2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
44 #include <asm/tlbflush.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
56 int migrate_prep(void)
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
77 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 struct address_space *mapping;
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
90 if (unlikely(!get_page_unless_zero(page)))
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
98 if (unlikely(!__PageMovable(page)))
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
111 if (unlikely(!trylock_page(page)))
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
141 struct address_space *mapping;
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
160 void putback_movable_pages(struct list_head *l)
165 list_for_each_entry_safe(page, page2, l, lru) {
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
170 list_del(&page->lru);
172 * We isolated non-lru movable page so here we can use
173 * __PageMovable because LRU page's mapping cannot have
174 * PAGE_MAPPING_MOVABLE.
176 if (unlikely(__PageMovable(page))) {
177 VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 if (PageMovable(page))
180 putback_movable_page(page);
182 __ClearPageIsolated(page);
186 putback_lru_page(page);
187 dec_node_page_state(page, NR_ISOLATED_ANON +
188 page_is_file_cache(page));
194 * Restore a potential migration pte to a working pte entry
196 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
199 struct page_vma_mapped_walk pvmw = {
203 .flags = PVMW_SYNC | PVMW_MIGRATION,
209 VM_BUG_ON_PAGE(PageTail(page), page);
210 while (page_vma_mapped_walk(&pvmw)) {
211 new = page - pvmw.page->index +
212 linear_page_index(vma, pvmw.address);
215 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
216 if (pte_swp_soft_dirty(*pvmw.pte))
217 pte = pte_mksoft_dirty(pte);
220 * Recheck VMA as permissions can change since migration started
222 entry = pte_to_swp_entry(*pvmw.pte);
223 if (is_write_migration_entry(entry))
224 pte = maybe_mkwrite(pte, vma);
226 #ifdef CONFIG_HUGETLB_PAGE
228 pte = pte_mkhuge(pte);
229 pte = arch_make_huge_pte(pte, vma, new, 0);
232 flush_dcache_page(new);
233 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
237 hugepage_add_anon_rmap(new, vma, pvmw.address);
239 page_dup_rmap(new, true);
240 } else if (PageAnon(new))
241 page_add_anon_rmap(new, vma, pvmw.address, false);
243 page_add_file_rmap(new, false);
245 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
248 /* No need to invalidate - it was non-present before */
249 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 * Get rid of all migration entries and replace them by
257 * references to the indicated page.
259 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
261 struct rmap_walk_control rwc = {
262 .rmap_one = remove_migration_pte,
267 rmap_walk_locked(new, &rwc);
269 rmap_walk(new, &rwc);
273 * Something used the pte of a page under migration. We need to
274 * get to the page and wait until migration is finished.
275 * When we return from this function the fault will be retried.
277 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
286 if (!is_swap_pte(pte))
289 entry = pte_to_swp_entry(pte);
290 if (!is_migration_entry(entry))
293 page = migration_entry_to_page(entry);
296 * Once radix-tree replacement of page migration started, page_count
297 * *must* be zero. And, we don't want to call wait_on_page_locked()
298 * against a page without get_page().
299 * So, we use get_page_unless_zero(), here. Even failed, page fault
302 if (!get_page_unless_zero(page))
304 pte_unmap_unlock(ptep, ptl);
305 wait_on_page_locked(page);
309 pte_unmap_unlock(ptep, ptl);
312 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
313 unsigned long address)
315 spinlock_t *ptl = pte_lockptr(mm, pmd);
316 pte_t *ptep = pte_offset_map(pmd, address);
317 __migration_entry_wait(mm, ptep, ptl);
320 void migration_entry_wait_huge(struct vm_area_struct *vma,
321 struct mm_struct *mm, pte_t *pte)
323 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
324 __migration_entry_wait(mm, pte, ptl);
328 /* Returns true if all buffers are successfully locked */
329 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
330 enum migrate_mode mode)
332 struct buffer_head *bh = head;
334 /* Simple case, sync compaction */
335 if (mode != MIGRATE_ASYNC) {
339 bh = bh->b_this_page;
341 } while (bh != head);
346 /* async case, we cannot block on lock_buffer so use trylock_buffer */
349 if (!trylock_buffer(bh)) {
351 * We failed to lock the buffer and cannot stall in
352 * async migration. Release the taken locks
354 struct buffer_head *failed_bh = bh;
357 while (bh != failed_bh) {
360 bh = bh->b_this_page;
365 bh = bh->b_this_page;
366 } while (bh != head);
370 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
371 enum migrate_mode mode)
375 #endif /* CONFIG_BLOCK */
378 * Replace the page in the mapping.
380 * The number of remaining references must be:
381 * 1 for anonymous pages without a mapping
382 * 2 for pages with a mapping
383 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
385 int migrate_page_move_mapping(struct address_space *mapping,
386 struct page *newpage, struct page *page,
387 struct buffer_head *head, enum migrate_mode mode,
390 struct zone *oldzone, *newzone;
392 int expected_count = 1 + extra_count;
396 /* Anonymous page without mapping */
397 if (page_count(page) != expected_count)
400 /* No turning back from here */
401 newpage->index = page->index;
402 newpage->mapping = page->mapping;
403 if (PageSwapBacked(page))
404 __SetPageSwapBacked(newpage);
406 return MIGRATEPAGE_SUCCESS;
409 oldzone = page_zone(page);
410 newzone = page_zone(newpage);
412 spin_lock_irq(&mapping->tree_lock);
414 pslot = radix_tree_lookup_slot(&mapping->page_tree,
417 expected_count += 1 + page_has_private(page);
418 if (page_count(page) != expected_count ||
419 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
420 spin_unlock_irq(&mapping->tree_lock);
424 if (!page_ref_freeze(page, expected_count)) {
425 spin_unlock_irq(&mapping->tree_lock);
430 * In the async migration case of moving a page with buffers, lock the
431 * buffers using trylock before the mapping is moved. If the mapping
432 * was moved, we later failed to lock the buffers and could not move
433 * the mapping back due to an elevated page count, we would have to
434 * block waiting on other references to be dropped.
436 if (mode == MIGRATE_ASYNC && head &&
437 !buffer_migrate_lock_buffers(head, mode)) {
438 page_ref_unfreeze(page, expected_count);
439 spin_unlock_irq(&mapping->tree_lock);
444 * Now we know that no one else is looking at the page:
445 * no turning back from here.
447 newpage->index = page->index;
448 newpage->mapping = page->mapping;
449 get_page(newpage); /* add cache reference */
450 if (PageSwapBacked(page)) {
451 __SetPageSwapBacked(newpage);
452 if (PageSwapCache(page)) {
453 SetPageSwapCache(newpage);
454 set_page_private(newpage, page_private(page));
457 VM_BUG_ON_PAGE(PageSwapCache(page), page);
460 /* Move dirty while page refs frozen and newpage not yet exposed */
461 dirty = PageDirty(page);
463 ClearPageDirty(page);
464 SetPageDirty(newpage);
467 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
472 * We know this isn't the last reference.
474 page_ref_unfreeze(page, expected_count - 1);
476 spin_unlock(&mapping->tree_lock);
477 /* Leave irq disabled to prevent preemption while updating stats */
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
485 * Note that anonymous pages are accounted for
486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 * are mapped to swap space.
489 if (newzone != oldzone) {
490 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
491 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
492 if (PageSwapBacked(page) && !PageSwapCache(page)) {
493 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
494 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
496 if (dirty && mapping_cap_account_dirty(mapping)) {
497 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
498 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
499 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
500 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
505 return MIGRATEPAGE_SUCCESS;
507 EXPORT_SYMBOL(migrate_page_move_mapping);
510 * The expected number of remaining references is the same as that
511 * of migrate_page_move_mapping().
513 int migrate_huge_page_move_mapping(struct address_space *mapping,
514 struct page *newpage, struct page *page)
519 spin_lock_irq(&mapping->tree_lock);
521 pslot = radix_tree_lookup_slot(&mapping->page_tree,
524 expected_count = 2 + page_has_private(page);
525 if (page_count(page) != expected_count ||
526 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
527 spin_unlock_irq(&mapping->tree_lock);
531 if (!page_ref_freeze(page, expected_count)) {
532 spin_unlock_irq(&mapping->tree_lock);
536 newpage->index = page->index;
537 newpage->mapping = page->mapping;
541 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
543 page_ref_unfreeze(page, expected_count - 1);
545 spin_unlock_irq(&mapping->tree_lock);
547 return MIGRATEPAGE_SUCCESS;
551 * Gigantic pages are so large that we do not guarantee that page++ pointer
552 * arithmetic will work across the entire page. We need something more
555 static void __copy_gigantic_page(struct page *dst, struct page *src,
559 struct page *dst_base = dst;
560 struct page *src_base = src;
562 for (i = 0; i < nr_pages; ) {
564 copy_highpage(dst, src);
567 dst = mem_map_next(dst, dst_base, i);
568 src = mem_map_next(src, src_base, i);
572 static void copy_huge_page(struct page *dst, struct page *src)
579 struct hstate *h = page_hstate(src);
580 nr_pages = pages_per_huge_page(h);
582 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
583 __copy_gigantic_page(dst, src, nr_pages);
588 BUG_ON(!PageTransHuge(src));
589 nr_pages = hpage_nr_pages(src);
592 for (i = 0; i < nr_pages; i++) {
594 copy_highpage(dst + i, src + i);
599 * Copy the page to its new location
601 void migrate_page_copy(struct page *newpage, struct page *page)
605 if (PageHuge(page) || PageTransHuge(page))
606 copy_huge_page(newpage, page);
608 copy_highpage(newpage, page);
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
616 if (TestClearPageActive(page)) {
617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 SetPageActive(newpage);
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
621 if (PageChecked(page))
622 SetPageChecked(newpage);
623 if (PageMappedToDisk(page))
624 SetPageMappedToDisk(newpage);
626 /* Move dirty on pages not done by migrate_page_move_mapping() */
628 SetPageDirty(newpage);
630 if (page_is_young(page))
631 set_page_young(newpage);
632 if (page_is_idle(page))
633 set_page_idle(newpage);
636 * Copy NUMA information to the new page, to prevent over-eager
637 * future migrations of this same page.
639 cpupid = page_cpupid_xchg_last(page, -1);
640 page_cpupid_xchg_last(newpage, cpupid);
642 ksm_migrate_page(newpage, page);
644 * Please do not reorder this without considering how mm/ksm.c's
645 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
647 if (PageSwapCache(page))
648 ClearPageSwapCache(page);
649 ClearPagePrivate(page);
650 set_page_private(page, 0);
653 * If any waiters have accumulated on the new page then
656 if (PageWriteback(newpage))
657 end_page_writeback(newpage);
659 copy_page_owner(page, newpage);
661 mem_cgroup_migrate(page, newpage);
663 EXPORT_SYMBOL(migrate_page_copy);
665 /************************************************************
666 * Migration functions
667 ***********************************************************/
670 * Common logic to directly migrate a single LRU page suitable for
671 * pages that do not use PagePrivate/PagePrivate2.
673 * Pages are locked upon entry and exit.
675 int migrate_page(struct address_space *mapping,
676 struct page *newpage, struct page *page,
677 enum migrate_mode mode)
681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
683 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
685 if (rc != MIGRATEPAGE_SUCCESS)
688 migrate_page_copy(newpage, page);
689 return MIGRATEPAGE_SUCCESS;
691 EXPORT_SYMBOL(migrate_page);
695 * Migration function for pages with buffers. This function can only be used
696 * if the underlying filesystem guarantees that no other references to "page"
699 int buffer_migrate_page(struct address_space *mapping,
700 struct page *newpage, struct page *page, enum migrate_mode mode)
702 struct buffer_head *bh, *head;
705 if (!page_has_buffers(page))
706 return migrate_page(mapping, newpage, page, mode);
708 head = page_buffers(page);
710 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
712 if (rc != MIGRATEPAGE_SUCCESS)
716 * In the async case, migrate_page_move_mapping locked the buffers
717 * with an IRQ-safe spinlock held. In the sync case, the buffers
718 * need to be locked now
720 if (mode != MIGRATE_ASYNC)
721 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
723 ClearPagePrivate(page);
724 set_page_private(newpage, page_private(page));
725 set_page_private(page, 0);
731 set_bh_page(bh, newpage, bh_offset(bh));
732 bh = bh->b_this_page;
734 } while (bh != head);
736 SetPagePrivate(newpage);
738 migrate_page_copy(newpage, page);
744 bh = bh->b_this_page;
746 } while (bh != head);
748 return MIGRATEPAGE_SUCCESS;
750 EXPORT_SYMBOL(buffer_migrate_page);
754 * Writeback a page to clean the dirty state
756 static int writeout(struct address_space *mapping, struct page *page)
758 struct writeback_control wbc = {
759 .sync_mode = WB_SYNC_NONE,
762 .range_end = LLONG_MAX,
767 if (!mapping->a_ops->writepage)
768 /* No write method for the address space */
771 if (!clear_page_dirty_for_io(page))
772 /* Someone else already triggered a write */
776 * A dirty page may imply that the underlying filesystem has
777 * the page on some queue. So the page must be clean for
778 * migration. Writeout may mean we loose the lock and the
779 * page state is no longer what we checked for earlier.
780 * At this point we know that the migration attempt cannot
783 remove_migration_ptes(page, page, false);
785 rc = mapping->a_ops->writepage(page, &wbc);
787 if (rc != AOP_WRITEPAGE_ACTIVATE)
788 /* unlocked. Relock */
791 return (rc < 0) ? -EIO : -EAGAIN;
795 * Default handling if a filesystem does not provide a migration function.
797 static int fallback_migrate_page(struct address_space *mapping,
798 struct page *newpage, struct page *page, enum migrate_mode mode)
800 if (PageDirty(page)) {
801 /* Only writeback pages in full synchronous migration */
802 if (mode != MIGRATE_SYNC)
804 return writeout(mapping, page);
808 * Buffers may be managed in a filesystem specific way.
809 * We must have no buffers or drop them.
811 if (page_has_private(page) &&
812 !try_to_release_page(page, GFP_KERNEL))
815 return migrate_page(mapping, newpage, page, mode);
819 * Move a page to a newly allocated page
820 * The page is locked and all ptes have been successfully removed.
822 * The new page will have replaced the old page if this function
827 * MIGRATEPAGE_SUCCESS - success
829 static int move_to_new_page(struct page *newpage, struct page *page,
830 enum migrate_mode mode)
832 struct address_space *mapping;
834 bool is_lru = !__PageMovable(page);
836 VM_BUG_ON_PAGE(!PageLocked(page), page);
837 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
839 mapping = page_mapping(page);
841 if (likely(is_lru)) {
843 rc = migrate_page(mapping, newpage, page, mode);
844 else if (mapping->a_ops->migratepage)
846 * Most pages have a mapping and most filesystems
847 * provide a migratepage callback. Anonymous pages
848 * are part of swap space which also has its own
849 * migratepage callback. This is the most common path
850 * for page migration.
852 rc = mapping->a_ops->migratepage(mapping, newpage,
855 rc = fallback_migrate_page(mapping, newpage,
859 * In case of non-lru page, it could be released after
860 * isolation step. In that case, we shouldn't try migration.
862 VM_BUG_ON_PAGE(!PageIsolated(page), page);
863 if (!PageMovable(page)) {
864 rc = MIGRATEPAGE_SUCCESS;
865 __ClearPageIsolated(page);
869 rc = mapping->a_ops->migratepage(mapping, newpage,
871 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
872 !PageIsolated(page));
876 * When successful, old pagecache page->mapping must be cleared before
877 * page is freed; but stats require that PageAnon be left as PageAnon.
879 if (rc == MIGRATEPAGE_SUCCESS) {
880 if (__PageMovable(page)) {
881 VM_BUG_ON_PAGE(!PageIsolated(page), page);
884 * We clear PG_movable under page_lock so any compactor
885 * cannot try to migrate this page.
887 __ClearPageIsolated(page);
891 * Anonymous and movable page->mapping will be cleard by
892 * free_pages_prepare so don't reset it here for keeping
893 * the type to work PageAnon, for example.
895 if (!PageMappingFlags(page))
896 page->mapping = NULL;
902 static int __unmap_and_move(struct page *page, struct page *newpage,
903 int force, enum migrate_mode mode)
906 int page_was_mapped = 0;
907 struct anon_vma *anon_vma = NULL;
908 bool is_lru = !__PageMovable(page);
910 if (!trylock_page(page)) {
911 if (!force || mode == MIGRATE_ASYNC)
915 * It's not safe for direct compaction to call lock_page.
916 * For example, during page readahead pages are added locked
917 * to the LRU. Later, when the IO completes the pages are
918 * marked uptodate and unlocked. However, the queueing
919 * could be merging multiple pages for one bio (e.g.
920 * mpage_readpages). If an allocation happens for the
921 * second or third page, the process can end up locking
922 * the same page twice and deadlocking. Rather than
923 * trying to be clever about what pages can be locked,
924 * avoid the use of lock_page for direct compaction
927 if (current->flags & PF_MEMALLOC)
933 if (PageWriteback(page)) {
935 * Only in the case of a full synchronous migration is it
936 * necessary to wait for PageWriteback. In the async case,
937 * the retry loop is too short and in the sync-light case,
938 * the overhead of stalling is too much
940 if (mode != MIGRATE_SYNC) {
946 wait_on_page_writeback(page);
950 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
951 * we cannot notice that anon_vma is freed while we migrates a page.
952 * This get_anon_vma() delays freeing anon_vma pointer until the end
953 * of migration. File cache pages are no problem because of page_lock()
954 * File Caches may use write_page() or lock_page() in migration, then,
955 * just care Anon page here.
957 * Only page_get_anon_vma() understands the subtleties of
958 * getting a hold on an anon_vma from outside one of its mms.
959 * But if we cannot get anon_vma, then we won't need it anyway,
960 * because that implies that the anon page is no longer mapped
961 * (and cannot be remapped so long as we hold the page lock).
963 if (PageAnon(page) && !PageKsm(page))
964 anon_vma = page_get_anon_vma(page);
967 * Block others from accessing the new page when we get around to
968 * establishing additional references. We are usually the only one
969 * holding a reference to newpage at this point. We used to have a BUG
970 * here if trylock_page(newpage) fails, but would like to allow for
971 * cases where there might be a race with the previous use of newpage.
972 * This is much like races on refcount of oldpage: just don't BUG().
974 if (unlikely(!trylock_page(newpage)))
977 if (unlikely(!is_lru)) {
978 rc = move_to_new_page(newpage, page, mode);
979 goto out_unlock_both;
983 * Corner case handling:
984 * 1. When a new swap-cache page is read into, it is added to the LRU
985 * and treated as swapcache but it has no rmap yet.
986 * Calling try_to_unmap() against a page->mapping==NULL page will
987 * trigger a BUG. So handle it here.
988 * 2. An orphaned page (see truncate_complete_page) might have
989 * fs-private metadata. The page can be picked up due to memory
990 * offlining. Everywhere else except page reclaim, the page is
991 * invisible to the vm, so the page can not be migrated. So try to
992 * free the metadata, so the page can be freed.
994 if (!page->mapping) {
995 VM_BUG_ON_PAGE(PageAnon(page), page);
996 if (page_has_private(page)) {
997 try_to_free_buffers(page);
998 goto out_unlock_both;
1000 } else if (page_mapped(page)) {
1001 /* Establish migration ptes */
1002 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1005 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1006 page_was_mapped = 1;
1009 if (!page_mapped(page))
1010 rc = move_to_new_page(newpage, page, mode);
1012 if (page_was_mapped)
1013 remove_migration_ptes(page,
1014 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1017 unlock_page(newpage);
1019 /* Drop an anon_vma reference if we took one */
1021 put_anon_vma(anon_vma);
1025 * If migration is successful, decrease refcount of the newpage
1026 * which will not free the page because new page owner increased
1027 * refcounter. As well, if it is LRU page, add the page to LRU
1030 if (rc == MIGRATEPAGE_SUCCESS) {
1031 if (unlikely(__PageMovable(newpage)))
1034 putback_lru_page(newpage);
1041 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1044 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1045 #define ICE_noinline noinline
1047 #define ICE_noinline
1051 * Obtain the lock on page, remove all ptes and migrate the page
1052 * to the newly allocated page in newpage.
1054 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1055 free_page_t put_new_page,
1056 unsigned long private, struct page *page,
1057 int force, enum migrate_mode mode,
1058 enum migrate_reason reason)
1060 int rc = MIGRATEPAGE_SUCCESS;
1062 struct page *newpage;
1064 newpage = get_new_page(page, private, &result);
1068 if (page_count(page) == 1) {
1069 /* page was freed from under us. So we are done. */
1070 ClearPageActive(page);
1071 ClearPageUnevictable(page);
1072 if (unlikely(__PageMovable(page))) {
1074 if (!PageMovable(page))
1075 __ClearPageIsolated(page);
1079 put_new_page(newpage, private);
1085 if (unlikely(PageTransHuge(page))) {
1087 rc = split_huge_page(page);
1093 rc = __unmap_and_move(page, newpage, force, mode);
1094 if (rc == MIGRATEPAGE_SUCCESS)
1095 set_page_owner_migrate_reason(newpage, reason);
1098 if (rc != -EAGAIN) {
1100 * A page that has been migrated has all references
1101 * removed and will be freed. A page that has not been
1102 * migrated will have kepts its references and be
1105 list_del(&page->lru);
1108 * Compaction can migrate also non-LRU pages which are
1109 * not accounted to NR_ISOLATED_*. They can be recognized
1112 if (likely(!__PageMovable(page)))
1113 dec_node_page_state(page, NR_ISOLATED_ANON +
1114 page_is_file_cache(page));
1118 * If migration is successful, releases reference grabbed during
1119 * isolation. Otherwise, restore the page to right list unless
1122 if (rc == MIGRATEPAGE_SUCCESS) {
1124 if (reason == MR_MEMORY_FAILURE) {
1126 * Set PG_HWPoison on just freed page
1127 * intentionally. Although it's rather weird,
1128 * it's how HWPoison flag works at the moment.
1130 if (!test_set_page_hwpoison(page))
1131 num_poisoned_pages_inc();
1134 if (rc != -EAGAIN) {
1135 if (likely(!__PageMovable(page))) {
1136 putback_lru_page(page);
1141 if (PageMovable(page))
1142 putback_movable_page(page);
1144 __ClearPageIsolated(page);
1150 put_new_page(newpage, private);
1159 *result = page_to_nid(newpage);
1165 * Counterpart of unmap_and_move_page() for hugepage migration.
1167 * This function doesn't wait the completion of hugepage I/O
1168 * because there is no race between I/O and migration for hugepage.
1169 * Note that currently hugepage I/O occurs only in direct I/O
1170 * where no lock is held and PG_writeback is irrelevant,
1171 * and writeback status of all subpages are counted in the reference
1172 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1173 * under direct I/O, the reference of the head page is 512 and a bit more.)
1174 * This means that when we try to migrate hugepage whose subpages are
1175 * doing direct I/O, some references remain after try_to_unmap() and
1176 * hugepage migration fails without data corruption.
1178 * There is also no race when direct I/O is issued on the page under migration,
1179 * because then pte is replaced with migration swap entry and direct I/O code
1180 * will wait in the page fault for migration to complete.
1182 static int unmap_and_move_huge_page(new_page_t get_new_page,
1183 free_page_t put_new_page, unsigned long private,
1184 struct page *hpage, int force,
1185 enum migrate_mode mode, int reason)
1189 int page_was_mapped = 0;
1190 struct page *new_hpage;
1191 struct anon_vma *anon_vma = NULL;
1194 * Movability of hugepages depends on architectures and hugepage size.
1195 * This check is necessary because some callers of hugepage migration
1196 * like soft offline and memory hotremove don't walk through page
1197 * tables or check whether the hugepage is pmd-based or not before
1198 * kicking migration.
1200 if (!hugepage_migration_supported(page_hstate(hpage))) {
1201 putback_active_hugepage(hpage);
1205 new_hpage = get_new_page(hpage, private, &result);
1209 if (!trylock_page(hpage)) {
1210 if (!force || mode != MIGRATE_SYNC)
1215 if (PageAnon(hpage))
1216 anon_vma = page_get_anon_vma(hpage);
1218 if (unlikely(!trylock_page(new_hpage)))
1221 if (page_mapped(hpage)) {
1223 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1224 page_was_mapped = 1;
1227 if (!page_mapped(hpage))
1228 rc = move_to_new_page(new_hpage, hpage, mode);
1230 if (page_was_mapped)
1231 remove_migration_ptes(hpage,
1232 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1234 unlock_page(new_hpage);
1238 put_anon_vma(anon_vma);
1240 if (rc == MIGRATEPAGE_SUCCESS) {
1241 hugetlb_cgroup_migrate(hpage, new_hpage);
1242 put_new_page = NULL;
1243 set_page_owner_migrate_reason(new_hpage, reason);
1249 putback_active_hugepage(hpage);
1252 * If migration was not successful and there's a freeing callback, use
1253 * it. Otherwise, put_page() will drop the reference grabbed during
1257 put_new_page(new_hpage, private);
1259 putback_active_hugepage(new_hpage);
1265 *result = page_to_nid(new_hpage);
1271 * migrate_pages - migrate the pages specified in a list, to the free pages
1272 * supplied as the target for the page migration
1274 * @from: The list of pages to be migrated.
1275 * @get_new_page: The function used to allocate free pages to be used
1276 * as the target of the page migration.
1277 * @put_new_page: The function used to free target pages if migration
1278 * fails, or NULL if no special handling is necessary.
1279 * @private: Private data to be passed on to get_new_page()
1280 * @mode: The migration mode that specifies the constraints for
1281 * page migration, if any.
1282 * @reason: The reason for page migration.
1284 * The function returns after 10 attempts or if no pages are movable any more
1285 * because the list has become empty or no retryable pages exist any more.
1286 * The caller should call putback_movable_pages() to return pages to the LRU
1287 * or free list only if ret != 0.
1289 * Returns the number of pages that were not migrated, or an error code.
1291 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1292 free_page_t put_new_page, unsigned long private,
1293 enum migrate_mode mode, int reason)
1297 int nr_succeeded = 0;
1301 int swapwrite = current->flags & PF_SWAPWRITE;
1305 current->flags |= PF_SWAPWRITE;
1307 for(pass = 0; pass < 10 && retry; pass++) {
1310 list_for_each_entry_safe(page, page2, from, lru) {
1314 rc = unmap_and_move_huge_page(get_new_page,
1315 put_new_page, private, page,
1316 pass > 2, mode, reason);
1318 rc = unmap_and_move(get_new_page, put_new_page,
1319 private, page, pass > 2, mode,
1329 case MIGRATEPAGE_SUCCESS:
1334 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1335 * unlike -EAGAIN case, the failed page is
1336 * removed from migration page list and not
1337 * retried in the next outer loop.
1348 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1350 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1351 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1354 current->flags &= ~PF_SWAPWRITE;
1361 * Move a list of individual pages
1363 struct page_to_node {
1370 static struct page *new_page_node(struct page *p, unsigned long private,
1373 struct page_to_node *pm = (struct page_to_node *)private;
1375 while (pm->node != MAX_NUMNODES && pm->page != p)
1378 if (pm->node == MAX_NUMNODES)
1381 *result = &pm->status;
1384 return alloc_huge_page_node(page_hstate(compound_head(p)),
1387 return __alloc_pages_node(pm->node,
1388 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1392 * Move a set of pages as indicated in the pm array. The addr
1393 * field must be set to the virtual address of the page to be moved
1394 * and the node number must contain a valid target node.
1395 * The pm array ends with node = MAX_NUMNODES.
1397 static int do_move_page_to_node_array(struct mm_struct *mm,
1398 struct page_to_node *pm,
1402 struct page_to_node *pp;
1403 LIST_HEAD(pagelist);
1405 down_read(&mm->mmap_sem);
1408 * Build a list of pages to migrate
1410 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1411 struct vm_area_struct *vma;
1415 vma = find_vma(mm, pp->addr);
1416 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1419 /* FOLL_DUMP to ignore special (like zero) pages */
1420 page = follow_page(vma, pp->addr,
1421 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1423 err = PTR_ERR(page);
1432 err = page_to_nid(page);
1434 if (err == pp->node)
1436 * Node already in the right place
1441 if (page_mapcount(page) > 1 &&
1445 if (PageHuge(page)) {
1447 isolate_huge_page(page, &pagelist);
1451 err = isolate_lru_page(page);
1453 list_add_tail(&page->lru, &pagelist);
1454 inc_node_page_state(page, NR_ISOLATED_ANON +
1455 page_is_file_cache(page));
1459 * Either remove the duplicate refcount from
1460 * isolate_lru_page() or drop the page ref if it was
1469 if (!list_empty(&pagelist)) {
1470 err = migrate_pages(&pagelist, new_page_node, NULL,
1471 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1473 putback_movable_pages(&pagelist);
1476 up_read(&mm->mmap_sem);
1481 * Migrate an array of page address onto an array of nodes and fill
1482 * the corresponding array of status.
1484 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1485 unsigned long nr_pages,
1486 const void __user * __user *pages,
1487 const int __user *nodes,
1488 int __user *status, int flags)
1490 struct page_to_node *pm;
1491 unsigned long chunk_nr_pages;
1492 unsigned long chunk_start;
1496 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1503 * Store a chunk of page_to_node array in a page,
1504 * but keep the last one as a marker
1506 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1508 for (chunk_start = 0;
1509 chunk_start < nr_pages;
1510 chunk_start += chunk_nr_pages) {
1513 if (chunk_start + chunk_nr_pages > nr_pages)
1514 chunk_nr_pages = nr_pages - chunk_start;
1516 /* fill the chunk pm with addrs and nodes from user-space */
1517 for (j = 0; j < chunk_nr_pages; j++) {
1518 const void __user *p;
1522 if (get_user(p, pages + j + chunk_start))
1524 pm[j].addr = (unsigned long) p;
1526 if (get_user(node, nodes + j + chunk_start))
1530 if (node < 0 || node >= MAX_NUMNODES)
1533 if (!node_state(node, N_MEMORY))
1537 if (!node_isset(node, task_nodes))
1543 /* End marker for this chunk */
1544 pm[chunk_nr_pages].node = MAX_NUMNODES;
1546 /* Migrate this chunk */
1547 err = do_move_page_to_node_array(mm, pm,
1548 flags & MPOL_MF_MOVE_ALL);
1552 /* Return status information */
1553 for (j = 0; j < chunk_nr_pages; j++)
1554 if (put_user(pm[j].status, status + j + chunk_start)) {
1562 free_page((unsigned long)pm);
1568 * Determine the nodes of an array of pages and store it in an array of status.
1570 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1571 const void __user **pages, int *status)
1575 down_read(&mm->mmap_sem);
1577 for (i = 0; i < nr_pages; i++) {
1578 unsigned long addr = (unsigned long)(*pages);
1579 struct vm_area_struct *vma;
1583 vma = find_vma(mm, addr);
1584 if (!vma || addr < vma->vm_start)
1587 /* FOLL_DUMP to ignore special (like zero) pages */
1588 page = follow_page(vma, addr, FOLL_DUMP);
1590 err = PTR_ERR(page);
1594 err = page ? page_to_nid(page) : -ENOENT;
1602 up_read(&mm->mmap_sem);
1606 * Determine the nodes of a user array of pages and store it in
1607 * a user array of status.
1609 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1610 const void __user * __user *pages,
1613 #define DO_PAGES_STAT_CHUNK_NR 16
1614 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1615 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1618 unsigned long chunk_nr;
1620 chunk_nr = nr_pages;
1621 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1622 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1624 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1627 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1629 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1634 nr_pages -= chunk_nr;
1636 return nr_pages ? -EFAULT : 0;
1640 * Move a list of pages in the address space of the currently executing
1643 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1644 const void __user * __user *, pages,
1645 const int __user *, nodes,
1646 int __user *, status, int, flags)
1648 const struct cred *cred = current_cred(), *tcred;
1649 struct task_struct *task;
1650 struct mm_struct *mm;
1652 nodemask_t task_nodes;
1655 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1658 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1661 /* Find the mm_struct */
1663 task = pid ? find_task_by_vpid(pid) : current;
1668 get_task_struct(task);
1671 * Check if this process has the right to modify the specified
1672 * process. The right exists if the process has administrative
1673 * capabilities, superuser privileges or the same
1674 * userid as the target process.
1676 tcred = __task_cred(task);
1677 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1678 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1679 !capable(CAP_SYS_NICE)) {
1686 err = security_task_movememory(task);
1690 task_nodes = cpuset_mems_allowed(task);
1691 mm = get_task_mm(task);
1692 put_task_struct(task);
1698 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1699 nodes, status, flags);
1701 err = do_pages_stat(mm, nr_pages, pages, status);
1707 put_task_struct(task);
1711 #ifdef CONFIG_NUMA_BALANCING
1713 * Returns true if this is a safe migration target node for misplaced NUMA
1714 * pages. Currently it only checks the watermarks which crude
1716 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1717 unsigned long nr_migrate_pages)
1721 if (!pgdat_reclaimable(pgdat))
1724 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1725 struct zone *zone = pgdat->node_zones + z;
1727 if (!populated_zone(zone))
1730 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1731 if (!zone_watermark_ok(zone, 0,
1732 high_wmark_pages(zone) +
1741 static struct page *alloc_misplaced_dst_page(struct page *page,
1745 int nid = (int) data;
1746 struct page *newpage;
1748 newpage = __alloc_pages_node(nid,
1749 (GFP_HIGHUSER_MOVABLE |
1750 __GFP_THISNODE | __GFP_NOMEMALLOC |
1751 __GFP_NORETRY | __GFP_NOWARN) &
1758 * page migration rate limiting control.
1759 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1760 * window of time. Default here says do not migrate more than 1280M per second.
1762 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1763 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1765 /* Returns true if the node is migrate rate-limited after the update */
1766 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1767 unsigned long nr_pages)
1770 * Rate-limit the amount of data that is being migrated to a node.
1771 * Optimal placement is no good if the memory bus is saturated and
1772 * all the time is being spent migrating!
1774 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1775 spin_lock(&pgdat->numabalancing_migrate_lock);
1776 pgdat->numabalancing_migrate_nr_pages = 0;
1777 pgdat->numabalancing_migrate_next_window = jiffies +
1778 msecs_to_jiffies(migrate_interval_millisecs);
1779 spin_unlock(&pgdat->numabalancing_migrate_lock);
1781 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1782 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1788 * This is an unlocked non-atomic update so errors are possible.
1789 * The consequences are failing to migrate when we potentiall should
1790 * have which is not severe enough to warrant locking. If it is ever
1791 * a problem, it can be converted to a per-cpu counter.
1793 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1797 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1801 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1803 /* Avoid migrating to a node that is nearly full */
1804 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1807 if (isolate_lru_page(page))
1811 * migrate_misplaced_transhuge_page() skips page migration's usual
1812 * check on page_count(), so we must do it here, now that the page
1813 * has been isolated: a GUP pin, or any other pin, prevents migration.
1814 * The expected page count is 3: 1 for page's mapcount and 1 for the
1815 * caller's pin and 1 for the reference taken by isolate_lru_page().
1817 if (PageTransHuge(page) && page_count(page) != 3) {
1818 putback_lru_page(page);
1822 page_lru = page_is_file_cache(page);
1823 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1824 hpage_nr_pages(page));
1827 * Isolating the page has taken another reference, so the
1828 * caller's reference can be safely dropped without the page
1829 * disappearing underneath us during migration.
1835 bool pmd_trans_migrating(pmd_t pmd)
1837 struct page *page = pmd_page(pmd);
1838 return PageLocked(page);
1842 * Attempt to migrate a misplaced page to the specified destination
1843 * node. Caller is expected to have an elevated reference count on
1844 * the page that will be dropped by this function before returning.
1846 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1849 pg_data_t *pgdat = NODE_DATA(node);
1852 LIST_HEAD(migratepages);
1855 * Don't migrate file pages that are mapped in multiple processes
1856 * with execute permissions as they are probably shared libraries.
1858 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1859 (vma->vm_flags & VM_EXEC))
1863 * Rate-limit the amount of data that is being migrated to a node.
1864 * Optimal placement is no good if the memory bus is saturated and
1865 * all the time is being spent migrating!
1867 if (numamigrate_update_ratelimit(pgdat, 1))
1870 isolated = numamigrate_isolate_page(pgdat, page);
1874 list_add(&page->lru, &migratepages);
1875 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1876 NULL, node, MIGRATE_ASYNC,
1879 if (!list_empty(&migratepages)) {
1880 list_del(&page->lru);
1881 dec_node_page_state(page, NR_ISOLATED_ANON +
1882 page_is_file_cache(page));
1883 putback_lru_page(page);
1887 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1888 BUG_ON(!list_empty(&migratepages));
1895 #endif /* CONFIG_NUMA_BALANCING */
1897 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 * Migrates a THP to a given target node. page must be locked and is unlocked
1902 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1903 struct vm_area_struct *vma,
1904 pmd_t *pmd, pmd_t entry,
1905 unsigned long address,
1906 struct page *page, int node)
1909 pg_data_t *pgdat = NODE_DATA(node);
1911 struct page *new_page = NULL;
1912 int page_lru = page_is_file_cache(page);
1913 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1914 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1918 * Rate-limit the amount of data that is being migrated to a node.
1919 * Optimal placement is no good if the memory bus is saturated and
1920 * all the time is being spent migrating!
1922 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1925 new_page = alloc_pages_node(node,
1926 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1930 prep_transhuge_page(new_page);
1932 isolated = numamigrate_isolate_page(pgdat, page);
1938 * We are not sure a pending tlb flush here is for a huge page
1939 * mapping or not. Hence use the tlb range variant
1941 if (mm_tlb_flush_pending(mm))
1942 flush_tlb_range(vma, mmun_start, mmun_end);
1944 /* Prepare a page as a migration target */
1945 __SetPageLocked(new_page);
1946 __SetPageSwapBacked(new_page);
1948 /* anon mapping, we can simply copy page->mapping to the new page: */
1949 new_page->mapping = page->mapping;
1950 new_page->index = page->index;
1951 migrate_page_copy(new_page, page);
1952 WARN_ON(PageLRU(new_page));
1954 /* Recheck the target PMD */
1955 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1956 ptl = pmd_lock(mm, pmd);
1957 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1960 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1962 /* Reverse changes made by migrate_page_copy() */
1963 if (TestClearPageActive(new_page))
1964 SetPageActive(page);
1965 if (TestClearPageUnevictable(new_page))
1966 SetPageUnevictable(page);
1968 unlock_page(new_page);
1969 put_page(new_page); /* Free it */
1971 /* Retake the callers reference and putback on LRU */
1973 putback_lru_page(page);
1974 mod_node_page_state(page_pgdat(page),
1975 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1981 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1982 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1985 * Clear the old entry under pagetable lock and establish the new PTE.
1986 * Any parallel GUP will either observe the old page blocking on the
1987 * page lock, block on the page table lock or observe the new page.
1988 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1989 * guarantee the copy is visible before the pagetable update.
1991 flush_cache_range(vma, mmun_start, mmun_end);
1992 page_add_anon_rmap(new_page, vma, mmun_start, true);
1993 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1994 set_pmd_at(mm, mmun_start, pmd, entry);
1995 update_mmu_cache_pmd(vma, address, &entry);
1997 if (page_count(page) != 2) {
1998 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1999 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2000 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2001 update_mmu_cache_pmd(vma, address, &entry);
2002 page_remove_rmap(new_page, true);
2006 mlock_migrate_page(new_page, page);
2007 page_remove_rmap(page, true);
2008 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2011 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2013 /* Take an "isolate" reference and put new page on the LRU. */
2015 putback_lru_page(new_page);
2017 unlock_page(new_page);
2019 put_page(page); /* Drop the rmap reference */
2020 put_page(page); /* Drop the LRU isolation reference */
2022 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2023 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2025 mod_node_page_state(page_pgdat(page),
2026 NR_ISOLATED_ANON + page_lru,
2031 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2033 ptl = pmd_lock(mm, pmd);
2034 if (pmd_same(*pmd, entry)) {
2035 entry = pmd_modify(entry, vma->vm_page_prot);
2036 set_pmd_at(mm, mmun_start, pmd, entry);
2037 update_mmu_cache_pmd(vma, address, &entry);
2046 #endif /* CONFIG_NUMA_BALANCING */
2048 #endif /* CONFIG_NUMA */