]> Git Repo - linux.git/blob - fs/btrfs/disk-io.c
btrfs: remove unused parameter from readahead_tree_block
[linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         int metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96         struct inode *inode;
97         struct bio *bio;
98         struct list_head list;
99         extent_submit_bio_hook_t *submit_bio_start;
100         extent_submit_bio_hook_t *submit_bio_done;
101         int rw;
102         int mirror_num;
103         unsigned long bio_flags;
104         /*
105          * bio_offset is optional, can be used if the pages in the bio
106          * can't tell us where in the file the bio should go
107          */
108         u64 bio_offset;
109         struct btrfs_work work;
110         int error;
111 };
112
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142         u64                     id;             /* root objectid */
143         const char              *name_stem;     /* lock name stem */
144         char                    names[BTRFS_MAX_LEVEL + 1][20];
145         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
148         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
149         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
150         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
151         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
152         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
153         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
154         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
155         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
156         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
157         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
158         { .id = 0,                              .name_stem = "tree"     },
159 };
160
161 void __init btrfs_init_lockdep(void)
162 {
163         int i, j;
164
165         /* initialize lockdep class names */
166         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170                         snprintf(ks->names[j], sizeof(ks->names[j]),
171                                  "btrfs-%s-%02d", ks->name_stem, j);
172         }
173 }
174
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176                                     int level)
177 {
178         struct btrfs_lockdep_keyset *ks;
179
180         BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182         /* find the matching keyset, id 0 is the default entry */
183         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184                 if (ks->id == objectid)
185                         break;
186
187         lockdep_set_class_and_name(&eb->lock,
188                                    &ks->keys[level], ks->names[level]);
189 }
190
191 #endif
192
193 /*
194  * extents on the btree inode are pretty simple, there's one extent
195  * that covers the entire device
196  */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198                 struct page *page, size_t pg_offset, u64 start, u64 len,
199                 int create)
200 {
201         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202         struct extent_map *em;
203         int ret;
204
205         read_lock(&em_tree->lock);
206         em = lookup_extent_mapping(em_tree, start, len);
207         if (em) {
208                 em->bdev =
209                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210                 read_unlock(&em_tree->lock);
211                 goto out;
212         }
213         read_unlock(&em_tree->lock);
214
215         em = alloc_extent_map();
216         if (!em) {
217                 em = ERR_PTR(-ENOMEM);
218                 goto out;
219         }
220         em->start = 0;
221         em->len = (u64)-1;
222         em->block_len = (u64)-1;
223         em->block_start = 0;
224         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225
226         write_lock(&em_tree->lock);
227         ret = add_extent_mapping(em_tree, em, 0);
228         if (ret == -EEXIST) {
229                 free_extent_map(em);
230                 em = lookup_extent_mapping(em_tree, start, len);
231                 if (!em)
232                         em = ERR_PTR(-EIO);
233         } else if (ret) {
234                 free_extent_map(em);
235                 em = ERR_PTR(ret);
236         }
237         write_unlock(&em_tree->lock);
238
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245         return btrfs_crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO
302                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303                                 "level %d\n",
304                                 root->fs_info->sb->s_id, buf->start,
305                                 val, found, btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid,
326                                  int atomic)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330         bool need_lock = (current->journal_info ==
331                           (void *)BTRFS_SEND_TRANS_STUB);
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         if (need_lock) {
340                 btrfs_tree_read_lock(eb);
341                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342         }
343
344         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345                          0, &cached_state);
346         if (extent_buffer_uptodate(eb) &&
347             btrfs_header_generation(eb) == parent_transid) {
348                 ret = 0;
349                 goto out;
350         }
351         printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352                         eb->fs_info->sb->s_id, eb->start,
353                         parent_transid, btrfs_header_generation(eb));
354         ret = 1;
355
356         /*
357          * Things reading via commit roots that don't have normal protection,
358          * like send, can have a really old block in cache that may point at a
359          * block that has been free'd and re-allocated.  So don't clear uptodate
360          * if we find an eb that is under IO (dirty/writeback) because we could
361          * end up reading in the stale data and then writing it back out and
362          * making everybody very sad.
363          */
364         if (!extent_buffer_under_io(eb))
365                 clear_extent_buffer_uptodate(eb);
366 out:
367         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368                              &cached_state, GFP_NOFS);
369         if (need_lock)
370                 btrfs_tree_read_unlock_blocking(eb);
371         return ret;
372 }
373
374 /*
375  * Return 0 if the superblock checksum type matches the checksum value of that
376  * algorithm. Pass the raw disk superblock data.
377  */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380         struct btrfs_super_block *disk_sb =
381                 (struct btrfs_super_block *)raw_disk_sb;
382         u16 csum_type = btrfs_super_csum_type(disk_sb);
383         int ret = 0;
384
385         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386                 u32 crc = ~(u32)0;
387                 const int csum_size = sizeof(crc);
388                 char result[csum_size];
389
390                 /*
391                  * The super_block structure does not span the whole
392                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393                  * is filled with zeros and is included in the checkum.
394                  */
395                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397                 btrfs_csum_final(crc, result);
398
399                 if (memcmp(raw_disk_sb, result, csum_size))
400                         ret = 1;
401
402                 if (ret && btrfs_super_generation(disk_sb) < 10) {
403                         printk(KERN_WARNING
404                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
405                         ret = 0;
406                 }
407         }
408
409         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411                                 csum_type);
412                 ret = 1;
413         }
414
415         return ret;
416 }
417
418 /*
419  * helper to read a given tree block, doing retries as required when
420  * the checksums don't match and we have alternate mirrors to try.
421  */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423                                           struct extent_buffer *eb,
424                                           u64 start, u64 parent_transid)
425 {
426         struct extent_io_tree *io_tree;
427         int failed = 0;
428         int ret;
429         int num_copies = 0;
430         int mirror_num = 0;
431         int failed_mirror = 0;
432
433         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435         while (1) {
436                 ret = read_extent_buffer_pages(io_tree, eb, start,
437                                                WAIT_COMPLETE,
438                                                btree_get_extent, mirror_num);
439                 if (!ret) {
440                         if (!verify_parent_transid(io_tree, eb,
441                                                    parent_transid, 0))
442                                 break;
443                         else
444                                 ret = -EIO;
445                 }
446
447                 /*
448                  * This buffer's crc is fine, but its contents are corrupted, so
449                  * there is no reason to read the other copies, they won't be
450                  * any less wrong.
451                  */
452                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453                         break;
454
455                 num_copies = btrfs_num_copies(root->fs_info,
456                                               eb->start, eb->len);
457                 if (num_copies == 1)
458                         break;
459
460                 if (!failed_mirror) {
461                         failed = 1;
462                         failed_mirror = eb->read_mirror;
463                 }
464
465                 mirror_num++;
466                 if (mirror_num == failed_mirror)
467                         mirror_num++;
468
469                 if (mirror_num > num_copies)
470                         break;
471         }
472
473         if (failed && !ret && failed_mirror)
474                 repair_eb_io_failure(root, eb, failed_mirror);
475
476         return ret;
477 }
478
479 /*
480  * checksum a dirty tree block before IO.  This has extra checks to make sure
481  * we only fill in the checksum field in the first page of a multi-page block
482  */
483
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486         u64 start = page_offset(page);
487         u64 found_start;
488         struct extent_buffer *eb;
489
490         eb = (struct extent_buffer *)page->private;
491         if (page != eb->pages[0])
492                 return 0;
493         found_start = btrfs_header_bytenr(eb);
494         if (WARN_ON(found_start != start || !PageUptodate(page)))
495                 return 0;
496         csum_tree_block(root, eb, 0);
497         return 0;
498 }
499
500 static int check_tree_block_fsid(struct btrfs_root *root,
501                                  struct extent_buffer *eb)
502 {
503         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504         u8 fsid[BTRFS_UUID_SIZE];
505         int ret = 1;
506
507         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508         while (fs_devices) {
509                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510                         ret = 0;
511                         break;
512                 }
513                 fs_devices = fs_devices->seed;
514         }
515         return ret;
516 }
517
518 #define CORRUPT(reason, eb, root, slot)                         \
519         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
520                    "root=%llu, slot=%d", reason,                        \
521                btrfs_header_bytenr(eb), root->objectid, slot)
522
523 static noinline int check_leaf(struct btrfs_root *root,
524                                struct extent_buffer *leaf)
525 {
526         struct btrfs_key key;
527         struct btrfs_key leaf_key;
528         u32 nritems = btrfs_header_nritems(leaf);
529         int slot;
530
531         if (nritems == 0)
532                 return 0;
533
534         /* Check the 0 item */
535         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536             BTRFS_LEAF_DATA_SIZE(root)) {
537                 CORRUPT("invalid item offset size pair", leaf, root, 0);
538                 return -EIO;
539         }
540
541         /*
542          * Check to make sure each items keys are in the correct order and their
543          * offsets make sense.  We only have to loop through nritems-1 because
544          * we check the current slot against the next slot, which verifies the
545          * next slot's offset+size makes sense and that the current's slot
546          * offset is correct.
547          */
548         for (slot = 0; slot < nritems - 1; slot++) {
549                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552                 /* Make sure the keys are in the right order */
553                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554                         CORRUPT("bad key order", leaf, root, slot);
555                         return -EIO;
556                 }
557
558                 /*
559                  * Make sure the offset and ends are right, remember that the
560                  * item data starts at the end of the leaf and grows towards the
561                  * front.
562                  */
563                 if (btrfs_item_offset_nr(leaf, slot) !=
564                         btrfs_item_end_nr(leaf, slot + 1)) {
565                         CORRUPT("slot offset bad", leaf, root, slot);
566                         return -EIO;
567                 }
568
569                 /*
570                  * Check to make sure that we don't point outside of the leaf,
571                  * just incase all the items are consistent to eachother, but
572                  * all point outside of the leaf.
573                  */
574                 if (btrfs_item_end_nr(leaf, slot) >
575                     BTRFS_LEAF_DATA_SIZE(root)) {
576                         CORRUPT("slot end outside of leaf", leaf, root, slot);
577                         return -EIO;
578                 }
579         }
580
581         return 0;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585                                       u64 phy_offset, struct page *page,
586                                       u64 start, u64 end, int mirror)
587 {
588         u64 found_start;
589         int found_level;
590         struct extent_buffer *eb;
591         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592         int ret = 0;
593         int reads_done;
594
595         if (!page->private)
596                 goto out;
597
598         eb = (struct extent_buffer *)page->private;
599
600         /* the pending IO might have been the only thing that kept this buffer
601          * in memory.  Make sure we have a ref for all this other checks
602          */
603         extent_buffer_get(eb);
604
605         reads_done = atomic_dec_and_test(&eb->io_pages);
606         if (!reads_done)
607                 goto err;
608
609         eb->read_mirror = mirror;
610         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         found_start = btrfs_header_bytenr(eb);
616         if (found_start != eb->start) {
617                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
618                                "%llu %llu\n",
619                                eb->fs_info->sb->s_id, found_start, eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         if (check_tree_block_fsid(root, eb)) {
624                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625                                eb->fs_info->sb->s_id, eb->start);
626                 ret = -EIO;
627                 goto err;
628         }
629         found_level = btrfs_header_level(eb);
630         if (found_level >= BTRFS_MAX_LEVEL) {
631                 btrfs_info(root->fs_info, "bad tree block level %d",
632                            (int)btrfs_header_level(eb));
633                 ret = -EIO;
634                 goto err;
635         }
636
637         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638                                        eb, found_level);
639
640         ret = csum_tree_block(root, eb, 1);
641         if (ret) {
642                 ret = -EIO;
643                 goto err;
644         }
645
646         /*
647          * If this is a leaf block and it is corrupt, set the corrupt bit so
648          * that we don't try and read the other copies of this block, just
649          * return -EIO.
650          */
651         if (found_level == 0 && check_leaf(root, eb)) {
652                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653                 ret = -EIO;
654         }
655
656         if (!ret)
657                 set_extent_buffer_uptodate(eb);
658 err:
659         if (reads_done &&
660             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661                 btree_readahead_hook(root, eb, eb->start, ret);
662
663         if (ret) {
664                 /*
665                  * our io error hook is going to dec the io pages
666                  * again, we have to make sure it has something
667                  * to decrement
668                  */
669                 atomic_inc(&eb->io_pages);
670                 clear_extent_buffer_uptodate(eb);
671         }
672         free_extent_buffer(eb);
673 out:
674         return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679         struct extent_buffer *eb;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
682         eb = (struct extent_buffer *)page->private;
683         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684         eb->read_mirror = failed_mirror;
685         atomic_dec(&eb->io_pages);
686         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(root, eb, eb->start, -EIO);
688         return -EIO;    /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693         struct end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696         btrfs_work_func_t func;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703                         wq = fs_info->endio_meta_write_workers;
704                         func = btrfs_endio_meta_write_helper;
705                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706                         wq = fs_info->endio_freespace_worker;
707                         func = btrfs_freespace_write_helper;
708                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709                         wq = fs_info->endio_raid56_workers;
710                         func = btrfs_endio_raid56_helper;
711                 } else {
712                         wq = fs_info->endio_write_workers;
713                         func = btrfs_endio_write_helper;
714                 }
715         } else {
716                 if (unlikely(end_io_wq->metadata ==
717                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718                         wq = fs_info->endio_repair_workers;
719                         func = btrfs_endio_repair_helper;
720                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721                         wq = fs_info->endio_raid56_workers;
722                         func = btrfs_endio_raid56_helper;
723                 } else if (end_io_wq->metadata) {
724                         wq = fs_info->endio_meta_workers;
725                         func = btrfs_endio_meta_helper;
726                 } else {
727                         wq = fs_info->endio_workers;
728                         func = btrfs_endio_helper;
729                 }
730         }
731
732         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733         btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 /*
737  * For the metadata arg you want
738  *
739  * 0 - if data
740  * 1 - if normal metadta
741  * 2 - if writing to the free space cache area
742  * 3 - raid parity work
743  */
744 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
745                         int metadata)
746 {
747         struct end_io_wq *end_io_wq;
748
749         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
750         if (!end_io_wq)
751                 return -ENOMEM;
752
753         end_io_wq->private = bio->bi_private;
754         end_io_wq->end_io = bio->bi_end_io;
755         end_io_wq->info = info;
756         end_io_wq->error = 0;
757         end_io_wq->bio = bio;
758         end_io_wq->metadata = metadata;
759
760         bio->bi_private = end_io_wq;
761         bio->bi_end_io = end_workqueue_bio;
762         return 0;
763 }
764
765 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
766 {
767         unsigned long limit = min_t(unsigned long,
768                                     info->thread_pool_size,
769                                     info->fs_devices->open_devices);
770         return 256 * limit;
771 }
772
773 static void run_one_async_start(struct btrfs_work *work)
774 {
775         struct async_submit_bio *async;
776         int ret;
777
778         async = container_of(work, struct  async_submit_bio, work);
779         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780                                       async->mirror_num, async->bio_flags,
781                                       async->bio_offset);
782         if (ret)
783                 async->error = ret;
784 }
785
786 static void run_one_async_done(struct btrfs_work *work)
787 {
788         struct btrfs_fs_info *fs_info;
789         struct async_submit_bio *async;
790         int limit;
791
792         async = container_of(work, struct  async_submit_bio, work);
793         fs_info = BTRFS_I(async->inode)->root->fs_info;
794
795         limit = btrfs_async_submit_limit(fs_info);
796         limit = limit * 2 / 3;
797
798         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
799             waitqueue_active(&fs_info->async_submit_wait))
800                 wake_up(&fs_info->async_submit_wait);
801
802         /* If an error occured we just want to clean up the bio and move on */
803         if (async->error) {
804                 bio_endio(async->bio, async->error);
805                 return;
806         }
807
808         async->submit_bio_done(async->inode, async->rw, async->bio,
809                                async->mirror_num, async->bio_flags,
810                                async->bio_offset);
811 }
812
813 static void run_one_async_free(struct btrfs_work *work)
814 {
815         struct async_submit_bio *async;
816
817         async = container_of(work, struct  async_submit_bio, work);
818         kfree(async);
819 }
820
821 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822                         int rw, struct bio *bio, int mirror_num,
823                         unsigned long bio_flags,
824                         u64 bio_offset,
825                         extent_submit_bio_hook_t *submit_bio_start,
826                         extent_submit_bio_hook_t *submit_bio_done)
827 {
828         struct async_submit_bio *async;
829
830         async = kmalloc(sizeof(*async), GFP_NOFS);
831         if (!async)
832                 return -ENOMEM;
833
834         async->inode = inode;
835         async->rw = rw;
836         async->bio = bio;
837         async->mirror_num = mirror_num;
838         async->submit_bio_start = submit_bio_start;
839         async->submit_bio_done = submit_bio_done;
840
841         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
842                         run_one_async_done, run_one_async_free);
843
844         async->bio_flags = bio_flags;
845         async->bio_offset = bio_offset;
846
847         async->error = 0;
848
849         atomic_inc(&fs_info->nr_async_submits);
850
851         if (rw & REQ_SYNC)
852                 btrfs_set_work_high_priority(&async->work);
853
854         btrfs_queue_work(fs_info->workers, &async->work);
855
856         while (atomic_read(&fs_info->async_submit_draining) &&
857               atomic_read(&fs_info->nr_async_submits)) {
858                 wait_event(fs_info->async_submit_wait,
859                            (atomic_read(&fs_info->nr_async_submits) == 0));
860         }
861
862         return 0;
863 }
864
865 static int btree_csum_one_bio(struct bio *bio)
866 {
867         struct bio_vec *bvec;
868         struct btrfs_root *root;
869         int i, ret = 0;
870
871         bio_for_each_segment_all(bvec, bio, i) {
872                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
873                 ret = csum_dirty_buffer(root, bvec->bv_page);
874                 if (ret)
875                         break;
876         }
877
878         return ret;
879 }
880
881 static int __btree_submit_bio_start(struct inode *inode, int rw,
882                                     struct bio *bio, int mirror_num,
883                                     unsigned long bio_flags,
884                                     u64 bio_offset)
885 {
886         /*
887          * when we're called for a write, we're already in the async
888          * submission context.  Just jump into btrfs_map_bio
889          */
890         return btree_csum_one_bio(bio);
891 }
892
893 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
894                                  int mirror_num, unsigned long bio_flags,
895                                  u64 bio_offset)
896 {
897         int ret;
898
899         /*
900          * when we're called for a write, we're already in the async
901          * submission context.  Just jump into btrfs_map_bio
902          */
903         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
904         if (ret)
905                 bio_endio(bio, ret);
906         return ret;
907 }
908
909 static int check_async_write(struct inode *inode, unsigned long bio_flags)
910 {
911         if (bio_flags & EXTENT_BIO_TREE_LOG)
912                 return 0;
913 #ifdef CONFIG_X86
914         if (cpu_has_xmm4_2)
915                 return 0;
916 #endif
917         return 1;
918 }
919
920 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
921                                  int mirror_num, unsigned long bio_flags,
922                                  u64 bio_offset)
923 {
924         int async = check_async_write(inode, bio_flags);
925         int ret;
926
927         if (!(rw & REQ_WRITE)) {
928                 /*
929                  * called for a read, do the setup so that checksum validation
930                  * can happen in the async kernel threads
931                  */
932                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
933                                           bio, 1);
934                 if (ret)
935                         goto out_w_error;
936                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937                                     mirror_num, 0);
938         } else if (!async) {
939                 ret = btree_csum_one_bio(bio);
940                 if (ret)
941                         goto out_w_error;
942                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
943                                     mirror_num, 0);
944         } else {
945                 /*
946                  * kthread helpers are used to submit writes so that
947                  * checksumming can happen in parallel across all CPUs
948                  */
949                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950                                           inode, rw, bio, mirror_num, 0,
951                                           bio_offset,
952                                           __btree_submit_bio_start,
953                                           __btree_submit_bio_done);
954         }
955
956         if (ret) {
957 out_w_error:
958                 bio_endio(bio, ret);
959         }
960         return ret;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965                         struct page *newpage, struct page *page,
966                         enum migrate_mode mode)
967 {
968         /*
969          * we can't safely write a btree page from here,
970          * we haven't done the locking hook
971          */
972         if (PageDirty(page))
973                 return -EAGAIN;
974         /*
975          * Buffers may be managed in a filesystem specific way.
976          * We must have no buffers or drop them.
977          */
978         if (page_has_private(page) &&
979             !try_to_release_page(page, GFP_KERNEL))
980                 return -EAGAIN;
981         return migrate_page(mapping, newpage, page, mode);
982 }
983 #endif
984
985
986 static int btree_writepages(struct address_space *mapping,
987                             struct writeback_control *wbc)
988 {
989         struct btrfs_fs_info *fs_info;
990         int ret;
991
992         if (wbc->sync_mode == WB_SYNC_NONE) {
993
994                 if (wbc->for_kupdate)
995                         return 0;
996
997                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998                 /* this is a bit racy, but that's ok */
999                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000                                              BTRFS_DIRTY_METADATA_THRESH);
1001                 if (ret < 0)
1002                         return 0;
1003         }
1004         return btree_write_cache_pages(mapping, wbc);
1005 }
1006
1007 static int btree_readpage(struct file *file, struct page *page)
1008 {
1009         struct extent_io_tree *tree;
1010         tree = &BTRFS_I(page->mapping->host)->io_tree;
1011         return extent_read_full_page(tree, page, btree_get_extent, 0);
1012 }
1013
1014 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1015 {
1016         if (PageWriteback(page) || PageDirty(page))
1017                 return 0;
1018
1019         return try_release_extent_buffer(page);
1020 }
1021
1022 static void btree_invalidatepage(struct page *page, unsigned int offset,
1023                                  unsigned int length)
1024 {
1025         struct extent_io_tree *tree;
1026         tree = &BTRFS_I(page->mapping->host)->io_tree;
1027         extent_invalidatepage(tree, page, offset);
1028         btree_releasepage(page, GFP_NOFS);
1029         if (PagePrivate(page)) {
1030                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031                            "page private not zero on page %llu",
1032                            (unsigned long long)page_offset(page));
1033                 ClearPagePrivate(page);
1034                 set_page_private(page, 0);
1035                 page_cache_release(page);
1036         }
1037 }
1038
1039 static int btree_set_page_dirty(struct page *page)
1040 {
1041 #ifdef DEBUG
1042         struct extent_buffer *eb;
1043
1044         BUG_ON(!PagePrivate(page));
1045         eb = (struct extent_buffer *)page->private;
1046         BUG_ON(!eb);
1047         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048         BUG_ON(!atomic_read(&eb->refs));
1049         btrfs_assert_tree_locked(eb);
1050 #endif
1051         return __set_page_dirty_nobuffers(page);
1052 }
1053
1054 static const struct address_space_operations btree_aops = {
1055         .readpage       = btree_readpage,
1056         .writepages     = btree_writepages,
1057         .releasepage    = btree_releasepage,
1058         .invalidatepage = btree_invalidatepage,
1059 #ifdef CONFIG_MIGRATION
1060         .migratepage    = btree_migratepage,
1061 #endif
1062         .set_page_dirty = btree_set_page_dirty,
1063 };
1064
1065 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
1066 {
1067         struct extent_buffer *buf = NULL;
1068         struct inode *btree_inode = root->fs_info->btree_inode;
1069         int ret = 0;
1070
1071         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072         if (!buf)
1073                 return 0;
1074         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1075                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1076         free_extent_buffer(buf);
1077         return ret;
1078 }
1079
1080 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1081                          int mirror_num, struct extent_buffer **eb)
1082 {
1083         struct extent_buffer *buf = NULL;
1084         struct inode *btree_inode = root->fs_info->btree_inode;
1085         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1086         int ret;
1087
1088         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1089         if (!buf)
1090                 return 0;
1091
1092         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1093
1094         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1095                                        btree_get_extent, mirror_num);
1096         if (ret) {
1097                 free_extent_buffer(buf);
1098                 return ret;
1099         }
1100
1101         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1102                 free_extent_buffer(buf);
1103                 return -EIO;
1104         } else if (extent_buffer_uptodate(buf)) {
1105                 *eb = buf;
1106         } else {
1107                 free_extent_buffer(buf);
1108         }
1109         return 0;
1110 }
1111
1112 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1113                                             u64 bytenr, u32 blocksize)
1114 {
1115         return find_extent_buffer(root->fs_info, bytenr);
1116 }
1117
1118 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1119                                                  u64 bytenr, u32 blocksize)
1120 {
1121 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1122         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1123                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1124                                                 blocksize);
1125 #endif
1126         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1127 }
1128
1129
1130 int btrfs_write_tree_block(struct extent_buffer *buf)
1131 {
1132         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1133                                         buf->start + buf->len - 1);
1134 }
1135
1136 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1137 {
1138         return filemap_fdatawait_range(buf->pages[0]->mapping,
1139                                        buf->start, buf->start + buf->len - 1);
1140 }
1141
1142 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1143                                       u32 blocksize, u64 parent_transid)
1144 {
1145         struct extent_buffer *buf = NULL;
1146         int ret;
1147
1148         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1149         if (!buf)
1150                 return NULL;
1151
1152         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1153         if (ret) {
1154                 free_extent_buffer(buf);
1155                 return NULL;
1156         }
1157         return buf;
1158
1159 }
1160
1161 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1162                       struct extent_buffer *buf)
1163 {
1164         struct btrfs_fs_info *fs_info = root->fs_info;
1165
1166         if (btrfs_header_generation(buf) ==
1167             fs_info->running_transaction->transid) {
1168                 btrfs_assert_tree_locked(buf);
1169
1170                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1171                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1172                                              -buf->len,
1173                                              fs_info->dirty_metadata_batch);
1174                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1175                         btrfs_set_lock_blocking(buf);
1176                         clear_extent_buffer_dirty(buf);
1177                 }
1178         }
1179 }
1180
1181 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1182 {
1183         struct btrfs_subvolume_writers *writers;
1184         int ret;
1185
1186         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1187         if (!writers)
1188                 return ERR_PTR(-ENOMEM);
1189
1190         ret = percpu_counter_init(&writers->counter, 0);
1191         if (ret < 0) {
1192                 kfree(writers);
1193                 return ERR_PTR(ret);
1194         }
1195
1196         init_waitqueue_head(&writers->wait);
1197         return writers;
1198 }
1199
1200 static void
1201 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1202 {
1203         percpu_counter_destroy(&writers->counter);
1204         kfree(writers);
1205 }
1206
1207 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1208                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1209                          u64 objectid)
1210 {
1211         root->node = NULL;
1212         root->commit_root = NULL;
1213         root->sectorsize = sectorsize;
1214         root->nodesize = nodesize;
1215         root->stripesize = stripesize;
1216         root->state = 0;
1217         root->orphan_cleanup_state = 0;
1218
1219         root->objectid = objectid;
1220         root->last_trans = 0;
1221         root->highest_objectid = 0;
1222         root->nr_delalloc_inodes = 0;
1223         root->nr_ordered_extents = 0;
1224         root->name = NULL;
1225         root->inode_tree = RB_ROOT;
1226         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1227         root->block_rsv = NULL;
1228         root->orphan_block_rsv = NULL;
1229
1230         INIT_LIST_HEAD(&root->dirty_list);
1231         INIT_LIST_HEAD(&root->root_list);
1232         INIT_LIST_HEAD(&root->delalloc_inodes);
1233         INIT_LIST_HEAD(&root->delalloc_root);
1234         INIT_LIST_HEAD(&root->ordered_extents);
1235         INIT_LIST_HEAD(&root->ordered_root);
1236         INIT_LIST_HEAD(&root->logged_list[0]);
1237         INIT_LIST_HEAD(&root->logged_list[1]);
1238         spin_lock_init(&root->orphan_lock);
1239         spin_lock_init(&root->inode_lock);
1240         spin_lock_init(&root->delalloc_lock);
1241         spin_lock_init(&root->ordered_extent_lock);
1242         spin_lock_init(&root->accounting_lock);
1243         spin_lock_init(&root->log_extents_lock[0]);
1244         spin_lock_init(&root->log_extents_lock[1]);
1245         mutex_init(&root->objectid_mutex);
1246         mutex_init(&root->log_mutex);
1247         mutex_init(&root->ordered_extent_mutex);
1248         mutex_init(&root->delalloc_mutex);
1249         init_waitqueue_head(&root->log_writer_wait);
1250         init_waitqueue_head(&root->log_commit_wait[0]);
1251         init_waitqueue_head(&root->log_commit_wait[1]);
1252         INIT_LIST_HEAD(&root->log_ctxs[0]);
1253         INIT_LIST_HEAD(&root->log_ctxs[1]);
1254         atomic_set(&root->log_commit[0], 0);
1255         atomic_set(&root->log_commit[1], 0);
1256         atomic_set(&root->log_writers, 0);
1257         atomic_set(&root->log_batch, 0);
1258         atomic_set(&root->orphan_inodes, 0);
1259         atomic_set(&root->refs, 1);
1260         atomic_set(&root->will_be_snapshoted, 0);
1261         root->log_transid = 0;
1262         root->log_transid_committed = -1;
1263         root->last_log_commit = 0;
1264         if (fs_info)
1265                 extent_io_tree_init(&root->dirty_log_pages,
1266                                      fs_info->btree_inode->i_mapping);
1267
1268         memset(&root->root_key, 0, sizeof(root->root_key));
1269         memset(&root->root_item, 0, sizeof(root->root_item));
1270         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1271         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1272         if (fs_info)
1273                 root->defrag_trans_start = fs_info->generation;
1274         else
1275                 root->defrag_trans_start = 0;
1276         init_completion(&root->kobj_unregister);
1277         root->root_key.objectid = objectid;
1278         root->anon_dev = 0;
1279
1280         spin_lock_init(&root->root_item_lock);
1281 }
1282
1283 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1284 {
1285         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1286         if (root)
1287                 root->fs_info = fs_info;
1288         return root;
1289 }
1290
1291 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1292 /* Should only be used by the testing infrastructure */
1293 struct btrfs_root *btrfs_alloc_dummy_root(void)
1294 {
1295         struct btrfs_root *root;
1296
1297         root = btrfs_alloc_root(NULL);
1298         if (!root)
1299                 return ERR_PTR(-ENOMEM);
1300         __setup_root(4096, 4096, 4096, root, NULL, 1);
1301         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1302         root->alloc_bytenr = 0;
1303
1304         return root;
1305 }
1306 #endif
1307
1308 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1309                                      struct btrfs_fs_info *fs_info,
1310                                      u64 objectid)
1311 {
1312         struct extent_buffer *leaf;
1313         struct btrfs_root *tree_root = fs_info->tree_root;
1314         struct btrfs_root *root;
1315         struct btrfs_key key;
1316         int ret = 0;
1317         uuid_le uuid;
1318
1319         root = btrfs_alloc_root(fs_info);
1320         if (!root)
1321                 return ERR_PTR(-ENOMEM);
1322
1323         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1324                 tree_root->stripesize, root, fs_info, objectid);
1325         root->root_key.objectid = objectid;
1326         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327         root->root_key.offset = 0;
1328
1329         leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1330                                       0, objectid, NULL, 0, 0, 0);
1331         if (IS_ERR(leaf)) {
1332                 ret = PTR_ERR(leaf);
1333                 leaf = NULL;
1334                 goto fail;
1335         }
1336
1337         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1338         btrfs_set_header_bytenr(leaf, leaf->start);
1339         btrfs_set_header_generation(leaf, trans->transid);
1340         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1341         btrfs_set_header_owner(leaf, objectid);
1342         root->node = leaf;
1343
1344         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1345                             BTRFS_FSID_SIZE);
1346         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1347                             btrfs_header_chunk_tree_uuid(leaf),
1348                             BTRFS_UUID_SIZE);
1349         btrfs_mark_buffer_dirty(leaf);
1350
1351         root->commit_root = btrfs_root_node(root);
1352         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1353
1354         root->root_item.flags = 0;
1355         root->root_item.byte_limit = 0;
1356         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1357         btrfs_set_root_generation(&root->root_item, trans->transid);
1358         btrfs_set_root_level(&root->root_item, 0);
1359         btrfs_set_root_refs(&root->root_item, 1);
1360         btrfs_set_root_used(&root->root_item, leaf->len);
1361         btrfs_set_root_last_snapshot(&root->root_item, 0);
1362         btrfs_set_root_dirid(&root->root_item, 0);
1363         uuid_le_gen(&uuid);
1364         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1365         root->root_item.drop_level = 0;
1366
1367         key.objectid = objectid;
1368         key.type = BTRFS_ROOT_ITEM_KEY;
1369         key.offset = 0;
1370         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1371         if (ret)
1372                 goto fail;
1373
1374         btrfs_tree_unlock(leaf);
1375
1376         return root;
1377
1378 fail:
1379         if (leaf) {
1380                 btrfs_tree_unlock(leaf);
1381                 free_extent_buffer(root->commit_root);
1382                 free_extent_buffer(leaf);
1383         }
1384         kfree(root);
1385
1386         return ERR_PTR(ret);
1387 }
1388
1389 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1390                                          struct btrfs_fs_info *fs_info)
1391 {
1392         struct btrfs_root *root;
1393         struct btrfs_root *tree_root = fs_info->tree_root;
1394         struct extent_buffer *leaf;
1395
1396         root = btrfs_alloc_root(fs_info);
1397         if (!root)
1398                 return ERR_PTR(-ENOMEM);
1399
1400         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1401                      tree_root->stripesize, root, fs_info,
1402                      BTRFS_TREE_LOG_OBJECTID);
1403
1404         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1405         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1406         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1407
1408         /*
1409          * DON'T set REF_COWS for log trees
1410          *
1411          * log trees do not get reference counted because they go away
1412          * before a real commit is actually done.  They do store pointers
1413          * to file data extents, and those reference counts still get
1414          * updated (along with back refs to the log tree).
1415          */
1416
1417         leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1418                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1419                                       0, 0, 0);
1420         if (IS_ERR(leaf)) {
1421                 kfree(root);
1422                 return ERR_CAST(leaf);
1423         }
1424
1425         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1426         btrfs_set_header_bytenr(leaf, leaf->start);
1427         btrfs_set_header_generation(leaf, trans->transid);
1428         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1430         root->node = leaf;
1431
1432         write_extent_buffer(root->node, root->fs_info->fsid,
1433                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1434         btrfs_mark_buffer_dirty(root->node);
1435         btrfs_tree_unlock(root->node);
1436         return root;
1437 }
1438
1439 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1440                              struct btrfs_fs_info *fs_info)
1441 {
1442         struct btrfs_root *log_root;
1443
1444         log_root = alloc_log_tree(trans, fs_info);
1445         if (IS_ERR(log_root))
1446                 return PTR_ERR(log_root);
1447         WARN_ON(fs_info->log_root_tree);
1448         fs_info->log_root_tree = log_root;
1449         return 0;
1450 }
1451
1452 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1453                        struct btrfs_root *root)
1454 {
1455         struct btrfs_root *log_root;
1456         struct btrfs_inode_item *inode_item;
1457
1458         log_root = alloc_log_tree(trans, root->fs_info);
1459         if (IS_ERR(log_root))
1460                 return PTR_ERR(log_root);
1461
1462         log_root->last_trans = trans->transid;
1463         log_root->root_key.offset = root->root_key.objectid;
1464
1465         inode_item = &log_root->root_item.inode;
1466         btrfs_set_stack_inode_generation(inode_item, 1);
1467         btrfs_set_stack_inode_size(inode_item, 3);
1468         btrfs_set_stack_inode_nlink(inode_item, 1);
1469         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1470         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1471
1472         btrfs_set_root_node(&log_root->root_item, log_root->node);
1473
1474         WARN_ON(root->log_root);
1475         root->log_root = log_root;
1476         root->log_transid = 0;
1477         root->log_transid_committed = -1;
1478         root->last_log_commit = 0;
1479         return 0;
1480 }
1481
1482 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1483                                                struct btrfs_key *key)
1484 {
1485         struct btrfs_root *root;
1486         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1487         struct btrfs_path *path;
1488         u64 generation;
1489         u32 blocksize;
1490         int ret;
1491
1492         path = btrfs_alloc_path();
1493         if (!path)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         root = btrfs_alloc_root(fs_info);
1497         if (!root) {
1498                 ret = -ENOMEM;
1499                 goto alloc_fail;
1500         }
1501
1502         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1503                 tree_root->stripesize, root, fs_info, key->objectid);
1504
1505         ret = btrfs_find_root(tree_root, key, path,
1506                               &root->root_item, &root->root_key);
1507         if (ret) {
1508                 if (ret > 0)
1509                         ret = -ENOENT;
1510                 goto find_fail;
1511         }
1512
1513         generation = btrfs_root_generation(&root->root_item);
1514         blocksize = root->nodesize;
1515         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1516                                      blocksize, generation);
1517         if (!root->node) {
1518                 ret = -ENOMEM;
1519                 goto find_fail;
1520         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1521                 ret = -EIO;
1522                 goto read_fail;
1523         }
1524         root->commit_root = btrfs_root_node(root);
1525 out:
1526         btrfs_free_path(path);
1527         return root;
1528
1529 read_fail:
1530         free_extent_buffer(root->node);
1531 find_fail:
1532         kfree(root);
1533 alloc_fail:
1534         root = ERR_PTR(ret);
1535         goto out;
1536 }
1537
1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539                                       struct btrfs_key *location)
1540 {
1541         struct btrfs_root *root;
1542
1543         root = btrfs_read_tree_root(tree_root, location);
1544         if (IS_ERR(root))
1545                 return root;
1546
1547         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1548                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1549                 btrfs_check_and_init_root_item(&root->root_item);
1550         }
1551
1552         return root;
1553 }
1554
1555 int btrfs_init_fs_root(struct btrfs_root *root)
1556 {
1557         int ret;
1558         struct btrfs_subvolume_writers *writers;
1559
1560         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562                                         GFP_NOFS);
1563         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564                 ret = -ENOMEM;
1565                 goto fail;
1566         }
1567
1568         writers = btrfs_alloc_subvolume_writers();
1569         if (IS_ERR(writers)) {
1570                 ret = PTR_ERR(writers);
1571                 goto fail;
1572         }
1573         root->subv_writers = writers;
1574
1575         btrfs_init_free_ino_ctl(root);
1576         spin_lock_init(&root->ino_cache_lock);
1577         init_waitqueue_head(&root->ino_cache_wait);
1578
1579         ret = get_anon_bdev(&root->anon_dev);
1580         if (ret)
1581                 goto free_writers;
1582         return 0;
1583
1584 free_writers:
1585         btrfs_free_subvolume_writers(root->subv_writers);
1586 fail:
1587         kfree(root->free_ino_ctl);
1588         kfree(root->free_ino_pinned);
1589         return ret;
1590 }
1591
1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593                                                u64 root_id)
1594 {
1595         struct btrfs_root *root;
1596
1597         spin_lock(&fs_info->fs_roots_radix_lock);
1598         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599                                  (unsigned long)root_id);
1600         spin_unlock(&fs_info->fs_roots_radix_lock);
1601         return root;
1602 }
1603
1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605                          struct btrfs_root *root)
1606 {
1607         int ret;
1608
1609         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610         if (ret)
1611                 return ret;
1612
1613         spin_lock(&fs_info->fs_roots_radix_lock);
1614         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615                                 (unsigned long)root->root_key.objectid,
1616                                 root);
1617         if (ret == 0)
1618                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1619         spin_unlock(&fs_info->fs_roots_radix_lock);
1620         radix_tree_preload_end();
1621
1622         return ret;
1623 }
1624
1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626                                      struct btrfs_key *location,
1627                                      bool check_ref)
1628 {
1629         struct btrfs_root *root;
1630         int ret;
1631
1632         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1633                 return fs_info->tree_root;
1634         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1635                 return fs_info->extent_root;
1636         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1637                 return fs_info->chunk_root;
1638         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1639                 return fs_info->dev_root;
1640         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1641                 return fs_info->csum_root;
1642         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1643                 return fs_info->quota_root ? fs_info->quota_root :
1644                                              ERR_PTR(-ENOENT);
1645         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1646                 return fs_info->uuid_root ? fs_info->uuid_root :
1647                                             ERR_PTR(-ENOENT);
1648 again:
1649         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1650         if (root) {
1651                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1652                         return ERR_PTR(-ENOENT);
1653                 return root;
1654         }
1655
1656         root = btrfs_read_fs_root(fs_info->tree_root, location);
1657         if (IS_ERR(root))
1658                 return root;
1659
1660         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1661                 ret = -ENOENT;
1662                 goto fail;
1663         }
1664
1665         ret = btrfs_init_fs_root(root);
1666         if (ret)
1667                 goto fail;
1668
1669         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1670                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1671         if (ret < 0)
1672                 goto fail;
1673         if (ret == 0)
1674                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1675
1676         ret = btrfs_insert_fs_root(fs_info, root);
1677         if (ret) {
1678                 if (ret == -EEXIST) {
1679                         free_fs_root(root);
1680                         goto again;
1681                 }
1682                 goto fail;
1683         }
1684         return root;
1685 fail:
1686         free_fs_root(root);
1687         return ERR_PTR(ret);
1688 }
1689
1690 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1691 {
1692         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1693         int ret = 0;
1694         struct btrfs_device *device;
1695         struct backing_dev_info *bdi;
1696
1697         rcu_read_lock();
1698         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1699                 if (!device->bdev)
1700                         continue;
1701                 bdi = blk_get_backing_dev_info(device->bdev);
1702                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1703                         ret = 1;
1704                         break;
1705                 }
1706         }
1707         rcu_read_unlock();
1708         return ret;
1709 }
1710
1711 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1712 {
1713         int err;
1714
1715         bdi->capabilities = BDI_CAP_MAP_COPY;
1716         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1717         if (err)
1718                 return err;
1719
1720         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1721         bdi->congested_fn       = btrfs_congested_fn;
1722         bdi->congested_data     = info;
1723         return 0;
1724 }
1725
1726 /*
1727  * called by the kthread helper functions to finally call the bio end_io
1728  * functions.  This is where read checksum verification actually happens
1729  */
1730 static void end_workqueue_fn(struct btrfs_work *work)
1731 {
1732         struct bio *bio;
1733         struct end_io_wq *end_io_wq;
1734         int error;
1735
1736         end_io_wq = container_of(work, struct end_io_wq, work);
1737         bio = end_io_wq->bio;
1738
1739         error = end_io_wq->error;
1740         bio->bi_private = end_io_wq->private;
1741         bio->bi_end_io = end_io_wq->end_io;
1742         kfree(end_io_wq);
1743         bio_endio_nodec(bio, error);
1744 }
1745
1746 static int cleaner_kthread(void *arg)
1747 {
1748         struct btrfs_root *root = arg;
1749         int again;
1750
1751         do {
1752                 again = 0;
1753
1754                 /* Make the cleaner go to sleep early. */
1755                 if (btrfs_need_cleaner_sleep(root))
1756                         goto sleep;
1757
1758                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1759                         goto sleep;
1760
1761                 /*
1762                  * Avoid the problem that we change the status of the fs
1763                  * during the above check and trylock.
1764                  */
1765                 if (btrfs_need_cleaner_sleep(root)) {
1766                         mutex_unlock(&root->fs_info->cleaner_mutex);
1767                         goto sleep;
1768                 }
1769
1770                 btrfs_run_delayed_iputs(root);
1771                 btrfs_delete_unused_bgs(root->fs_info);
1772                 again = btrfs_clean_one_deleted_snapshot(root);
1773                 mutex_unlock(&root->fs_info->cleaner_mutex);
1774
1775                 /*
1776                  * The defragger has dealt with the R/O remount and umount,
1777                  * needn't do anything special here.
1778                  */
1779                 btrfs_run_defrag_inodes(root->fs_info);
1780 sleep:
1781                 if (!try_to_freeze() && !again) {
1782                         set_current_state(TASK_INTERRUPTIBLE);
1783                         if (!kthread_should_stop())
1784                                 schedule();
1785                         __set_current_state(TASK_RUNNING);
1786                 }
1787         } while (!kthread_should_stop());
1788         return 0;
1789 }
1790
1791 static int transaction_kthread(void *arg)
1792 {
1793         struct btrfs_root *root = arg;
1794         struct btrfs_trans_handle *trans;
1795         struct btrfs_transaction *cur;
1796         u64 transid;
1797         unsigned long now;
1798         unsigned long delay;
1799         bool cannot_commit;
1800
1801         do {
1802                 cannot_commit = false;
1803                 delay = HZ * root->fs_info->commit_interval;
1804                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
1806                 spin_lock(&root->fs_info->trans_lock);
1807                 cur = root->fs_info->running_transaction;
1808                 if (!cur) {
1809                         spin_unlock(&root->fs_info->trans_lock);
1810                         goto sleep;
1811                 }
1812
1813                 now = get_seconds();
1814                 if (cur->state < TRANS_STATE_BLOCKED &&
1815                     (now < cur->start_time ||
1816                      now - cur->start_time < root->fs_info->commit_interval)) {
1817                         spin_unlock(&root->fs_info->trans_lock);
1818                         delay = HZ * 5;
1819                         goto sleep;
1820                 }
1821                 transid = cur->transid;
1822                 spin_unlock(&root->fs_info->trans_lock);
1823
1824                 /* If the file system is aborted, this will always fail. */
1825                 trans = btrfs_attach_transaction(root);
1826                 if (IS_ERR(trans)) {
1827                         if (PTR_ERR(trans) != -ENOENT)
1828                                 cannot_commit = true;
1829                         goto sleep;
1830                 }
1831                 if (transid == trans->transid) {
1832                         btrfs_commit_transaction(trans, root);
1833                 } else {
1834                         btrfs_end_transaction(trans, root);
1835                 }
1836 sleep:
1837                 wake_up_process(root->fs_info->cleaner_kthread);
1838                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
1840                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841                                       &root->fs_info->fs_state)))
1842                         btrfs_cleanup_transaction(root);
1843                 if (!try_to_freeze()) {
1844                         set_current_state(TASK_INTERRUPTIBLE);
1845                         if (!kthread_should_stop() &&
1846                             (!btrfs_transaction_blocked(root->fs_info) ||
1847                              cannot_commit))
1848                                 schedule_timeout(delay);
1849                         __set_current_state(TASK_RUNNING);
1850                 }
1851         } while (!kthread_should_stop());
1852         return 0;
1853 }
1854
1855 /*
1856  * this will find the highest generation in the array of
1857  * root backups.  The index of the highest array is returned,
1858  * or -1 if we can't find anything.
1859  *
1860  * We check to make sure the array is valid by comparing the
1861  * generation of the latest  root in the array with the generation
1862  * in the super block.  If they don't match we pitch it.
1863  */
1864 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865 {
1866         u64 cur;
1867         int newest_index = -1;
1868         struct btrfs_root_backup *root_backup;
1869         int i;
1870
1871         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872                 root_backup = info->super_copy->super_roots + i;
1873                 cur = btrfs_backup_tree_root_gen(root_backup);
1874                 if (cur == newest_gen)
1875                         newest_index = i;
1876         }
1877
1878         /* check to see if we actually wrapped around */
1879         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880                 root_backup = info->super_copy->super_roots;
1881                 cur = btrfs_backup_tree_root_gen(root_backup);
1882                 if (cur == newest_gen)
1883                         newest_index = 0;
1884         }
1885         return newest_index;
1886 }
1887
1888
1889 /*
1890  * find the oldest backup so we know where to store new entries
1891  * in the backup array.  This will set the backup_root_index
1892  * field in the fs_info struct
1893  */
1894 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895                                      u64 newest_gen)
1896 {
1897         int newest_index = -1;
1898
1899         newest_index = find_newest_super_backup(info, newest_gen);
1900         /* if there was garbage in there, just move along */
1901         if (newest_index == -1) {
1902                 info->backup_root_index = 0;
1903         } else {
1904                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905         }
1906 }
1907
1908 /*
1909  * copy all the root pointers into the super backup array.
1910  * this will bump the backup pointer by one when it is
1911  * done
1912  */
1913 static void backup_super_roots(struct btrfs_fs_info *info)
1914 {
1915         int next_backup;
1916         struct btrfs_root_backup *root_backup;
1917         int last_backup;
1918
1919         next_backup = info->backup_root_index;
1920         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921                 BTRFS_NUM_BACKUP_ROOTS;
1922
1923         /*
1924          * just overwrite the last backup if we're at the same generation
1925          * this happens only at umount
1926          */
1927         root_backup = info->super_for_commit->super_roots + last_backup;
1928         if (btrfs_backup_tree_root_gen(root_backup) ==
1929             btrfs_header_generation(info->tree_root->node))
1930                 next_backup = last_backup;
1931
1932         root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934         /*
1935          * make sure all of our padding and empty slots get zero filled
1936          * regardless of which ones we use today
1937          */
1938         memset(root_backup, 0, sizeof(*root_backup));
1939
1940         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943         btrfs_set_backup_tree_root_gen(root_backup,
1944                                btrfs_header_generation(info->tree_root->node));
1945
1946         btrfs_set_backup_tree_root_level(root_backup,
1947                                btrfs_header_level(info->tree_root->node));
1948
1949         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950         btrfs_set_backup_chunk_root_gen(root_backup,
1951                                btrfs_header_generation(info->chunk_root->node));
1952         btrfs_set_backup_chunk_root_level(root_backup,
1953                                btrfs_header_level(info->chunk_root->node));
1954
1955         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956         btrfs_set_backup_extent_root_gen(root_backup,
1957                                btrfs_header_generation(info->extent_root->node));
1958         btrfs_set_backup_extent_root_level(root_backup,
1959                                btrfs_header_level(info->extent_root->node));
1960
1961         /*
1962          * we might commit during log recovery, which happens before we set
1963          * the fs_root.  Make sure it is valid before we fill it in.
1964          */
1965         if (info->fs_root && info->fs_root->node) {
1966                 btrfs_set_backup_fs_root(root_backup,
1967                                          info->fs_root->node->start);
1968                 btrfs_set_backup_fs_root_gen(root_backup,
1969                                btrfs_header_generation(info->fs_root->node));
1970                 btrfs_set_backup_fs_root_level(root_backup,
1971                                btrfs_header_level(info->fs_root->node));
1972         }
1973
1974         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975         btrfs_set_backup_dev_root_gen(root_backup,
1976                                btrfs_header_generation(info->dev_root->node));
1977         btrfs_set_backup_dev_root_level(root_backup,
1978                                        btrfs_header_level(info->dev_root->node));
1979
1980         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981         btrfs_set_backup_csum_root_gen(root_backup,
1982                                btrfs_header_generation(info->csum_root->node));
1983         btrfs_set_backup_csum_root_level(root_backup,
1984                                btrfs_header_level(info->csum_root->node));
1985
1986         btrfs_set_backup_total_bytes(root_backup,
1987                              btrfs_super_total_bytes(info->super_copy));
1988         btrfs_set_backup_bytes_used(root_backup,
1989                              btrfs_super_bytes_used(info->super_copy));
1990         btrfs_set_backup_num_devices(root_backup,
1991                              btrfs_super_num_devices(info->super_copy));
1992
1993         /*
1994          * if we don't copy this out to the super_copy, it won't get remembered
1995          * for the next commit
1996          */
1997         memcpy(&info->super_copy->super_roots,
1998                &info->super_for_commit->super_roots,
1999                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000 }
2001
2002 /*
2003  * this copies info out of the root backup array and back into
2004  * the in-memory super block.  It is meant to help iterate through
2005  * the array, so you send it the number of backups you've already
2006  * tried and the last backup index you used.
2007  *
2008  * this returns -1 when it has tried all the backups
2009  */
2010 static noinline int next_root_backup(struct btrfs_fs_info *info,
2011                                      struct btrfs_super_block *super,
2012                                      int *num_backups_tried, int *backup_index)
2013 {
2014         struct btrfs_root_backup *root_backup;
2015         int newest = *backup_index;
2016
2017         if (*num_backups_tried == 0) {
2018                 u64 gen = btrfs_super_generation(super);
2019
2020                 newest = find_newest_super_backup(info, gen);
2021                 if (newest == -1)
2022                         return -1;
2023
2024                 *backup_index = newest;
2025                 *num_backups_tried = 1;
2026         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027                 /* we've tried all the backups, all done */
2028                 return -1;
2029         } else {
2030                 /* jump to the next oldest backup */
2031                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032                         BTRFS_NUM_BACKUP_ROOTS;
2033                 *backup_index = newest;
2034                 *num_backups_tried += 1;
2035         }
2036         root_backup = super->super_roots + newest;
2037
2038         btrfs_set_super_generation(super,
2039                                    btrfs_backup_tree_root_gen(root_backup));
2040         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041         btrfs_set_super_root_level(super,
2042                                    btrfs_backup_tree_root_level(root_backup));
2043         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045         /*
2046          * fixme: the total bytes and num_devices need to match or we should
2047          * need a fsck
2048          */
2049         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051         return 0;
2052 }
2053
2054 /* helper to cleanup workers */
2055 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056 {
2057         btrfs_destroy_workqueue(fs_info->fixup_workers);
2058         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059         btrfs_destroy_workqueue(fs_info->workers);
2060         btrfs_destroy_workqueue(fs_info->endio_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2064         btrfs_destroy_workqueue(fs_info->rmw_workers);
2065         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2066         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2067         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2068         btrfs_destroy_workqueue(fs_info->submit_workers);
2069         btrfs_destroy_workqueue(fs_info->delayed_workers);
2070         btrfs_destroy_workqueue(fs_info->caching_workers);
2071         btrfs_destroy_workqueue(fs_info->readahead_workers);
2072         btrfs_destroy_workqueue(fs_info->flush_workers);
2073         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2074         btrfs_destroy_workqueue(fs_info->extent_workers);
2075 }
2076
2077 static void free_root_extent_buffers(struct btrfs_root *root)
2078 {
2079         if (root) {
2080                 free_extent_buffer(root->node);
2081                 free_extent_buffer(root->commit_root);
2082                 root->node = NULL;
2083                 root->commit_root = NULL;
2084         }
2085 }
2086
2087 /* helper to cleanup tree roots */
2088 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2089 {
2090         free_root_extent_buffers(info->tree_root);
2091
2092         free_root_extent_buffers(info->dev_root);
2093         free_root_extent_buffers(info->extent_root);
2094         free_root_extent_buffers(info->csum_root);
2095         free_root_extent_buffers(info->quota_root);
2096         free_root_extent_buffers(info->uuid_root);
2097         if (chunk_root)
2098                 free_root_extent_buffers(info->chunk_root);
2099 }
2100
2101 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2102 {
2103         int ret;
2104         struct btrfs_root *gang[8];
2105         int i;
2106
2107         while (!list_empty(&fs_info->dead_roots)) {
2108                 gang[0] = list_entry(fs_info->dead_roots.next,
2109                                      struct btrfs_root, root_list);
2110                 list_del(&gang[0]->root_list);
2111
2112                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2113                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2114                 } else {
2115                         free_extent_buffer(gang[0]->node);
2116                         free_extent_buffer(gang[0]->commit_root);
2117                         btrfs_put_fs_root(gang[0]);
2118                 }
2119         }
2120
2121         while (1) {
2122                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2123                                              (void **)gang, 0,
2124                                              ARRAY_SIZE(gang));
2125                 if (!ret)
2126                         break;
2127                 for (i = 0; i < ret; i++)
2128                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2129         }
2130
2131         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2132                 btrfs_free_log_root_tree(NULL, fs_info);
2133                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2134                                             fs_info->pinned_extents);
2135         }
2136 }
2137
2138 int open_ctree(struct super_block *sb,
2139                struct btrfs_fs_devices *fs_devices,
2140                char *options)
2141 {
2142         u32 sectorsize;
2143         u32 nodesize;
2144         u32 blocksize;
2145         u32 stripesize;
2146         u64 generation;
2147         u64 features;
2148         struct btrfs_key location;
2149         struct buffer_head *bh;
2150         struct btrfs_super_block *disk_super;
2151         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2152         struct btrfs_root *tree_root;
2153         struct btrfs_root *extent_root;
2154         struct btrfs_root *csum_root;
2155         struct btrfs_root *chunk_root;
2156         struct btrfs_root *dev_root;
2157         struct btrfs_root *quota_root;
2158         struct btrfs_root *uuid_root;
2159         struct btrfs_root *log_tree_root;
2160         int ret;
2161         int err = -EINVAL;
2162         int num_backups_tried = 0;
2163         int backup_index = 0;
2164         int max_active;
2165         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2166         bool create_uuid_tree;
2167         bool check_uuid_tree;
2168
2169         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2170         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2171         if (!tree_root || !chunk_root) {
2172                 err = -ENOMEM;
2173                 goto fail;
2174         }
2175
2176         ret = init_srcu_struct(&fs_info->subvol_srcu);
2177         if (ret) {
2178                 err = ret;
2179                 goto fail;
2180         }
2181
2182         ret = setup_bdi(fs_info, &fs_info->bdi);
2183         if (ret) {
2184                 err = ret;
2185                 goto fail_srcu;
2186         }
2187
2188         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2189         if (ret) {
2190                 err = ret;
2191                 goto fail_bdi;
2192         }
2193         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194                                         (1 + ilog2(nr_cpu_ids));
2195
2196         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2197         if (ret) {
2198                 err = ret;
2199                 goto fail_dirty_metadata_bytes;
2200         }
2201
2202         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2203         if (ret) {
2204                 err = ret;
2205                 goto fail_delalloc_bytes;
2206         }
2207
2208         fs_info->btree_inode = new_inode(sb);
2209         if (!fs_info->btree_inode) {
2210                 err = -ENOMEM;
2211                 goto fail_bio_counter;
2212         }
2213
2214         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2215
2216         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2217         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2218         INIT_LIST_HEAD(&fs_info->trans_list);
2219         INIT_LIST_HEAD(&fs_info->dead_roots);
2220         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2221         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2222         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2223         spin_lock_init(&fs_info->delalloc_root_lock);
2224         spin_lock_init(&fs_info->trans_lock);
2225         spin_lock_init(&fs_info->fs_roots_radix_lock);
2226         spin_lock_init(&fs_info->delayed_iput_lock);
2227         spin_lock_init(&fs_info->defrag_inodes_lock);
2228         spin_lock_init(&fs_info->free_chunk_lock);
2229         spin_lock_init(&fs_info->tree_mod_seq_lock);
2230         spin_lock_init(&fs_info->super_lock);
2231         spin_lock_init(&fs_info->qgroup_op_lock);
2232         spin_lock_init(&fs_info->buffer_lock);
2233         spin_lock_init(&fs_info->unused_bgs_lock);
2234         rwlock_init(&fs_info->tree_mod_log_lock);
2235         mutex_init(&fs_info->reloc_mutex);
2236         mutex_init(&fs_info->delalloc_root_mutex);
2237         seqlock_init(&fs_info->profiles_lock);
2238
2239         init_completion(&fs_info->kobj_unregister);
2240         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2241         INIT_LIST_HEAD(&fs_info->space_info);
2242         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2243         INIT_LIST_HEAD(&fs_info->unused_bgs);
2244         btrfs_mapping_init(&fs_info->mapping_tree);
2245         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2246                              BTRFS_BLOCK_RSV_GLOBAL);
2247         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2248                              BTRFS_BLOCK_RSV_DELALLOC);
2249         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2250         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2251         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2252         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2253                              BTRFS_BLOCK_RSV_DELOPS);
2254         atomic_set(&fs_info->nr_async_submits, 0);
2255         atomic_set(&fs_info->async_delalloc_pages, 0);
2256         atomic_set(&fs_info->async_submit_draining, 0);
2257         atomic_set(&fs_info->nr_async_bios, 0);
2258         atomic_set(&fs_info->defrag_running, 0);
2259         atomic_set(&fs_info->qgroup_op_seq, 0);
2260         atomic64_set(&fs_info->tree_mod_seq, 0);
2261         fs_info->sb = sb;
2262         fs_info->max_inline = 8192 * 1024;
2263         fs_info->metadata_ratio = 0;
2264         fs_info->defrag_inodes = RB_ROOT;
2265         fs_info->free_chunk_space = 0;
2266         fs_info->tree_mod_log = RB_ROOT;
2267         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2268         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2269         /* readahead state */
2270         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2271         spin_lock_init(&fs_info->reada_lock);
2272
2273         fs_info->thread_pool_size = min_t(unsigned long,
2274                                           num_online_cpus() + 2, 8);
2275
2276         INIT_LIST_HEAD(&fs_info->ordered_roots);
2277         spin_lock_init(&fs_info->ordered_root_lock);
2278         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2279                                         GFP_NOFS);
2280         if (!fs_info->delayed_root) {
2281                 err = -ENOMEM;
2282                 goto fail_iput;
2283         }
2284         btrfs_init_delayed_root(fs_info->delayed_root);
2285
2286         mutex_init(&fs_info->scrub_lock);
2287         atomic_set(&fs_info->scrubs_running, 0);
2288         atomic_set(&fs_info->scrub_pause_req, 0);
2289         atomic_set(&fs_info->scrubs_paused, 0);
2290         atomic_set(&fs_info->scrub_cancel_req, 0);
2291         init_waitqueue_head(&fs_info->replace_wait);
2292         init_waitqueue_head(&fs_info->scrub_pause_wait);
2293         fs_info->scrub_workers_refcnt = 0;
2294 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2295         fs_info->check_integrity_print_mask = 0;
2296 #endif
2297
2298         spin_lock_init(&fs_info->balance_lock);
2299         mutex_init(&fs_info->balance_mutex);
2300         atomic_set(&fs_info->balance_running, 0);
2301         atomic_set(&fs_info->balance_pause_req, 0);
2302         atomic_set(&fs_info->balance_cancel_req, 0);
2303         fs_info->balance_ctl = NULL;
2304         init_waitqueue_head(&fs_info->balance_wait_q);
2305         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2306
2307         sb->s_blocksize = 4096;
2308         sb->s_blocksize_bits = blksize_bits(4096);
2309         sb->s_bdi = &fs_info->bdi;
2310
2311         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2312         set_nlink(fs_info->btree_inode, 1);
2313         /*
2314          * we set the i_size on the btree inode to the max possible int.
2315          * the real end of the address space is determined by all of
2316          * the devices in the system
2317          */
2318         fs_info->btree_inode->i_size = OFFSET_MAX;
2319         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2320         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2321
2322         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324                              fs_info->btree_inode->i_mapping);
2325         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2327
2328         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332                sizeof(struct btrfs_key));
2333         set_bit(BTRFS_INODE_DUMMY,
2334                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335         btrfs_insert_inode_hash(fs_info->btree_inode);
2336
2337         spin_lock_init(&fs_info->block_group_cache_lock);
2338         fs_info->block_group_cache_tree = RB_ROOT;
2339         fs_info->first_logical_byte = (u64)-1;
2340
2341         extent_io_tree_init(&fs_info->freed_extents[0],
2342                              fs_info->btree_inode->i_mapping);
2343         extent_io_tree_init(&fs_info->freed_extents[1],
2344                              fs_info->btree_inode->i_mapping);
2345         fs_info->pinned_extents = &fs_info->freed_extents[0];
2346         fs_info->do_barriers = 1;
2347
2348
2349         mutex_init(&fs_info->ordered_operations_mutex);
2350         mutex_init(&fs_info->ordered_extent_flush_mutex);
2351         mutex_init(&fs_info->tree_log_mutex);
2352         mutex_init(&fs_info->chunk_mutex);
2353         mutex_init(&fs_info->transaction_kthread_mutex);
2354         mutex_init(&fs_info->cleaner_mutex);
2355         mutex_init(&fs_info->volume_mutex);
2356         init_rwsem(&fs_info->commit_root_sem);
2357         init_rwsem(&fs_info->cleanup_work_sem);
2358         init_rwsem(&fs_info->subvol_sem);
2359         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2360         fs_info->dev_replace.lock_owner = 0;
2361         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2362         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2363         mutex_init(&fs_info->dev_replace.lock_management_lock);
2364         mutex_init(&fs_info->dev_replace.lock);
2365
2366         spin_lock_init(&fs_info->qgroup_lock);
2367         mutex_init(&fs_info->qgroup_ioctl_lock);
2368         fs_info->qgroup_tree = RB_ROOT;
2369         fs_info->qgroup_op_tree = RB_ROOT;
2370         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2371         fs_info->qgroup_seq = 1;
2372         fs_info->quota_enabled = 0;
2373         fs_info->pending_quota_state = 0;
2374         fs_info->qgroup_ulist = NULL;
2375         mutex_init(&fs_info->qgroup_rescan_lock);
2376
2377         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2378         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2379
2380         init_waitqueue_head(&fs_info->transaction_throttle);
2381         init_waitqueue_head(&fs_info->transaction_wait);
2382         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2383         init_waitqueue_head(&fs_info->async_submit_wait);
2384
2385         ret = btrfs_alloc_stripe_hash_table(fs_info);
2386         if (ret) {
2387                 err = ret;
2388                 goto fail_alloc;
2389         }
2390
2391         __setup_root(4096, 4096, 4096, tree_root,
2392                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2393
2394         invalidate_bdev(fs_devices->latest_bdev);
2395
2396         /*
2397          * Read super block and check the signature bytes only
2398          */
2399         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2400         if (!bh) {
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         /*
2406          * We want to check superblock checksum, the type is stored inside.
2407          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2408          */
2409         if (btrfs_check_super_csum(bh->b_data)) {
2410                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2411                 err = -EINVAL;
2412                 goto fail_alloc;
2413         }
2414
2415         /*
2416          * super_copy is zeroed at allocation time and we never touch the
2417          * following bytes up to INFO_SIZE, the checksum is calculated from
2418          * the whole block of INFO_SIZE
2419          */
2420         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2421         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2422                sizeof(*fs_info->super_for_commit));
2423         brelse(bh);
2424
2425         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2426
2427         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2428         if (ret) {
2429                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2430                 err = -EINVAL;
2431                 goto fail_alloc;
2432         }
2433
2434         disk_super = fs_info->super_copy;
2435         if (!btrfs_super_root(disk_super))
2436                 goto fail_alloc;
2437
2438         /* check FS state, whether FS is broken. */
2439         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2440                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2441
2442         /*
2443          * run through our array of backup supers and setup
2444          * our ring pointer to the oldest one
2445          */
2446         generation = btrfs_super_generation(disk_super);
2447         find_oldest_super_backup(fs_info, generation);
2448
2449         /*
2450          * In the long term, we'll store the compression type in the super
2451          * block, and it'll be used for per file compression control.
2452          */
2453         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2454
2455         ret = btrfs_parse_options(tree_root, options);
2456         if (ret) {
2457                 err = ret;
2458                 goto fail_alloc;
2459         }
2460
2461         features = btrfs_super_incompat_flags(disk_super) &
2462                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2463         if (features) {
2464                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2465                        "unsupported optional features (%Lx).\n",
2466                        features);
2467                 err = -EINVAL;
2468                 goto fail_alloc;
2469         }
2470
2471         /*
2472          * Leafsize and nodesize were always equal, this is only a sanity check.
2473          */
2474         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2475             btrfs_super_nodesize(disk_super)) {
2476                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2477                        "blocksizes don't match.  node %d leaf %d\n",
2478                        btrfs_super_nodesize(disk_super),
2479                        le32_to_cpu(disk_super->__unused_leafsize));
2480                 err = -EINVAL;
2481                 goto fail_alloc;
2482         }
2483         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2484                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2485                        "blocksize (%d) was too large\n",
2486                        btrfs_super_nodesize(disk_super));
2487                 err = -EINVAL;
2488                 goto fail_alloc;
2489         }
2490
2491         features = btrfs_super_incompat_flags(disk_super);
2492         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2493         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2494                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2495
2496         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2497                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2498
2499         /*
2500          * flag our filesystem as having big metadata blocks if
2501          * they are bigger than the page size
2502          */
2503         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2504                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2505                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2506                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2507         }
2508
2509         nodesize = btrfs_super_nodesize(disk_super);
2510         sectorsize = btrfs_super_sectorsize(disk_super);
2511         stripesize = btrfs_super_stripesize(disk_super);
2512         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2513         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2514
2515         /*
2516          * mixed block groups end up with duplicate but slightly offset
2517          * extent buffers for the same range.  It leads to corruptions
2518          */
2519         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2520             (sectorsize != nodesize)) {
2521                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2522                                 "are not allowed for mixed block groups on %s\n",
2523                                 sb->s_id);
2524                 goto fail_alloc;
2525         }
2526
2527         /*
2528          * Needn't use the lock because there is no other task which will
2529          * update the flag.
2530          */
2531         btrfs_set_super_incompat_flags(disk_super, features);
2532
2533         features = btrfs_super_compat_ro_flags(disk_super) &
2534                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2535         if (!(sb->s_flags & MS_RDONLY) && features) {
2536                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2537                        "unsupported option features (%Lx).\n",
2538                        features);
2539                 err = -EINVAL;
2540                 goto fail_alloc;
2541         }
2542
2543         max_active = fs_info->thread_pool_size;
2544
2545         fs_info->workers =
2546                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2547                                       max_active, 16);
2548
2549         fs_info->delalloc_workers =
2550                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2551
2552         fs_info->flush_workers =
2553                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2554
2555         fs_info->caching_workers =
2556                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2557
2558         /*
2559          * a higher idle thresh on the submit workers makes it much more
2560          * likely that bios will be send down in a sane order to the
2561          * devices
2562          */
2563         fs_info->submit_workers =
2564                 btrfs_alloc_workqueue("submit", flags,
2565                                       min_t(u64, fs_devices->num_devices,
2566                                             max_active), 64);
2567
2568         fs_info->fixup_workers =
2569                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2570
2571         /*
2572          * endios are largely parallel and should have a very
2573          * low idle thresh
2574          */
2575         fs_info->endio_workers =
2576                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2577         fs_info->endio_meta_workers =
2578                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2579         fs_info->endio_meta_write_workers =
2580                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2581         fs_info->endio_raid56_workers =
2582                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2583         fs_info->endio_repair_workers =
2584                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2585         fs_info->rmw_workers =
2586                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2587         fs_info->endio_write_workers =
2588                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2589         fs_info->endio_freespace_worker =
2590                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2591         fs_info->delayed_workers =
2592                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2593         fs_info->readahead_workers =
2594                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2595         fs_info->qgroup_rescan_workers =
2596                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2597         fs_info->extent_workers =
2598                 btrfs_alloc_workqueue("extent-refs", flags,
2599                                       min_t(u64, fs_devices->num_devices,
2600                                             max_active), 8);
2601
2602         if (!(fs_info->workers && fs_info->delalloc_workers &&
2603               fs_info->submit_workers && fs_info->flush_workers &&
2604               fs_info->endio_workers && fs_info->endio_meta_workers &&
2605               fs_info->endio_meta_write_workers &&
2606               fs_info->endio_repair_workers &&
2607               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2608               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2609               fs_info->caching_workers && fs_info->readahead_workers &&
2610               fs_info->fixup_workers && fs_info->delayed_workers &&
2611               fs_info->extent_workers &&
2612               fs_info->qgroup_rescan_workers)) {
2613                 err = -ENOMEM;
2614                 goto fail_sb_buffer;
2615         }
2616
2617         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2618         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2619                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2620
2621         tree_root->nodesize = nodesize;
2622         tree_root->sectorsize = sectorsize;
2623         tree_root->stripesize = stripesize;
2624
2625         sb->s_blocksize = sectorsize;
2626         sb->s_blocksize_bits = blksize_bits(sectorsize);
2627
2628         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2629                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2630                 goto fail_sb_buffer;
2631         }
2632
2633         if (sectorsize != PAGE_SIZE) {
2634                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2635                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2636                 goto fail_sb_buffer;
2637         }
2638
2639         mutex_lock(&fs_info->chunk_mutex);
2640         ret = btrfs_read_sys_array(tree_root);
2641         mutex_unlock(&fs_info->chunk_mutex);
2642         if (ret) {
2643                 printk(KERN_WARNING "BTRFS: failed to read the system "
2644                        "array on %s\n", sb->s_id);
2645                 goto fail_sb_buffer;
2646         }
2647
2648         blocksize = tree_root->nodesize;
2649         generation = btrfs_super_chunk_root_generation(disk_super);
2650
2651         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2652                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2653
2654         chunk_root->node = read_tree_block(chunk_root,
2655                                            btrfs_super_chunk_root(disk_super),
2656                                            blocksize, generation);
2657         if (!chunk_root->node ||
2658             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2659                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2660                        sb->s_id);
2661                 goto fail_tree_roots;
2662         }
2663         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2664         chunk_root->commit_root = btrfs_root_node(chunk_root);
2665
2666         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2667            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2668
2669         ret = btrfs_read_chunk_tree(chunk_root);
2670         if (ret) {
2671                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2672                        sb->s_id);
2673                 goto fail_tree_roots;
2674         }
2675
2676         /*
2677          * keep the device that is marked to be the target device for the
2678          * dev_replace procedure
2679          */
2680         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2681
2682         if (!fs_devices->latest_bdev) {
2683                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2684                        sb->s_id);
2685                 goto fail_tree_roots;
2686         }
2687
2688 retry_root_backup:
2689         blocksize = tree_root->nodesize;
2690         generation = btrfs_super_generation(disk_super);
2691
2692         tree_root->node = read_tree_block(tree_root,
2693                                           btrfs_super_root(disk_super),
2694                                           blocksize, generation);
2695         if (!tree_root->node ||
2696             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2697                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2698                        sb->s_id);
2699
2700                 goto recovery_tree_root;
2701         }
2702
2703         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2704         tree_root->commit_root = btrfs_root_node(tree_root);
2705         btrfs_set_root_refs(&tree_root->root_item, 1);
2706
2707         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2708         location.type = BTRFS_ROOT_ITEM_KEY;
2709         location.offset = 0;
2710
2711         extent_root = btrfs_read_tree_root(tree_root, &location);
2712         if (IS_ERR(extent_root)) {
2713                 ret = PTR_ERR(extent_root);
2714                 goto recovery_tree_root;
2715         }
2716         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2717         fs_info->extent_root = extent_root;
2718
2719         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2720         dev_root = btrfs_read_tree_root(tree_root, &location);
2721         if (IS_ERR(dev_root)) {
2722                 ret = PTR_ERR(dev_root);
2723                 goto recovery_tree_root;
2724         }
2725         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2726         fs_info->dev_root = dev_root;
2727         btrfs_init_devices_late(fs_info);
2728
2729         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2730         csum_root = btrfs_read_tree_root(tree_root, &location);
2731         if (IS_ERR(csum_root)) {
2732                 ret = PTR_ERR(csum_root);
2733                 goto recovery_tree_root;
2734         }
2735         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2736         fs_info->csum_root = csum_root;
2737
2738         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2739         quota_root = btrfs_read_tree_root(tree_root, &location);
2740         if (!IS_ERR(quota_root)) {
2741                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2742                 fs_info->quota_enabled = 1;
2743                 fs_info->pending_quota_state = 1;
2744                 fs_info->quota_root = quota_root;
2745         }
2746
2747         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2748         uuid_root = btrfs_read_tree_root(tree_root, &location);
2749         if (IS_ERR(uuid_root)) {
2750                 ret = PTR_ERR(uuid_root);
2751                 if (ret != -ENOENT)
2752                         goto recovery_tree_root;
2753                 create_uuid_tree = true;
2754                 check_uuid_tree = false;
2755         } else {
2756                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2757                 fs_info->uuid_root = uuid_root;
2758                 create_uuid_tree = false;
2759                 check_uuid_tree =
2760                     generation != btrfs_super_uuid_tree_generation(disk_super);
2761         }
2762
2763         fs_info->generation = generation;
2764         fs_info->last_trans_committed = generation;
2765
2766         ret = btrfs_recover_balance(fs_info);
2767         if (ret) {
2768                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2769                 goto fail_block_groups;
2770         }
2771
2772         ret = btrfs_init_dev_stats(fs_info);
2773         if (ret) {
2774                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2775                        ret);
2776                 goto fail_block_groups;
2777         }
2778
2779         ret = btrfs_init_dev_replace(fs_info);
2780         if (ret) {
2781                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2782                 goto fail_block_groups;
2783         }
2784
2785         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2786
2787         ret = btrfs_sysfs_add_one(fs_info);
2788         if (ret) {
2789                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2790                 goto fail_block_groups;
2791         }
2792
2793         ret = btrfs_init_space_info(fs_info);
2794         if (ret) {
2795                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2796                 goto fail_sysfs;
2797         }
2798
2799         ret = btrfs_read_block_groups(extent_root);
2800         if (ret) {
2801                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2802                 goto fail_sysfs;
2803         }
2804         fs_info->num_tolerated_disk_barrier_failures =
2805                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2806         if (fs_info->fs_devices->missing_devices >
2807              fs_info->num_tolerated_disk_barrier_failures &&
2808             !(sb->s_flags & MS_RDONLY)) {
2809                 printk(KERN_WARNING "BTRFS: "
2810                         "too many missing devices, writeable mount is not allowed\n");
2811                 goto fail_sysfs;
2812         }
2813
2814         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2815                                                "btrfs-cleaner");
2816         if (IS_ERR(fs_info->cleaner_kthread))
2817                 goto fail_sysfs;
2818
2819         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2820                                                    tree_root,
2821                                                    "btrfs-transaction");
2822         if (IS_ERR(fs_info->transaction_kthread))
2823                 goto fail_cleaner;
2824
2825         if (!btrfs_test_opt(tree_root, SSD) &&
2826             !btrfs_test_opt(tree_root, NOSSD) &&
2827             !fs_info->fs_devices->rotating) {
2828                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2829                        "mode\n");
2830                 btrfs_set_opt(fs_info->mount_opt, SSD);
2831         }
2832
2833         /* Set the real inode map cache flag */
2834         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2835                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2836
2837 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2838         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2839                 ret = btrfsic_mount(tree_root, fs_devices,
2840                                     btrfs_test_opt(tree_root,
2841                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2842                                     1 : 0,
2843                                     fs_info->check_integrity_print_mask);
2844                 if (ret)
2845                         printk(KERN_WARNING "BTRFS: failed to initialize"
2846                                " integrity check module %s\n", sb->s_id);
2847         }
2848 #endif
2849         ret = btrfs_read_qgroup_config(fs_info);
2850         if (ret)
2851                 goto fail_trans_kthread;
2852
2853         /* do not make disk changes in broken FS */
2854         if (btrfs_super_log_root(disk_super) != 0) {
2855                 u64 bytenr = btrfs_super_log_root(disk_super);
2856
2857                 if (fs_devices->rw_devices == 0) {
2858                         printk(KERN_WARNING "BTRFS: log replay required "
2859                                "on RO media\n");
2860                         err = -EIO;
2861                         goto fail_qgroup;
2862                 }
2863                 blocksize = tree_root->nodesize;
2864
2865                 log_tree_root = btrfs_alloc_root(fs_info);
2866                 if (!log_tree_root) {
2867                         err = -ENOMEM;
2868                         goto fail_qgroup;
2869                 }
2870
2871                 __setup_root(nodesize, sectorsize, stripesize,
2872                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2873
2874                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2875                                                       blocksize,
2876                                                       generation + 1);
2877                 if (!log_tree_root->node ||
2878                     !extent_buffer_uptodate(log_tree_root->node)) {
2879                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2880                         free_extent_buffer(log_tree_root->node);
2881                         kfree(log_tree_root);
2882                         goto fail_qgroup;
2883                 }
2884                 /* returns with log_tree_root freed on success */
2885                 ret = btrfs_recover_log_trees(log_tree_root);
2886                 if (ret) {
2887                         btrfs_error(tree_root->fs_info, ret,
2888                                     "Failed to recover log tree");
2889                         free_extent_buffer(log_tree_root->node);
2890                         kfree(log_tree_root);
2891                         goto fail_qgroup;
2892                 }
2893
2894                 if (sb->s_flags & MS_RDONLY) {
2895                         ret = btrfs_commit_super(tree_root);
2896                         if (ret)
2897                                 goto fail_qgroup;
2898                 }
2899         }
2900
2901         ret = btrfs_find_orphan_roots(tree_root);
2902         if (ret)
2903                 goto fail_qgroup;
2904
2905         if (!(sb->s_flags & MS_RDONLY)) {
2906                 ret = btrfs_cleanup_fs_roots(fs_info);
2907                 if (ret)
2908                         goto fail_qgroup;
2909
2910                 mutex_lock(&fs_info->cleaner_mutex);
2911                 ret = btrfs_recover_relocation(tree_root);
2912                 mutex_unlock(&fs_info->cleaner_mutex);
2913                 if (ret < 0) {
2914                         printk(KERN_WARNING
2915                                "BTRFS: failed to recover relocation\n");
2916                         err = -EINVAL;
2917                         goto fail_qgroup;
2918                 }
2919         }
2920
2921         location.objectid = BTRFS_FS_TREE_OBJECTID;
2922         location.type = BTRFS_ROOT_ITEM_KEY;
2923         location.offset = 0;
2924
2925         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2926         if (IS_ERR(fs_info->fs_root)) {
2927                 err = PTR_ERR(fs_info->fs_root);
2928                 goto fail_qgroup;
2929         }
2930
2931         if (sb->s_flags & MS_RDONLY)
2932                 return 0;
2933
2934         down_read(&fs_info->cleanup_work_sem);
2935         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2936             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2937                 up_read(&fs_info->cleanup_work_sem);
2938                 close_ctree(tree_root);
2939                 return ret;
2940         }
2941         up_read(&fs_info->cleanup_work_sem);
2942
2943         ret = btrfs_resume_balance_async(fs_info);
2944         if (ret) {
2945                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2946                 close_ctree(tree_root);
2947                 return ret;
2948         }
2949
2950         ret = btrfs_resume_dev_replace_async(fs_info);
2951         if (ret) {
2952                 pr_warn("BTRFS: failed to resume dev_replace\n");
2953                 close_ctree(tree_root);
2954                 return ret;
2955         }
2956
2957         btrfs_qgroup_rescan_resume(fs_info);
2958
2959         if (create_uuid_tree) {
2960                 pr_info("BTRFS: creating UUID tree\n");
2961                 ret = btrfs_create_uuid_tree(fs_info);
2962                 if (ret) {
2963                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2964                                 ret);
2965                         close_ctree(tree_root);
2966                         return ret;
2967                 }
2968         } else if (check_uuid_tree ||
2969                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2970                 pr_info("BTRFS: checking UUID tree\n");
2971                 ret = btrfs_check_uuid_tree(fs_info);
2972                 if (ret) {
2973                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2974                                 ret);
2975                         close_ctree(tree_root);
2976                         return ret;
2977                 }
2978         } else {
2979                 fs_info->update_uuid_tree_gen = 1;
2980         }
2981
2982         fs_info->open = 1;
2983
2984         return 0;
2985
2986 fail_qgroup:
2987         btrfs_free_qgroup_config(fs_info);
2988 fail_trans_kthread:
2989         kthread_stop(fs_info->transaction_kthread);
2990         btrfs_cleanup_transaction(fs_info->tree_root);
2991         btrfs_free_fs_roots(fs_info);
2992 fail_cleaner:
2993         kthread_stop(fs_info->cleaner_kthread);
2994
2995         /*
2996          * make sure we're done with the btree inode before we stop our
2997          * kthreads
2998          */
2999         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3000
3001 fail_sysfs:
3002         btrfs_sysfs_remove_one(fs_info);
3003
3004 fail_block_groups:
3005         btrfs_put_block_group_cache(fs_info);
3006         btrfs_free_block_groups(fs_info);
3007
3008 fail_tree_roots:
3009         free_root_pointers(fs_info, 1);
3010         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3011
3012 fail_sb_buffer:
3013         btrfs_stop_all_workers(fs_info);
3014 fail_alloc:
3015 fail_iput:
3016         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3017
3018         iput(fs_info->btree_inode);
3019 fail_bio_counter:
3020         percpu_counter_destroy(&fs_info->bio_counter);
3021 fail_delalloc_bytes:
3022         percpu_counter_destroy(&fs_info->delalloc_bytes);
3023 fail_dirty_metadata_bytes:
3024         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3025 fail_bdi:
3026         bdi_destroy(&fs_info->bdi);
3027 fail_srcu:
3028         cleanup_srcu_struct(&fs_info->subvol_srcu);
3029 fail:
3030         btrfs_free_stripe_hash_table(fs_info);
3031         btrfs_close_devices(fs_info->fs_devices);
3032         return err;
3033
3034 recovery_tree_root:
3035         if (!btrfs_test_opt(tree_root, RECOVERY))
3036                 goto fail_tree_roots;
3037
3038         free_root_pointers(fs_info, 0);
3039
3040         /* don't use the log in recovery mode, it won't be valid */
3041         btrfs_set_super_log_root(disk_super, 0);
3042
3043         /* we can't trust the free space cache either */
3044         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3045
3046         ret = next_root_backup(fs_info, fs_info->super_copy,
3047                                &num_backups_tried, &backup_index);
3048         if (ret == -1)
3049                 goto fail_block_groups;
3050         goto retry_root_backup;
3051 }
3052
3053 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3054 {
3055         if (uptodate) {
3056                 set_buffer_uptodate(bh);
3057         } else {
3058                 struct btrfs_device *device = (struct btrfs_device *)
3059                         bh->b_private;
3060
3061                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3062                                           "I/O error on %s\n",
3063                                           rcu_str_deref(device->name));
3064                 /* note, we dont' set_buffer_write_io_error because we have
3065                  * our own ways of dealing with the IO errors
3066                  */
3067                 clear_buffer_uptodate(bh);
3068                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3069         }
3070         unlock_buffer(bh);
3071         put_bh(bh);
3072 }
3073
3074 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3075 {
3076         struct buffer_head *bh;
3077         struct buffer_head *latest = NULL;
3078         struct btrfs_super_block *super;
3079         int i;
3080         u64 transid = 0;
3081         u64 bytenr;
3082
3083         /* we would like to check all the supers, but that would make
3084          * a btrfs mount succeed after a mkfs from a different FS.
3085          * So, we need to add a special mount option to scan for
3086          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3087          */
3088         for (i = 0; i < 1; i++) {
3089                 bytenr = btrfs_sb_offset(i);
3090                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3091                                         i_size_read(bdev->bd_inode))
3092                         break;
3093                 bh = __bread(bdev, bytenr / 4096,
3094                                         BTRFS_SUPER_INFO_SIZE);
3095                 if (!bh)
3096                         continue;
3097
3098                 super = (struct btrfs_super_block *)bh->b_data;
3099                 if (btrfs_super_bytenr(super) != bytenr ||
3100                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3101                         brelse(bh);
3102                         continue;
3103                 }
3104
3105                 if (!latest || btrfs_super_generation(super) > transid) {
3106                         brelse(latest);
3107                         latest = bh;
3108                         transid = btrfs_super_generation(super);
3109                 } else {
3110                         brelse(bh);
3111                 }
3112         }
3113         return latest;
3114 }
3115
3116 /*
3117  * this should be called twice, once with wait == 0 and
3118  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3119  * we write are pinned.
3120  *
3121  * They are released when wait == 1 is done.
3122  * max_mirrors must be the same for both runs, and it indicates how
3123  * many supers on this one device should be written.
3124  *
3125  * max_mirrors == 0 means to write them all.
3126  */
3127 static int write_dev_supers(struct btrfs_device *device,
3128                             struct btrfs_super_block *sb,
3129                             int do_barriers, int wait, int max_mirrors)
3130 {
3131         struct buffer_head *bh;
3132         int i;
3133         int ret;
3134         int errors = 0;
3135         u32 crc;
3136         u64 bytenr;
3137
3138         if (max_mirrors == 0)
3139                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3140
3141         for (i = 0; i < max_mirrors; i++) {
3142                 bytenr = btrfs_sb_offset(i);
3143                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3144                     device->commit_total_bytes)
3145                         break;
3146
3147                 if (wait) {
3148                         bh = __find_get_block(device->bdev, bytenr / 4096,
3149                                               BTRFS_SUPER_INFO_SIZE);
3150                         if (!bh) {
3151                                 errors++;
3152                                 continue;
3153                         }
3154                         wait_on_buffer(bh);
3155                         if (!buffer_uptodate(bh))
3156                                 errors++;
3157
3158                         /* drop our reference */
3159                         brelse(bh);
3160
3161                         /* drop the reference from the wait == 0 run */
3162                         brelse(bh);
3163                         continue;
3164                 } else {
3165                         btrfs_set_super_bytenr(sb, bytenr);
3166
3167                         crc = ~(u32)0;
3168                         crc = btrfs_csum_data((char *)sb +
3169                                               BTRFS_CSUM_SIZE, crc,
3170                                               BTRFS_SUPER_INFO_SIZE -
3171                                               BTRFS_CSUM_SIZE);
3172                         btrfs_csum_final(crc, sb->csum);
3173
3174                         /*
3175                          * one reference for us, and we leave it for the
3176                          * caller
3177                          */
3178                         bh = __getblk(device->bdev, bytenr / 4096,
3179                                       BTRFS_SUPER_INFO_SIZE);
3180                         if (!bh) {
3181                                 printk(KERN_ERR "BTRFS: couldn't get super "
3182                                        "buffer head for bytenr %Lu\n", bytenr);
3183                                 errors++;
3184                                 continue;
3185                         }
3186
3187                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3188
3189                         /* one reference for submit_bh */
3190                         get_bh(bh);
3191
3192                         set_buffer_uptodate(bh);
3193                         lock_buffer(bh);
3194                         bh->b_end_io = btrfs_end_buffer_write_sync;
3195                         bh->b_private = device;
3196                 }
3197
3198                 /*
3199                  * we fua the first super.  The others we allow
3200                  * to go down lazy.
3201                  */
3202                 if (i == 0)
3203                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3204                 else
3205                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3206                 if (ret)
3207                         errors++;
3208         }
3209         return errors < i ? 0 : -1;
3210 }
3211
3212 /*
3213  * endio for the write_dev_flush, this will wake anyone waiting
3214  * for the barrier when it is done
3215  */
3216 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3217 {
3218         if (err) {
3219                 if (err == -EOPNOTSUPP)
3220                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3221                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3222         }
3223         if (bio->bi_private)
3224                 complete(bio->bi_private);
3225         bio_put(bio);
3226 }
3227
3228 /*
3229  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3230  * sent down.  With wait == 1, it waits for the previous flush.
3231  *
3232  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3233  * capable
3234  */
3235 static int write_dev_flush(struct btrfs_device *device, int wait)
3236 {
3237         struct bio *bio;
3238         int ret = 0;
3239
3240         if (device->nobarriers)
3241                 return 0;
3242
3243         if (wait) {
3244                 bio = device->flush_bio;
3245                 if (!bio)
3246                         return 0;
3247
3248                 wait_for_completion(&device->flush_wait);
3249
3250                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3251                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3252                                       rcu_str_deref(device->name));
3253                         device->nobarriers = 1;
3254                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3255                         ret = -EIO;
3256                         btrfs_dev_stat_inc_and_print(device,
3257                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3258                 }
3259
3260                 /* drop the reference from the wait == 0 run */
3261                 bio_put(bio);
3262                 device->flush_bio = NULL;
3263
3264                 return ret;
3265         }
3266
3267         /*
3268          * one reference for us, and we leave it for the
3269          * caller
3270          */
3271         device->flush_bio = NULL;
3272         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3273         if (!bio)
3274                 return -ENOMEM;
3275
3276         bio->bi_end_io = btrfs_end_empty_barrier;
3277         bio->bi_bdev = device->bdev;
3278         init_completion(&device->flush_wait);
3279         bio->bi_private = &device->flush_wait;
3280         device->flush_bio = bio;
3281
3282         bio_get(bio);
3283         btrfsic_submit_bio(WRITE_FLUSH, bio);
3284
3285         return 0;
3286 }
3287
3288 /*
3289  * send an empty flush down to each device in parallel,
3290  * then wait for them
3291  */
3292 static int barrier_all_devices(struct btrfs_fs_info *info)
3293 {
3294         struct list_head *head;
3295         struct btrfs_device *dev;
3296         int errors_send = 0;
3297         int errors_wait = 0;
3298         int ret;
3299
3300         /* send down all the barriers */
3301         head = &info->fs_devices->devices;
3302         list_for_each_entry_rcu(dev, head, dev_list) {
3303                 if (dev->missing)
3304                         continue;
3305                 if (!dev->bdev) {
3306                         errors_send++;
3307                         continue;
3308                 }
3309                 if (!dev->in_fs_metadata || !dev->writeable)
3310                         continue;
3311
3312                 ret = write_dev_flush(dev, 0);
3313                 if (ret)
3314                         errors_send++;
3315         }
3316
3317         /* wait for all the barriers */
3318         list_for_each_entry_rcu(dev, head, dev_list) {
3319                 if (dev->missing)
3320                         continue;
3321                 if (!dev->bdev) {
3322                         errors_wait++;
3323                         continue;
3324                 }
3325                 if (!dev->in_fs_metadata || !dev->writeable)
3326                         continue;
3327
3328                 ret = write_dev_flush(dev, 1);
3329                 if (ret)
3330                         errors_wait++;
3331         }
3332         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3333             errors_wait > info->num_tolerated_disk_barrier_failures)
3334                 return -EIO;
3335         return 0;
3336 }
3337
3338 int btrfs_calc_num_tolerated_disk_barrier_failures(
3339         struct btrfs_fs_info *fs_info)
3340 {
3341         struct btrfs_ioctl_space_info space;
3342         struct btrfs_space_info *sinfo;
3343         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3344                        BTRFS_BLOCK_GROUP_SYSTEM,
3345                        BTRFS_BLOCK_GROUP_METADATA,
3346                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3347         int num_types = 4;
3348         int i;
3349         int c;
3350         int num_tolerated_disk_barrier_failures =
3351                 (int)fs_info->fs_devices->num_devices;
3352
3353         for (i = 0; i < num_types; i++) {
3354                 struct btrfs_space_info *tmp;
3355
3356                 sinfo = NULL;
3357                 rcu_read_lock();
3358                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3359                         if (tmp->flags == types[i]) {
3360                                 sinfo = tmp;
3361                                 break;
3362                         }
3363                 }
3364                 rcu_read_unlock();
3365
3366                 if (!sinfo)
3367                         continue;
3368
3369                 down_read(&sinfo->groups_sem);
3370                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3371                         if (!list_empty(&sinfo->block_groups[c])) {
3372                                 u64 flags;
3373
3374                                 btrfs_get_block_group_info(
3375                                         &sinfo->block_groups[c], &space);
3376                                 if (space.total_bytes == 0 ||
3377                                     space.used_bytes == 0)
3378                                         continue;
3379                                 flags = space.flags;
3380                                 /*
3381                                  * return
3382                                  * 0: if dup, single or RAID0 is configured for
3383                                  *    any of metadata, system or data, else
3384                                  * 1: if RAID5 is configured, or if RAID1 or
3385                                  *    RAID10 is configured and only two mirrors
3386                                  *    are used, else
3387                                  * 2: if RAID6 is configured, else
3388                                  * num_mirrors - 1: if RAID1 or RAID10 is
3389                                  *                  configured and more than
3390                                  *                  2 mirrors are used.
3391                                  */
3392                                 if (num_tolerated_disk_barrier_failures > 0 &&
3393                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3394                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3395                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3396                                       == 0)))
3397                                         num_tolerated_disk_barrier_failures = 0;
3398                                 else if (num_tolerated_disk_barrier_failures > 1) {
3399                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3400                                             BTRFS_BLOCK_GROUP_RAID5 |
3401                                             BTRFS_BLOCK_GROUP_RAID10)) {
3402                                                 num_tolerated_disk_barrier_failures = 1;
3403                                         } else if (flags &
3404                                                    BTRFS_BLOCK_GROUP_RAID6) {
3405                                                 num_tolerated_disk_barrier_failures = 2;
3406                                         }
3407                                 }
3408                         }
3409                 }
3410                 up_read(&sinfo->groups_sem);
3411         }
3412
3413         return num_tolerated_disk_barrier_failures;
3414 }
3415
3416 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3417 {
3418         struct list_head *head;
3419         struct btrfs_device *dev;
3420         struct btrfs_super_block *sb;
3421         struct btrfs_dev_item *dev_item;
3422         int ret;
3423         int do_barriers;
3424         int max_errors;
3425         int total_errors = 0;
3426         u64 flags;
3427
3428         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3429         backup_super_roots(root->fs_info);
3430
3431         sb = root->fs_info->super_for_commit;
3432         dev_item = &sb->dev_item;
3433
3434         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3435         head = &root->fs_info->fs_devices->devices;
3436         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3437
3438         if (do_barriers) {
3439                 ret = barrier_all_devices(root->fs_info);
3440                 if (ret) {
3441                         mutex_unlock(
3442                                 &root->fs_info->fs_devices->device_list_mutex);
3443                         btrfs_error(root->fs_info, ret,
3444                                     "errors while submitting device barriers.");
3445                         return ret;
3446                 }
3447         }
3448
3449         list_for_each_entry_rcu(dev, head, dev_list) {
3450                 if (!dev->bdev) {
3451                         total_errors++;
3452                         continue;
3453                 }
3454                 if (!dev->in_fs_metadata || !dev->writeable)
3455                         continue;
3456
3457                 btrfs_set_stack_device_generation(dev_item, 0);
3458                 btrfs_set_stack_device_type(dev_item, dev->type);
3459                 btrfs_set_stack_device_id(dev_item, dev->devid);
3460                 btrfs_set_stack_device_total_bytes(dev_item,
3461                                                    dev->commit_total_bytes);
3462                 btrfs_set_stack_device_bytes_used(dev_item,
3463                                                   dev->commit_bytes_used);
3464                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3465                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3466                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3467                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3468                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3469
3470                 flags = btrfs_super_flags(sb);
3471                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3472
3473                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3474                 if (ret)
3475                         total_errors++;
3476         }
3477         if (total_errors > max_errors) {
3478                 btrfs_err(root->fs_info, "%d errors while writing supers",
3479                        total_errors);
3480                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3481
3482                 /* FUA is masked off if unsupported and can't be the reason */
3483                 btrfs_error(root->fs_info, -EIO,
3484                             "%d errors while writing supers", total_errors);
3485                 return -EIO;
3486         }
3487
3488         total_errors = 0;
3489         list_for_each_entry_rcu(dev, head, dev_list) {
3490                 if (!dev->bdev)
3491                         continue;
3492                 if (!dev->in_fs_metadata || !dev->writeable)
3493                         continue;
3494
3495                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3496                 if (ret)
3497                         total_errors++;
3498         }
3499         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3500         if (total_errors > max_errors) {
3501                 btrfs_error(root->fs_info, -EIO,
3502                             "%d errors while writing supers", total_errors);
3503                 return -EIO;
3504         }
3505         return 0;
3506 }
3507
3508 int write_ctree_super(struct btrfs_trans_handle *trans,
3509                       struct btrfs_root *root, int max_mirrors)
3510 {
3511         return write_all_supers(root, max_mirrors);
3512 }
3513
3514 /* Drop a fs root from the radix tree and free it. */
3515 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3516                                   struct btrfs_root *root)
3517 {
3518         spin_lock(&fs_info->fs_roots_radix_lock);
3519         radix_tree_delete(&fs_info->fs_roots_radix,
3520                           (unsigned long)root->root_key.objectid);
3521         spin_unlock(&fs_info->fs_roots_radix_lock);
3522
3523         if (btrfs_root_refs(&root->root_item) == 0)
3524                 synchronize_srcu(&fs_info->subvol_srcu);
3525
3526         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3527                 btrfs_free_log(NULL, root);
3528
3529         if (root->free_ino_pinned)
3530                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3531         if (root->free_ino_ctl)
3532                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3533         free_fs_root(root);
3534 }
3535
3536 static void free_fs_root(struct btrfs_root *root)
3537 {
3538         iput(root->ino_cache_inode);
3539         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3540         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3541         root->orphan_block_rsv = NULL;
3542         if (root->anon_dev)
3543                 free_anon_bdev(root->anon_dev);
3544         if (root->subv_writers)
3545                 btrfs_free_subvolume_writers(root->subv_writers);
3546         free_extent_buffer(root->node);
3547         free_extent_buffer(root->commit_root);
3548         kfree(root->free_ino_ctl);
3549         kfree(root->free_ino_pinned);
3550         kfree(root->name);
3551         btrfs_put_fs_root(root);
3552 }
3553
3554 void btrfs_free_fs_root(struct btrfs_root *root)
3555 {
3556         free_fs_root(root);
3557 }
3558
3559 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3560 {
3561         u64 root_objectid = 0;
3562         struct btrfs_root *gang[8];
3563         int i = 0;
3564         int err = 0;
3565         unsigned int ret = 0;
3566         int index;
3567
3568         while (1) {
3569                 index = srcu_read_lock(&fs_info->subvol_srcu);
3570                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3571                                              (void **)gang, root_objectid,
3572                                              ARRAY_SIZE(gang));
3573                 if (!ret) {
3574                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3575                         break;
3576                 }
3577                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3578
3579                 for (i = 0; i < ret; i++) {
3580                         /* Avoid to grab roots in dead_roots */
3581                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3582                                 gang[i] = NULL;
3583                                 continue;
3584                         }
3585                         /* grab all the search result for later use */
3586                         gang[i] = btrfs_grab_fs_root(gang[i]);
3587                 }
3588                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3589
3590                 for (i = 0; i < ret; i++) {
3591                         if (!gang[i])
3592                                 continue;
3593                         root_objectid = gang[i]->root_key.objectid;
3594                         err = btrfs_orphan_cleanup(gang[i]);
3595                         if (err)
3596                                 break;
3597                         btrfs_put_fs_root(gang[i]);
3598                 }
3599                 root_objectid++;
3600         }
3601
3602         /* release the uncleaned roots due to error */
3603         for (; i < ret; i++) {
3604                 if (gang[i])
3605                         btrfs_put_fs_root(gang[i]);
3606         }
3607         return err;
3608 }
3609
3610 int btrfs_commit_super(struct btrfs_root *root)
3611 {
3612         struct btrfs_trans_handle *trans;
3613
3614         mutex_lock(&root->fs_info->cleaner_mutex);
3615         btrfs_run_delayed_iputs(root);
3616         mutex_unlock(&root->fs_info->cleaner_mutex);
3617         wake_up_process(root->fs_info->cleaner_kthread);
3618
3619         /* wait until ongoing cleanup work done */
3620         down_write(&root->fs_info->cleanup_work_sem);
3621         up_write(&root->fs_info->cleanup_work_sem);
3622
3623         trans = btrfs_join_transaction(root);
3624         if (IS_ERR(trans))
3625                 return PTR_ERR(trans);
3626         return btrfs_commit_transaction(trans, root);
3627 }
3628
3629 void close_ctree(struct btrfs_root *root)
3630 {
3631         struct btrfs_fs_info *fs_info = root->fs_info;
3632         int ret;
3633
3634         fs_info->closing = 1;
3635         smp_mb();
3636
3637         /* wait for the uuid_scan task to finish */
3638         down(&fs_info->uuid_tree_rescan_sem);
3639         /* avoid complains from lockdep et al., set sem back to initial state */
3640         up(&fs_info->uuid_tree_rescan_sem);
3641
3642         /* pause restriper - we want to resume on mount */
3643         btrfs_pause_balance(fs_info);
3644
3645         btrfs_dev_replace_suspend_for_unmount(fs_info);
3646
3647         btrfs_scrub_cancel(fs_info);
3648
3649         /* wait for any defraggers to finish */
3650         wait_event(fs_info->transaction_wait,
3651                    (atomic_read(&fs_info->defrag_running) == 0));
3652
3653         /* clear out the rbtree of defraggable inodes */
3654         btrfs_cleanup_defrag_inodes(fs_info);
3655
3656         cancel_work_sync(&fs_info->async_reclaim_work);
3657
3658         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3659                 ret = btrfs_commit_super(root);
3660                 if (ret)
3661                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3662         }
3663
3664         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3665                 btrfs_error_commit_super(root);
3666
3667         kthread_stop(fs_info->transaction_kthread);
3668         kthread_stop(fs_info->cleaner_kthread);
3669
3670         fs_info->closing = 2;
3671         smp_mb();
3672
3673         btrfs_free_qgroup_config(root->fs_info);
3674
3675         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3676                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3677                        percpu_counter_sum(&fs_info->delalloc_bytes));
3678         }
3679
3680         btrfs_sysfs_remove_one(fs_info);
3681
3682         btrfs_free_fs_roots(fs_info);
3683
3684         btrfs_put_block_group_cache(fs_info);
3685
3686         btrfs_free_block_groups(fs_info);
3687
3688         /*
3689          * we must make sure there is not any read request to
3690          * submit after we stopping all workers.
3691          */
3692         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3693         btrfs_stop_all_workers(fs_info);
3694
3695         fs_info->open = 0;
3696         free_root_pointers(fs_info, 1);
3697
3698         iput(fs_info->btree_inode);
3699
3700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3701         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3702                 btrfsic_unmount(root, fs_info->fs_devices);
3703 #endif
3704
3705         btrfs_close_devices(fs_info->fs_devices);
3706         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3707
3708         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3709         percpu_counter_destroy(&fs_info->delalloc_bytes);
3710         percpu_counter_destroy(&fs_info->bio_counter);
3711         bdi_destroy(&fs_info->bdi);
3712         cleanup_srcu_struct(&fs_info->subvol_srcu);
3713
3714         btrfs_free_stripe_hash_table(fs_info);
3715
3716         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3717         root->orphan_block_rsv = NULL;
3718 }
3719
3720 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3721                           int atomic)
3722 {
3723         int ret;
3724         struct inode *btree_inode = buf->pages[0]->mapping->host;
3725
3726         ret = extent_buffer_uptodate(buf);
3727         if (!ret)
3728                 return ret;
3729
3730         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3731                                     parent_transid, atomic);
3732         if (ret == -EAGAIN)
3733                 return ret;
3734         return !ret;
3735 }
3736
3737 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3738 {
3739         return set_extent_buffer_uptodate(buf);
3740 }
3741
3742 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3743 {
3744         struct btrfs_root *root;
3745         u64 transid = btrfs_header_generation(buf);
3746         int was_dirty;
3747
3748 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3749         /*
3750          * This is a fast path so only do this check if we have sanity tests
3751          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3752          * outside of the sanity tests.
3753          */
3754         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3755                 return;
3756 #endif
3757         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3758         btrfs_assert_tree_locked(buf);
3759         if (transid != root->fs_info->generation)
3760                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3761                        "found %llu running %llu\n",
3762                         buf->start, transid, root->fs_info->generation);
3763         was_dirty = set_extent_buffer_dirty(buf);
3764         if (!was_dirty)
3765                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3766                                      buf->len,
3767                                      root->fs_info->dirty_metadata_batch);
3768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3769         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3770                 btrfs_print_leaf(root, buf);
3771                 ASSERT(0);
3772         }
3773 #endif
3774 }
3775
3776 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3777                                         int flush_delayed)
3778 {
3779         /*
3780          * looks as though older kernels can get into trouble with
3781          * this code, they end up stuck in balance_dirty_pages forever
3782          */
3783         int ret;
3784
3785         if (current->flags & PF_MEMALLOC)
3786                 return;
3787
3788         if (flush_delayed)
3789                 btrfs_balance_delayed_items(root);
3790
3791         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3792                                      BTRFS_DIRTY_METADATA_THRESH);
3793         if (ret > 0) {
3794                 balance_dirty_pages_ratelimited(
3795                                    root->fs_info->btree_inode->i_mapping);
3796         }
3797         return;
3798 }
3799
3800 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3801 {
3802         __btrfs_btree_balance_dirty(root, 1);
3803 }
3804
3805 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3806 {
3807         __btrfs_btree_balance_dirty(root, 0);
3808 }
3809
3810 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3811 {
3812         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3813         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3814 }
3815
3816 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3817                               int read_only)
3818 {
3819         /*
3820          * Placeholder for checks
3821          */
3822         return 0;
3823 }
3824
3825 static void btrfs_error_commit_super(struct btrfs_root *root)
3826 {
3827         mutex_lock(&root->fs_info->cleaner_mutex);
3828         btrfs_run_delayed_iputs(root);
3829         mutex_unlock(&root->fs_info->cleaner_mutex);
3830
3831         down_write(&root->fs_info->cleanup_work_sem);
3832         up_write(&root->fs_info->cleanup_work_sem);
3833
3834         /* cleanup FS via transaction */
3835         btrfs_cleanup_transaction(root);
3836 }
3837
3838 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3839 {
3840         struct btrfs_ordered_extent *ordered;
3841
3842         spin_lock(&root->ordered_extent_lock);
3843         /*
3844          * This will just short circuit the ordered completion stuff which will
3845          * make sure the ordered extent gets properly cleaned up.
3846          */
3847         list_for_each_entry(ordered, &root->ordered_extents,
3848                             root_extent_list)
3849                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3850         spin_unlock(&root->ordered_extent_lock);
3851 }
3852
3853 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3854 {
3855         struct btrfs_root *root;
3856         struct list_head splice;
3857
3858         INIT_LIST_HEAD(&splice);
3859
3860         spin_lock(&fs_info->ordered_root_lock);
3861         list_splice_init(&fs_info->ordered_roots, &splice);
3862         while (!list_empty(&splice)) {
3863                 root = list_first_entry(&splice, struct btrfs_root,
3864                                         ordered_root);
3865                 list_move_tail(&root->ordered_root,
3866                                &fs_info->ordered_roots);
3867
3868                 spin_unlock(&fs_info->ordered_root_lock);
3869                 btrfs_destroy_ordered_extents(root);
3870
3871                 cond_resched();
3872                 spin_lock(&fs_info->ordered_root_lock);
3873         }
3874         spin_unlock(&fs_info->ordered_root_lock);
3875 }
3876
3877 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3878                                       struct btrfs_root *root)
3879 {
3880         struct rb_node *node;
3881         struct btrfs_delayed_ref_root *delayed_refs;
3882         struct btrfs_delayed_ref_node *ref;
3883         int ret = 0;
3884
3885         delayed_refs = &trans->delayed_refs;
3886
3887         spin_lock(&delayed_refs->lock);
3888         if (atomic_read(&delayed_refs->num_entries) == 0) {
3889                 spin_unlock(&delayed_refs->lock);
3890                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3891                 return ret;
3892         }
3893
3894         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3895                 struct btrfs_delayed_ref_head *head;
3896                 bool pin_bytes = false;
3897
3898                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3899                                 href_node);
3900                 if (!mutex_trylock(&head->mutex)) {
3901                         atomic_inc(&head->node.refs);
3902                         spin_unlock(&delayed_refs->lock);
3903
3904                         mutex_lock(&head->mutex);
3905                         mutex_unlock(&head->mutex);
3906                         btrfs_put_delayed_ref(&head->node);
3907                         spin_lock(&delayed_refs->lock);
3908                         continue;
3909                 }
3910                 spin_lock(&head->lock);
3911                 while ((node = rb_first(&head->ref_root)) != NULL) {
3912                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3913                                        rb_node);
3914                         ref->in_tree = 0;
3915                         rb_erase(&ref->rb_node, &head->ref_root);
3916                         atomic_dec(&delayed_refs->num_entries);
3917                         btrfs_put_delayed_ref(ref);
3918                 }
3919                 if (head->must_insert_reserved)
3920                         pin_bytes = true;
3921                 btrfs_free_delayed_extent_op(head->extent_op);
3922                 delayed_refs->num_heads--;
3923                 if (head->processing == 0)
3924                         delayed_refs->num_heads_ready--;
3925                 atomic_dec(&delayed_refs->num_entries);
3926                 head->node.in_tree = 0;
3927                 rb_erase(&head->href_node, &delayed_refs->href_root);
3928                 spin_unlock(&head->lock);
3929                 spin_unlock(&delayed_refs->lock);
3930                 mutex_unlock(&head->mutex);
3931
3932                 if (pin_bytes)
3933                         btrfs_pin_extent(root, head->node.bytenr,
3934                                          head->node.num_bytes, 1);
3935                 btrfs_put_delayed_ref(&head->node);
3936                 cond_resched();
3937                 spin_lock(&delayed_refs->lock);
3938         }
3939
3940         spin_unlock(&delayed_refs->lock);
3941
3942         return ret;
3943 }
3944
3945 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3946 {
3947         struct btrfs_inode *btrfs_inode;
3948         struct list_head splice;
3949
3950         INIT_LIST_HEAD(&splice);
3951
3952         spin_lock(&root->delalloc_lock);
3953         list_splice_init(&root->delalloc_inodes, &splice);
3954
3955         while (!list_empty(&splice)) {
3956                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3957                                                delalloc_inodes);
3958
3959                 list_del_init(&btrfs_inode->delalloc_inodes);
3960                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3961                           &btrfs_inode->runtime_flags);
3962                 spin_unlock(&root->delalloc_lock);
3963
3964                 btrfs_invalidate_inodes(btrfs_inode->root);
3965
3966                 spin_lock(&root->delalloc_lock);
3967         }
3968
3969         spin_unlock(&root->delalloc_lock);
3970 }
3971
3972 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3973 {
3974         struct btrfs_root *root;
3975         struct list_head splice;
3976
3977         INIT_LIST_HEAD(&splice);
3978
3979         spin_lock(&fs_info->delalloc_root_lock);
3980         list_splice_init(&fs_info->delalloc_roots, &splice);
3981         while (!list_empty(&splice)) {
3982                 root = list_first_entry(&splice, struct btrfs_root,
3983                                          delalloc_root);
3984                 list_del_init(&root->delalloc_root);
3985                 root = btrfs_grab_fs_root(root);
3986                 BUG_ON(!root);
3987                 spin_unlock(&fs_info->delalloc_root_lock);
3988
3989                 btrfs_destroy_delalloc_inodes(root);
3990                 btrfs_put_fs_root(root);
3991
3992                 spin_lock(&fs_info->delalloc_root_lock);
3993         }
3994         spin_unlock(&fs_info->delalloc_root_lock);
3995 }
3996
3997 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3998                                         struct extent_io_tree *dirty_pages,
3999                                         int mark)
4000 {
4001         int ret;
4002         struct extent_buffer *eb;
4003         u64 start = 0;
4004         u64 end;
4005
4006         while (1) {
4007                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4008                                             mark, NULL);
4009                 if (ret)
4010                         break;
4011
4012                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4013                 while (start <= end) {
4014                         eb = btrfs_find_tree_block(root, start,
4015                                                    root->nodesize);
4016                         start += root->nodesize;
4017                         if (!eb)
4018                                 continue;
4019                         wait_on_extent_buffer_writeback(eb);
4020
4021                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4022                                                &eb->bflags))
4023                                 clear_extent_buffer_dirty(eb);
4024                         free_extent_buffer_stale(eb);
4025                 }
4026         }
4027
4028         return ret;
4029 }
4030
4031 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4032                                        struct extent_io_tree *pinned_extents)
4033 {
4034         struct extent_io_tree *unpin;
4035         u64 start;
4036         u64 end;
4037         int ret;
4038         bool loop = true;
4039
4040         unpin = pinned_extents;
4041 again:
4042         while (1) {
4043                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4044                                             EXTENT_DIRTY, NULL);
4045                 if (ret)
4046                         break;
4047
4048                 /* opt_discard */
4049                 if (btrfs_test_opt(root, DISCARD))
4050                         ret = btrfs_error_discard_extent(root, start,
4051                                                          end + 1 - start,
4052                                                          NULL);
4053
4054                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4055                 btrfs_error_unpin_extent_range(root, start, end);
4056                 cond_resched();
4057         }
4058
4059         if (loop) {
4060                 if (unpin == &root->fs_info->freed_extents[0])
4061                         unpin = &root->fs_info->freed_extents[1];
4062                 else
4063                         unpin = &root->fs_info->freed_extents[0];
4064                 loop = false;
4065                 goto again;
4066         }
4067
4068         return 0;
4069 }
4070
4071 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4072                                    struct btrfs_root *root)
4073 {
4074         btrfs_destroy_delayed_refs(cur_trans, root);
4075
4076         cur_trans->state = TRANS_STATE_COMMIT_START;
4077         wake_up(&root->fs_info->transaction_blocked_wait);
4078
4079         cur_trans->state = TRANS_STATE_UNBLOCKED;
4080         wake_up(&root->fs_info->transaction_wait);
4081
4082         btrfs_destroy_delayed_inodes(root);
4083         btrfs_assert_delayed_root_empty(root);
4084
4085         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4086                                      EXTENT_DIRTY);
4087         btrfs_destroy_pinned_extent(root,
4088                                     root->fs_info->pinned_extents);
4089
4090         cur_trans->state =TRANS_STATE_COMPLETED;
4091         wake_up(&cur_trans->commit_wait);
4092
4093         /*
4094         memset(cur_trans, 0, sizeof(*cur_trans));
4095         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4096         */
4097 }
4098
4099 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4100 {
4101         struct btrfs_transaction *t;
4102
4103         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4104
4105         spin_lock(&root->fs_info->trans_lock);
4106         while (!list_empty(&root->fs_info->trans_list)) {
4107                 t = list_first_entry(&root->fs_info->trans_list,
4108                                      struct btrfs_transaction, list);
4109                 if (t->state >= TRANS_STATE_COMMIT_START) {
4110                         atomic_inc(&t->use_count);
4111                         spin_unlock(&root->fs_info->trans_lock);
4112                         btrfs_wait_for_commit(root, t->transid);
4113                         btrfs_put_transaction(t);
4114                         spin_lock(&root->fs_info->trans_lock);
4115                         continue;
4116                 }
4117                 if (t == root->fs_info->running_transaction) {
4118                         t->state = TRANS_STATE_COMMIT_DOING;
4119                         spin_unlock(&root->fs_info->trans_lock);
4120                         /*
4121                          * We wait for 0 num_writers since we don't hold a trans
4122                          * handle open currently for this transaction.
4123                          */
4124                         wait_event(t->writer_wait,
4125                                    atomic_read(&t->num_writers) == 0);
4126                 } else {
4127                         spin_unlock(&root->fs_info->trans_lock);
4128                 }
4129                 btrfs_cleanup_one_transaction(t, root);
4130
4131                 spin_lock(&root->fs_info->trans_lock);
4132                 if (t == root->fs_info->running_transaction)
4133                         root->fs_info->running_transaction = NULL;
4134                 list_del_init(&t->list);
4135                 spin_unlock(&root->fs_info->trans_lock);
4136
4137                 btrfs_put_transaction(t);
4138                 trace_btrfs_transaction_commit(root);
4139                 spin_lock(&root->fs_info->trans_lock);
4140         }
4141         spin_unlock(&root->fs_info->trans_lock);
4142         btrfs_destroy_all_ordered_extents(root->fs_info);
4143         btrfs_destroy_delayed_inodes(root);
4144         btrfs_assert_delayed_root_empty(root);
4145         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4146         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4147         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4148
4149         return 0;
4150 }
4151
4152 static struct extent_io_ops btree_extent_io_ops = {
4153         .readpage_end_io_hook = btree_readpage_end_io_hook,
4154         .readpage_io_failed_hook = btree_io_failed_hook,
4155         .submit_bio_hook = btree_submit_bio_hook,
4156         /* note we're sharing with inode.c for the merge bio hook */
4157         .merge_bio_hook = btrfs_merge_bio_hook,
4158 };
This page took 0.264457 seconds and 4 git commands to generate.