2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
83 struct btrfs_fs_info *info;
86 struct list_head list;
87 struct btrfs_work work;
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
95 struct async_submit_bio {
98 struct list_head list;
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
103 unsigned long bio_flags;
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
109 struct btrfs_work work;
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
141 static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
158 { .id = 0, .name_stem = "tree" },
161 void __init btrfs_init_lockdep(void)
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 struct btrfs_lockdep_keyset *ks;
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
197 static struct extent_map *btree_get_extent(struct inode *inode,
198 struct page *page, size_t pg_offset, u64 start, u64 len,
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
205 read_lock(&em_tree->lock);
206 em = lookup_extent_mapping(em_tree, start, len);
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210 read_unlock(&em_tree->lock);
213 read_unlock(&em_tree->lock);
215 em = alloc_extent_map();
217 em = ERR_PTR(-ENOMEM);
222 em->block_len = (u64)-1;
224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226 write_lock(&em_tree->lock);
227 ret = add_extent_mapping(em_tree, em, 0);
228 if (ret == -EEXIST) {
230 em = lookup_extent_mapping(em_tree, start, len);
237 write_unlock(&em_tree->lock);
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 return btrfs_crc32c(seed, data, len);
248 void btrfs_csum_final(u32 crc, char *result)
250 put_unaligned_le32(~crc, result);
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
266 unsigned long map_start;
267 unsigned long map_len;
270 unsigned long inline_result;
272 len = buf->len - offset;
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(kaddr + offset - map_start,
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 result = (char *)&inline_result;
292 btrfs_csum_final(crc, result);
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 memcpy(&found, result, csum_size);
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
311 write_extent_buffer(buf, result, 0, csum_size);
313 if (result != (char *)&inline_result)
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid,
328 struct extent_state *cached_state = NULL;
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
346 if (extent_buffer_uptodate(eb) &&
347 btrfs_header_generation(eb) == parent_transid) {
351 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352 eb->fs_info->sb->s_id, eb->start,
353 parent_transid, btrfs_header_generation(eb));
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
370 btrfs_tree_read_unlock_blocking(eb);
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
378 static int btrfs_check_super_csum(char *raw_disk_sb)
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
399 if (memcmp(raw_disk_sb, result, csum_size))
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
424 u64 start, u64 parent_transid)
426 struct extent_io_tree *io_tree;
431 int failed_mirror = 0;
433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 ret = read_extent_buffer_pages(io_tree, eb, start,
438 btree_get_extent, mirror_num);
440 if (!verify_parent_transid(io_tree, eb,
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455 num_copies = btrfs_num_copies(root->fs_info,
460 if (!failed_mirror) {
462 failed_mirror = eb->read_mirror;
466 if (mirror_num == failed_mirror)
469 if (mirror_num > num_copies)
473 if (failed && !ret && failed_mirror)
474 repair_eb_io_failure(root, eb, failed_mirror);
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 u64 start = page_offset(page);
488 struct extent_buffer *eb;
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
493 found_start = btrfs_header_bytenr(eb);
494 if (WARN_ON(found_start != start || !PageUptodate(page)))
496 csum_tree_block(root, eb, 0);
500 static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
513 fs_devices = fs_devices->seed;
518 #define CORRUPT(reason, eb, root, slot) \
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
521 btrfs_header_bytenr(eb), root->objectid, slot)
523 static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
598 eb = (struct extent_buffer *)page->private;
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
603 extent_buffer_get(eb);
605 reads_done = atomic_dec_and_test(&eb->io_pages);
609 eb->read_mirror = mirror;
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
615 found_start = btrfs_header_bytenr(eb);
616 if (found_start != eb->start) {
617 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
619 eb->fs_info->sb->s_id, found_start, eb->start);
623 if (check_tree_block_fsid(root, eb)) {
624 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625 eb->fs_info->sb->s_id, eb->start);
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_info(root->fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640 ret = csum_tree_block(root, eb, 1);
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
657 set_extent_buffer_uptodate(eb);
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661 btree_readahead_hook(root, eb, eb->start, ret);
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
669 atomic_inc(&eb->io_pages);
670 clear_extent_buffer_uptodate(eb);
672 free_extent_buffer(eb);
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(root, eb, eb->start, -EIO);
688 return -EIO; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio *bio, int err)
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
698 fs_info = end_io_wq->info;
699 end_io_wq->error = err;
701 if (bio->bi_rw & REQ_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
737 * For the metadata arg you want
740 * 1 - if normal metadta
741 * 2 - if writing to the free space cache area
742 * 3 - raid parity work
744 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
747 struct end_io_wq *end_io_wq;
749 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
753 end_io_wq->private = bio->bi_private;
754 end_io_wq->end_io = bio->bi_end_io;
755 end_io_wq->info = info;
756 end_io_wq->error = 0;
757 end_io_wq->bio = bio;
758 end_io_wq->metadata = metadata;
760 bio->bi_private = end_io_wq;
761 bio->bi_end_io = end_workqueue_bio;
765 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
767 unsigned long limit = min_t(unsigned long,
768 info->thread_pool_size,
769 info->fs_devices->open_devices);
773 static void run_one_async_start(struct btrfs_work *work)
775 struct async_submit_bio *async;
778 async = container_of(work, struct async_submit_bio, work);
779 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
786 static void run_one_async_done(struct btrfs_work *work)
788 struct btrfs_fs_info *fs_info;
789 struct async_submit_bio *async;
792 async = container_of(work, struct async_submit_bio, work);
793 fs_info = BTRFS_I(async->inode)->root->fs_info;
795 limit = btrfs_async_submit_limit(fs_info);
796 limit = limit * 2 / 3;
798 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
799 waitqueue_active(&fs_info->async_submit_wait))
800 wake_up(&fs_info->async_submit_wait);
802 /* If an error occured we just want to clean up the bio and move on */
804 bio_endio(async->bio, async->error);
808 async->submit_bio_done(async->inode, async->rw, async->bio,
809 async->mirror_num, async->bio_flags,
813 static void run_one_async_free(struct btrfs_work *work)
815 struct async_submit_bio *async;
817 async = container_of(work, struct async_submit_bio, work);
821 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822 int rw, struct bio *bio, int mirror_num,
823 unsigned long bio_flags,
825 extent_submit_bio_hook_t *submit_bio_start,
826 extent_submit_bio_hook_t *submit_bio_done)
828 struct async_submit_bio *async;
830 async = kmalloc(sizeof(*async), GFP_NOFS);
834 async->inode = inode;
837 async->mirror_num = mirror_num;
838 async->submit_bio_start = submit_bio_start;
839 async->submit_bio_done = submit_bio_done;
841 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
842 run_one_async_done, run_one_async_free);
844 async->bio_flags = bio_flags;
845 async->bio_offset = bio_offset;
849 atomic_inc(&fs_info->nr_async_submits);
852 btrfs_set_work_high_priority(&async->work);
854 btrfs_queue_work(fs_info->workers, &async->work);
856 while (atomic_read(&fs_info->async_submit_draining) &&
857 atomic_read(&fs_info->nr_async_submits)) {
858 wait_event(fs_info->async_submit_wait,
859 (atomic_read(&fs_info->nr_async_submits) == 0));
865 static int btree_csum_one_bio(struct bio *bio)
867 struct bio_vec *bvec;
868 struct btrfs_root *root;
871 bio_for_each_segment_all(bvec, bio, i) {
872 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
873 ret = csum_dirty_buffer(root, bvec->bv_page);
881 static int __btree_submit_bio_start(struct inode *inode, int rw,
882 struct bio *bio, int mirror_num,
883 unsigned long bio_flags,
887 * when we're called for a write, we're already in the async
888 * submission context. Just jump into btrfs_map_bio
890 return btree_csum_one_bio(bio);
893 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
894 int mirror_num, unsigned long bio_flags,
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
903 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
909 static int check_async_write(struct inode *inode, unsigned long bio_flags)
911 if (bio_flags & EXTENT_BIO_TREE_LOG)
920 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
921 int mirror_num, unsigned long bio_flags,
924 int async = check_async_write(inode, bio_flags);
927 if (!(rw & REQ_WRITE)) {
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
932 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
936 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
939 ret = btree_csum_one_bio(bio);
942 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
946 * kthread helpers are used to submit writes so that
947 * checksumming can happen in parallel across all CPUs
949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950 inode, rw, bio, mirror_num, 0,
952 __btree_submit_bio_start,
953 __btree_submit_bio_done);
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
969 * we can't safely write a btree page from here,
970 * we haven't done the locking hook
975 * Buffers may be managed in a filesystem specific way.
976 * We must have no buffers or drop them.
978 if (page_has_private(page) &&
979 !try_to_release_page(page, GFP_KERNEL))
981 return migrate_page(mapping, newpage, page, mode);
986 static int btree_writepages(struct address_space *mapping,
987 struct writeback_control *wbc)
989 struct btrfs_fs_info *fs_info;
992 if (wbc->sync_mode == WB_SYNC_NONE) {
994 if (wbc->for_kupdate)
997 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998 /* this is a bit racy, but that's ok */
999 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000 BTRFS_DIRTY_METADATA_THRESH);
1004 return btree_write_cache_pages(mapping, wbc);
1007 static int btree_readpage(struct file *file, struct page *page)
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
1011 return extent_read_full_page(tree, page, btree_get_extent, 0);
1014 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1016 if (PageWriteback(page) || PageDirty(page))
1019 return try_release_extent_buffer(page);
1022 static void btree_invalidatepage(struct page *page, unsigned int offset,
1023 unsigned int length)
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 extent_invalidatepage(tree, page, offset);
1028 btree_releasepage(page, GFP_NOFS);
1029 if (PagePrivate(page)) {
1030 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031 "page private not zero on page %llu",
1032 (unsigned long long)page_offset(page));
1033 ClearPagePrivate(page);
1034 set_page_private(page, 0);
1035 page_cache_release(page);
1039 static int btree_set_page_dirty(struct page *page)
1042 struct extent_buffer *eb;
1044 BUG_ON(!PagePrivate(page));
1045 eb = (struct extent_buffer *)page->private;
1047 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048 BUG_ON(!atomic_read(&eb->refs));
1049 btrfs_assert_tree_locked(eb);
1051 return __set_page_dirty_nobuffers(page);
1054 static const struct address_space_operations btree_aops = {
1055 .readpage = btree_readpage,
1056 .writepages = btree_writepages,
1057 .releasepage = btree_releasepage,
1058 .invalidatepage = btree_invalidatepage,
1059 #ifdef CONFIG_MIGRATION
1060 .migratepage = btree_migratepage,
1062 .set_page_dirty = btree_set_page_dirty,
1065 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
1067 struct extent_buffer *buf = NULL;
1068 struct inode *btree_inode = root->fs_info->btree_inode;
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1074 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1075 buf, 0, WAIT_NONE, btree_get_extent, 0);
1076 free_extent_buffer(buf);
1080 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1081 int mirror_num, struct extent_buffer **eb)
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
1085 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1088 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1094 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1095 btree_get_extent, mirror_num);
1097 free_extent_buffer(buf);
1101 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1102 free_extent_buffer(buf);
1104 } else if (extent_buffer_uptodate(buf)) {
1107 free_extent_buffer(buf);
1112 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1113 u64 bytenr, u32 blocksize)
1115 return find_extent_buffer(root->fs_info, bytenr);
1118 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1119 u64 bytenr, u32 blocksize)
1121 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1122 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1123 return alloc_test_extent_buffer(root->fs_info, bytenr,
1126 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1130 int btrfs_write_tree_block(struct extent_buffer *buf)
1132 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1133 buf->start + buf->len - 1);
1136 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1138 return filemap_fdatawait_range(buf->pages[0]->mapping,
1139 buf->start, buf->start + buf->len - 1);
1142 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1143 u32 blocksize, u64 parent_transid)
1145 struct extent_buffer *buf = NULL;
1148 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1152 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1154 free_extent_buffer(buf);
1161 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1162 struct extent_buffer *buf)
1164 struct btrfs_fs_info *fs_info = root->fs_info;
1166 if (btrfs_header_generation(buf) ==
1167 fs_info->running_transaction->transid) {
1168 btrfs_assert_tree_locked(buf);
1170 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1171 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 fs_info->dirty_metadata_batch);
1174 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1175 btrfs_set_lock_blocking(buf);
1176 clear_extent_buffer_dirty(buf);
1181 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 struct btrfs_subvolume_writers *writers;
1186 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 return ERR_PTR(-ENOMEM);
1190 ret = percpu_counter_init(&writers->counter, 0);
1193 return ERR_PTR(ret);
1196 init_waitqueue_head(&writers->wait);
1201 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 percpu_counter_destroy(&writers->counter);
1207 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1208 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1212 root->commit_root = NULL;
1213 root->sectorsize = sectorsize;
1214 root->nodesize = nodesize;
1215 root->stripesize = stripesize;
1217 root->orphan_cleanup_state = 0;
1219 root->objectid = objectid;
1220 root->last_trans = 0;
1221 root->highest_objectid = 0;
1222 root->nr_delalloc_inodes = 0;
1223 root->nr_ordered_extents = 0;
1225 root->inode_tree = RB_ROOT;
1226 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1227 root->block_rsv = NULL;
1228 root->orphan_block_rsv = NULL;
1230 INIT_LIST_HEAD(&root->dirty_list);
1231 INIT_LIST_HEAD(&root->root_list);
1232 INIT_LIST_HEAD(&root->delalloc_inodes);
1233 INIT_LIST_HEAD(&root->delalloc_root);
1234 INIT_LIST_HEAD(&root->ordered_extents);
1235 INIT_LIST_HEAD(&root->ordered_root);
1236 INIT_LIST_HEAD(&root->logged_list[0]);
1237 INIT_LIST_HEAD(&root->logged_list[1]);
1238 spin_lock_init(&root->orphan_lock);
1239 spin_lock_init(&root->inode_lock);
1240 spin_lock_init(&root->delalloc_lock);
1241 spin_lock_init(&root->ordered_extent_lock);
1242 spin_lock_init(&root->accounting_lock);
1243 spin_lock_init(&root->log_extents_lock[0]);
1244 spin_lock_init(&root->log_extents_lock[1]);
1245 mutex_init(&root->objectid_mutex);
1246 mutex_init(&root->log_mutex);
1247 mutex_init(&root->ordered_extent_mutex);
1248 mutex_init(&root->delalloc_mutex);
1249 init_waitqueue_head(&root->log_writer_wait);
1250 init_waitqueue_head(&root->log_commit_wait[0]);
1251 init_waitqueue_head(&root->log_commit_wait[1]);
1252 INIT_LIST_HEAD(&root->log_ctxs[0]);
1253 INIT_LIST_HEAD(&root->log_ctxs[1]);
1254 atomic_set(&root->log_commit[0], 0);
1255 atomic_set(&root->log_commit[1], 0);
1256 atomic_set(&root->log_writers, 0);
1257 atomic_set(&root->log_batch, 0);
1258 atomic_set(&root->orphan_inodes, 0);
1259 atomic_set(&root->refs, 1);
1260 atomic_set(&root->will_be_snapshoted, 0);
1261 root->log_transid = 0;
1262 root->log_transid_committed = -1;
1263 root->last_log_commit = 0;
1265 extent_io_tree_init(&root->dirty_log_pages,
1266 fs_info->btree_inode->i_mapping);
1268 memset(&root->root_key, 0, sizeof(root->root_key));
1269 memset(&root->root_item, 0, sizeof(root->root_item));
1270 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1271 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1273 root->defrag_trans_start = fs_info->generation;
1275 root->defrag_trans_start = 0;
1276 init_completion(&root->kobj_unregister);
1277 root->root_key.objectid = objectid;
1280 spin_lock_init(&root->root_item_lock);
1283 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1285 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1287 root->fs_info = fs_info;
1291 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1292 /* Should only be used by the testing infrastructure */
1293 struct btrfs_root *btrfs_alloc_dummy_root(void)
1295 struct btrfs_root *root;
1297 root = btrfs_alloc_root(NULL);
1299 return ERR_PTR(-ENOMEM);
1300 __setup_root(4096, 4096, 4096, root, NULL, 1);
1301 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1302 root->alloc_bytenr = 0;
1308 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info,
1312 struct extent_buffer *leaf;
1313 struct btrfs_root *tree_root = fs_info->tree_root;
1314 struct btrfs_root *root;
1315 struct btrfs_key key;
1319 root = btrfs_alloc_root(fs_info);
1321 return ERR_PTR(-ENOMEM);
1323 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1324 tree_root->stripesize, root, fs_info, objectid);
1325 root->root_key.objectid = objectid;
1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 root->root_key.offset = 0;
1329 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1330 0, objectid, NULL, 0, 0, 0);
1332 ret = PTR_ERR(leaf);
1337 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1338 btrfs_set_header_bytenr(leaf, leaf->start);
1339 btrfs_set_header_generation(leaf, trans->transid);
1340 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1341 btrfs_set_header_owner(leaf, objectid);
1344 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1346 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1347 btrfs_header_chunk_tree_uuid(leaf),
1349 btrfs_mark_buffer_dirty(leaf);
1351 root->commit_root = btrfs_root_node(root);
1352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1354 root->root_item.flags = 0;
1355 root->root_item.byte_limit = 0;
1356 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1357 btrfs_set_root_generation(&root->root_item, trans->transid);
1358 btrfs_set_root_level(&root->root_item, 0);
1359 btrfs_set_root_refs(&root->root_item, 1);
1360 btrfs_set_root_used(&root->root_item, leaf->len);
1361 btrfs_set_root_last_snapshot(&root->root_item, 0);
1362 btrfs_set_root_dirid(&root->root_item, 0);
1364 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1365 root->root_item.drop_level = 0;
1367 key.objectid = objectid;
1368 key.type = BTRFS_ROOT_ITEM_KEY;
1370 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1374 btrfs_tree_unlock(leaf);
1380 btrfs_tree_unlock(leaf);
1381 free_extent_buffer(root->commit_root);
1382 free_extent_buffer(leaf);
1386 return ERR_PTR(ret);
1389 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1390 struct btrfs_fs_info *fs_info)
1392 struct btrfs_root *root;
1393 struct btrfs_root *tree_root = fs_info->tree_root;
1394 struct extent_buffer *leaf;
1396 root = btrfs_alloc_root(fs_info);
1398 return ERR_PTR(-ENOMEM);
1400 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1401 tree_root->stripesize, root, fs_info,
1402 BTRFS_TREE_LOG_OBJECTID);
1404 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1405 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1406 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1409 * DON'T set REF_COWS for log trees
1411 * log trees do not get reference counted because they go away
1412 * before a real commit is actually done. They do store pointers
1413 * to file data extents, and those reference counts still get
1414 * updated (along with back refs to the log tree).
1417 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1418 BTRFS_TREE_LOG_OBJECTID, NULL,
1422 return ERR_CAST(leaf);
1425 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1426 btrfs_set_header_bytenr(leaf, leaf->start);
1427 btrfs_set_header_generation(leaf, trans->transid);
1428 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1432 write_extent_buffer(root->node, root->fs_info->fsid,
1433 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1434 btrfs_mark_buffer_dirty(root->node);
1435 btrfs_tree_unlock(root->node);
1439 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1440 struct btrfs_fs_info *fs_info)
1442 struct btrfs_root *log_root;
1444 log_root = alloc_log_tree(trans, fs_info);
1445 if (IS_ERR(log_root))
1446 return PTR_ERR(log_root);
1447 WARN_ON(fs_info->log_root_tree);
1448 fs_info->log_root_tree = log_root;
1452 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1453 struct btrfs_root *root)
1455 struct btrfs_root *log_root;
1456 struct btrfs_inode_item *inode_item;
1458 log_root = alloc_log_tree(trans, root->fs_info);
1459 if (IS_ERR(log_root))
1460 return PTR_ERR(log_root);
1462 log_root->last_trans = trans->transid;
1463 log_root->root_key.offset = root->root_key.objectid;
1465 inode_item = &log_root->root_item.inode;
1466 btrfs_set_stack_inode_generation(inode_item, 1);
1467 btrfs_set_stack_inode_size(inode_item, 3);
1468 btrfs_set_stack_inode_nlink(inode_item, 1);
1469 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1470 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1472 btrfs_set_root_node(&log_root->root_item, log_root->node);
1474 WARN_ON(root->log_root);
1475 root->log_root = log_root;
1476 root->log_transid = 0;
1477 root->log_transid_committed = -1;
1478 root->last_log_commit = 0;
1482 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1483 struct btrfs_key *key)
1485 struct btrfs_root *root;
1486 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1487 struct btrfs_path *path;
1492 path = btrfs_alloc_path();
1494 return ERR_PTR(-ENOMEM);
1496 root = btrfs_alloc_root(fs_info);
1502 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1503 tree_root->stripesize, root, fs_info, key->objectid);
1505 ret = btrfs_find_root(tree_root, key, path,
1506 &root->root_item, &root->root_key);
1513 generation = btrfs_root_generation(&root->root_item);
1514 blocksize = root->nodesize;
1515 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1516 blocksize, generation);
1520 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524 root->commit_root = btrfs_root_node(root);
1526 btrfs_free_path(path);
1530 free_extent_buffer(root->node);
1534 root = ERR_PTR(ret);
1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 struct btrfs_key *location)
1541 struct btrfs_root *root;
1543 root = btrfs_read_tree_root(tree_root, location);
1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1549 btrfs_check_and_init_root_item(&root->root_item);
1555 int btrfs_init_fs_root(struct btrfs_root *root)
1558 struct btrfs_subvolume_writers *writers;
1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 writers = btrfs_alloc_subvolume_writers();
1569 if (IS_ERR(writers)) {
1570 ret = PTR_ERR(writers);
1573 root->subv_writers = writers;
1575 btrfs_init_free_ino_ctl(root);
1576 spin_lock_init(&root->ino_cache_lock);
1577 init_waitqueue_head(&root->ino_cache_wait);
1579 ret = get_anon_bdev(&root->anon_dev);
1585 btrfs_free_subvolume_writers(root->subv_writers);
1587 kfree(root->free_ino_ctl);
1588 kfree(root->free_ino_pinned);
1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1595 struct btrfs_root *root;
1597 spin_lock(&fs_info->fs_roots_radix_lock);
1598 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 (unsigned long)root_id);
1600 spin_unlock(&fs_info->fs_roots_radix_lock);
1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 struct btrfs_root *root)
1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613 spin_lock(&fs_info->fs_roots_radix_lock);
1614 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 (unsigned long)root->root_key.objectid,
1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 radix_tree_preload_end();
1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 struct btrfs_key *location,
1629 struct btrfs_root *root;
1632 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1633 return fs_info->tree_root;
1634 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1635 return fs_info->extent_root;
1636 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1637 return fs_info->chunk_root;
1638 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1639 return fs_info->dev_root;
1640 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1641 return fs_info->csum_root;
1642 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1643 return fs_info->quota_root ? fs_info->quota_root :
1645 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1646 return fs_info->uuid_root ? fs_info->uuid_root :
1649 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1652 return ERR_PTR(-ENOENT);
1656 root = btrfs_read_fs_root(fs_info->tree_root, location);
1660 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1665 ret = btrfs_init_fs_root(root);
1669 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1670 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1674 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1676 ret = btrfs_insert_fs_root(fs_info, root);
1678 if (ret == -EEXIST) {
1687 return ERR_PTR(ret);
1690 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1692 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1694 struct btrfs_device *device;
1695 struct backing_dev_info *bdi;
1698 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1701 bdi = blk_get_backing_dev_info(device->bdev);
1702 if (bdi && bdi_congested(bdi, bdi_bits)) {
1711 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1715 bdi->capabilities = BDI_CAP_MAP_COPY;
1716 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1720 bdi->ra_pages = default_backing_dev_info.ra_pages;
1721 bdi->congested_fn = btrfs_congested_fn;
1722 bdi->congested_data = info;
1727 * called by the kthread helper functions to finally call the bio end_io
1728 * functions. This is where read checksum verification actually happens
1730 static void end_workqueue_fn(struct btrfs_work *work)
1733 struct end_io_wq *end_io_wq;
1736 end_io_wq = container_of(work, struct end_io_wq, work);
1737 bio = end_io_wq->bio;
1739 error = end_io_wq->error;
1740 bio->bi_private = end_io_wq->private;
1741 bio->bi_end_io = end_io_wq->end_io;
1743 bio_endio_nodec(bio, error);
1746 static int cleaner_kthread(void *arg)
1748 struct btrfs_root *root = arg;
1754 /* Make the cleaner go to sleep early. */
1755 if (btrfs_need_cleaner_sleep(root))
1758 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1762 * Avoid the problem that we change the status of the fs
1763 * during the above check and trylock.
1765 if (btrfs_need_cleaner_sleep(root)) {
1766 mutex_unlock(&root->fs_info->cleaner_mutex);
1770 btrfs_run_delayed_iputs(root);
1771 btrfs_delete_unused_bgs(root->fs_info);
1772 again = btrfs_clean_one_deleted_snapshot(root);
1773 mutex_unlock(&root->fs_info->cleaner_mutex);
1776 * The defragger has dealt with the R/O remount and umount,
1777 * needn't do anything special here.
1779 btrfs_run_defrag_inodes(root->fs_info);
1781 if (!try_to_freeze() && !again) {
1782 set_current_state(TASK_INTERRUPTIBLE);
1783 if (!kthread_should_stop())
1785 __set_current_state(TASK_RUNNING);
1787 } while (!kthread_should_stop());
1791 static int transaction_kthread(void *arg)
1793 struct btrfs_root *root = arg;
1794 struct btrfs_trans_handle *trans;
1795 struct btrfs_transaction *cur;
1798 unsigned long delay;
1802 cannot_commit = false;
1803 delay = HZ * root->fs_info->commit_interval;
1804 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1806 spin_lock(&root->fs_info->trans_lock);
1807 cur = root->fs_info->running_transaction;
1809 spin_unlock(&root->fs_info->trans_lock);
1813 now = get_seconds();
1814 if (cur->state < TRANS_STATE_BLOCKED &&
1815 (now < cur->start_time ||
1816 now - cur->start_time < root->fs_info->commit_interval)) {
1817 spin_unlock(&root->fs_info->trans_lock);
1821 transid = cur->transid;
1822 spin_unlock(&root->fs_info->trans_lock);
1824 /* If the file system is aborted, this will always fail. */
1825 trans = btrfs_attach_transaction(root);
1826 if (IS_ERR(trans)) {
1827 if (PTR_ERR(trans) != -ENOENT)
1828 cannot_commit = true;
1831 if (transid == trans->transid) {
1832 btrfs_commit_transaction(trans, root);
1834 btrfs_end_transaction(trans, root);
1837 wake_up_process(root->fs_info->cleaner_kthread);
1838 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1840 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841 &root->fs_info->fs_state)))
1842 btrfs_cleanup_transaction(root);
1843 if (!try_to_freeze()) {
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 if (!kthread_should_stop() &&
1846 (!btrfs_transaction_blocked(root->fs_info) ||
1848 schedule_timeout(delay);
1849 __set_current_state(TASK_RUNNING);
1851 } while (!kthread_should_stop());
1856 * this will find the highest generation in the array of
1857 * root backups. The index of the highest array is returned,
1858 * or -1 if we can't find anything.
1860 * We check to make sure the array is valid by comparing the
1861 * generation of the latest root in the array with the generation
1862 * in the super block. If they don't match we pitch it.
1864 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1867 int newest_index = -1;
1868 struct btrfs_root_backup *root_backup;
1871 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872 root_backup = info->super_copy->super_roots + i;
1873 cur = btrfs_backup_tree_root_gen(root_backup);
1874 if (cur == newest_gen)
1878 /* check to see if we actually wrapped around */
1879 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880 root_backup = info->super_copy->super_roots;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
1885 return newest_index;
1890 * find the oldest backup so we know where to store new entries
1891 * in the backup array. This will set the backup_root_index
1892 * field in the fs_info struct
1894 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1897 int newest_index = -1;
1899 newest_index = find_newest_super_backup(info, newest_gen);
1900 /* if there was garbage in there, just move along */
1901 if (newest_index == -1) {
1902 info->backup_root_index = 0;
1904 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1909 * copy all the root pointers into the super backup array.
1910 * this will bump the backup pointer by one when it is
1913 static void backup_super_roots(struct btrfs_fs_info *info)
1916 struct btrfs_root_backup *root_backup;
1919 next_backup = info->backup_root_index;
1920 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921 BTRFS_NUM_BACKUP_ROOTS;
1924 * just overwrite the last backup if we're at the same generation
1925 * this happens only at umount
1927 root_backup = info->super_for_commit->super_roots + last_backup;
1928 if (btrfs_backup_tree_root_gen(root_backup) ==
1929 btrfs_header_generation(info->tree_root->node))
1930 next_backup = last_backup;
1932 root_backup = info->super_for_commit->super_roots + next_backup;
1935 * make sure all of our padding and empty slots get zero filled
1936 * regardless of which ones we use today
1938 memset(root_backup, 0, sizeof(*root_backup));
1940 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1942 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943 btrfs_set_backup_tree_root_gen(root_backup,
1944 btrfs_header_generation(info->tree_root->node));
1946 btrfs_set_backup_tree_root_level(root_backup,
1947 btrfs_header_level(info->tree_root->node));
1949 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950 btrfs_set_backup_chunk_root_gen(root_backup,
1951 btrfs_header_generation(info->chunk_root->node));
1952 btrfs_set_backup_chunk_root_level(root_backup,
1953 btrfs_header_level(info->chunk_root->node));
1955 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956 btrfs_set_backup_extent_root_gen(root_backup,
1957 btrfs_header_generation(info->extent_root->node));
1958 btrfs_set_backup_extent_root_level(root_backup,
1959 btrfs_header_level(info->extent_root->node));
1962 * we might commit during log recovery, which happens before we set
1963 * the fs_root. Make sure it is valid before we fill it in.
1965 if (info->fs_root && info->fs_root->node) {
1966 btrfs_set_backup_fs_root(root_backup,
1967 info->fs_root->node->start);
1968 btrfs_set_backup_fs_root_gen(root_backup,
1969 btrfs_header_generation(info->fs_root->node));
1970 btrfs_set_backup_fs_root_level(root_backup,
1971 btrfs_header_level(info->fs_root->node));
1974 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975 btrfs_set_backup_dev_root_gen(root_backup,
1976 btrfs_header_generation(info->dev_root->node));
1977 btrfs_set_backup_dev_root_level(root_backup,
1978 btrfs_header_level(info->dev_root->node));
1980 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981 btrfs_set_backup_csum_root_gen(root_backup,
1982 btrfs_header_generation(info->csum_root->node));
1983 btrfs_set_backup_csum_root_level(root_backup,
1984 btrfs_header_level(info->csum_root->node));
1986 btrfs_set_backup_total_bytes(root_backup,
1987 btrfs_super_total_bytes(info->super_copy));
1988 btrfs_set_backup_bytes_used(root_backup,
1989 btrfs_super_bytes_used(info->super_copy));
1990 btrfs_set_backup_num_devices(root_backup,
1991 btrfs_super_num_devices(info->super_copy));
1994 * if we don't copy this out to the super_copy, it won't get remembered
1995 * for the next commit
1997 memcpy(&info->super_copy->super_roots,
1998 &info->super_for_commit->super_roots,
1999 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2003 * this copies info out of the root backup array and back into
2004 * the in-memory super block. It is meant to help iterate through
2005 * the array, so you send it the number of backups you've already
2006 * tried and the last backup index you used.
2008 * this returns -1 when it has tried all the backups
2010 static noinline int next_root_backup(struct btrfs_fs_info *info,
2011 struct btrfs_super_block *super,
2012 int *num_backups_tried, int *backup_index)
2014 struct btrfs_root_backup *root_backup;
2015 int newest = *backup_index;
2017 if (*num_backups_tried == 0) {
2018 u64 gen = btrfs_super_generation(super);
2020 newest = find_newest_super_backup(info, gen);
2024 *backup_index = newest;
2025 *num_backups_tried = 1;
2026 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027 /* we've tried all the backups, all done */
2030 /* jump to the next oldest backup */
2031 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032 BTRFS_NUM_BACKUP_ROOTS;
2033 *backup_index = newest;
2034 *num_backups_tried += 1;
2036 root_backup = super->super_roots + newest;
2038 btrfs_set_super_generation(super,
2039 btrfs_backup_tree_root_gen(root_backup));
2040 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041 btrfs_set_super_root_level(super,
2042 btrfs_backup_tree_root_level(root_backup));
2043 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2046 * fixme: the total bytes and num_devices need to match or we should
2049 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2054 /* helper to cleanup workers */
2055 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2057 btrfs_destroy_workqueue(fs_info->fixup_workers);
2058 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059 btrfs_destroy_workqueue(fs_info->workers);
2060 btrfs_destroy_workqueue(fs_info->endio_workers);
2061 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2064 btrfs_destroy_workqueue(fs_info->rmw_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2068 btrfs_destroy_workqueue(fs_info->submit_workers);
2069 btrfs_destroy_workqueue(fs_info->delayed_workers);
2070 btrfs_destroy_workqueue(fs_info->caching_workers);
2071 btrfs_destroy_workqueue(fs_info->readahead_workers);
2072 btrfs_destroy_workqueue(fs_info->flush_workers);
2073 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2074 btrfs_destroy_workqueue(fs_info->extent_workers);
2077 static void free_root_extent_buffers(struct btrfs_root *root)
2080 free_extent_buffer(root->node);
2081 free_extent_buffer(root->commit_root);
2083 root->commit_root = NULL;
2087 /* helper to cleanup tree roots */
2088 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2090 free_root_extent_buffers(info->tree_root);
2092 free_root_extent_buffers(info->dev_root);
2093 free_root_extent_buffers(info->extent_root);
2094 free_root_extent_buffers(info->csum_root);
2095 free_root_extent_buffers(info->quota_root);
2096 free_root_extent_buffers(info->uuid_root);
2098 free_root_extent_buffers(info->chunk_root);
2101 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2104 struct btrfs_root *gang[8];
2107 while (!list_empty(&fs_info->dead_roots)) {
2108 gang[0] = list_entry(fs_info->dead_roots.next,
2109 struct btrfs_root, root_list);
2110 list_del(&gang[0]->root_list);
2112 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2113 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2115 free_extent_buffer(gang[0]->node);
2116 free_extent_buffer(gang[0]->commit_root);
2117 btrfs_put_fs_root(gang[0]);
2122 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2127 for (i = 0; i < ret; i++)
2128 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2132 btrfs_free_log_root_tree(NULL, fs_info);
2133 btrfs_destroy_pinned_extent(fs_info->tree_root,
2134 fs_info->pinned_extents);
2138 int open_ctree(struct super_block *sb,
2139 struct btrfs_fs_devices *fs_devices,
2148 struct btrfs_key location;
2149 struct buffer_head *bh;
2150 struct btrfs_super_block *disk_super;
2151 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2152 struct btrfs_root *tree_root;
2153 struct btrfs_root *extent_root;
2154 struct btrfs_root *csum_root;
2155 struct btrfs_root *chunk_root;
2156 struct btrfs_root *dev_root;
2157 struct btrfs_root *quota_root;
2158 struct btrfs_root *uuid_root;
2159 struct btrfs_root *log_tree_root;
2162 int num_backups_tried = 0;
2163 int backup_index = 0;
2165 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2166 bool create_uuid_tree;
2167 bool check_uuid_tree;
2169 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2170 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2171 if (!tree_root || !chunk_root) {
2176 ret = init_srcu_struct(&fs_info->subvol_srcu);
2182 ret = setup_bdi(fs_info, &fs_info->bdi);
2188 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2193 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194 (1 + ilog2(nr_cpu_ids));
2196 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2199 goto fail_dirty_metadata_bytes;
2202 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2205 goto fail_delalloc_bytes;
2208 fs_info->btree_inode = new_inode(sb);
2209 if (!fs_info->btree_inode) {
2211 goto fail_bio_counter;
2214 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2216 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2217 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2218 INIT_LIST_HEAD(&fs_info->trans_list);
2219 INIT_LIST_HEAD(&fs_info->dead_roots);
2220 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2221 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2222 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2223 spin_lock_init(&fs_info->delalloc_root_lock);
2224 spin_lock_init(&fs_info->trans_lock);
2225 spin_lock_init(&fs_info->fs_roots_radix_lock);
2226 spin_lock_init(&fs_info->delayed_iput_lock);
2227 spin_lock_init(&fs_info->defrag_inodes_lock);
2228 spin_lock_init(&fs_info->free_chunk_lock);
2229 spin_lock_init(&fs_info->tree_mod_seq_lock);
2230 spin_lock_init(&fs_info->super_lock);
2231 spin_lock_init(&fs_info->qgroup_op_lock);
2232 spin_lock_init(&fs_info->buffer_lock);
2233 spin_lock_init(&fs_info->unused_bgs_lock);
2234 rwlock_init(&fs_info->tree_mod_log_lock);
2235 mutex_init(&fs_info->reloc_mutex);
2236 mutex_init(&fs_info->delalloc_root_mutex);
2237 seqlock_init(&fs_info->profiles_lock);
2239 init_completion(&fs_info->kobj_unregister);
2240 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2241 INIT_LIST_HEAD(&fs_info->space_info);
2242 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2243 INIT_LIST_HEAD(&fs_info->unused_bgs);
2244 btrfs_mapping_init(&fs_info->mapping_tree);
2245 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2246 BTRFS_BLOCK_RSV_GLOBAL);
2247 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2248 BTRFS_BLOCK_RSV_DELALLOC);
2249 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2250 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2251 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2252 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2253 BTRFS_BLOCK_RSV_DELOPS);
2254 atomic_set(&fs_info->nr_async_submits, 0);
2255 atomic_set(&fs_info->async_delalloc_pages, 0);
2256 atomic_set(&fs_info->async_submit_draining, 0);
2257 atomic_set(&fs_info->nr_async_bios, 0);
2258 atomic_set(&fs_info->defrag_running, 0);
2259 atomic_set(&fs_info->qgroup_op_seq, 0);
2260 atomic64_set(&fs_info->tree_mod_seq, 0);
2262 fs_info->max_inline = 8192 * 1024;
2263 fs_info->metadata_ratio = 0;
2264 fs_info->defrag_inodes = RB_ROOT;
2265 fs_info->free_chunk_space = 0;
2266 fs_info->tree_mod_log = RB_ROOT;
2267 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2268 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2269 /* readahead state */
2270 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2271 spin_lock_init(&fs_info->reada_lock);
2273 fs_info->thread_pool_size = min_t(unsigned long,
2274 num_online_cpus() + 2, 8);
2276 INIT_LIST_HEAD(&fs_info->ordered_roots);
2277 spin_lock_init(&fs_info->ordered_root_lock);
2278 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2280 if (!fs_info->delayed_root) {
2284 btrfs_init_delayed_root(fs_info->delayed_root);
2286 mutex_init(&fs_info->scrub_lock);
2287 atomic_set(&fs_info->scrubs_running, 0);
2288 atomic_set(&fs_info->scrub_pause_req, 0);
2289 atomic_set(&fs_info->scrubs_paused, 0);
2290 atomic_set(&fs_info->scrub_cancel_req, 0);
2291 init_waitqueue_head(&fs_info->replace_wait);
2292 init_waitqueue_head(&fs_info->scrub_pause_wait);
2293 fs_info->scrub_workers_refcnt = 0;
2294 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2295 fs_info->check_integrity_print_mask = 0;
2298 spin_lock_init(&fs_info->balance_lock);
2299 mutex_init(&fs_info->balance_mutex);
2300 atomic_set(&fs_info->balance_running, 0);
2301 atomic_set(&fs_info->balance_pause_req, 0);
2302 atomic_set(&fs_info->balance_cancel_req, 0);
2303 fs_info->balance_ctl = NULL;
2304 init_waitqueue_head(&fs_info->balance_wait_q);
2305 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2307 sb->s_blocksize = 4096;
2308 sb->s_blocksize_bits = blksize_bits(4096);
2309 sb->s_bdi = &fs_info->bdi;
2311 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2312 set_nlink(fs_info->btree_inode, 1);
2314 * we set the i_size on the btree inode to the max possible int.
2315 * the real end of the address space is determined by all of
2316 * the devices in the system
2318 fs_info->btree_inode->i_size = OFFSET_MAX;
2319 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2320 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2322 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324 fs_info->btree_inode->i_mapping);
2325 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2328 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2330 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332 sizeof(struct btrfs_key));
2333 set_bit(BTRFS_INODE_DUMMY,
2334 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335 btrfs_insert_inode_hash(fs_info->btree_inode);
2337 spin_lock_init(&fs_info->block_group_cache_lock);
2338 fs_info->block_group_cache_tree = RB_ROOT;
2339 fs_info->first_logical_byte = (u64)-1;
2341 extent_io_tree_init(&fs_info->freed_extents[0],
2342 fs_info->btree_inode->i_mapping);
2343 extent_io_tree_init(&fs_info->freed_extents[1],
2344 fs_info->btree_inode->i_mapping);
2345 fs_info->pinned_extents = &fs_info->freed_extents[0];
2346 fs_info->do_barriers = 1;
2349 mutex_init(&fs_info->ordered_operations_mutex);
2350 mutex_init(&fs_info->ordered_extent_flush_mutex);
2351 mutex_init(&fs_info->tree_log_mutex);
2352 mutex_init(&fs_info->chunk_mutex);
2353 mutex_init(&fs_info->transaction_kthread_mutex);
2354 mutex_init(&fs_info->cleaner_mutex);
2355 mutex_init(&fs_info->volume_mutex);
2356 init_rwsem(&fs_info->commit_root_sem);
2357 init_rwsem(&fs_info->cleanup_work_sem);
2358 init_rwsem(&fs_info->subvol_sem);
2359 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2360 fs_info->dev_replace.lock_owner = 0;
2361 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2362 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2363 mutex_init(&fs_info->dev_replace.lock_management_lock);
2364 mutex_init(&fs_info->dev_replace.lock);
2366 spin_lock_init(&fs_info->qgroup_lock);
2367 mutex_init(&fs_info->qgroup_ioctl_lock);
2368 fs_info->qgroup_tree = RB_ROOT;
2369 fs_info->qgroup_op_tree = RB_ROOT;
2370 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2371 fs_info->qgroup_seq = 1;
2372 fs_info->quota_enabled = 0;
2373 fs_info->pending_quota_state = 0;
2374 fs_info->qgroup_ulist = NULL;
2375 mutex_init(&fs_info->qgroup_rescan_lock);
2377 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2378 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2380 init_waitqueue_head(&fs_info->transaction_throttle);
2381 init_waitqueue_head(&fs_info->transaction_wait);
2382 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2383 init_waitqueue_head(&fs_info->async_submit_wait);
2385 ret = btrfs_alloc_stripe_hash_table(fs_info);
2391 __setup_root(4096, 4096, 4096, tree_root,
2392 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2394 invalidate_bdev(fs_devices->latest_bdev);
2397 * Read super block and check the signature bytes only
2399 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2406 * We want to check superblock checksum, the type is stored inside.
2407 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2409 if (btrfs_check_super_csum(bh->b_data)) {
2410 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2416 * super_copy is zeroed at allocation time and we never touch the
2417 * following bytes up to INFO_SIZE, the checksum is calculated from
2418 * the whole block of INFO_SIZE
2420 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2421 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2422 sizeof(*fs_info->super_for_commit));
2425 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2427 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2429 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2434 disk_super = fs_info->super_copy;
2435 if (!btrfs_super_root(disk_super))
2438 /* check FS state, whether FS is broken. */
2439 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2440 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2443 * run through our array of backup supers and setup
2444 * our ring pointer to the oldest one
2446 generation = btrfs_super_generation(disk_super);
2447 find_oldest_super_backup(fs_info, generation);
2450 * In the long term, we'll store the compression type in the super
2451 * block, and it'll be used for per file compression control.
2453 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2455 ret = btrfs_parse_options(tree_root, options);
2461 features = btrfs_super_incompat_flags(disk_super) &
2462 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2464 printk(KERN_ERR "BTRFS: couldn't mount because of "
2465 "unsupported optional features (%Lx).\n",
2472 * Leafsize and nodesize were always equal, this is only a sanity check.
2474 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2475 btrfs_super_nodesize(disk_super)) {
2476 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2477 "blocksizes don't match. node %d leaf %d\n",
2478 btrfs_super_nodesize(disk_super),
2479 le32_to_cpu(disk_super->__unused_leafsize));
2483 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2484 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2485 "blocksize (%d) was too large\n",
2486 btrfs_super_nodesize(disk_super));
2491 features = btrfs_super_incompat_flags(disk_super);
2492 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2493 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2494 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2496 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2497 printk(KERN_ERR "BTRFS: has skinny extents\n");
2500 * flag our filesystem as having big metadata blocks if
2501 * they are bigger than the page size
2503 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2504 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2505 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2506 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2509 nodesize = btrfs_super_nodesize(disk_super);
2510 sectorsize = btrfs_super_sectorsize(disk_super);
2511 stripesize = btrfs_super_stripesize(disk_super);
2512 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2513 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2516 * mixed block groups end up with duplicate but slightly offset
2517 * extent buffers for the same range. It leads to corruptions
2519 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2520 (sectorsize != nodesize)) {
2521 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2522 "are not allowed for mixed block groups on %s\n",
2528 * Needn't use the lock because there is no other task which will
2531 btrfs_set_super_incompat_flags(disk_super, features);
2533 features = btrfs_super_compat_ro_flags(disk_super) &
2534 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2535 if (!(sb->s_flags & MS_RDONLY) && features) {
2536 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2537 "unsupported option features (%Lx).\n",
2543 max_active = fs_info->thread_pool_size;
2546 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2549 fs_info->delalloc_workers =
2550 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2552 fs_info->flush_workers =
2553 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2555 fs_info->caching_workers =
2556 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2559 * a higher idle thresh on the submit workers makes it much more
2560 * likely that bios will be send down in a sane order to the
2563 fs_info->submit_workers =
2564 btrfs_alloc_workqueue("submit", flags,
2565 min_t(u64, fs_devices->num_devices,
2568 fs_info->fixup_workers =
2569 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2572 * endios are largely parallel and should have a very
2575 fs_info->endio_workers =
2576 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2577 fs_info->endio_meta_workers =
2578 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2579 fs_info->endio_meta_write_workers =
2580 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2581 fs_info->endio_raid56_workers =
2582 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2583 fs_info->endio_repair_workers =
2584 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2585 fs_info->rmw_workers =
2586 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2587 fs_info->endio_write_workers =
2588 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2589 fs_info->endio_freespace_worker =
2590 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2591 fs_info->delayed_workers =
2592 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2593 fs_info->readahead_workers =
2594 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2595 fs_info->qgroup_rescan_workers =
2596 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2597 fs_info->extent_workers =
2598 btrfs_alloc_workqueue("extent-refs", flags,
2599 min_t(u64, fs_devices->num_devices,
2602 if (!(fs_info->workers && fs_info->delalloc_workers &&
2603 fs_info->submit_workers && fs_info->flush_workers &&
2604 fs_info->endio_workers && fs_info->endio_meta_workers &&
2605 fs_info->endio_meta_write_workers &&
2606 fs_info->endio_repair_workers &&
2607 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2608 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2609 fs_info->caching_workers && fs_info->readahead_workers &&
2610 fs_info->fixup_workers && fs_info->delayed_workers &&
2611 fs_info->extent_workers &&
2612 fs_info->qgroup_rescan_workers)) {
2614 goto fail_sb_buffer;
2617 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2618 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2619 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2621 tree_root->nodesize = nodesize;
2622 tree_root->sectorsize = sectorsize;
2623 tree_root->stripesize = stripesize;
2625 sb->s_blocksize = sectorsize;
2626 sb->s_blocksize_bits = blksize_bits(sectorsize);
2628 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2629 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2630 goto fail_sb_buffer;
2633 if (sectorsize != PAGE_SIZE) {
2634 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2635 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2636 goto fail_sb_buffer;
2639 mutex_lock(&fs_info->chunk_mutex);
2640 ret = btrfs_read_sys_array(tree_root);
2641 mutex_unlock(&fs_info->chunk_mutex);
2643 printk(KERN_WARNING "BTRFS: failed to read the system "
2644 "array on %s\n", sb->s_id);
2645 goto fail_sb_buffer;
2648 blocksize = tree_root->nodesize;
2649 generation = btrfs_super_chunk_root_generation(disk_super);
2651 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2652 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2654 chunk_root->node = read_tree_block(chunk_root,
2655 btrfs_super_chunk_root(disk_super),
2656 blocksize, generation);
2657 if (!chunk_root->node ||
2658 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2659 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2661 goto fail_tree_roots;
2663 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2664 chunk_root->commit_root = btrfs_root_node(chunk_root);
2666 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2667 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2669 ret = btrfs_read_chunk_tree(chunk_root);
2671 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2673 goto fail_tree_roots;
2677 * keep the device that is marked to be the target device for the
2678 * dev_replace procedure
2680 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2682 if (!fs_devices->latest_bdev) {
2683 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2685 goto fail_tree_roots;
2689 blocksize = tree_root->nodesize;
2690 generation = btrfs_super_generation(disk_super);
2692 tree_root->node = read_tree_block(tree_root,
2693 btrfs_super_root(disk_super),
2694 blocksize, generation);
2695 if (!tree_root->node ||
2696 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2697 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2700 goto recovery_tree_root;
2703 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2704 tree_root->commit_root = btrfs_root_node(tree_root);
2705 btrfs_set_root_refs(&tree_root->root_item, 1);
2707 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2708 location.type = BTRFS_ROOT_ITEM_KEY;
2709 location.offset = 0;
2711 extent_root = btrfs_read_tree_root(tree_root, &location);
2712 if (IS_ERR(extent_root)) {
2713 ret = PTR_ERR(extent_root);
2714 goto recovery_tree_root;
2716 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2717 fs_info->extent_root = extent_root;
2719 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2720 dev_root = btrfs_read_tree_root(tree_root, &location);
2721 if (IS_ERR(dev_root)) {
2722 ret = PTR_ERR(dev_root);
2723 goto recovery_tree_root;
2725 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2726 fs_info->dev_root = dev_root;
2727 btrfs_init_devices_late(fs_info);
2729 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2730 csum_root = btrfs_read_tree_root(tree_root, &location);
2731 if (IS_ERR(csum_root)) {
2732 ret = PTR_ERR(csum_root);
2733 goto recovery_tree_root;
2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2736 fs_info->csum_root = csum_root;
2738 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2739 quota_root = btrfs_read_tree_root(tree_root, &location);
2740 if (!IS_ERR(quota_root)) {
2741 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state);
2742 fs_info->quota_enabled = 1;
2743 fs_info->pending_quota_state = 1;
2744 fs_info->quota_root = quota_root;
2747 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2748 uuid_root = btrfs_read_tree_root(tree_root, &location);
2749 if (IS_ERR(uuid_root)) {
2750 ret = PTR_ERR(uuid_root);
2752 goto recovery_tree_root;
2753 create_uuid_tree = true;
2754 check_uuid_tree = false;
2756 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2757 fs_info->uuid_root = uuid_root;
2758 create_uuid_tree = false;
2760 generation != btrfs_super_uuid_tree_generation(disk_super);
2763 fs_info->generation = generation;
2764 fs_info->last_trans_committed = generation;
2766 ret = btrfs_recover_balance(fs_info);
2768 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2769 goto fail_block_groups;
2772 ret = btrfs_init_dev_stats(fs_info);
2774 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2776 goto fail_block_groups;
2779 ret = btrfs_init_dev_replace(fs_info);
2781 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2782 goto fail_block_groups;
2785 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2787 ret = btrfs_sysfs_add_one(fs_info);
2789 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2790 goto fail_block_groups;
2793 ret = btrfs_init_space_info(fs_info);
2795 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2799 ret = btrfs_read_block_groups(extent_root);
2801 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2804 fs_info->num_tolerated_disk_barrier_failures =
2805 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2806 if (fs_info->fs_devices->missing_devices >
2807 fs_info->num_tolerated_disk_barrier_failures &&
2808 !(sb->s_flags & MS_RDONLY)) {
2809 printk(KERN_WARNING "BTRFS: "
2810 "too many missing devices, writeable mount is not allowed\n");
2814 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2816 if (IS_ERR(fs_info->cleaner_kthread))
2819 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2821 "btrfs-transaction");
2822 if (IS_ERR(fs_info->transaction_kthread))
2825 if (!btrfs_test_opt(tree_root, SSD) &&
2826 !btrfs_test_opt(tree_root, NOSSD) &&
2827 !fs_info->fs_devices->rotating) {
2828 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2830 btrfs_set_opt(fs_info->mount_opt, SSD);
2833 /* Set the real inode map cache flag */
2834 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2835 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2837 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2838 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2839 ret = btrfsic_mount(tree_root, fs_devices,
2840 btrfs_test_opt(tree_root,
2841 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2843 fs_info->check_integrity_print_mask);
2845 printk(KERN_WARNING "BTRFS: failed to initialize"
2846 " integrity check module %s\n", sb->s_id);
2849 ret = btrfs_read_qgroup_config(fs_info);
2851 goto fail_trans_kthread;
2853 /* do not make disk changes in broken FS */
2854 if (btrfs_super_log_root(disk_super) != 0) {
2855 u64 bytenr = btrfs_super_log_root(disk_super);
2857 if (fs_devices->rw_devices == 0) {
2858 printk(KERN_WARNING "BTRFS: log replay required "
2863 blocksize = tree_root->nodesize;
2865 log_tree_root = btrfs_alloc_root(fs_info);
2866 if (!log_tree_root) {
2871 __setup_root(nodesize, sectorsize, stripesize,
2872 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2874 log_tree_root->node = read_tree_block(tree_root, bytenr,
2877 if (!log_tree_root->node ||
2878 !extent_buffer_uptodate(log_tree_root->node)) {
2879 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2880 free_extent_buffer(log_tree_root->node);
2881 kfree(log_tree_root);
2884 /* returns with log_tree_root freed on success */
2885 ret = btrfs_recover_log_trees(log_tree_root);
2887 btrfs_error(tree_root->fs_info, ret,
2888 "Failed to recover log tree");
2889 free_extent_buffer(log_tree_root->node);
2890 kfree(log_tree_root);
2894 if (sb->s_flags & MS_RDONLY) {
2895 ret = btrfs_commit_super(tree_root);
2901 ret = btrfs_find_orphan_roots(tree_root);
2905 if (!(sb->s_flags & MS_RDONLY)) {
2906 ret = btrfs_cleanup_fs_roots(fs_info);
2910 mutex_lock(&fs_info->cleaner_mutex);
2911 ret = btrfs_recover_relocation(tree_root);
2912 mutex_unlock(&fs_info->cleaner_mutex);
2915 "BTRFS: failed to recover relocation\n");
2921 location.objectid = BTRFS_FS_TREE_OBJECTID;
2922 location.type = BTRFS_ROOT_ITEM_KEY;
2923 location.offset = 0;
2925 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2926 if (IS_ERR(fs_info->fs_root)) {
2927 err = PTR_ERR(fs_info->fs_root);
2931 if (sb->s_flags & MS_RDONLY)
2934 down_read(&fs_info->cleanup_work_sem);
2935 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2936 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2937 up_read(&fs_info->cleanup_work_sem);
2938 close_ctree(tree_root);
2941 up_read(&fs_info->cleanup_work_sem);
2943 ret = btrfs_resume_balance_async(fs_info);
2945 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2946 close_ctree(tree_root);
2950 ret = btrfs_resume_dev_replace_async(fs_info);
2952 pr_warn("BTRFS: failed to resume dev_replace\n");
2953 close_ctree(tree_root);
2957 btrfs_qgroup_rescan_resume(fs_info);
2959 if (create_uuid_tree) {
2960 pr_info("BTRFS: creating UUID tree\n");
2961 ret = btrfs_create_uuid_tree(fs_info);
2963 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2965 close_ctree(tree_root);
2968 } else if (check_uuid_tree ||
2969 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2970 pr_info("BTRFS: checking UUID tree\n");
2971 ret = btrfs_check_uuid_tree(fs_info);
2973 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2975 close_ctree(tree_root);
2979 fs_info->update_uuid_tree_gen = 1;
2987 btrfs_free_qgroup_config(fs_info);
2989 kthread_stop(fs_info->transaction_kthread);
2990 btrfs_cleanup_transaction(fs_info->tree_root);
2991 btrfs_free_fs_roots(fs_info);
2993 kthread_stop(fs_info->cleaner_kthread);
2996 * make sure we're done with the btree inode before we stop our
2999 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3002 btrfs_sysfs_remove_one(fs_info);
3005 btrfs_put_block_group_cache(fs_info);
3006 btrfs_free_block_groups(fs_info);
3009 free_root_pointers(fs_info, 1);
3010 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3013 btrfs_stop_all_workers(fs_info);
3016 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3018 iput(fs_info->btree_inode);
3020 percpu_counter_destroy(&fs_info->bio_counter);
3021 fail_delalloc_bytes:
3022 percpu_counter_destroy(&fs_info->delalloc_bytes);
3023 fail_dirty_metadata_bytes:
3024 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3026 bdi_destroy(&fs_info->bdi);
3028 cleanup_srcu_struct(&fs_info->subvol_srcu);
3030 btrfs_free_stripe_hash_table(fs_info);
3031 btrfs_close_devices(fs_info->fs_devices);
3035 if (!btrfs_test_opt(tree_root, RECOVERY))
3036 goto fail_tree_roots;
3038 free_root_pointers(fs_info, 0);
3040 /* don't use the log in recovery mode, it won't be valid */
3041 btrfs_set_super_log_root(disk_super, 0);
3043 /* we can't trust the free space cache either */
3044 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3046 ret = next_root_backup(fs_info, fs_info->super_copy,
3047 &num_backups_tried, &backup_index);
3049 goto fail_block_groups;
3050 goto retry_root_backup;
3053 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3056 set_buffer_uptodate(bh);
3058 struct btrfs_device *device = (struct btrfs_device *)
3061 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3062 "I/O error on %s\n",
3063 rcu_str_deref(device->name));
3064 /* note, we dont' set_buffer_write_io_error because we have
3065 * our own ways of dealing with the IO errors
3067 clear_buffer_uptodate(bh);
3068 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3074 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3076 struct buffer_head *bh;
3077 struct buffer_head *latest = NULL;
3078 struct btrfs_super_block *super;
3083 /* we would like to check all the supers, but that would make
3084 * a btrfs mount succeed after a mkfs from a different FS.
3085 * So, we need to add a special mount option to scan for
3086 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3088 for (i = 0; i < 1; i++) {
3089 bytenr = btrfs_sb_offset(i);
3090 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3091 i_size_read(bdev->bd_inode))
3093 bh = __bread(bdev, bytenr / 4096,
3094 BTRFS_SUPER_INFO_SIZE);
3098 super = (struct btrfs_super_block *)bh->b_data;
3099 if (btrfs_super_bytenr(super) != bytenr ||
3100 btrfs_super_magic(super) != BTRFS_MAGIC) {
3105 if (!latest || btrfs_super_generation(super) > transid) {
3108 transid = btrfs_super_generation(super);
3117 * this should be called twice, once with wait == 0 and
3118 * once with wait == 1. When wait == 0 is done, all the buffer heads
3119 * we write are pinned.
3121 * They are released when wait == 1 is done.
3122 * max_mirrors must be the same for both runs, and it indicates how
3123 * many supers on this one device should be written.
3125 * max_mirrors == 0 means to write them all.
3127 static int write_dev_supers(struct btrfs_device *device,
3128 struct btrfs_super_block *sb,
3129 int do_barriers, int wait, int max_mirrors)
3131 struct buffer_head *bh;
3138 if (max_mirrors == 0)
3139 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3141 for (i = 0; i < max_mirrors; i++) {
3142 bytenr = btrfs_sb_offset(i);
3143 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3144 device->commit_total_bytes)
3148 bh = __find_get_block(device->bdev, bytenr / 4096,
3149 BTRFS_SUPER_INFO_SIZE);
3155 if (!buffer_uptodate(bh))
3158 /* drop our reference */
3161 /* drop the reference from the wait == 0 run */
3165 btrfs_set_super_bytenr(sb, bytenr);
3168 crc = btrfs_csum_data((char *)sb +
3169 BTRFS_CSUM_SIZE, crc,
3170 BTRFS_SUPER_INFO_SIZE -
3172 btrfs_csum_final(crc, sb->csum);
3175 * one reference for us, and we leave it for the
3178 bh = __getblk(device->bdev, bytenr / 4096,
3179 BTRFS_SUPER_INFO_SIZE);
3181 printk(KERN_ERR "BTRFS: couldn't get super "
3182 "buffer head for bytenr %Lu\n", bytenr);
3187 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3189 /* one reference for submit_bh */
3192 set_buffer_uptodate(bh);
3194 bh->b_end_io = btrfs_end_buffer_write_sync;
3195 bh->b_private = device;
3199 * we fua the first super. The others we allow
3203 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3205 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3209 return errors < i ? 0 : -1;
3213 * endio for the write_dev_flush, this will wake anyone waiting
3214 * for the barrier when it is done
3216 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3219 if (err == -EOPNOTSUPP)
3220 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3221 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3223 if (bio->bi_private)
3224 complete(bio->bi_private);
3229 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3230 * sent down. With wait == 1, it waits for the previous flush.
3232 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3235 static int write_dev_flush(struct btrfs_device *device, int wait)
3240 if (device->nobarriers)
3244 bio = device->flush_bio;
3248 wait_for_completion(&device->flush_wait);
3250 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3251 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3252 rcu_str_deref(device->name));
3253 device->nobarriers = 1;
3254 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3256 btrfs_dev_stat_inc_and_print(device,
3257 BTRFS_DEV_STAT_FLUSH_ERRS);
3260 /* drop the reference from the wait == 0 run */
3262 device->flush_bio = NULL;
3268 * one reference for us, and we leave it for the
3271 device->flush_bio = NULL;
3272 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3276 bio->bi_end_io = btrfs_end_empty_barrier;
3277 bio->bi_bdev = device->bdev;
3278 init_completion(&device->flush_wait);
3279 bio->bi_private = &device->flush_wait;
3280 device->flush_bio = bio;
3283 btrfsic_submit_bio(WRITE_FLUSH, bio);
3289 * send an empty flush down to each device in parallel,
3290 * then wait for them
3292 static int barrier_all_devices(struct btrfs_fs_info *info)
3294 struct list_head *head;
3295 struct btrfs_device *dev;
3296 int errors_send = 0;
3297 int errors_wait = 0;
3300 /* send down all the barriers */
3301 head = &info->fs_devices->devices;
3302 list_for_each_entry_rcu(dev, head, dev_list) {
3309 if (!dev->in_fs_metadata || !dev->writeable)
3312 ret = write_dev_flush(dev, 0);
3317 /* wait for all the barriers */
3318 list_for_each_entry_rcu(dev, head, dev_list) {
3325 if (!dev->in_fs_metadata || !dev->writeable)
3328 ret = write_dev_flush(dev, 1);
3332 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3333 errors_wait > info->num_tolerated_disk_barrier_failures)
3338 int btrfs_calc_num_tolerated_disk_barrier_failures(
3339 struct btrfs_fs_info *fs_info)
3341 struct btrfs_ioctl_space_info space;
3342 struct btrfs_space_info *sinfo;
3343 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3344 BTRFS_BLOCK_GROUP_SYSTEM,
3345 BTRFS_BLOCK_GROUP_METADATA,
3346 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3350 int num_tolerated_disk_barrier_failures =
3351 (int)fs_info->fs_devices->num_devices;
3353 for (i = 0; i < num_types; i++) {
3354 struct btrfs_space_info *tmp;
3358 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3359 if (tmp->flags == types[i]) {
3369 down_read(&sinfo->groups_sem);
3370 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3371 if (!list_empty(&sinfo->block_groups[c])) {
3374 btrfs_get_block_group_info(
3375 &sinfo->block_groups[c], &space);
3376 if (space.total_bytes == 0 ||
3377 space.used_bytes == 0)
3379 flags = space.flags;
3382 * 0: if dup, single or RAID0 is configured for
3383 * any of metadata, system or data, else
3384 * 1: if RAID5 is configured, or if RAID1 or
3385 * RAID10 is configured and only two mirrors
3387 * 2: if RAID6 is configured, else
3388 * num_mirrors - 1: if RAID1 or RAID10 is
3389 * configured and more than
3390 * 2 mirrors are used.
3392 if (num_tolerated_disk_barrier_failures > 0 &&
3393 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3394 BTRFS_BLOCK_GROUP_RAID0)) ||
3395 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3397 num_tolerated_disk_barrier_failures = 0;
3398 else if (num_tolerated_disk_barrier_failures > 1) {
3399 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3400 BTRFS_BLOCK_GROUP_RAID5 |
3401 BTRFS_BLOCK_GROUP_RAID10)) {
3402 num_tolerated_disk_barrier_failures = 1;
3404 BTRFS_BLOCK_GROUP_RAID6) {
3405 num_tolerated_disk_barrier_failures = 2;
3410 up_read(&sinfo->groups_sem);
3413 return num_tolerated_disk_barrier_failures;
3416 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3418 struct list_head *head;
3419 struct btrfs_device *dev;
3420 struct btrfs_super_block *sb;
3421 struct btrfs_dev_item *dev_item;
3425 int total_errors = 0;
3428 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3429 backup_super_roots(root->fs_info);
3431 sb = root->fs_info->super_for_commit;
3432 dev_item = &sb->dev_item;
3434 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3435 head = &root->fs_info->fs_devices->devices;
3436 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3439 ret = barrier_all_devices(root->fs_info);
3442 &root->fs_info->fs_devices->device_list_mutex);
3443 btrfs_error(root->fs_info, ret,
3444 "errors while submitting device barriers.");
3449 list_for_each_entry_rcu(dev, head, dev_list) {
3454 if (!dev->in_fs_metadata || !dev->writeable)
3457 btrfs_set_stack_device_generation(dev_item, 0);
3458 btrfs_set_stack_device_type(dev_item, dev->type);
3459 btrfs_set_stack_device_id(dev_item, dev->devid);
3460 btrfs_set_stack_device_total_bytes(dev_item,
3461 dev->commit_total_bytes);
3462 btrfs_set_stack_device_bytes_used(dev_item,
3463 dev->commit_bytes_used);
3464 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3465 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3466 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3467 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3468 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3470 flags = btrfs_super_flags(sb);
3471 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3473 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3477 if (total_errors > max_errors) {
3478 btrfs_err(root->fs_info, "%d errors while writing supers",
3480 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3482 /* FUA is masked off if unsupported and can't be the reason */
3483 btrfs_error(root->fs_info, -EIO,
3484 "%d errors while writing supers", total_errors);
3489 list_for_each_entry_rcu(dev, head, dev_list) {
3492 if (!dev->in_fs_metadata || !dev->writeable)
3495 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3499 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3500 if (total_errors > max_errors) {
3501 btrfs_error(root->fs_info, -EIO,
3502 "%d errors while writing supers", total_errors);
3508 int write_ctree_super(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root, int max_mirrors)
3511 return write_all_supers(root, max_mirrors);
3514 /* Drop a fs root from the radix tree and free it. */
3515 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3516 struct btrfs_root *root)
3518 spin_lock(&fs_info->fs_roots_radix_lock);
3519 radix_tree_delete(&fs_info->fs_roots_radix,
3520 (unsigned long)root->root_key.objectid);
3521 spin_unlock(&fs_info->fs_roots_radix_lock);
3523 if (btrfs_root_refs(&root->root_item) == 0)
3524 synchronize_srcu(&fs_info->subvol_srcu);
3526 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3527 btrfs_free_log(NULL, root);
3529 if (root->free_ino_pinned)
3530 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3531 if (root->free_ino_ctl)
3532 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3536 static void free_fs_root(struct btrfs_root *root)
3538 iput(root->ino_cache_inode);
3539 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3540 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3541 root->orphan_block_rsv = NULL;
3543 free_anon_bdev(root->anon_dev);
3544 if (root->subv_writers)
3545 btrfs_free_subvolume_writers(root->subv_writers);
3546 free_extent_buffer(root->node);
3547 free_extent_buffer(root->commit_root);
3548 kfree(root->free_ino_ctl);
3549 kfree(root->free_ino_pinned);
3551 btrfs_put_fs_root(root);
3554 void btrfs_free_fs_root(struct btrfs_root *root)
3559 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3561 u64 root_objectid = 0;
3562 struct btrfs_root *gang[8];
3565 unsigned int ret = 0;
3569 index = srcu_read_lock(&fs_info->subvol_srcu);
3570 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3571 (void **)gang, root_objectid,
3574 srcu_read_unlock(&fs_info->subvol_srcu, index);
3577 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3579 for (i = 0; i < ret; i++) {
3580 /* Avoid to grab roots in dead_roots */
3581 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3585 /* grab all the search result for later use */
3586 gang[i] = btrfs_grab_fs_root(gang[i]);
3588 srcu_read_unlock(&fs_info->subvol_srcu, index);
3590 for (i = 0; i < ret; i++) {
3593 root_objectid = gang[i]->root_key.objectid;
3594 err = btrfs_orphan_cleanup(gang[i]);
3597 btrfs_put_fs_root(gang[i]);
3602 /* release the uncleaned roots due to error */
3603 for (; i < ret; i++) {
3605 btrfs_put_fs_root(gang[i]);
3610 int btrfs_commit_super(struct btrfs_root *root)
3612 struct btrfs_trans_handle *trans;
3614 mutex_lock(&root->fs_info->cleaner_mutex);
3615 btrfs_run_delayed_iputs(root);
3616 mutex_unlock(&root->fs_info->cleaner_mutex);
3617 wake_up_process(root->fs_info->cleaner_kthread);
3619 /* wait until ongoing cleanup work done */
3620 down_write(&root->fs_info->cleanup_work_sem);
3621 up_write(&root->fs_info->cleanup_work_sem);
3623 trans = btrfs_join_transaction(root);
3625 return PTR_ERR(trans);
3626 return btrfs_commit_transaction(trans, root);
3629 void close_ctree(struct btrfs_root *root)
3631 struct btrfs_fs_info *fs_info = root->fs_info;
3634 fs_info->closing = 1;
3637 /* wait for the uuid_scan task to finish */
3638 down(&fs_info->uuid_tree_rescan_sem);
3639 /* avoid complains from lockdep et al., set sem back to initial state */
3640 up(&fs_info->uuid_tree_rescan_sem);
3642 /* pause restriper - we want to resume on mount */
3643 btrfs_pause_balance(fs_info);
3645 btrfs_dev_replace_suspend_for_unmount(fs_info);
3647 btrfs_scrub_cancel(fs_info);
3649 /* wait for any defraggers to finish */
3650 wait_event(fs_info->transaction_wait,
3651 (atomic_read(&fs_info->defrag_running) == 0));
3653 /* clear out the rbtree of defraggable inodes */
3654 btrfs_cleanup_defrag_inodes(fs_info);
3656 cancel_work_sync(&fs_info->async_reclaim_work);
3658 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3659 ret = btrfs_commit_super(root);
3661 btrfs_err(root->fs_info, "commit super ret %d", ret);
3664 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3665 btrfs_error_commit_super(root);
3667 kthread_stop(fs_info->transaction_kthread);
3668 kthread_stop(fs_info->cleaner_kthread);
3670 fs_info->closing = 2;
3673 btrfs_free_qgroup_config(root->fs_info);
3675 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3676 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3677 percpu_counter_sum(&fs_info->delalloc_bytes));
3680 btrfs_sysfs_remove_one(fs_info);
3682 btrfs_free_fs_roots(fs_info);
3684 btrfs_put_block_group_cache(fs_info);
3686 btrfs_free_block_groups(fs_info);
3689 * we must make sure there is not any read request to
3690 * submit after we stopping all workers.
3692 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3693 btrfs_stop_all_workers(fs_info);
3696 free_root_pointers(fs_info, 1);
3698 iput(fs_info->btree_inode);
3700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3701 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3702 btrfsic_unmount(root, fs_info->fs_devices);
3705 btrfs_close_devices(fs_info->fs_devices);
3706 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3708 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3709 percpu_counter_destroy(&fs_info->delalloc_bytes);
3710 percpu_counter_destroy(&fs_info->bio_counter);
3711 bdi_destroy(&fs_info->bdi);
3712 cleanup_srcu_struct(&fs_info->subvol_srcu);
3714 btrfs_free_stripe_hash_table(fs_info);
3716 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3717 root->orphan_block_rsv = NULL;
3720 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3724 struct inode *btree_inode = buf->pages[0]->mapping->host;
3726 ret = extent_buffer_uptodate(buf);
3730 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3731 parent_transid, atomic);
3737 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3739 return set_extent_buffer_uptodate(buf);
3742 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3744 struct btrfs_root *root;
3745 u64 transid = btrfs_header_generation(buf);
3748 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3750 * This is a fast path so only do this check if we have sanity tests
3751 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3752 * outside of the sanity tests.
3754 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3757 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3758 btrfs_assert_tree_locked(buf);
3759 if (transid != root->fs_info->generation)
3760 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3761 "found %llu running %llu\n",
3762 buf->start, transid, root->fs_info->generation);
3763 was_dirty = set_extent_buffer_dirty(buf);
3765 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3767 root->fs_info->dirty_metadata_batch);
3768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3769 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3770 btrfs_print_leaf(root, buf);
3776 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3780 * looks as though older kernels can get into trouble with
3781 * this code, they end up stuck in balance_dirty_pages forever
3785 if (current->flags & PF_MEMALLOC)
3789 btrfs_balance_delayed_items(root);
3791 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3792 BTRFS_DIRTY_METADATA_THRESH);
3794 balance_dirty_pages_ratelimited(
3795 root->fs_info->btree_inode->i_mapping);
3800 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3802 __btrfs_btree_balance_dirty(root, 1);
3805 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3807 __btrfs_btree_balance_dirty(root, 0);
3810 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3812 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3813 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3816 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3820 * Placeholder for checks
3825 static void btrfs_error_commit_super(struct btrfs_root *root)
3827 mutex_lock(&root->fs_info->cleaner_mutex);
3828 btrfs_run_delayed_iputs(root);
3829 mutex_unlock(&root->fs_info->cleaner_mutex);
3831 down_write(&root->fs_info->cleanup_work_sem);
3832 up_write(&root->fs_info->cleanup_work_sem);
3834 /* cleanup FS via transaction */
3835 btrfs_cleanup_transaction(root);
3838 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3840 struct btrfs_ordered_extent *ordered;
3842 spin_lock(&root->ordered_extent_lock);
3844 * This will just short circuit the ordered completion stuff which will
3845 * make sure the ordered extent gets properly cleaned up.
3847 list_for_each_entry(ordered, &root->ordered_extents,
3849 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3850 spin_unlock(&root->ordered_extent_lock);
3853 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3855 struct btrfs_root *root;
3856 struct list_head splice;
3858 INIT_LIST_HEAD(&splice);
3860 spin_lock(&fs_info->ordered_root_lock);
3861 list_splice_init(&fs_info->ordered_roots, &splice);
3862 while (!list_empty(&splice)) {
3863 root = list_first_entry(&splice, struct btrfs_root,
3865 list_move_tail(&root->ordered_root,
3866 &fs_info->ordered_roots);
3868 spin_unlock(&fs_info->ordered_root_lock);
3869 btrfs_destroy_ordered_extents(root);
3872 spin_lock(&fs_info->ordered_root_lock);
3874 spin_unlock(&fs_info->ordered_root_lock);
3877 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3878 struct btrfs_root *root)
3880 struct rb_node *node;
3881 struct btrfs_delayed_ref_root *delayed_refs;
3882 struct btrfs_delayed_ref_node *ref;
3885 delayed_refs = &trans->delayed_refs;
3887 spin_lock(&delayed_refs->lock);
3888 if (atomic_read(&delayed_refs->num_entries) == 0) {
3889 spin_unlock(&delayed_refs->lock);
3890 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3894 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3895 struct btrfs_delayed_ref_head *head;
3896 bool pin_bytes = false;
3898 head = rb_entry(node, struct btrfs_delayed_ref_head,
3900 if (!mutex_trylock(&head->mutex)) {
3901 atomic_inc(&head->node.refs);
3902 spin_unlock(&delayed_refs->lock);
3904 mutex_lock(&head->mutex);
3905 mutex_unlock(&head->mutex);
3906 btrfs_put_delayed_ref(&head->node);
3907 spin_lock(&delayed_refs->lock);
3910 spin_lock(&head->lock);
3911 while ((node = rb_first(&head->ref_root)) != NULL) {
3912 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3915 rb_erase(&ref->rb_node, &head->ref_root);
3916 atomic_dec(&delayed_refs->num_entries);
3917 btrfs_put_delayed_ref(ref);
3919 if (head->must_insert_reserved)
3921 btrfs_free_delayed_extent_op(head->extent_op);
3922 delayed_refs->num_heads--;
3923 if (head->processing == 0)
3924 delayed_refs->num_heads_ready--;
3925 atomic_dec(&delayed_refs->num_entries);
3926 head->node.in_tree = 0;
3927 rb_erase(&head->href_node, &delayed_refs->href_root);
3928 spin_unlock(&head->lock);
3929 spin_unlock(&delayed_refs->lock);
3930 mutex_unlock(&head->mutex);
3933 btrfs_pin_extent(root, head->node.bytenr,
3934 head->node.num_bytes, 1);
3935 btrfs_put_delayed_ref(&head->node);
3937 spin_lock(&delayed_refs->lock);
3940 spin_unlock(&delayed_refs->lock);
3945 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3947 struct btrfs_inode *btrfs_inode;
3948 struct list_head splice;
3950 INIT_LIST_HEAD(&splice);
3952 spin_lock(&root->delalloc_lock);
3953 list_splice_init(&root->delalloc_inodes, &splice);
3955 while (!list_empty(&splice)) {
3956 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3959 list_del_init(&btrfs_inode->delalloc_inodes);
3960 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3961 &btrfs_inode->runtime_flags);
3962 spin_unlock(&root->delalloc_lock);
3964 btrfs_invalidate_inodes(btrfs_inode->root);
3966 spin_lock(&root->delalloc_lock);
3969 spin_unlock(&root->delalloc_lock);
3972 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3974 struct btrfs_root *root;
3975 struct list_head splice;
3977 INIT_LIST_HEAD(&splice);
3979 spin_lock(&fs_info->delalloc_root_lock);
3980 list_splice_init(&fs_info->delalloc_roots, &splice);
3981 while (!list_empty(&splice)) {
3982 root = list_first_entry(&splice, struct btrfs_root,
3984 list_del_init(&root->delalloc_root);
3985 root = btrfs_grab_fs_root(root);
3987 spin_unlock(&fs_info->delalloc_root_lock);
3989 btrfs_destroy_delalloc_inodes(root);
3990 btrfs_put_fs_root(root);
3992 spin_lock(&fs_info->delalloc_root_lock);
3994 spin_unlock(&fs_info->delalloc_root_lock);
3997 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3998 struct extent_io_tree *dirty_pages,
4002 struct extent_buffer *eb;
4007 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4012 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4013 while (start <= end) {
4014 eb = btrfs_find_tree_block(root, start,
4016 start += root->nodesize;
4019 wait_on_extent_buffer_writeback(eb);
4021 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4023 clear_extent_buffer_dirty(eb);
4024 free_extent_buffer_stale(eb);
4031 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4032 struct extent_io_tree *pinned_extents)
4034 struct extent_io_tree *unpin;
4040 unpin = pinned_extents;
4043 ret = find_first_extent_bit(unpin, 0, &start, &end,
4044 EXTENT_DIRTY, NULL);
4049 if (btrfs_test_opt(root, DISCARD))
4050 ret = btrfs_error_discard_extent(root, start,
4054 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4055 btrfs_error_unpin_extent_range(root, start, end);
4060 if (unpin == &root->fs_info->freed_extents[0])
4061 unpin = &root->fs_info->freed_extents[1];
4063 unpin = &root->fs_info->freed_extents[0];
4071 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4072 struct btrfs_root *root)
4074 btrfs_destroy_delayed_refs(cur_trans, root);
4076 cur_trans->state = TRANS_STATE_COMMIT_START;
4077 wake_up(&root->fs_info->transaction_blocked_wait);
4079 cur_trans->state = TRANS_STATE_UNBLOCKED;
4080 wake_up(&root->fs_info->transaction_wait);
4082 btrfs_destroy_delayed_inodes(root);
4083 btrfs_assert_delayed_root_empty(root);
4085 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4087 btrfs_destroy_pinned_extent(root,
4088 root->fs_info->pinned_extents);
4090 cur_trans->state =TRANS_STATE_COMPLETED;
4091 wake_up(&cur_trans->commit_wait);
4094 memset(cur_trans, 0, sizeof(*cur_trans));
4095 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4099 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4101 struct btrfs_transaction *t;
4103 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4105 spin_lock(&root->fs_info->trans_lock);
4106 while (!list_empty(&root->fs_info->trans_list)) {
4107 t = list_first_entry(&root->fs_info->trans_list,
4108 struct btrfs_transaction, list);
4109 if (t->state >= TRANS_STATE_COMMIT_START) {
4110 atomic_inc(&t->use_count);
4111 spin_unlock(&root->fs_info->trans_lock);
4112 btrfs_wait_for_commit(root, t->transid);
4113 btrfs_put_transaction(t);
4114 spin_lock(&root->fs_info->trans_lock);
4117 if (t == root->fs_info->running_transaction) {
4118 t->state = TRANS_STATE_COMMIT_DOING;
4119 spin_unlock(&root->fs_info->trans_lock);
4121 * We wait for 0 num_writers since we don't hold a trans
4122 * handle open currently for this transaction.
4124 wait_event(t->writer_wait,
4125 atomic_read(&t->num_writers) == 0);
4127 spin_unlock(&root->fs_info->trans_lock);
4129 btrfs_cleanup_one_transaction(t, root);
4131 spin_lock(&root->fs_info->trans_lock);
4132 if (t == root->fs_info->running_transaction)
4133 root->fs_info->running_transaction = NULL;
4134 list_del_init(&t->list);
4135 spin_unlock(&root->fs_info->trans_lock);
4137 btrfs_put_transaction(t);
4138 trace_btrfs_transaction_commit(root);
4139 spin_lock(&root->fs_info->trans_lock);
4141 spin_unlock(&root->fs_info->trans_lock);
4142 btrfs_destroy_all_ordered_extents(root->fs_info);
4143 btrfs_destroy_delayed_inodes(root);
4144 btrfs_assert_delayed_root_empty(root);
4145 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4146 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4147 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4152 static struct extent_io_ops btree_extent_io_ops = {
4153 .readpage_end_io_hook = btree_readpage_end_io_hook,
4154 .readpage_io_failed_hook = btree_io_failed_hook,
4155 .submit_bio_hook = btree_submit_bio_hook,
4156 /* note we're sharing with inode.c for the merge bio hook */
4157 .merge_bio_hook = btrfs_merge_bio_hook,