfs_release_delayed_node(delayed_node);
1765                 return -ENOENT;
1766         }
1767
1768         inode_item = &delayed_node->inode_item;
1769
1770         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1771         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1772         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1773         btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1774                         round_up(i_size_read(inode), fs_info->sectorsize));
1775         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1776         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1777         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1778         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1779         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1780
1781         inode_set_iversion_queried(inode,
1782                                    btrfs_stack_inode_sequence(inode_item));
1783         inode->i_rdev = 0;
1784         *rdev = btrfs_stack_inode_rdev(inode_item);
1785         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1786
1787         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1788         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1789
1790         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1791         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1792
1793         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1794         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1795
1796         BTRFS_I(inode)->i_otime.tv_sec =
1797                 btrfs_stack_timespec_sec(&inode_item->otime);
1798         BTRFS_I(inode)->i_otime.tv_nsec =
1799                 btrfs_stack_timespec_nsec(&inode_item->otime);
1800
1801         inode->i_generation = BTRFS_I(inode)->generation;
1802         BTRFS_I(inode)->index_cnt = (u64)-1;
1803
1804         mutex_unlock(&delayed_node->mutex);
1805         btrfs_release_delayed_node(delayed_node);
1806         return 0;
1807 }
1808
1809 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1810                                struct btrfs_root *root,
1811                                struct btrfs_inode *inode)
1812 {
1813         struct btrfs_delayed_node *delayed_node;
1814         int ret = 0;
1815
1816         delayed_node = btrfs_get_or_create_delayed_node(inode);
1817         if (IS_ERR(delayed_node))
1818                 return PTR_ERR(delayed_node);
1819
1820         mutex_lock(&delayed_node->mutex);
1821         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822                 fill_stack_inode_item(trans, &delayed_node->inode_item,
1823                                       &inode->vfs_inode);
1824                 goto release_node;
1825         }
1826
1827         ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1828         if (ret)
1829                 goto release_node;
1830
1831         fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1832         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833         delayed_node->count++;
1834         atomic_inc(&root->fs_info->delayed_root->items);
1835 release_node:
1836         mutex_unlock(&delayed_node->mutex);
1837         btrfs_release_delayed_node(delayed_node);
1838         return ret;
1839 }
1840
1841 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842 {
1843         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1844         struct btrfs_delayed_node *delayed_node;
1845
1846         /*
1847          * we don't do delayed inode updates during log recovery because it
1848          * leads to enospc problems.  This means we also can't do
1849          * delayed inode refs
1850          */
1851         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852                 return -EAGAIN;
1853
1854         delayed_node = btrfs_get_or_create_delayed_node(inode);
1855         if (IS_ERR(delayed_node))
1856                 return PTR_ERR(delayed_node);
1857
1858         /*
1859          * We don't reserve space for inode ref deletion is because:
1860          * - We ONLY do async inode ref deletion for the inode who has only
1861          *   one link(i_nlink == 1), it means there is only one inode ref.
1862          *   And in most case, the inode ref and the inode item are in the
1863          *   same leaf, and we will deal with them at the same time.
1864          *   Since we are sure we will reserve the space for the inode item,
1865          *   it is unnecessary to reserve space for inode ref deletion.
1866          * - If the inode ref and the inode item are not in the same leaf,
1867          *   We also needn't worry about enospc problem, because we reserve
1868          *   much more space for the inode update than it needs.
1869          * - At the worst, we can steal some space from the global reservation.
1870          *   It is very rare.
1871          */
1872         mutex_lock(&delayed_node->mutex);
1873         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1874                 goto release_node;
1875
1876         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1877         delayed_node->count++;
1878         atomic_inc(&fs_info->delayed_root->items);
1879 release_node:
1880         mutex_unlock(&delayed_node->mutex);
1881         btrfs_release_delayed_node(delayed_node);
1882         return 0;
1883 }
1884
1885 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886 {
1887         struct btrfs_root *root = delayed_node->root;
1888         struct btrfs_fs_info *fs_info = root->fs_info;
1889         struct btrfs_delayed_item *curr_item, *prev_item;
1890
1891         mutex_lock(&delayed_node->mutex);
1892         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893         while (curr_item) {
1894                 btrfs_delayed_item_release_metadata(root, curr_item);
1895                 prev_item = curr_item;
1896                 curr_item = __btrfs_next_delayed_item(prev_item);
1897                 btrfs_release_delayed_item(prev_item);
1898         }
1899
1900         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901         while (curr_item) {
1902                 btrfs_delayed_item_release_metadata(root, curr_item);
1903                 prev_item = curr_item;
1904                 curr_item = __btrfs_next_delayed_item(prev_item);
1905                 btrfs_release_delayed_item(prev_item);
1906         }
1907
1908         btrfs_release_delayed_iref(delayed_node);
1909
1910         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1911                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1912                 btrfs_release_delayed_inode(delayed_node);
1913         }
1914         mutex_unlock(&delayed_node->mutex);
1915 }
1916
1917 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1918 {
1919         struct btrfs_delayed_node *delayed_node;
1920
1921         delayed_node = btrfs_get_delayed_node(inode);
1922         if (!delayed_node)
1923                 return;
1924
1925         __btrfs_kill_delayed_node(delayed_node);
1926         btrfs_release_delayed_node(delayed_node);
1927 }
1928
1929 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1930 {
1931         u64 inode_id = 0;
1932         struct btrfs_delayed_node *delayed_nodes[8];
1933         int i, n;
1934
1935         while (1) {
1936                 spin_lock(&root->inode_lock);
1937                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1938                                            (void **)delayed_nodes, inode_id,
1939                                            ARRAY_SIZE(delayed_nodes));
1940                 if (!n) {
1941                         spin_unlock(&root->inode_lock);
1942                         break;
1943                 }
1944
1945                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1946                 for (i = 0; i < n; i++) {
1947                         /*
1948                          * Don't increase refs in case the node is dead and
1949                          * about to be removed from the tree in the loop below
1950                          */
1951                         if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1952                                 delayed_nodes[i] = NULL;
1953                 }
1954                 spin_unlock(&root->inode_lock);
1955
1956                 for (i = 0; i < n; i++) {
1957                         if (!delayed_nodes[i])
1958                                 continue;
1959                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1960                         btrfs_release_delayed_node(delayed_nodes[i]);
1961                 }
1962         }
1963 }
1964
1965 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1966 {
1967         struct btrfs_delayed_node *curr_node, *prev_node;
1968
1969         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1970         while (curr_node) {
1971                 __btrfs_kill_delayed_node(curr_node);
1972
1973                 prev_node = curr_node;
1974                 curr_node = btrfs_next_delayed_node(curr_node);
1975                 btrfs_release_delayed_node(prev_node);
1976         }
1977 }
1978
This page took 0.148784 seconds and 4 git commands to generate.