2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
7 * SMP scalability work:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
40 #include <asm/debugfs.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
44 #include <asm/mmu_context.h>
46 #include <asm/types.h>
47 #include <linux/uaccess.h>
48 #include <asm/machdep.h>
50 #include <asm/tlbflush.h>
54 #include <asm/cacheflush.h>
55 #include <asm/cputable.h>
56 #include <asm/sections.h>
57 #include <asm/copro.h>
59 #include <asm/code-patching.h>
60 #include <asm/fadump.h>
61 #include <asm/firmware.h>
63 #include <asm/trace.h>
65 #include <asm/pte-walk.h>
68 #define DBG(fmt...) udbg_printf(fmt)
74 #define DBG_LOW(fmt...) udbg_printf(fmt)
76 #define DBG_LOW(fmt...)
84 * Note: pte --> Linux PTE
85 * HPTE --> PowerPC Hashed Page Table Entry
88 * htab_initialize is called with the MMU off (of course), but
89 * the kernel has been copied down to zero so it can directly
90 * reference global data. At this point it is very difficult
91 * to print debug info.
95 static unsigned long _SDR1;
96 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
97 EXPORT_SYMBOL_GPL(mmu_psize_defs);
99 u8 hpte_page_sizes[1 << LP_BITS];
100 EXPORT_SYMBOL_GPL(hpte_page_sizes);
102 struct hash_pte *htab_address;
103 unsigned long htab_size_bytes;
104 unsigned long htab_hash_mask;
105 EXPORT_SYMBOL_GPL(htab_hash_mask);
106 int mmu_linear_psize = MMU_PAGE_4K;
107 EXPORT_SYMBOL_GPL(mmu_linear_psize);
108 int mmu_virtual_psize = MMU_PAGE_4K;
109 int mmu_vmalloc_psize = MMU_PAGE_4K;
110 #ifdef CONFIG_SPARSEMEM_VMEMMAP
111 int mmu_vmemmap_psize = MMU_PAGE_4K;
113 int mmu_io_psize = MMU_PAGE_4K;
114 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
115 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
116 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
117 u16 mmu_slb_size = 64;
118 EXPORT_SYMBOL_GPL(mmu_slb_size);
119 #ifdef CONFIG_PPC_64K_PAGES
120 int mmu_ci_restrictions;
122 #ifdef CONFIG_DEBUG_PAGEALLOC
123 static u8 *linear_map_hash_slots;
124 static unsigned long linear_map_hash_count;
125 static DEFINE_SPINLOCK(linear_map_hash_lock);
126 #endif /* CONFIG_DEBUG_PAGEALLOC */
127 struct mmu_hash_ops mmu_hash_ops;
128 EXPORT_SYMBOL(mmu_hash_ops);
130 /* There are definitions of page sizes arrays to be used when none
131 * is provided by the firmware.
134 /* Pre-POWER4 CPUs (4k pages only)
136 static struct mmu_psize_def mmu_psize_defaults_old[] = {
140 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
146 /* POWER4, GPUL, POWER5
148 * Support for 16Mb large pages
150 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
154 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
161 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
162 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
169 * 'R' and 'C' update notes:
170 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
171 * create writeable HPTEs without C set, because the hcall H_PROTECT
172 * that we use in that case will not update C
173 * - The above is however not a problem, because we also don't do that
174 * fancy "no flush" variant of eviction and we use H_REMOVE which will
175 * do the right thing and thus we don't have the race I described earlier
177 * - Under bare metal, we do have the race, so we need R and C set
178 * - We make sure R is always set and never lost
179 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
181 unsigned long htab_convert_pte_flags(unsigned long pteflags)
183 unsigned long rflags = 0;
185 /* _PAGE_EXEC -> NOEXEC */
186 if ((pteflags & _PAGE_EXEC) == 0)
190 * Linux uses slb key 0 for kernel and 1 for user.
191 * kernel RW areas are mapped with PPP=0b000
192 * User area is mapped with PPP=0b010 for read/write
193 * or PPP=0b011 for read-only (including writeable but clean pages).
195 if (pteflags & _PAGE_PRIVILEGED) {
197 * Kernel read only mapped with ppp bits 0b110
199 if (!(pteflags & _PAGE_WRITE)) {
200 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
201 rflags |= (HPTE_R_PP0 | 0x2);
206 if (pteflags & _PAGE_RWX)
208 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
212 * We can't allow hardware to update hpte bits. Hence always
213 * set 'R' bit and set 'C' if it is a write fault
217 if (pteflags & _PAGE_DIRTY)
223 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
225 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
226 rflags |= (HPTE_R_I | HPTE_R_G);
227 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
228 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
231 * Add memory coherence if cache inhibited is not set
238 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
239 unsigned long pstart, unsigned long prot,
240 int psize, int ssize)
242 unsigned long vaddr, paddr;
243 unsigned int step, shift;
246 shift = mmu_psize_defs[psize].shift;
249 prot = htab_convert_pte_flags(prot);
251 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
252 vstart, vend, pstart, prot, psize, ssize);
254 for (vaddr = vstart, paddr = pstart; vaddr < vend;
255 vaddr += step, paddr += step) {
256 unsigned long hash, hpteg;
257 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
258 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
259 unsigned long tprot = prot;
262 * If we hit a bad address return error.
266 /* Make kernel text executable */
267 if (overlaps_kernel_text(vaddr, vaddr + step))
270 /* Make kvm guest trampolines executable */
271 if (overlaps_kvm_tmp(vaddr, vaddr + step))
275 * If relocatable, check if it overlaps interrupt vectors that
276 * are copied down to real 0. For relocatable kernel
277 * (e.g. kdump case) we copy interrupt vectors down to real
278 * address 0. Mark that region as executable. This is
279 * because on p8 system with relocation on exception feature
280 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
281 * in order to execute the interrupt handlers in virtual
282 * mode the vector region need to be marked as executable.
284 if ((PHYSICAL_START > MEMORY_START) &&
285 overlaps_interrupt_vector_text(vaddr, vaddr + step))
288 hash = hpt_hash(vpn, shift, ssize);
289 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
291 BUG_ON(!mmu_hash_ops.hpte_insert);
292 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
293 HPTE_V_BOLTED, psize, psize,
299 #ifdef CONFIG_DEBUG_PAGEALLOC
300 if (debug_pagealloc_enabled() &&
301 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
302 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
303 #endif /* CONFIG_DEBUG_PAGEALLOC */
305 return ret < 0 ? ret : 0;
308 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
309 int psize, int ssize)
312 unsigned int step, shift;
316 shift = mmu_psize_defs[psize].shift;
319 if (!mmu_hash_ops.hpte_removebolted)
322 for (vaddr = vstart; vaddr < vend; vaddr += step) {
323 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
335 static bool disable_1tb_segments = false;
337 static int __init parse_disable_1tb_segments(char *p)
339 disable_1tb_segments = true;
342 early_param("disable_1tb_segments", parse_disable_1tb_segments);
344 static int __init htab_dt_scan_seg_sizes(unsigned long node,
345 const char *uname, int depth,
348 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
352 /* We are scanning "cpu" nodes only */
353 if (type == NULL || strcmp(type, "cpu") != 0)
356 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
359 for (; size >= 4; size -= 4, ++prop) {
360 if (be32_to_cpu(prop[0]) == 40) {
361 DBG("1T segment support detected\n");
363 if (disable_1tb_segments) {
364 DBG("1T segments disabled by command line\n");
368 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
372 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
376 static int __init get_idx_from_shift(unsigned int shift)
400 static int __init htab_dt_scan_page_sizes(unsigned long node,
401 const char *uname, int depth,
404 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
408 /* We are scanning "cpu" nodes only */
409 if (type == NULL || strcmp(type, "cpu") != 0)
412 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
416 pr_info("Page sizes from device-tree:\n");
418 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
420 unsigned int base_shift = be32_to_cpu(prop[0]);
421 unsigned int slbenc = be32_to_cpu(prop[1]);
422 unsigned int lpnum = be32_to_cpu(prop[2]);
423 struct mmu_psize_def *def;
426 size -= 3; prop += 3;
427 base_idx = get_idx_from_shift(base_shift);
429 /* skip the pte encoding also */
430 prop += lpnum * 2; size -= lpnum * 2;
433 def = &mmu_psize_defs[base_idx];
434 if (base_idx == MMU_PAGE_16M)
435 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
437 def->shift = base_shift;
438 if (base_shift <= 23)
441 def->avpnm = (1 << (base_shift - 23)) - 1;
444 * We don't know for sure what's up with tlbiel, so
445 * for now we only set it for 4K and 64K pages
447 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
452 while (size > 0 && lpnum) {
453 unsigned int shift = be32_to_cpu(prop[0]);
454 int penc = be32_to_cpu(prop[1]);
456 prop += 2; size -= 2;
459 idx = get_idx_from_shift(shift);
464 pr_err("Invalid penc for base_shift=%d "
465 "shift=%d\n", base_shift, shift);
467 def->penc[idx] = penc;
468 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
469 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
470 base_shift, shift, def->sllp,
471 def->avpnm, def->tlbiel, def->penc[idx]);
478 #ifdef CONFIG_HUGETLB_PAGE
479 /* Scan for 16G memory blocks that have been set aside for huge pages
480 * and reserve those blocks for 16G huge pages.
482 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
483 const char *uname, int depth,
485 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
486 const __be64 *addr_prop;
487 const __be32 *page_count_prop;
488 unsigned int expected_pages;
489 long unsigned int phys_addr;
490 long unsigned int block_size;
492 /* We are scanning "memory" nodes only */
493 if (type == NULL || strcmp(type, "memory") != 0)
496 /* This property is the log base 2 of the number of virtual pages that
497 * will represent this memory block. */
498 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
499 if (page_count_prop == NULL)
501 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
502 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
503 if (addr_prop == NULL)
505 phys_addr = be64_to_cpu(addr_prop[0]);
506 block_size = be64_to_cpu(addr_prop[1]);
507 if (block_size != (16 * GB))
509 printk(KERN_INFO "Huge page(16GB) memory: "
510 "addr = 0x%lX size = 0x%lX pages = %d\n",
511 phys_addr, block_size, expected_pages);
512 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
513 memblock_reserve(phys_addr, block_size * expected_pages);
514 pseries_add_gpage(phys_addr, block_size, expected_pages);
518 #endif /* CONFIG_HUGETLB_PAGE */
520 static void mmu_psize_set_default_penc(void)
523 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
524 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
525 mmu_psize_defs[bpsize].penc[apsize] = -1;
528 #ifdef CONFIG_PPC_64K_PAGES
530 static bool might_have_hea(void)
533 * The HEA ethernet adapter requires awareness of the
534 * GX bus. Without that awareness we can easily assume
535 * we will never see an HEA ethernet device.
537 #ifdef CONFIG_IBMEBUS
538 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
539 firmware_has_feature(FW_FEATURE_SPLPAR);
545 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
547 static void __init htab_scan_page_sizes(void)
551 /* se the invalid penc to -1 */
552 mmu_psize_set_default_penc();
554 /* Default to 4K pages only */
555 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
556 sizeof(mmu_psize_defaults_old));
559 * Try to find the available page sizes in the device-tree
561 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
562 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
564 * Nothing in the device-tree, but the CPU supports 16M pages,
565 * so let's fallback on a known size list for 16M capable CPUs.
567 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
568 sizeof(mmu_psize_defaults_gp));
571 #ifdef CONFIG_HUGETLB_PAGE
572 /* Reserve 16G huge page memory sections for huge pages */
573 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
574 #endif /* CONFIG_HUGETLB_PAGE */
578 * Fill in the hpte_page_sizes[] array.
579 * We go through the mmu_psize_defs[] array looking for all the
580 * supported base/actual page size combinations. Each combination
581 * has a unique pagesize encoding (penc) value in the low bits of
582 * the LP field of the HPTE. For actual page sizes less than 1MB,
583 * some of the upper LP bits are used for RPN bits, meaning that
584 * we need to fill in several entries in hpte_page_sizes[].
586 * In diagrammatic form, with r = RPN bits and z = page size bits:
587 * PTE LP actual page size
594 * The zzzz bits are implementation-specific but are chosen so that
595 * no encoding for a larger page size uses the same value in its
596 * low-order N bits as the encoding for the 2^(12+N) byte page size
599 static void init_hpte_page_sizes(void)
602 long int shift, penc;
604 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
605 if (!mmu_psize_defs[bp].shift)
606 continue; /* not a supported page size */
607 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
608 penc = mmu_psize_defs[bp].penc[ap];
611 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
613 continue; /* should never happen */
615 * For page sizes less than 1MB, this loop
616 * replicates the entry for all possible values
619 while (penc < (1 << LP_BITS)) {
620 hpte_page_sizes[penc] = (ap << 4) | bp;
627 static void __init htab_init_page_sizes(void)
629 init_hpte_page_sizes();
631 if (!debug_pagealloc_enabled()) {
633 * Pick a size for the linear mapping. Currently, we only
634 * support 16M, 1M and 4K which is the default
636 if (mmu_psize_defs[MMU_PAGE_16M].shift)
637 mmu_linear_psize = MMU_PAGE_16M;
638 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
639 mmu_linear_psize = MMU_PAGE_1M;
642 #ifdef CONFIG_PPC_64K_PAGES
644 * Pick a size for the ordinary pages. Default is 4K, we support
645 * 64K for user mappings and vmalloc if supported by the processor.
646 * We only use 64k for ioremap if the processor
647 * (and firmware) support cache-inhibited large pages.
648 * If not, we use 4k and set mmu_ci_restrictions so that
649 * hash_page knows to switch processes that use cache-inhibited
650 * mappings to 4k pages.
652 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
653 mmu_virtual_psize = MMU_PAGE_64K;
654 mmu_vmalloc_psize = MMU_PAGE_64K;
655 if (mmu_linear_psize == MMU_PAGE_4K)
656 mmu_linear_psize = MMU_PAGE_64K;
657 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
659 * When running on pSeries using 64k pages for ioremap
660 * would stop us accessing the HEA ethernet. So if we
661 * have the chance of ever seeing one, stay at 4k.
663 if (!might_have_hea())
664 mmu_io_psize = MMU_PAGE_64K;
666 mmu_ci_restrictions = 1;
668 #endif /* CONFIG_PPC_64K_PAGES */
670 #ifdef CONFIG_SPARSEMEM_VMEMMAP
671 /* We try to use 16M pages for vmemmap if that is supported
672 * and we have at least 1G of RAM at boot
674 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
675 memblock_phys_mem_size() >= 0x40000000)
676 mmu_vmemmap_psize = MMU_PAGE_16M;
677 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
678 mmu_vmemmap_psize = MMU_PAGE_64K;
680 mmu_vmemmap_psize = MMU_PAGE_4K;
681 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
683 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
684 "virtual = %d, io = %d"
685 #ifdef CONFIG_SPARSEMEM_VMEMMAP
689 mmu_psize_defs[mmu_linear_psize].shift,
690 mmu_psize_defs[mmu_virtual_psize].shift,
691 mmu_psize_defs[mmu_io_psize].shift
692 #ifdef CONFIG_SPARSEMEM_VMEMMAP
693 ,mmu_psize_defs[mmu_vmemmap_psize].shift
698 static int __init htab_dt_scan_pftsize(unsigned long node,
699 const char *uname, int depth,
702 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
705 /* We are scanning "cpu" nodes only */
706 if (type == NULL || strcmp(type, "cpu") != 0)
709 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
711 /* pft_size[0] is the NUMA CEC cookie */
712 ppc64_pft_size = be32_to_cpu(prop[1]);
718 unsigned htab_shift_for_mem_size(unsigned long mem_size)
720 unsigned memshift = __ilog2(mem_size);
721 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
724 /* round mem_size up to next power of 2 */
725 if ((1UL << memshift) < mem_size)
728 /* aim for 2 pages / pteg */
729 pteg_shift = memshift - (pshift + 1);
732 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
733 * size permitted by the architecture.
735 return max(pteg_shift + 7, 18U);
738 static unsigned long __init htab_get_table_size(void)
740 /* If hash size isn't already provided by the platform, we try to
741 * retrieve it from the device-tree. If it's not there neither, we
742 * calculate it now based on the total RAM size
744 if (ppc64_pft_size == 0)
745 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
747 return 1UL << ppc64_pft_size;
749 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
752 #ifdef CONFIG_MEMORY_HOTPLUG
753 void resize_hpt_for_hotplug(unsigned long new_mem_size)
755 unsigned target_hpt_shift;
757 if (!mmu_hash_ops.resize_hpt)
760 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
763 * To avoid lots of HPT resizes if memory size is fluctuating
764 * across a boundary, we deliberately have some hysterisis
765 * here: we immediately increase the HPT size if the target
766 * shift exceeds the current shift, but we won't attempt to
767 * reduce unless the target shift is at least 2 below the
770 if ((target_hpt_shift > ppc64_pft_size)
771 || (target_hpt_shift < (ppc64_pft_size - 1))) {
774 rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
777 "Unable to resize hash page table to target order %d: %d\n",
778 target_hpt_shift, rc);
782 int hash__create_section_mapping(unsigned long start, unsigned long end)
784 int rc = htab_bolt_mapping(start, end, __pa(start),
785 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
789 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
791 BUG_ON(rc2 && (rc2 != -ENOENT));
796 int hash__remove_section_mapping(unsigned long start, unsigned long end)
798 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
803 #endif /* CONFIG_MEMORY_HOTPLUG */
805 static void update_hid_for_hash(void)
808 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
810 asm volatile("ptesync": : :"memory");
811 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
812 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
813 : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
814 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
815 trace_tlbie(0, 0, rb, 0, 2, 0, 0);
820 hid0 = mfspr(SPRN_HID0);
821 hid0 &= ~HID0_POWER9_RADIX;
822 mtspr(SPRN_HID0, hid0);
823 asm volatile("isync": : :"memory");
825 /* Wait for it to happen */
826 while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
830 static void __init hash_init_partition_table(phys_addr_t hash_table,
831 unsigned long htab_size)
833 mmu_partition_table_init();
836 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
837 * For now, UPRT is 0 and we have no segment table.
839 htab_size = __ilog2(htab_size) - 18;
840 mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
841 pr_info("Partition table %p\n", partition_tb);
842 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
843 update_hid_for_hash();
846 static void __init htab_initialize(void)
849 unsigned long pteg_count;
851 unsigned long base = 0, size = 0;
852 struct memblock_region *reg;
854 DBG(" -> htab_initialize()\n");
856 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
857 mmu_kernel_ssize = MMU_SEGSIZE_1T;
858 mmu_highuser_ssize = MMU_SEGSIZE_1T;
859 printk(KERN_INFO "Using 1TB segments\n");
863 * Calculate the required size of the htab. We want the number of
864 * PTEGs to equal one half the number of real pages.
866 htab_size_bytes = htab_get_table_size();
867 pteg_count = htab_size_bytes >> 7;
869 htab_hash_mask = pteg_count - 1;
871 if (firmware_has_feature(FW_FEATURE_LPAR) ||
872 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
873 /* Using a hypervisor which owns the htab */
876 #ifdef CONFIG_FA_DUMP
878 * If firmware assisted dump is active firmware preserves
879 * the contents of htab along with entire partition memory.
880 * Clear the htab if firmware assisted dump is active so
881 * that we dont end up using old mappings.
883 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
884 mmu_hash_ops.hpte_clear_all();
887 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
889 #ifdef CONFIG_PPC_CELL
891 * Cell may require the hash table down low when using the
892 * Axon IOMMU in order to fit the dynamic region over it, see
893 * comments in cell/iommu.c
895 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
897 pr_info("Hash table forced below 2G for Axon IOMMU\n");
899 #endif /* CONFIG_PPC_CELL */
901 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
904 DBG("Hash table allocated at %lx, size: %lx\n", table,
907 htab_address = __va(table);
909 /* htab absolute addr + encoded htabsize */
910 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
912 /* Initialize the HPT with no entries */
913 memset((void *)table, 0, htab_size_bytes);
915 if (!cpu_has_feature(CPU_FTR_ARCH_300))
917 mtspr(SPRN_SDR1, _SDR1);
919 hash_init_partition_table(table, htab_size_bytes);
922 prot = pgprot_val(PAGE_KERNEL);
924 #ifdef CONFIG_DEBUG_PAGEALLOC
925 if (debug_pagealloc_enabled()) {
926 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
927 linear_map_hash_slots = __va(memblock_alloc_base(
928 linear_map_hash_count, 1, ppc64_rma_size));
929 memset(linear_map_hash_slots, 0, linear_map_hash_count);
931 #endif /* CONFIG_DEBUG_PAGEALLOC */
933 /* create bolted the linear mapping in the hash table */
934 for_each_memblock(memory, reg) {
935 base = (unsigned long)__va(reg->base);
938 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
941 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
942 prot, mmu_linear_psize, mmu_kernel_ssize));
944 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
947 * If we have a memory_limit and we've allocated TCEs then we need to
948 * explicitly map the TCE area at the top of RAM. We also cope with the
949 * case that the TCEs start below memory_limit.
950 * tce_alloc_start/end are 16MB aligned so the mapping should work
951 * for either 4K or 16MB pages.
953 if (tce_alloc_start) {
954 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
955 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
957 if (base + size >= tce_alloc_start)
958 tce_alloc_start = base + size + 1;
960 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
961 __pa(tce_alloc_start), prot,
962 mmu_linear_psize, mmu_kernel_ssize));
966 DBG(" <- htab_initialize()\n");
971 void __init hash__early_init_devtree(void)
973 /* Initialize segment sizes */
974 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
976 /* Initialize page sizes */
977 htab_scan_page_sizes();
980 void __init hash__early_init_mmu(void)
983 * We have code in __hash_page_64K() and elsewhere, which assumes it can
985 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
987 * Where the slot number is between 0-15, and values of 8-15 indicate
988 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
989 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
990 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
991 * with a BUILD_BUG_ON().
993 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
995 htab_init_page_sizes();
998 * initialize page table size
1000 __pte_frag_nr = H_PTE_FRAG_NR;
1001 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1003 __pte_index_size = H_PTE_INDEX_SIZE;
1004 __pmd_index_size = H_PMD_INDEX_SIZE;
1005 __pud_index_size = H_PUD_INDEX_SIZE;
1006 __pgd_index_size = H_PGD_INDEX_SIZE;
1007 __pmd_cache_index = H_PMD_CACHE_INDEX;
1008 __pte_table_size = H_PTE_TABLE_SIZE;
1009 __pmd_table_size = H_PMD_TABLE_SIZE;
1010 __pud_table_size = H_PUD_TABLE_SIZE;
1011 __pgd_table_size = H_PGD_TABLE_SIZE;
1013 * 4k use hugepd format, so for hash set then to
1020 __kernel_virt_start = H_KERN_VIRT_START;
1021 __kernel_virt_size = H_KERN_VIRT_SIZE;
1022 __vmalloc_start = H_VMALLOC_START;
1023 __vmalloc_end = H_VMALLOC_END;
1024 __kernel_io_start = H_KERN_IO_START;
1025 vmemmap = (struct page *)H_VMEMMAP_BASE;
1026 ioremap_bot = IOREMAP_BASE;
1029 pci_io_base = ISA_IO_BASE;
1032 /* Select appropriate backend */
1033 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1034 ps3_early_mm_init();
1035 else if (firmware_has_feature(FW_FEATURE_LPAR))
1036 hpte_init_pseries();
1037 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1040 if (!mmu_hash_ops.hpte_insert)
1041 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1043 /* Initialize the MMU Hash table and create the linear mapping
1044 * of memory. Has to be done before SLB initialization as this is
1045 * currently where the page size encoding is obtained.
1049 pr_info("Initializing hash mmu with SLB\n");
1050 /* Initialize SLB management */
1055 void hash__early_init_mmu_secondary(void)
1057 /* Initialize hash table for that CPU */
1058 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1060 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1061 update_hid_for_hash();
1063 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1064 mtspr(SPRN_SDR1, _SDR1);
1067 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1069 /* Initialize SLB */
1072 #endif /* CONFIG_SMP */
1075 * Called by asm hashtable.S for doing lazy icache flush
1077 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1081 if (!pfn_valid(pte_pfn(pte)))
1084 page = pte_page(pte);
1087 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1088 if (trap == 0x400) {
1089 flush_dcache_icache_page(page);
1090 set_bit(PG_arch_1, &page->flags);
1097 #ifdef CONFIG_PPC_MM_SLICES
1098 static unsigned int get_paca_psize(unsigned long addr)
1101 unsigned char *hpsizes;
1102 unsigned long index, mask_index;
1104 if (addr < SLICE_LOW_TOP) {
1105 lpsizes = get_paca()->mm_ctx_low_slices_psize;
1106 index = GET_LOW_SLICE_INDEX(addr);
1107 return (lpsizes >> (index * 4)) & 0xF;
1109 hpsizes = get_paca()->mm_ctx_high_slices_psize;
1110 index = GET_HIGH_SLICE_INDEX(addr);
1111 mask_index = index & 0x1;
1112 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1116 unsigned int get_paca_psize(unsigned long addr)
1118 return get_paca()->mm_ctx_user_psize;
1123 * Demote a segment to using 4k pages.
1124 * For now this makes the whole process use 4k pages.
1126 #ifdef CONFIG_PPC_64K_PAGES
1127 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1129 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1131 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1132 copro_flush_all_slbs(mm);
1133 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1135 copy_mm_to_paca(mm);
1136 slb_flush_and_rebolt();
1139 #endif /* CONFIG_PPC_64K_PAGES */
1141 #ifdef CONFIG_PPC_SUBPAGE_PROT
1143 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1144 * Userspace sets the subpage permissions using the subpage_prot system call.
1146 * Result is 0: full permissions, _PAGE_RW: read-only,
1147 * _PAGE_RWX: no access.
1149 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1151 struct subpage_prot_table *spt = &mm->context.spt;
1155 if (ea >= spt->maxaddr)
1157 if (ea < 0x100000000UL) {
1158 /* addresses below 4GB use spt->low_prot */
1159 sbpm = spt->low_prot;
1161 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1165 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1168 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1170 /* extract 2-bit bitfield for this 4k subpage */
1171 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1174 * 0 -> full premission
1177 * We return the flag that need to be cleared.
1179 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1183 #else /* CONFIG_PPC_SUBPAGE_PROT */
1184 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1190 void hash_failure_debug(unsigned long ea, unsigned long access,
1191 unsigned long vsid, unsigned long trap,
1192 int ssize, int psize, int lpsize, unsigned long pte)
1194 if (!printk_ratelimit())
1196 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1197 ea, access, current->comm);
1198 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1199 trap, vsid, ssize, psize, lpsize, pte);
1202 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1203 int psize, bool user_region)
1206 if (psize != get_paca_psize(ea)) {
1207 copy_mm_to_paca(mm);
1208 slb_flush_and_rebolt();
1210 } else if (get_paca()->vmalloc_sllp !=
1211 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1212 get_paca()->vmalloc_sllp =
1213 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1214 slb_vmalloc_update();
1220 * 1 - normal page fault
1221 * -1 - critical hash insertion error
1222 * -2 - access not permitted by subpage protection mechanism
1224 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1225 unsigned long access, unsigned long trap,
1226 unsigned long flags)
1229 enum ctx_state prev_state = exception_enter();
1234 int rc, user_region = 0;
1237 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1239 trace_hash_fault(ea, access, trap);
1241 /* Get region & vsid */
1242 switch (REGION_ID(ea)) {
1243 case USER_REGION_ID:
1246 DBG_LOW(" user region with no mm !\n");
1250 psize = get_slice_psize(mm, ea);
1251 ssize = user_segment_size(ea);
1252 vsid = get_vsid(mm->context.id, ea, ssize);
1254 case VMALLOC_REGION_ID:
1255 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1256 if (ea < VMALLOC_END)
1257 psize = mmu_vmalloc_psize;
1259 psize = mmu_io_psize;
1260 ssize = mmu_kernel_ssize;
1263 /* Not a valid range
1264 * Send the problem up to do_page_fault
1269 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1273 DBG_LOW("Bad address!\n");
1279 if (pgdir == NULL) {
1284 /* Check CPU locality */
1285 if (user_region && mm_is_thread_local(mm))
1286 flags |= HPTE_LOCAL_UPDATE;
1288 #ifndef CONFIG_PPC_64K_PAGES
1289 /* If we use 4K pages and our psize is not 4K, then we might
1290 * be hitting a special driver mapping, and need to align the
1291 * address before we fetch the PTE.
1293 * It could also be a hugepage mapping, in which case this is
1294 * not necessary, but it's not harmful, either.
1296 if (psize != MMU_PAGE_4K)
1297 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1298 #endif /* CONFIG_PPC_64K_PAGES */
1300 /* Get PTE and page size from page tables */
1301 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1302 if (ptep == NULL || !pte_present(*ptep)) {
1303 DBG_LOW(" no PTE !\n");
1308 /* Add _PAGE_PRESENT to the required access perm */
1309 access |= _PAGE_PRESENT;
1311 /* Pre-check access permissions (will be re-checked atomically
1312 * in __hash_page_XX but this pre-check is a fast path
1314 if (!check_pte_access(access, pte_val(*ptep))) {
1315 DBG_LOW(" no access !\n");
1322 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1323 trap, flags, ssize, psize);
1324 #ifdef CONFIG_HUGETLB_PAGE
1326 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1327 flags, ssize, hugeshift, psize);
1331 * if we have hugeshift, and is not transhuge with
1332 * hugetlb disabled, something is really wrong.
1338 if (current->mm == mm)
1339 check_paca_psize(ea, mm, psize, user_region);
1344 #ifndef CONFIG_PPC_64K_PAGES
1345 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1347 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1348 pte_val(*(ptep + PTRS_PER_PTE)));
1350 /* Do actual hashing */
1351 #ifdef CONFIG_PPC_64K_PAGES
1352 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1353 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1354 demote_segment_4k(mm, ea);
1355 psize = MMU_PAGE_4K;
1358 /* If this PTE is non-cacheable and we have restrictions on
1359 * using non cacheable large pages, then we switch to 4k
1361 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1363 demote_segment_4k(mm, ea);
1364 psize = MMU_PAGE_4K;
1365 } else if (ea < VMALLOC_END) {
1367 * some driver did a non-cacheable mapping
1368 * in vmalloc space, so switch vmalloc
1371 printk(KERN_ALERT "Reducing vmalloc segment "
1372 "to 4kB pages because of "
1373 "non-cacheable mapping\n");
1374 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1375 copro_flush_all_slbs(mm);
1379 #endif /* CONFIG_PPC_64K_PAGES */
1381 if (current->mm == mm)
1382 check_paca_psize(ea, mm, psize, user_region);
1384 #ifdef CONFIG_PPC_64K_PAGES
1385 if (psize == MMU_PAGE_64K)
1386 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1389 #endif /* CONFIG_PPC_64K_PAGES */
1391 int spp = subpage_protection(mm, ea);
1395 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1399 /* Dump some info in case of hash insertion failure, they should
1400 * never happen so it is really useful to know if/when they do
1403 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1404 psize, pte_val(*ptep));
1405 #ifndef CONFIG_PPC_64K_PAGES
1406 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1408 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1409 pte_val(*(ptep + PTRS_PER_PTE)));
1411 DBG_LOW(" -> rc=%d\n", rc);
1414 exception_exit(prev_state);
1417 EXPORT_SYMBOL_GPL(hash_page_mm);
1419 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1420 unsigned long dsisr)
1422 unsigned long flags = 0;
1423 struct mm_struct *mm = current->mm;
1425 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1428 if (dsisr & DSISR_NOHPTE)
1429 flags |= HPTE_NOHPTE_UPDATE;
1431 return hash_page_mm(mm, ea, access, trap, flags);
1433 EXPORT_SYMBOL_GPL(hash_page);
1435 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1436 unsigned long dsisr)
1438 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1439 unsigned long flags = 0;
1440 struct mm_struct *mm = current->mm;
1442 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1445 if (dsisr & DSISR_NOHPTE)
1446 flags |= HPTE_NOHPTE_UPDATE;
1448 if (dsisr & DSISR_ISSTORE)
1449 access |= _PAGE_WRITE;
1451 * We set _PAGE_PRIVILEGED only when
1452 * kernel mode access kernel space.
1454 * _PAGE_PRIVILEGED is NOT set
1455 * 1) when kernel mode access user space
1456 * 2) user space access kernel space.
1458 access |= _PAGE_PRIVILEGED;
1459 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1460 access &= ~_PAGE_PRIVILEGED;
1463 access |= _PAGE_EXEC;
1465 return hash_page_mm(mm, ea, access, trap, flags);
1468 #ifdef CONFIG_PPC_MM_SLICES
1469 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1471 int psize = get_slice_psize(mm, ea);
1473 /* We only prefault standard pages for now */
1474 if (unlikely(psize != mm->context.user_psize))
1478 * Don't prefault if subpage protection is enabled for the EA.
1480 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1486 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1492 void hash_preload(struct mm_struct *mm, unsigned long ea,
1493 unsigned long access, unsigned long trap)
1499 unsigned long flags;
1500 int rc, ssize, update_flags = 0;
1502 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1504 if (!should_hash_preload(mm, ea))
1507 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1508 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1510 /* Get Linux PTE if available */
1516 ssize = user_segment_size(ea);
1517 vsid = get_vsid(mm->context.id, ea, ssize);
1521 * Hash doesn't like irqs. Walking linux page table with irq disabled
1522 * saves us from holding multiple locks.
1524 local_irq_save(flags);
1527 * THP pages use update_mmu_cache_pmd. We don't do
1528 * hash preload there. Hence can ignore THP here
1530 ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1534 WARN_ON(hugepage_shift);
1535 #ifdef CONFIG_PPC_64K_PAGES
1536 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1537 * a 64K kernel), then we don't preload, hash_page() will take
1538 * care of it once we actually try to access the page.
1539 * That way we don't have to duplicate all of the logic for segment
1540 * page size demotion here
1542 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1544 #endif /* CONFIG_PPC_64K_PAGES */
1546 /* Is that local to this CPU ? */
1547 if (mm_is_thread_local(mm))
1548 update_flags |= HPTE_LOCAL_UPDATE;
1551 #ifdef CONFIG_PPC_64K_PAGES
1552 if (mm->context.user_psize == MMU_PAGE_64K)
1553 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1554 update_flags, ssize);
1556 #endif /* CONFIG_PPC_64K_PAGES */
1557 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1558 ssize, subpage_protection(mm, ea));
1560 /* Dump some info in case of hash insertion failure, they should
1561 * never happen so it is really useful to know if/when they do
1564 hash_failure_debug(ea, access, vsid, trap, ssize,
1565 mm->context.user_psize,
1566 mm->context.user_psize,
1569 local_irq_restore(flags);
1572 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1573 static inline void tm_flush_hash_page(int local)
1576 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1577 * page back to a block device w/PIO could pick up transactional data
1578 * (bad!) so we force an abort here. Before the sync the page will be
1579 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1580 * kernel uses a page from userspace without unmapping it first, it may
1581 * see the speculated version.
1583 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1584 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1586 tm_abort(TM_CAUSE_TLBI);
1590 static inline void tm_flush_hash_page(int local)
1595 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1596 * do not forget to update the assembly call site !
1598 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1599 unsigned long flags)
1601 unsigned long hash, index, shift, hidx, slot;
1602 int local = flags & HPTE_LOCAL_UPDATE;
1604 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1605 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1606 hash = hpt_hash(vpn, shift, ssize);
1607 hidx = __rpte_to_hidx(pte, index);
1608 if (hidx & _PTEIDX_SECONDARY)
1610 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1611 slot += hidx & _PTEIDX_GROUP_IX;
1612 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1614 * We use same base page size and actual psize, because we don't
1615 * use these functions for hugepage
1617 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, psize,
1619 } pte_iterate_hashed_end();
1621 tm_flush_hash_page(local);
1624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1625 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1626 pmd_t *pmdp, unsigned int psize, int ssize,
1627 unsigned long flags)
1629 int i, max_hpte_count, valid;
1630 unsigned long s_addr;
1631 unsigned char *hpte_slot_array;
1632 unsigned long hidx, shift, vpn, hash, slot;
1633 int local = flags & HPTE_LOCAL_UPDATE;
1635 s_addr = addr & HPAGE_PMD_MASK;
1636 hpte_slot_array = get_hpte_slot_array(pmdp);
1638 * IF we try to do a HUGE PTE update after a withdraw is done.
1639 * we will find the below NULL. This happens when we do
1640 * split_huge_page_pmd
1642 if (!hpte_slot_array)
1645 if (mmu_hash_ops.hugepage_invalidate) {
1646 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1647 psize, ssize, local);
1651 * No bluk hpte removal support, invalidate each entry
1653 shift = mmu_psize_defs[psize].shift;
1654 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1655 for (i = 0; i < max_hpte_count; i++) {
1657 * 8 bits per each hpte entries
1658 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1660 valid = hpte_valid(hpte_slot_array, i);
1663 hidx = hpte_hash_index(hpte_slot_array, i);
1666 addr = s_addr + (i * (1ul << shift));
1667 vpn = hpt_vpn(addr, vsid, ssize);
1668 hash = hpt_hash(vpn, shift, ssize);
1669 if (hidx & _PTEIDX_SECONDARY)
1672 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1673 slot += hidx & _PTEIDX_GROUP_IX;
1674 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1675 MMU_PAGE_16M, ssize, local);
1678 tm_flush_hash_page(local);
1680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1682 void flush_hash_range(unsigned long number, int local)
1684 if (mmu_hash_ops.flush_hash_range)
1685 mmu_hash_ops.flush_hash_range(number, local);
1688 struct ppc64_tlb_batch *batch =
1689 this_cpu_ptr(&ppc64_tlb_batch);
1691 for (i = 0; i < number; i++)
1692 flush_hash_page(batch->vpn[i], batch->pte[i],
1693 batch->psize, batch->ssize, local);
1698 * low_hash_fault is called when we the low level hash code failed
1699 * to instert a PTE due to an hypervisor error
1701 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1703 enum ctx_state prev_state = exception_enter();
1705 if (user_mode(regs)) {
1706 #ifdef CONFIG_PPC_SUBPAGE_PROT
1708 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1711 _exception(SIGBUS, regs, BUS_ADRERR, address);
1713 bad_page_fault(regs, address, SIGBUS);
1715 exception_exit(prev_state);
1718 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1719 unsigned long pa, unsigned long rflags,
1720 unsigned long vflags, int psize, int ssize)
1722 unsigned long hpte_group;
1726 hpte_group = ((hash & htab_hash_mask) *
1727 HPTES_PER_GROUP) & ~0x7UL;
1729 /* Insert into the hash table, primary slot */
1730 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1731 psize, psize, ssize);
1733 /* Primary is full, try the secondary */
1734 if (unlikely(slot == -1)) {
1735 hpte_group = ((~hash & htab_hash_mask) *
1736 HPTES_PER_GROUP) & ~0x7UL;
1737 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1738 vflags | HPTE_V_SECONDARY,
1739 psize, psize, ssize);
1742 hpte_group = ((hash & htab_hash_mask) *
1743 HPTES_PER_GROUP)&~0x7UL;
1745 mmu_hash_ops.hpte_remove(hpte_group);
1753 #ifdef CONFIG_DEBUG_PAGEALLOC
1754 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1757 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1758 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1759 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1762 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1764 /* Don't create HPTE entries for bad address */
1768 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1770 mmu_linear_psize, mmu_kernel_ssize);
1773 spin_lock(&linear_map_hash_lock);
1774 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1775 linear_map_hash_slots[lmi] = ret | 0x80;
1776 spin_unlock(&linear_map_hash_lock);
1779 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1781 unsigned long hash, hidx, slot;
1782 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1783 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1785 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1786 spin_lock(&linear_map_hash_lock);
1787 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1788 hidx = linear_map_hash_slots[lmi] & 0x7f;
1789 linear_map_hash_slots[lmi] = 0;
1790 spin_unlock(&linear_map_hash_lock);
1791 if (hidx & _PTEIDX_SECONDARY)
1793 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1794 slot += hidx & _PTEIDX_GROUP_IX;
1795 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1797 mmu_kernel_ssize, 0);
1800 void __kernel_map_pages(struct page *page, int numpages, int enable)
1802 unsigned long flags, vaddr, lmi;
1805 local_irq_save(flags);
1806 for (i = 0; i < numpages; i++, page++) {
1807 vaddr = (unsigned long)page_address(page);
1808 lmi = __pa(vaddr) >> PAGE_SHIFT;
1809 if (lmi >= linear_map_hash_count)
1812 kernel_map_linear_page(vaddr, lmi);
1814 kernel_unmap_linear_page(vaddr, lmi);
1816 local_irq_restore(flags);
1818 #endif /* CONFIG_DEBUG_PAGEALLOC */
1820 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1821 phys_addr_t first_memblock_size)
1823 /* We don't currently support the first MEMBLOCK not mapping 0
1824 * physical on those processors
1826 BUG_ON(first_memblock_base != 0);
1828 /* On LPAR systems, the first entry is our RMA region,
1829 * non-LPAR 64-bit hash MMU systems don't have a limitation
1830 * on real mode access, but using the first entry works well
1831 * enough. We also clamp it to 1G to avoid some funky things
1832 * such as RTAS bugs etc...
1834 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1836 /* Finally limit subsequent allocations */
1837 memblock_set_current_limit(ppc64_rma_size);
1840 #ifdef CONFIG_DEBUG_FS
1842 static int hpt_order_get(void *data, u64 *val)
1844 *val = ppc64_pft_size;
1848 static int hpt_order_set(void *data, u64 val)
1850 if (!mmu_hash_ops.resize_hpt)
1853 return mmu_hash_ops.resize_hpt(val);
1856 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1858 static int __init hash64_debugfs(void)
1860 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1861 NULL, &fops_hpt_order)) {
1862 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1867 machine_device_initcall(pseries, hash64_debugfs);
1868 #endif /* CONFIG_DEBUG_FS */