2 * Page table handling routines for radix page table.
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #define pr_fmt(fmt) "radix-mmu: " fmt
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
19 #include <linux/string_helpers.h>
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
24 #include <asm/machdep.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/trace.h>
31 #include <trace/events/thp.h>
33 unsigned int mmu_pid_bits;
34 unsigned int mmu_base_pid;
36 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
37 unsigned long table_size)
39 unsigned long patb0, patb1;
41 patb0 = be64_to_cpu(partition_tb[0].patb0);
42 patb1 = base | table_size | PATB_GR;
44 mmu_partition_table_set_entry(0, patb0, patb1);
49 static __ref void *early_alloc_pgtable(unsigned long size)
53 pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE));
59 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
61 unsigned int map_page_size)
68 * Make sure task size is correct as per the max adddr
70 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
71 if (slab_is_available()) {
72 pgdp = pgd_offset_k(ea);
73 pudp = pud_alloc(&init_mm, pgdp, ea);
76 if (map_page_size == PUD_SIZE) {
80 pmdp = pmd_alloc(&init_mm, pudp, ea);
83 if (map_page_size == PMD_SIZE) {
84 ptep = pmdp_ptep(pmdp);
87 ptep = pte_alloc_kernel(pmdp, ea);
91 pgdp = pgd_offset_k(ea);
92 if (pgd_none(*pgdp)) {
93 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
95 pgd_populate(&init_mm, pgdp, pudp);
97 pudp = pud_offset(pgdp, ea);
98 if (map_page_size == PUD_SIZE) {
102 if (pud_none(*pudp)) {
103 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
104 BUG_ON(pmdp == NULL);
105 pud_populate(&init_mm, pudp, pmdp);
107 pmdp = pmd_offset(pudp, ea);
108 if (map_page_size == PMD_SIZE) {
109 ptep = pmdp_ptep(pmdp);
112 if (!pmd_present(*pmdp)) {
113 ptep = early_alloc_pgtable(PAGE_SIZE);
114 BUG_ON(ptep == NULL);
115 pmd_populate_kernel(&init_mm, pmdp, ptep);
117 ptep = pte_offset_kernel(pmdp, ea);
121 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags));
126 #ifdef CONFIG_STRICT_KERNEL_RWX
127 void radix__change_memory_range(unsigned long start, unsigned long end,
136 start = ALIGN_DOWN(start, PAGE_SIZE);
137 end = PAGE_ALIGN(end); // aligns up
139 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
142 for (idx = start; idx < end; idx += PAGE_SIZE) {
143 pgdp = pgd_offset_k(idx);
144 pudp = pud_alloc(&init_mm, pgdp, idx);
147 if (pud_huge(*pudp)) {
148 ptep = (pte_t *)pudp;
151 pmdp = pmd_alloc(&init_mm, pudp, idx);
154 if (pmd_huge(*pmdp)) {
155 ptep = pmdp_ptep(pmdp);
158 ptep = pte_alloc_kernel(pmdp, idx);
162 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
165 radix__flush_tlb_kernel_range(start, end);
168 void radix__mark_rodata_ro(void)
170 unsigned long start, end;
173 * mark_rodata_ro() will mark itself as !writable at some point.
174 * Due to DD1 workaround in radix__pte_update(), we'll end up with
175 * an invalid pte and the system will crash quite severly.
177 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
178 pr_warn("Warning: Unable to mark rodata read only on P9 DD1\n");
182 start = (unsigned long)_stext;
183 end = (unsigned long)__init_begin;
185 radix__change_memory_range(start, end, _PAGE_WRITE);
188 void radix__mark_initmem_nx(void)
190 unsigned long start = (unsigned long)__init_begin;
191 unsigned long end = (unsigned long)__init_end;
193 radix__change_memory_range(start, end, _PAGE_EXEC);
195 #endif /* CONFIG_STRICT_KERNEL_RWX */
197 static inline void __meminit print_mapping(unsigned long start,
206 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
208 pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
211 static int __meminit create_physical_mapping(unsigned long start,
214 unsigned long vaddr, addr, mapping_size = 0;
216 unsigned long max_mapping_size;
217 #ifdef CONFIG_STRICT_KERNEL_RWX
218 int split_text_mapping = 1;
220 int split_text_mapping = 0;
223 start = _ALIGN_UP(start, PAGE_SIZE);
224 for (addr = start; addr < end; addr += mapping_size) {
225 unsigned long gap, previous_size;
229 previous_size = mapping_size;
230 max_mapping_size = PUD_SIZE;
233 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
234 mmu_psize_defs[MMU_PAGE_1G].shift &&
235 PUD_SIZE <= max_mapping_size)
236 mapping_size = PUD_SIZE;
237 else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
238 mmu_psize_defs[MMU_PAGE_2M].shift)
239 mapping_size = PMD_SIZE;
241 mapping_size = PAGE_SIZE;
243 if (split_text_mapping && (mapping_size == PUD_SIZE) &&
244 (addr <= __pa_symbol(__init_begin)) &&
245 (addr + mapping_size) >= __pa_symbol(_stext)) {
246 max_mapping_size = PMD_SIZE;
250 if (split_text_mapping && (mapping_size == PMD_SIZE) &&
251 (addr <= __pa_symbol(__init_begin)) &&
252 (addr + mapping_size) >= __pa_symbol(_stext))
253 mapping_size = PAGE_SIZE;
255 if (mapping_size != previous_size) {
256 print_mapping(start, addr, previous_size);
260 vaddr = (unsigned long)__va(addr);
262 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
263 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
264 prot = PAGE_KERNEL_X;
268 rc = radix__map_kernel_page(vaddr, addr, prot, mapping_size);
273 print_mapping(start, addr, mapping_size);
277 static void __init radix_init_pgtable(void)
279 unsigned long rts_field;
280 struct memblock_region *reg;
282 /* We don't support slb for radix */
285 * Create the linear mapping, using standard page size for now
287 for_each_memblock(memory, reg)
288 WARN_ON(create_physical_mapping(reg->base,
289 reg->base + reg->size));
291 /* Find out how many PID bits are supported */
292 if (cpu_has_feature(CPU_FTR_HVMODE)) {
295 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
297 * When KVM is possible, we only use the top half of the
298 * PID space to avoid collisions between host and guest PIDs
299 * which can cause problems due to prefetch when exiting the
302 mmu_base_pid = 1 << (mmu_pid_bits - 1);
307 /* The guest uses the bottom half of the PID space */
314 * Allocate Partition table and process table for the
317 BUG_ON(PRTB_SIZE_SHIFT > 36);
318 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
320 * Fill in the process table.
322 rts_field = radix__get_tree_size();
323 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
325 * Fill in the partition table. We are suppose to use effective address
326 * of process table here. But our linear mapping also enable us to use
327 * physical address here.
329 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
330 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
331 asm volatile("ptesync" : : : "memory");
332 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
333 "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
334 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
335 trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
338 static void __init radix_init_partition_table(void)
340 unsigned long rts_field, dw0;
342 mmu_partition_table_init();
343 rts_field = radix__get_tree_size();
344 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
345 mmu_partition_table_set_entry(0, dw0, 0);
347 pr_info("Initializing Radix MMU\n");
348 pr_info("Partition table %p\n", partition_tb);
351 void __init radix_init_native(void)
353 register_process_table = native_register_process_table;
356 static int __init get_idx_from_shift(unsigned int shift)
377 static int __init radix_dt_scan_page_sizes(unsigned long node,
378 const char *uname, int depth,
385 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
387 /* We are scanning "cpu" nodes only */
388 if (type == NULL || strcmp(type, "cpu") != 0)
391 /* Find MMU PID size */
392 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
393 if (prop && size == 4)
394 mmu_pid_bits = be32_to_cpup(prop);
396 /* Grab page size encodings */
397 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
401 pr_info("Page sizes from device-tree:\n");
402 for (; size >= 4; size -= 4, ++prop) {
404 struct mmu_psize_def *def;
406 /* top 3 bit is AP encoding */
407 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
408 ap = be32_to_cpu(prop[0]) >> 29;
409 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
411 idx = get_idx_from_shift(shift);
415 def = &mmu_psize_defs[idx];
421 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
425 void __init radix__early_init_devtree(void)
430 * Try to find the available page sizes in the device-tree
432 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
433 if (rc != 0) /* Found */
436 * let's assume we have page 4k and 64k support
438 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
439 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
441 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
442 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
444 #ifdef CONFIG_SPARSEMEM_VMEMMAP
445 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
447 * map vmemmap using 2M if available
449 mmu_vmemmap_psize = MMU_PAGE_2M;
451 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
455 static void update_hid_for_radix(void)
458 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
460 asm volatile("ptesync": : :"memory");
461 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
462 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
463 : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
464 /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
465 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
466 : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
467 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
468 trace_tlbie(0, 0, rb, 0, 2, 0, 1);
469 trace_tlbie(0, 0, rb, 0, 2, 1, 1);
474 hid0 = mfspr(SPRN_HID0);
475 hid0 |= HID0_POWER9_RADIX;
476 mtspr(SPRN_HID0, hid0);
477 asm volatile("isync": : :"memory");
479 /* Wait for it to happen */
480 while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
484 static void radix_init_amor(void)
487 * In HV mode, we init AMOR (Authority Mask Override Register) so that
488 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
489 * Register), enable key 0 and set it to 1.
491 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
493 mtspr(SPRN_AMOR, (3ul << 62));
496 static void radix_init_iamr(void)
501 * The IAMR should set to 0 on DD1.
503 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
509 * Radix always uses key0 of the IAMR to determine if an access is
510 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
513 mtspr(SPRN_IAMR, iamr);
516 void __init radix__early_init_mmu(void)
520 #ifdef CONFIG_PPC_64K_PAGES
521 /* PAGE_SIZE mappings */
522 mmu_virtual_psize = MMU_PAGE_64K;
524 mmu_virtual_psize = MMU_PAGE_4K;
527 #ifdef CONFIG_SPARSEMEM_VMEMMAP
528 /* vmemmap mapping */
529 mmu_vmemmap_psize = mmu_virtual_psize;
532 * initialize page table size
534 __pte_index_size = RADIX_PTE_INDEX_SIZE;
535 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
536 __pud_index_size = RADIX_PUD_INDEX_SIZE;
537 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
538 __pmd_cache_index = RADIX_PMD_INDEX_SIZE;
539 __pte_table_size = RADIX_PTE_TABLE_SIZE;
540 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
541 __pud_table_size = RADIX_PUD_TABLE_SIZE;
542 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
544 __pmd_val_bits = RADIX_PMD_VAL_BITS;
545 __pud_val_bits = RADIX_PUD_VAL_BITS;
546 __pgd_val_bits = RADIX_PGD_VAL_BITS;
548 __kernel_virt_start = RADIX_KERN_VIRT_START;
549 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
550 __vmalloc_start = RADIX_VMALLOC_START;
551 __vmalloc_end = RADIX_VMALLOC_END;
552 __kernel_io_start = RADIX_KERN_IO_START;
553 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
554 ioremap_bot = IOREMAP_BASE;
557 pci_io_base = ISA_IO_BASE;
561 * For now radix also use the same frag size
563 __pte_frag_nr = H_PTE_FRAG_NR;
564 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
566 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
568 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
569 update_hid_for_radix();
570 lpcr = mfspr(SPRN_LPCR);
571 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
572 radix_init_partition_table();
575 radix_init_pseries();
578 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
581 radix_init_pgtable();
584 void radix__early_init_mmu_secondary(void)
588 * update partition table control register and UPRT
590 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
592 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
593 update_hid_for_radix();
595 lpcr = mfspr(SPRN_LPCR);
596 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
599 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
605 void radix__mmu_cleanup_all(void)
609 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
610 lpcr = mfspr(SPRN_LPCR);
611 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
613 powernv_set_nmmu_ptcr(0);
614 radix__flush_tlb_all();
618 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
619 phys_addr_t first_memblock_size)
621 /* We don't currently support the first MEMBLOCK not mapping 0
622 * physical on those processors
624 BUG_ON(first_memblock_base != 0);
626 * We limit the allocation that depend on ppc64_rma_size
627 * to first_memblock_size. We also clamp it to 1GB to
628 * avoid some funky things such as RTAS bugs.
630 * On radix config we really don't have a limitation
631 * on real mode access. But keeping it as above works
634 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
636 * Finally limit subsequent allocations. We really don't want
637 * to limit the memblock allocations to rma_size. FIXME!! should
638 * we even limit at all ?
640 memblock_set_current_limit(first_memblock_base + first_memblock_size);
643 #ifdef CONFIG_MEMORY_HOTPLUG
644 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
649 for (i = 0; i < PTRS_PER_PTE; i++) {
655 pte_free_kernel(&init_mm, pte_start);
659 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
664 for (i = 0; i < PTRS_PER_PMD; i++) {
670 pmd_free(&init_mm, pmd_start);
674 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
680 pte = pte_start + pte_index(addr);
681 for (; addr < end; addr = next, pte++) {
682 next = (addr + PAGE_SIZE) & PAGE_MASK;
686 if (!pte_present(*pte))
689 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
691 * The vmemmap_free() and remove_section_mapping()
692 * codepaths call us with aligned addresses.
694 WARN_ONCE(1, "%s: unaligned range\n", __func__);
698 pte_clear(&init_mm, addr, pte);
702 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
709 pmd = pmd_start + pmd_index(addr);
710 for (; addr < end; addr = next, pmd++) {
711 next = pmd_addr_end(addr, end);
713 if (!pmd_present(*pmd))
716 if (pmd_huge(*pmd)) {
717 if (!IS_ALIGNED(addr, PMD_SIZE) ||
718 !IS_ALIGNED(next, PMD_SIZE)) {
719 WARN_ONCE(1, "%s: unaligned range\n", __func__);
723 pte_clear(&init_mm, addr, (pte_t *)pmd);
727 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
728 remove_pte_table(pte_base, addr, next);
729 free_pte_table(pte_base, pmd);
733 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
740 pud = pud_start + pud_index(addr);
741 for (; addr < end; addr = next, pud++) {
742 next = pud_addr_end(addr, end);
744 if (!pud_present(*pud))
747 if (pud_huge(*pud)) {
748 if (!IS_ALIGNED(addr, PUD_SIZE) ||
749 !IS_ALIGNED(next, PUD_SIZE)) {
750 WARN_ONCE(1, "%s: unaligned range\n", __func__);
754 pte_clear(&init_mm, addr, (pte_t *)pud);
758 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
759 remove_pmd_table(pmd_base, addr, next);
760 free_pmd_table(pmd_base, pud);
764 static void remove_pagetable(unsigned long start, unsigned long end)
766 unsigned long addr, next;
770 spin_lock(&init_mm.page_table_lock);
772 for (addr = start; addr < end; addr = next) {
773 next = pgd_addr_end(addr, end);
775 pgd = pgd_offset_k(addr);
776 if (!pgd_present(*pgd))
779 if (pgd_huge(*pgd)) {
780 if (!IS_ALIGNED(addr, PGDIR_SIZE) ||
781 !IS_ALIGNED(next, PGDIR_SIZE)) {
782 WARN_ONCE(1, "%s: unaligned range\n", __func__);
786 pte_clear(&init_mm, addr, (pte_t *)pgd);
790 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
791 remove_pud_table(pud_base, addr, next);
794 spin_unlock(&init_mm.page_table_lock);
795 radix__flush_tlb_kernel_range(start, end);
798 int __ref radix__create_section_mapping(unsigned long start, unsigned long end)
800 return create_physical_mapping(start, end);
803 int radix__remove_section_mapping(unsigned long start, unsigned long end)
805 remove_pagetable(start, end);
808 #endif /* CONFIG_MEMORY_HOTPLUG */
810 #ifdef CONFIG_SPARSEMEM_VMEMMAP
811 int __meminit radix__vmemmap_create_mapping(unsigned long start,
812 unsigned long page_size,
815 /* Create a PTE encoding */
816 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
818 BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size));
822 #ifdef CONFIG_MEMORY_HOTPLUG
823 void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
825 remove_pagetable(start, start + page_size);
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
833 pmd_t *pmdp, unsigned long clr,
838 #ifdef CONFIG_DEBUG_VM
839 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
840 assert_spin_locked(&mm->page_table_lock);
843 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
844 trace_hugepage_update(addr, old, clr, set);
849 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
855 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
856 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
857 VM_BUG_ON(pmd_devmap(*pmdp));
859 * khugepaged calls this for normal pmd
864 /*FIXME!! Verify whether we need this kick below */
865 serialize_against_pte_lookup(vma->vm_mm);
867 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
873 * For us pgtable_t is pte_t *. Inorder to save the deposisted
874 * page table, we consider the allocated page table as a list
875 * head. On withdraw we need to make sure we zero out the used
876 * list_head memory area.
878 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
881 struct list_head *lh = (struct list_head *) pgtable;
883 assert_spin_locked(pmd_lockptr(mm, pmdp));
886 if (!pmd_huge_pte(mm, pmdp))
889 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
890 pmd_huge_pte(mm, pmdp) = pgtable;
893 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
897 struct list_head *lh;
899 assert_spin_locked(pmd_lockptr(mm, pmdp));
902 pgtable = pmd_huge_pte(mm, pmdp);
903 lh = (struct list_head *) pgtable;
905 pmd_huge_pte(mm, pmdp) = NULL;
907 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
910 ptep = (pte_t *) pgtable;
918 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
919 unsigned long addr, pmd_t *pmdp)
924 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
925 old_pmd = __pmd(old);
927 * Serialize against find_current_mm_pte which does lock-less
928 * lookup in page tables with local interrupts disabled. For huge pages
929 * it casts pmd_t to pte_t. Since format of pte_t is different from
930 * pmd_t we want to prevent transit from pmd pointing to page table
931 * to pmd pointing to huge page (and back) while interrupts are disabled.
932 * We clear pmd to possibly replace it with page table pointer in
933 * different code paths. So make sure we wait for the parallel
934 * find_current_mm_pte to finish.
936 serialize_against_pte_lookup(mm);
940 int radix__has_transparent_hugepage(void)
942 /* For radix 2M at PMD level means thp */
943 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */